Please use this identifier to cite or link to this item:
Type: Artigo de periódico
Title: Integral Localized Approximation Description Of Ordinary Bessel Beams And Application To Optical Trapping Forces.
Author: Ambrosio, Leonardo A
Hernández-Figueroa, Hugo E
Abstract: Ordinary Bessel beams are described in terms of the generalized Lorenz-Mie theory (GLMT) by adopting, for what is to our knowledge the first time in the literature, the integral localized approximation for computing their beam shape coefficients (BSCs) in the expansion of the electromagnetic fields. Numerical results reveal that the beam shape coefficients calculated in this way can adequately describe a zero-order Bessel beam with insignificant difference when compared to other relative time-consuming methods involving numerical integration over the spherical coordinates of the GLMT coordinate system, or quadratures. We show that this fast and efficient new numerical description of zero-order Bessel beams can be used with advantage, for example, in the analysis of optical forces in optical trapping systems for arbitrary optical regimes.
Subject: (080.0080) Geometric Optics
(170.4520) Optical Confinement And Manipulation
(290.4020) Mie Theory
(290.5825) Scattering Theory
(350.4855) Optical Tweezers Or Optical Manipulation
Rights: fechado
Identifier DOI: 10.1364/BOE.2.001893
Date Issue: 2011
Appears in Collections:Artigos e Materiais de Revistas Científicas - Unicamp

Files in This Item:
File SizeFormat 
pmed_21750767.pdf1.48 MBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.