Mixosporídeos de Peixes do Rio Piracicaba, Município de Piracicaba, SP.
Mixosporídeos de Peixes do Rio Piracicaba, Município de Piracicaba, SP.

EDUARDO FERNANDES CELLERE

Tese apresentada ao Instituto de Biologia, Departamento de Parasitologia, da Universidade Estadual de Campinas, para obtenção do título de Mestre em Ciências Biológicas, na área de Parasitologia.

ORIENTADOR: Prof. Dr. NELSON DA SILVA CORDEIRO

CAMPINAS
1998
FICHA CATALOGRÁFICA ELABORADA PELA
BIBLIOTECA DO INSTITUTO DE BIOLOGIA - UNICAMP

Cellere, Eduardo Fernandes
C331m Mixosporídeos de peixes do Rio Piracicaba, município de Piracicaba, SP. / Eduardo Fernandes Cellere. -- Campinas, SP: [s.n.], 1998. 142f.: ilus.

Orientador: Nelson da Silva Cordeiro
Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Biologia.

Campinas, 27 de fevereiro de 1998.

BANCA EXAMINADORA

TITULARES:

Prof. Dr. Nelson da Silva Cordeiro
ORIENTADOR

Prof. Dr. Norair Salviano dos Reis

Profª. Dra. Regina Maura Bueno Franco

SUPLENTE:

Profª. Dra. Eliana Maria Zanotti Magalhães
À Ana Lídia,

que me incentivou,

me compreendeu,

sempre com muita paciência,

com muito carinho e, principalmente,

com muito amor.
AGRADECIMENTOS

Agradeço a Deus, em primeiro lugar, que me permitiu concluir esta tese.

Ao Prof. Dr. Nelson da Silva Cordeiro, pela orientação, pela amizade e pela perseverança, muito contribuindo para a minha formação científica.

Ao SEMAE de Piracicaba, pelo fornecimento do dados da água do Rio Piracicaba.

Ao Instituto de Biologia, UNICAMP, que proporcionou meios para realização deste trabalho.

Aos Professores Dr. Norair, Dra. Eliana e Dra. Rosangela, pelas sugestões e pela participação como membros da pré-banca.

Ao Prof. Dr. Ivan Sazima, pelo auxílio na determinação das espécies de peixes hospedeiros.

Aos meus familiares, em especial ao Paulo, pelas sugestões nos desenhos, e a Filomena, pelo auxílio na redação.

Ao Cláudio (Tangará), que sempre me ajudou nas coletas.

Aos meus pais, minha eterna e sincera gratidão, pelo apoio constante em todos os momentos, não só deste trabalho, mas de toda a vida.
Não demolir esta casa.

Mas meu quarto vai ficar,

Não como forma imperfeita

Neste mundo de aparências:

Vai ficar na eternidade

Com seus livros, com seus quadros,

Intacto, suspenso no ar!

Manuel Bandeira
SUMÁRIO

LISTA DE FIGURAS
LISTA DE TABELAS
LISTA DE PRANCHAS
RESUMO

1. INTRODUÇÃO 1
 I. POSIÇÃO SISTEMÁTICA 3
 II. CICLO DE VIDA 26
 III. PATOGENICIDADE 31
 IV. EVOLUÇÃO 34

2. OBJETIVOS 38

3. MATERIAL E MÉTODOS 39
 I. INFORMAÇÕES SOBRE O LOCAL E CARACTERÍSTICAS DA ÁREA ESTUDADA 39
 II. COLETA, TRANSPORTE E ACONDICIONAMENTO DOS PEIXES 44
 III. TÉCNICA DE PESQUISA DE MIXOSPORÍDEOS 45
 IV. EXAME A FRESCO 47
 V. EXAME APÓS FIXAÇÃO E MÉTODO DE COLORAÇÃO 47
 VI. DESENHOS E MICROMETRIA 47
 VII. PRESERVAÇÃO DO MATERIAL ESTUDADO 48

4. RESULTADOS E DISCUSSÃO 49
 I. ATUALIZAÇÃO DOS GÉNEROS E ESPÉCIES DE MIXOSPORÍDEOS BRASILEIROS 49
 II. DESCRIÇÃO E DISCUSSÃO DAS ESPÉCIES DE MIXOSPORÍDEOS 84
 III. ANÁLISE DOS DADOS OBSERVADOS 110
5. CONCLUSÃO

ANEXO 1

I. INFORMAÇÕES SOBRE OS PEIXES COLETADOS

ANEXO 2

I. VAZÕES MÉDIAS (m³/s) DO RIO PIRACICABA

II. TEMPERATURA (EM GRAUS CELSIUS) MÉDIAS REGISTRADAS NA REGIÃO DO RIO PIRACICABA

III. PRECIPITAÇÕES (mm/mês) MÉDIAS NA REGIÃO DO RIO PIRACICABA

IV. PH MÉDIO REGISTRADO NA ÁGUA DO RIO PIRACICABA

V. QUANTIDADES MÉDIAS DE OXIGÊNIO (ppm de O₂) DISSOLVIDO NA ÁGUA DO RIO PIRACICABA

ANEXO 3

I. ESQUEMA DE DIMENSIONAMENTO DE ESPOROS DE MIXOSPORÍDEOS PROPOSTO POR LOM & ARTHUR (1989)

SUMMARY

REFERÊNCIAS BIBLIOGRÁFICAS
LISTA DE FIGURAS

Figura 1 30
Exemplo do ciclo de vida histozóico de um mixosporídeo do gênero *Myxobolus*.

Figura 2 42
Mapa do município de Piracicaba.

Figura 2.1 42
Região de coleta.

Figura 3 43
Área de coleta no rio Piracicaba - Região do “Salto”.

Figura 4 43
Área de coleta no rio Piracicaba - Região do “Engenho Central”.

Figura 5 124

Figura 6 102
Esporos de *Henneguya sp. 1*, corados pelo Giemsa. Objetiva 100 X.

Figura 7 102
Esporos de *Henneguya sp. 2*, corados pelo Giemsa. Objetiva 100 X.
Figura 8 103
Esporos de *Henneguya sp. 3*, corados pelo Giemsa. Objetiva 100 X.

Figura 9 103
Esporos de *Henneguya sp. 4*, corados pelo Giemsa. Objetiva 100 X.

Figura 10 104
Esporos de *Henneguya sp. 5*, corados pelo Giemsa. Objetiva 100 X.

Figura 11 104
Esporos de *Myxobolus sp. 1*. Preparação a fresco, Objetiva 40 X.

Figura 12 105
Esporos de *Myxobolus sp. 2*. Preparação corada pelo Giemsa, Objetiva 100 X.

Figura 13 105
Esporos de *Myxobolus sp. 3 (M. cunhai)*, corados pelo Giemsa. Objetiva 100X.
LISTA DE TABELAS

TABELA I 121
VAZÕES MÉDIAS (m³/s) DO RIO PIRACICABA

TABELA II 121
TEMPERATURA (EM GRAUS CELSIUS) MÉDIAS REGISTRADAS NA REGIÃO DO RIO PIRACICABA

TABELA III 122
PRECIPITAÇÕES (mm/alt) MÉDIAS NA REGIÃO DO RIO PIRACICABA

TABELA IV 122
QUADRO REFERENTE AO pH MÉDIO REGISTRADO NA ÁGUA DO RIO PIRACICABA

TABELA V 123
QUANTIDADES MÉDIAS DE OXIGÊNIO (ppm de O₂) DISSOLVIDO NA ÁGUA DO RIO PIRACICABA

TABELA VI 85
VALORES ABSOLUTOS, MÉDIA (em µm) E DESVIO PADRÃO DOS ESPOROS DE *HENNEGUYA SP. 1*

TABELA VII 87
VALORES ABSOLUTOS, MÉDIA (em µm) E DESVIO PADRÃO DOS ESPOROS DE *HENNEGUYA SP. 2*

TABELA VIII 89
VALORES ABSOLUTOS, MÉDIA (em µm) E DESVIO PADRÃO DOS ESPOROS DE *HENNEGUYA SP. 3*
TABELA IX

VALORES ABSOLUTOS, MÉDIA (em μm) E DESVIO PADRÃO DOS ESPOROS DE HENNEGUYA SP. 4

TABELA X

VALORES ABSOLUTOS, MÉDIA (em μm) E DESVIO PADRÃO DOS ESPOROS DE HENNEGUYA SP. 5

TABELA XI

VALORES ABSOLUTOS, MÉDIA (em μm) E DESVIO PADRÃO DOS ESPOROS DE MYXOBOLUS SP. 1

TABELA XII

VALORES ABSOLUTOS, MÉDIA (em μm) E DESVIO PADRÃO DOS ESPOROS DE MYXOBOLUS SP. 2

TABELA XIII

VALORES ABSOLUTOS, MÉDIA (em μm) E DESVIO PADRÃO DOS ESPOROS DE MYXOBOLUS SP. 3

TABELA XIV

PEIXES COLETADOS NO PERÍODO DE MARÇO DE 1991 A FEVEREIRO DE 1992
LISTA DAS PRANCHAS

PRANCHA 1 77
MIXOSPORÍDEOS BRASILEIROS - DESENHOS DE ESPOROS E ALGUNS ESTÁGIOS DE DESENVOLVIMENTO.

PRANCHA 2 106
DESENHOS DOS ESPOROS DE MIXOSPORÍDEOS ENCONTRADOS NOS PEIXES DO RIO PIRACICABA.
RESUMO

Uma análise dos Myxosporea juntamente com a revisão da sistemática, a lista das espécies brasileiras já descritas, seus hospedeiros e suas distribuições geográficas são apresentados. As descrições e ilustrações de estágios de desenvolvimento e do desenvolvimento dos esporos, incluindo sítio de infecção de oito espécies de Myxosporea encontrados pelo exame de 96 peixes de água doce do Rio Piracicaba, município de Piracicaba, SP, pertencentes a quatro espécies de hospedeiros (Astyanax bimaculatus, Leporinus reinhardt, Pimelodus maculatus, Serrasalmus spilopleura), são dados também. Sete novas espécies e uma redescrição de Myxobolus cunhai Penido, 1927 e as afinidades taxonômicas destes parasitos são discutidas. As novas espécies identificadas neste estudo pertencem a uma Família (Família: Myxobolididae) e dois diferentes gêneros (Henneguya e Myxobolus) incluindo as seguintes espécies: Henneguya sp. 1, Henneguya sp. 2, Henneguya sp. 3, Henneguya sp. 4, Henneguya sp. 5, Myxobolus sp. 1, Myxobolus sp. 2, Myxobolus sp. 3 (= Myxobolus cunhai).
1. INTRODUÇÃO

São vários os grupos de parasitos que têm sido estudados em vista de sua ação nociva para a sobrevivência de peixes utilizados como recreação e como fonte de alimento. Um desses grupos, o Myxozoa, um dos maiores filos dos protistas (Corliss, 1984), acomoda, em grande parte, parasitos obrigatórios de peixes, com algumas espécies responsáveis por doenças, muitas vezes fatais, como é o caso da Doença do Rodopio (tournis em francês, torneo em espanhol e whirling em inglês), causada pelo *Myxobolus cerebralis* (*= Myxosoma cerebralis*), que é altamente contagiosa, provoca elevadíssimas taxas de mortalidade, é difícil de erradicar e contra a qual não existem processos terapêuticos eficazes.

A literatura mundial apresenta dados esclarecedores sobre a fauna de mixosporídeos de diferentes regiões dos Estados Unidos, Europa e Ásia. Entretanto, trabalhos feitos com esse objetivo no Brasil podem ser considerados insuficientes uma vez que é grande a quantidade de espécies de peixes em nosso continente. A falta de dados sobre a atual composição de mixosporídeos de peixes brasileiros foi o estímulo para o presente trabalho. Desta forma, julgamos oportuno realizar um estudo de sistemática, para verificar as espécies de mixosporídeos existentes, observar aspectos de sua morfologia e compará-los com dados obtidos por outros investigadores.

A área de trabalho escolhida foi o Rio Piracicaba, Município de Piracicaba (SP), devido a grande variedade de espécies de peixes encontrados neste rio e também por não haver referências sobre a ocorrência de mixosporídeos em seus peixes. Assim, fizemos durante o período de um ano,
todos os meses, uma série de capturas de peixes, visando verificar, quais as espécies de mixosporídeos que eventualmente seriam encontradas, para atualizar e acrescentar informações sobre tais parasitos nesta região.
I. POSIÇÃO SISTEMÁTICA

Classificados pela primeira vez por Bütschli (1882), na Alemanha, baseado fundamentalmente nas propriedades morfométricas dos esporos, os mixosporídeos foram enquadrados no grupo denominado Cnidosporídeos, provavelmente pela similaridade entre os cnidocistos ou cápsulas polares dos mixosporídeos e os nematocistos dos Cnidários (Lom, 1969), presentes no grupo dos Celenterados.

Durante muitos anos, a sistemática proposta por Shulman (1959), foi amplamente utilizada. Com o desmembramento do antigo subfilo Sporozoa, o grupo dos mixosporídeos firmou-se como o filo MYXOZOA, do agora, sub-reino, Protozoa.

A revisão da classificação dos protozoários, recomendada pelos membros do “Commitee on Systematics and Evolution of the Society of Protozoologists” (Levine et al., 1980) manteve Myxozoa como um filo.

Novas descrições trazendo a público uma grande multiplicidade de formas, o conhecimento destes organismos e de estágios do ciclo de vida, até então ignorados, e de novas técnicas desenvolvidas são fatores que justificaram uma revisão dessa sistemática, que foi proposta por Lom & Noble (1984). Esta classificação, em linhas gerais, é apresentada a seguir, destacando-se as características que distinguem classes e gêneros, além da citação das principais espécies do grupo.
FILO MYXOZOA Grassé, 1960.

Organismos microscópicos e parasitos que ultrapassam o nível protista em um início pluricelular, possuindo uma distinta constituição vegetativa (soma) e uma germinativa (germe) e, consequentemente, células morfologicamente diferentes e funcionalmente especializadas. São caracterizados pelo "estado envelopado" das células germinativas envolvidas pelas próprias somáticas, por esporos multicelulares desenvolvidos a partir de células generativas, contendo cápsulas polares com filamento extrudável e um ou mais germes amebóides infectantes, os esporoplasmas. A parede do esporo é formada de duas a sete valvas produzidas a partir das células aderentes e células de junção. O processo sexual é autogâmico ou por copulação de gametas.

CLASSE MYXOSPOREA Bütschli, 1881.

Um estágio pluricelular de trofozoito é o local essencial de proliferação. Os trofozoitos, frequentemente com forma amebóide, têm núcleo vegetativo e células generativas produzindo esporos multicelulares. Trofozoítos classificam-se desde um pseudoplasmódio uninucleado produzindo um esporo até um plasmódio macroscópico contendo numerosos esporos. Esporos com um ou dois esporoplasmas, 1 ou 7 (principalmente 2) cápsulas polares e, duas a sete (principalmente duas) conchas das valvas que se encontram na(s) linha(s) de sutura.

O processo sexual é autogâmico e ocorre no esporoplasma, antes ou, mais frequentemente, durante a saída do esporoplasma.
Incluem parasitos histozóicos (intecelular, algumas vezes, intracelular) ou celozóicos, primariamente de peixes, ocasionalmente de anfíbios e répteis, excepcionalmente em invertebrados (Kudo, 1920). Inofensivas em sua maior parte, algumas - especialmente as espécies histozóicas - são causadoras de doenças em peixes.

Ordem Bivalvulida Shulman, 1959.

Concha do esporo composto de duas valvas encontrando-se em uma sutura circunsposoral (ao redor do corpo) e contendo duas, às vezes quatro ou, raramente, uma cápsula polar.

Subordem Sphaeromyxa Lom, 1984.

Filamentos polares curtos, sem ser em forma de tubo (ao contrário dos outros Myxosporeas), são achatados e alargando gradualmente para a extremidade, não dispostos em espiral em cada uma das duas cápsulas polares, mas dobrados várias vezes. Celozóicos em peixes marinhos.

1. **Família Sphaeromyxidae** Lom & Noble, 1984

Duas cápsulas polares opostas nas extremidades, truncadas em esporos alongados e ligeiramente curvados. Cápsulas polares abrindo-se na linha de sutura, que ligam as extremidades do esporo, dividindo-o em duas partes iguais. Valvas lisas ou estriadas. Um esporoplasmia binucleado; plasmódios poliespóricos na vesícula biliar; formação de pansporoblasto em algumas formas do gênero *Sphaeromyxa*.

5
Gênero *Sphaeromyxa* Thélohan, 1892

Com características da família.

Espécie tipo: *S. balbianii* Thélohan, 1892.

Cápsulas polares (como regra duas, algumas vezes quatro, raramente uma) ocupando várias posições no esporo; se juntas num dos pólos do esporo, não são colocadas no plano sutural, ou em um plano perpendicular a este. Principalmente parasitos celozóicos, a maioria vivendo em peixes marinhos.

2. Família *MYXIDIIDAE* Thélohan, 1892.

Esporos em forma de pião, sigmóides, ou meia lua, às vezes, semicircular, ou elipsóides. Duas cápsulas polares em extremidades opostas (apenas uma no gênero *Coccomyxa*), com pequenos orifícios terminais ou ligeiramente laterais; linha sutural longitudinal reta, curva ou sigmóide. Principalmente celozóicos, raramente parasitos histozóicos de peixes marinhos e de água doce.

Gênero *Myxidium* Bütschli, 1882

Esporos, via de regra, fusiformes, retos, em crescente ou sigmóides, com mais ou menos pontas no final. As valvas da concha são lisas ou estriadas; a linha de sutura divide o esporo em duas metades. Duas cápsulas piriformes em oposição voltadas cada uma para uma extremidade do esporo, abertura capsular sobre o plano de sutura, ou perto do final do esporo e, aberta, em direções opostas. Um esporoplasma binucleado está localizado, via de
regra, entre as cápsulas. Tipicamente celozóicos, com trofozoitos pequenos ou grandes, monoespóricos, diespóricos ou poliespóricos, com formação de pansporoblasto tardio; também histozóico; estágios intracelulares são conhecidos. Encontrados em peixes marinhas e de água doce, raramente, em anfíbios ou répteis.

Espécie tipo: *M. lieberkuehni* Bütschli, 1882.

Gênero *Zschokkella* Auerbach, 1910.

Esporos elipsoidais em visão sutural e levemente curvados ou semicirculares em visão valvar; com as pontas finais arredondadas ou sem corte. Cápsulas quase esféricas, ligeiramente abertas subterminalmente, ambas para o mesmo lado. Um esporoplasma binucleado. Trofozoitos diespóricos ou polispóricos com formação de pansporoblasto. Celozóicos em peixes marinhas e de água doce. Umas poucas espécies em anfíbios e répteis.

Espécie tipo: *Z. hildae* Auerbach, 1910

Gênero *Coccomyxa* Léger & Hesse, 1907.

Esporos elipsoidais, arredondados em corte transversal, com uma cápsula polar única, piriforme e longa, com abertura no plano de sutura. Linha de sutura sigmóide. Um esporoplasma binucleado. Trofozoito monoespórico ou poliespórico. Celozóico em vesícula biliar de peixes marinhas.

Espécie tipo: *C. morovi* Léger & Hesse, 1907.

Esporos esféricos a elipsóides irregulares. Bilateralmente simétricos ao longo de uma linha de sutura. As duas cápsulas polares estão dispostas uma de cada lado da linha de sutura. Esporoplasma binucleado na cavidade do esporo oposta àquela em que se encontram as cápsulas polares. Trofozoito celozóico, monoespórico para poliespórico em peixes marinhos ou de água doce.

Gênero **Ortholinea** Shulman, 1962.

Gênero **Neomyxobolus** Chen & Hsieh, 1960.

Esporos esféricos ou em forma de pirâmide invertida, podendo ter projeções caudais ou laterais; duas cápsulas polares anteriormente alocadas, de forma esférica ou subesférica, estão dispostas separadas, às vezes, em lados opostos do esporo; plano contendo-as é perpendicular a uma linha de sutura geralmente sinuosa, muitas vezes, aparecendo com forma de “8”. Trofozoitos monoespóricos para poliespóricos, celozóicos em peixes marinhos.

Gênero *Sinuolinea* Davis, 1917.

Esporos esféricos ou subesféricos. Linha de sutura sinuosa ou extremamente sinuosa, tanto que esta orientação para as duas cápsulas polares, dispostas amplamente afastadas, pode ser difícil de determinar. Esporoplasma binucleado. Trofozoitos monoespóricos para poliespóricos; celozóicos no trato urinário de peixes marinhos.

Gênero *Davisia* Laird, 1953.

Esporos esféricos ou subesféricos, linha de sutura reta ou sinuosa. As valvas das conchas produzem longo vazio lateral, adjunto a uma cavidade descontínua com a cavidade do esporo. Cápsulas polares posicionadas anteriormente, com uma certa distância uma da outra. Trofozoitos monoespórico, diespóricos ou poliespóricos; celozóico no sistema urinário de peixes marinhos.

Gênero *Myxoproteus* Doflein, 1898.

Esporos em forma de pirâmide invertida ou de triângulo, visão sutural, com linhas exteriores arredondadas; terminação anterior larga e mais ou menos achatada; esporos com valvas espessas, às vezes, com várias projeções. Linha de sutura reta ou sinuosa; cápsulas polares são bem separadas. Esporoplasma binucleado. Trofozoitos monósporos e dísporicos. Celozóicos no sistema urinário de peixes marinhos.

Espécie tipo: *M. ambiguus* (Thélohan, 1895) Doflein, 1898.

Gênero *Bipteria* Kovaljova, Zubtchenko & Krassin, 1983.

Gênero *Shulmania* Kovaljova, Zubtchenko & Krassin, 1983.

Diferem de *Bipteria* por, às vezes, possuírem linha de sutura reta, terem trofozoitos monósporos ou dísporicos, e, principalmente, por quatro projeções longitudinais valvares; duas, correndo ao longo de cada lado da linha de sutura, duas outras, estendem-se ao longo da linha média de cada valva da concha.

Esporos com valvas alongadas em direção perpendicular à linha de sutura transversal; duas cápsulas polares em pólos opostos e abrindo lateralmente. Esporos capazes de moverem-se por possuírem fibras contráteis ligadas às valvas. Celozóicos em peixes marinhos e no parênquima de platelminto.

Com caracteres da família. Esporoplasma binucleado.

6. Família *Ceratomyxidae* Doflein, 1899.

Gênero *Leptotheca* Thélohan, 1895.

Esporos ovais, elipsóides (às vezes, arqueados). O comprimento do indivíduo lateralmente prolongando a valva-concha (medindo do ponto central da sutura para o ponto mais distante da valva) não excede o diâmetro axial do esporo (há diferença para *Ceratomyxa*) mas significativamente excedem a
metade desse diâmetro (em variação com *Sphaerospora*). Abertura capsular próxima ao plano de sutura. Esporoplasma frequentemente ocupando completamente a cavidade do esporo; geralmente um binucleado; às vezes, dois esporoplasmas uninucleados. Trofozoitos como regra diespóricos; celozóicos no sistema urinário, raramente histozóicos em peixes marinhos. Às vezes, em sistema urinário de anfíbios.

Espécie tipo: *L. agilis* Thélohan, 1895

Gênero *Ceratomyxa* Thélohan, 1892.

Esporos alongados, com formato de meia lua ou arqueado com as valvas geralmente cônicas, excedendo em comprimento o diâmetro axial do esporo. Cápsulas polares subesféricas, às vezes, de tamanhos desiguais, possuindo abertura capsular próxima à linha de sutura, no pólo anterior do esporo. Exceptionalmente as cápsulas abrem-se em lados opostos da linha central de sutura. Esporoplasma binucleado não preenchendo completamente a cavidade do esporo; dois esporoplasmas uninucleados foram também reportados. Trofozoitos monósporos para polísporos, geralmente diespóricos; celozóicos em peixes marinhos, raramente histozóicos.

Espécie tipo: *C. arcuada* Thélohan, 1893.

7. Família *Sphaerosporidae* Davis, 1917.

Esporos esféricos, piramidais ou arredondados com extremidade anterior alargada ou alongada, geralmente com apêndices. Duas cápsulas polares abrindo na extremidade anterior e situadas em um plano perpendicular à linha de sutura retilínea. Trofozoitos monoespóricos para poliespóricos.
Geralmente celozóicos em peixes marinhos e de água doce. Às vezes histozóicos.

Gênero *Sphaerospora* Thélohan, 1892.

Espécie tipo: *S. elegans* Thélohan, 1892

Gênero *Miraspora* Fujita, 1912.

Esporos com a ponta voltada para a região anterior, semelhantes à meia esquadria ou arredondados em visão valvar. Possui muitos filamentos na extremidade posterior. As cápsulas polares são piriformes e o esporoplasma é binucleado. Trofozoitos polísporos. Celozóicos em sistema urinário de peixes de água doce com estágios intracelulares.

Espécie tipo: *M. cyprini* Fujita, 1912.
Gênero *Wardia* Kudo, 1919.

Esporos semelhantes a um triângulo isósceles com dois lados convexos em visão sutural, mas oval em visão valvar e achatado perpendicularlymente ao plano de sutura. Valvas com estrias finas, ocorrendo um processo semelhante a uma franja interna na extremidade posterior. Cápsulas polares largas na porção central do esporo e abrindo-se na sua extremidade posterior. Grandes trofozoitos poliespóricos histozóicos, assemelhando-se a um cisto, em peixes de água doce; existem possivelmente espécies próprias em anfíbios.

Espécie tipo: *W. ovinocua* Kudo, 1919.

Gênero *Myxobilatus* Davis, 1944.

Espécie tipo: *M. gasterosteii* (Parisi, 1921) Davis, 1944.
8. Família Chloromyxidae Thélohan, 1812.

Esporos esféricos, subesféricos ou alongados, podendo ter apêndices caudais; linha de sutura mediana. Quatro cápsulas polares no ápice do esporo. Um par ao nível da linha de sutura e o segundo par perpendicular à mesma, ou ambos os pares diagonalmente opostos atrás do nível da linha de sutura. Trofozoítos pequenos (monoespóricos) ou de tamanho médio (poliespóricos) com a formação de pansporoblasto. Celozóicos em peixes de água doce e marinhas, ocorrendo excepcionalmente em anfíbios; são raramente histozóicos.

Gênero Chloromyxum Mingazzini, 1890.

Valvas dos esporos lisas ou estriadas, raramente com projeção de filamento caudal. Os dois pares de cápsulas polares podem ser de tamanhos desiguais. Esporoplasma binucleado. Dois esporoplasmas uninucleados já foram observados também com as outras características da família.

Espécie tipo: Ch. leydigi Mingazzini, 1890.

Gênero Caudomyxum Bauer, 1948.

Esporos subesféricos com valvas lisas, cada um equipado com um espesso prolongamento caudal adelgadando-se gradualmente. Trofozoitos polisporos, com a formação de pansporoblasto. Celozóico em sistema urinário de anfíbios e histozóicos em fígado de peixes de água doce.

Gênero *Agarella* Dunkerley, 1915.

Esporos alongados ovóides, muito levemente achatados paralelamente à linha de sutura. De cada valva estende-se uma projeção caudal. Quatro cápsulas polares piriformes: duas grandes e duas menores, com uma em cada valva. Trofozoitos polísporos, histozóicos em peixes de água doce.

Espécie tipo: *A. gracilis* Dunkerly, 1915.

Esporos com valvas lisas, assimétricas e desiguais, com uma única e alongada cápsula polar, contendo poucas dobras longitudinais do filamento. Trofozoitos poliespóricos, celozóicos na vesícula biliar de peixes marinhos.

Esporos semelhantes a uma clava, com uma ampla parte anterior e uma estreita parte caudal. As duas valvas são assimétricas e têm formato não similar; encontram-se em um encurvamento. A linha de sutura é pouco distinguível. Cápsulas polares abrem-se na extremidade anterior do esporo. Esporoplasma binucleado. Trofozoitos grandes, polísporos; celozóicos em vesícula biliar de peixes marinhos.

Esporos de forma esférica, valvas lisas. São desiguais e encontram-se em um encurvamento; linha de sutura delicada. Abertura capsular relativamente distante da linha de sutura. Celozóicos em vesícula biliar de peixes marinhos.

Esporos assemelhando-se a um triângulo isósceles achatado em visão sutural, com longas pontas perpendiculares à linha de sutura central; a menor, orientada posteriormente. Duas cápsulas polares dispostas em um plano perpendicular à linha de sutura. Valvas com projeções semelhantes a asas. Celozóicos em vesícula biliar de peixes marinhos.

Esporos extremamente alongados em nível perpendicular à linha sutural central reta. As valvas produzem projeções membranosas semelhantes a asas, aderidas ao longo de sua metade posterior. Pequenas cápsulas polares piriformes. Trofozoitos diespóricos. Celozóicos em vesícula biliar de peixes marinhos.

Gênero *Pseudoalatospora* Kavaljova & Gayevskaya, 1983.

Os esporos diferem daqueles de *Alatospora* na medida em que suas projeções da valva são dobradas em forma semelhante a um pára- quedas. Trofozoitos mono ou diespórico; celozóicos em vesícula biliar de peixes marinhos.

Espécie tipo: *P. scomбри* Kavaljova & Gayevskaya, 1983.

Esporos assimétricos, com paredes finas, alongados no plano de sutura, com valvas desiguais e linha de sutura curva; duas a quatro pequenas cápsulas polares no ápice. Trofozoítos diespóricos para tetraespóricos. Celozóicos no sistema urinário e histozóico em peixes marinhos anádromos.

Gênero *Parvicapsula* Shulman, 1953.

Assimétricos, esporos um tanto curvos. Duas pequenas cápsulas polares de forma piriforme estão anteriormente localizadas, mas abrem-se lateralmente. Um esporoplasma binucleado relativamente grande. Trofozoítos diespóricos, celozóicos em sistema urinário ou histozóico em rins.

Espécie tipo: *P. asymmetrica* Shulman, 1953.

Esporos assimétricos, alongados; linha de sutura curva ou sinuosa. Quatro pequenas cápsulas polares piriformes em arranjo semelhante a cruz, no ápice do esporo. Um esporoplasma relativamente grande. Trofozoítos diespóricos para tetraespóricos, celozóicos no sistema urinário.

Subordem *Platysporina* Kudo, 1919 emend..

Esporos bilateralmente simétricos, com as cápsulas polares (geralmente duas, às vezes, uma) situadas no plano de sutura, em sua porção apical. São geralmente histozóicos em peixes de água doce, produzindo grandes trofozoitos poliespóricos.

12. Família *Myxobolidae* Thélohan, 1892.

Esporos achatados paralelos a uma linha de sutura reta. A sutura forma uma saliência e pode ser exteriorizada dentro de longas projeções. Uma das duas cápsulas polares pode ser menor. Em dois gêneros, ela tem desaparecido completamente. Muitas espécies têm um vacúulo iodófilo. Como regra, formam grandes trofozoitos histozóicos (cistos) com numerosos esporos, frequentemente em peixes de água doce.

Gênero *Myxobolus* Bütschli, 1882

Espécie tipo *M. muelleri* Bütschli, 1882.
Gênero *Henneguya* Thélohan, 1892.

Espécie tipo: *H. psorospermica* Thélohan, 1895.

Gênero *Thelohanellus* Kudo, 1933.

Esporos piriformes, em forma de lágrima ou, elipsóides em visão valvar; em forma de lágrima ou, piriformes, em visão sutural. Valvas lisas, raramente com uma membrana em forma de meia lua na extremidade posterior. Uma única cápsula polar em forma de lágrima ou subesférica. Esporoplasma binucleado, geralmente com depósitos de polissacarídeos. Trofozoíto grande, poliespórico, com formação de pansporoblasto, estritamente histozóico em peixes de água doce.

Espécie tipo: *T. pyriforis* (Thélohan, 1892) kudo, 1933.

Gênero *Unicauda* Davis, 1944.

Diferem de *Henneguya* uma vez que o apêndice caudal singular não é uma continuação das valvas lisas da concha, mas, uma estrutura feita de um material diferente e aderido sobre as valvas ao longo de uma borda distinta. Estritamente histozóicos em peixes de água doce.

Espécie tipo: *U. clavicauda* (Kudo, 1934) Davis, 1944.

Diferem de *Myxobolus* por possuírem dois apêndices caudais, estendendo-se em direções opostas. Eles não são extensões das valvas lisas da concha, sendo compostos de um material diferente. Aderem-se às valvas ao longo de uma borda distinta.

Gênero *Phlogospora* Qadri, 1962.

Esporos achatados, mais ou menos piriformes, com um processo caudal independente, bifurcado, ajustado à extremidade posterior do esporo ao longo de uma borda distinta. Uma única e alongada cápsula polar. Esporoplasma binucleado, com reservas de polissacarídeos em forma de um depósito esférico. Grandes trofozoítos poliespóricos; histozóicos em peixes de água doce.

Espécie tipo: *P. mysti* Qadri, 1962.

Gênero *Neohenneguya* Tripathi, 1953.

Espécie tipo: *N. tetraradiata* Tripathi, 1953.
Gênero *Trignosporus* Hoshino, 1952.

Esporos amplamente triangulares, com a extremidade anterior arredondada e a posterior achatada em visão valvar. Duas cápsulas polares. Cada valva prolonga-se em dois longos processos filamentosos laterais; cada par conectado de um filamento. Trofozoitos poliespóricos; histozóicos em peixes marinhas.

Gênero *Hoferellus* Berg, 1898.

Esporos piramidais ou ovóides, com a ponta anterior na extremidade em visão valvar; biconvexo em visão sutural. Valvas com estrias, produzindo posteriormente dois processos espinhais, levantando-se na face lateral das valvas. Entre estes processos, muitos filamentos curtos e rígidos estendem-se na superfície posterior. Esporoplastma binucleado, com um vacúolo iodófilo; celozóico em peixes de água doce.

Ordem Multivalvulida Shulman, 1959.

Esporos radialmente simétricos, com 3 a 7 valvas, reunidas em três a sete suturas. Uma cápsula polar para cada valva agrupada junto ao ápice do esporo.

Concha do esporo constituída de três valvas; três cápsulas polares.

Gênero *Trilospora* Noble, 1939.

Esporos com três valvas alongadas, com uma cápsula polar esférica em cada valva. Assemelha-se, em visão apical, a uma estrela trirradiada com pontas arredondadas. Esporoplasma na cavidade central do esporo. Pequenos trofozoitos mono ou diespóricos; celozóicos em vesícula biliar de peixes marinhos.

Espécie tipo: *T. californica* Noble, 1939.

Gênero *Unicapsula* Davis, 1924.

Esporos subesféricos com três valvas desiguais. Uma pequena valva abriga um única cápsula polar; duas grandes, arranjadas bilateralmente simétricas contém duas cápsulas polares rudimentares, difíceis de distinguir em microscopia óptica, e, dois esporoplasmas uninucleados: um envolvendo o outro. Grandes trofozoitos poliespóricos, sem formação de pansporoblasto. Histozóicos em músculos de peixes marinhos.

Espécie tipo: *U. muscularis* Davis, 1934.

Esporos com quatro valvas, cada uma contendo uma cápsula polar.

Cinco valvas, cada uma contendo uma cápsula polar.

Gênero *Pentacapsula* Naidenova & Zaika, 1970

Esporos estrelados, com forma pentarradiada em visão apical. Grandes trofozoitos poliespóricos; histozóicos em músculos de peixes marinhos.

Espécie tipo: *P. schulmani* Naidenova & Zaika, 1970

Seis valvas contendo, cada uma, uma cápsula polar.

Gênero *Hexacapsula* Arai & Matsumoto, 1953.

Esporos em forma de estrela hexarradiada em visão apical. Trofozoitos não descritos; histozóicos em músculos de peixes marinhos.

Yasunaga et al. (1981) reportam espécies com esporos heptarradiados com sete cápsulas polares infectando tecido cerebral de \textit{Lateolabrax japonicus}.

Em 1990, Lom considerou também a Família Septemcapsulidae Hsieh & Chen, 1984, caracterizada por esporos com sete valvas e sete cápsulas polares (\textit{Septemcapsula}).

Smothers et al. (1994), aliando elementos morfológicos e elementos de genética molecular, propõe uma radical mudança na atual classificação, transferindo o filo Myxozoa do grupo dos Protozoários para o dos Metazoários. Esta hipótese ainda não está mundialmente aceita e é motivo de discussões. O reposicionamento taxônomico dos mixosporídeos, proposto por Smothers, está baseado na análise da sequência ribossomal 18 S.
II. CICLO DE VIDA

Os mixosporídeos formam um grupo de protozoários com espécies exclusivamente parasitos, basicamente de vertebrados de sangue frio.

São encontrados na maioria dos órgãos do corpo dos seus hospedeiros, instalados de maneira intracelular, intratecidual ou livres nas cavidades corpóreas, sendo mais comuns nas bexigas natatórias e urinárias, vesícula biliar, cérebro, brânquias, cartilagens, olhos, músculos e pele.

Embora possuam uma grande variedade de espécies parasitando órgãos e hospedeiros diferentes, estes protozoários têm um ciclo de vida bem parecido.

Para exemplificar o ciclo de vida do grupo, usaremos o ciclo do *M. cerebralis* (Figura 1), parasito de esqueleto cartilaginoso e sistema nervoso de salmões, responsável por uma patologia grave, que pode levar o hospedeiro à morte.

Como na maioria dos mixosporídeos, o processo de infecção inicia com a ingestão do esporo. Quando estes chegam ao intestino do hospedeiro, as valvas se abrem, liberando o esporoplasma. No caso do *M. cerebralis* temos uma célula binucleada, que após liberada, rapidamente promove a fusão dos núcleos, dando origem a um zigoto.

O esporoplasma zigótico atinge a corrente sangüínea, sendo assim transportado até o órgão em que irá instalar-se definitivamente. No caso de *M.*
cerebralis a infecção ocorre preferencialmente no sistema nervoso central e medula espinhal, comprometendo o cordão neural do hospedeiro.

Após definitivamente instalado, começam a ocorrer divisões sucessivas no núcleo do esporoplasma, promovendo uma proliferação de núcleos e a formação do plasmódio ou trofozoito.

Quatro meses depois, o plasmódio apresenta cerca de 1 mm de diâmetro. Nesta fase começa a ser secretado citoplasma ao redor dos núcleos chamados de generativos ou negros, dando origem, cada um, a uma célula individual (sem membrana plasmática), todas permanecendo dentro do plasmódio. É necessário salientar esta fase multicelular do grupo, pois é uma característica importante dos mixosporídeos - mesmo gerando controvérsias em sua manutenção no reino Protozoa - visto que os esporos, originam-se de uma fase multicelular.

Cada célula particular formada dentro do plasmódio, contendo um núcleo generativo, é chamada de esporoblasto, pois elas serão as eventuais produtoras de esporos. No caso específico de *M. cerebralis* há uma união de duas células formando o que chamamos de pansporoblasto, que gerará esporos aos pares, ou seja, dois a dois, por isso considerados de origem díaspórica.

Para a formação de cada parte do esporo, há a necessidade da divisão sucessiva do núcleo generativo, presente em cada esporoblasto. Em uma divisão inicial temos dois núcleos, um generativo e um que dará origem ao envelope (envoltório) do esporo. O núcleo generativo sofre uma segunda divisão, dando origem a um núcleo generativo e um núcleo que, após nova divisão, dará origem às duas valvas do esporo. Uma terceira divisão no núcleo
generativo restante, originará dois núcleos, sendo um generativo e o outro, após passar por mais uma divisão e tornar-se o responsável pela formação das duas cápsulas polares. Por fim, o núcleo generativo restante sofre divisão (somente um dos passos da divisão mitótica) dando origem a dois núcleos generativos (haplóides) que formarão o esporoplasma binucleado do esporo.

Totalmente tomado internamente pelos esporos, o plasmódio continua crescendo até a maturação dos mesmos. Neste estágio poderá ocorrer a ruptura da parede do plasmódio.

Após a morte do hospedeiro, os esporos serão ingeridos por outros peixes que venham alimentar-se do tecido infectado, ou através da ingestão direta dos esporos liberados na água, a partir do esqueleto do hospedeiro morto, promovendo assim, a manutenção do ciclo de vida monoxênico do parasito.

Discute-se atualmente a hipótese de um hospedeiro intermediário no ciclo de vida de M. cerebralis. Segundo Wolf & Markiw (1984), os esporos disseminados na água são ingeridos primeiramente por anelídeos tubiformes, onde, na mucosa intestinal, ocorre a transformação em esporos de actinosporídeos, após três a quatro meses. Estes esporos são liberados no meio exterior e, juntamente com a água, ou através da ingestão direta do verme pelo hospedeiro, os actinosporídeos infectam os alevinos de trutas que, em aproximadamente um mês e meio, já apresentam caudas negras e comportamento natatório em círculos. Três a quatro meses depois o desenvolvimento dos esporos de M. cerebralis está completo.

Embora a hipótese de um hospedeiro intermediário possa ser viável, esta experiência deve ser repetida com sucesso por vários outros
pesquisadores, em diversas partes do mundo, para se tornar padrão de ciclo de vida de mixosporídeos.

Halmilton & Canning (1987), não conseguiram obter provas da transformação de mixosporídeos em actinosporídeos, negando, portanto o envolvimento dos anelídeos no ciclo de vida de *M. cerebralis*.
Figura 1. Exemplo do ciclo de vida histozóico de um mixosporídeo do gênero *Myxobolus*. (Modificado a partir de Mehlhorn, 1988).

Um esporo matura na área digestiva do peixe e os filamentos polares expulsam o esporoplastma amebóide (1) para completar um processo sexual primitivo de autogamia, no qual os dois núcleos haplóides (2) se fundem para dar lugar a um zigoto (3) - É suposto que esta fase alcança o local de infecção, onde se desenvolve para se tornar um plasmódio esporogônico (4). O núcleo se divide e as células geradoras aparecem no plasmódio multinucleado, adicionado aos muitos núcleos que pertencem ao próprio plasmódio (núcleos vegetativos). Finalmente um plasmódio enorme é formado (5). Em outros gêneros, os plasmódios podem ser pequenos com só um núcleo vegetativo (pseudoplasmódio) isso produz só um ou dois esporos. Em *Myxobolus*, duas células geradoras se unem, formando a pericélula, que envolve todo o conteúdo interno, tornando-se a célula esporogônica (6), dando lugar assim a um pansporoblasto (7), uma estrutura esporo-produtora especial. A pericélula permanece um mero envelope, enquanto a célula esporogônica se divide para produzir o número de células necessárias para completar dois esporoblastos (células valvogênicas produzem as valvas de concha, células capsulogênicas produzem cápsulas polares e uma célula esporoplasmica) que amadurecem então (8-9) até se tornarem esporos (10-11).
III. PATOGENICIDADE

Por definição temos que parasitismo é uma relação íntima e obrigatória entre dois organismos hetero especificos, em que o parasito - geralmente o menor do par - é metabolicamente dependente do hospedeiro (Cheng,1986).

Assim, o parasito é sempre dependente do hospedeiro utilizando-lhe os recursos e, consequentemente, trazendo-lhe, por mínimo que seja, algum tipo de prejuízo. Caso isso não ocorresse a relação seria colocada em outra categoria de simbiose.

O prejuízo pode ocorrer de forma tão tênue, a ponto de não ser notado pelo hospedeiro, ou de forma aguda, causando o que chamamos de doença, ou seja, uma forma patogênicas de parasitismo.

O filo Myxozoa é composto totalmente por indivíduos parasitos. Embora seja comum, dentro de um mesmo gênero, espécies extremamente patogênicas e outras apenas vivendo no hospedeiro, sendo mínimos os danos causados a ele, em condições naturais.

Um exemplo clássico de patogenicidade causada por mixosporídeos acontece com M. cerebralis, que infecta o esqueleto cartilaginoso cefálico e cordão neural de Salmões, tornando-os desorientados, com baixa e confusa movimentação. Ele é responsável por altas taxas de mortalidade, principalmente entre os indivíduos mais jovens.

Atualmente, segundo a mais recente relação de espécies do Gênero Myxobolus segundo Landsberg & Lom(1991), existem relatadas cerca de 445 espécies, mas nenhuma delas parece ser mais patogênica que M. cerebralis,
sendo poucas causadoras de alguma patologia. Isso nos leva a crer que a maioria das espécies vive uma relação parasitária bem firmada, e que as patologias de caráter epidêmico, que levam os hospedeiros à morte, são bem menos frequentes que as relações onde ocorrem apenas rupturas locais de tecidos, que possuem rápida regeneração, sem causarem maiores danos aos hospedeiros.

Entretanto, mesmo dentro de relações não epidêmicas, as mixosporídios possuem poder de causar patologias temporárias, mas que, de acordo com o órgão parasitado, interferem em relações ecológicas básicas, podendo, indiretamente, levar o hospedeiro à morte.

Esse caso pode ser exemplificado com *Henneguya intracornea* (Gioia, Cordeiro & Artigas, 1986). Esse parasito desenvolve cisto no olho de *Astyanax scabripinnis* (Jenyns, 1842). À medida que o cisto vai aumentando de tamanho, vai também tomando toda a extensão da córnea do peixe, bloqueando-lhe a visão. Uma vez maduro, o cisto rompe-se, liberando os esporos e restabelecendo, aparentemente, a visão ao hospedeiro (Gioia et. al., 1986).

Embora a cegueira do peixe seja temporária, este fica muito mais sujeito à ação de predadores e muito menos apto à busca de alimento, visto que nesta espécie de peixe a visão é o principal orientador sensorial.

A importância da patogenicidade não reside apenas no caráter letal da doença, mas também no grau de mutilação causada a alguns tipos de tecidos. Isso deve ser levado em consideração porque os principais hospedeiros dos mixosporídeos são peixes e, estes, constituem um valioso artigo comercial para o homem.
Portanto, comercialmente falando, mixosporídeos como *Unicapsula muscularis* (Davis, 1924) e *Henneguya salmica* (Fish, 1939), ambos parasitos de tecidos musculares, mesmo causando danos subletais, comprometem a musculatura do peixe, ou seja, sua parte comestível, tornando-se assim extremamente prejudiciais, pois inviabilizam a venda do pescado.

Willis, já em 1949, reporta o fato ao estimar uma perda de 5% na captura comercial de Barracuda (*Thyrsites atum*), no Atlântico norte, devido ao comprometimento dos peixes pela infecção por *Kudoa thyrsites*.

Outro fator importante, ainda dentro do aspecto comercial, é a crescente criação de peixes em cativéiro. Este tipo de piscicultura, retira os peixes de seu ambiente natural, confinando-os em tanques sob alimentação artificial. Fatores como esses podem estressar os peixes, baixando a imunidade natural e facilitando a contaminação. Isso pode causar o incremento de infecções que, naturalmente são endêmicas e passam despercebidas, em patologias agudas, que levam os hospedeiros à morte.

Em 1983, Schönhofen, Garcia & Garcia, relataram a contaminação, de maneira intensa, de Lambaris e Tilápias por *Henneguya psorospermica*, ao invadirem um tanque de criação de Carpas, em Irati, no Estado do Paraná, Brasil.
IV. EVOLUÇÃO

 Desde o surgimento dos mixosporídeos, algumas hipóteses, revelando as tendências evolutivas para o grupo, foram discutidas. Duas delas mostram a evolução focada na relação parasito-hospeideiro. Assim sendo, faz-se conveniente apresentá-las.

 O filo Myxozoa é essencialmente parasito, possuindo representantes que infectam principalmente vertebrados de sangue frio. As infecções nestes hospedeiros podem se dar basicamente de duas formas. Na primeira, a infecção acontece nas cavidades corpóreas, onde o encistamento ocorre de maneira superficial. Na segunda, a infecção acontece intracelular ou intratecidualmente, onde o encistamento ocorre interiorizando-se no tecido do hospedeiro. Aos cistos superficiais, soltos dentro das cavidades dos órgãos do corpo do hospedeiro, denominamos cistos celozóicos e, aos intrateciduals, cistos histozóicos.

 A definição destes tipos de infecção faz-se necessária, pois a primeira tendência evolutiva a ser apresentada, proposta por Shulman, em 1963, levanta a hipótese de as infecções celozóicas serem anteriores às histozóicas, e que, gradualmente, da primeira, teria surgido a segunda, dentro de um processo evolutivo.

 Segundo Shulman (1963), existe, no parasitismo tecidual, um aumento no estágio vegetativo produtor de esporos. Relacionando com isso o fato de que muitas espécies de mixosporídeos são encontrados na vesícula biliar de
seus hospedeiros; sugeriu-se que as relações parasito-hospedeiro da classe eram, inicialmente, celozóicas e, a vesícula biliar, o sítio original do parasito; e, os mais primitivos membros do grupo, seriam nela residentes.

Shulman (1963) propôs que, da vesícula biliar, ainda de forma celozólica, ter-se-ia dado a invasão da bexiga urinária e, só então, teria havido a transição para o parasitismo tecidual, quando os parasitos teriam invadido, primeiro os túbulos urinários e, posteriormente, os túbulos e corpúsculos renais.

Para apoiar sua hipótese, Shulman (1963) observou que o parasitismo tecidual é mais frequente em peixes de água doce, onde os corpúsculos renais são mais desenvolvidos, do que em peixes de água salgada, onde os corpúsculos renais são pouco desenvolvidos, ou, muito reduzidos.

Existe um segundo fator adaptativo, também relacionado por Shulman (1963), que elucida outra tendência evolucionária do grupo Myxozoa. Trata-se do aumento no tempo de flutuação dos esporos, propiciando chances maiores de contato com o hospedeiro. O aumento deste tempo relaciona-se com adaptações morfológicas no contorno do esporo, por isso, Shulman (1963) separa os mixosporídeos bivalves em três categorias:

1. Esporos sólidos e ovalados com cápsulas em oposição aos pólo. São chamados de Bipolaria. *Myxidium*

2. Esporos em que as partes estão deitadas em um plano perpendicular ao de sutura, ficando alongado, trazendo pólos fechados para um ou outro. Chamados de Eurysporeia. *Ceratomyxa*.

Shulman (1963) defende que o formato ovalado dos esporos da Subordem Bipolarina torna-os menos adaptados à flutuação do que os esporos com extensão valvar (Platysporina) ou, com lados mais extensos (Eurysporina).

Coincidentemente, os membros da Subordem Bipolarina são os mais primitivos da Ordem e, o parasitismo tecidual, entre eles, é raramente observado.

Os membros da Subordem Eurysporina possuem um bom tempo de flutuação, apesar disso, a incidência de parasitismo tecidual não é intensa.

Na Subordem Platysporina, o parasitismo tecidual é freqüente. Nessa Subordem encontramos representantes com esporos com alto tempo de flutuação, devido, principalmente, aos seus prolongamentos valvares ou, como em *M. cerebralis*, a um envoltório mucoso, que lhe permite um maior tempo de flutuação.

Shulman (1963) não comprovou empiricamente suas hipóteses, mas Moser (1977) conduziu experimentos comparando o tempo de sedimentação de esporos de *Myxidium coryphaenoidium* (Bipolarina) e *Ceratomyxa hokarari* (Eurysporina). O primeiro assentou a uma velocidade de 12,5 cm/min, enquanto que o segundo a uma velocidade de 09,2 cm/min. Ambas espécies parasitam vesícula biliar e são Celozóicas, mas o fato de *Myxidium coryphaenoidium* (Bipolarina) sedimentar mais rapidamente que *Ceratomyxa hokarari* (Eurysporina) sugere que os esporos da segunda espécie flutuem por mais tempo, gerando uma maior oportunidade de encontro com o hospedeiro, vindo
ao encontro da hipótese sugerida por Shulman(1963), que defende a maior adaptabilidade do grupo Eury sporina em relação ao Bipolarina.
2. OBJETIVOS

O objetivo deste trabalho é contribuir com o presente conhecimento da fauna de mixosporídeos, acrescentando possíveis espécies encontradas em peixes hospedeiros no rio Piracicaba, município de Piracicaba (SP); e também suprir com uma fonte de referência sobre os mixosporídeos encontrados em peixes brasileiros, elaborada a partir dos seus registros originais, com sumário taxonômico, apresentando suas características e seus hospedeiros no território brasileiro.
3. MATERIAL E MÉTODOS

I. INFORMAÇÕES SOBRE O LOCAL E CARACTERÍSTICAS DA ÁREA ESTUDADA.

O estudo foi realizado em uma área do rio Piracicaba, no município de Piracicaba, Estado de São Paulo, a 167 quilômetros da cidade de São Paulo.

O rio Piracicaba forma-se a poucos quilômetros e ao norte do município de Americana pela confluência do rio Atibaia, que banha os municípios de Piracaia, Atibaia e Itatiba; com o rio Jaguari, que percorre os municípios de Bragança Paulista e Amparo. Suas cabeceiras estão localizadas nos contrafortes da Serra da Mantiqueira, a nordeste da cidade de São Paulo.

O rio Piracicaba tem um curso de aproximadamente 180 quilômetros. Ocupando a parte central do Estado de São Paulo, a Nordeste da Capital, correndo de Leste para Oeste, a 22°40' de Latitude Sul em quase todo seu curso e, entre 47°00' a 48°30' a Oeste de Greenwich. Passa pelos municípios de Americana, Limeira, Santa Bárbara do Oeste, Piracicaba, São Pedro, Anhembi, Dois Córregos e Botucatu, indo desaguar na margem direita do rio Tietê, a aproximadamente 140 quilômetros abaixo de Piracicaba.

A região estudada localiza-se no Município de Piracicaba(Figura 2) entre a região do Salto (Figura 3) e do Engenho Central (Figura 4), em um trecho de aproximadamente 1 quilômetro de extensão, por cerca de 100 metros em sua maior largura entre as margens. Sua profundidade é extremamente variável, podendo oscilar de 0,5 a 4,0 metros.
A vegetação nas margens é composta basicamente por arbustos e gramineas que vão até a borda da água. No trecho do salto existe um pequeno tufo de mata com algumas árvores de grande porte.

O leito do rio tem constituição pedregosa e arenosa. A água tem aspecto turvo.

O “Salto” marca um desnível de 14 metros no rio Piracicaba, dividindo o curso do rio e dificultando aos cardumes ganharem o curso superior, sendo assim um dos principais fatores da abundância de peixes em Piracicaba nos meses propícios à reprodução, isto é, de outubro a janeiro.

Nessa faixa, o rio apresenta numerosas corredeiras, curvas e estirões de fundo de pedras. Logo abaixo, após o fim do “Salto”, encontramos um trecho de águas lênticas, com margens altas, onde só muito raramente as águas invadem os terrenos marginais. Diversos poços e paredões laterais, além de um baixo arenoso, onde o rio se torna mais raso, completam os acidentes topográficos desta área.

Este trecho, que se estende por alguns quilômetros abaixo do “Salto”, torna-se preferido pelos cardumes, semi-preparados para a reprodução, ali estacionando durante algum tempo, à espera que as condições ambientais se tornem ótimas para a piracema.

A escolha do local de captura foi orientada no sentido de se obter uma grande variedade e número de hospedeiros.

A região estudada apresenta uma vazão média de 107,53 m³/s (Tabela I), temperatura média de 21,83º C (Tabela II) e precipitação de 3,83 mm/alt (Tabela III). A água do rio Piracicaba tem pH 6,88 (Tabela IV), nível médio de O₂ dissolvido na água de 3,22 ppm (Tabela V). Estes dados foram fornecidos
pelo Serviço Municipal de Água e Esgoto (SEMAE) de Piracicaba, e correspondem às médias mensais obtidas em um período de cinco anos (1989 a 1993). Eles visam a completa descrição do panorama ambiental em que se encontram inseridos os hospedeiros e parasitos, fornecendo parâmetros para futuros estudos comparativos (ANEXO 2).
Figura 2: Mapa do Município de Piracicaba

Figura 2.1: Região de coleta
Figura 3: Área de coleta no Rio Piracicaba - Região do Salto.

Figura 4: Área de coleta no Rio Piracicaba - Região do Engenho Central.
II. COLETA, TRANSPORTE E ACONDICIONAMENTO DOS PEIXES

As coletas foram realizadas mensalmente durante um ano (março de 1991 a fevereiro de 1992), sendo feitas no período da manhã, variando entre às 7 e 8 horas. O tempo de coleta nunca excedia a 30 minutos, a fim de minimizar o "stress" dos peixes capturados. O número de peixes coletados variou de 4 a 16 exemplares por coleta. Foram capturadas 08 espécies de peixes (ANEXO I).

Para a captura dos peixes, foi utilizado equipamento padrão, constando basicamente de tarrafa e barco, para os deslocamentos no rio.

A tarrafa utilizada nas coletas possuía uma malha confeccionada com fios de nylon com 0,30 mm de espessura, com uma distância de 04,00 cm entre os nós opostos. Tem forma cônica quando fechada, e circular quando aberta, sendo seu diâmetro, neste caso, de 4,50 m. Ao longo de sua borda, são fixados lastros de chumbo, para que a rede afunde rapidamente, quando jogada ao rio.

As coletas foram feitas com auxílio de um barco de alumínio de cerca de 5 m de comprimento por 0,9 m de largura, em sua parte mais ampla, impulsionado por remos.

Ao serem retirados de seu ambiente natural, imediatamente os peixes eram colocados em um recipiente de isopor de forma quadrangular, medindo 40 cm de aresta, contendo aproximadamente 40 L de água do rio e transportados até Campinas.

Dos peixes trazidos do campo, alguns eram logo mortos para exame, outros eram transferidos para tanques de cerca de 200 L de capacidade, contendo água desclorada, mantendo-se aeração constante e troca parcial da
água, sempre que necessário, até que tivessem sido examinados todos os exemplares coletados.

III. TÉCNICA DE PESQUISA DE MIXOSPORÍDEOS

Os peixes eram mortos através de resfriamento (os peixes eram colocados no Freezer a -4ºC, por cerca de 15 minutos), no momento do exame e, após uma detalhada observação do tegumento(pele), os opérculos eram rebatidos e o complexo branquial retirado de sua câmara, por meio de incisão praticada em sua inserção.

Para limpar o excesso de sangue, os arcos eram lavados em água destilada e conservados isoladamente, em placas de Petri com solução fisiológica a 0,8 %, na geladeira (aproximadamente 6º C), até o momento do exame.

Algumas vezes, o exame foi efetuado algumas horas depois da morte do peixe (caso de peixes encontrados mortos no tanque de acondicionamento). Nestas poucas eventualidades os peixes foram sempre conservados sob refrigeração.

Após as brânquias, os órgãos internos (figado, baço, rins, vesícula biliar, intestinos, bexiga natatória) eram removidos, através de uma incisão feita na cavidade abdominal do peixe, e separados individualmente em placas de petri (20 mm de diâmetro), contendo solução fisiológica a 0,8 %. Fragmentos de musculos e cérebro eram comprimidos entre lâminas, e observados para procura de esporos.
Para retardar a deterioração, enquanto os órgãos mais sensíveis a este processo eram primeiro examinados com auxílio de lupa (aumento de 20 vezes), em toda sua extensão, os outros eram mantidos sob refrigeração (6º C).

Para a coleta dos parasitos, adotamos os procedimentos a seguir:

a) Exame das brânquias sob baixo aumento, com auxílio de lupa estereoscópica. A brânquia era colocada em placa de Petri com algumas gotas de solução fisiológica 0.8 % e, com ajuda de estilete, afastados os filamentos branquiais, para pesquisa de cistos nas faces anterior e posterior.

b) Ainda em lupa estereoscópica, com o emprego de tesoura de ponta fina, era feita uma incisão ao longo da artéria branquial. A seguir, com auxílio de estiletes, eram rompidos os músculos adutores e separadas as hemibrânquias.

c) Os cistos eram cuidadosamente destacados das brânquias e, com o uso de estiletes, transferidos para uma lámina de vidro com solução fisiológica(0.8%).

d) Os procedimentos adotados para as brânquias eram repetidos para os demais órgãos internos, acrescentando-se o esmagamento, entre láminas, de pequenas frações de tecido do fígado, baço, bexiga natatória, músculos, rins, cérebro e intestino. A vesícula biliar era observada por inteiro, além da observação do líquido interno.
V. EXAME A FRESCO

Os parasitos eram observados ao microscópio binocular de luz transmitida, com aumentos de 100 vezes, 400 vezes e 1000 vezes.

Os esporos, sempre que encontrados, foram tratados com solução de Lugol e tinta Nankim, para evidenciação de vacúolo iodófilo no esporoplasma e envoltório mucoso do esporo, respectivamente.

A extrusão do filamento polar foi obtida por compressão e por exposição ou a KOH a 5% ou a 10%, eventualmente Metanol absoluto.

V. EXAME APÓS FIXAÇÃO E MÉTODO DE COLORAÇÃO

Esporos isolados das preparações a fresco foram fixados pelo álcool metílico absoluto, por três minutos, e corados pelo Giemsa (1 gota de corante em 1 ml de água tamponada - Solução tampão pH 7.2) por 15 minutos e examinados sob objetiva de imersão em microscópio óptico Zeiss.

Após coradas, foram selecionadas as lâminas que possuíam um maior número de esporos, sendo aproveitadas as melhores preparações para observações morfológicas, desenhos e micrometria.

VI. DESENHOS E MICROMETRIA:

As ilustrações dos detalhes de interesse sistemático dos esporos foram obtidas a partir das preparações coradas observadas ao microscópio binocular de luz transmitida, com o auxílio de câmara clara.

Foram feitas 30 mensurações de cada tipo diferente de esporo encontrado, com o auxílio de ocular medidora calibrada Carl Zeiss (10 vezes),
usando-se as dimensões recomendadas por Lom & Arthur, 1989 (Figura 5 - Anexo II). Estruturas relativamente curvas foram medidas com auxílio de curvímetro. Todas as medidas são referidas em micrômetros (μm).

Na análise estatística foram consideradas as medidas máximas e mínimas, média e desvio padrão dos esporos e cápsulas polares.

VII. PRESERVAÇÃO DO MATERIAL ESTUDADO:

As lâminas, contendo o material utilizado neste estudo, estão depositadas na coleção pessoal do autor (R. Ribeirão Bonito, 183. C.E.P. 13031-000. Campinas - SP. Brasil).

Todas as lâminas deste estudo foram catalogadas utilizando-se duas etiquetas. Na primeira, constam o nome da espécie do mixosporídeo, do coletor, do determinador, a data da determinação e o número da coleção. Na segunda, constam o nome do hospedeiro, a proveniência, o coletor do hospedeiro e a data da coleta.

As lâminas utilizadas para elaboração dos desenhos, medidas e descrições foram preservadas com os seguintes números: *Henneguya sp. 1: n° 0012; Henneguya sp. 2: n° 0031; Henneguya sp. 3: n° 0083; Henneguya sp. 4: n° 0116; Henneguya sp. 5: n° 0147; Myxobolus sp. 1: n° 0049; Myxobolus sp. 2: n° 0060; Myxobolus sp. 3 (= M. cunai): n° 0068.*
4. RESULTADOS E DISCUSSÃO

I. ATUALIZAÇÃO DOS GÊNEROS E ESPÉCIES DE MIXOSPORÍDEOS BRASILEIROS

A descrição a seguir corresponde a um resumo histórico de todas as espécies de mixosporídeos encontrados no Brasil até o presente momento. O resumo abrange a descrição de 63 espécies, de 9 gêneros, com seus respectivos hospedeiros e distribuição geográfica.

Gióia & Cordeiro (1996) publicaram uma "CHECK-LIST" resumindo as espécies de mixosporídeos encontrados no Brasil e ressaltando os detalhes de cada espécie. A presente compilação visa atualizar esta "CHECK-LIST" e é apresentada como contribuição ao conhecimento dos parasitos de peixes e anfíbios existentes no Brasil.

A definição do filo, das classes, das ordens e das subordens foi omitida neste capítulo, mas, podem ser encontradas na "INTRODUÇÃO", no item "CLASSIFICAÇÃO". Os desenhos correspondentes a cada espécie apresentada a seguir, podem ser encontrados na PRANCHA 1.
Filo **MYXOZOA** Grassé, 1960

Gênero **MYXIDIUM** Bütschli, 1882

Espécies:

Myxidium immersum (Lutz, 1889)

(=**Cystodiscus immersus** Lutz, 1889)

(=**Sphaeromyxa immersa** Thelohan, 1895)

(=**Myxidium lindoyense** Carini, 1932)

Hospedeiro: **Cystignatus ocelatus**, Amphibia

Localidade: Brasil.

Órgão infectado: Vesícula biliar.

Características:

Estágio de desenvolvimento esférico, com 1mm de diâmetro, com ectoplasma ou pseudopodes. Esporos amplamente fusiforme com extremidades arredondadas em visão frontal; retangular de perfil. Conchas com 2 sulcos longitudinais e 7-9 sulcos transversais.

Medidas em μm: Esporo 12-14 x 9-10 . Cápsula 4 diâmetro. Filamento 50-70

Referências:

Lutz, 1889; Kudo, 1920 (hosp.: *B. marinus, Leptodactylus ocellatus*); Carini, 1932 (est. desenv. arredondado, 1 mm diâmetro, esporo oval 11-12 x 7.5-8, Caps. 4 diâmetro; hosp.: *B. marinus, Hyla rubra, H. nebulosa, Leptodactylus ocellatus, Paludicula signifera* da cidade de Lindóia, SP); Kudo & Sprague, 1940; Jayasri & Hoffman, 1982; Cordeiro et al., 1984 (hosp.: *B. ictericus Spix* Estado de SP); Delvinquier, 1986 (hosp.: *Physalaemus signiferus*); Delvinquier et al., 1992.
Myxidium striatum (Cunha & Fonseca, 1917)

Hospedeiro: **Menticirrhus americanus** L., "papaterra", Pisces. **Bairdiella ronchus** Cuv. e Val., "congo", Pisces.

Órgão infectado: Vesícula biliar.

Características:

Referências:

Cunha & Fonseca, 1918b; Kudo, 1920; Nemeczek, 1926(hosp.: **Cynoscyon leiarchus** Cuv. e Val.); Pinto, 1928b; Guimarães, 1931; Jayasri & Hoffman, 1982.

Myxidium fonsecaí Penido, 1927

Hospedeiro:**Carapacus fasciatus** Pallas, Pisces.

Localidade: Porto Esperança - MS - Brasil.

Órgão infectado: Vesícula biliar

Características:

Estágio de desenvolvimento desconhecido. Esporo com forma navete e extremidades truncadas. Possui um lado convexo e, o outro, significativamente, côncavo. Cápsulas piriformes, uma em cada extremidade, com as paredes aderidas às da concha do esporo em uma certa extensão. Medidas em μm: Esporo 7-9 x 2.5-3. Cápsula 2-3

Referências:

Penido, 1927; Guimarães, 1931; Jayasri e Hoffman, 1982
Myxidium cruzi Penido, 1927

Hospedeiro: **Chalcinus nematurus**, "sardinha", Pisces.

Localidade: Estado Mato Grosso - Brasil.

Órgão infectado: Vesícula biliar.

Características:

Referências:

Penido, 1927; Pinto, 1928b; Guimarães, 1931; Jayasri e Hoffman, 1982.

Myxidium gurgeli Pinto, 1928.

Hospedeiro: **Acestrorhamphus sp.**, "peixe cachorro" ou "cigarra", Pisces.

Localidade: Rio Mogi-Guaçu - SP- Brasil.

Órgão infectado: Vesícula biliar

Características:

Estágio de desenvolvimento branco com 7 x 5 mm com cerca de 200 esporos. Esporos fusiformes com extremidades bem arredondadas. Cinco estriações longitudinais, paralelas à linha de sutura. Medidas em μm: Esporos 14.6 x 8.5 Cápsulas 5-6 x 2-3

Referências:

Pinto, 1928c; Pinto, 1928b; Guimarães, 1931 (hosp. : **Salminus maxillosus**); Jayasri e Hoffman, 1982.

Myxidium cholecysticum Cordeiro & Gioia, 1990.

Hospedeiro: **Astyanaz scabripinnis** (Jenyns), "lambari", Pisces, Characidae.
Localidade: Fazenda Alpes, base rio Atibaia- SP - Brasil.

Órgão infectado: Vesícula biliar

Características:

Filamento 55.2.

Referência:

Cordeiro & Gioia, 1990.

As outras formas de Myxidium não foram incluídas devido apresentarem descrições incompletas ou sem os dados elementares.

Myxidium sp. de vesícula biliar de Bufo paracnemis, Amphibia(Estado de São Paulo-Brasil) citado por Gioia et al,1987.

Gênero SPHAEROMYXA Thelohan, 1892

Espécie: Sphaeromyxa balbianii Thelohan, 1892

Hospedeiro: Scoperna plumieri, Pisces.

Localidade: Brasil

Órgão infectado: Vesícula biliar.

Características:

Estágio de desenvolvimento arredondado e achatado, 3-4 mm. Esporos fusiformes com extremidades truncadas. Medidas em μm: Esporo 15-20 x 5-6. Cápsula 7 x 4.7. Filamento 15-20

Referências:

Cunha & Fonseca 1917(hosp.: S. plumieri); Pinto, 1928; Guimarães, 1931.
Gênero *Ceratomyxa* Thelohan, 1892.

Espécies:

Ceratomyxa sphaerulosa Thelohan, 1892.

Hospedeiro: *Sphyra tudes* (L), Pisces.

Órgão infectado: Vesícula biliar

Características:

Referências:

Nemeczek, 1926; Pinto, 1928b; Cunha & Fonseca (hosp.: *S. tiburo*, "agulha"), apud Pinto, 1928b.

Ceratomyxa truncata Thelohan, 1895.

Hospedeiro: "Barbeiro", Pisces.

Localidade: Brasil.

Órgão infectado: Vesícula biliar.

Características:

Referências:

Cunha & Fonseca (hosp.: "barbeiro") apud Pinto, 1928b.

Ceratomyxa curvata Cunha & Fonseca, 1918.

Hospedeiro: *Odontaspis americanus* (Shaw), "cação mongonga", Pisces.
Localidade: Rio de Janeiro - Brasil.

Órgão infectado: Vesícula biliar.

Características:

Estágio de desenvolvimento arredondado e hialino. Esporos semilunares com extremidades pontiagudas. Medidas em μm: Esporos 24 x 12

Referências:

Cunha & Fonseca, 1918c; Nemeczek, 1926.

Ceratomyxa hippocampi Cunha & Fonseca, 1918.

Hospedeiro: _Hippocampus punctulatus_ (Guich.) "cavalo marinho", Pisces.

Localidade: Brasil.

Órgão infectado: Vesícula biliar.

Características:

Estágio de desenvolvimento raro, arredondado e hialino. Algumas vezes, com apenas dois esporos. Esporo semilunar com extremidade arredondada.

Medidas em μm: Esporos 25 x 7 .Filamento 60 .

Referências:

Cunha & Fonseca, 1918a; Nemeczek, 1926.

Gênero _LEPTOTHECA_ Thelohan, 1895.

Espécies:

Leptotheca chagasi Nemeczek, 1926.

Hospedeiro: _Leptodactylus ocellatus_, Amphibia.

Órgão infectado: Ductos urinários.

Localidade: Rio de Janeiro - Brasil.

Características:
Estágio de desenvolvimento oval, amebóide 25-30 x 150μm. Medidas em μm:
Esporos 15 x 10-11. Cápsulas 8-8.5.
Referências:
Nemeczek, 1926 (*Leptotheca (Wardia) chagasi*).

Gênero **AGARELLA** Dunkerly, 1915.

Espécies:
Agarella gracilis Dunkerly, 1915.

Hospedeiro: *Lepidosirem paradoxa* Fitzinger, "pirambóia" Pisces.

Localidade: Região Amazônica (Pinto, 1928b); Cidade de Belém - PA - (Walliker, 1969) Brasil.

Órgãos infectados: Testículos (Pinto, 1928b); Testículos e Fígado (Walliker, 1969).

Características:
Estágio de desenvolvimento em cacho de 20 esporos no testículo. Esporos alongados com as duas conchas prolongando-se em extenso processo em forma de cauda. Medidas em μm: Esporo 28-35 x 13.25 -16.5. Cápsula 4.5-7.75 x 1-1.5

Referências:
Pinto, 1928b; Walliker, 1969.

Gênero **CHLOROMYXUM** Mingazzini, 1890.

Espécies:
Chloromyxum leydigi Mingazzini, 1890.

Hospedeiro: *Scoliodon terrae-novae* (Richardson), Pisces. Raja agassizi (Mueller e Henle), Pisces.
Localidade: Rio de Janeiro - Brasil.

Órgão infectado: Vesícula biliar.

Características:

Referências:

Cunha & Fonseca (Hosp.: S. terrae-novae, R. agassizi "raia") apud Pinto, 1928b; Nemeczek, 1926.

Chloromyxum sphynae Cunha & Fonseca, 1918.

Hospedeiro: *Sphyrna tibura*(L.) "cação cabeça de martelo", Pisces.

Localidade: Rio de Janeiro - Brasil.

Órgão infectado: Vesícula biliar.

Características:

Esparo oval. Medidas em μm: Esporo 15 x 13. Cápsula 4

Referências:

Cunha & Fonseca, 1918b; Nemeczek, 1926(hosp.:S. tudes (L.)); Pinto, 1928b (hosp.: S. tiburo).

Gênero **MYXOBOLUS** Butschli, 1882.

Espécies:

Myxobolus inaequalis Gurley, 1893.

Localidade: Rios da América do Sul - Guiana e Suriname.
Órgão infectado: Pele da cabeça

Características:

Estágio de desenvolvimento desconhecido, exceto a formação de pequenas pústulas na pele. Esporo oval. Cápsulas polares desiguais. Medidas em μm:
Esporo 5.2 x 3.3

Referências:

Kudo, 1920; Pinto, 1928b (hosp.: *Pimelodus clarias*); Guimarães, 1931;
Walliker, 1969; Landesberg & Lom, 1991 (hosp.: *Pimelodus clarias*).

Myxobolus lutzi Aragão, 1919.

Hospedeiro: *Girardinus januarius*, Pisces.

Localidade: Rio de Janeiro - Brasil.

Órgão infectado: Testículos.

Características:

Estágio de desenvolvimento não descrito. Os testículos são destruídos por massas de esporos. Esporos ovóides. Medidas em μm: Esporo 10 x 7

Referências:

Myxobolus chondrophylus Nemeczek, 1926.

Hospedeiro: *Sardinella anchovina* Val., "sardinha", Pisces.

Localidade: Rio de Janeiro - Brasil.

Órgão infectado: Branquias.

Características:

Referências:

Nemeczek, 1926; Pinto, 1928b; Guimarães, 1931; Walliker, 1969 (Hosp.: S. anchovia); Landesberg & Lom, 1991 (Hosp.: S. anchovia).

Myxobolus associatus Nemeczek, 1926.

Hospedeiro: *Leporinus mormyrops* Steid, "piau", Pisces.

Órgão infectado: Fígado.

Características:

Estágio de desenvolvimento: são cistos arredondados ou ovalados, 60 x 80 μm.

Referências:

Nemeczek, 1926; pinto, 1928b; Guimarães, 1931 (Hosp.: *Salminus maxilosus* Cuv., Fígado e rins, Rio Mogi-Guaçu, Cachoeira de Emas, - SP - Brasil);

Myxobolus pygocentris Penido, 1927

Hospedeiro: *Pygocentris piraya* L., "piranha", Pisces.

Órgão infectado: Conteúdo intestinal

Localidade: Cidade de Porto Boa esperança, Rio Paraguai, Mato Grosso, Brasil.
Características:
Estágios de desenvolvimento desconhecidos. Esporos elípticos, 15-16 x 9-11μm. Cápsula polar, 9-11 x 3-4μm.

Referências:
Penido, 1927; Pinto, 1928b; Guimarãens, 1931; Walliker, 1969(hosp. Serrassalmus piraya Cuv.); Landsberg & Lom, 1991 (hosp.: S. piraya)

Myxobolus cunhai Penido, 1927
Hospedeiro: Pygocentris piraya L., Pisces.Pimelodus clarias L., Pisces
Órgãos infectados: Conteúdo intestinal de P. piraya e cloaca de P. clarias
Localidade: Cidade de Porto Esperança, rio Paraguai, Mato Grosso, Brasil.
Características:
Esporos piriformes, 9-11 x 4-6μm. Cápsulas polares de tamanhos desiguais.

Referências:
Penido,1927; Pinto,1928b; Guimarães,1931 (hosp.: P. clarias (Bloch));

Myxobolus noguchii Pinto, 1928.
Hospedeiro: Serrassalmus spilopleura Kner.,Pisces
Órgão infectado: Brânquias
Localidade: Rio Turvo, Pirangi, SP, Brasil.
Características:
Estágios de desenvolvimento desconhecidos. Esporo oval com estriações, vacúolo iodófilo presente, 13.6 x 8.5μm. Cápsula polar 6.8 x 2.2μm

Referências:
Pinto, 1928d; Pinto, 1928b; Guimarães, 1931; Walliker, 1969 (hosp.:
Serrassalmus spilopleura Kner); Landsberg & Lom, 1991 (hosp.: S.
spilopleura).

Myxobolus stokesi Pinto, 1928.

Hospedeiro: Pimeliodela sp., Pisces

Órgão infectado: Tecido subcutâneo do nariz.

Localidade: rio Turvo, Pirangi, SP, Brasil.

Características:

Estágio de desenvolvimento: tumor subcutâneo, 1 mm de diâmetro. Esporos
ovóides com estriações, vacúolo iodófilo não visível, 8.5 x 5.3μm. Cápsula
polar: 3.4 x 1.7μm.

Referências:

Pinto, 1928b; Pinto, 1928d; Guimarães, 1931; Walliker, 1969 (hosp.: Pimelodus

Myxobolus kudoi Guimarães & Bergamini, 1938

Hospedeiro: Nematognatha sp., Pisces.

Órgão infectado: Pele do corpo.

Localidade: Cachoeira de Emas, Mogi-Guaçu, SP, Brasil.

Características:

Estágio de desenvolvimento: cistos arredondados, branco perolados, com uma
membrana fina e resistente, 0.5 a 1.0 mm de diâmetro. Medidas em μm
Esporos: 8.5-8.9 x 6.5-7.3. Esporoplasma: 2.0-4.0 x 2.0-2.6. Cápsula Polar: 3.5-
4.2 x 1.3-2.0

Referências:

Myxobolus serrasalmi Walliker, 1969

Hospedeiro *Serrasalmus rhombeus* (L.), piranha, Pisces, Serrasalmidae

Órgãos infectados: Fígado, Estômago, rins

Localidade: Rio Negro, Manaus, Amazonas, Brasil

Características:

Possui macro e micro esporos. O macroesporo é simetricamente oval, 12.50-18.00 x 7.00-10.00µm. Cápsula polar: 6.00-9.00 x 2.5-4.0µm O microesporo é piriforme, 7.00-9.50 x 3.50-5.00µm. Cápsula polar: 5.00-7.50 x 1.00-2.00µm

Referências:

Walliker, 1969; Landsberg & Lom, 1991

Myxobolus inaequus Kent & Hoffman, 1984

Hospedeiro: *Eigemannia virescens* (V.), Pisces, Sternopygidae

Órgão infectado: Cérebro

Localidade: Brasil.

Características:

Esporo piriforme, com vacúulo iodófilo presente, 19.8 x 8.6µm. Cápsulas polares desiguais, piriformes e alargadas; maior: 11.8 x 3.6µm; filamento: menor: 4.8µm; filamento: 22µm

Referências:

Kent & Hoffman, 1984; Landsberg & Lom, 1991. **Myxobolus sp 1**

Hospedeiro: *Serrasalmus sp.*, Pisces, Serrasalmidae

Órgão infectado: Estômago
Localidade: Rio Negro, Manaus, AM, Brasil

Características:

Estágio de desenvolvimento: cistos em secções do estômago.

Myxobolus braziliensis Casal, Matos e Azevedo, 1997

Hospedeiro: **Bunacephalus coracoideus** Cope, 1874 (Siluriformes, Aspredinidae)

Órgão infectado: Filamentos branquiais

Localidade: Estuário do rio Amazonas, próximo a Belém, Brasil.

Características: Plasmódios elipsóides com tamanhos superiores a 750 x 300μm, instalado na primeira lamela e na base da segunda lamela das brânquias.

Espero piriforme, em relação ao plano de sutura. Fusiformes em visão lateral, não sendo observada presença de vacúolo iodófilo. Possuem 10.2 x 5.3μm de tamanho total. As cápsulas polares são alongadas e medem 5.3 x 1.43μm; o filamento polar encontra-se enrolado em 9 a 11 voltas.

Referências: Casal, Matos & Azevedo, 1996

Genus **Henneguya** Thélohan, 1892

Espécies:

Henneguya linearis (Gurley, 1893)

Hospedeiro: **Pimelodus sebae** Cuv. et. Val., Pisces **Platystoma fasciatum** L., Pisces

Local: América do Sul

Órgão infectado: Brânquias

63
Características: Estágio de desenvolvimento não descrito. Esporo muito comprida, três a quatro vezes a largura.

Referências: Kudo, 1920; Pinto, 1928b; Guimarães, 1931 (hospedeiro: Rhamdia sebae, Pseudoplatystoma fasciatum); Jakowska e Nigrelli, 1953; Cordeiro et al., 1983/1984.

Henneguya lutzi Cunha & Fonseca, 1918

Hospedeiro: "pacú", Pisces

Local: Rio Pardo (Estado do Mato Grosso)

Órgão infectado: Vesícula Biliar

Características: Estágio de desenvolvimento desconhecido. Esporo ovóide, 11x7μm. Vacúolo iodófilo presente, 3μm de diâmetro.

Referências:

Henneguya occulta Nemeczek, 1926

Hospedeiro: *Loricaia sp.*, "tamboatá", Pisces

Local: Rio de Janeiro

Órgão infectado: Brânquias

Características: Estágio de desenvolvimento esférico, 75μm. Esporos com 36-46μm; Cápsula polar 8μm; Filamento 17μm; Dois ou três filamentos caudais.

Referências:

Nemeczek, 1926; Pinto, 1928b; Guimarães, 1931; Jakowska & Nigrelli, 1953; Cordeiro et al., 1983/1984.
Henneguya leporini Nemeczek, 1926

Hospedeiro: *Leporinus mormyrops*, Steind., "piau", Pisces

Local: Rio São Gonçalo das Tabocas (Estado de Minas Gerais)

Órgão infectado: Ducto urinário

Características: Esporos fusiformes, 28-33µm; cápsula polar 5-8µm.

Referências:

Nemeczek, 1926; Pinto, 1928b; Guimarães, 1931; Jakowska & Nigrelli, 1953;
Cordeiro et al., 1983/1984

Henneguya wenyoni Pinto, 1928

Hospedeiro: *Tetragonopterus sp.*, "lambari", Pisces

Local: Estado de São Paulo

Órgão infectado: Brânquias

Características: Estágio de desenvolvimento 2mmx1mm; esporo elíptico 28-
32x4.5-6µm. Cápsula polar desigual, 3x1.5µm; bifurcada no final. Vacúolo
iodófilo presente 2-3µm de diâmetro

Referências:

Pinto, 1928a; Pinto, 1928b (hospedeiro: *Astyanax fasciatus* Cuv., "lambari do
rabo vermelho"); Guimarães, 1931; Jakowska & Nigrelli, 1953; Cordeiro et al.,
1983/1984

Henneguya iheringi Pinto, 1928

Hospedeiro: *Serrasalmus spilopleura* Kner., Pisces

Local: Rio Turvo, Cidade de Pirangi (Estado de São Paulo)

Órgão infectado: Brânquias

Características:
Estágio de desenvolvimento desconhecido. Esporo longo com arredondamento frontal, 22x6μm. Cápsula polar 3.4x2μm. Vacúolo iodófilo presente

Referências: Pinto, 1928b; Guimarães, 1931 (hospedeiro: *Serrasalmus spilopleura*); Jakowska & Nigrelli, 1953; Cordeiro et. al., 1983/1984

Henneguya fonsecai Guimarães, 1931

Hospedeiro: *Leporinus copelandi* Steind., "piava", Pisces

Local: Rio Paraíba, Cidade de Taubaté (Estado de São Paulo)

Órgão infectado: Pele

Características:

Estágio de desenvolvimento esférico, branco, 1.5 a 3mm; esporo ovóide, 23-27x4.5-5μm. Cápsula polar 4-4.2μm

Referências:

Guimarães, 1931; Jakowska & Nigrelli, 1953; Cordeiro et al., 1983/1984

Henneguya cesarpintoi Guimarães, 1931

Hospedeiro: *Astyanax fasciatus* Cuv., "lambari", Pisces

Local: Água Funda (Estado de São Paulo)

Órgão infectado: Cavidade branquial

Características:

Estágio de desenvolvimento desconhecido; esporo ovóide, 13-14x4-4.5μm

Cápsula polar 2.5-2.6x0.8μm. Vacúolo iodófilo não observado.

Referências:

Henneguya bergamini Guimarães, 1931

Hospedeiro: *Astyanax fasciatus* Cuv., "lambari", Pisces
Local: Rio Piracicaba, Cidade de Piracicaba (Estado de São Paulo)

Órgão infectado: cavidades do corpo

Características:

Estágio de desenvolvimento desconhecido. Esporo 17-19x2-2.5μm. Vacúulo iodófilo presente, 2μm de diâmetro.

Referências:

Guimarães, 1931; Jakowska e Nigrelli, 1953; Cordeiro et al., 1983/1984

Henneguya travassosi Guimarães & Bergamini, 1933

Hospedeiro: Astyanax fasciatus (Cuv.), "lambari", Pisces. Leporinus copelandi Steind, "piava", Pisces

Órgão infectado: Músculos

Local: Cidade de Cruzeiro, Rio Paraíba (Estado de São Paulo)

Características:

Estágio de desenvolvimento branco, pequeno e largo, acima de 5mm. Esporo oval 25.4-28.8x3.8-4.8μm. Cápsula polar 3.2-4.2μm.

Referências:

Guimarães & Bergamini, 1933; Jakowska e Nigrelli, 1953; Cordeiro et al., 1983/1984.

Henneguya santae Guimarães & Bergamini, 1933

Hospedeiro: Tetragnopterus santae Eigenmann, 1918, Pisces

Local: Rio Pinheiros (Estado de São Paulo)

Órgão infectado: Brânquias

Características:

Estágio de desenvolvimento oval, branco amarelado 1.0-1.2x0.7-0.75mm. Vacúolo iodófilo presente.
Referências:
Guimarães & Bergamini, 1934; Jakowska & Nigrelli, 1953; Cordeiro et al., 1983/1984

*Henneguya viscera*lis* Jakowska e Nigrelli, 1953

Hospedeiro: *Electrophorus electricus* (L.), Pisces

Órgão infectado: Fígado, rím, coração, mesentério.

Local: Brasil (peixe do aquário de Nova York)

Características:

Estágio de desenvolvimento achatado ou levantado, sólido, cistos brancos.

Esporos achatados sobre um lado e levemente convexo sobre o outro, 22-24x5-6.5μm. Cápsula polar ocasionalmente assimétrica, 6.5-8x2μm. Filamento polar 44μm.

Referências:

Henneguya electrica Jakowska & Nigrelli, 1953

Hospedeiro: *Electrophorus electricus* (L.), Pisces

Órgão infectado: Grandes órgãos elétricos

Local: Brasil (peixe do aquário de Nova York)

Características:

Estágio de desenvolvimento: cistos brancos, sólidos e cistos amarelados, macios. Esporos com valvas aproximadamente simétricas, 35-39x6.8μm.

Cápsulas polares com aproximadamente metade do comprimento do corpo do esporo, 5-7x2μm. Filamento 44-50μm
Referências:

Henneguya pisciforme Cordeiro, Artigas, Gioia & Lima, 1983.

Hospedeiro: **Hyphessobrycon anisitsi** Eigenmann, 1907, "lambri", Pisces, Characidae

Órgão infectado: Brânquias

Local: Cidade de Campinas (Estado de São Paulo)

Características:

Estágio de desenvolvimento esférico, branco amarelado, 100.87μm. Esporo biconvexo com a face anterior arredondada, 20.40x6.12μm. Cápsula polar desigual, piriforme 4.28x1.70μm. Vacúolo iodófilo presente 2.25μm

Referências:

Henneguya theca Kent & Hoffman, 1984.

Hospedeiro: **Eigemanniia virescens** (V.), Pisces, Sternopygidae

Órgão infectado: Cérebro

Local: Brasil

Características:

Estágio de desenvolvimento desconhecido, esporos em pequenos ninhos. Esporos atenuados, face anterior convexa e esférica sob visão frontal, encaixada em um envoltório apertado (cápsula), 48.0x3.5μm. Cápsula polar ligeiramente desigual, grande: 11.1x1.4μm; pequena 10.4x1.4. Cauda 23.2μm. Filamento polar 19.9μm. Vacúolo iodófilo presente.
Referências:

Kent & Hoffmann, 1984; Cordeiro et al., 1983/1984.

Hospedeiro: **Astyanax scabripinnis** (Jenyns, 1842), "lambari", Pisces, Characidae

Órgão infectado: Olho (córnea)

Local: Rio Atibaia (Estado de São Paulo)

Características: Estágio de desenvolvimento branco, arredondado, 356.65μm.

Esporo piriforme 42.41x6.65μm. Cápsula polar em forma de ampola, 8.57x2.37μm. Filamento polar 101.85x0.96μm. Vacúolo iodófilo presente 3.92μm.

Referências:

Gioia et al., 1986.

Henneguya hoimba Cordeiro & Gioia, 1987.

Hospedeiro: **Astyanax fasciatus** Cuv., "lambari", Pisces, Characidae

Local: Rio Atibaia (Estado de São Paulo)

Órgão infectado: Brânquias

Características:

Referências:

Hospedeiro: *Astyanax scabripinnis* (Jenyns, 1842), "lambari", Pisces, Characidae

Órgão infectado: Brânquias

Características:

Estágio de desenvolvimento arredondado, branco, 400μm de diâmetro. Esporo piriforme 16.39x4.42μm. Cápsula polar 3.30x1.46μm; filamento polar 21μm.

Referências:

Hospedeiro: *Crenicichla lepidota* Heckel, 1840, Pisces, Cichlidae

Local: Rio Amazonas, perto da cidade de Belém (Estado do Pará)

Órgão infectado: Brânquias

Características:

Estágio de desenvolvimento oval, 0.05x0.15mm. Esporo elipsóide com ápice cortado abruptamente, 59.3x5.7μm. Cauda bifurcada. Cápsula polar piriforme 3.3x1.5μm.

Referências:

Henneguya adherens Azevedo & Matos, 1995.

Hospedeiro: *Acestrorhynchus faucatus* Bloch, 1794, Teleostei

Local: Rio Amazonas, perto da cidade de Belém (Estado do Pará)

Órgão infectado: Brânquias
Características:
Vários estágios de desenvolvimento encontrados em um mesmo plasmódio esporogônico, que possuía um diâmetro variando de 200 a 350μm. Esporo elipsóide composto de duas valvas desiguais. Mensurado, apresentou 32.2 x 5.8μm de tamanho total e duas cápsulas polares com 3.1 x 1.2μm de tamanho total, contendo um filamento polar enrolado com 3 a 4 voltas.

Referências:

Henneguya malabarica Azevedo e Matos ,1996.

Hospedeiro: *Hoplias malabaricus* Boch, 1794, (família Erythrimidae)
Local: Rio Amazonas, perto da cidade de Belém (Estado do Pará)
Órgão infectado: Filamentos branquiais.

Características:
Cistos polísporos irregulares, com todos os estágios de desenvolvimento presentes num mesmo plasmódio. Os esporos maduros são elipsóidais com um comprimento total de 28.3μm, sendo que apenas seu corpo mede cerca de 12.6μm. A largura do esporo varia entre 4.8 x 3.6μm. Em seu interior existem duas cápsulas polares medindo cerca de 3.7 x 1.8μm, possuindo um filamento polar com 6 a 7 voltas. Vacúolo iodófilo presente.

Referências:
Azevedo & Matos ,1996.

Hospedeiro: *Serrasalmus striolatus* Steindachner, 1908 (Teleostei, Characidae), 1794, Teleostei
Local: Rio Amazonas, perto da cidade de Belém (Estado do Pará).

Órgão infectado: Lamela secundária das brânquias.

Características:
Cisto arredondado ou irregular com cerca de 60 a 180μm. Esporo elipsóide com 42.2 x 5.3 μm de tamanho total e duas cápsulas polares com 6.8 x 1.2 μm de tamanho total, contendo um filamento polar enrolado com 13 a 14 voltas.

Referências:

Hospedeiro: _Piaractus mesopotamicus_ HOLMBERG, 1887 (Osteichthyes: Characidae)

Local: Represa do Centro de Aquicultura da UNESP, Jaboticabal, SP, Brasil.

Órgão infectado: Filamentos das brânquias.

Características: Cisto elipsóide com cerca de 0.1 a 0.9 mm. Esporos medindo 52.5 x 3.6μm de tamanho total e duas cápsulas polares com 6.7 x 1.2μm de tamanho total, contendo um filamento polar enrolado com 8 a 9 voltas.

Referências:

Henneguya testicularis Azevedo, Corral & Matos 1997.

Hospedeiro: _Moenkhausia oligolepsis_ Gunther (Teleostei, Characidae)

Local: Região do estuário do Rio Amazonas, perto da cidade de Belém (Estado do Pará).

Órgão infectado: Periferia dos Testículos.

Características:
Esporo elipsóide com 27,5 μm de tamanho total e duas cápsulas polares com 9,0 x 2,0μm de tamanho total, contendo um filamento polar enrolado com 12 a 13 voltas.

Referências:

Henneguya sp. Jakowska & Nigrelli, 1953.

Hospedeiro: _Electrophorus electricus_ (L.), Pisces

Órgão infectado: Mucosa oral e pele

Local: Brasil (peixe do aquário de Nova York)

Características:

Estágio de desenvolvimento cinzento e numerosos (Boca) e brancos sólidos (Pele). Esporos com variáveis em tamanho e forma, 35-38x2.5μm, ocasionalmente mostrando-se assimétricos. Cápsula polar 3.5μm.

Referências:

Henneguya sp Azevedo & Matos, 1989

Hospedeiro: _Hoplosternum littorale_ Hancock, 1828, Pisces, Siluriformes

Local: Rio Amazonas, perto da cidade de Belém (Estado do Pará)

Órgão infectado: Brânquias

Características:

Estágio de desenvolvimento arredondado para elipsoidal, branco, 0.4-1.0mm de diâmetro. Esporo elipsoidai, 58.7x5.3μm. Vacúulo iodófilo presente.

Referências:
Tetrauronema desaequalis Azevedo & Matos, 1996.

Hospedeiro: Hoplias malabaricus Boch, 1794, (família Erythrinidae)

Local: Rio Amazonas (01°11’30” S e 47°18’54” W), perto da cidade de Belém (Estado do Pará)

Órgão infectado: Tecidos conjuntivos da base da nadadeira ventral.

Características:

Cistos ovais para elipsoidais com diâmetro aproximado de 1 a 2 mm, com todos os estágios de desenvolvimento presentes num mesmo plasmódio. Os esporos maduros são elipsoidais com um corpo de 13.6 x 6.5μm, do qual saem quatro projeções com 13μm, 12.2μm, 7.2μm e 5.1μm de comprimento. No interior do esporo existem duas cápsulas polares elipsoidais, com o mesmo tamanho, possuindo um filamento polar com 9 a 11 voltas.

Referências:

As seguintes formas de Henneguya não foram incluídas devido apresentarem descrições incompletas ou sem os dados elementares:

H. exilis Kudo, 1929 de escamas de Mugil brasilensis (agassiz, 1829) (=M. plat anus), Pisces (Estado do Rio Grande do Sul) referido por Mendes, 1980.

H. sp. de brânquias de Brycon melanopterus (Cope), Pseudoplattystoma fasciatus (L.), "surubim", P. tigrinus (Schomburgk), "caparari", Plagioscion squamosissimus (Heckel), "pescada" e Colossoma macropomum (Cuv.), "tambaqui", Pisces (Rio Amazonas) verificado por Thatcher, 1981.
H. psorospermica Thélohan, 1895 de brânquias, pele e cavidades do corpo de "carpa", "lambari" e "tilápia", Pisces (Cidade de Irati, Estado do Paraná) relatado por Schönhofen et al., 1983.

H. sp de brânquias de Mugil liza e M. curema, Pisces (Estado de São Paulo) observado por Pádua et al., 1983 apud Godinho et al., 1988.

H. sp de olhos(córnea) de "lambari", Pisces (Rio Preto, Estado de Minas Gerais) com estágio de desenvolvimento branco, arredondado, 0.2-1.5mm, esporo 62.6x20.9μm referido por Bara & Upegui, 1985.

H. sp de coração e brânquias de Mugil liza Val., Pisces (Estado do Rio de Janeiro) citado por Amato & Freire, 1989.

H. sp de brânquias de Pimelodus maculatus Lacépède, 1803, Pisces (Estado de São Paulo) Cisto branco, pequeno; Esporo oval 14.2x5.0μm com um longo processo caudal, 35.7μm; Cápsula polar 5.8x1.8μm, referido por Cordeiro et al., 1989.
PRANCHA 1: Mixosporídeos brasileiros - Desenhos de esporos e alguns estágios de desenvolvimento. Figuras 24 - 53.
PRANCHA 1: Mixosporídeos brasileiros - Desenhos de esporos e alguns estágios de desenvolvimento. Figuras 54 - 84.
PRANCHA 1: Mixosporídeos brasileiros - Desenhos de esporos e alguns estágios de desenvolvimento. Figuras 85 - 114.
PRANCHA 1: Mixosporídeos brasileiros - Desenhos de esporos e alguns estágios de desenvolvimento. Figuras 115 - 122.
PRANCHA N° 01
1. Uma parte de trofozoito de Ceratomyxa sphaerulosa (Thélohan, 1895, Fig. 2, x 750).
2. Esporos à fresco de C. sphaerulosa (Thélohan, 1895, Fig. 3, x 750).
3. Esporos de C. truncata (Thélohan 1895, fig. 51, x 1500).
4. Esporos de C. curvata.
5. Esporos de C. hippocampi.
6. - 7. Esporos de agarea gracilis, Giemsa stain, visão frontal (Figs. - 6 - I0: todos de Wallicher, 1969, Figs. 15-18).
8. Trofozoito imaturo de A. gracilis.
10. Trofozoito Maduro de A. gracilis.
11. - 12. Trofozoitos de Chloromyxa leydigi (Thélohan 1895, Figs. 6-7, x 750).
15. - 16. Visão de diferentes esporos de C. leydigi (Thélohan 1895, Figs. 9-1 O, x 1500).
17. Esporos de C. sphyvae.
18. Vesícula biliar bufo água (?) com trofozoito Myxidium immersum.
19. - 21. Esporos em desenvolvimento de M immersum,
22. Esporos maduros de M. immersum.
23. Esporos extrudados de M. immersum.
24. - 25. Esporos de M. immersum (= M. lindoyense, visão frontal e lateral, Carini 1932).
26. Esporos de M. striatum.
32. Esporos de M. gurgelii.
33. Esporos de M. cholecysticum.
34. - 35. Esporos de Sphaeromyxa balbianii.
36. - 37. Esporos de Myxobolus inaequalis (Müller, 184 l, fig. 6).
38. Esporos de M. lutzi.
41. - 42. Esporos de M. associatus.
43. - 44. Esporos de M. pygocentris.
45. - 46. Esporos de M. cunhau.
47. Esporos de M. noguchii.
48. Esporos de M. stokesi.
49. Esporos de M. kudoi.
50. - 51. Macrosporo de M. serrasalmi.
52. - 53. Microsporo de M. serrasalmi.
54. Trofozoito imaturo de M. serrasalmi (spleen).
55. Trofozoitos de M. serrasalmi.
56. Trofozoitos mostrando desenvolvimento de pansporoblasto de M. serrasalmi.
57. Pansporoblasto de M. serrasalmi.
58. Esporos Imaturos de M. serrasabni.
59. Esporos de M. inaequus.
60. - 61. Esporos de M sp I Wallicher, 1969.
62. Trofozoitos de M sp I in Iddney.
66. Trofozoitos de M. sp 2.
67. - 68. Esporos de Henneuguya linearis.
69. - 70. Esporos de H. lutzi.
71. - 73. Esporos de H. occulta.
74. - 75. Esporos de H. leporini.
76. - 79. Esporos de H. wenyoni.
80. Esporos de H. iberingi.
81. Esporos de H. fonsecai.
82. Esporos de H. cesarpintoi.
83. Esporos de H. bergamini.

82
84. Esporos de *H. travassosi*.
85. Esporos de *H. santei*.
86. Esporos de *H. visceralis*.
87. Pansporoblasto disporo de *H. visceralis* (app. x 4000).
88. Esporos maduros à fresco de *H. visceralis* (app. x 2000).
89. Esporos maduros anormalmente curtos *H. visceralis* (app. x 2000).
90. Esporos de *H. electra*.
91. Pansporoblasto disporo recentemente maduro de *H. electra* (app. x 2000).
92. Esporos jovens em pares de *H. electra* (app. x 2000).
93.-95. Estágios de desenvolvimento de esporos de *H. pisciforme*.
96. Esporos de *H. pisciforme*.
97. Esporos de *H. pisciforme* com processo caudal bifurcado.
98. Esporos Extrudados de *H. pisciforme*.
99. Esporos de *H. theca*.
100. -101- Esporos maduros de *H. intracornea*.
102. Esporos extrudados de *H. intracornea*.
103.-104. Esporos de *H. hoimba*.
105.-107. Esporos de *H. artigasi*.
108.-109. Esporos de *H. amazonica*.
110.-113. Esporos de *H. sp* Jakowska and Nigrel, 1953.
114. Esporos de *leptotheca chagasi*.
115. Esporos de *H. striolata*.
116. Esporos de *H. malabarica*.
117. Esporos de *H. piaractus*.
118. Esporos de *M. braziliensis*.
119. Esporos de *M. braziliensis*.
120. Esporos de *Tetrauronema desaequalis*.
121. Esporos de *H. adherens*.
122. Esporos de *H. testicularis*.
II. DESCRIÇÃO E DISCUSSÃO DAS ESPÉCIES DE MIXOSPORÍDEOS

A seguir apresentamos a descrição dos parasitos. Para a determinação das espécies de mixosporídeos foram utilizados os parâmetros morfológicos, sugeridos por Lom & Arthur (1989) (figura 5), e também fatores como especificidade de hospedeiro e sítio de infecção parasitário, proposto por Mólnar (1994), relacionando portanto, dimensões, hospedeiros e órgãos parasitados na comparação entre as espécies de mixosporídeos. Os desenhos dos mixosporídeos encontrados são apresentados na PRANCHA 2.

Henneguya sp. 1 (Figura 6)

Hospedeiro: *Pimelodus maculatus* (= *P. clarias*) (Família: Pimelodidae)

Localidade: Região do Salto, no rio Piracicaba; município de Piracicaba, São Paulo, Brasil.

Sítio de infecção: Filamentos das brânquias. Os esporos ocorrem dentro de pequenos cistos, intratecidualmente instalados ao longo dos filamentos brânquiais.

Morfologia:

1. **Esporos:**

Esporos fusiformes, extremamente alongados em visão frontal. Possuem duas valvas distintas, que se estendem posteriormente, dando origem a um longo processo caudal bipartido. Esporo elíptico em visão lateral. Duas cápsulas polares, idênticas, alongadas, piriformes, com a abertura voltada para a região
anterior, ficam dispostas uma de cada lado da linha de sutura. Cada cápsula contém um filamento polar que, quando extrudado, revela-se com cerca de metade do tamanho do corpo do esporo. O esporoplasma apresenta-se binucleado, após coloração pelo Giemsa. A fresco, após reação com Lugol, não foi observado vacúulo iodófilo. As medidas dos esporos são apresentadas na tabela IV.

Tabela VI. Valores absolutos, média (em μm) e desvio padrão dos esporos de *Henneguya sp. 1*

<table>
<thead>
<tr>
<th></th>
<th>comprimento do espore</th>
<th>largura do espore</th>
<th>comprimento da cápsula polar</th>
<th>largura da cápsula polar</th>
<th>prolong. caudal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mínimo</td>
<td>45,00</td>
<td>3,00</td>
<td>4,00</td>
<td>1,00</td>
<td>33,00</td>
</tr>
<tr>
<td>Máximo</td>
<td>51,00</td>
<td>4,00</td>
<td>5,00</td>
<td>2,00</td>
<td>40,00</td>
</tr>
<tr>
<td>Média</td>
<td>48,03</td>
<td>3,67</td>
<td>4,90</td>
<td>1,27</td>
<td>36,67</td>
</tr>
<tr>
<td>Desvio Padrão</td>
<td>1,73</td>
<td>0,48</td>
<td>0,30</td>
<td>0,45</td>
<td>2,10</td>
</tr>
</tbody>
</table>

2. Forma vegetativa:

A partir da análise a fresco das brânquias, foram evidenciados vários cistos pequenos, dispostos ao longo dos filamentos branquial, histozóicos, ovalados ou arredondados e levemente esbranquiçados, com média de 0,38 mm; poliespóricos, com desenvolvimento de pansporoblasto.

3. DISCUSSÃO:

Henneguya sp. 1 foi encontrada em grande número em cistos nas brânquias de *Pimelodus maculatus*. Até o presente, vinte e cinco espécies de *Henneguya spp.* foram descritas de peixes brasileiros (Azevedo & Matos, 1995, 1996; Gioia & Cordeiro, 1986; Casal et. al., 1997; Martins & Souza, 1997;
Azevedo et al., 1997). Dessas, uma espécie denominada *Henneguya linearis* (Gurley, 1893) é a única que apresenta configuração semelhante a *Henneguya* sp. 1.

Henneguya linearis apresenta esporo delgado e processo caudal muito pequenos; já a presente espécie tem esporo delgado e processo caudal extraordinariamente alongados. Da comparação dessas estruturas e dimensões, nos parece que *Henneguya sp. 1* de *Pimelodus maculatus* é uma espécie nova.

Henneguya sp. 2. (Figura 7)

Hospedeiro: *Pimelodus maculatus* (= *P. clarias*) (Família: Pimelodidae)

Localidade: Região do Salto, no rio Piracicaba; município de Piracicaba, São Paulo, Brasil.

Sitio da infecção: Filamentos das brânquias. Os esporos ocorrem dentro de pequenos cistos, intratecialmente instalados ao longo dos filamentos branquiais.

Morfologia:

1. **Esporos:**

Esporos ovalados e alongados em visão frontal, com a extremidade anterior abaulada. Possuem duas valvas distintas, que se estendem posteriormente, dando origem a um processo caudal bipartido. Esporo biconvexo em visão lateral, com duas cápsulas polares piriformes, bastante alongadas, largas e
simétricas, com a abertura voltada para a região anterior e dispostas uma de cada lado da linha de sutura, conferindo total simetria ao esporo. Cada cápsula contém um filamento polar. Apresenta um grande esporoplasma arredondado com dois núcleos bem evidentes, após coloração por Giemsa. A fresco, após reação com Lugol, não foi observado vacúulo iodófilo. As medidas dos esporos são apresentadas na tabela VII.

Tabela VII. Valores absolutos, média (em µm) e desvio padrão dos esporos de *Henneguya sp. 2*

<table>
<thead>
<tr>
<th></th>
<th>comprimento do esporo</th>
<th>largura do esporo</th>
<th>comprimento da cápsula polar</th>
<th>largura da cápsula polar</th>
<th>comprimento do prolong. caudal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mínimo</td>
<td>37,00</td>
<td>4,00</td>
<td>5,00</td>
<td>2,00</td>
<td>27,00</td>
</tr>
<tr>
<td>Máximo</td>
<td>43,00</td>
<td>5,00</td>
<td>6,00</td>
<td>3,00</td>
<td>30,00</td>
</tr>
<tr>
<td>Média</td>
<td>38,47</td>
<td>4,67</td>
<td>5,83</td>
<td>2,10</td>
<td>28,50</td>
</tr>
<tr>
<td>Desvio Padrão</td>
<td>1,50</td>
<td>0,48</td>
<td>0,38</td>
<td>0,30</td>
<td>0,97</td>
</tr>
</tbody>
</table>

2. Forma vegetativa:

Cistos pequenos, com média de 0,41 mm, aparecem dispostos ao longo do filamento branquial. Ovalados ou arredondados e levemente esbranquiçados, estão dispostos enfileiradamente ao longo do filamento branquial. Não foi encontrada a formação de pansporoblasto.

3. DISCUSSÃO:

A pesquisa bibliográfica revelou que uma única espécie de *Henneguya*, *Henneguya linearis*, foi descrita em peixes do gênero *Pimelodus* (*Pimelodus sabae*). Uma comparação entre os esporos desta espécie de *Henneguya* com
os esporos de *Henneguya sp. 2* de *Pimelodus clarias* mostrou que há várias diferenças distintas entre as dimensões dos dois parasitos. O processo caudal, o tamanho total do esporo, o tamanho e espessura do corpo do esporo e o tamanho das cápsulas polares de *Henneguya sp. 2* são significativamente maiores que em *Henneguya linearis*, o que justifica ser considerada uma espécie nova.

Henneguya sp. 3 (Figura 8)

Hospedeiro: *Astyanax bimaculatus lacustris* (Família Characidae)

Localidade: Região do Salto, no rio Piracicaba; município de Piracicaba, São Paulo, Brasil.

Sítio da infecção: Os esporos ocorrem dentro de pequenos cistos, intratecialmente instalados ao longo dos filamentos branquiais.

Morfologia:

1. **Esporos:**

Esporos fusiformes e arredondados em visão frontal. Possuem duas valvas distintas, que se estendem posteriormente, dando origem a um processo caudal bifurcado. Biconvexo em visão lateral. Duas cápsulas polares, arredondadas, alongadas e de mesmo tamanho, abrem-se na região anterior; dispostas sobre a linha de sutura, uma de cada lado conferem uma simetria bilateral ao esporo. Cada cápsula contém um filamento polar. Após coloração por Giemsa evidencia-se um esporoplastma binucleado de forma amebóide. A fresco, após reação com Lugol, não foi observada a presença de vacúolo iodófilo. As medidas dos esporos são apresentadas na tabela VIII.
Tabela VIII. Valores absolutos, média (em µm) e desvio padrão dos esporos de *Henneguya sp. 3*

<table>
<thead>
<tr>
<th></th>
<th>Comprimento do esporo</th>
<th>Largura do esporo</th>
<th>Comprimento da cápsula polar</th>
<th>Largura da cápsula polar</th>
<th>Prolongamento caudal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mínimo</td>
<td>23,00</td>
<td>4,00</td>
<td>4,00</td>
<td>1,00</td>
<td>13,00</td>
</tr>
<tr>
<td>Máximo</td>
<td>30,00</td>
<td>5,00</td>
<td>5,00</td>
<td>2,00</td>
<td>17,00</td>
</tr>
<tr>
<td>Média</td>
<td>26,07</td>
<td>4,20</td>
<td>4,87</td>
<td>1,20</td>
<td>14,60</td>
</tr>
<tr>
<td>Desvio Padrão</td>
<td>1,51</td>
<td>0,41</td>
<td>0,35</td>
<td>0,41</td>
<td>0,89</td>
</tr>
</tbody>
</table>

2. Forma vegetativa:

Pequenos e poucos cistos histozóicos ovalados aparecem dispostos ao longo do filamento branquial. Os cistos são brancos e medem menos de 0,33 mm e contêm diferentes estágios de desenvolvimento, com predominância de esporos maduros.

3. DISCUSSÃO:

Dentre as parasitoses de peixes, as que resultam em grandes danos letais e epizooticos está em situação notável, a causada por mixosporídeos do gênero *Henneguya* Thelohán, 1892 (Reinchenbach-Kline, 19829. Entre nós a infecção por *Henneguya* tem sido verificada em uma grande quantidade de hospedeiros, pertencentes as famílias Anostomidae, Characidae, Chichilidae, Loricariidae, Pimelodidae, Steenarchidae. *Henneguya sp. 3* se apresenta em pequenos pontos (cistos) esbranquiçados cobrindo as lamelas branquiais e produzindo lesões com aspectos necróticos. Em peixes do gênero *Astyanax* (família Characidae) foram descritos *Henneguya wenyoni* Pinto, 1928; *Henneguya cesarpontoi* Guimarães, 1931; *Henneguya*
bergamini Guimarães, 1931; Henneguya travassori Guimarães, 1933; Henneguya intracornea Gioia et. al., 1986; Henneguya hoimba Cordeiro & Gioia, 1987 e Henneguya artigasi Gioia & Cordeiro, 1982. Comparado a Henneguya sp. 3, Henneguya travassoi e Henneguya intracornea diferem no aspecto, tamanho do esporo e quanto à localização parasitária. Confrontada com as quatro Henneguya spp de brânquias de Astyanax, Henneguya sp. 3, quanto às dimensões dos esporos, difere de Henneguya cesarpintoi e de Henneguya bergamini, difere também quanto a forma de Henneguya hoimba e, embora apresente tamanho semelhante a Henneguya wenyoni, difere por não ostentar cápsulas polares assimétricas. Esta espécie, pelos motivos apresentados anteriormente, foi considerada como uma espécie nova.

Henneguya sp. 4. (Figura 9)

Hospedeiro: Leporinus reinhardtii(Família Anostomidae)

Localidade: Região do Salto, no rio Piracicaba; município de Piracicaba, São Paulo, Brasil.

Sítio da infecção: Bexiga natatória

Morfologia:

1. Esporos:

Esporos pequenos, arredondados, em visão frontal. Possuem duas valvas distintas, que se estendem posteriormente, dando origem a um fino e curto processo caudal bipartido. Biconvexo arredondado em visão lateral, com linha
de sutura distinta. Duas cápsulas polares, piriformes, ocupando da extremidade anterior até a metade do esporo, de tamanhos iguais ou não, com a abertura voltada para a região anterior, ficam dispostas uma de cada lado da linha de sutura. Cada cápsula contém um filamento polar curto. Após coloração pelo Giemsa evidencia-se um esporoplasma binucleado e arredondado. A fresco, após reação com Lugol, não foi observado vacúolo iodófilo. As medidas dos esporos são apresentadas na tabela IX.

Tabela IX. Valores absolutos, média (em µm) e desvio padrão dos esporos de *Henneguya sp. 4*

<table>
<thead>
<tr>
<th></th>
<th>Comprimento do esporo</th>
<th>Largura do esporo</th>
<th>Comprimento da cápsula polar</th>
<th>Largura da cápsula polar</th>
<th>Prolong. caudal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mínimo</td>
<td>18,00</td>
<td>3,00</td>
<td>3,00</td>
<td>1,00</td>
<td>10,00</td>
</tr>
<tr>
<td>Máximo</td>
<td>20,00</td>
<td>4,00</td>
<td>4,00</td>
<td>2,00</td>
<td>11,00</td>
</tr>
<tr>
<td>Média</td>
<td>18,67</td>
<td>3,83</td>
<td>3,17</td>
<td>1,17</td>
<td>10,17</td>
</tr>
<tr>
<td>Desvio Padrão</td>
<td>0,76</td>
<td>0,38</td>
<td>0,38</td>
<td>0,38</td>
<td>0,38</td>
</tr>
</tbody>
</table>

2. *Forma vegetativa:* Não foi evidenciada a presença de trofozoítos. Os esporos foram obtidos através de maceração de tecido de bexiga natatória.

3. **DISCUSSÃO:**

Um considerável número de espécies de *Henneguya* são associadas com brânquias e a maioria das espécies estão localizadas nas lamelas branquiais, mas destas, nenhuma foi encontrada parasitando bexiga natatória.
De um modo geral, há uma considerável variação na aparência e dimensões entre os membros desse gênero. As espécies mais semelhantes em tamanho a *Henneguya sp. 4* parecem ser *Henneguya bergamini* Guimarães, 1931 e *Henneguya pisciforme* Cordeiro et al., 1983. Estas espécies diferem de *Henneguya sp. 4*, entretanto, no aspecto e na localização parasitária. Além de *Henneguya sp. 4*, *Henneguya leporini* Nemeczek, 1926 é a única espécie de peixes do gênero *Leporinus* (família Anostomidae) no Brasil. *Henneguya leporini* difere quanto à localização parasitária, ao tamanho e não apresenta linha natural distinta como a *Henneguya sp. 4*. Em vista dessas diferenças, considero-se como nova a espécie em questão.

Henneguya sp. 5. (Figura 10)

Hospedeiro: *Serrasalmus spilopleura* (= *S. brandtii*) (Família Characidae)

Localidade: Região do Salto, no rio Piracicaba; município de Piracicaba, São Paulo, Brasil.

Sítio da infecção: Filamentos das branquias. Os esporos ocorrem dentro de pequenos cistos, intratecialmente instalados ao longo dos filamentos branquiais.

Morfologia:

1. **Esporos:**

Esporos fusiformes e extremamente alongados. A maior parte do esporo é oblongo em visão frontal. Possuem duas valvas distintas, que se prolongam posteriormente, dando origem a um apêndice caudal tipicamente bifurcado. Em
alguns esporos a bifurcação é caracteristicamente encurvada, formando duas figuras em “U”. Biconvexo em visão lateral. Duas cápsulas polares afiladas, situadas na metade anterior do corpo do esporo, piriformes e de igual tamanho ou desiguais, com a abertura voltada para a região anterior; ficam dispostas uma de cada lado da linha de sutura, conferindo total simetria ao esporo. Cada cápsula contém um filamento polar com 6 a 8 espiras. Em preparações coradas pelo Giemsa, evidencia-se um esporoplasma alongado, com dois núcleos, ocupando a metade da região extracapsular. A fresco, após reação com Lugol, não foi observado vacúolo iodófilo. As medidas dos esporos são apresentadas na tabela X.

Tabela X. Valores absolutos, média (em μm) e desvio padrão dos esporos de *Henneguya sp. 5*

<table>
<thead>
<tr>
<th></th>
<th>Comprimento do esporo</th>
<th>Largura do esporo</th>
<th>Comprimento da cápsula polar</th>
<th>Largura da cápsula polar</th>
<th>Comprimento do prolong. caudal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mínimo</td>
<td>35,00</td>
<td>4,00</td>
<td>6,00</td>
<td>1,00</td>
<td>13,00</td>
</tr>
<tr>
<td>Máximo</td>
<td>40,00</td>
<td>5,00</td>
<td>8,00</td>
<td>2,00</td>
<td>19,00</td>
</tr>
<tr>
<td>Média</td>
<td>37,17</td>
<td>4,10</td>
<td>6,63</td>
<td>1,38</td>
<td>15,20</td>
</tr>
<tr>
<td>Desvio Padrão</td>
<td>1,39</td>
<td>0,30</td>
<td>0,81</td>
<td>0,49</td>
<td>1,90</td>
</tr>
</tbody>
</table>

2. **Forma vegetativa:**

Vários cistos pequenos, com média de 0,28 mm, aparecem dispostos ao longo do filamento branquial. Os cistos ovalados ou arredondados são levemente esbranquiçados. Não foi reportada a formação de pansporoblasto.
3. DISCUSSÃO:

Henneguya waltairensis foi descrita dos filamentos de Ophicephalus punctatos, Henneguya bleekeri dos rins de Mystas bleekeri, ambos na Índia. Já o mixosporídeo em questão, Henneguya sp. 5, difere na estrutura da cápsula polar, medidas do esporo e na família do hospedeiro. Este parasito é o único com estas características entre as espécies descritas no Brasil que têm como habitat os filamentos branquiais.

Myxobolus sp. 1(Figura 11)

Hospedeiro: Pimelodus maculatus (= P. clarias) (Família: Pimelodidae)

Localidade: Região do Salto, no rio Piracicaba; município de Piracicaba, São Paulo, Brasil.

Sítio de infecção: Filamentos das branquias. Os esporos ocorrem dentro de pequenos cistos, intratecidualmente instalados, próximos à base dos filamentos branquiais.

Morfologia:
1. Esporos:

Espiróforos piriformes pequenos, arredondados em sua porção posterior, em visão frontal. Biconvexos em visão lateral, apresentam duas valvas bem distintas, simetricamente divididas por uma linha de sutura bem definida, sobre a qual apoiam-se, uma de cada lado, duas cápsulas polares de dimensões simétricas e assimétricas, com a abertura convergente voltada para a posição anterior do esporo. Carreado pelo Giemsa, evidencia-se um esporoplasma levemente arredondado e binucleado. Nas preparações a fresco, após a aplicação de Nankin e reação com Lugol, não foram observados envoltório mucoso e vacúolo iodófilo. As medidas dos esporos são apresentadas na tabela XI.

Tabela XI. Valores absolutos, média (em µm) e desvio padrão dos esporos de *Myxobolus sp. 1*

<table>
<thead>
<tr>
<th></th>
<th>Comprimento do esporo</th>
<th>Largura do esporo</th>
<th>Comprimento da cápsula polar</th>
<th>Largura da cápsula polar</th>
<th>Comprimento do filamento polar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mínimo</td>
<td>8,00</td>
<td>5,00</td>
<td>4,00</td>
<td>2,00</td>
<td>14,00</td>
</tr>
<tr>
<td>Máximo</td>
<td>9,00</td>
<td>7,00</td>
<td>5,00</td>
<td>3,00</td>
<td>26,00</td>
</tr>
<tr>
<td>Média</td>
<td>8,53</td>
<td>5,83</td>
<td>4,70</td>
<td>2,17</td>
<td>17,50</td>
</tr>
<tr>
<td>Desvio Padrão</td>
<td>0,51</td>
<td>0,70</td>
<td>0,47</td>
<td>0,38</td>
<td>4,22</td>
</tr>
</tbody>
</table>

2. Forma Vegetativa:

Os cistos desenvolvem-se com a formação de pansporoblastos que, em alguns casos, apresentam esporos imaturos, associados em pares, sugerindo origem diespórica. São encontrados dispostos na base dos filamentos branquiais, sobre a cartilagem, os cistos histozóicos, ovalados ou
arredondados, com as bordas irregulares. Suas dimensões variavam de 0,32 mm até 1,13 mm em seus maiores diâmetros.

1. DISCUSSÃO:

Conforme as características dos esporos, esta espécie pode ser localizada no gênero Myxobolus Bütschli, 1882. Treze espécies de Myxobolus spp. foram descritas de peixes do Brasil (Gioia & Cordeiro, 1986; Molnár & Békesi, 1993; Casal et. al., 1997). Dessas as mais similares são Myxobolus lutzi Aragão, 1919 e Myxobolus cunhai Penido, 1927. Myxobolus cunhai difere no comprimento da cápsula polar, que se estende para quase todo o comprimento do esporo. Esporos de Myxobolus lutzi têm dimensões quase idênticas aos esporos do Myxobolus sp. 1 entretanto, quanto à localização parasitária, foi descrito parasitando o testículo de Girardinus jamiaricus e Poecilia vivipara hospedeiros pertencentes a uma família diferente da família Pimelodidae.

Myxobolus sp. 2 (Figura 12)

Hospedeiro: *Pimelodus maculatus (= P. clarias)* (Família: Pimelodidae)

Localidade: Região do Salto, no rio Piracicaba; município de Piracicaba, São Paulo, Brasil.

Sítio da infecção: Cavidade branquial.

Morfologia:
Esporos:

Esporos grandes, piriformes, levemente arredondados em visão frontal. Duas cápsulas polares, piriformes, de tamanhos diferentes, abrem-se na região anterior do esporo, liberando filamento polar. O maior filamento polar, quando não extrudado apresenta cerca de oito voltas e quando extrudados, o maior possui aproximadamente três vezes o tamanho do menor. Em visão lateral, o esporo é biconvexo, levemente arredondado, com as cápsulas polares no mesmo plano da linha de sutura, simétricos à zona articulada do esporo. Submetidos a reação pelo Lugol fraco, não evidenciou-se a presença de vacúulo iodófilo e, após corados pelo Giemsa, os esporos revelaram a presença de um esporoplasma binucleado. As medidas dos esporos são apresentadas na tabela XII.

Tabela XII. Valores absolutos, média (em μm) e desvio padrão dos esporos de *Myxobolus sp.* 2

<table>
<thead>
<tr>
<th></th>
<th>compr. do esporo</th>
<th>compr. da cápsula</th>
<th>compr. da cápsula</th>
<th>compr. da cápsula</th>
<th>compr. da cápsula</th>
<th>compr. do filamento</th>
<th>compr. do filamento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Esporos</td>
<td>10,00</td>
<td>9,00</td>
<td>5,00</td>
<td>3,00</td>
<td>3,00</td>
<td>2,00</td>
<td>62,00</td>
</tr>
<tr>
<td>Máximo</td>
<td>17,00</td>
<td>12,00</td>
<td>8,00</td>
<td>5,00</td>
<td>4,00</td>
<td>3,00</td>
<td>107,00</td>
</tr>
<tr>
<td>Média</td>
<td>15,73</td>
<td>10,23</td>
<td>6,43</td>
<td>4,23</td>
<td>3,57</td>
<td>2,53</td>
<td>82,93</td>
</tr>
<tr>
<td>Desvio</td>
<td>1,53</td>
<td>0,68</td>
<td>0,68</td>
<td>0,57</td>
<td>0,50</td>
<td>0,51</td>
<td>11,16</td>
</tr>
<tr>
<td>Padrão</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

97
2. **Estágio vegetativo:**

Cisto com forma esférica, levemente ovalada, medindo em média 1,50 mm de diâmetro, de cor branca opaca, sempre encontrados soltos na cavidade branquial, junto a membrana que separa as vísceras das brânquias.

3. **DISCUSSÃO:**

As características dos esporos do *Myxobolus sp. 2* são equivalentes àquelas descritas para o gênero (Kudo, 1966) entretanto, esta espécie difere de todas as outras devido ao grande tamanho do esporo, extrema desigualdade nas dimensões das cápsulas polares e sítio de infecção no hospedeiro. O *Myxobolus sp. 2* é maior que todas as espécies de *Myxobolus spp.* que parasitam peixes brasileiros, exceto *Myxobolus pygocentris* Penido, 1922 e *Myxobolus serrassalmi* Walliker, 1969 mas diferem deste quanto à localização parasitária e no aspecto desigual das cápsulas polares. *Myxobolus inaequus* Kent & Hoffman, 1984 apresenta cápsulas polares desiguais, mas o tamanho do esporo é consideravelmente maior que aqueles de *Myxobolus sp. 2* e não infectam cavidade branquial. *Myxobolus inaequalis* Gurley, 1893 com cápsulas polares assimétricas é parasito da pele da cabeça de *Piramutana blockii* e *Synodontis schall* e é extremamente pequeno (5,2x3,3mm).
Myxobolus sp. 3 (Myxobolus cunhai) (Figura 13)

Hospedeiro: *Pimelodus maculatus (= P. clarias)* (Família: Pimelodidae)

Localidade: Região do Salto, no rio Piracicaba; município de Piracicaba, São Paulo, Brasil.

Sítio da infecção: Filamentos das brânquias. Os esporos ocorrem dentro de pequenos cistos, intratecialmente instalados, ao longo dos filamentos branquiais.

Morfologia:

1. **Esporos:**

Esporos piriformes e arredondados em sua base, com um proeminente afilamento na extremidade anterior, em visão frontal. Biconvexos em visão lateral, apresentam duas valvas bem distintas, simetricamente divididas na linha de sutura, com duas cápsulas polares piriformes, alongadas anteriormente e ocupando mais da metade do esporo; localizadas uma de cada lado, com as mesmas dimensões ou assimétricas em alguns exemplares, tem a abertura voltada para a posição anterior do esporo, por onde são liberados dois longos filamentos polares, que estão enrolados longitudinalmente em relação a cápsula. Corado pelo Giemsa, evidencia-se um esporoplastema de pequenas dimensões, levemente arredondado. Nas preparações a fresco, após reação com Lugol, não foi observada a presença de vacúolo iodófilo. As medidas dos esporos são apresentadas na tabela XIII.
Tabela XIII. Valores absolutos, média (em µm) e desvio padrão dos esporos de *Myxobolus sp. 3*

<table>
<thead>
<tr>
<th></th>
<th>comprimento do esporo</th>
<th>largura do esporo</th>
<th>comprimento da cápsula polar</th>
<th>largura da cápsula polar</th>
<th>comprimento do fil. polar.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mínimo</td>
<td>11,00</td>
<td>5,00</td>
<td>8,00</td>
<td>1,00</td>
<td>32,00</td>
</tr>
<tr>
<td>Máximo</td>
<td>13,00</td>
<td>7,00</td>
<td>10,00</td>
<td>2,00</td>
<td>58,00</td>
</tr>
<tr>
<td>Média</td>
<td>11,97</td>
<td>6,07</td>
<td>8,70</td>
<td>1,57</td>
<td>47,33</td>
</tr>
<tr>
<td>Desvio Padrão</td>
<td>0,67</td>
<td>0,64</td>
<td>0,79</td>
<td>0,50</td>
<td>11,31</td>
</tr>
</tbody>
</table>

2. *Forma Vegetativa:*

Os cistos desenvolvem-se dispostos ao longo dos filamentos branquiais, com formato alongado, recobre quase todo o filamento. Não foi possível evidenciar a formação de pansporoblasto.

3. *Discussão:*

Oscaracteres morfológicos e morfométricos de *Myxobolus sp. 3*, de ocorrência em *Pimelodus maculatus*, apresentam similaridade com *Myxobolus cunhai* Penido, 1927.

O encontro de *M. cunhai* (*Myxobolus sp. 3*) nas branquias de *Pimelodus maculatus*, no Estado de São Paulo, a sudoeste do Brasil, indica a
ocorrência do parasito em outra região de distribuição do hospedeiro, além de apresentar-se em um sítio de infecção diferente do originalmente descrito. O encontro de esporos do parasito com cápsulas polares com o mesmo tamanho, é mais uma característica importante a ser acrescentada ao *M. cunhai*.

Portanto, *Myxobolus sp. 3* é uma nova ocorrência de *Myxobolus cunhai* em uma outra região geográfica da distribuição do hospedeiro.
Figura 6. Esporos de *Henneguya sp. 1*, corados pelo Giemsa. Objetiva 100 X.

Figura 7. Esporos de *Henneguya sp. 2*, corados pelo Giemsa. Objetiva 100 X.
Figura 8. Esporos de *Henneguya sp. 3*, corados pelo Giemsa. Objetiva 100 X.

Figura 9. Esporos de *Henneguya sp. 4*, corados pelo Giemsa. Objetiva 100 X.
Figura 10. Esporos de *Henneguya sp. 5*, corados pelo Giemsa. Objetiva 100 X.

Figura 11. Esporos de *Myxobolus sp. 1*. Preparação a fresco. Objetiva 40 X.
Figura 12. Esporos de *Myxobolus sp.* 2. Preparação corada pelo Giemsa, Objetiva 100 X.

Figura 13. Esporos de *Myxobolus sp.* 3 (*M. cunhai*), corados pelo Giemsa. Objetiva 100 X.
PRANCHA 2. Desenhos dos esporos de mixosporídeos encontrados nos peixes do rio Piracicaba - Figuras 1-14.
PRANCHA 2. Desenhos dos esporos de mixosporídeos encontrados nos peixes do rio Piracicaba - Figuras 27 - 43.
PRANCHA 2. Desenhos dos esporos de mixosporídeos encontrados nos peixes do rio Piracicaba.

1-5. Esporos maduros de *Henneguya sp 1* (visão frontal).
7-9. Esporos maduros de *Henneguya sp 2* (visão lateral).
10. Esporo maduro de *Henneguya sp 3* (visão frontal).
11-13. Fases intermediárias de desenvolvimento em esporos de *Henneguya sp 3* (visão frontal).
14. Esporo maduro de *Henneguya sp 3* (visão frontal).
22-26. Esporos maduros de *Henneguya sp 5* (visão frontal).
27-29 e 32. Esporos maduros de *Myxobolus sp 2* (visão frontal).
30. Esporo maduro de *Myxobolus sp 2* (visão lateral).
31 e 33. Esporos maduros de *Myxobolus sp 2* (visão frontal), mostrando filamento polar extrudado.
34 e 36. Esporos maduros de *Myxobolus sp 1* (visão frontal).
35. Esporos de *Myxobolus sp* em fase intermediária de desenvolvimento, mostrando sua origem diespórica.
37. Esporo maduro de *Myxobolus sp 1* (visão frontal), mostrando filamento polar extrudado.
38-42. Esporos maduros de *Myxobolus cunhai (Myxobolus sp 3)* (visão frontal).
43. Esporo maduro de *Myxobolus cunhai (Myxobolus sp 3)* mostrando filamento polar extrudado (visão frontal).
III. ANÁLISE DOS DADOS OBSERVADOS

A análise dos resultados apresentados, a partir da Tabela XIV e da descrição das espécies de mixosporídeos, mostra que, em um total de 96 peixes coletados, haviam 08 espécies diferentes de peixes. Mixosporídeos, classificados como pertencentes a dois gêneros diferentes: *Myxobolus* e *Henneguya*, foram detectados em 17 hospedeiros (17,70 %), distribuídos entre 04, das oito espécies de peixes necropsiadas (50 %); sendo 12 exemplares de *Pimelodus maculatus* (12,50%), 01 de *Astyanax bimaculatus* (1,04%), 02 de *Leporinus reinhardt* (2,08%) e 02 de *Serrasalmus spilopleura* (2,08 %).

Entre os 12 *Pimelodus maculatus* positivos, encontramos 02 formas diferentes do gênero *Henneguya* e 03 formas diferentes do gênero *Myxobolus*. Nos 02 exemplares de *Serrasalmus spilopleura*, encontramos apenas a presença da mesma forma do gênero *Henneguya*. Uma única forma, também do gênero *Henneguya*, foi encontrada nos dois *Leporinus reinhardt*. O único indivíduo da espécie *Astyanax bimaculatus* positivo, apresentou também uma forma do gênero *Henneguya*. Portanto, entre os 17 peixes positivos, encontramos 05 formas diferentes de mixosporídeos, pertencentes ao gênero *Henneguya* e 03 formas diferentes de esporos pertencentes ao gênero *Myxobolus*.

As espécies descritas como *Henneguya sp. 1, Henneguya sp. 2, Myxobolus sp. 1, Myxobolus sp. 2 e Myxobolus sp. 3 (Myxobolus cunhai)* têm como hospedeiro *Pimelodus maculatus* e as brânquias como sítio de infecção. Os hospedeiros não apresentavam alterações na higidez. Os poucos
cistos danificavam apenas o local do filamento branquial em que estavam inseridos, conferindo um caráter não patogênico, em condições naturais, à parasitose.

Henneguya sp. 3 e Henneguya sp. 5 também tem as brânquias de seus hospedeiros, _Astyanax bimaculatus_ e _Serrasalmus spilopleura_, respectivamente, como sitos de infecção. Nestas espécies também não foram observadas sinais de doença no hospedeiro. Em _Astyanax bimaculatus_, foram encontrados apenas dois cistos nas brânquias, e considerados pequenos, quando comparados aos encontrados em _Pimelodus maculatus_.

Henneguya sp. 4 foi observada na bexiga natatória de _Leporinus reinhardt_, após maceração do tecido. Pequenos e de aparência frágil, os esporos foram encontrados soltos, não sendo observados cistos no material, antes ou depois de macerado, o que caracteriza o parasito como sendo de origem celozóica. A falta de sinais e de tecido necrótico no material observado, revela infecção de caráter não patogênica, sem a ocorrência de doença, em condições naturais, como no caso anterior.

Portanto, foram identificados oito tipos distintos de esporos, sendo que sete consideramos como não descritos na literatura e, o único conhecido, foi encontrado em um novo sitio de infecção parasitária. Dessas sete novas espécies de mixosporídeos estudadas, seis eram histozóicas e apenas uma espécie era celozóica e com sitio de infecção diferente das brânquias.
TABELA XIV: PEIXES COLETADOS NO PERÍODO DE MARÇO DE 1991 A FEVEREIRO DE 1992, NO RIO PIRACICABA, PIRCICABA, SP.

<table>
<thead>
<tr>
<th>PEIXES</th>
<th>*</th>
<th>mar</th>
<th>abr</th>
<th>mai</th>
<th>jun</th>
<th>jul</th>
<th>ago</th>
<th>set</th>
<th>out</th>
<th>nov</th>
<th>dez</th>
<th>jan</th>
<th>fev</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hoplias</td>
<td>P</td>
<td>000</td>
<td>0000</td>
</tr>
<tr>
<td>melanogenicus</td>
<td>N</td>
<td>000</td>
<td>000</td>
<td>000</td>
<td>000</td>
<td>000</td>
<td>000</td>
<td>000</td>
<td>001</td>
<td>001</td>
<td>000</td>
<td>000</td>
<td>000</td>
<td>0002</td>
</tr>
<tr>
<td>Astyanax</td>
<td>P</td>
<td>000</td>
<td>0001</td>
</tr>
<tr>
<td>bimaculatus</td>
<td>N</td>
<td>003</td>
<td>000</td>
<td>001</td>
<td>000</td>
<td>001</td>
<td>002</td>
<td>000</td>
<td>000</td>
<td>001</td>
<td>002</td>
<td>001</td>
<td>002</td>
<td>0012</td>
</tr>
<tr>
<td>Serrasalmus</td>
<td>P</td>
<td>000</td>
<td>002</td>
<td>000</td>
<td>0002</td>
</tr>
<tr>
<td>nitropterus</td>
<td>N</td>
<td>001</td>
<td>002</td>
<td>001</td>
<td>000</td>
<td>000</td>
<td>000</td>
<td>000</td>
<td>000</td>
<td>000</td>
<td>000</td>
<td>000</td>
<td>000</td>
<td>0006</td>
</tr>
<tr>
<td>Leporinus</td>
<td>P</td>
<td>000</td>
<td>002</td>
<td>0002</td>
</tr>
<tr>
<td>reinhardtii</td>
<td>N</td>
<td>000</td>
<td>000</td>
<td>001</td>
<td>000</td>
<td>002</td>
<td>001</td>
<td>001</td>
<td>001</td>
<td>001</td>
<td>001</td>
<td>001</td>
<td>000</td>
<td>0009</td>
</tr>
<tr>
<td>Schizodon</td>
<td>P</td>
<td>000</td>
<td>0000</td>
</tr>
<tr>
<td>nasutus</td>
<td>N</td>
<td>000</td>
<td>000</td>
<td>000</td>
<td>000</td>
<td>000</td>
<td>000</td>
<td>000</td>
<td>001</td>
<td>000</td>
<td>000</td>
<td>000</td>
<td>000</td>
<td>0003</td>
</tr>
<tr>
<td>Pimelodidae</td>
<td>P</td>
<td>004</td>
<td>000</td>
<td>001</td>
<td>001</td>
<td>002</td>
<td>000</td>
<td>002</td>
<td>001</td>
<td>001</td>
<td>000</td>
<td>000</td>
<td>000</td>
<td>0012</td>
</tr>
<tr>
<td>maculatus</td>
<td>N</td>
<td>008</td>
<td>003</td>
<td>003</td>
<td>005</td>
<td>004</td>
<td>002</td>
<td>002</td>
<td>003</td>
<td>005</td>
<td>000</td>
<td>001</td>
<td>002</td>
<td>0038</td>
</tr>
<tr>
<td>Hypopomus</td>
<td>P</td>
<td>000</td>
<td>0000</td>
</tr>
<tr>
<td>margaritifer</td>
<td>N</td>
<td>000</td>
<td>000</td>
<td>000</td>
<td>000</td>
<td>000</td>
<td>000</td>
<td>002</td>
<td>002</td>
<td>002</td>
<td>000</td>
<td>000</td>
<td>000</td>
<td>0006</td>
</tr>
<tr>
<td>Aglaspopus</td>
<td>P</td>
<td>000</td>
<td>0000</td>
</tr>
<tr>
<td>brasiensis</td>
<td>N</td>
<td>000</td>
<td>000</td>
<td>000</td>
<td>000</td>
<td>000</td>
<td>000</td>
<td>000</td>
<td>000</td>
<td>001</td>
<td>001</td>
<td>001</td>
<td>000</td>
<td>0003</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>016</td>
<td>007</td>
<td>006</td>
<td>007</td>
<td>010</td>
<td>004</td>
<td>010</td>
<td>008</td>
<td>008</td>
<td>005</td>
<td>007</td>
<td>008</td>
<td>0096</td>
</tr>
</tbody>
</table>

* As letras P e N, relacionadas na segunda coluna da Tabela XIV, correspondem, respectivamente a peixes positivos e negativos para a presença de mixosporídeos.
5. CONCLUSÃO

O presente estudo, a partir da pesquisa de mixosporídeos em peixes do rio Piracicaba, município de Piracicaba, SP; permitiu concluir que:

Foram encontradas sete espécies de mixosporídeos não citados anteriormente na literatura, sendo portanto considerados como espécies novas.

Foi encontrada uma espécie de mixosporídeo anteriormente descrito (*M. cunhai*), mas em um novo sítio de infecção parasitária.

Destas oito espécies de mixosporídeos encontrados, sete eram histozóicas e uma celozóica.

Destaque-se ainda neste estudo, a revisão da literatura sobre os mixosporídeos brasileiros, a atualização da última "CHECK LIST" produzida no Brasil, com a introdução de 7 espécies descritas na literatura mundial, até o início de 1997.
ANEXO 1:

I. INFORMAÇÕES SOBRE OS PEIXES COLETADOS

Os peixes coletados são relacionados de acordo com a classificação de Lauder & Liem (1983). São assinaladas entre parênteses as sinonímias mais usadas. A seguir, incluímos a nomenclatura vulgar utilizada na região de Piracicaba (Monteiro, 1953), a descrição, medidas médias e os órgãos examinados.

Astyanax bimaculatus lacustris (Reinhardt, 1874)

Superordem: Ostariophysi

Série: Otophysi

Ordem: Characiformes

Família: Characidae

Subfamília: Tetragonopterinae

Gênero: *Astyanax* Baird & Girard, 1854.

Sinonímia: Não há.

Nome vulgar: Lambari do Rabo amarelo, Piaba do Rabo amarelo

Descrição: Peixes de pequeno porte, onívoro. Caracterizam-se por uma linha lateral completa. Dentes do pré-maxilar dispostos em duas séries, a interna com 5 dentes. Escamas de tamanho normal cobrindo apenas a base dos raios da cauda. Altura 2.3 cm a 2.5 cm, cabeça 3.3 cm a 3.9 cm no comprimento; olho
2.7 cm a 3.1 cm, focinho 3.6 cm a 4.4 cm, interorbital 2.3 cm a 2.7 cm na cabeça; altura do pedúnculo caudal 3.1 cm a 3.6 cm na altura do corpo. Dorsal com 11 raios, anal com 26 a 29. 33 a 36 escamas na linha lateral; 6.5 a 7.5 acima, 5.5 a 6.5 abaixo da linha transversal. Série externa do pré-maxilar com 4 a 5 dentes, série interna com 5; maxilar sem dentes. Uma mancha umeral bem conspicua, algo ovalada; uma faixa longitudinal incóspicua; pedúnculo caudal com uma mancha alongada que se prolonga até a ponta dos raios caudais medianos.

Comprimento: 134 mm

Material examinado: Visceras, Cérebro e Brânquias.

Serrasalmus spilopleura Kner, 1859

Superordem: Ostariophysii

Série: Otophysi

Ordem: Characiformes

Família: Characidae

Subfamília: Serrasalminae

Gênero: *Serrasalmus* Lacépède, 1803.

Sinonímia: *Serrasalmus brandtii* Reinhardt, 1874.

Nome vulgar: Pirambéba

Descrição: Peixes carnívoros, predadores, únicos capazes de arrancar pedaços de suas presas com seus dentes cortantes. Possuem corpo alto, um espinho pré-dorsal e espinhos na quilha ventral. Possui dentes tricúspides nas maxilas, sendo a cúspide mediana muito cortante e bem maior que as laterais. Muitas vezes apresentam uma série de dentes no palato. O perfil dorsal é côncavo na
região occiptal. Altura do pedúnculo caudal 4.9 cm a 5.9 cm na altura do corpo; cabeça 3.0 cm a 3.3 cm no comprimento; olho 4.0 cm a 4.9 cm; focinho 3.7 cm a 5.0 cm, interorbital 3.0 cm a 3.5 cm na cabeça. Dorsal com 15 a 17 raios, ventral com 6 a 7 e anal com 34 a 38. Escamas pequenas, 69 a 77 na linha lateral; 29 a 32 acima, 25 a 30 abaixo da linha transversal. Pré-maxilar com 6 dentes, dentário com 7, palato com 6 a 7 dentes. Quilha ventral com 30 a 33 espinhos simples, mais um par à frente e outro atrás do ánus. Manchas escuras dispersas pelo flanco.

Comprimento: 220 mm

Material examinado: Visceras e Brânquias.

Hoplias malabaricus (Bloch, 1794)

Superordem: Ostariophysii

Série: Otophysi

Ordem: Characiformes

Família: Erythrinidae

Gênero: **Hoplias** Gill, 1903.

Sinonímia: Não há

Nome vulgar: Traíra

Descrição: Peixe carnívoro, predador, habitando preferencialmente ambientes lênticos. Possui corpo alongado e roliço. Altura do pedúnculo caudal 1.7 cm a 2.0 cm na altura do corpo; cabeça 3.0 cm a 3.3 cm no comprimento; olho 5.1 cm a 6.1 cm, focinho 4.1 cm a 4.5 cm, interorbital 3.8 cm a 4.1 cm na cabeça. Dorsal com 14 raios. Possui 38 a 42 escamas na linha lateral; 5.5 a 6.0 acima, 4.5 a 5.0 abaixo da linha transversal. Língua com placas de denticulos, áspera.
ao tato. Linhas da borda inferior dos ossos dentários convergindo em direção a sísise mandibular, porém divergindo (para os lados) na extremidade anterior. Corpo irregularmente manchado; parte inferior da cabeça marmoreada; três a quatro listras na face, divergindo do olho par trás; corpo com quatro ou cinco faixas transversais inconstíguas, algo inclinadas; nadadeiras dorsal, anal e caudal com listras escuras alternadas com claras; nadadeiras peitorais e ventrais manchadas.
Comprimento: 400 mm
Material examinado: Visceras e Brânquias

Schizodon nasutus Kner, 1859.

Superordem: Ostarisphysi

Série: Otophysi

Ordem: Characiformes

Família: Anostomidae

Gênero: **Schizodon** Agassiz, 1829.

Sinonímia: Não há.

Nome vulgar: Chimborê

Comprimento: 272 mm

Material examinado: Visceras e Brânquias.
Leporinus reinhardtii Lütken, 1874

Superordem: Ostariophysi

Série: Otophysi

Ordem: Characiformes

Família: Anostomidae

Gênero: **Leporinus** Spix, 1829.

Sinonímia: **Leporinus octofaciatus**

Nome vulgar: Piava, Piau-três-pintas

Descrição: Nadadeira caudal nua, com escamas apenas na base. Dorsal com 12 a 13 raios, ventral com 9, anal com 10 a 11. Boca terminal. Altura 3.0 cm a 4.0 cm, cabeça 3.6 cm a 4.4 cm no comprimento; olho 3.5 cm a 4.9 cm, focinho 2.2 cm a 2.8 cm, interorbital 2.1 cm a 2.8 cm na cabeça. Três dentes no pré-maxilar e 3 no dentário. Tem 16 escamas ao redor do pedúnculo caudal. Possui 37 a 39 escamas na linha lateral; 5.5 a 6.5 acima, 5.0 a 6.0 abaixo da linha transversal. Exibe três máscaras no flanco: a anterior abaixo da dorsal, a seguinte à frente da adiposa e a posterior no fim do pedúnculo caudal; faixas transversais, sobretudo no dorso, frequentemente bem evidentes.

Comprimento: 192 mm

Material examinado: Visceras (inclusive bexiga natatória) e Brânquias.

Apteronotus brasiliensis (Reinhardt, 1852)

Superordem: Ostariophysi

Série: Otophysi

Ordem: Siluriformes

Subordem: Gymnotoidei

Família: Gymnotidae

Gênero: **Apteronotus**
Sinonímia: Não há
Nome vulgar: Tuvira negra
Descrição: Peixes de hábitos noturnos que usam órgãos elétricos na sua orientação. Possuem o corpo alongado se estreitando progressivamente até o fim do pedúnculo caudal. Não têm nadadeira ventral, dorsal e caudal.
Comprimento: 300 mm
Material examinado: Vísceras, musculatura e cérebro.

Pimelodus maculatus Lacépède, 1803.
Superordem: Ostarisphysi
Série: Otophysi
Ordem: Siluriformes
Subordem: Siluroidei
Família: Pimelodidae
Gênero: *Pimelodus* Lacépède, 1803.

Sinonímia: *Pimelodus clarias*
Nome vulgar: Mandi-amarelo
Descrição: Possuem corpo nu, aberturas branquiais amplas, nadadeiras peitorais e dorsais precedidas por um acúleio. Sem dentes no palato. Processo occipital relativamente largo na base, sua ponta em contato com o escudo pré-dorsal. Fontanela interrompindo-se na borda posterior dos olhos. Base da adiposa maior que a da anal. Boca e lábios desenvolvidos. Altura 3.6 cm a 4.3 cm, cabeça 3.5 cm a 3.9 cm no comprimento; olho 4.5 cm a 5.9 cm, focinho 1.9 cm a 2.3 cm, interorbital 3.2 cm a 4.2 cm na cabeça; possui 25 a 27 rastros no primeiro arco branquial. Flanco com três ou quatro séries longitudinais de máculas, freqüentemente maiores que o olho; geralmente duas séries acima da linha lateral e uma abaixo.
Comprimento: 400 mm
Material examinado: Vísceras, pele, branquias.
Hypostomus margaritifer Regan, 1908.

Superordem: Ostarisphysi

Série: Otophysi

Orden: Siluriformes

Subordem: Siluridei

Família: Loricariidae

Gênero: *Hypostomus* Lacépède, 1803.

Sinonímia: *Plecostomus margaritifer* Regan, 1908.

Nome vulgar: Cascudo pintado

Descrição: Margem do focinho coberta de placas com espinhos curtos. Interopérculo pouco móvel, provido de espinhos curtos. Margem da órbita elevada; parte posterior da cabeça com três quilhas obtusas: uma no supra-occipital e uma de cada lado atrás da órbita; placas à frente da dorsal achatadas medialmente. Abdomem nu. Altura 4.5 cm a 5.0 cm, cabeça 4.0 cm a 4.8 cm no comprimento; olho 3.4 cm a 4.2 cm, focinho 1.0 cm a 1.3 cm, interorbital 1.9 cm a 2.2 cm na cabeça; olho 1.7 cm a 2.2 cm, ramo mandibular 1.8 cm a 2.4 cm no interorbital; acúleo dorsal 1.3 cm a 1.7 cm na distância pré-dorsal; altura do pedúnculo caudal 3.0 cm a 3.3 cm no seu comprimento. Cabeca mais larga que longa. A dorsal atinge a adiposa, a peitoral ultrapassa a base da ventral e está a base da anal. Corpo e nadadeiras cobertas de máculas claras (amarelas ou alaranjadas).

Comprimento: 220 mm

Material examinado: Visceras, brânquias.
ANEXO 2:

TABELA I: VAZÕES MÉDIAS (m³/s) DO RIO PIRACICABA

<table>
<thead>
<tr>
<th></th>
<th>JAN</th>
<th>F EV</th>
<th>MAR</th>
<th>A BR</th>
<th>MAI</th>
<th>J UN</th>
<th>J UL</th>
<th>AG O</th>
<th>SET</th>
<th>OUT</th>
<th>NOV</th>
<th>DEZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1989</td>
<td>262</td>
<td>295</td>
<td>171</td>
<td>115</td>
<td>70</td>
<td>69</td>
<td>62</td>
<td>82</td>
<td>75</td>
<td>56</td>
<td>76</td>
<td>82</td>
</tr>
<tr>
<td>1990</td>
<td>289</td>
<td>83</td>
<td>156</td>
<td>80</td>
<td>73</td>
<td>50</td>
<td>77</td>
<td>57</td>
<td>58</td>
<td>59</td>
<td>55</td>
<td>56</td>
</tr>
<tr>
<td>1991</td>
<td>132</td>
<td>216</td>
<td>236</td>
<td>264</td>
<td>184</td>
<td>109</td>
<td>90</td>
<td>63</td>
<td>56</td>
<td>122</td>
<td>79</td>
<td>126</td>
</tr>
<tr>
<td>1992</td>
<td>86</td>
<td>79</td>
<td>95</td>
<td>72</td>
<td>74</td>
<td>43</td>
<td>41</td>
<td>37</td>
<td>51</td>
<td>108</td>
<td>169</td>
<td>149</td>
</tr>
<tr>
<td>1993</td>
<td>144</td>
<td>240</td>
<td>164</td>
<td>113</td>
<td>89</td>
<td>97</td>
<td>55</td>
<td>50</td>
<td>97</td>
<td>87</td>
<td>53</td>
<td>74</td>
</tr>
</tbody>
</table>

A vazão média do rio Piracicaba na região de estudo é de aproximadamente 107,53 m³/s

TABELA II: TEMPERATURA (EM GRAUS CELSIUS) MÉDIAS REGISTRADAS NA REGIÃO DO RIO PIRACICABA

<table>
<thead>
<tr>
<th></th>
<th>JAN</th>
<th>F EV</th>
<th>MAR</th>
<th>A BR</th>
<th>MAI</th>
<th>J UN</th>
<th>J UL</th>
<th>AG O</th>
<th>SET</th>
<th>OUT</th>
<th>NOV</th>
<th>DEZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1989</td>
<td>24,4</td>
<td>24,7</td>
<td>24,5</td>
<td>23,0</td>
<td>18,7</td>
<td>17,3</td>
<td>16,2</td>
<td>18,5</td>
<td>19,8</td>
<td>20,7</td>
<td>22,7</td>
<td>23,7</td>
</tr>
<tr>
<td>1990</td>
<td>25,6</td>
<td>25,3</td>
<td>24,9</td>
<td>24,1</td>
<td>18,3</td>
<td>17,6</td>
<td>16,7</td>
<td>18,3</td>
<td>19,3</td>
<td>23,7</td>
<td>25,7</td>
<td>24,9</td>
</tr>
<tr>
<td>1991</td>
<td>24,6</td>
<td>24,4</td>
<td>23,3</td>
<td>22,2</td>
<td>19,7</td>
<td>18,9</td>
<td>17,7</td>
<td>20,1</td>
<td>20,7</td>
<td>22,8</td>
<td>24,4</td>
<td>24,7</td>
</tr>
<tr>
<td>1992</td>
<td>24,7</td>
<td>24,6</td>
<td>23,9</td>
<td>21,9</td>
<td>20,7</td>
<td>19,7</td>
<td>18,1</td>
<td>19,0</td>
<td>19,6</td>
<td>22,2</td>
<td>23,0</td>
<td>23,5</td>
</tr>
<tr>
<td>1993</td>
<td>25,3</td>
<td>23,8</td>
<td>24,7</td>
<td>23,2</td>
<td>19,7</td>
<td>18,2</td>
<td>19,1</td>
<td>18,4</td>
<td>21,1</td>
<td>23,6</td>
<td>25,2</td>
<td>24,8</td>
</tr>
</tbody>
</table>

A temperatura média na região foi cerca de 21,83° C
TABELA III. PRECIPITAÇÕES (mm/alt) MÉDIAS NA REGIÃO DO RIO PIRACICABA

<table>
<thead>
<tr>
<th></th>
<th>JAN</th>
<th>FEV</th>
<th>MAR</th>
<th>ABR</th>
<th>MAI</th>
<th>JUN</th>
<th>JUL</th>
<th>AGO</th>
<th>SET</th>
<th>OUT</th>
<th>NOV</th>
<th>DEZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1989</td>
<td>11,9</td>
<td>10,6</td>
<td>3,2</td>
<td>3,4</td>
<td>1,0</td>
<td>1,6</td>
<td>2,7</td>
<td>1,0</td>
<td>1,2</td>
<td>1,5</td>
<td>3,3</td>
<td>6,3</td>
</tr>
<tr>
<td>1990</td>
<td>8,7</td>
<td>5,2</td>
<td>7,7</td>
<td>4,2</td>
<td>1,5</td>
<td>0,4</td>
<td>4,3</td>
<td>1,3</td>
<td>2,0</td>
<td>4,0</td>
<td>4,1</td>
<td>1,9</td>
</tr>
<tr>
<td>1991</td>
<td>8,6</td>
<td>7,7</td>
<td>13,9</td>
<td>4,3</td>
<td>1,3</td>
<td>1,2</td>
<td>0,5</td>
<td>0,1</td>
<td>2,3</td>
<td>2,3</td>
<td>1,9</td>
<td>6,3</td>
</tr>
<tr>
<td>1992</td>
<td>3,2</td>
<td>2,5</td>
<td>7,5</td>
<td>2,6</td>
<td>2,4</td>
<td>0,0</td>
<td>1,2</td>
<td>0,3</td>
<td>2,9</td>
<td>7,8</td>
<td>7,7</td>
<td>4,6</td>
</tr>
<tr>
<td>1993</td>
<td>5,8</td>
<td>8,3</td>
<td>5,0</td>
<td>1,9</td>
<td>3,8</td>
<td>1,6</td>
<td>0,5</td>
<td>1,6</td>
<td>5,1</td>
<td>2,4</td>
<td>3,1</td>
<td>4,7</td>
</tr>
</tbody>
</table>

A precipitação média na região foi de **3,83 mm/alt**

TABELA IV. QUADRO REFERENTE AO pH MÉDIO REGISTRADO NA ÁGUA DO RIO PIRACICABA

<table>
<thead>
<tr>
<th></th>
<th>JAN</th>
<th>FEV</th>
<th>MAR</th>
<th>ABR</th>
<th>MAI</th>
<th>JUN</th>
<th>JUL</th>
<th>AGO</th>
<th>SET</th>
<th>OUT</th>
<th>NOV</th>
<th>DEZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1989</td>
<td>6,8</td>
<td>6,8</td>
<td>6,8</td>
<td>6,8</td>
<td>6,8</td>
<td>6,8</td>
<td>6,9</td>
<td>6,9</td>
<td>6,8</td>
<td>6,9</td>
<td>6,9</td>
<td>6,9</td>
</tr>
<tr>
<td>1990</td>
<td>6,8</td>
<td>6,9</td>
<td>6,8</td>
<td>6,9</td>
<td>6,8</td>
<td>6,8</td>
<td>6,9</td>
<td>6,9</td>
<td>6,9</td>
<td>7,0</td>
<td>7,0</td>
<td>7,0</td>
</tr>
<tr>
<td>1991</td>
<td>6,9</td>
<td>6,9</td>
<td>6,9</td>
<td>7,0</td>
<td>7,0</td>
<td>7,0</td>
<td>7,1</td>
<td>7,1</td>
<td>7,2</td>
<td>7,0</td>
<td>7,0</td>
<td>6,9</td>
</tr>
<tr>
<td>1992</td>
<td>6,9</td>
<td>6,8</td>
<td>6,8</td>
<td>6,8</td>
<td>6,8</td>
<td>6,9</td>
<td>6,9</td>
<td>7,0</td>
<td>7,1</td>
<td>6,9</td>
<td>6,8</td>
<td>6,8</td>
</tr>
<tr>
<td>1993</td>
<td>6,8</td>
<td>6,8</td>
<td>6,8</td>
<td>6,9</td>
<td>6,7</td>
<td>6,8</td>
<td>6,9</td>
<td>6,9</td>
<td>6,7</td>
<td>6,8</td>
<td>6,8</td>
<td>6,8</td>
</tr>
</tbody>
</table>

A água assume características neutras sendo seu pH médio de **6,88**
TABELA V. QUANTIDADES MÉDIAS DE OXIGÊNIO (ppm O₂) DISSOLVIDO NA ÁGUA DO RIO PIRACICABA

<table>
<thead>
<tr>
<th></th>
<th>JAN</th>
<th>FEV</th>
<th>MAR</th>
<th>ABR</th>
<th>MAI</th>
<th>JUN</th>
<th>JUL</th>
<th>AGO</th>
<th>SET</th>
<th>OUT</th>
<th>NOV</th>
<th>DEZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1989</td>
<td>4,37</td>
<td>5,06</td>
<td>4,60</td>
<td>3,99</td>
<td>3,27</td>
<td>3,34</td>
<td>3,02</td>
<td>2,99</td>
<td>2,40</td>
<td>2,73</td>
<td>3,17</td>
<td>2,49</td>
</tr>
<tr>
<td>1990</td>
<td>4,40</td>
<td>3,98</td>
<td>4,20</td>
<td>4,39</td>
<td>4,0</td>
<td>3,20</td>
<td>3,40</td>
<td>2,90</td>
<td>2,80</td>
<td>2,30</td>
<td>2,70</td>
<td>2,50</td>
</tr>
<tr>
<td>1991</td>
<td>3,20</td>
<td>4,70</td>
<td>4,90</td>
<td>5,70</td>
<td>5,80</td>
<td>4,60</td>
<td>4,20</td>
<td>3,30</td>
<td>3,00</td>
<td>1,90</td>
<td>3,30</td>
<td>3,10</td>
</tr>
<tr>
<td>1992</td>
<td>3,20</td>
<td>3,10</td>
<td>2,80</td>
<td>2,70</td>
<td>2,90</td>
<td>2,20</td>
<td>2,30</td>
<td>2,20</td>
<td>2,00</td>
<td>2,50</td>
<td>3,10</td>
<td>4,00</td>
</tr>
<tr>
<td>1993</td>
<td>3,60</td>
<td>4,10</td>
<td>4,70</td>
<td>3,30</td>
<td>2,00</td>
<td>2,20</td>
<td>1,10</td>
<td>1,00</td>
<td>1,60</td>
<td>3,30</td>
<td>1,50</td>
<td>2,10</td>
</tr>
</tbody>
</table>

A média de oxigênio dissolvido na água é cerca de **3,22** ppm.
ANEXO 3:

FIGURA 5 ESQUEMA DE DIMENSIONAMENTO PROPOSTO POR LOM & ARTHUR

Henneguya em visão frontal (A) lateral (B).

CP: comprimento da cápsula polar
Ce: comprimento do esporo
Ca: comprimento do apêndice caudal
Le: largura do esporo
Ee: espessura do esporo
CTe: comprimento total do esporo

Myxobolus em visão frontal (C) e sutural (D) ou lateral.

Figura 5. Esquema de dimensionamento de esporos de mixosporídeos proposto por Lom & Arthur (1989)
SUMMARY

The account of Myxosporea together with a systematic revision, the check-list of already reported brazilian species of myxosporidians, their hosts and their geographical distribution, are presented. Description and illustrations of developmental stages and developmental spores, including remarks of site of infection and distribution of eight species de Myxosporea found by examinations of 96 freshwater fishes of Piracicaba River at Piracicaba municipal district, SP, belonging to four host species (Astyanax bimaculatus, Leporinus reinhardt, Pimelodus maculatus, Serrasalmus spilopleura), are also given. Seven new species and redescription of Myxobolus cunhai Penido, 1927 and the taxonomic affinities of these parasites are discussed. The new species identified in the study belong to one family (Family: Myxobolididae) and two different genera (Henneguya and Myxobolus) include the following: Henneguya sp. 1, Henneguya sp. 2, Henneguya sp. 3, Henneguya sp. 4, Henneguya sp. 5, Myxobolus sp. 1, Myxobolus sp. 2, Myxobolus sp. 3 (= Myxobolus cunhai).
REFERÊNCIAS BIBLIOGRÁFICAS:

