Please use this identifier to cite or link to this item: http://repositorio.unicamp.br/jspui/handle/REPOSIP/104988
Type: Artigo de periódico
Title: Limit Cycles Bifurcating From A K-dimensional Isochronous Center Contained In ℝ N With K ≤ N
Author: Llibre J.
Teixeira M.A.
Torregrosa J.
Abstract: The goal of this paper is double. First, we illustrate a method for studying the bifurcation of limit cycles from the continuum periodic orbits of a k-dimensional isochronous center contained in n with n ≤ k, when we perturb it in a class of C2 differential systems. The method is based in the averaging theory. Second, we consider a particular polynomial differential system in the plane having a center and a non-rational first integral. Then we study the bifurcation of limit cycles from the periodic orbits of this center when we perturb it in the class of all polynomial differential systems of a given degree. As far as we know this is one of the first examples that this study can be made for a polynomial differential system having a center and a non-rational first integral. © 2007 Springer Science+Business Media B.V.
Editor: 
Rights: fechado
Identifier DOI: 10.1007/s11040-007-9030-7
Address: http://www.scopus.com/inward/record.url?eid=2-s2.0-38349188876&partnerID=40&md5=3a2bad47ebc3d1dbe50453d1539ec584
Date Issue: 2007
Appears in Collections:Unicamp - Artigos e Outros Documentos

Files in This Item:
File SizeFormat 
2-s2.0-38349188876.pdf349.37 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.