(54) Título: USO DAS BANDAS DE HUNTER-SCHREGER DO ESMALTE DENTAL COMO PARÂMETRO BIOMÉTRICO PARA IDENTIFICAÇÃO HUMANA E ANIMAL

(71) Depositante(s): Universidade Estadual de Campinas - UNICAMP (BR/SP)

(72) Inventor(es): Sérgio Roberto Peres Line, Liza Lima Ramenzoni

(74) Procurador: Maria Cristina Valim Lourenço Gomes

(57) Resumo: Uso das bandas de Hunter-Schreger do esmalte dental como parâmetro biométrico para identificação humana e animal. A presente invenção mostra que o padrão das HSB ou "impressões dentais", altamente variável e único para cada dente analisado, pode ser um valioso método biométrico para identificação ou verificação, já que o tecido do esmalte resiste a condições ambientais extremas. O uso de parâmetros de base biométrica para identificação pessoal é procedimento frequente, utilizado no nosso dia a dia. No entanto, métodos biométricos possuem certas limitações em casos de identificação de corpos carbonizados ou decompostos. O esmalte dental é um dos tecidos mais mineralizados do organismo e pode resistir a degradações ambientais e pós-morte. Ele é caracterizado por camadas de prismas em direções alternadas. Estas camadas sucessivas formam as Bandas de "Hunter-Schreger" (HSB) que aparecem como faixas claras e escuras quando vistas sob iluminação dirigida. As imagens podem ser observadas e documentadas facilmente tanto diretamente da cavidade bucal quanto em dentes isolados. As mesmas após processo de contração podem ser analisadas em software de identificação automatizado de base biométrica.
"Uso das bandas de Hunter-Schreger do esmalte dental como parâmetro biométrico para identificação humana e animal"

Campo da Invenção

A presente invenção se refere a um método e aparelho de identificação humana e animal pela análise das Bandas de Hunter-Schreger (HSB) do esmalte dentário e o uso das mesmas como método de identificação de interesse comercial e/ou industrial. Mais especificamente, a presente invenção se refere a um processo de identificação utilizando a variação do padrão das Bandas de Hunter-Schreger denominado de "impressão dental" como um parâmetro de base biométrica para identificação/verificação de pessoas e animais. As características da impressão dental proporcionam um modelo de identificação útil e complementar com aplicação em análises forenses multi-biométricas.

Fundamentos da Invenção

A Identificação Humana é atualmente considerada um procedimento freqüente podendo ser feita através de processos simples e complexos para uso em situações de identificação pós-morte e análises criminais. A identificação pode ser atingida com o uso de palavras chave, fotografias, características físicas, padrão da íris, impressão digital e mais recentemente análise de DNA (Weicheng S. & Tieniu T. 1999). Como todos os métodos, os acima possuem limitações e podem deixar de ser eficientes se os corpos sofreram decomposição, carbonização, impossibilitando seu reconhecimento em investigações periciais (Perry et al 1988). A vida moderna é caracterizada pela intensa concentração de pessoas em áreas urbanas o que exige que algumas pessoas se exponham a atividades de risco. Existe, por isso, uma necessidade constante de novos e diversos métodos de investigação forense para identificar vítimas, por exemplo, de acidentes, incidentes em massa e atos terroristas.

O termo biometria é usado para se referir as técnicas de identificação de grande confiança, baseadas em características físicas
intransferíveis de um indivíduo. Identificação e verificação baseadas em biometria, como técnicas de identificação de impressão digital, escaneamento da íris, reconhecimento facial, têm sido melhoradas e refinadas com uso de sistemas automatizados com programas de computador que possuem a capacidade de distinguir precisamente um indivíduo.

A técnica de identificação pessoal baseada em informações biométricas deve necessariamente analisar uma característica que seja única para cada indivíduo e transmissível para próximas gerações. É desejável que seja possível obter os dados de modo pouco invasivo e que suas análises não demandem profissionais extremamente treinados (Weicheng S. & Tieniu T. 1999, Perry et al 1988).

Os dentes têm sido extensamente utilizados como fonte de informação na identificação humana, especialmente quando tecidos

Na maioria das espécies de mamíferos, incluindo a espécie humana, o esmalte dental é caracterizado por camadas de prisms de direções regularmente alternadas, conhecidas como Bandas de Hunter-Schreger (HSB). As HSB aparecem como faixas claras e escuras quando expostas a iluminação lateral (Koenigswald W. 1994, Koenigswald W. & Pfretzchner H. 1987). Este fenômeno ocorre devido ao fato dos prismas funcionarem como fibras ópticas quando expostos a uma fonte de iluminação direcionada (Whittaker D. K. & Rothwell T. J. 1984). Quando observadas na superfície do esmalte as faixas claras e escuras que formam as Bandas de Hunter-Schreger no esmalte dental se assemelham muito com o desenho das impressões digitais. Devido a esta similaridade denominamos o padrão das HSB de “impressão dental”.

Existe uma demanda não suprida por uma técnica que permita a identificação do indivíduo a partir de um tecido resistente como o esmalte dental, que não seja invasiva e tenha fácil processo de análise. Esta técnica viria a somar mais um parâmetro na identificação humana e animal.

Breve descrição da invenção

A presente invenção mostra um método e aparelho de base biométrica eficaz e satisfatória para identificação de pessoas e animais, baseados nas impressões dentais, podendo ainda ser útil na identificação de vítimas de desastres em massa, em que os cadáveres se encontram carbonizados. As bandas podem ser observadas e documentadas claramente em dentes incinerados até a temperatura de 300ºC por 1 h. Evidências na literatura indicam que os dentes suportam temperaturas até mais altas quando inseridos em corpos carbonizados. Esta
preservação seria alcançada pelo efeito protetor dos tecidos bucais como músculos e tecidos faciais e linguais. A análise das impressões dentais pode complementar outros métodos já existentes. A análise das impressões dentais não é invasiva, podendo ser prontamente executada de forma acurada em sistemas automatizados. A similaridade entre impressão dental e impressão digital permite a análise das impressões dentais com programas de análise de impressão digital. Desta forma, podemos avaliar as variações de padrão das HSB como um método eficaz e complementar na identificação em investigações forenses.

Breve descrição das figuras

A figura 1 mostra da esquerda para direita: negativo, contraste, extração no programa, visualização das minúcias.

A figura 2 mostra em um pequeno grupo de imagens a possibilidade de um fragmento de o esmalte dental ser encontrado por pessoa sem um treinamento especial para o reconhecimento. A imagem do centro é um fragmento de uma das 10 imagens ao seu redor. (A imagem do centro se insere na imagem 10).

A figura 3 mostra a matriz de similaridade confeccionada com os valores de similaridade fornecidos pelo software de identificação. Matriz N x N (N: dentes numerados de 1 a 262). O gráfico da matriz foi feito após classificarmos as impressões dentais em 4 grupos de acordo com os valores de similaridade: Grupo I: 2000 a 1001, muito alta similaridade; Grupo II: 1000 a 101, alta similaridade; Grupo III: 100 a 10, baixa similaridade e Grupo IV: 9 a 0, muito baixa similaridade.

Quanto mais escuro o ponto, maior o valor de similaridade. A linha diagonal (mais escura) mostra que os maiores valores de similaridade foram obtidos quando um dente era comparado com ele mesmo no banco de dados.

A figura 4 mostra a comparação de 100 impressões dentais. A imagem de cada dente foi capturada com luz direcionada na mesial e num outro momento distinto o mesmo dente foi fotografado com luz direcionada
na distal. As impressões dentais foram divididas em 4 grupos de acordo com os valores de similaridade. Grupo I: 2000 a 1001, muito alta similaridade; Grupo II: 1000 a 101, alta similaridade; Grupo III: 100 a 10, baixa similaridade e Grupo IV: 9 a 0, muito baixa similaridade. Quanto mais escuro o ponto, maior o valor de similaridade. A linha diagonal (mais escura) mostra que os maiores valores de similaridade foram obtidos quando um dente era comparado com ele mesmo no banco de dados. A linha na diagonal também mostra neste gráfico que os maiores valores de similaridade foram obtidos quando um dente era comparado com ele mesmo no banco de dados.

Descrição detalhada da invenção

A presente invenção tem como objeto principal a utilização da singularidade das HSB como um método de identificação humana ou animal e desenvolvimento de uma metodologia para essa identificação. As HSB são formações de camadas de prismas de hidroxiapatita internas no tecido do esmalte dispostas regularmente.

As impressões dentais também podem ser recomendadas para indivíduos que trabalham em ocupações perigosas, como soldados, pilotos, bombeiros, mergulhadores, ou pessoas que vivem em áreas politicamente instáveis. Isto porque o padrão das bandas junto ao esmalte dental suporta extremas condições ambientais e é preservado depois da decomposição de tecidos moles no processo de decomposição.

Existe a possibilidade de que seja possível observar um padrão específico para diferentes populações ou identificação de raças através de uma taxonomia formulada de acordo com o padrão de bandas.

Exemplos:
Exemplo 1: Aquisição da imagem das bandas
As HSB podem ser observadas em dentes isolados e diretamente da cavidade bucal pela incidência de um feixe de luz (podendo ser luz branca, laser, ultravioleta ou polarizada), com direcionamento lateral, oblíquo ou frontal à superfície do dente que serão visualizadas (Koenigswald W. 1994, Koenigswald W. & Pfretzchner H. 1987). Com uma lupa esteroscópica com (aumento preferencialmente entre 10 a 20 vezes) acoplada a uma câmera digital ou fotográfica visualizamos e capturamos as imagens das bandas na região cervical da coroa até região de terço médio da face vestibular (em média 6,0 mm²) onde as bandas se apresentam (figura 1). A qualidade da imagem pode ser melhorada usando-se luz incidente polarizada e filtro polarizador na entrada da câmera de captura.

Exemplo 2: Tratamento da imagem das HSB
O contraste das imagens digitalizadas pode ser aumentado usando um programa de tratamento de imagens qualquer, todavia esse procedimento não é necessário. As bandas de Hunter-Schreger formam um padrão de faixas claras e escuras alternadas semelhantes às impressões digitais humanas. Eventualmente as bandas podem se dividir em duas formando bifurcações ou serem interrompidas (figura 1). Os pontos de bifurcação ou interrupção são chamados de minúcias.

Exemplo 3: Identificação das minúcias
Devido à similaridade com as impressões digitais humanas o padrão formado pelas bandas de Hunter-Schreger é denominado neste estudo de “impressão dental”. Foi demonstrado que o padrão formado pelas impressões dentais é único para cada dente (Ramenzoni e Line 2006). Devido a esta semelhança, pode-se utilizar um programa automatizado de identificação de base biométrica, o mesmo utilizado para identificação de impressões digitais, ou um programa específico para o reconhecimento das impressões dentais. As bandas, assim como as impressões digitais, apresentam os pontos específicos de identificação,
as minúcias. O programa identifica com precisão a diferença do padrão de bandas, utilizando as minúcias para cada dente estudado promovendo, portanto, sua identificação.

Exemplo 4: Unicidade das minúcias e comparação com dados conhecidos

Após comparar as minúcias identificadas com dados de um banco, figura 2, o programa fornece uma lista de resultados com valores de similaridade apresentados por cada comparação de imagens. Este programa identifica com precisão a diferença do padrão de bandas, utilizando as minúcias para cada dente estudado promovendo, portanto, sua identificação. O programa também fornece uma lista de resultados com valores de similaridade apresentados por cada comparação de imagens. O maior valor de similaridade era alcançado quando uma imagem de bandas de um dente era comparada com ela mesma no banco de imagens (Figura 3 e 4). As bandas poderiam ser identificadas por pessoas sem treinamento especial para o reconhecimento.

Em conseqüência, variações e modificações compatíveis com os ensinamentos acima e a habilidade ou conhecimento da técnica relevante, estão dentro do escopo da presente invenção.

Portanto, as modalidades acima descritas tencionam melhor explicar os modos conhecidos para a prática da invenção e para permitir que os técnicos na área utilizem a invenção em tais, ou outras, modalidades e com várias modificações necessárias pelas aplicações específicas ou usos da presente invenção.
REIVINDICAÇÕES

1) Processo biométrico de identificação humana e animal caracterizado por usar as bandas de “Hunter-Schreger” do esmalte dental como parâmetro biométrico e conter as seguintes etapas:
 a. visualização das bandas pela incidência de um feixe de luz, com direcionamento lateral, oblíquo ou frontal à superfície dos dentes que serão visualizadas;
 b. aquisição da imagem das bandas na região da coroa dental;
 c. identificação das bandas pelas minúcias que são pontos de bifurcação ou interrupção das bandas;
 d. reconhecimento das bandas utilizando um programa automatizado de identificação de base biométrica, opcionalmente o mesmo utilizado para a identificação de impressões digitais, ou um programa específico para o reconhecimento das impressões dentais;
 e. comparação com imagens conhecidas.

2) Processo biométrico de identificação humana e animal, de acordo com a reivindicação 1, caracterizado pelo fato da luz descrita no item 1.a poder ser luz branca, laser, ultravioleta, polarizada ou não.

3) Processo biométrico de identificação humana e animal, de acordo com a reivindicação 1, caracterizado pelo fato de o contraste das imagens digitalizadas das bandas poder ser aumentado usando um programa de tratamento de imagens qualquer.

4) Processo biométrico de identificação humana e animal, de acordo com a reivindicação 1, caracterizado pelo fato de poder ser utilizado na determinação de um grupo específico de pessoas por padrões específicos e característicos das bandas de “Hunter-Schreger”.

5) Equipamento para identificação humana e animal, caracterizado por utilizar o processo descrito nas reivindicações de 1 a 4 e conter os seguintes componentes:
 a. Fonte de luz que permita direcionamento lateral, oblíquo ou frontal à superfície dos dentes que serão visualizadas;
 b. Câmera fotográfica digital ou analógica ou filmadora para a aquisição das imagens das bandas de “Hunter-Schreger”;

c. Computador equipado com um programa capaz de fazer o reconhecimento dos padrões das minúcias identificadas nas imagens coletadas.

6) Equipamento para identificação humana e animal, de acordo com a reivindicação 5, **caracterizado por** poder conter uma lupa esteroscópica com aumento preferencialmente entre 10 a 20 vezes acoplada à câmera ou filmadora descritas no item 5.b.

7) USO das banda HSB caracterizado por ser utilizado em sistemas de reconhecimento biométrico de humanos e animais, através de qualquer aparelho capaz de realizar o método das reivindicações 1 a 4.

8) USO das banda HSB, de acordo com a reivindicação 7, caracterizado por poder ser usado em combinação com outros métodos biométricos, para avaliação multibiométrica de seres humanos e animais, mesmo em cadáveres.
Figura 2
Figura 3:
Figura 4:
RESUMO

"Uso das bandas de Hunter-Schreger do esmalte dental como parâmetro biométrico para identificação humana e animal"

A presente invenção mostra que o padrão das HSB ou "impressões dentais", altamente variável e único para cada dente analisado, pode ser um valioso método biométrico para identificação ou verificação, já que o tecido do esmalte resiste a condições ambientais extremas. O uso de parâmetros de base biométrica para identificação pessoal é procedimento frequente, utilizado no nosso dia a dia. No entanto, métodos biométricos possuem certas limitações em casos de identificação de corpos carbonizados ou decompostos. O esmalte dental é um dos tecidos mais mineralizados do organismo e pode resistir a degradações ambientais e pós-morte. Ele é caracterizado por camadas de prismas em direções alternadas. Estas camadas sucessivas formam as Bandas de "Hunter-Schreger" (HSB) que aparecem como faixas claras e escuras quando vistas sob iluminação dirigida. As imagens podem ser observadas e documentadas facilmente tanto diretamente da cavidade bucal quanto em dentes isolados. As mesmas após processo de contratação podem ser analisadas em software de identificação automatizado de base biométrica.