Please use this identifier to cite or link to this item: http://repositorio.unicamp.br/jspui/handle/REPOSIP/199318
Type: Artigo de periódico
Title: Functional, Morphological And Molecular Characterization Of Bladder Dysfunction In Streptozotocin-induced Diabetic Mice: Evidence Of A Role For L-type Voltage-operated Ca2+ Channels.
Author: Leiria, L O S
Mónica, F Z T
Carvalho, F D G F
Claudino, M A
Franco-Penteado, C F
Schenka, A
Grant, A D
De Nucci, G
Antunes, E
Abstract: Diabetic cystopathy is one of the most common and incapacitating complications of diabetes mellitus. This study aimed to evaluate the functional, structural and molecular alterations of detrusor smooth muscle (DSM) in streptozotocin-induced diabetic mice, focusing on the contribution of Ca(2+) influx through L-type voltage-operated Ca(2+) channels (L-VOCC). Male C57BL/6 mice were injected with streptozotocin (125 mg·kg(-1) ). Four weeks later, contractile responses to carbachol, α,β-methylene ATP, KCl, extracellular Ca(2+) and electrical-field stimulation were measured in urothelium-intact DSM strips. Cystometry and histomorphometry were performed, and mRNA expression for muscarinic M(2) /M(3) receptors, purine P2X1 receptors and L-VOCC in the bladder was determined. Diabetic mice exhibited higher bladder capacity, frequency, non-void contractions and post-void pressure. Increased bladder weight, wall thickness, bladder volume and neural tissue were observed in diabetic bladders. Carbachol, α,β-methylene ATP, KCl, extracellular Ca(2+) and electrical-field stimulation all produced greater DSM contractions in diabetic mice. The L-VOCC blocker nifedipine almost completely reversed the enhanced DSM contractions in bladders from diabetic animals. The Rho-kinase inhibitor Y27632 had no effect on the enhanced carbachol contractions in the diabetic group. Expression of mRNA for muscarinic M(3) receptors and L-VOCC were greater in the bladders of diabetic mice, whereas levels of M(2) and P2X1 receptors remained unchanged. Diabetic mice exhibit features of urinary bladder dysfunction, as characterized by overactive DSM and decreased voiding efficiency. Functional and molecular data suggest that overactive DSM in diabetes is the result of enhanced extracellular Ca(2+) influx through L-VOCC.
Subject: Amides
Animals
Calcium Channel Blockers
Calcium Channels, L-type
Calcium Chloride
Carbachol
Cholinergic Agonists
Diabetes Mellitus, Experimental
Enzyme Inhibitors
Gene Expression Regulation
Male
Mice
Mice, Inbred C57bl
Nifedipine
Pyridines
Rna, Messenger
Receptor, Muscarinic M2
Receptor, Muscarinic M3
Receptors, Purinergic P2x1
Urinary Bladder Diseases
Rho-associated Kinases
Rights: fechado
Identifier DOI: 10.1111/j.1476-5381.2011.01311.x
Address: http://www.ncbi.nlm.nih.gov/pubmed/21391978
Date Issue: 2011
Appears in Collections:Unicamp - Artigos e Outros Documentos

Files in This Item:
File SizeFormat 
pmed_21391978.pdf1.17 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.