Effects of hydrostatic pressure and aluminum concentration on the conduction-electron g factor in GaAs-(Ga,Al)As quantum wells under in-plane magnetic fields

E. Reyes-Gómez and N. Raigoza
Instituto de Física, Universidad de Antioquia, AA 1226 Medellín, Colombia

L. E. Oliveira
Instituto de Física, Unicamp, Caixa Postal 6165, Campinas, São Paulo 13083-970, Brazil
(Received 24 November 2007; published 10 March 2008)

The effects of hydrostatic pressure and aluminum concentration on the conduction-electron effective Landé g factor in semiconductor GaAs-Ga$_{1-x}$Al$_x$As quantum wells under in-plane magnetic fields are presented. Numerical calculations of the conduction-electron Landé g factor are performed by taking into account the nonparabolicity and anisotropy of the conduction band along the y axis, a function of the electron g factor in such semiconductors.

I. INTRODUCTION

In semiconductors and its heterostructures, the electron Landé g factor determines the spin splitting of carrier bands and influences the spin dynamics and spin resonance in such materials. Therefore, there has been a number of experimental and theoretical work devoted to the understanding of the properties of the electron effective g factor in such semiconductors. Theoretical and numerical calculations of the conduction-electron Landé g factor are performed by taking into account the nonparabolicity and anisotropy of the conduction band along in the y axis, as a function of the electron g factor along the growth axis, as a function of the electron transition energy, follows an universal behavior. From the theoretical point of view, however, investigations on the properties of the effective Landé g factor in QWs have been mainly carried out without the consideration of hydrostatic-pressure effects, which have proven to be of great value in the study of skyrms in the limit of zero g factor. In III-V bulk materials, the properties of the electron Landé g factor may be investigated within the $k\cdot\pmb{p}$ framework. According to this procedure, the behavior of the Landé g factor in Ga$_{1-x}$Al$_x$As, as a function of hydrostatic pressure (P) and aluminum concentration (x), is determined by the dependency of the fundamental gaps and interband transition-matrix elements as functions of P and x. In a QW, however, the electron Landé factor must be studied by taking into account the barrier-confinement effects on the electron localization properties as well as the anisotropy and nonparabolicity of the conduction band.

II. THEOREETICAL FRAMEWORK

In the effective-mass approximation and taking into account the nonparabolicity and anisotropy effects on the conduction band, the Ogg–McCombe effective Hamiltonian for a conduction-electron in a GaAs-Ga$_{1-x}$Al$_x$As QW grown along the y axis, under an in-plane $B=\hat{B}z$ magnetic field and applied hydrostatic pressure, may be written as:

$$
\hat{H} = \frac{\hbar^2}{2m(x,P,y)} \hat{K} + \frac{1}{2} g(x,P,y) \mu_B \hat{\mathbf{B}} \cdot \hat{\mathbf{p}} + a_g K_z^2 + a_2 K_{z}^4 + a_4 B K_z^2 \hat{\sigma}_z + a_5 (\hat{\mathbf{K}} \cdot \hat{\mathbf{K}}) B + a_6 B \hat{\mathbf{K}} \cdot \hat{\mathbf{K}} + V(x,P,y),
$$

where $\hat{K} = -i \nabla + \frac{\mathcal{E}}{\hbar c} \hat{\mathbf{K}}$ is the generalized momentum operator, $\hat{\mathbf{K}}$ is the magnetic vector potential, $\hat{\sigma}$ is a vector with Pauli matrices as components, μ_B is the Bohr magneton, $l_B = \frac{\hbar}{eB}$ is the

DOI: 10.1103/PhysRevB.77.115308
PACS number(s): 73.20.Fz, 71.18.+y, 78.55.Cr

1098-0121/2008/77(11)/115308(6)
the Landau length, \(\langle a, b \rangle = \hat{a} \hat{b} + \hat{b} \hat{a} \) is the anticommutator between the \(\hat{a} \) and \(\hat{b} \) operators, and the coefficients \(a_1, a_2, a_3, a_4, a_5, \) and \(a_6 \) are constants which depend, in principle, on the aluminum concentration \(x \) and applied hydrostatic pressure \(P \). Due to the absence of experimental measurements on the behavior of the \(a_i \) coefficients as functions of \(P \) and \(x \), we have taken the \(a_i \) values corresponding to bulk GaAs and obtained by a fitting with magnetospectroscopic measurements.27 Recent work has used this set of parameters in order to study the electron spin relaxation in \(n \)-type semiconductors.28 Here, we have ignored the Dresselhaus cubic spin-orbit interaction29 as its contribution to the effective \(g \) factor in GaAs-(Ga,Al)As heterostructures may be shown to be quite minor.30 The growth-direction position-dependent conduction-electron effective mass \(m(x, P, y) \) and Landé factor \(g(x, P, y) \), together with the electron-confining potential \(V(x, P, y) \), are considered to be dependent on the applied hydrostatic pressure and aluminum concentration in the \(\text{Ga}_{1-x} \text{Al}_x \text{As} \) barrier of the heterostructure, as detailed below.

The eigenfunctions of Eq. (1) may be chosen as

\[
\Psi(r) = \frac{e^{i (k_x x + k_y y)}}{\sqrt{S}} \sum_n \begin{pmatrix} C_n^1 \\ C_n^2 \end{pmatrix} |n, y_0\rangle,
\]

where \(|n, y_0\rangle \) are the harmonic-oscillator wave functions, \(k_x \) and \(k_y \) are the in-plane components of the electron wave vector, and \(y_0 = k_0 r^c \) is the cyclotron orbit-center position. At low temperatures, one may disregard the \(k_z \) energy dependence, i.e., one takes \(k_z = 0 \), the states with different spin projections (parallel \(\uparrow \) or antiparallel \(\downarrow \)) along the magnetic-field direction are uncoupled, and the Schrödinger equation,

\[
\sum_n \begin{bmatrix} E_n^0 & 0 \\ 0 & E_{n}^0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \end{bmatrix} \begin{pmatrix} C_n^1 \\ C_n^2 \end{pmatrix} = 0,
\]

written in the harmonic-oscillator representation, may be readily solved.10,14 The effective Landé \(g^{(n)} \) factor in the in-plane direction (perpendicular to the \(y \)-growth axis) in GaAs-(Ga,Al)As heterostructures may therefore be defined as

\[
g^{(n)}_L = \frac{E_{n\uparrow} - E_{n\downarrow}}{\mu_B B},
\]

where \(E_{n\uparrow} \) and \(E_{n\downarrow} \) are the energies associated with the spin-up and spin-down Landau levels, respectively, and \(\mu_B \) is the Bohr magneton. The effective \(g^{(n)}_L \) factor, obtained from Eq. (4), depends on the hydrostatic pressure, aluminum concentration in the \(\text{Ga}_{1-x} \text{Al}_x \text{As} \) barriers, applied magnetic field, and orbit-center position.

A. Electron \(g \) factor and effective mass in \(\text{Ga}_{1-x} \text{Al}_x \text{As} \)

In order to compute the effective Landé factor in GaAs-(Ga,Al)As heterostructures from Eq. (4), one needs to know the dependence of both the electron \(g \) factor and effective mass on the applied hydrostatic pressure in each \(QW \) material. In that respect, one may resort to the \(\mathbf{k} \cdot \mathbf{p} \) perturbation theory, which has proven of great value in the calculation of many electrical and optical properties of a large number of systems. According to the \(\mathbf{k} \cdot \mathbf{p} \) procedure, the electron Landé \(g \) factor and effective mass in a III-V material are given by\(^{2,9}\)

\[
g = g_0 \left[1 - \frac{\Pi^2}{3 E_g^4} \left(E_g^4 + \Delta_0 \right) / \Delta_0 \right] \delta_m,
\]

and

\[
m = m_0 \left[1 + \frac{\Pi^2}{3 E_g^4} \left(\frac{2}{3} \frac{1}{E_g^4} + \frac{4}{3} \frac{1}{E_g^4} \Delta_0 \right) / \Delta_0 \right]^{-1},
\]

respectively, where \(g_0 = 2.0023 \) and \(m_0 \) are the free-electron Landé factor and effective mass, respectively, \(\Pi^2 = \frac{1}{m_0^2} |(\mathbf{S} | \mathbf{p} \rangle | X (\Gamma_0) \rangle)^2 \) is the square of the interband matrix element describing the coupling between the \(s \) states of the \(\Gamma_0 \) conduction band with the hybrid \(sp \) valence states corresponding to \(\Gamma_0 \) and \(\Gamma_7 \) (\(\Gamma_7 \)), \(E_7^0 = E(\Gamma_7^0) - E(\Gamma_0^0) \) is the fundamental gap, and \(\Delta_0 = E(\Gamma_7^0) - E(\Gamma_0^0) \) is the split-off valence gap. The remote-band effects on the electron Landé factor and the effective mass are taken into account via the \(\delta_5 \) and \(\delta_6 \), respectively, which are essentially dominated by the energy differences \(E' = E(\Gamma_7^0) - E(\Gamma_5) \) and \(E'' = E(\Gamma_7^0) - E(\Gamma_6^0) \), and by the interband matrix elements \(\Pi^2 = \frac{1}{m_0^2} |(\mathbf{S} | \mathbf{p} \rangle | X (\Gamma_3^0) \rangle)^2 \) (see Ref. 2 for details). The effects of the applied hydrostatic pressure and aluminum concentration on the electron \(g \) factor and effective mass corresponding to a given III-V compound are taken into account via the hydrostatic-pressure and aluminum concentration dependencies of the different energy gaps and interband matrix elements in each material. We have denoted by \(E(P, x) \) the energies involved in Eqs. (5) and (6), as well as the \(X \)-point energy of the conduction band (measured with respect to the top of the valence band) \(E_v^X = E(X^0_v) - E(\Gamma_0^0) \), and assume that

\[
E(x, P) = a + bx + cx^2 + a(x) P.
\]

The values of \(a, b, c, \) and \(a(x) \) corresponding to \(\text{Ga}_{1-x} \text{Al}_x \text{As} \) are displayed in Table I. The remote-band contributions to the electron \(g \) factor and effective mass are also expected to be functions of the applied hydrostatic pressure and aluminum concentration. However, up to now we do not know of any experimental report on such dependencies in \(\text{Ga}_{1-x} \text{Al}_x \text{As} \) bulk materials. We have, therefore, considered \(\delta_5 \) and \(\delta_6 \) in Eqs. (5) and (6), respectively, depending only on the aluminum \(x \) concentration according to the expression

\[
\delta(x) = \delta_5 + \delta_6 x + \delta_7 x^2,
\]

with the values of \(\delta_5, \delta_6, \) and \(\delta_7 \), reported in Table II, chosen in order to fit the experimental results corresponding to the electron \(g \) factor\(^2 \) and effective mass\(^3 \) at \(P = 0 \) [cf., Fig. 2].

B. Pressure-dependent GaAs-Ga\(_{1-x}\)Al\(_x\)As quantum well confining potential

It is well known that effects of applied hydrostatic pressure modify the semiconductor band structure and lead to changes in the properties of elementary excitations in semiconductor heterostructures. As the hydrostatic pressure increases, a crossover between the \(\Gamma \) and \(X \) conduction-band minima takes place. The pressure dependence of the
Eg as a fraction of the height of the electron-confining potential is considered to be GaAs energy gaps at the Γ-X gap regime. For $P_{1} < P < P_{2}$, the X minima fall below the Γ minima in the barrier layers. Therefore, the height of the confining potential decreases as the hydrostatic pressure is increased and is proportional to a fraction r of the energy difference $E_{g}^{X}(x,P) - E_{g}^{\Gamma}(0,P) + S \gamma_{X}(x,P)$, where

$$S \gamma_{X}(x,P) = S_{0} \frac{P - P_{1}}{P}$$

is the pressure-dependent Γ-X mixing strength coefficient, with $S_{0} = 250 \text{ meV}$ being an adjustable parameter which fits the experimental measurements.\(^{32}\) In this case, it is said that the system is in the indirect-gap regime. For $P > P_{2}$, the X point at the barriers becomes the absolute minimum of the conduction band, and a type I–type II transition is expected to occur in the semiconductor heterostructure.

The value of the aluminum concentration at the barriers may also dramatically change the properties of the confining potential. As it is well known, there exists a critical value x_{c} of the aluminum concentration at which the Γ-X crossover takes place in the barriers. At low temperatures and in the absence of applied hydrostatic pressure, the value $x_{c} = 0.385$ was found by Guzzi et al.\(^{23}\) In addition, the critical values P_{1} and P_{2} also depend on the concentration x_{c} at the barriers. Here, we shall only consider hydrostatic-pressure values between zero and P_{2}, and aluminum concentrations between zero and x_{c}.

The above considerations may be summarized in Fig. 1, where we have shown the behaviors of E_{g}^{Γ} and E_{g}^{X} both in bulk GaAs and Ga$_{1-x}$Al$_{x}$As, according to the values displayed in Table I, as functions of the applied hydrostatic pressure. The origin of the energies is taken at the top of the GaAs valence band. Calculations were carried out for two different values of the height of the conduction-confining potential, obtained by using two different r fractions of the band-gap discontinuity.

FIG. 1. (Color online) Relative position of the conduction-band minima Γ and X both in GaAs and Ga$_{0.7}$Al$_{0.3}$As as functions of applied hydrostatic pressure. The origin of the energies was taken at the top of the GaAs valence band. Calculations were carried out for two different values of the height of the conduction-confining potential, obtained by using two different r fractions of the band-gap discontinuity.

Table I. Parameters used in the present calculation.

<table>
<thead>
<tr>
<th>$E(x,P)$</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>$\alpha(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_{g}^{Γ}</td>
<td>1.5194a</td>
<td>1.36a</td>
<td>0.22a</td>
<td>10.7b</td>
</tr>
<tr>
<td>Δ_{0}</td>
<td>0.341c</td>
<td>-0.066c</td>
<td>0c</td>
<td>0d</td>
</tr>
<tr>
<td>Π^{2}</td>
<td>28.90e</td>
<td>-6.29e</td>
<td>0f</td>
<td>0g</td>
</tr>
<tr>
<td>E_{g}^{X}</td>
<td>1.988h</td>
<td>0.207h</td>
<td>0.055h</td>
<td>-1.35i</td>
</tr>
</tbody>
</table>

aFrom Ref. 19.
bFrom Ref. 20.
cFrom Ref. 21.
dFrom Ref. 22.
eFrom Refs. 2 and 9.
fObtained from a linear fitting of the Π^{2} values for bulk Ga$_{1-x}$Al$_{x}$As, reported in Ref. 9.
gTo our knowledge, there are no experimental measurements on the hydrostatic-pressure dependence of the Π^{2} matrix element, so we have taken $\alpha(x)=0$.
hFrom Ref. 23.
iFrom Ref. 24 for GaAs. We have assumed that the Γ-X pressure coefficient in Ga$_{1-x}$Al$_{x}$As does not depend on the aluminum concentration.

Table II. Aluminum x concentration dependence of the remote-band contributions for the electron g factor and effective mass of bulk Ga$_{1-x}$Al$_{x}$As at $P=0$.

<table>
<thead>
<tr>
<th>$\delta(x)$</th>
<th>δ_{0}</th>
<th>δ_{1}</th>
<th>δ_{2}</th>
</tr>
</thead>
<tbody>
<tr>
<td>δ_{g}</td>
<td>-0.056</td>
<td>-0.276</td>
<td>0.232</td>
</tr>
<tr>
<td>δ_{m}</td>
<td>-3.935</td>
<td>0.488</td>
<td>4.938</td>
</tr>
</tbody>
</table>

$V(x,P,y) = \begin{cases} V_{0}(x,P) & \text{if } |y| > \frac{L(P)}{2} \\ 0 & \text{if } |y| \leq \frac{L(P)}{2}, \end{cases}$

with
The dashed vertical line in the figure corresponds to the well width. Theoretical results for $L_0=0$ were obtained for $B=0$ according to expression (5). Solid symbols correspond to the experimental measurements reported by Hermann and Weisbuch (Ref. 2) in the absence of the applied magnetic field. Results in the inset correspond to the x dependence of the electron-effective mass in bulk Ga$_{1-x}$Al$_x$As at $B=0$, obtained from expression (6). Solid symbols in the inset correspond to the experimental results by Zachau et al. (Ref. 31).

$$V_0(x,P) = \begin{cases} E^\perp(x,P) - E^\perp(0,P) & \text{if } 0 < P \leq P_1 \\ E^\perp(x,P) - E^\perp(0,P) + S^\perp(x,P) & \text{if } P_1 < P \leq P_2. \end{cases}$$

(11)

The pressure-dependent QW width in expression (10) is given by $L(P) = L_0[1-(S_{11}+2S_{12})P]$, where L_0 is the well width in the absence of applied hydrostatic pressure and S_{11} and S_{12} are the compliance constants of bulk GaAs.

III. RESULTS AND DISCUSSION

We have first calculated the effective Landé g_\perp factor in GaAs-Ga$_{1-x}$Al$_x$As QWs as a function of the x concentration in the absence of the hydrostatic pressure. Theoretical results are displayed in Fig. 2 for various values of the well width. The dashed vertical line in the figure corresponds to the x_c limit reported by Guzzi et al. Calculations for $L_0=0$ (bulk Ga$_{1-x}$Al$_x$As at $B=0$) were performed by using expression (5) and compared with experimental data for the effective g factors reported by Hermann and Weisbuch. Experimental values of the electron-effective mass as a function of x are also displayed (see inset of Fig. 2) together with the numerical results obtained from Eq. (6) for $B=0$ and in the absence of applied hydrostatic pressure. The appropriated choice of the δ parameters in Table II guarantees the excellent agreement between theoretical calculations and experimental measurements in both cases. In addition, the fitting for the electron effective mass agrees with the linear fitting $m=m_0(0.067 + 0.083\xi)$ reported by Adachi. It is apparent from Fig. 2 that the electron g_\perp factor increases with the aluminum concentration in the barriers, although changes are less dramatic as the well width is increased. For small values of the QW width, the electron wave function has a larger penetration in the barrier regions, and therefore, the effective g_\perp factor is strongly influenced by the barriers properties. On the other hand, as the well width is increased, the electron wave function does not “feel” much of the Ga$_{1-x}$Al$_x$As barrier potential, and the effective g_\perp factor becomes essentially independent of the aluminum concentration at the QW barriers. Results shown in Fig. 2 were obtained for the orbit-center position at the center of the well. The effective Landé factor is a function of the orbit-center position y_0, and such dependence is displayed in Fig. 3 for a GaAs-Ga$_{0.7}$Al$_{0.3}$As QW with $L_0=50$ Å and for three different values of the applied hydrostatic pressure. For $B=1$ T, the ground-state electron-localization magnetic length $l_B \gg L$ in the whole range of the hydrostatic pressure considered in the present study, the spin-up and spin-down electron energies are essentially flat as functions of the orbit-center position, and therefore, the g_\perp factor weakly depends on y_0. For $B=20$ T, however, we have $l_B \sim L$ and electron energies as well as the g_\perp factor become dispersive as functions of the orbit-center position. As a result, at low temperatures and small values of the applied in-plane magnetic field, one may only consider the effective g_\perp factor for $y_0=0$ in order to compare with the experimental measurements.

In Fig. 4, we have displayed the magnetic-field dependence of the electron effective g_\perp factor in GaAs-Ga$_{0.7}$Al$_{0.3}$As QWs with $L_0=50$ Å (solid lines) and $L_0=100$ Å (dashed lines) for three different values of the applied hydrostatic pressure and for the orbit-center position taken at the center of the wells. One may note that the effective g_\perp factor increases slightly and linearly as the magnetic field is increased, with slopes essentially independent of the well width. The increase in the effective g_\perp factor is only of the order of 0.01 for the in-plane magnetic field changing from $B=5$ T to $B=20$ T. In contrast, the hydrostatic-pressure dependence of the effective g_\perp factor is more remarkable [cf., Figs. 3–5]. The hydrostatic-pressure dependence of the electron g_\perp factor in GaAs-Ga$_{0.7}$Al$_{0.3}$As QWs is shown in Fig. 5 for various values of the QW width. Solid lines correspond to calculations performed for $B=1$ T and $y_0=0$, whereas dashed lines correspond to theoretical results obtained from Eq. (5), at $B=0$, for bulk GaAs and
Ga$_{0.7}$Al$_{0.3}$As. The effective g_{\perp} factor is an increasing function of the applied hydrostatic pressure, which is a consequence of the explicit hydrostatic-pressure dependence of the electron g factors corresponding to each building material of the QW. It is apparent from Fig. 5 that the applied hydrostatic pressure may be used in QWs, for instance, to tune the Zeeman splitting in the limit of zero g factor. On the other hand, according to the present theoretical calculations, for all possible widths of the GaAs-Ga$_{0.7}$Al$_{0.3}$As QW, the effective Landé factor is positive for hydrostatic pressures beyond 20 kbar (see the dashed curve for $L_0 \to \infty$ in Fig. 5).

Thus, in addition, the applied hydrostatic pressure may be used to suppress the change on the sign of the effective g_{\perp} factor as a function of the QW width.

Figure 6 displays the electron g_{\perp} factor as a function of the L_0 GaAs-Ga$_{1-x}$Al$_x$As QW width for two different values of the aluminum concentration in the barriers. Calculations were carried out for $B=1$ T, orbit-center position at the center of the wells, and for different values of the hydrostatic pressure from $P=0$ to $P=P_2$. Experimental data at $P=0$ are from Hannak et al.,

Le Jeune et al.,

Malinowski and Harley,

and Heberle et al.

The effective electron g_{\perp} factor decreases as the well width is increased and changes its sign for the lowest values of the applied hydrostatic pressure. However, for $P > 20$ kbar, the g_{\perp} factor remains positive in the whole studied range of the GaAs-Ga$_{1-x}$Al$_x$As QW width. This behavior allows one to use the hydrostatic pressure to manipulate and tune the spin dynamics and spin relaxation in semiconductor QWs. Finally, in the absence of applied hydrostatic pressure, one may note the good agreement between the experimental measurements and present theoretical calculations for the two values of the aluminum concentration considered in the GaAs-Ga$_{1-x}$Al$_x$As QW barriers.

IV. CONCLUSIONS

Summing up, we have studied the effects of applied hydrostatic pressure and aluminum concentration on the effective Landé g_{\perp} factor in semiconductor GaAs-Ga$_{1-x}$Al$_x$As QWs, under in-plane magnetic fields, by taking into account the nonparabolicity and anisotropy of the conduction band, as well as the hydrostatic-pressure and aluminum-concentration dependences of the electron effective mass and Landé factor in each material forming the barriers.

FIG. 4. Magnetic-field dependence of the effective g_{\perp} factor in GaAs-Ga$_{0.7}$Al$_{0.3}$As QWs for $P=0$, $P=10$ kbar, and $P=20$ kbar. Solid and dashed lines correspond to $L_0=50$ Å and $L_0=100$ Å, respectively. In all cases, the orbit-center position was taken at the center of the QW.

FIG. 5. Hydrostatic-pressure dependence of the electron g_{\perp} factor in GaAs-Ga$_{0.7}$Al$_{0.3}$As QWs for various values of the well width. Calculations were carried out for $B=1$ T and for the orbit-center position at the center of the wells. Dashed lines correspond to the numerical results obtained from Eq. (5) for bulk GaAs and Ga$_{0.7}$Al$_{0.3}$As in the absence of the in-plane magnetic field.

FIG. 6. (Color online) Electron g_{\perp} factor, as a function of the well width, in (a) GaAs-Ga$_{0.7}$Al$_{0.3}$As and (b) GaAs-Ga$_{0.65}$Al$_{0.35}$As QWs for various values of the applied hydrostatic pressure. Theoretical results were obtained for $B=1$ T and for the orbit-center position at the center of the wells. Squares (Ref. 5), circles (Ref. 6), up triangles (Ref. 7), and down triangles (Ref. 8) correspond to experimental measurements at low values of applied magnetic fields and zero pressure.
GaAs-Ga_{1-x}Al_{x}As QW heterostructure. In this sense, we have first reviewed the properties of the g factor and electron effective mass in bulk GaAs and Ga_{1-x}Al_{x}As according to the k·p procedure, with model results fitted to give good agreement with available experimental measurements for the electron effective mass31 and Landé factor.2 The effective g\textsubscript{\perp} factor was studied as a function of the concentration x in the Ga_{1-x}Al_{x}As barrier, orbit-center position, applied magnetic field, hydrostatic pressure, and QW width. Theoretical calculations are found in excellent agreement with zero-pressure experimental measurements of the effective g\textsubscript{\perp} factor in GaAs-Ga_{1-x}Al_{x}As QWs. In addition, from the present results, we may conclude that it is possible to tune the effective g\textsubscript{\perp} factor by changing these parameters and therefore manipulate the spin dynamics and spin relaxation in GaAs-Ga_{1-x}Al_{x}As QWs.

ACKNOWLEDGMENTS

The authors would like to thank the Brazilian Agencies CNPq, FAPESP, MCT—Millenium Institute for Quantum Information, and MCT—Millenium Institute for Nanotechnology for partial financial support. This work was also partially financed by COLECIENCIAS and CODI—University of Antioquia. N.R. wishes to thank the warm hospitality of the Instituto de Física, Unicamp, Brazil, where part of this work was performed.

\begin{thebibliography}{10}
\bibitem{34} P. Y. Yu and M. Cardona, \textit{Fundamentals of Semiconductors} (Springer-Verlag, Berlin, 1998).
\end{thebibliography}