Please use this identifier to cite or link to this item:
Type: Artigo de evento
Title: Necessary And Sufficient Numerical Conditions For Asymptotic Stability Of Linear Time-varying Systems
Author: Garcia G.
Peres P.L.D.
Tarbouriech S.
Abstract: In this paper, necessary and sufficient numerical conditions for stability and for asymptotic stability of linear continuous time-varying systems are derived. For a given set of initial conditions, a tube containing all the trajectories of the system is constructed in the state space. At each instant of time, there exists an initial condition inside the set such that the resulting trajectory attains the border of the tube. Based on the above formulation, necessary and sufficient conditions for stability and for asymptotic stability are expressed through the solution of a linear differential Lyapunov equation. The conditions can deal with the stability of periodic systems as well. One of the main characteristics of the proposed necessary and sufficient conditions is that the only assumption on the dynamical matrix of the linear time-varying system is continuity. Examples from the literature illustrate the superiority of the proposed conditions when compared to other methods. © 2008 IEEE.
Rights: fechado
Identifier DOI: 10.1109/CDC.2008.4738623
Date Issue: 2008
Appears in Collections:Unicamp - Artigos e Outros Documentos

Files in This Item:
File SizeFormat 
2-s2.0-62949126391.pdf343.62 kBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.