Please use this identifier to cite or link to this item: http://repositorio.unicamp.br/jspui/handle/REPOSIP/108297
Type: Artigo de evento
Title: Most: A Multi-objective Search-based Testing From Efsm
Author: Yano T.
Martins E.
De Sousa F.L.
Abstract: This paper introduces a multi-objective evolutionary approach to test case generation from extended finite state machines (EFSM), named MOST. Testing from an (E)FSM generally involves executing various transition paths, until a given coverage criterion (e.g. cover all transitions) is met. As traditional test generation methods from FSM only consider the control aspects, they can produce many infeasible paths when applied to EFSMs, due to conflicts in guard conditions along a path. In order to avoid the infeasible path generation, we propose an approach that obtains feasible paths dynamically, instead of performing static reachability analysis as usual for FSM-based methods. Previous works have treated EFSM test case generation as a mono-objective optimization problem. Our approach takes two objectives into account that are the coverage criterion and the solution length. In this way, it is not necessary to establish in advance the test case size as earlier approaches. MOST constructs a Pareto set approximation, i.e., a group of optimal solutions, which allows the test team to select the solutions that represent a good trade-off between both objectives. The paper shows empirical studies to illustrate the benefits of the approach and comparing the results with the ones obtained in a related work. © 2011 IEEE.
Editor: 
Rights: fechado
Identifier DOI: 10.1109/ICSTW.2011.37
Address: http://www.scopus.com/inward/record.url?eid=2-s2.0-80051642397&partnerID=40&md5=32e7942d127390457a45f176a11b8335
Date Issue: 2011
Appears in Collections:Unicamp - Artigos e Outros Documentos

Files in This Item:
File SizeFormat 
2-s2.0-80051642397.pdf966.57 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.