Please use this identifier to cite or link to this item: http://repositorio.unicamp.br/jspui/handle/REPOSIP/199199
Type: Artigo de periódico
Title: Augmentation Of Insulin Secretion By Leucine Supplementation In Malnourished Rats: Possible Involvement Of The Phosphatidylinositol 3-phosphate Kinase/mammalian Target Protein Of Rapamycin Pathway.
Author: Filiputti, Eliane
Rafacho, Alex
Araújo, Eliana P
Silveira, Leonardo R
Trevisan, Amon
Batista, Thiago M
Curi, Rui
Velloso, Lício A
Quesada, Ivan
Boschero, Antonio C
Carneiro, Everardo M
Abstract: A regimen of low-protein diet induces a reduction of pancreatic islet function that is associated with development of metabolic disorders including diabetes and obesity afterward. In the present study, the influence of leucine supplementation on metabolic parameters, insulin secretion to glucose and to amino acids, as well as the levels of proteins that participate in the phosphatidylinositol 3-phosphate kinase (PI3K) pathway was investigated in malnourished rats. Four groups were fed with different diets for 12 weeks: a normal protein diet (17%) without (NP) or with leucine supplementation (NPL) or a low (6%)-protein diet without (LP) or with leucine supplementation (LPL). Leucine was given in the drinking water during the last 4 weeks. As indicated by the intraperitoneal glucose tolerance test, LPL rats exhibited increased glucose tolerance as compared with NPL group. Both NPL and LPL rats had higher circulating insulin levels than controls. The LPL rats also showed increased insulin secretion by pancreatic islets in response to glucose or arginine compared with those observed in islets from LP animals. Glucose oxidation was significantly reduced in NPL, LP, and LPL isolated islets as compared with NP; but no alteration was observed for leucine and glutamate oxidation among the 4 groups. Western blotting analysis demonstrated increased PI3K and mammalian target protein of rapamycin protein contents in LPL compared with LP islets. A significant increase in insulin-induced insulin receptor substrate 1-associated PI3K activation was also observed in LPL compared with LP islets. These findings indicate that leucine supplementation can augment islet function in malnourished rats and that activation of the PI3K/mammalian target protein of rapamycin pathway may play a role in this process.
Subject: Animals
Blood Proteins
Body Weight
Diabetes Mellitus, Type 2
Dietary Supplements
Glucose Tolerance Test
Insulin
Insulin-secreting Cells
Intracellular Signaling Peptides And Proteins
Leucine
Male
Malnutrition
Phosphatidylinositol Phosphates
Protein-serine-threonine Kinases
Rna
Rats
Rats, Wistar
Reverse Transcriptase Polymerase Chain Reaction
Ribosomal Protein S6 Kinases
Tor Serine-threonine Kinases
Citation: Metabolism: Clinical And Experimental. v. 59, n. 5, p. 635-44, 2010-May.
Rights: fechado
Identifier DOI: 10.1016/j.metabol.2009.09.007
Address: http://www.ncbi.nlm.nih.gov/pubmed/19913855
Date Issue: 2010
Appears in Collections:Unicamp - Artigos e Outros Documentos

Files in This Item:
File SizeFormat 
pmed_19913855.pdf800.81 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.