Please use this identifier to cite or link to this item:
Type: Artigo de periódico
Title: One-dimensional Loss Networks And Conditioned M/g/∞ Queues
Author: Ferrari P.A.
Garcia N.L.
Abstract: We study one-dimensional continuous loss networks with length distribution G and cable capacity C. We prove that the unique stationary distribution ηL of the network for which the restriction on the number of calls to be less than C is imposed only in the segment [-L, L] is the same as the distribution of a stationary M/G/∞ queue conditioned to be less than C in the time interval [-L, L]. For distributions G which are of phase type (= absorbing times of finite state Markov processes) we show that the limit as L → ∞ of ηL exists and is unique. The limiting distribution turns out to be invariant for the infinite loss network. This was conjectured by Kelly (1991).
Rights: fechado
Identifier DOI: 
Date Issue: 1998
Appears in Collections:Unicamp - Artigos e Outros Documentos

Files in This Item:
File Description SizeFormat 
2-s2.0-0000414621.pdf133.78 kBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.