Please use this identifier to cite or link to this item:
Type: Artigo de periódico
Title: Interplay Of Weak Interactions In The Atom-by-atom Condensation Of Xenon Within Quantum Boxes.
Author: Nowakowska, Sylwia
Wäckerlin, Aneliia
Kawai, Shigeki
Ivas, Toni
Nowakowski, Jan
Fatayer, Shadi
Wäckerlin, Christian
Nijs, Thomas
Meyer, Ernst
Björk, Jonas
Stöhr, Meike
Gade, Lutz H
Jung, Thomas A
Abstract: Condensation processes are of key importance in nature and play a fundamental role in chemistry and physics. Owing to size effects at the nanoscale, it is conceptually desired to experimentally probe the dependence of condensate structure on the number of constituents one by one. Here we present an approach to study a condensation process atom-by-atom with the scanning tunnelling microscope, which provides a direct real-space access with atomic precision to the aggregates formed in atomically defined 'quantum boxes'. Our analysis reveals the subtle interplay of competing directional and nondirectional interactions in the emergence of structure and provides unprecedented input for the structural comparison with quantum mechanical models. This approach focuses on-but is not limited to-the model case of xenon condensation and goes significantly beyond the well-established statistical size analysis of clusters in atomic or molecular beams by mass spectrometry.
Rights: aberto
Identifier DOI: 10.1038/ncomms7071
Date Issue: 2015
Appears in Collections:Unicamp - Artigos e Outros Documentos

Files in This Item:
File SizeFormat 
pmed_25608225.pdf1.66 MBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.