Please use this identifier to cite or link to this item:
Full metadata record
DC FieldValueLanguage
dc.typeArtigo de periódicopt_BR
dc.titleHighlighting The Mechanisms Of The Titanate Nanotubes To Titanate Nanoribbons Transformationpt_BR
dc.contributor.authorViana B.C.pt_BR
dc.contributor.authorFerreira O.P.pt_BR
dc.contributor.authorSouza Filho A.G.pt_BR
dc.contributor.authorHidalgo A.A.pt_BR
dc.contributor.authorMendes Filho J.pt_BR
dc.contributor.authorAlves O.L.pt_BR
unicamp.authorFerreira, O.P., LQES-Laboratório de Química Do Estado Sólido, Instituto de Química, Universidade Estadual de Campinas-UNICAMP, P. O. Box 6154, Campinas, SP 13083-970, Brazilpt_BR
unicamp.authorAlves, O.L., LQES-Laboratório de Química Do Estado Sólido, Instituto de Química, Universidade Estadual de Campinas-UNICAMP, P. O. Box 6154, Campinas, SP 13083-970, Brazilpt_BR, B.C., Departamento de Física, Universidade Federal Do Piauí-UFPI, P. O. Box 6030, Teresina, PI 64049-550, Brazilpt Filho, A.G., Departamento de Física, Universidade Federal Do Ceará-UFC, P. O. Box 6030, Fortaleza, CE 60455-900, Brazilpt, A.A., Departamento de Física, Universidade Federal Do Piauí-UFPI, P. O. Box 6030, Teresina, PI 64049-550, Brazilpt Filho, J., Departamento de Física, Universidade Federal Do Ceará-UFC, P. O. Box 6030, Fortaleza, CE 60455-900, Brazilpt
dc.description.abstractTitanate nanorods, nanoribbons, and nanofibers synthesized by hydrothermal treatment are being investigated by several groups. Similar to titanate nanotubes, with average diameter of 9 nm, there is a strong controversy regarding the composition and microscopic formation mechanism of these non-hollow nanostructures (nanoribbons). In this article, we report the synthesis and characterization of the titanate nanostructures by exploiting some aspects that were not exploited so far. By using X-ray diffraction, FT-infrared and Raman spectroscopies and electron microscopy, we have studied the intermediate structure and morphology between nanotubes and the non-hollow nanostructures. Our findings give further evidence that the transformation of nanotubes into non-hollow nanostructures is induced by a sequence of both oriented attachment and Ostwald rippening cooperative mechanisms. © 2011 Springer Science+Business Media B.V.en
dc.relation.ispartofJournal of Nanoparticle Researchpt_BR
dc.identifier.citationJournal Of Nanoparticle Research. , v. 13, n. 8, p. 3259 - 3265, 2011.pt_BR
dc.description.provenanceMade available in DSpace on 2015-06-30T20:44:08Z (GMT). No. of bitstreams: 0 Previous issue date: 2011en
dc.description.provenanceMade available in DSpace on 2015-11-26T14:54:26Z (GMT). No. of bitstreams: 0 Previous issue date: 2011en
dc.description.referenceBavykin, D.V., Walsh, F.C., Elongated titanate nanostructures and their applications (2009) Eur J Inorg Chem, 8, pp. 977-997. , 10.1002/ejic.200801122pt_BR
dc.description.referenceBavykin, D.V., Parmon, V.N., Lapkin, A.A., Walsh, F.C., The effect of hydrothermal conditions on the mesoporous structure of TiO2 nanotubes (2004) J Mater Chem, 14 (22), pp. 3370-3377. , 10.1039/b406378c 1:CAS:528:DC%2BD2cXpsVSltLc%3Dpt_BR
dc.description.referenceCao, J., Choi, J., Musfeldt, J.L., Lutta, S., Whittingham, M.S., Effect of sheet distance on the optical properties of vanadate nanotubes (2004) Chem Mater, 16 (4), pp. 731-736. , 10.1021/cm035119w 1:CAS:528:DC%2BD2cXkvVWrtQ%3D%3Dpt_BR
dc.description.referenceChen, X., Mao, S.S., Titanium dioxide nanomaterials: Synthesis, properties, modifications and applications (2007) Chemical Reviews, 107 (7), pp. 2891-2959. , DOI 10.1021/cr0500535pt_BR
dc.description.referenceChen, Q., Du, G.H., Zhang, S., Peng, L.-M., The structure of trititanate nanotubes (2002) Acta Crystallographica Section B: Structural Science, 58 (4), pp. 587-593. , DOI 10.1107/S0108768102009084pt_BR
dc.description.referenceFerreira, O.P., Souza Filho, A.G., Mendes Filho, J., Alves, O.L., Unveiling the structure and composition of titanium oxide nanotubes through ion exchange chemical reactions and thermal decomposition processes (2006) Journal of the Brazilian Chemical Society, 17 (2), pp. 393-402. ,, DOI 10.1007/s11259-006-3297-1pt_BR
dc.description.referenceGao, T., Fjellvag, H., Norby, P., Crystal structures of titanate nanotubes: A Raman scattering study (2009) Inorg Chem, 48 (4), pp. 1423-1432. , 10.1021/ic801508k 1:CAS:528:DC%2BD1MXls1artg%3D%3Dpt_BR
dc.description.referenceHorvath, E., Kukovecz, A., Konya, Z., Kiricsi, I., Hydrothermal conversion of self-assembled titanate nanotubes into nanowires in a revolving autoclave (2007) Chemistry of Materials, 19 (4), pp. 927-931. , DOI 10.1021/cm062413qpt_BR
dc.description.referenceHuang, J.Q., Cao, Y.G., Huang, Q.F., He, H., Liu, Y., Guo, W., Hong, M.C., High-temperature formation of titanate nanotubes and the transformation mechanism of nanotubes into nanowires (2009) Cryst Growth des, 9 (8), pp. 3632-3637. , 10.1021/cg900381h 10.1021/cg900381h 1:CAS:528:DC%2BD1MXnt1Wrtb4%3Dpt_BR
dc.description.referenceIdakiev, V., Yuan, Z.Y., Tabakova, T., Su, B.L., Titanium oxide nanotubes as supports of nano-sized gold catalysts for low temperature water-gas shift reaction (2005) Appl Catal A, 281 (12), pp. 149-155. , 10.1016/j.apcata.2004.11.021 1:CAS:528:DC%2BD2MXhsFSitL8%3Dpt_BR
dc.description.referenceKasuga, T., Hiramatsu, M., Hoson, A., Sekino, T., Niihara, K., Titania nanotubes prepared by chemical processing (1999) Advanced Materials, 11 (15), pp. 1307-1311. , DOI 10.1002/(SICI)1521-4095(199910)11:15<1307::AID-ADMA1307>3.0. CO;2-Hpt_BR
dc.description.referenceKolen'Ko, Y.V., Kovnir, K.A., Gavrilov, A.I., Garshev, A.V., Frantti, J., Lebedev, O.I., Churagulov, B.R., Yoshimura, M., Hydrothermal synthesis and characterization of nanorods of various titanates and titanium dioxide (2006) J Phys Chem B, 110 (9), pp. 4030-4038. , 10.1021/jp055687upt_BR
dc.description.referenceLi, J.R., Tang, Z.L., Zhang, Z.T., H-titanate nanotube: A novel lithium intercalation host with large capacity and high rate capability (2005) Electrochem Commun, 7 (1), pp. 62-67. , 10.1016/j.elecom.2004.11.009 1:CAS:528:DC%2BD2cXhtFaqu7rMpt_BR
dc.description.referenceLiu, X.-Y., Coville, N.J., A Raman study of titanate nanotubes (2005) South African Journal of Chemistry, 58, pp. 110-115. , 1073217670&recno=2&resultset=1&format=F&next=images/ejour/chem/ chem_v58_a20.pdf&bad=ej/ej_badfetch.html&pt_BR
dc.description.referenceMa, R., Fukuda, K., Sasaki, T., Osada, M., Bando, Y., Structural features of titanate nanotubes/nanobelts revealed by raman, X-ray absorption fine structure and electron diffraction characterizations (2005) Journal of Physical Chemistry B, 109 (13), pp. 6210-6214. , DOI 10.1021/jp044282rpt_BR
dc.description.referenceMeng, X.-D., Wang, D.-Z., Liu, J.-H., Zhang, S.-Y., Preparation and characterization of sodium titanate nanowires from brookite nanocrystallites (2004) Materials Research Bulletin, 39 (14-15), pp. 2163-2170. , DOI 10.1016/j.materresbull.2004.08.011, PII S0025540804002739pt_BR
dc.description.referenceMenzel, R., Peiro, A.M., Durrant, J.R., Shaffer, M.S.P., Impact of hydrothermal processing conditions on high aspect ratio titanate nanostructures (2006) Chemistry of Materials, 18 (25), pp. 6059-6068. , DOI 10.1021/cm061721lpt_BR
dc.description.referenceMorgan, D.L., Zhu, H.Y., Frost, R.L., Waclawik, E.R., Determination of a morphological phase diagram of titania/titanate nanostructures from alkaline hydrothermal treatment of Degussa P25 (2008) Chem Mater, 20 (12), pp. 3800-3802. , 10.1021/cm800077e 1:CAS:528:DC%2BD1cXmsFCrtbs%3Dpt_BR
dc.description.referenceMorgan, D.L., Liu, H.W., Frost, R.L., Waclawik, E.R., Implications of precursor chemistry on the alkaline hydrothermal synthesis of titania/titanate nanostructures (2010) J Phys Chem C, 114 (1), pp. 101-110. , 10.1021/jp908508z 1:CAS:528:DC%2BD1MXhsFCitL3Mpt_BR
dc.description.referencePeng, Y.C., Kansal, S.K., Deng, W.L., Studies on transformation of titanate nanotubes into nanoribbons (2009) Mater Lett, 63 (30), pp. 2615-2618. , 10.1016/j.matlet.2009.09.015 10.1016/j.matlet.2009.09.015 1:CAS:528:DC%2BD1MXhtlWhtLzIpt_BR
dc.description.referenceRemskar, M., Inorganic nanotubes (2004) Adv Mater, 16 (17), pp. 1497-1504. , 10.1002/adma.200306428 1:CAS:528:DC%2BD2cXovVymtrw%3Dpt_BR
dc.description.referenceTenne, R., Inorganic nanotubes and fullerene-like nanoparticles (2006) Nat Nanotechnol, 1 (2), pp. 103-111. , 10.1038/nnano.2006.62 1:CAS:528:DC%2BD28Xht1yjt7fMpt_BR
dc.description.referenceViana, B.C., Ferreira, O.P., Souza Filho, A.G., Rodrigues, C.M., Moraes, S.G., Mendes, J., Alves, O.L., Decorating titanate nanotubes with CeO2 nanoparticles (2009) J Phys Chem C, 113 (47), pp. 20234-20239. , 10.1021/jp9068043 1:CAS:528:DC%2BD1MXhtlagt7jPpt_BR
dc.description.referenceViana, B.C., Ferreira, O.P., Souza Filho, A.G., Mendes Filho, J., Alves, O.L., Structural, morphological and vibrational properties of titanate nanotubes and nanoribbons (2009) J Braz Chem Soc, 20, pp. 167-175. , 10.1590/S0103-50532009000100025 1:CAS:528:DC%2BD1MXis1aitLk%3Dpt_BR
dc.description.referenceWang, Y.Q., Hu, G.Q., Duan, X.F., Sun, H.L., Xue, Q.K., Microstructure and formation mechanism of titanium dioxide nanotubes (2002) Chem Phys Lett, 365 (56), pp. 427-431. , 10.1016/S0009-2614(02)01502-6 1:CAS:528:DC%2BD38XosVeksr0%3Dpt_BR
dc.description.referenceWei, M.D., Qi, Z.M., Ichihara, M., Honma, I., Zhou, H.S., Synthesis of one-dimensional sodium titanate nanostructures (2007) J Nanosci Nanotechnol, 7 (3), pp. 1065-1068. , 10.1166/jnn.2007.404 1:CAS:528:DC%2BD2sXjvVyht70%3Dpt_BR
dc.description.referenceWu, D., Liu, J., Zhao, X., Li, A., Chen, Y., Ming, N., Sequence of events for the formation of titanate nanotubes, nanofibers, nanowires, and nanobelts (2006) Chemistry of Materials, 18 (2), pp. 547-553. , DOI 10.1021/cm0519075pt_BR
dc.description.referenceYao, B.D., Chan, Y.F., Zhang, X.Y., Zhang, W.F., Yang, Z.Y., Wang, N., Formation mechanism of TiO2 nanotubes (2003) Appl Phys Lett, 82 (2), pp. 281-283. , 10.1063/1.1537518 1:CAS:528:DC%2BD3sXhs1Gmug%3D%3Dpt_BR
dc.description.referenceYuan, Z.Y., Su, B.L., Titanium oxide nanotubes, nanofibers and nanowires (2004) Colloids Surf A, 241 (1-3), pp. 173-183pt_BR
dc.description.referenceZhang, S., Peng, L.M., Chen, Q., Du, G.H., Dawson, G., Zhou, W.Z., Formation mechanism of H2Ti3O7 nanotubes (2003) Phys Rev Lett, 91 (25), pp. 2561031-2561034. , 10.1103/PhysRevLett.91.256103pt_BR
dc.description.referenceZhang, S., Chen, Q., Peng, L.-M., Structure and formation of H2Ti3O7 nanotubes in an alkali environment (2005) Physical Review B - Condensed Matter and Materials Physics, 71 (1), pp. 0141041-01410411. , DOI 10.1103/PhysRevB.71.014104, 014104pt_BR
Appears in Collections:Unicamp - Artigos e Outros Documentos

Files in This Item:
There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.