Please use this identifier to cite or link to this item:
Type: Artigo de evento
Title: Existence And Stability Of Ground-state Solutions Of A Schrödinger-kdv System
Author: Albert J.
Pava J.A.
Abstract: We consider the coupled Schrödinger-Korteweg-de Vries system i(u t + c1ux) + δ1uxx = αuv, vt + c2vx + δ 2vxxx + γ(v2)x = β(|u|2)x, which arises in various physical contexts as a model for the interaction of long and short nonlinear waves. Ground states of the system are, by definition, minimizers of the energy functional subject to constraints on conserved functionals associated with symmetries of the system. In particular, ground states have a simple time dependence because they propagate via those symmetries. For a range of values of the parameters α, β, γ, δi, ci, we prove the existence and stability of a two-parameter family of ground states associated with a two-parameter family of symmetries.
Rights: fechado
Identifier DOI: 
Date Issue: 2003
Appears in Collections:Unicamp - Artigos e Outros Documentos

Files in This Item:
File Description SizeFormat 
2-s2.0-0344981531.pdf405.55 kBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.