Please use this identifier to cite or link to this item: http://repositorio.unicamp.br/jspui/handle/REPOSIP/238401
Full metadata record
DC FieldValueLanguage
dc.contributor.CRUESPUNIVERSIDADE DE ESTADUAL DE CAMPINASpt_BR
dc.typeArtigo de periódicopt_BR
dc.titlePolymorphism In The Sirt1 Gene And Parameters Of Metabolic Syndrome In A Sample Of The Adult Brazilian Populationpt_BR
unicamp.authorLima, M.H.M., Universidade Estadual de Campinas, Faculdade de Ciências Médicas, Departamento de Enfermagem, Campinas, SP, Brazilpt_BR
unicamp.author.externalDe Oliveira Meneguette, M.V., Centro Universitário Hermínio Ometto, Programa de Pós-Graduação em Ciências Biomédicas, Av. Dr. Maximiliano Baruto, 500, Jd. Universitário, Araras, SP, Brazilpt
unicamp.author.externalDe Oliveira, C.A., Centro Universitário Hermínio Ometto, Programa de Pós-Graduação em Ciências Biomédicas, Av. Dr. Maximiliano Baruto, 500, Jd. Universitário, Araras, SP, Brazilpt
unicamp.author.externalPina, K.N., Centro Universitário Hermínio Ometto, Programa de Pós-Graduação em Ciências Biomédicas, Av. Dr. Maximiliano Baruto, 500, Jd. Universitário, Araras, SP, Brazilpt
unicamp.author.externalDo Amaral, M.E.C., Centro Universitário Hermínio Ometto, Programa de Pós-Graduação em Ciências Biomédicas, Av. Dr. Maximiliano Baruto, 500, Jd. Universitário, Araras, SP, Brazilpt
dc.description.abstractObjective To evaluate whether the single nucleotide polymorphism rs7895833 (A/G) of the gene SIRT1 is associated with metabolic syndrome criteria in a sample of Brazilian adults. Methods Serum samples and oral mucosal cells were collected from 243 subjects aged 30 to 70 years. Biochemical, hormonal, and anthropometric data were obtained. The single nucleotide polymorphism rs7895833 (A/G) was analyzed by polymerase chain reaction using the amplification refractory mutation system. Results Among the 243 study subjects, 100 (41.15%) were classified as non-metabolic syndrome and 143 (58.85%), as metabolic syndrome. The frequency of the single nucleotide polymorphism rs7895833 (A/G) did not differ between the groups. However, 111 patients (45.67%) were overweight (body mass index: 25-29.9 kg/m2). Blood glucose, total cholesterol, triglycerides, very low density lipoprotein, low density lipoprotein, waist and hip circumferences, and blood pressure were higher in the metabolic syndrome group than in the non-metabolic syndrome group. Free thyroxine 4, grown hormone, and insulin levels were within the normal range. The metabolic conditions of the patients with metabolic syndrome indicate biochemical, anthropometric, and hormonal changes characteristic of overweight and obesity. Conclusion The SIRT1 polymorphism rs7895833 (A/G) is not associated with the metabolic syndrome in the adult Brazilian population.en
dc.relation.ispartofRevista de Nutricaopt_BR
dc.publisherRevista de Nutricaopt_BR
dc.date.issued2016pt_BR
dc.identifier.citationRevista De Nutricao. Revista De Nutricao, v. 29, n. 1, p. 1 - 10, 2016.pt_BR
dc.language.isoenpt_BR
dc.description.volume29pt_BR
dc.description.issuenumber1pt_BR
dc.description.firstpage1pt_BR
dc.description.lastpage10pt_BR
dc.rightsfechadopt_BR
dc.sourceScopuspt_BR
dc.identifier.issn14155273pt_BR
dc.identifier.doi10.1590/1678-98652016000100001pt_BR
dc.identifier.urlhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84956935817&partnerID=40&md5=877a66e5ed72b1d11c2894615a6ac367pt_BR
dc.date.available2016-06-03T20:15:22Z-
dc.date.accessioned2016-06-03T20:15:22Z-
dc.description.provenanceMade available in DSpace on 2016-06-03T20:15:22Z (GMT). No. of bitstreams: 1 2-s2.0-84956935817.pdf: 414329 bytes, checksum: 17e2de5800cd50f9dd41c8ac8bebdca7 (MD5) Previous issue date: 2016en
dc.identifier.urihttp://repositorio.unicamp.br/jspui/handle/REPOSIP/238401-
dc.identifier.idScopus2-s2.0-84956935817pt_BR
dc.description.referenceIpadeola, A., Adeleye, J.O., The metabolic syndrome and accurate cardiovascular risk prediction in persons with type 2 diabetes Mellitus (2015) Diabetes Metab Syndr, , http://dx.doi.org/10.1016/j.dsx.2015.08.011pt_BR
dc.description.referenceExecutive Summary of the Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on detection, evolution and treatment of high blood cholesterol (2005) JAMA, 285 (19), pp. 2486-2497pt_BR
dc.description.referenceBarzilai, N., Bartke, A., Biological approaches to mechanistically understand the healthy life Span extension achieved by calorie restriction and modulation of hormones (2009) J Gerontol Biol Sci, 2 (12), pp. 187-191. , http://dx.doi.org/10.1093/gerona/gln061pt_BR
dc.description.referenceMasoro, E.J., Overview of the effects of food restriction (1989) Prog Clin Biol Res, 287, pp. 27-35pt_BR
dc.description.referenceBerner, Y.N., Stern, F., Energy restriction controls aging through neuroendocrine signal transduction (2004) Ageing Res Rev, 3 (2), pp. 189-198. , http://dx.doi.org/10.1016/j.arr.2003.10.004pt_BR
dc.description.referenceHolloszy, J.O., Fontana, L., Caloric restriction in humans (2007) Exp Gerontol, 42 (8), pp. 709-712. , http://dx.doi.org/10.1016/j.exger.2007.03.009pt_BR
dc.description.referenceChen, D., Bruno, J., Easlon, E., Lin, S.J., Cheng, H.L., Alt, F.W., Tissue-specific regulation of SIRT1 by calorie restriction (2008) Genes Dev, 22 (13), pp. 1753-1757. , http://dx.doi.org/10.1101/gad.1650608pt_BR
dc.description.referenceFrye, R.A., Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins (2000) Biochem Biophys Res Commun, 273 (2), pp. 793-798. , http://dx.doi.org/10.1006/bbrc.2000.3000pt_BR
dc.description.referenceBaur, J.A., Pearson, K.J., Price, N.L., Jamieson, H.A., Lerin, C., Kalra, A., Resveratrol improves health and survival of mice on a high-calorie diet (2006) Nature, 444 (7117), pp. 337-342. , http://dx.doi.org/10.1038/nature05354pt_BR
dc.description.referenceLagouge, M., Argmann, C., Gerhart-Hines, Z., Meziane, H., Lerin, C., Daussin, F., Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha (2006) Cell, 127 (16), pp. 1109-1122. , http://dx.doi.org/10.1016/j.cell.2006.11.013pt_BR
dc.description.referencePicard, F., Kurtev, M., Chung, N., Topark-Ngarm, A., Senawong, T., Machado de Oliveira, R., Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-gamma (2004) Nature, 429 (6993), pp. 771-776. , http://dx.doi.org/10.1038/nature02583pt_BR
dc.description.referenceBoezen, H.M., SIRT1 polymorphism, long-term survival and glucose tolerance in the general population (2013) PLoS One, 8 (3). , http://dx.doi.org/10.1371/journal.pone.0058636pt_BR
dc.description.referenceDong, Y., Guo, T., Traurig, M., Mason, C.C., Kobes, S., Perez, J., SIRT1 is associated with a decrease in acute insulin secretion and a sex specific increase in risk for type 2 diabetes in Pima Indians (2011) Mol Genet Metab, 104 (4), pp. 661-665. , http://dx.doi.org/10.1016/j.ymgme.2011.08.001pt_BR
dc.description.referenceZillikens, M.C., van Meurs, J.B., Sijbrands, E.J., Rivadeneira, F., Dehghan, A., van Leeuwen, J.P., SIRT1 genetic variation and mortality in type 2 diabetes: Interaction with smoking and dietary niacin (2009) Free Radic Biol Med, 46 (6), pp. 836-841. , http://dx.doi.org/10.1016/j.freeradbiomed.2008.12.022pt_BR
dc.description.referencePeeters, A.V., Beckers, S., Verrijken, A., Mertens, I., Roevens, P., Peeters, P.J., Association of SIRT1 gene variation with visceral obesity (2008) Hum Genet, 124 (4), pp. 431-436. , http://dx.doi.org/10.1007/s00439-008-0567-8pt_BR
dc.description.referenceWeyrich, P., Machicao, F., Reinhardt, J., Machann, J., Schick, F., Tschritter, O., SIRT1 genetic variants associate with the metabolic response of Caucasians to a controlled lifestyle intervention: The TULIP study (2008) BMC Med Genet, 9, p. 100. , http://dx.doi.org/10.1186/1471-2350-9-100pt_BR
dc.description.referencePedersen, S.B., Olholm, J., Paulsen, S.K., Bennetzen, M.F., Richelsen, B., Low Sirt1 expression, which is upregulated by fasting, in human adipose tissue from obese women (2008) Int J Obes, 32 (18), pp. 1250-1255. , http://dx.doi.org/10.1038/ijo.2008.78pt_BR
dc.description.referenceShimoyama, Y., Suzuki, K., Hamajima, N., Niwa, T., Sirtuin 1 gene polymorphisms are associated with body fat and blood pressure in Japanese (2011) Transl Res, 157 (6), pp. 339-347. , http://dx.doi.org/10.1016/j.trsl.2011.02.004pt_BR
dc.description.referenceZillikens, M.C., Van Meurs, J.B., Rivadeneira, F., Amin, N., Hofman, A., Oostra, B.A., SIRT1 genetic variation is related to BMI and risk of obesity (2009) Diabetes, 58 (12), pp. 2828-2834. , http://dx.doi.org/10.2337/db09-0536pt_BR
dc.description.referenceZillikens, M.C., Van Meurs, J.B., Rivadeneira, F., Hofman, A., Oostra, B.A., Sijbrands, E.J., Interactions between dietary vitamin E intake and SIRT1 genetic variation influence body mass index (2010) Am J Clin Nutr, 91 (5), pp. 1387-1393. , http://dx.doi.org/10.3945/ajcn.2009.28627pt_BR
dc.description.reference(2004) Obesidade: prevenindo e controlando a epidemia global, , Relatório da Consultoria da OMS. São Paulo: Roccapt_BR
dc.description.referenceFriedewald, W.T., Levy, R.I., Fredrickson, D.S., Estimation of the concentration of low density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge (1972) Clin Chem, 18 (6), pp. 499-502pt_BR
dc.description.referenceArruda, V.R., Lima, C.S., Grignoli, C.R., de Melo, M.B., Lorand-Metze, I., Alberto, F.L., Increased risk for acute myeloid leukaemia in individuals with glutathione S-transferase mu1 (GSTM1) and theta1 (GSTT1) gene defects (2001) Eur J Haematol, 66 (6), pp. 383-388. , http://dx.doi.org/10.1034/j.1600-0609.2001.066006383.xpt_BR
dc.description.referenceShimoyama, Y., Mitsuda, Y., Tsuruta, Y., Suzuki, K., Hamajima, N., Niwa, T., SIRTUIN 1 gene polymorphisms are associated with cholesterol metabolism and coronary artery calcification in Japanese hemodialysis patients (2012) J Ren Nutr, 22 (1), pp. 114-119. , http://dx.doi.org/10.1053/j.jrn.2011.10.025pt_BR
dc.description.referenceZarrabeitia, M.T., Valero, C., Martín-Escudero, J.C., Olmos, J.M., Bolado-Carrancio, A., de Sande-Nacarino, E.L., Association study of sirtuin 1 polymorphisms with bone mineral density and body mass index (2012) Arch Med Res, 43 (5), pp. 363-368. , http://dx.doi.org/10.1016/j.arcmed.2012.06.012pt_BR
dc.description.referenceClark, S.J., Falchi, M., Olsson, B., Jacobson, P., Cauchi, S., Balkau, B., Association of sirtuin 1 (SIRT1) gene SNPs and transcript expression levels with severe obesity (2012) Obesity, 20 (1), pp. 178-185. , http://dx.doi.org/10.1038/oby.2011.200pt_BR
dc.description.referenceFigarska, S.M., Vonk, J.M., Boezen, H.M., SIRT1 polymorphism, long-term survival and glucose tolerance in the general population (2013) PLoS One, 8 (3). , http://dx.doi.org/10.1371/journal.pone.0058636pt_BR
dc.description.referenceYang, J., Wang, N., Zhu, Y., Feng, P., Roles of SIRT1 in high glucose-induced endothelial impairment: Association with diabetic atherosclerosis (2011) Arch Med Res, 42 (5), pp. 354-360. , http://dx.doi.org/10.1016/j.arcmed.2011.07.005pt_BR
dc.description.referenceBotden, I.P., Zillikens, M.C., de Rooij, S.R., Langendonk, J.G., Danser, A.H., Sijbrands, E.J., Variants in the SIRT1 gene may affect diabetes risk in interaction with prenatal exposure to famine (2012) Diabetes Care, 35 (2), pp. 424-426. , http://dx.doi.org/10.2337/dc11-1203pt_BR
dc.description.referenceKilic, U., Gok, O., Bacaksiz, A., Izmirli, M., Elibol-Can, B., Uysal, O., SIRT1 gene polymorphisms affect the protein expression in cardiovascular diseases (2014) PLoS One, 9. , http://dx.doi.org/10.1371/journal.pone.0090428pt_BR
dc.description.referenceMateo-Gallego, R., Bea, A.M., Jarauta, E., Perez-Ruiz, M.R., Civeira, F., Age and sex influence the relationship between waist circumference and abdominal fat distribution measured by bioelectrical impedance (2012) Nutr Res, 32 (6), pp. 466-469. , http://dx.doi.org/10.1016/j.nutres.2012.05.004pt_BR
dc.description.referenceCarr, M.C., The emergence of the metabolic syndrome with menopause (2003) J Clin Endocrinol Metab, 88 (6), pp. 2404-2411. , http://dx.doi.org/10.1210/jc.2003-030242pt_BR
dc.description.referenceGupta, R., Deedwania, P.C., Gupta, A., Rastogi, S., Panwar, R.B., Kothari, K., Prevalence of metabolic syndrome in an Indian urban population (2004) Int J Cardiol, 97 (2), pp. 257-261. , http://dx.doi.org/10.1016/j.ijcard.2003.11.003pt_BR
dc.description.referenceMachado, U.F., Schaan, B.D., Seraphim, B.M., Glucose transporters in the metabolic syndrome (2006) Arq Bras Endocrinol Metab, 50 (2), pp. 177-189. , http://dx.doi.org/10.1590/S0004-27302006000200004pt_BR
dc.description.referenceSchäfer, S., Kantartzis, K., Machann, J., Venter, C., Niess, A., Schick, F., Lifestyle intervention in individuals with normal versus impaired glucose tolerance (2007) Eur J Clin Invest, 37 (7), pp. 535-543pt_BR
dc.description.referenceJohannsson, G., Mårin, P., Lönn, L., Ottosson, M., Stenlöf, K., Björntorp, P., Growth hormone treatment of abdominally obese men reduces abdominal fat mass, improves glucose and lipoprotein metabolism, and reduces diastolic blood pressure (1997) J Clin Endocrinol Metab, 82 (3), pp. 727-734. , http://dx.doi.org/10.1210/jcem.82.3.3809pt_BR
dc.description.referenceSchneider, H., Klotsche, J., Wittchen, H., Stalla, G., Schopohl, J., Kann, P., Effects of growth hormone replacement within the KIMS survey on estimated cardiovascular risk and predictors of risk reduction in patients with growth hormone deficiency (2011) Clin Endocrinol, 75 (6), pp. 825-830. , http://dx.doi.org/0.1111/j.1365-2265.2011.04137.xpt_BR
dc.description.referenceNagasaki, K., Tsumanuma, I., Yoneoka, Y., Jinguji, S., Ogawa, Y., Kikuchi, T., Metabolic effects of growth hormone replacement in two pediatric patients with growth without growth hormone (2010) Endocr J, 57 (9), pp. 771-775. , http://doi.org/10.1507/endocrj.K10E-180pt_BR
dc.description.referenceArafat, A.M., Möhlig, M., Weickert, M.O., Schöfl, C., Spranger, J., Pfeiffer, A.F., Improved insulin sensitivity, preserved beta cell function and improved wholebody glucose metabolism after low-dose growth hormone replacement therapy in adults with severe growth hormone deficiency: A pilot study (2010) Diabetologia, 53 (7), pp. 1304-1313. , http://doi.org/10.1007/s00125-010-1738-4pt_BR
dc.description.referenceDouyon, L., Schteingart, D.E., Effect of obesity and starvation on thyroid hormone, growth hormone, and cortisol secretion (2002) Endocrinol Metab Clin North Am, 3 (1), pp. 173-189pt_BR
dc.description.referenceKumar, H.K., Yadav, R.K., Prajapati, J., Reddy, C.V., Raghunath, M., Modi, K.D., Association between thyroid hormones, insulin resistance, and metabolic syndrome (2009) Saudi Med J, 30 (7), pp. 907-911pt_BR
dc.description.referenceEstivalet, A.A., Leiria, L.B., Dora, J.M., Rheinheimer, J., Bouças, A.P., Maia, A.L., D2 Thr92Ala and PPARγ2 Pro12Ala polymorphisms interact in the modulation of insulin resistance in type 2 diabetic patients (2011) Obesity, 19 (4), pp. 825-832. , http://doi.org/10.1038/oby.2010.231pt_BR
dc.description.referenceNagai, N., Sakane, N., Kotani, K., Hamada, T., Tsuzaki, K., Moritani, T., Uncoupling protein 1 gene-3826 A/G polymorphism is associated with weight loss on a short-term, controlled-energy diet in young women (2011) Nutr Res, 31 (4), pp. 255-261. , http://doi.org/10.1016/j.nutres.2011.03.010pt_BR
Appears in Collections:Unicamp - Artigos e Outros Documentos

Files in This Item:
File SizeFormat 
2-s2.0-84956935817.pdf404.62 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.