Please use this identifier to cite or link to this item: http://repositorio.unicamp.br/jspui/handle/REPOSIP/100211
Type: Artigo de periódico
Title: Seismic Constant-velocity Remigration
Author: Schleicher J.
Hubral P.
Hocht G.
Liptow F.
Abstract: When a seismic common midpoint (CMP) stack or zero-offset (ZO) section is depth or time migrated with different (constant) migration velocities, different reflector images of the subsurface are obtained. If the migration velocity is changed continuously, the (kinematically) migrated image of a single point on the reflector, constructed for one particular seismic ZO reflection signal, moves along a circle at depth, which we call the Thales circle. It degenerates to a vertical line for a nondipping event. For all other dips, the dislocation as a function of migration velocity depends on the reflector dip. In particular for reflectors with dips larger than 45°, the reflection point moves upward for increasing velocity. The corresponding curves in a time-migrated section are parabolas. These formulas will provide the seismic interpreter with a better understanding of where a reflector image might move when the velocity model is changed. Moreover, in that case, the reflector image as a whole behaves to some extent like an ensemble of body waves, which we therefore call remigration image waves. In the same way as physical waves propagate as a function of time, these image waves propagate as a function of migration velocity. Different migrated images can thus be considered as snapshots of image waves at different instants of migration velocity. By some simple planewave considerations, image-wave equations can be derived that describe the propagation of image waves as a function of the migration velocity. The Thales circles and parabolas then turn out to be the characteristics or ray trajectories for these image-wave equations.
Editor: 
Rights: aberto
Identifier DOI: 
Address: http://www.scopus.com/inward/record.url?eid=2-s2.0-0031103434&partnerID=40&md5=aa8d6b69dd89e1d8d388e462e037ff66
Date Issue: 1997
Appears in Collections:Unicamp - Artigos e Outros Documentos

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.