Please use this identifier to cite or link to this item: http://repositorio.unicamp.br/jspui/handle/REPOSIP/106442
Type: Artigo de periódico
Title: Vanishing Viscosity Limit For Incompressible Flow Inside A Rotating Circle
Author: Lopes Filho M.C.
Mazzucato A.L.
Nussenzveig Lopes H.J.
Abstract: In this article we consider circularly symmetric incompressible viscous flow in a disk. The boundary condition is no-slip with respect to a prescribed time-dependent rotation of the boundary about the center of the disk. We prove that, if the prescribed angular velocity of the boundary has finite total variation, then the Navier-Stokes solutions converge strongly in L2 to the corresponding stationary solution of the Euler equations when viscosity vanishes. Our approach is based on a semigroup treatment of the symmetry-reduced scalar equation. © 2008 Elsevier B.V. All rights reserved.
Editor: 
Rights: fechado
Identifier DOI: 10.1016/j.physd.2008.03.009
Address: http://www.scopus.com/inward/record.url?eid=2-s2.0-44649120782&partnerID=40&md5=2800febdb95e9beed60858cf724cb5df
Date Issue: 2008
Appears in Collections:Unicamp - Artigos e Outros Documentos

Files in This Item:
File SizeFormat 
2-s2.0-44649120782.pdf273.37 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.