Please use this identifier to cite or link to this item: http://repositorio.unicamp.br/jspui/handle/REPOSIP/195053
Type: Artigo de periódico
Title: Neuroprotective Action Of Melatonin On Neonatal Rat Motoneurons After Sciatic Nerve Transection.
Author: Rogério, Fábio
de Souza Queiroz, Luciano
Teixeira, Simone A
Oliveira, Alexandre L R
de Nucci, Gilberto
Langone, Francesco
Abstract: The neuronal isoform of nitric oxide synthase (nNOS), a NADPH-dependent diaphorase, is considered to play a role in motoneuron death induced by sciatic nerve transection in neonatal rats. Neuronal loss in these circumstances has been correlated with nitric oxide (NO) production and NADPH-diaphorase positivity in motoneurons after axotomy. In the present study we looked for a possible protective effect of melatonin, an antioxidant agent and inhibitor of nNOS, on spinal motoneurons after axonal injury. Neonatal Wistar rats (P2) were submitted to sciatic nerve transection and allowed to survive to P7. Melatonin at doses of 1, 5, 10, 50 and 100 mg/kg was given subcutaneously before and at intervals after the surgery. Controls operated in the same way received dilution vehicle or no treatment. The animals were killed by perfusion of fixative and the spinal cord was examined in serial paraffin sections. The motoneurons of the sciatic pool were counted in the axotomized and contralateral sides. Immunohistochemistry for nNOS and glial fibrillary acidic protein was used to evaluate nNOS expression in the axotomized cells and the astrocytic response. We found that melatonin at doses of 1-50 mg/kg decreased neuronal death. Astrocytic hypertrophy in melatonin treated animals was less intense. There were no differences in nNOS expression between treated and control rats, and surviving motoneurons of the sciatic pool did not express the enzyme, suggesting that nNOS may not be involved in neuronal death or survival in these experimental conditions. Possible mechanisms of melatonin neuroprotection, which was equally effective at doses of 1-50 mg/kg, are discussed. Doses of 50 and 100 mg/kg caused failure to thrive, seizures or death. The fact that neuroprotective doses were far smaller than toxic ones should encourage testing of melatonin in neurologic diseases.
Subject: Animals
Animals, Newborn
Antioxidants
Astrocytes
Axotomy
Dose-response Relationship, Drug
Glial Fibrillary Acidic Protein
Immunohistochemistry
Melatonin
Motor Neurons
Neuroprotective Agents
Nitric Oxide Synthase
Nitric Oxide Synthase Type I
Rats
Rats, Wistar
Sciatic Nerve
Rights: fechado
Identifier DOI: 
Address: http://www.ncbi.nlm.nih.gov/pubmed/11814404
Date Issue: 2002
Appears in Collections:Artigos e Materiais de Revistas Científicas - Unicamp

Files in This Item:
File SizeFormat 
pmed_11814404.pdf1.86 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.