Please use this identifier to cite or link to this item:
Full metadata record
DC FieldValueLanguage
dc.typeArtigo de periódicopt_BR
dc.titleQuinolinate-induced Rat Striatal Excitotoxicity Impairs Endoplasmic Reticulum Ca2+-atpase Functionpt_BR
dc.contributor.authorFernandes A.M.A.P.pt_BR
dc.contributor.authorLandeira-Fernandez A.M.pt_BR
dc.contributor.authorSouza-Santos P.pt_BR
dc.contributor.authorCarvalho-Alves P.C.pt_BR
dc.contributor.authorCastilho R.F.pt_BR
unicamp.authorFernandes, A.M.A.P., Departamento de Patologia Clínica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), CP 6111, Campinas, SP 13083-887, Brazilpt_BR
unicamp.authorCastilho, R.F., Departamento de Patologia Clínica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), CP 6111, Campinas, SP 13083-887, Brazilpt_BR, A.M., Instituto de Bioquímica Médica, Universidade Federal Do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazilpt, P., Instituto de Bioquímica Médica, Universidade Federal Do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazilpt, P.C., Instituto de Bioquímica Médica, Universidade Federal Do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazilpt
dc.description.abstractExcessive activation of NMDA glutamate receptors and the resulting loss of intracellular Ca2+ homeostasis may be lethal (excitotoxic) to neurons. Such excitotoxicity can be induced in vivo by intrastriatal infusion of quinolinate, as this substance selectively activates NMDA receptors. The aim of the present research was to investigate whether the in vivo treatment of striatal tissue with quinolinate would lead to an early impairment of sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) activity or mitochondrial Ca2+ sequestration, two intracellular mechanisms involved in Ca2+ homeostasis and signaling. Sodium quinolinate was infused intrastriatally into adult rats, and 6 h later the brains were removed and the corpora striata dissected. At this time point, striatal sections stained with Fluoro-Jade, a cellular marker of cell death, showed initial signs of neuronal degeneration. In addition, SERCA activity decreased 39% in relation to the activity observed in the control striata. A corresponding decrease of the same magnitude in 45Ca2+ uptake by striatal microsomes was also found in the treated striata. Western blot analysis did not indicate any decrease in SERCA levels in striatal tissue after quinolinate infusion. Mitochondrial Ca2+ sequestration was still preserved in quinolinate-treated striatal tissue when the assay was carried out in the presence of physiological concentrations of ATP and Mg2+. These results suggest that impairment of the SERCA function may be an early event in excitotoxicity. © 2008 Springer Science+Business Media, LLC.en
dc.relation.ispartofNeurochemical Researchpt_BR
dc.identifier.citationNeurochemical Research. , v. 33, n. 9, p. 1749 - 1758, 2008.pt_BR
dc.description.provenanceMade available in DSpace on 2015-06-30T19:31:08Z (GMT). No. of bitstreams: 1 2-s2.0-48349109173.pdf: 436854 bytes, checksum: 14d55f5e5146706cf22ef5b85ec136ad (MD5) Previous issue date: 2008en
dc.description.provenanceMade available in DSpace on 2015-11-26T14:45:03Z (GMT). No. of bitstreams: 1 2-s2.0-48349109173.pdf: 436854 bytes, checksum: 14d55f5e5146706cf22ef5b85ec136ad (MD5) Previous issue date: 2008en
dc.description.referenceKostyuk, P., Verkhratsky, A., Calcium stores in neurons and glia (1994) Neuroscience, 63, pp. 381-404pt_BR
dc.description.referenceMalenka, R.C., Nicoll, R.A., Long-term potentiation-a decade of progress? (1999) Science, 285, pp. 1870-1874pt_BR
dc.description.referenceGnegy, M.E., Ca2+/calmodulin signaling in NMDA-induced synaptic plasticity (2000) Crit Rev Neurobiol, 14, pp. 91-129pt_BR
dc.description.referenceWest, A.E., Chen, W.G., Dalva, M.B., Dolmetsch, R.E., Kornhauser, J.M., Shaywitz, A.J., Takasu, M.A., Greenberg, M.E., Calcium regulation of neuronal gene expression (2001) Proc Natl Acad Sci USA, 98, pp. 11024-11031pt_BR
dc.description.referenceTzounopoulos, T., Stackman, R., Enhancing synaptic plasticity and memory: A role for small-conductance Ca2+-activated K+ channels (2003) Neuroscientist, 9, pp. 434-439pt_BR
dc.description.referenceTymianski, M., Charlton, M.P., Carlen, P.L., Tator, C.H., Source specificity of early calcium neurotoxicity in cultured embryonic spinal neurons (1993) J Neurosci, 13, pp. 2085-2104pt_BR
dc.description.referenceDirnagl, U., Iadecola, C., Moskowitz, M.A., Pathobiology of ischaemic stroke: An integrated view (1999) Trends Neurosci, 22, pp. 391-397pt_BR
dc.description.referenceLee, J.M., Zipfel, G.J., Choi, D.W., The changing landscape of ischaemic brain injury mechanisms (1999) Nature, 399, pp. 7-A14pt_BR
dc.description.referenceMattson, M.P., Chan, S.L., Neuronal and glial calcium signaling in Alzheimer's disease (2003) Cell Calcium, 34, pp. 385-937pt_BR
dc.description.referenceHynd, M.R., Scott, H.L., Dodd, P.R., Glutamate-mediated excitotoxicity and neurodegeneration in Alzheimer's disease (2004) Neurochem Int, 45, pp. 583-595pt_BR
dc.description.referenceArundine, M., Tymianski, M., Molecular mechanisms of calcium-dependent neurodegeneration in excitotoxicity (2003) Cell Calcium, 34, pp. 325-337pt_BR
dc.description.referenceOrrenius, S., Zhivotovsky, B., Nicotera, P., Regulation of cell death: The calcium-apoptosis link (2003) Nat Rev Mol Cell Biol, 4, pp. 552-565pt_BR
dc.description.referencePaschen, W., Mechanisms of neuronal cell death: Diverse roles of calcium in the various subcellular compartments (2003) Cell Calcium, 34, pp. 305-310pt_BR
dc.description.referenceAraujo, I.M., Carvalho, C.M., Role of nitric oxide and calpain activation in neuronal death and survival (2005) Curr Drug Targets CNS Neurol Disord, 4, pp. 319-324pt_BR
dc.description.referenceCarafoli, E., Calcium signaling: A tale for all seasons (2002) Proc Natl Acad Sci USA, 99, pp. 1115-1122pt_BR
dc.description.referenceBerridge, M.J., Bootman, M.D., Roderick, H.L., Calcium signalling: Dynamics, homeostasis and remodelling (2003) Nat Rev Mol Cell Biol, 4, pp. 517-529pt_BR
dc.description.referenceNicholls, D.G., Vesce, S., Kirk, L., Chalmers, S., Interactions between mitochondrial bioenergetics and cytoplasmic calcium in cultured cerebellar granule cells (2003) Cell Calcium, 34, pp. 407-424pt_BR
dc.description.referenceMata, A.M., Sepulveda, M.R., Calcium pumps in the central nervous system (2005) Brain Res Brain Res Rev, 49, pp. 398-405pt_BR
dc.description.referencePetersen, O.H., Michalak, M., Verkhratsky, A., Calcium signalling: Past, present and future (2005) Cell Calcium, 38, pp. 161-169pt_BR
dc.description.referenceVerkhratsky, A., Physiology and pathophysiology of the calcium store in the endoplasmic reticulum of neurons (2005) Physiol Rev, 85, pp. 201-279pt_BR
dc.description.referenceKhodorov, B.I., Fayuk, D.A., Koshelev, S.G., Vergun, O.V., Pinelis, V.G., Vinskaya, N.P., Storozhevykh, T.P., Dubinsky, J.M., Effect of a prolonged glutamate challenge on plasmalemmal calcium permeability in mammalian central neurones. Mn2+ as a tool to study calcium influx pathways (1996) Int J Neurosci, 88, pp. 215-241pt_BR
dc.description.referencePereira, C., Ferreira, C., Carvalho, C., Oliveira, C., Contribution of plasma membrane and endoplasmic reticulum Ca 2+-ATPases to the synaptosomal [Ca2+]i increase during oxidative stress (1996) Brain Res, 713, pp. 269-277pt_BR
dc.description.referenceParsons, J.T., Churn, S.B., Delorenzo, R.J., Global ischemia-induced inhibition of the coupling ratio of calcium uptake and ATP hydrolysis by rat whole brain microsomal Mg2+/Ca 2+ ATPase (1999) Brain Res, 834, pp. 32-41pt_BR
dc.description.referenceLehotsky, J., Kaplan, P., Babusikova, E., Strapkova, A., Murin, R., Molecular pathways of endoplasmic reticulum dysfunctions: Possible cause of cell death in the nervous system (2003) Physiol Res, 52, pp. 269-274pt_BR
dc.description.referencePottorf II, W.J., Johanns, T.M., Derrington, S.M., Strehler, E.E., Enyedi, A., Thayer, S.A., Glutamate-induced protease-mediated loss of plasma membrane Ca 2+ pump activity in rat hippocampal neurons (2006) J Neurochem, 98, pp. 1646-1656pt_BR
dc.description.referenceSchinder, A.F., Olson, E.C., Spitzer, N.C., Montal, M., Mitochondrial dysfunction is a primary event in glutamate neurotoxicity (1996) J Neurosci, 16, pp. 6125-6133pt_BR
dc.description.referenceWang, G.J., Thayer, S.A., Sequestration of glutamate-induced Ca2+ loads by mitochondria in cultured rat hippocampal neurons (1996) J Neurophysiol, 76, pp. 1611-1621pt_BR
dc.description.referenceCastilho, R.F., Hansson, O., Ward, M.W., Budd, S.L., Nicholls, D.G., Mitochondrial control of acute glutamate excitotoxicity in cultured cerebellar granule cells (1998) J Neurosci, 18, pp. 10277-10286pt_BR
dc.description.referenceStout, A.K., Raphael, H.M., Kanterewicz, B.I., Klann, E., Reynolds, I.J., Glutamate-induced neuron death requires mitochondrial calcium uptake (1998) Nat Neurosci, 1, pp. 366-373pt_BR
dc.description.referenceStone, T.W., Perkins, M.N., Quinolinic acid: A potent endogenous excitant at amino acid receptors in CNS (1981) Eur J Pharmacol, 72, pp. 411-412pt_BR
dc.description.referenceStone, T.W., Neuropharmacology of quinolinic and kynurenic acids (1993) Pharmacol Rev, 45, pp. 309-379pt_BR
dc.description.referenceMoffett, J.R., Namboodiri, M.A., Tryptophan and the immune response (2003) Immunol Cell Biol, 8, pp. 247-265pt_BR
dc.description.referenceMaia, J.C.C., Gomes, S.L., Juliani, M.H., Preparation of (gamma-32P)- and (alpha-32P)- nucleoside triphosphates with high specific activity (1983) Genes and Antigens of Parasites: A Laboratory Manual, pp. 139-149. , Morel CM (ed) Fundação Oswaldo Cruz, Rio de Janeiropt_BR
dc.description.referenceFoster, A.C., Gill, R., Woodruff, G.N., Neuroprotective effects of MK-801 in vivo: Selectivity and evidence for delayed degeneration mediated by NMDA receptor activation (1988) J Neurosci, 8, pp. 4745-4754pt_BR
dc.description.referenceSchmued, L.C., Albertson, C., Slikker Jr., W., Fluoro-Jade: A novel fluorochrome for the sensitive and reliable histochemical localization of neuronal degeneration (1997) Brain Res, 751, pp. 37-46pt_BR
dc.description.referenceSupattapone, S., Danoff, S.K., Theibert, A., Joseph, S.K., Steiner, J., Snyder, S.H., Cyclic AMP-dependent phosphorylation of a brain inositol trisphosphate receptor decreases its release of calcium (1988) Proc Natl Acad Sci USA, 85, pp. 8747-8750pt_BR
dc.description.referenceLowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J., Protein measurement with the Folin phenol reagent (1951) J Biol Chem, 193, pp. 265-275pt_BR
dc.description.referenceRosenthal, R.E., Hamud, F., Fiskum, G., Varghese, P.J., Sharpe, S., Cerebral ischemia and reperfusion: Prevention of brain mitochondrial injury by lidoflazine (1987) J Cereb Blood Flow Metab, 7, pp. 752-758pt_BR
dc.description.referenceWatson, W.D., Facchina, S.L., Grimaldi, M., Verma, A., Sarco-endoplasmic reticulum Ca2+-ATPase (SERCA) inhibitors identify a novel calcium pool in the central nervous system (2003) J Neurochem, 87, pp. 30-43pt_BR
dc.description.referenceSouza Dos Santos, P., Saraiva, D.F., Ferraz Da Costa, D.C., Scofano, H.M., De Carvalho-Alves, P.C., Trifluoperazine protects brain plasma membrane Ca2+-ATPase from oxidative damaging (2007) Exp Brain Res, 177, pp. 347-357pt_BR
dc.description.referenceFreitas, A.J., Rocha, J.B., Wolosker, H., Souza, D.O., Effects of Hg2+ and CH3Hg+ on Ca 2+ fluxes in rat brain microsomes (1996) Brain Res, 738, pp. 257-264pt_BR
dc.description.referenceRamos, R.C., De Meis, L., Glucose 6-phosphate and fructose 1,6-bisphosphate can be used as ATP-regenerating systems by cerebellum Ca2+-transport ATPase (1999) J Neurochem, 72, pp. 81-86pt_BR
dc.description.referenceRacay, P., Kaplan, P., Lehotsky, J., Ischemia-induced inhibition of active calcium transport into gerbil brain microsomes: Effect of anesthetics and models of ischemia (2000) Neurochem Res, 25, pp. 285-292pt_BR
dc.description.referenceScarpa, A., Measurements of cation transport with metallochromic indicators (1979) Methods Enzymol, 56, pp. 301-338pt_BR
dc.description.referenceLaemmli, U.K., Cleavage of structural proteins during the assembly of the head of bacteriophage T4 (1970) Nature, 227, pp. 680-685pt_BR
dc.description.referenceFernandes, A.M., Maurer-Morelli, C.V., Campos, C.B., Mello, M.L., Castilho, R.F., Langone, F., Fluoro-Jade, but not Fluoro-Jade B, stains non-degenerating cells in brain and retina of embryonic and neonatal rats (2004) Brain Res, 1029, pp. 24-33pt_BR
dc.description.referenceEmgard, M., Karlsson, J., Hansson, O., Brundin, P., Patterns of cell death and dopaminergic neuron survival in intrastriatal nigral grafts (1999) Exp Neurol, 160, pp. 279-288pt_BR
dc.description.referenceGrubmeyer, C., Penefsky, H.S., Regulation of steady state filling in sarcoplasmic reticulum. (1981) J Biol Chem, 264, pp. 5929-5936pt_BR
dc.description.referenceChiesi, M., Inesi, G., The use of quench reagents for resolution of single transport cycles in sarcoplasmic reticulum (1979) J Biol Chem, 254, pp. 10370-10377pt_BR
dc.description.referenceNicholls, D.G., Budd, S.L., Mitochondria and neuronal survival (2000) Physiol Rev, 80, pp. 315-360pt_BR
dc.description.referenceZoratti, M., Szabo, I., The mitochondrial permeability transition (1995) Biochim Biophys Acta, 1241, pp. 139-176pt_BR
dc.description.referenceBano, D., Young, K.W., Guerin, C.J., Lefeuvre, R., Rothwell, N.J., Naldini, L., Rizzuto, R., Nicotera, P., Cleavage of the plasma membrane Na+/Ca2+ exchanger in excitotoxicity (2005) Cell, 120, pp. 275-285pt_BR
dc.description.referenceSchwarcz, R., Whetsell Jr., W.O., Mangano, R.M., Quinolinic acid: An endogenous metabolite that produces axon-sparing lesions in rat brain (1983) Science, 219, pp. 316-318pt_BR
dc.description.referenceHansson, O., Petersen, A., Leist, M., Nicotera, P., Castilho, R.F., Brundin, P., Transgenic mice expressing a Huntington's disease mutation are resistant to quinolinic acid-induced striatal excitotoxicity (1999) Proc Natl Acad Sci USA, 96, pp. 8727-8732pt_BR
dc.description.referenceGouhier, C., Chalon, S., Venier-Julienne, M.C., Bodard, S., Benoit, J., Besnard, J., Guilloteau, D., Neuroprotection of nerve growth factor-loaded microspheres on the D2 dopaminergic receptor positive-striatal neurones in quinolinic acid-lesioned rats: A quantitative autoradiographic assessment with iodobenzamide (2000) Neurosci Lett, 288, pp. 71-75pt_BR
dc.description.referencePerez-Navarro, E., Akerud, P., Marco, S., Canals, J.M., Tolosa, E., Arenas, E., Alberch, J., Neurturin protects striatal projection neurons but not interneurons in a rat model of Huntington's disease (2000) Neuroscience, 98, pp. 89-96pt_BR
dc.description.referenceCastilho, R.F., Carvalho-Alves, P.C., Vercesi, A.E., Ferreira, S.T., Oxidative damage to sarcoplasmic reticulum Ca2+-pump induced by Fe2+/H2O2/ascorbate is not mediated by lipid peroxidation or thiol oxidation and leads to protein fragmentation (1996) Mol Cell Biochem, 159, pp. 105-114pt_BR
dc.description.referenceMoreau, V.H., Castilho, R.F., Ferreira, S.T., Carvalho-Alves, P.C., Oxidative damage to sarcoplasmic reticulum Ca2+-ATPase at submicromolar iron concentrations: Evidence for metal-catalyzed oxidation (1998) Free Radic Biol Med, 25, pp. 554-560pt_BR
dc.description.referenceZaidi, A., Michaelis, M.L., Effects of reactive oxygen species on brain synaptic plasma membrane Ca2+-ATPase (1999) Free Radic Biol Med, 27, pp. 810-821pt_BR
dc.description.referenceRacay, P., Kaplan, P., Mezesova, V., Lehotsky, J., Lipid peroxidation both inhibits Ca2+-ATPase and increases Ca2+ permeability of endoplasmic reticulum membrane (1997) Biochem Mol Biol Int, 41, pp. 647-655pt_BR
dc.description.referenceBuege, J.A., Aust, S.D., Microsomal lipid peroxidation (1978) Methods Enzymol, 52, pp. 302-310pt_BR
dc.description.referenceReznick, A.Z., Packer, L., Oxidative damage to proteins: Spectrophotometric method for carbonyl assay (1994) Methods Enzymol, 233, pp. 357-363pt_BR
dc.description.referenceSattler, R., Xiong, Z., Lu, W.Y., Hafner, M., MacDonald, J.F., Tymianski, M., Specific coupling of NMDA receptor activation to nitric oxide neurotoxicity by PSD-95 protein (1999) Science, 284, pp. 1845-1848pt_BR
dc.description.referenceSattler, R., Xiong, Z., Lu, W.Y., MacDonald, J.F., Tymianski, M., Distinct roles of synaptic and extrasynaptic NMDA receptors in excitotoxicity (2000) J Neurosci, 20, pp. 22-33pt_BR
dc.description.referenceAarts, M., Liu, Y., Liu, L., Besshoh, S., Arundine, M., Gurd, J.W., Wang, Y.T., Tymianski, M., Treatment of ischemic brain damage by perturbing NMDA receptor-PSD-95 protein interactions (2002) Science, 298, pp. 846-850pt_BR
dc.description.referenceNicholls, D.G., Budd, S.L., Mitochondria and neuronal glutamate excitotoxicity (1998) Biochim Biophys Acta, 1366, pp. 97-112pt_BR
dc.description.referenceKirichok, Y., Krapivinsky, G., Clapham, D.E., The mitochondrial calcium uniporter is a highly selective ion channel (2004) Nature, 22, pp. 360-364pt_BR
dc.description.referenceNicholls, D.G., Mitochondrial dysfunction and glutamate excitotoxicity studied in primary neuronal cultures (2004) Curr Mol Med, 4, pp. 149-177pt_BR
dc.description.referenceLarsen, G.A., Skjellegrind, H.K., Berg-Johnsen, J., Moe, M.C., Vinje, M.L., Depolarization of mitochondria in isolated CA1 neurons during hypoxia, glucose deprivation and glutamate excitotoxicity (2006) Brain Res, 13, pp. 153-160pt_BR
dc.description.referenceWard, M.W., Rego, A.C., Frenguelli, B.G., Nicholls, D.G., Mitochondrial membrane potential and glutamate excitotoxicity in cultured cerebellar granule cells (2000) J Neurosci, 19, pp. 7208-7219pt_BR
dc.description.referenceSaris, N.E., Carafoli, E., A historical review of cellular calcium handling, with emphasis on mitochondria (2005) Biochemistry (Mosc), 70, pp. 187-194pt_BR
Appears in Collections:Unicamp - Artigos e Outros Documentos

Files in This Item:
File SizeFormat 
2-s2.0-48349109173.pdf426.62 kBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.