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Resumo

O câncer de pulmão é o tipo mais comum de câncer em homens e o terceiro mais comum
em mulheres. Devido ao mau prognóstico, o câncer de pulmão é responsável pela maior
taxa de mortalidade, atingindo 1,8 milhão de mortes por ano. O diagnóstico e o trata-
mento nos estágios iniciais podem aumentar as chances de sobrevivência. A tomogra�a
computadorizada (TC) é a modalidade de imagem preferida para detectar e diagnosticar
câncer de pulmão, pois fornece imagens 3D do tórax em alta resolução, facilitando a de-
tecção de pequenos nódulos. No entanto, a natureza 3D das imagens di�culta sua análise
visual. Como conseqüência, o número de falsos positivos ainda é alto e, mesmo contando
com a opinião de vários especialistas, o diagnóstico é frequentemente sujeito a alguma
falta de consenso.

Os sistemas de Diagnóstico Assistida por Computador (CAD) foram desenvolvidos
para solucionar o problema, auxiliando especialistas na tarefa de detecção e classi�cação
mais rápidas e precisas de anormalidades. As técnicas usadas nos sistemas CAD podem
ser divididas em dois grupos: sistemas CAD que exploram features de imagem baseados
em conhecimento e sistemas CAD que aprendem os features de imagens anotadas, prin-
cipalmente baseadas em aprendizado profundo por meio de redes neurais convolucionais
(CNNs).

Na última década, muitos métodos computacionais (sistemas CAD) foram desenvol-
vidos para auxiliar os médicos na detecção de nódulos pulmonares. Tais métodos são
baseados principalmente em CNNs, que alcançaram resultados promissores na detecção
precoce de nódulos pulmonares. No entanto, esses métodos geram várias regiões candida-
tas por nódulo, de modo que um algoritmo de não-máxima supressão (NMS) é necessário
para selecionar uma única região por nódulo, eliminando as redundantes. O GossipNet
é uma rede neural 1D para NMS, que pode aprender os parâmetros do NMS em vez de
con�ar nos parâmetros artesanais. No entanto, o GossipNet não tira proveito dos features
de imagem para aprender NMS.

Neste trabalho, propomos um sistema CAD automatizado para detecção de nódulos
pulmonares, que consiste em quatro módulos: pré-processamento, a de�nição de uma
região de interesse (por exemplo, por segmentação pulmonar), detecção de nódulos e
a eliminação de candidatos redundantes. Para a segmentação pulmonar, usamos uma
abordagem recente baseada em sequências de transformações �orestais de imagem (IFTs)
denominada ALTIS, fornecendo uma segmentação mais precisa dos pulmões em compara-
ção com o método usado no desa�o LUNA16. Para a detecção de nódulos e a eliminação
de candidatos redundantes, usamos o 3D Faster R-CNN com ResNet18 para a detecção
de regiões candidatas com nódulos e apresentamosFeatureNMS � uma rede neural que
fornece features de imagem adicionais à entrada do GossipNet, que resultam de uma
transformação sobre as intensidades de voxel de cada região candidata na imagem da TC.
Para validação, usamos o conjunto de dados de desa�o LUNA16.



Abstract

Lung cancer is the most common type of cancer in men and the third most common
one in women. Due to poor prognosis, lung cancer is responsible for the largest mortality
rate, reaching 1.8 million deaths per year. Diagnosis and treatment at the early stages can
increase the chances of survival. Computerized Tomography (CT) is the imaging modality
of preference to detect and diagnose lung cancer since it provides high-resolution 3D
images of the thorax, facilitating the detection of small nodules. However, the 3D nature
of the images makes their visual analysis di�cult. As a consequence, the number of false
positives is still high and, even by counting on the opinion of multiple specialists, the
diagnosis is often subjected to some lack of consensus.

Computer-Aided Detection (CAD) systems have been developed to address the prob-
lem, assisting to specialists in the task of quicker and more accurate detection and classi-
�cation of abnormalities. The techniques used in CAD systems may be divided into two
groups: CAD systems that explore knowledge-based image features and CAD systems
that learn the features from annotated images, mostly based on deep learning through
Convolutional Neural Networks (CNNs).

In the last decade, many computational methods (CAD systems) have been developed
to assist physicians in lung nodule detection. Such methods are mostly based on CNNs,
which have achieved promising results in early detection of lung nodules. However, these
methods generate several candidate regions per nodule, such that a Non-Maximum Sup-
pression (NMS) algorithm is required to select a single region per nodule while eliminating
the redundant ones. GossipNet is a 1D Neural Network (NN) for NMS, which can learn
the NMS parameters rather than relying on handcrafted ones. However, GossipNet does
not take advantage of image features to learn NMS.

In this work, we propose an automated CAD system for lung nodule detection which
consists of four modules: pre-processing, the de�nition of a region of interest (e.g., by lung
segmentation), nodule detection, and the elimination of redundant candidates. For lung
segmentation, we use a recent approach based on sequences of Image Foresting Transforms
(IFTs) named ALTIS providing a more accurate segmentation of the lungs compared to
the method used in the LUNA16 challenge. For nodule detection and the elimination
of redundant candidates, we use 3D Faster R-CNN with ResNet18 for the detection of
candidate regions with nodules and presentFeatureNMS� a neural network that provides
additional image features to the input of GossipNet, which result from a transformation
over the voxel intensities of each candidate region in the CT image. For validation, we
use the LUNA16 challenge dataset.
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Chapter 1

Introduction

1.1 Motivation and overview

Lung cancer is the most common type of cancer in men and the third most common
one in women. According to the International Agency of Research on Cancer (IARC),
lung cancer is the leading type of cancer with new cases � 2.1 million in 2018. Due to
poor prognosis, lung cancer is also responsible for the largest mortality rate, reaching 1.8
million deaths per year. Diagnosis and treatment at the early stages can increase the
chances of survival. According to the World Health Organization (WHO) and the Forum
of International Respiratory Societies (FIRS), the premature detection of lung cancer
provides 5-year survival rates within70%� 90%. However, in the majority of the cases,
lung cancer is only detected at an advanced stage, dropping the one-year survival rate
from 80%� 85% to 15%� 19%, when it is compared with the detection at a premature
stage.

A lung nodule is a small round growth of tissue within the chest cavity (see Figure
2.11). Generally, nodules are considered less than30 mm in size, larger sizes are called
masses and are presumed to be malignant (cancerous). Nodules between5� 30 mm may
be benign or malignant, and the probability that a nodule be malignant increases with
its size.

Initially, chest radiography screenings (chest X-ray) were used to detect and diagnose
lung cancer, but chest radiography screenings present two main problems: (i) lack of
3D information about the nodules and (ii) occlusion due to the 2D projection. This
makes Computerized Tomography (CT) the method of preference since it provides high-
resolution 3D images of the thorax, facilitating the detection of small nodules. However,
the 3D nature of the images makes their visual analysis di�cult. As a consequence, the
number of false positives is still high and, even by counting on the opinion of multiple
specialists, the diagnosis is often subjected to some lack of consensus.

Computer-Aided Detection (CAD) systems have been developed to address the prob-
lem, assisting to specialists in the task of quicker and more accurate detection and classi-
�cation of abnormalities. A full CAD system to detect and diagnose lung cancer consists
of two modules: CADe for the detection of nodules and CADx for the classi�cation of the
degree of malignancy of nodules. The techniques used in CAD systems may be divided
into two groups: CAD systems that explore knowledge-based image features and CAD
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Figure 1.1: Candidate regions derived from a nodule detection algorithm based on
CNN [46]. Note that there are redundant candidates for each nodule.

systems that learn the features from annotated images, mostly based on deep learning
through Convolutional Neural Networks (CNNs). This work is focused on CADe systems
� for the detection of lung nodules.

As it is often the case with medical images, CAD systems that learn features mostly
based on deep learning have been limited by the relatively small number of annotated
images. However, the publicly available LIDC-IDRI dataset [3] and the LUNA16 chal-
lenge [35] have had a big in�uence on deep learning methods proposed for lung nodule
detection. Relevant work has been published in the context of the LUNA16 challenge.

In the last decade, many computational methods (CAD systems) have been developed
to assist physicians in lung nodule detection [11, 10, 5, 46]. Such methods are mostly
based on CNNs, which have achieved promising results in early detection of lung nodules.
However, these methods usually generate redundant candidate regions for the same object
(Figure 1.1). Traditional Non-Maximum Suppression (NMS) algorithms [26, 32] have
been proposed to eliminate redundant candidates and select one candidate region per
object, usually based on handcrafted parameters. In [16], these algorithms are referred
to as the GreedyNMS approach since they select the region with the highest object score
among each group of overlapping candidate regions. GreedyNMS presents two major
di�culties: (i) the overlapping percentage for rejection must be high enough to eliminate
regions with high scores containing the same object, while (ii) it must be low enough to
avoid eliminating regions of detected objects that are close to each other � a common
situation in images with several nodules. Improvements in NMS have also been proposed
in the past years. The Soft-NMS [4] algorithm applies a decay function to the object
scores of candidate regions to avoid losing neighboring objects. GossipNet [16] uses a 1D
NN to analyze geometric features from overlapping candidate regions and modify their
scores, such that each object should be represented by a single region with the highest
score among the overlapping ones. Di�erent from other NMS approaches, GossipNet can
learn the NMS parameters rather than relying on handcrafted ones. However, GossipNet
does not take advantage of image features to learn NMS.

In this work, we propose an automated CAD system for lung nodule detection which
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consists of four modules: pre-processing, the de�nition of a region of interest (e.g., by
lung segmentation), nodule detection, and the elimination of redundant candidates. For
lung segmentation, mostly methods [10, 11, 46] have used the provided segmentation
in the LUNA16 challenge which is based on [44]. However, we use a recent approach
based on sequences of Image Foresting Transforms (IFTs) named ALTIS providing a
more accurate segmentation of the lungs which has a positive impact on the results. For
nodule detection and the elimination of redundant candidates, we use 3D Faster R-CNN
with ResNet18 [46] for the detection of candidate regions with nodules and propose a
transformation over the voxel intensities of those regions in the CT image to include image
features in GossipNet [16] for NMS. The new neural network with a modi�ed GossipNet
is calledFeatureNMS (Figure 4.3). For validation, we use the LUNA16 challenge dataset.

1.2 Objectives

The aim of this work is to develop an automated CAD system for lung nodule detection
with high sensitivity and low false-positive rate, taking as input CT images. In order
to achieve high sensitivity and low false-positive rate in our CAD system, we use the
ALTIS algorithm for lung segmentation and propose the FeatureNMS for the elimination
of redundant candidates.

1.3 Contributions

In this work, we propose an automated CAD system for lung nodule detection which
consists of four modules: pre-processing, the de�nition of a region of interest (e.g., by
lung segmentation), nodule detection, and the elimination of redundant candidates. In
order to achieve high sensitivity and low false-positive rate in our CAD system, di�erently
from other methods using the lung segmentation provided in the LUNA16 challenge, we
use the ALTIS algorithm for lung segmentation providing a slight improvement when it
is tested on LUNA16 dataset. On average, the number of voxels segmented by the ALTIS
algorithm is 8% less than the number of voxels segmented by the method used in the
LUNA16 challenge. This shows that the ALTIS algorithm is more accurate.

For the elimination of redundant candidates, after the 3D Faster R-CNN with ResNet18
[46] produces the candidate regions with nodules, we propose a transformation over the
voxel intensities of those regions in the CT image to include image features in Gossip-
Net [16] for NMS. The new neural network with a modi�ed GossipNet is namedFea-
tureNMS (Figure 4.3). When the FeatureNMS is tested on the LUNA16 dataset, results
indicate a considerable improvement when it is compared to the original GossipNet and
the best GreddyNMS.

To summarize, this work has two main contributions. The �rst is the incorporation
of the ALTIS algorithm for lung segmentation providing a slight improvement when it is
compared to the method used in the LUNA16 challenge. The second contribution is the
proposed FeatureNMS for the elimination of redundant candidates. Results indicate that
FeatureNMS outperforms the original GossipNet and the best GreedyNMS.
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The results of the proposed FeatureNMS for the elimination of redundant candidates
as part of our CAD system for lung nodule detection were published in [6].

1.4 Organization

The present work is organized as follows: Chapter 2 presents the fundamentals to under-
stand the main concepts used in the remaining chapters. Chapter 3 presents the related
works for lung nodule detection and NMS algorithms. The proposed method is presented
in Chapter 4. The experiments that were performed to validate the proposed method
are presented in Chapter 5. Finally, Chapter 6 presents the conclusions of the work and
discusses opportunities for future work.
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Chapter 2

Fundamentals

2.1 Anatomy of the lung

The purpose of the lungs is to provide oxygen to the blood. They are a pair of large and
spongy organs that are localized in the thorax lateral to the heart and on the upper part
of the diaphragm (see Figure 2.1). Each lung is surrounded by a membrane called pleura
that provides the lung with space to expand. The left and right lungs are slightly di�erent
in size and shape due to the heart which is located near the left lung. Therefore, the left
lung is slightly smaller than the right lung and consists of 2 lobes while the right lung has
3 lobes. The interior of the lungs is made of around 30 million sacks which are called the
alveoli. Alveoli are lined with thin simple squamous epithelium that allows air entering
the alveoli to exchange its gases with the blood passing through the capillaries.

The air, which contains oxygen and other gases, comes into the body through the
lungs. In the lungs, the oxygen is moved into the blood-stream and carried through the
body. Red blood cells collect the carbon dioxide and transport it back to the lungs, where
it leaves the body when we exhale.

2.2 Lung cancer

Lung cancer is commonly due to smoking and it is mainly caused by the uncontrollable
irregular growth of cells in lung tissue. A lung nodule is a small round growth of tissue
within the chest cavity (see Figure 2.11). Generally, nodules are considered less than30
mm in size, larger sizes are called masses and are presumed to be malignant (cancerous).
Nodules between5 � 30 mm may be benign or malignant, and the probability that a
nodule be malignant increases with its size. There are three main types of lung cancer [1],
which are non-small cell lung cancer (NSCLC), small cell lung cancer, and lung carcinoid
tumor. NSCLC is the most common type of lung cancer, which constitutes about85%of
all lung cancers.

Lung cancer is the leading cause of cancer-related death in the world [2], representing
18:4% in 2018. Detection and treatment at an early stage can e�ectively overcome this
burden and increase the chance of survival of patients. According to the World Health
Organization (WHO) and the Forum of International Respiratory Societies (FIRS), the
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Figure 2.1: Anatomy of the respiratory system [5].

premature detection of lung cancer provides 5-year survival rates within70%� 90%.
However, in the majority of the cases, lung cancer is only detected at an advanced stage,
dropping the one-year survival rate from80%� 85%to 15%� 19%, when it is compared
with the detection at a premature stage.

2.3 Computerized Tomography imaging

Initially, chest radiography screenings (chest X-ray) were used to detect and diagnose lung
cancer. However, chest radiography screenings present two main problems: (i) lack of 3D
information about the nodules and (ii) occlusion due to the 2D projection. Therefore, a
more e�ective non-invasive imaging technique is required that enables specialists to see
inside the body without the risks of exploratory surgery and thus the diagnostic of the
presence of nodules.

Computerized Tomography (CT) is the method of preference since it forms 3D images
of the thorax, resulting in a higher resolution of nodules and tumor pathology, facilitating
the detection of small nodules. CT images are primarily used today to assist specialists
in the diagnosis of abnormalities, however, using CT images for nodule detection and
classi�cation present three main problems:

� Due to the 3D nature of CT images, it requires analyzing hundreds of images at
a time, specialists are overwhelmed with the amount of data to process since it is
time-consuming and the fatigue also reduces the e�ectiveness.

� As a consequence, the number of false positives generated after analyzing CT images
remain high.
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� As multiple specialists are consulted to analyze the same exam of CT, the lack of
consensus on a diagnosis can arise, demanding that more specialists have to analyze
that image to obtain a verdict.

2.4 Computer-Aided Detection systems

The Computer-Aided Detection (CAD) system has been developed to assist specialists
in the task of quicker and more accurate detection and classi�cation of abnormalities.
Existing CAD systems may be divided according to the techniques used into two groups:
(i) CAD systems that explore knowledge-based image features and (ii) CAD systems based
on deep learning with automatic feature extraction. Approaches in the �rst group often are
called traditional techniques and measure radiological trails such as nodule size, location,
shape, texture, and apply a classi�er to determine if a nodule is malignant or benign. In
the second group, such models based on deep neural networks can automatically learn
features for the detection and diagnosis of lung nodules in CT images. In the last years
CAD systems based on deep learning have shown more promising results for lung nodule
detection and classi�cation [34, 11, 10, 5, 7, 46, 41, 37, 36, 45, 20, 47, 8].

Traditional CAD systems involve manually designed features or descriptors for lung
nodule detection [25, 21]. Thus traditional CAD systems use image processing techniques
to generate a large number of candidates for the location of nodules [35], followed by a false
positives reduction, and �nally, classi�cation is used to know the degree of malignancy of
nodules. The process of detecting and classifying nodules in CT images is still primarily
performed using traditional techniques and trained pulmonary specialists.

A full CAD system to detect and diagnose lung cancer consists of a detection system
(often abbreviated as CADe) and a diagnostic system (often abbreviated as CADx). On
one hand, the CADe system detects candidates being nodule or non-nodule performing an
initial high-sensitive nodule detection. On the other hand, the goal of the CADx system
is to classify the degree of malignancy of nodules.

2.5 Deep learning

Deep learning is a new area in the machine learning �eld, which has been growing very
fast in general data analysis in the last years. Deep learning is an improvement of arti�cial
neural networks (ANN), consisting of more layers that allow a higher level of abstraction
and improved prediction from data [23]. To date, deep learning is emerging as the leading
machine learning tool in the general imaging and computer vision domains. The major
prove is that deep learning is surpassing and improving the traditional techniques based on
image processing and traditional machine learning algorithms like support vector machine
or shallow neural network, in every critical task: image recognition, recognizing speech,
characterizing images, generating natural [39].

Since deep learning depends on a lot of data to learn, training a complex neural network
from scratch on lung nodule images may not prove very successful. However, transfer
learning, or training a network on a large dataset and then using these trained weights for
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Figure 2.2: 3-Layer neural network architecture . The input layer has 3 nodes,
hidden layer has 4 nodes and output layer has 2 nodes.Vi;j is the value of nodej in layer
i . Wki;j is the weight associating the nodei in layer k with node j in layer k + 1.

a new task on new datasets has been shown to work well for a wide range of image datasets
and tasks [29]. The main advantage is that deep learning algorithms extract the features
in the data by themselves. Therefore, there is no need for human intervention during the
training process. Besides, this feature extraction mechanism generates features that are
hard for a human to think and implement. In this section, we explain the theoretical
background of deep learning.

2.5.1 Multilayer Perceptron

Multilayer Perceptron (MLP) consists of at least three layers of nodes and weights (edges)
associating nodes in consecutive layers (see Figure 2.2). The �rst layer is called the input
layer, the middle layers are called the hidden layers, and the last layer is called the output
layer. The number of nodes in the input layer and the output layer depends on the data
and the problem. For example, in order to design a network architecture for handwritten
digit recognition where numbers are stored in28� 28 size images, there will be784nodes
(one input node for one pixel,28� 28 = 784) in the input layer and 10 nodes (one node
for each number) in the output nodes.

The value of a node in an MLP system is obtained by a linear combination of pre-
decessor nodes with their corresponding weights. Therefore, in order to distinguish data
that is not linearly separable, non-linear activation functions are applied to node values.
The most commons activations functions used are: Sigmoid, Tanh, and Recti�ed Linear
Unit (Relu).
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Figure 2.3: Feedforward process [27]

2.5.2 Training algorithm

When a MLP is trained, there are two main steps, the feedforward and backward (back-
propagation).

� Feedforward step: In the feedforward step (see Figure 2.3), starting from input
nodes, they are multiplied by their corresponding weights, and results are summed.
The resulting summation is processed with a non-linear activation function. The
output of the activation function becomes the value of that node. The process ends
when the node values of the output layer are calculated.

� Backward step: Once the feedforward step is completed, there is an error that can
be easily computed between the output layer and the real output values according to
the trained data. In order to measure how good an MLP system is, we de�ne a cost
function, being the objective to minimize this cost function. The backpropagation
algorithm computes the partial derivates of the cost function with respect to each
weight and updates its value using the chain rule, in order to minimize the cost
function (Figure 2.4).

The training algorithm can be summarized as follows:

1. Initialize the weights.

2. Apply the feedforward procedure for each sample.

3. Use backpropagation to update weights.

4. Repeat steps 2 and 3 until there is a convergence.
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Figure 2.4: Update procedure of an output weight. Arrows show the derivative steps [27]

2.5.3 Convolutional Neural Networks

One of the problems using MLP is discarding the spatial relationship between adjacent
pixels, which in images is very important. For example, in the classi�cation problem of
hand-written digits (28� 28 pixels), MLP gets each pixel individually and forms a vector
whose size is784. However, by vectorizing the input, the spatial relationship between
adjacent pixels is lost. The same situation happens for natural language processing, each
word or syllable depends on its previous or next word or syllable.

In the Convolutional Neural Networks (CNNs), this spatial information between ad-
jacent pixels is taken into account by a convolution step. CNNs are usually composed of
convolutional layers, pooling layers, and fully connected layers. CNNs extract the speci�c
patterns by using the �lters, then pooling layers help the model ignore redundant data.
By applying convolutions and pooling respectively, only certain patterns remain and as a
�nal step, the resulting data is vectorized and MLP is used in the last step.

� Convolutional layer: Convolution is a mathematical operation of two functions.
The main function of a convolutional layer is to extract features from the input data.
In the CNNs, the convolutional operation slides a kernel function, which is also called
�lter, over the main data by performing an inner product among the elements. For
each sliding window, the sum-up of the elements is the output. The whole output of
the convolutional operation is called a feature map. In the convolution layer, many
kernels are used on the original data. Each of these kernels learns di�erent patterns
and features of the input data. For example, they can learn to detect the edges,
curves, blobs, and smooth areas. In Figure 2.5, a matrix of size5 � 5 is convolved
with a kernel of size3 � 3. When considering the convolution operation in CNNs,
there are three design issues to think about: kernel size, number of kernels, and
stride. These hyper-parameters have an e�ect on the shape of the output data and
memory usage.
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Figure 2.5: Convolution operation [27]
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Figure 2.6: Due to the curved spine of a patient with scoliosis, image segmentation based
on shape models may fail [40]. The right and left lungs, and trachea are represented
by the colors blue, green, and yellow, respectively. Magenta lines describe the expected
boundaries of the objects.

� Pooling layer: The pooling layer reduces the spatial size of the output of the
convolutional layer in order to reduce the number of parameters and computation
in the network, also it is used for controlling over�tting. Max pooling and average
pooling are two of the most used pooling methods. For a given window, max-
pooling takes the maximum value in that window and average pooling takes the
average value of the values in the window. For pooling operation, there are two
important hyper-parameters which are window size and stride value.

� Fully Connected Layer: Convolution and pooling layer generate rectangular-
shaped outputs. These outputs are �attened so that they can be multiplied by
their weights. For example, if there are64 feature map layers each of which has
5� 5� 3 voxels, in the fully connected layer these volumes are �attened to4800� 1
(5 � 5 � 3 � 64 = 4800). The layer before the fully connected layer represents high-
level features. With the help of a fully connected layer, these high-level features can
be multiplied by the weights of the hidden layers. The rest of the system works as
MLP does.

2.6 Automatic Lung and Trachea Image Segmentation

Automatic Lung and Trachea Image Segmentation (ALTIS) [40] is a fast method for
lungs and trachea segmentation. It relies on the Image Foresting Transform (IFT) frame-
work [12] to design a fast sequence of image processing operations based on relative-shape
and intensity-based features, and image properties that are robust to account for most
appearance variations of abnormal lungs, separating the trachea, left lung, and right lung.
One of the main advantages of ALTIS against other methods is its robustness when lungs
are deformed by disease or abnormal shape of the thoracic cage (Figure 2.6).
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Figure 2.7: Lungs-and-trachea extraction pipeline [40]. (a) Minimum cost map after
the �rst axial slice-by-slice IFT. (b) Original image. (c) Residual image obtained by
subtracting (b) from (a). The lungs-and-trachea are enhanced. (d) Thresholding and
largest component selection from (c). (e) Morphological closing from (d).

ALTIS consists of a sequence of Image Foresting Transforms (IFTs) organized in three
main steps: (i) lungs-and-trachea extraction, (ii) seed estimation inside background, tra-
chea, left lung, and right lung, and (iii) their delineation such that each object is de�ned
by an optimum-path forest rooted at its internal seeds.

2.6.1 Lungs-and-trachea extraction

The strategy for lungs-and-trachea extraction starts by enhancing the majority of voxels
inside the lungs and trachea, which appears darker than the surrounding tissues. For
that, a minimum cost map slice-by-slice is computed using IFT. Then a residual image
is obtained subtracting the original image from the minimum cost map image. A thresh-
olding and largest component selection is applied, and �nally a morphological closing to
get the volume of interest for the lungs-and-trachea extraction. Figure 2.7 shows the
lungs-and-trachea extraction pipeline.

2.6.2 Seed estimation

For the given volume of interest from lungs-and-trachea extraction, it is estimated the
markers (seed set) outside the lungs-and-trachea object, markers inside each of the lungs,
and markers inside the trachea for the subsequent object delineation by optimum seed
competition.

The lungs and background seeds are obtained by simultaneous dilation and erosion
from the volume of interest. In order to get the trachea seed, a Geodesic distance map from
the lung seeds is computed, and then thresholding and highest component are applied.
Figure 2.8 shows the seed estimation, seed labeling, and object delineation pipeline.
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Figure 2.8: Seed estimation, seed labeling, and object delineation pipeline [40]. (a) Volume
of interest obtained from the lungs-and-trachea extraction. (b) Lungs and background
seeds obtained by simultaneous dilation and erosion from (a). (c) Geodesic distance map
from the lung seeds. (d) Trachea seeds obtained by thresholding and highest component
selection from (c). (e) Labeled seeds seen from the 3D rendition: green for the right lung
seeds, blue for the left lung seeds, red for the trachea seeds, and white for the background
seeds. (f) Gradient image of I 2 (Fig. 6c). (g) Resulting object delineation and (h) its
3D rendition.

2.6.3 Seed labeling and object delineation

The objects of interest are delineated by optimum seed competition. Once the lungs, tra-
chea, and background seeds are estimated, they compete with each other to propagate the
corresponding labels to their most closely connected voxels. The process is implemented
by a sequence of two IFTs.

The �rst IFT allows propagating along optimum paths to create a label map. This
�rst object delineation can correctly segment most parts of the lungs and trachea, but
the high gradient values at voxels in narrow parts of these objects may leave those parts
conquered by background seeds 2.9. The second IFT is used to solve this problem.

2.7 Non-Maximum Suppression algorithm

Object detectors in the last years have moved to the end-to-end learning paradigm: pro-
posals, features, and the classi�er becoming one neural network improving results on
general object detection. The task of object detection can be interpreted as mapping an
image to a set of candidate regions: one candidate per object of interest in the image
and each candidate enclosing as much as possible an object. In this way, detectors should
return exactly one candidate per object.
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Figure 2.9: Example of a lung region left unsegmented (red circle) by the IFT with the �rst
seed set (left). By increasing the internal seed set, the second IFT corrects segmentation
(right) [40].

Uncertainty is an inherent part of the detection process causing each candidate to be
associated with a con�dence score. The detection process estimates the probabilities of
object classes being present for every candidate in an image. Initially, these candidates
are proposed from a search space (e.g. sliding window, proposals), and the estimation of
class probabilities for each candidate is computed independently of any other candidate.
Therefore, current detectors generate several candidate regions for the same object with
di�erent scores, being necessary a post-processing step to eliminate redundant candidates
for the same object.

The Non-Maximum Suppression (NMS) algorithm has been proposed to eliminate
redundant candidates and select one candidate region per object. This NMS algorithm
relies on handcrafted parameters and greedy clustering with a �xed distance threshold
which forces a trade-o� between recall and precision.

The input for the NMS algorithm is a list of candidates C, corresponding con�dence
scores S and overlap threshold N and the output is a list of �ltered candidates D. The
following steps summarized the algorithm:

1. Select the candidate with the highest con�dence score from C and remove it from
C, then add it to the �nal candidate list D (initially D is empty).

2. Now compare this candidate with all remaining candidates from C � calculate the
IOU (Intersection over Union) of this candidate with every remaining candidate
from C. If the IOU is greater than the threshold N, remove that candidate from C.

3. This process is repeated until there are no more candidates left in C.

When we analyze the NMS algorithm, this presents two major di�culties: (i) the
overlapping percentage for rejection must be high enough to eliminate regions with high
scores containing the same object, while (ii) it must be low enough to avoid eliminating
regions of detected objects that are close to each other � a common situation in images
with several nodules.
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Figure 2.10: The pipeline of an automated CAD system for lung nodule detection using
the NMS algorithm to eliminate redundant candidates.

In �gure 2.10 we have the pipeline of an automated CAD system for lung nodule
detection. We can see that the nodule detector generates several candidate regions for
the same nodule with di�erent scores, being necessary a post-processing step for the
elimination of redundant candidates. In this case, the NMS algorithm was used as the
post-processing step, however, we still have some redundant candidates for the same
nodule.

2.8 LUNA16 challenge

The LUng Nodule Analysis 2016 (LUNA16) challenge invites participants to develop a
CAD system that automatically detects pulmonary nodules in CT scans. The challenge
provides the dataset and the reference annotations from the publicly available LIDC-IDRI
database [3]. This dataset can be used for training of the systems and the evaluation of
the algorithms is performed on the same dataset. To prevent biased results as a result
of training and testing on the same dataset, participants are instructed to perform cross-
validation.

2.8.1 Data

In the LUNA16 challenge, the dataset was collected from the publicly available LIDC-
IDRI database [3]. The LIDC-IDRI database contains a total of 1018 CT scans. CT
images come with associated XML �les with annotations from four experienced radiol-
ogists. Scans with a slice thickness greater than 3 mm were excluded. On top of that,
scans with inconsistent slice spacing or missing slices were also excluded. This led to the
�nal list of 888 scans considered for the LUNA16 challenge. These scans were provided
as MetaImage (.mhd) images that can be accessed and downloaded from the LUNA16
website.

Each LIDC-IDRI scan was annotated by experienced thoracic radiologists in a two-
phase reading process [3]. In the �rst phase, four radiologists annotated the scans in-
dependently. All lesions were marked as nodule� 3 mm; nodule< 3 mm; non-nodule
(any other pulmonary abnormality). For lesions annotated as nodule� 3 mm, diameter
measurements were provided. In the second phase, the anonymized blinded results of all
other radiologists were revealed to each radiologist, who then independently reviewed all
marks. No consensus was forced.
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