Please use this identifier to cite or link to this item:
Type: Artigo de periódico
Title: Fitting Of Accurate Interatomic Pair Potentials For Bulk Metallic Alloys Using Unrelaxed Lda Energies
Author: Ferreira L.G.
Ozolins V.
Zunger A.
Abstract: We present a general and simple method for obtaining accurate, local density approximation (LDA-) quality interatomic potentials for a large class of bulk metallic alloys. The method is based on our analysis of atomic relaxation, which reveals that the energy released in the relaxation process can be approximated by calculating the epitaxially constrained energies of the constituents A and B. Therefore, the pair potential is fitted to the LDA-calculated epitaxial energies of the constituents (to capture the relaxation energies), and to the unrelaxed energies of ordered AnBm compounds (to capture the fixed-lattice "chemical" energy). The usefulness of our approach is demonstrated by carrying out this procedure for the Cu1-xAux alloy system. The resulting pair potential reproduces the relaxed LDA formation energies of ordered compounds rather accurately, even though we used only unrelaxed energies as input. We also predict phonon spectra of the elements and ordered compounds in very good agreement with the LDA results. From the calculations for ≈10000 atom supercells representing the random alloy, we obtain the bond lengths and relaxation energies of the random phase that are not accessible to direct LDA calculations. We predict that, while in Cu-rich alloys the Cu-Cu bond is shorter than the Cu-Au bond, at higher Au compositions this order is switched. Furthermore, we find that Au-rich Cu1-xAux alloys have ground states that correspond to (001) superlattices of n monolayers of fcc Au stacked on m monolayers of the L10 CuAu-I structure. The potential developed in this work is available at the site for interested users. ©1999 The American Physical Society.
Rights: aberto
Identifier DOI: 
Date Issue: 1999
Appears in Collections:Unicamp - Artigos e Outros Documentos

Files in This Item:
File Description SizeFormat 
2-s2.0-0038774906.pdf156.12 kBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.