Please use this identifier to cite or link to this item:
Type: Artigo de evento
Title: Handling Time-varying Tsp Instances
Author: De Franca F.O.
Gomes L.C.T.
De Castro L.N.
Von Zuben F.J.
Abstract: Multimodal optimization algorithms are being adapted to deal with dynamic optimization, mainly due to their ability to provide a faster reaction to unexpected changes in the optimization surface. The faster reaction may be associated with the existence of two important attributes in population-based algorithms devoted to multimodal optimization: simultaneous maintenance of multiple local optima in the population; and self-regulation of the population size along the search. The optimization surface may be subject to variations motivated by one of two main reasons: modification of the objectives to be fulfilled and change in parameters of the problem. An immuneinspired algorithm specially designed to deal with combinatorial optimization is applied here to solve time-varying TSP instances, with the cost of going from one city to the other being a function of time. The proposal presents favorable results when compared to the results produced by a high-performance ant colony optimization algorithm of the literature. © 2006 IEEE.
Rights: fechado
Identifier DOI: 
Date Issue: 2006
Appears in Collections:Unicamp - Artigos e Outros Documentos

Files in This Item:
File Description SizeFormat 
2-s2.0-34547375852.pdf401.99 kBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.