Please use this identifier to cite or link to this item:
Type: Artigo de periódico
Title: Bioactive Polyelectrolyte Multilayers: Hyaluronic Acid Mediated B Lymphocyte Adhesion.
Author: Vasconcellos, Fernando C
Swiston, Albert J
Beppu, Marisa M
Cohen, Robert E
Rubner, Michael F
Abstract: A strategy was developed to produce thin, biopolymer-based polyelectrolyte multilayer films, based on hyaluronic acid and chitosan, that are able to effectively bind B lymphocytes. These films explore CD44-hyaluronate interactions and provide a method to make surface-bound B cell arrays without the need for nonselective covalent chemistry. The rational design of these films using solution deposition variables, such as ionic strength and pH, allows one to maximize and fine tune this binding efficiency ex vivo. This work suggests two important conditions for successfully attaching B cells to hyaluronate-containing polyelectrolyte multilayer films: (1) hyaluronic acid is required for the proposed CD44-mediated binding mechanism, and (2) hyaluronic acid deposition conditions that favor loops and tails, such as low pH and with added salt, result in more available CD44 binding ligands and higher cell binding efficiency. Chitosan-terminated films prepared without NaCl in the deposition solutions and hyaluronic acid-terminated films prepared with salt, both under pH 3.0 assembly conditions, presented a similar high lymphocyte binding efficiency. In the former case, however, the binding strength was weaker due to a significant electrostatic contribution to the binding. Bioactive polyelectrolyte multilayers for selective binding of lymphocytes hold great promise in fields ranging from cell-based biosensors to immune system engineering.
Subject: B-lymphocytes
Carcinoma, Squamous Cell
Cell Adhesion
Hyaluronic Acid
Hydrogen-ion Concentration
Lung Neoplasms
Osmolar Concentration
Surface Properties
Tumor Cells, Cultured
Rights: fechado
Identifier DOI: 10.1021/bm100570r
Date Issue: 2010
Appears in Collections:Unicamp - Artigos e Outros Documentos

Files in This Item:
File SizeFormat 
pmed_20795701.pdf2.49 MBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.