PAULO AFONSO GRANJEIRO

PURIFICAÇÃO E CARACTERIZAÇÃO DE FOSFATASE ÁCIDA DA SEMENTE DE MAMONA (RICINUS COMMUNIS)

Dissertação de Mestrado apresentada ao Departamento de Bioquímica do Instituto de Biologia da Universidade Estadual de Campinas.

ORIENTADOR
Prof. Dr. HIROSHI AOYAMA
Depto de Bioquímica

1998
Granjeiro, Paulo Afonso

G766p Purificação e caracterização de fosfatase ácida da semente de mamona (Ricinus Communis) / Paulo Afonso Granjeiro. -- Campinas, SP: [s.n.], 1998.

80f.: ilus.

Orientador: Hiroshi Aoyama
Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Biologia.

LOCAL E DATA: Campinas, 18 de fevereiro de 1998

BANCA EXAMINADORA

TITULARES:

Prof. Dr. HIROSHI AOYAMA

Prof. Dr. JOSÉ CAMILLO NOVELLO

Prof. Dra. ANGELA E. M. HERRERA

SUPLENTE

Prof. Dra. SATIE OGO
Aos meus pais, Sebastião e Paschoalina, pelo relevante incentivo para a realização deste trabalho.

Aos meus irmãos, Mauro, Vera e André, pelo companheirismo e admiração.

Ao grande amigo, João Roberto, pelo incentivo e determinação.

Dedico este trabalho
AGRADECIMENTOS

Ao prof. Hiroshi Aoyama, pelo acolhimento em seu laboratório e grande importância nas discussões deste trabalho, bem como pela sua particular riqueza interior e experiência no relacionamento íntegro com as pessoas.

Ao prof. Eulávio M. Taga, pela atenção em que me recebeu no Depto de Bioquímica da Faculdade de Odontologia da USP-Bauru para a realização de parte deste trabalho.

Ao pesquisador Ângelo Savin, do Instituto Agronômico de Campinas-IAC, por ter cedido as sementes de mamona utilizadas neste trabalho.

A Satie Ogo, Lúcia Pereira da Silva e José Camilo Novello, pelas discussões e sugestões propostas no Exame de Qualificação.
Ao Mauro e Carmen, pelo grande incentivo e noites em claro para a realização deste trabalho.

A Marilena, Érika, Ana Cláudia, Marília, Thelma, Isabeli, Angélica, Patrícia, Márcio, Adriana, Paulo, Luciana, Maria Eugênia, Rosiane e Francisco (Depto de Bioquímica), amigos da pós-graduação pelo convívio.

Aos estudantes de Iniciação Científica do laboratório de Enzimologia, pelo trabalho em grupo.

A todos amigos da Pós-graduação do Depto de Bioquímica do Instituto de Biologia da UNICAMP.

Muito obrigado aos funcionários e técnicos do Depto de Bioquímica do Instituto de Biologia da UNICAMP e do Depto de Bioquímica da Faculdade de Odontologia da USP-Bauru.
À Sub-comissão de Pós-graduação do Depto de Bioquímica do Instituto de Biologia da UNICAMP.

À FAPESP, pelo auxílio financeiro.

À FAEP/UNICAMP, FAPESP e CNPq, pelo apoio financeiro para a compra de material permanente e de consumo em projetos de pesquisa aprovados.
ÍNDICE

Summary ... i
Resumo ... ii
Abreviaturas .. iii

1. INTRODUÇÃO .. 1
 1.1 Mecanismos de Reação ... 1
 1.2 Distribuição das Fosfatases Ácidas ... 4
 1.3 Localização Celular das Fosfatases Ácidas de Plantas ... 8
 1.4 Características Gerais das Fosfatases Ácidas de Plantas 10
 1.5 Importância do Estudo das Fosfatases Ácidas de Plantas 17

2. OBJETIVOS ... 19

3. MATERIAL E MÉTODOS .. 20
 3.1 Material .. 20
 3.1.1 Reagentes ... 20
 3.2 Métodos .. 21
 3.2.1 Determinação da atividade enzimática .. 21
 3.2.2 Determinação de proteína .. 23
 3.2.3 Obtenção de solução protéica concentrada .. 24
 3.2.4 Tratamento das resinas .. 24
 3.2.5 Purificação ... 24
 3.2.5.1 Obtenção do extrato .. 25
 3.2.5.2 Precipitação em Sulfato de Amônio 90% e Cetônica (1:1) 25
 3.2.5.3 Cromatografia em SP-Sephadex ... 26
 3.2.5.4 Purificação da fração AP1 ... 26
 3.2.5.4.1 Cromatografia em DEAE-Sephadex ... 26
 3.2.5.4.2 Cromatografia em Sephacryl S-200 ... 27
 3.2.5.4.3 Cromatografia em ConA-Sepharose .. 27
 3.2.5.4.4 Armazenamento da enzima .. 28
 3.2.5.5 Estudos eletroforéticos em condições não desnaturantes em pH 8.3 28
 3.2.5.6 Determinação da massa molecular relativa .. 30
 3.2.5.7 Estudos cinéticos ... 30

4. RESULTADOS E DISCUSSÃO .. 33
 4.1 Purificação ... 33
 4.1.1 Obtenção do extrato .. 37
 4.1.2 Precipitação com sulfato de amônio (90%) e Cetônica (1:1) 37
 4.1.3 Cromatografia em SP-Sephadex .. 38
 4.1.4 Cromatografia em DEAE-Sephadex ... 39
 4.1.5 Cromatografia em Sephacryl S-200 ... 39
 4.1.6 Cromatografia em ConA-Sepharose ... 39
 4.2 Estudos Eletroforéticos em Condições Não Desnaturantes pH 8.3 40
 4.3 Determinação da Massa Molecular ... 46
 4.4 Estudos Cinéticos ... 46
 4.4.1 Efeito do tempo de incubação .. 46
 4.4.2 Efeito da concentração da enzima .. 47
4.5 Efeito do pH .. 52
4.5.1 Determinação da Km e Vmax .. 52
4.5.2 Efeito da temperatura na atividade ... 53
4.5.3 Efeito de metais na atividade .. 59
4.5.4 Efeito de compostos na atividade ... 59
4.5.5 Efeito de inibidores .. 61
4.5.6 Estudo da especificidade para substratos .. 62

5. PERSPECTIVAS ... 69

6. REFERÊNCIAS BIBLIOGRÁFICAS .. 70
SUMMARY

The acid phosphatase (E.C. 3.1.3.2) API form has been detected and partially purified from castor bean (*Ricinus communis*) seeds through SP-Sephadex, DEAE-Sephadex, Sephacryl S-200 and Concanavalin A chromatographies. The enzyme was purified to homogeneity 2,100-fold, with a specific activity of 230 μmol min⁻¹. Relative molecular mass, determined by Shim pack diol 150 column (Shimadzu HPLC), was found to be 60 KDa. API presented a carbohydrate moiety in its proteinic structure and binds to concanavalin A Sepharose. The fraction revealed a single phosphatase activity diffuse band on nondenaturing polyacrylamide gel electrophoresis, at pH 8.3.

The acid phosphatase purified from castor bean seeds studied here presented a high activity at pH 5.5. An apparent Km of 0.52 mM was found for p-nitrophenylphosphate, at pH 5.5 and 37°C. Using pNPP as substrate, no effect was observed on the acid phosphatase activity in the presence of EDTA, dithiothreitol, and β-mercaptoethanol. The enzyme was inhibited by inorganic phosphate, fluoride, vanadate, molybdate, Cu²⁺ and Zn²⁺. The castor bean seeds acid phosphatase did not catalyze the transphosphorylation reaction since no stimulation was observed with inorganic phosphate acceptors, such as glycerol, methanol and ethanol.
RESUMO

A fração AP1 da Fosfatase Ácida (E.C. 3.1.3.2.) foi detectada e parcialmente purificada de sementes de mamona (*Ricinus communis*) através de colunas cromatográficas como SP-Sephadex, DEAE-Sephadex, Sephacryl S-200 e Concanaivalina A Sepharose 4B. A enzima foi purificada até a homogeneidade 2.100 vezes, com atividade específica de 230 μmol min⁻¹. A massa molecular relativa, determinada através de coluna Shim pack diol 150 (Shimadzu HPLC), foi de 60 KDa. A fração AP1 apresenta uma porção de carboidrato na estrutura proteica e se liga a resina de Concanaivalina A Sepharose 4B. A fração revela apenas uma banda difusa de atividade por eletroforese em condições não desnaturantes pH 8,3.

As propriedades cinéticas da fosfatase ácida de sementes de mamona foram estudadas e a enzima apresentou alta atividade em pH 5,5. O valor da Km de 0,52 mM foi determinado utilizando p-nitrofenilfosfato como substrato em pH 5,5 a 37°C. Usando o pNPP como substrato, nenhum efeito na atividade fosfatásica foi observado na presença de EDTA, DTT e β-mercaptoetanol. Porém a atividade enzimática foi inibida por fosfato inorgânico, fluoreto, molibdato, vanadato, Cu²⁺ e Zn²⁺. A fosfatase ácida de sementes de mamona não catalisou reações de transfosforilação devido não se ter observado nenhuma estimulação da atividade enzimática utilizando aceptores de fosfato, como glicerol, metanol e etanol.
ABREVIATURAS

A: Absorbância
ADP: Adenosinadifosfato
ATP: Adenosintrifosfato
BSA: Albumina do soro bovino
DTT: Ditiotreitol
E: Enzima
EDTA: Ácido etileno diamino tetracético
FAc: Fosfatase ácida
GSH: Glutationa reduzida
Km: Constante de Michaelis-Menten
Mr: Massa relativa
P ou Pi: Fosfato inorgânico
PAGE: Eletroforese em gel de poliacrilamida
pCMB: p-cloromercúriobenzoato
PEP: Fosfoenolpiruvato
pNP: p-nitrofenol
pNPP: p-nitrofenilfosfato
SDS: Lauril sulfato de sódio
TEMED: N,N,N',N'-Tetrametiletilenodiamina
V_{max}: Velocidade máxima
Purificação e Caracterização de Fosfatase Ácida da Semente de
Mamona (*Ricinus communis*)

1. INTRODUÇÃO

1.1 MECANISMOS DE REAÇÃO

As fosfatases ácidas ou ortofosfato monoéster fosfohidrolases (E.C. 3.1.3.2.) pertencem a uma classe de enzimas que catalisam reações de hidrólise de uma grande variedade de ésteres ortofosfato e reações de transfosforilação (SAEED et alii, 1990), como esquematizado a seguir:

Hidrólise

\[\text{ROPO}_3\text{H}_2 + \text{H}_2\text{O} \xrightarrow{\text{Enzima}} \text{ROH} + \text{H}_3\text{PO}_4 \]

Transfосhосforilação

\[\text{ROPO}_3\text{H}_2 + \text{R}_1\text{OH} \overset{\text{Enzima}}{\xrightarrow{\circ}} \text{ROH} + \text{R}_1\text{OPO}_3\text{H}_2 \]

\(\circ \) Aceptor de fosfato

A fosfatase ácida foi inicialmente observada em eritrócitos (ROCHE, 1931), sendo capaz de hidrolisar a ligação éster do fosfato do monofenilfosfato
e monoalquilfosfato, com pH ótimo entre 5,0 e 6,0, ao contrário da fosfatase de glóbulos brancos que catalisava esta reação com um pH ótimo de 8,8 a 9,0.

A distinção entre as fosfatases ácidas e fosfatases alcalinas, inicialmente era baseada somente no pH ótimo para atividade enzimática. Posteriormente, outras características relacionadas com o mecanismo de reação ajudaram a diferenciar estas duas classes de enzimas. NEUMAN (1968) observou que as fosfatases alcalinas, além da hidrólise dos substratos usuais, catalisavam também a hidrólise de monoésteres S-substituídos de ácido fosforotióiaco $RSPO_3Na_2$ do tipo S-P, produzindo ortofosfato e o tio-álcool correspondente. Já as fosfatases ácidas, por sua vez, catalisam a hidrólise de monoésteres O-substituídos de ácido fosforotióiaco do tipo $ROPO_2SKH$, produzindo o álcool e o tiofosfato. Estes fatos nos permitem visualizar mecanismos de reação diferentes para as duas enzimas, uma vez que a fosfatase ácida requer para sua atividade um oxigênio entre o radical e o fosfato. CHAIMOVICH & NOME (1970) observaram a insensibilidade das fosfatases ácidas à presença de cátions mono e bivalentes no meio de reação, ao contrário das fosfatases alcalinas que requerem metais, principalmente o Mg^{2+}, para sua atividade (REID & WILSON, 1971). VICENT et alii (1992) propuseram outra diferença para estas duas classes de enzimas, sugerindo suas vias catalíticas:
Fosfatase Alcalina

\[E + ROPO_3^{2-} \leftrightarrow E.ROPO_3^{2-} \rightarrow E - PO_4^{3-} + ROH \rightarrow E.Pi \rightarrow E + Pi \]

Fosfatase Ácida

\[E + ROPO_3H_2 \leftrightarrow E.ROPO_3H_2 \rightarrow E - PO_4H_2 + ROH \xrightarrow{H_2O} E + Pi \]

No caso da fosfatase alcalina, em pH acima de 7, o complexo E.Pi é limitante da velocidade e a espécie E-PO_4^{3-} contém um grupo fosfoserina que é lábil em meio básico e estável em meio ácido, característica apropriada para esta fosfatase. No entanto, para a fosfatase ácida, o complexo E.Pi não foi observado, mas provavelmente o mesmo possa ser um intermediário, uma vez que o Pi atua como um inibidor competitivo da reação enzimática. Para a fosfatase ácida de alta massa molecular (vide adiante a classificação) da próstata e gérmen de trigo estes autores sugeriram que o intermediário (E-PO_4H_2) da reação seria a fosfohistidina, que é lábil em meio ácido. Para a fosfatase ácida de baixa massa molecular, embora estudos de modificação química e dependência do pH indiquem que este intermediário também seria a fosfohistidina, relatos na literatura mostram que os grupos sulfidrilas apresentam um papel essencial na catálise, pois estas fosfatases são fortemente inibidas por reagentes que se ligam à estes grupos (LAIDLER et alii, 1982).
1.2 DISTRIBUIÇÃO DAS FOSFATASES ÁCIDAS

A distribuição das fosfatas ácidas na natureza é ampla. Vários aspectos destas enzimas foram estudados em microorganismos (LOVELACE et alii, 1986; SCHELL et alii, 1990; GONZÁLEZ et alii, 1993; HAN et alii, 1994). DIBENEDETTO & COZZANI (1975) purificaram e estudaram algumas propriedades da fosfatase ácida de *Schizosaccharomyces pombe* a qual apresentou uma ampla especificidade pelo substrato e uma massa molecular aparente de 383 kDa, sendo que 66% desta massa correspondia a carboidrato. As propriedades cinéticas desta fosfatase foram similares às de outras leveduras. No entanto, a enzima desta levedura apresentou um pH ótimo menor (3,0), e uma atividade específica 5 a 6 vezes maior que a fosfatase de *Saccharomyces cerevisiae*. Esta diferença na atividade específica da mesma enzima de espécies proximamente relacionadas pode indicar mecanismos de regulação diferentes ou a existência de múltiplas formas enzimáticas com diferente eficiência catalítica. REMALEY et alii (1984) purificaram uma fosfatase ácida resistente ao tartarato, localizada na superfície externa de promastigotas da *Leishmania donovani*, capaz de impedir a produção de ânion superóxido por neutrófilos humanos; isto não foi observado quando a enzima era inativada pelo calor ou quando adicionado inibidor ao meio de pré-incubação, indicando que este efeito é dependente da atividade catalítica da enzima. Estes resultados sugerem um possível papel físico-patológico para a
fosfatase ácida de promastigotas de este microrganismo e oferece uma possível explicação de como o parasito intracelular escapa dos mecanismos usados pela célula hospedeira no processo de inativação do mesmo. Comumente a expressão da fosfatase ácida em microorganismos é controlada por fatores ambientais. Dificilmente é sintetizada na fase de crescimento exponencial mas sim na fase estacionária, sugerindo que sua síntese ocorreria em resposta à limitação de algum nutriente. A privação do fosfato inorgânico extracelular ou a anaerobiose geralmente causam a imediata síntese da enzima (DASSA et alii, 1982).

Os tecidos animais contêm ao menos três tipos de fosfatases ácidas com uma distribuição extremamente variada, podendo ser encontradas em secreções como saliva, sêmen, e em diversos tecidos tais como: próstata, placenta, testículo, cérebro, fígado, coração, baço, glândulas salivares, osso, dente, gengiva, nervos e gânglios nervosos. No sangue, esta enzima pode ser detectada tanto nos eritrócitos e leucócitos quanto no plasma, onde algumas vezes é utilizada como meio de diagnóstico para algumas doenças (para revisão, TAGA, 1979). As fosfatases ácidas de tecidos animais podem ser distintas quanto à massa molecular, localização no interior da célula, especificidade quanto ao substrato e sensibilidade a inibidores. As fosfatases ácidas de alta massa molecular relativa (Mr), maior que 100 KDa, estão geralmente localizadas na fração lisossomal e microssomal das células

Quanto à especificidade pelo substrato, as fosfatases ácidas de baixa massa molecular são altamente específicas, enquanto as de massa molecular alta e intermediária hidrolisam uma ampla variedade de compostos fosforilados (SAEED et alii, 1990). Estas duas últimas podem ainda apresentar metais como ferro, magnésio ou manganês ligados à sua estrutura. Atualmente as FAc de BMr são classificadas como fosfotirosina proteína fosfatases (PTPases).

Nenhuma homologia sequencial foi observado entre esta enzima e FAc, fosfatase alcalina ou outras fosfatases como fosfoserina/treonina proteína fosfatase. Também nenhuma homologia existe entre esta enzima e outras fosfotirosina proteína fosfatases, tanto do tipo receptor (LAR,CD45) quanto
não-receptor (placenta humana PTP1B, cdc25 e cérebro de rato PTP1) exceto para a sequência do sitio ativo CXXXXXXXXRS/T, comum para todas as PTPases. (RAMPONI G. & STEFANI M., 1997).

1.3 LOCALIZAÇÃO CELULAR DAS FOSFATASES ÁCIDAS DE PLANTAS

As fosfatas ácidas de plantas podem ser encontradas na parte intracelular e extracelular. Na segunda, podem estar localizadas na parte externa da parede celular e/ou ser secretadas pela raiz e por células em cultura (UEKI & SATO, 1977; KANEKO et alii, 1990; LEFEBVRE et alii, 1990; DUFF et alii, 1991; LEBANSKY et alii, 1992; MIERNYK, 1992). As enzimas da parede celular têm sido associadas à hidrólise de determinados substratos oferecidos externamente à célula em tecidos não danificados. As fosfatas ácidas extracelulares de raiz poderiam tornar acessível para a absorção uma quantidade adicional de fosfato inorgânico, a partir de sua liberação da matéria orgânica do solo. Neste caso, identificou-se em laboratório, que certos ésteres fosfatos (inositol hexafosfato, inosina monofosfato e glicerofosfato) seriam fontes efetivas de fosfato para o crescimento do trigo, arroz, rabanete (LEE, 1988). NINOMIYA et alii (1977) isolaram, a partir da cultura de célula do tabaco, uma fosfatase ácida extracelular que teve sua atividade aumentada quando cultivada em meio sem fosfato. Uma fosfatase ácida de cultura de células da folha de Brassica nigra (couve-flor) foi purificada por DUFF et alii (1989), e apresentou uma alta atividade sobre o pNPP, ADP, ATP, PEP e atividade moderada para vários outros fosfatos orgânicos; devido à alta afinidade pelo PEP, estes autores a classificaram como uma fosfoenolpiruvato fosfatase. Este resultado fez com que estes autores sugerissem uma possível
participação desta enzima em via de desvio da reação catalisada pela piruvato quinase dependente de ADP em período extenso de privação do fosfato.

Já a enzima intracelular parece ser ubíqua, uma vez que tem sido encontrada em sementes dormientes (CHING et alii, 1987; CHUNG & POLYA, 1992) e em germinação (NISHIMURA & BEEVERS, 1978; HARAGUCHI, 1990), folhas (DE-LEO & SACHER, 1970; RANDALL & TOLBERT, 1971), caules, raízes (PANARA et alii, 1990), tubérculos de estocagem (SUGIURA et alii, 1981; GELLATLY et alii, 1993), flores, frutos (HSU et alii, 1966; KANELLIS et alii, 1989) e culturas de células (PAUL & WILLIAMSON, 1987; VOGELL-I-LANGE et alii, 1989; DUFF et alii, 1994). Das raízes de trigo HASEGAWA et alii (1976) conseguiram isolar e caracterizar parcialmente três fosfatases citoplasmáticas (AP-1, 64 KDa; AP-2, 52 KDa; AP-3, 28 KDa) e duas ligadas à parede celular (AP-4, 62 KDa; AP-5, 30 KDa). As fosfatases ligadas à membrana somente foram extraídas, em parte, após a incubação com NaCl. Estas fosfatases foram separadas por filtração em gel e cromatografia de troca-iônica, as quais apresentaram atividade máxima numa faixa de pH 4,7-5,0 e atuaram sobre uma ampla variedade de substratos, apresentando maior atividade para o ADP e ATP. A capacidade de atuar sobre vários substratos sugere que estas fosfatases seriam importantes para fornecer fosfato para a planta a partir de fosfatos orgânicos presentes no solo. Inibição da atividade enzimática foi observada para metais
como: Hg$^{2+}$, Cu$^{2+}$, Zn$^{2+}$, Co$^{2+}$ e Fe$^{3+}$. A alta extratibilidade pelo NaCl e sensibilidade por alguns cátions, sugerem também que a atividade e liberação destas fosfatases poderiam ser reguladas pelos níveis de alguns cátions no solo.

A localização citoquímica da fosfatase ácida em tecidos vegetais mostrou a presença da enzima na parede celular, retículo endoplasmático, complexo de Golgi, mitocôndria e vacúolo (para revisão, GABARD & JONES, 1986 e LEE, 1988).

1.4 Características Gerais das Fosfatases Ácidas de Plantas

As fosfatases ácidas em plantas têm sido detectadas em formas moleculares múltiplas. PANARA et alii (1990) relataram que das raízes de cevada foi possível separar, em uma coluna de filtração em gel, 5 picos com atividade fosfatásica; três destas enzimas estavam ligadas à parede celular e as outras duas na porção solúvel. STROTHER et alii (1985) analisaram a composição da fosfatase ácida em duas variedades distintas de pólen. Identificaram uma isoenzima ligada à parede celular e duas solúveis, em cada uma das variedades de pólenes estudados. Independentemente da fonte, verificaram propriedades similares entre as enzimas localizadas na parede celular e as solúveis. HARAGUCHI et alii (1990) verificaram por uma combinação de técnicas utilizando colunas de cromatografias e eletroforese em
gel de poliacrilamida, que cotilédones de *Vigna mungo* apresentavam pelo
menos 6 formas de fosfatases ácidas. Em nosso laboratório, FERREIRA
(1995) purificou 4 isoformas de FAc do citoplasma de sementes quiescentes de
soja.

As fosfatases ácidas podem também apresentar diferenças nas
propriedades físico-químicas (DUFF et alii, 1994), tais como:

- *Massa molecular relativa*. A massa molecular relativa de fosfatases
ácidas de plantas varia amplamente de 30 KDa a 300 KDa: 53 KDa para a
fosfatase ácida de cotilédones de soja (ULLAH & GIBSON, 1988); 144 KDa
para a de células de tabaco em cultura (KANEKO et alii, 1990); 200 KDa para
a de embriões de algodão (BHARGAVA & SACHAR, 1987).

- *Ponto isoelétrico*. Geralmente o pl destas fosfatases encontra-se entre
4,3 a 6,7: 4,7 para de proteína de estocagem de hipocotilédones de soja
(DEWALD et alii, 1993); 5,8 para a de sementes de trigo em germinação
(CHENG & TAO, 1989); 6,7 para a de cotilédones de soja (ULLAH &
GIBSON, 1988).

- *Presença de carboidrato na estrutura*. A fosfatase ácida dos tubérculos
de batata purificada por KRUZEL & MORAWIECKA (1982) apresentou
cerca de 17 % do peso total da enzima (66 KDa) de carboidratos tais como:
manose (5,6%), rammose (3,4%), glicose (2,5%), galactose (1,5%) e
glicosamina (3,6%). Em função da natureza glicoprotéica das fosfatases ácidas de plantas, não é surpresa sua ligação com lectinas (proteínas que se ligam reversivelmente e especificamente à carboídratos), particularmente abundantes no gérmen de sementes de gramíneas. Esta ligação normalmente altera a atividade hidrolítica da enzima. FERENS & MORAWIECKA (1985) purificaram de gérmenes de centeio uma fosfatase ácida que foi ativada cerca de 15 a 55% por várias lectinas de plantas, como aglutinina de gérmen de arroz, de soja, de trigo e concanavalina A. Estes autores relataram o decréscimo da Km e aumento da Vmax, bem como o aumento da estabilidade térmica das fosfatases ácidas quando em presença de lectinas. Alteração da atividade enzimática também foi relatada por CONRAD & RUDIGER (1994) para a fosfatase ácida do cogumelo comestível, Pleurotus ostreatus. Neste caso não houve alteração significativa da Km, mas verificou-se um aumento de cerca de 36% da atividade enzimática. Estes resultados sugerem que as lectinas podem ter um importante papel regulador na atividade destas enzimas.

- Presença de mais de uma cadeia polipeptídica. Uma fosfatase das sementes de papoula apresentou uma massa molecular relativa de 106 KDa por filtração em gel. Por eletroforese, em condições desnaturantes, foram observadas duas bandas de proteínas, de massas moleculares relativas de 57 KDa e 63 KDa, mostrando que se tratava de um dímero (CHUNG & POLYA, 1992). BASHA (1984) purificou das sementes de amendoim uma fosfatase
com massa molecular relativa de 240 KDa, sendo que a mesma era composta de 6 subunidades de 42,5 KDa. Estes autores não discutiram a diferença das massas moleculares obtidas em condições nativa e desnaturantes (SDS-PAGE).

- Presença de um centro metálico. SUGIURA et alii (1981) purificaram de tubérculos da batata doce uma fosfatase ácida de cor violeta que apresentou manganês ligado à sua estrutura.

Da mesma maneira que as fosfatases ácidas de mamíferos, as de plantas apresentam um pH ótimo ao redor de 5,0. A temperatura ótima varia de tecido para tecido porém, comumente encontra-se entre 50-60°C. As propriedades cinéticas também variam conforme a fonte e a isoenzima isolada. Parece comum a inibição por metais e fluoretos, a independência de cátions e a inespecificidade para substratos, muito embora haja predileção por ésteres fosfatados, açúcares fosfatados, nucleotídeos e pirofosfato (RENGASAMY et alii; 1981; BASHA, 1984; PASQUALINI et alii, 1992). Quanto à inibição por tartarato, FUJISAWA et alii (1993), compararam a inibição pelo tartarato da fosfatase ácida do fluido seminal com a de fosfatases de tecidos de várias plantas, e observaram que aproximadamente metade das fosfatases de tecidos de plantas superiores incluindo, vegetais e frutas testadas, não foi inibida pelo tartarato, ao contrário da fosfatase do cogumelo que apresentou uma inibição
significativa quando comparada com a inibição da fosfatase ácida do fluido seminal.

Em comum com muitas outras proteínas de plantas, a regulação da síntese e atividade dessas enzimas é modulada por uma variedade de fatores de desenvolvimento e ambientais. Dentre os fatores de desenvolvimento pode-se citar a germinação, que talvez seja o processo em que as fosfatases ácidas tenham uma grande importância, pois neste período, sua atividade está sempre aumentada e, algumas vezes, surge outra isoforma ativa. BISWAS & CUNDIFF (1991), purificaram 4 fosfatases ácidas (AP-I, AP-II, AP-III e AP-IV) das sementes de Vigna sinensis com 96 h de germinação. As frações AP-I e AP-II são proteínas constitutivas, já as frações AP-III e AP-IV, só apareceram depois de 4 a 15 horas de germinação. O aparecimento de novas isoformas durante a germinação, ainda não é entendido; há a hipótese que hormônios como ácido gibérico, ácido abscísico e auxina, importantes na germinação, estejam envolvidos neste processo. GABARD & JONES (1986) mostraram que havia um aumento da atividade de cerca de 3 vezes da fosfatase ácida da camada aleurônica da cevada, quando as mesmas eram embebidas e incubadas por 18 h em tampão contendo 50 μM de ácido gibérico. Outros processos como florescimento, frutificação, senescência também levam a um aumento da atividade fosfatásica (DE-LEO & SACHER, 1970; KANELLIS et alii., 1989). A atividade da enzima pode ser aumentada também por fatores
ambientais como cultivo da planta em altas concentrações de sal, baixa concentração de fosfato e água e também em ferimentos causados à planta (DEWALD et alii, 1992; TADANO et alii, 1993; THEODOROU & PLAXTON, 1993). PAN (1987) isolou e purificou parcialmente 3 fosfatases das folhas do espinafre, cultivado em condições de aumento gradual da força iônica até 300 mM. Das 3 frações, somente uma apresentou um aumento da atividade, quando comparada com as folhas do espinafre cultivado em condições normais. BARRET-LENNARD et alii (1982) mostraram que fosfatases solúveis das folhas de trigo tiveram suas atividades aumentadas, cerca de 6 vezes, quando o trigo foi cultivado em condições de baixas concentrações de fosfato e água.

MacKINTOSH & COHEN (1989) relataram ainda que as técnicas para a identificação e quantificação de proteínas fosfatases em células animais são aplicáveis para as plantas superiores. A respeito destes fatos, poucos relatos
existem sobre a atividade Ser/Thr (Serina/Treonina) proteína fosfatase em plantas. POLYA & HARITOU (1988), purificaram duas proteínas fosfatases do embrião do trigo, as quais hidrolisaram fosfocaseína e histona, mas não atuaram sobre a l-serina-P, l-Treonina-P e l-Tirosina-P. CHENG & TAO, 1989, purificaram até a homogeneidade uma fosfatase neutra (fosfotirosil proteína fosfatase) das sementes de trigo em germinação, que catalisava a hidrólise do pNPP. Esta enzima (glicoproteína) apresentou uma massa molecular relativa de 35 KDa e sua atividade não foi afetada por metais ou altas concentrações de agentes quelantes. Estes autores relataram que esta enzima é distinta da fosfatase ácida de gérmen de trigo, uma vez que esta fosfatase neutra não hidrolisou grupos fosfoseril e fosfotreonil em proteínas. Outro fato importante, é que a enzima apresentou grande similaridade em suas propriedades com fosfotirosil proteínas fosfatases isoladas de várias fontes. A atividade desta fosfotirosil proteína fosfatase foi somente observada na germinação das sementes do trigo, o que levou estes autores a sugerir que esta enzima seria importante para o crescimento e desenvolvimento do trigo.

Em células de mamíferos, algumas fosfatases ácidas purificadas apresentaram atividade de proteína fosfatase, mais especificamente, fosfotirosina proteína fosfatase (LAU et alii, 1987). A importância das proteínas fosfatases se deve a sua participação nos processos de crescimento, diferenciação e proliferação celular, uma vez que as mesmas podem regular a

Especificamente com relação à mamona, não há trabalhos relatando a purificação e estudos cinéticos da FAC deste vegetal. Os únicos trabalhos encontrados citam o aumento da atividade fosfatásica durante a germinação (DUA et alii, 1984, 1985).

1.5 IMPORTÂNCIA DO ESTUDO DAS FOSFATASES ÁCIDAS DE PLANTAS

Apesar de já conhecido que as fosfatases ácidas de plantas têm participação no metabolismo de fósforo, elemento essencial para o desenvolvimento e crescimento normal dos órgãos da planta, não se sabe realmente a função fisiológica dessas enzimas. A determinação precisa da(s) função(ões) in vivo para fosfatases de plantas é dificultada pelos seguintes fatores:
- a heterogeneidade das fosfatases ácidas dentro de um dado tipo celular raramente permite a purificação de todas as frações contendo atividade fosfatásica.

- falta de dados cinéticos para substratos não sintéticos para a maioria das fosfatases estudadas.

- muitas fosfatases são induzidas e as condições e mecanismos para esta indução precisam ser completamente entendidos.

Além do citado acima, quando comparado com mamíferos, existem poucos trabalhos na literatura sobre fosfatases ácidas de plantas, o que torna clara a necessidade de purificar e caracterizar as múltiplas formas de fosfatases a partir de diferentes fontes e tecidos de plantas. Desta forma, talvez essas fosfatases possam ser agrupadas de acordo com determinadas características (especificidade pelo substrato, inibição, ativação, efeito de cátions) como acontece com as fosfatases de origem animal, o que facilitaria o entendimento da(s) função(s) celular(es) dessa importante classe de enzimas de plantas.
2. OBJETIVOS

Neste trabalho escolhemos as sementes de mamona, pois havia um interesse de purificar e realizar estudos cinéticos da fosfatase ácida de outra fonte que não animal. O nosso laboratório possui experiências anteriores em purificação e caracterização da enzima de outra fonte vegetal, isto é, de sementes de soja. Além disto, como já mencionado devido a escassez de estudos da FAc de origem vegetal, a purificação e caracterização da enzima de sementes de mamona, podem trazer contribuição valiosa para melhor entendimento de sua importância nas funções fisiológicas desta enzima.

Em vista disto, propusemo-nos a realizar a identificação e purificação da fosfatase ácida de semente de mamona e em seguida, determinar algumas das suas características cinéticas como:

- Vmax

- Km

- Especificidade pelo substrato

- Efeito da temperatura

- Efeito do pH

- Efeito de potenciais inibidores e outros compostos.
3. MATERIAL E MÉTODOS

3.1 MATERIAL

As sementes de mamonas (*Ricinus communis*, var IAC-80) foram doadas pelo pesquisador Ângelo Savin, seção de oleogenosas do Instituto Agronômico de Campinas (IAC).

3.1.1 Reagentes

Resinas para cromatografia: SP-Sephadex C50-120, DEAE-Sephadex, e ConA Sepharose 4B (Sigma Chemical Co.); Sephacryl-S200 (Pharmacia).

Reagentes para eletroforese: acrilamida, N'-N'-metileno bis-acrilamida, TEMED, persulfato de amônio, azul de bromofenol, fucsina básica, coomassie brilliant blue, fast blue BB, β-naftil fosfato (Sigma Chemical Co.), ácido periódico (Merck).

Substratos: p-nitrofenil fosfato, β-naftil fosfato, flavina mononucleotídeo, tirosina fosfato, serina fosfato, β-glicerofosfato, α-glicerofosfato, AMP, D-glicose-1-fosfato, glicose-6-fosfato, ácido-6-fosfoglicurônico, pirofosfato, ácido fítico, frutose-6-fosfato, frutose-1,6 di-fosfato (Sigma Chemical Co.).

Inibidores: molibdato de amônio, fluoreto de sódio, (E. Merck Darmstadt), o-vanadato, pCMB, piridoxal, tartarato, fosfato inorgânico (Sigma Chemical Co.).
Reagentes para preparo dos tampões: ácido acético, glicina (E. Merck Darmstadt); imidazol, bis-tris, citrato (Sigma Chemical Co.).

Reagentes redutores de tióis: ditiotreitol, glutatonia reduzida, 2-mercaptoetanol (Sigma Chemical Co.).

Padrões para determinação da massa molecular por filtração em gel (Pharmacia).

Os demais reagentes utilizados possuíam grau analítico. Em todos os experimentos foi utilizada água destilada e deionizada.

3.2 Métodos

3.2.1 Determinação da atividade enzimática

Para a determinação da atividade, a amostra foi diluída, imediatamente antes do ensaio, em tampão acetato 100 mM, pH 5.0, de modo a proporcionar uma absorbância em torno de 0.4, no comprimento de onda de acordo com o método utilizado.

A atividade enzimática foi determinada por dois métodos, dependendo do produto formado, p-nitrofenol ou fosfato:

a) Dosagem do p-nitrofenol

A atividade enzimática foi determinada a 37 °C, em presença de pNPP 5 mM, tampão acetato 0,1 M (pH 5.0) e enzima em um volume final de 1 mL. A reação foi paralisada 10 minutos após a adição da enzima, com 1 ml de
hidróxido de sódio 1M. A absorvância foi medida a 405 nm. Uma unidade enzimática (UE) é definida como a quantidade de enzima necessária para produzir 1 micromol de p-nitrofenol por minuto. O coeficiente de extinção molar do p-nitrofenolato é 1.83×10^4 M$^{-1}$cm$^{-1}$ em meio alcalino. A atividade específica (A.E.) é definida como UE por mg de proteína.

Na purificação da enzima, a atividade das frações eluídas nas cromatografias foi determinada utilizando-se um tempo de reação de 2 minutos e pNPP como substrato, conforme as reações abaixo:

$$
\begin{align*}
\text{p - Nitrofenil Fosfato} + \text{H}_2\text{O} & \xrightarrow{\text{Enzima}} \text{p - Nitrofenol} + \text{Fosfato inorgânico} \\
\text{p - Nitrofenol} & \xrightarrow{\text{meio alcalino}} \text{p - Nitrofenolato}^* \\
^* & \text{Absorve em 405 nm}
\end{align*}
$$

b) Dosagem do fosfato

Este método foi utilizado no caso de substratos diferentes do pNPP, os quais foram utilizados numa concentração final de 5 mM.

O procedimento foi como descrito em (a), exceto que a paralisação da reação ocorreu pela adição de 1 mL de molibdato de amônio 3% (em tampão acetato 0.2 M, pH 4.0). A coloração do complexo fosfo-molibdico foi desenvolvida pela adição de ácido ascórbico 1% (em tampão acetato 0.2 M, pH 4.0), como redutor, de acordo com o método descrito por LOWRY & LOPES (1945). A absorvância foi medida a 700 nm, 30 minutos após a adição
do ácido ascórbico. O coeficiente de extinção molar para o complexo reduzido é 4,000 M⁻¹.cm⁻¹ e as reações estão mostradas abaixo:

\[
\begin{align*}
\text{ROP} + \text{H}_2\text{O} \xrightarrow{\text{Enzima}} & \text{ROH} + \text{Fosfato inorganico} \\
\text{Fosfato inorganico} \xrightarrow{\text{Molibdato de Amonio}} & \text{Fosfomolibdado} \\
\text{Fosfomolibdado} \xrightarrow{\text{Ascorbato}} & \text{Azul de Molibdenio} \\
\text{* Absorve em 700 nm}
\end{align*}
\]

3.2.2 Determinação de proteína

A proteína foi quantificada pelo método de Lowry, como descrito por HARTREE (1972), utilizando a albumina de soro bovino como padrão. A reação foi iniciada pela adição de 2,0 mL do Reagente C a 0,2 mL da amostra. Após 10 min, adicionou-se 0,2 mL do Reagente de Folin-Ciocalteau (1:1). A leitura da absorbância foi realizada a 660 nm 30 min após a adição do reagente de Folin-Ciocalteau à temperatura ambiente.

- Reagente A - Carbonato sódio 2% em NaOH 0,1 M
- Reagente B - CuSO₄.5.H₂O 0,5% em Citrato de Sódio 1%
- Reagente C - 1 mL Reagente B + 50 mL Reagente A
- Reagente de Folin-Ciocalteau (diluído 1:1 em H₂O)

O perfil protético das amostras eluídas nas colunas foi estabelecido através da leitura direta da absorbância a 280 nm, de acordo com LAYNE (1957).
3.2.3 **Obtenção de solução protética concentrada**

As soluções contendo mais de 1 mg de proteína por mililitro de solução foram concentradas por precipitação com sulfato de amônio a 90% de saturação. As soluções diluídas das etapas finais da purificação foram concentradas por ultrafiltração a pressão positiva de nitrogênio, em um aparelho AMICON R-402, usando-se membrana do tipo PM-10.

3.2.4 **Tratamento das resinas**

As resinas de troca iônica (SP-Sephadex e DEAE-Sephadex) e de filtração em gel (Sephacryl S-200) foram hidratadas em água, de acordo com FISHER (1969) e, posteriormente, no tampão de equilíbrio, por um período de 24 h.

A resina ConA Sepharose 4B foi equilibrada com tampão acetato 0,1 M pH 5,0.

Antes da montagem das colunas as resinas foram deaeradas a vácuo.

3.2.5 **Purificação**

A metodologia utilizada para a purificação da fosfatase ácida das sementes de mamona foi inicialmente realizada com 100g de sementes a fim de padronizar a técnica de purificação. Uma vez estabelecida a técnica, aumentou-se para 650g a quantidade de sementes utilizadas no processo de purificação.
Todas as etapas que se seguiram foram realizadas a 4°C.

3.2.5.1 Obtenção do extrato

As sementes de mamona (650 g) foram trituradas com casca em liquidificador (Waring - Blender, com o regulador de voltagem em 55) com 2600 mL de tampão acetato de sódio 0,1M, pH 5,0, durante três minutos. O homogeneizado obtido foi centrífugado a 10.000 x g por 20 min em centrífuga refrigerada Beckman J2-21. O sobrenadante foi filtrado em gaze a fim de retirar partículas grosseiras e material insolúvel remanescente, resultando no homogenato.

3.2.5.2 Precipitação em Sulfato de Amônia 90% e Cetônica (1:1)

Ao homogenato obtido foi adicionado lentamente, sob agitação, sulfato de amônia sólido até 90% de saturação (662 g/L). Esta mistura permaneceu sob agitação durante 12h, em seguida, centrífugada a 10.000 x g por 20 min. O precipitado foi ressuspensão em água Milli Q gelada até o volume de 400 mL. A suspensão foram adicionados rapidamente, sob agitação, 400 mL de acetona (-20°C), sendo a agitação mantida por apenas 5 min. Em seguida centrífugou-se a 10.000 x g por 20 min. O precipitado obtido foi ressuspensão em tampão acetato de sódio 0,1M, pH 5,0 e dialisado contra tampão acetato 0,01M, pH 5,0, por 24 h. Após a diálise centrífugou-se novamente a 10.000 x
g por 20 min. Descartou-se o precipitado e o sobrenadante foi utilizado na etapa posterior.

3.2.5.3 Cromatografia em SP-Sephadex

A amostra da etapa anterior (385 mL) foi aplicada a uma coluna de SP-Sephadex (11,5 x 3,0 cm) previamente equilibrada com tampão acetato 0,05 M, pH 5,0. O fluxo da coluna foi mantido em 180 mL/h e foram coletados 12 mL/tubo. Após a aplicação da amostra protéica, a coluna foi lavada exaustivamente com o tampão de equilíbrio até que a absorbância a 280 nm fosse próxima de zero, resultando na obtenção de uma fração contendo atividade enzimática (fração AP1); outra fração contendo atividade (AP2) foi eluída com tampão fosfato 0,25 M, pH 6,0 (gradiente linear descontínuo) e verificou-se que não havia mais outras proteínas com atividade fosfatásica após a eluição da fração AP2. Apenas a fração AP1 foi concentrada por ultrafiltração, uma vez que leitura da proteína apresentou absorbância a 280 nm abaixo de 1,0.

3.2.5.4 Purificação da fração AP1

3.2.5.4.1 Cromatografia em DEAE-Sephadex

A fração AP1 contendo atividade, obtida da cromatografia em SP-Sephadex, foi concentrada por ultrafiltração até 42 mL e aplicada a uma coluna de DEAE-Sephadex (11,5 x 3,0 cm), previamente equilibrada com tampão
Tris-HCl 0,01M, pH 7,5. O fluxo da coluna foi de 180 mL/h e foram coletados 12 mL/tubo. A eluição foi realizada aplicando-se um gradiente linear constituído de 250 mL do tampão de equilíbrio e 250 mL do mesmo tampão contendo NaCl 0,3 M. A fração contendo atividade foi concentrada por ultrafiltração.

3.2.5.4.2 Cromatografia em Sephacryl S-200

A fração concentrada (20 mL), obtida na cromatografia em DEAE-Sephadex, foi aplicada a uma coluna de Sephacryl S-200 (89,0 x 3,0 cm) equilibrada com tampão acetato de sódio 0,1 M e fosfato 0,3 M pH 5,0. Após a penetração da amostra no gel, a cromatografia foi desenvolvida pela passagem do tampão de equilíbrio com fluxo de 60 mL/h, coletando-se 12 mL/tubo. A fração contendo atividade foi concentrada por ultrafiltração.

3.2.5.4.3 Cromatografia em ConA-Sepharose

A fração obtida da etapa anterior foi concentrada até 20 mL e aplicada a uma coluna de ConA-Sepharose 4B (6,0 x 1,3 cm) previamente equilibrada com tampão NaCl 0,25M, pH 5,0 e tampão acetato de sódio 0,1M. A coluna foi então exaustivamente lavada com tampão NaCl 1M, pH 5,0 e acetato de sódio 0,1M. O fluxo da coluna foi de 180 mL/h, coletando-se 12 mL/tubo. O pico de atividade foi eluído com tampão fosfato 0,1M, pH 6,0 contendo α-metilmanopiranósídeo 0,5M pH 6,0. As amostras coletadas que apresentaram
atividade foram reunidas e concentradas por ultrafiltração até o volume de 6mL.

3.2.5.4.4 Armazenamento da enzima

Após a última cromatografia, a fração API foi dialisada contra tampão acetato 0,01M, pH 5,0, concentrada por ultrafiltração e armazenada a -20°C, com 50% de glicerol.

3.2.5.5 Estudos eletroforéticos em condições não desnaturantes em pH 8,3

A mobilidade eletroforética em condições não desnaturantes foi determinada por eletroforese em gel de poliacrilamida 10% de acordo com a técnica de WEBER & OSBORNE (1969).

Os géis de corrida (10%) e de empacotamento (5%) foram preparados em tampão tris-HCl 0,3M (pH 8,8 e 6,8, respectivamente), e colocados para polimerizar em tubos (14,0 x 0,5 cm). Os dois compartimentos da cuba foram preenchidos com o tampão de corrida (0,2M de glicina e 25 mM de Tris pH 8,3). As amostras para a corrida, sendo 12,5 μg da amostra para coloração da atividade e 25 μg da amostra para as colorações de proteína e carboidrato, foram preparadas tomando-se 1 volume de cada amostra e 1 volume do tampão da amostra (10% de glicerol, 0,08% do tampão Tris-HCl 1M, pH 6,8 e 2 gotas do azul de bromofenol 0,2%). Realizou-se uma pré-corrida de 2h utilizando o
mesmo tampão de corrida em uma corrente de 60 mA e, em seguida, correu-se a amostra por 5h na câmara-fria. Durante a corrida da amostra no gel de empacotamento manteve-se uma corrente de 60 mA; no gel de corrida esta corrente foi aumentada para 100 mA. O azul de bromofenol foi utilizado como marcador da corrida. Após o término da corrida os géis foram corados para atividade, proteína e carboidratos.

Para detecção de proteína

A coloração dos géis foi realizada durante 12h com uma solução contendo 500 mg de "Coomassie Brilliant Blue" em uma mistura de 400 mL de metanol, 100 mL de ácido acético glacial e 500 mL de H₂O. A descoloração foi obtida após lavagens sucessivas em uma solução contendo 100 mL de ácido acético glacial, 400 mL de metanol e 500 mL de água deionizada. Logo após os géis foram armazenados com ácido acético 7%.

Para detecção da atividade enzimática

A atividade enzimática foi demonstrada no gel, de acordo com a técnica de GOMES (1978). Após a corrida o gel foi incubado a 37°C em tampão bis-tris (100 mM), pH 6,0, contendo 50 mM de β-naftil fosfato e 1 mg de fast blue BB/mL, até o aparecimento da coloração. Esta variou conforme a concentração de enzima utilizada na corrida. Logo após a coloração, o gel foi descorado por
lavagens em solução contendo 80 mL de ácido acético e 250 mL de etanol por litro e mantido em ácido acético 7%.

Para detecção de Carboidratos

A eletroforese foi realizada como descrito acima. A natureza glicoprotéica foi demonstrada de acordo com a técnica descrita por KORN & WRIGHT (1973). Após a corrida o gel foi fixado por 1 hora em ácido tricloroacético 12,5%, lavado com água deionizada, incubado por 1 hora com ácido periódico 1% em ácido acético 3%, lavado durante 12h com água deionizada, incubado por 1 hora com o reagente de Schiff, lavado repetidamente com metabissulfito 0,5% e mantido nesta solução.

3.2.5.6 **Determinação da massa molecular relativa**

A massa molecular da fração AP1 foi determinada por HPLC (Shimadzu), utilizando a coluna Shim Pack Diol-150, equilibrada com tampão acetato 0,1 M, pH 5,0 contendo 0,25 M de NaCl. Os seguintes marcadores de massa molecular foram utilizados: Ribonuclease B (14,7 KDa), Ovalbumina (43 KDa), BSA (67 KDa) e Glicose Oxidase (152 KDa).

3.2.5.7 **Estudos cinéticos**

Com a fração AP1 purificada, realizaram-se alguns estudos cinéticos, sendo que os resultados mostrados foram obtidos a partir das médias de quadruplicatas.
Efeito do tempo de incubação

A atividade enzimática foi determinada nas condições de ensaio descritas no método 3.2.1.a, exceto que o tempo de reação variou de 1 a 60 minutos, utilizando 0,03 μg de enzima por tubo. Para cada tempo foi feito um controle, sendo que neste tubo o hidróxido de sódio foi adicionado antes da enzima.

Efeito da concentração da enzima

A concentração da enzima foi variada de maneira a obter-se uma absorbância a 405 nm entre 0,1 e 1,0. A atividade foi determinada como descrito no método 3.2.1.a.

Efeito do pH na atividade das frações

O efeito do pH no meio de ensaio foi realizado em meios de incubação preparados com diferentes valores de pH (2,5-9,0). A atividade foi determinada como descrito em 3.2.1.a utilizando 0,03 μg de enzima por tubo, com um controle para cada pH.

Estudo da especificidade

A atividade enzimática da fração sobre alguns compostos fosforilados foi determinada dosando o fosfato liberado no meio de reação como descrito no método 3.2.1.b, utilizando-se 0,03 μg de enzima por tubo. A atividade sobre o pNPP foi considerada como 100%.
Determinação da Km e Vmax

A determinação da atividade da fração purificada foi realizada variando-se a concentração do substrato pNPP (0,05-10 mM), como descrito no método 3.2.1.a. Os valores da Km e Vmax foram calculados pelo ajuste da curva (hipérbole retangular).

Efeito de alguns compostos na atividade

A atividade da fração purificada (Método 3.2.1.a, utilizando 0,031µg de enzima por tubo) foi determinada na presença de metais, potenciais inibidores e outros compostos. A atividade na ausência do composto foi considerada como 100%. Para todos os compostos testados a enzima foi também pré-incubada durante 10 min. Para os inibidores mais potentes foi determinada a atividade residual em função da concentração de inibidor a fim de identificarmos a concentração de inibidor que inibisse 50% da atividade enzimática.

Efeito da temperatura na atividade

O estudo do efeito da temperatura na atividade da fração purificada foi realizado nas condições descritas no método 3.2.1.a, sendo a temperatura variada de 10 a 70°C.
4. RESULTADOS E DISCUSSÃO

4.1 PURIFICAÇÃO

O esquema abaixo mostra as etapas de purificação da fosfatase ácida de sementes de mamona.
Desde a identificação da fosfatase ácida por ROCHE, em 1931, um número imenso de trabalhos relatou a purificação desta enzima a partir de diversas fontes, porém, a grande variabilidade de formas enzimáticas com características próprias, impediu a utilização de uma única técnica para sua purificação. Assim, de acordo com a forma enzimática de interesse e a fonte de estudo, lançou-se mão de procedimentos específicos. Para a purificação da fosfatase ácida de sementes de mamona foram testadas três diferentes variedades de sementes (Tabela 1), escolhendo-se aquela que possuía maior disponibilidade de obtenção, uma vez que não se observou uma diferença significativa na A.E.. Verificamos ainda que não havia grande diferença em preparar o extrato a partir da semente com ou sem casca. Os resultados são resumidos na tabela 1.

TABELA 1

<table>
<thead>
<tr>
<th>Sementes</th>
<th>Volume do extrato mL</th>
<th>UE Total (μmol/min)</th>
<th>Proteína Total (mg)</th>
<th>A.E. (UE/mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IAC 80 sem casca</td>
<td>730</td>
<td>1.515,0</td>
<td>14.060</td>
<td>0,11</td>
</tr>
<tr>
<td>IAC 80 com casca</td>
<td>660</td>
<td>1.538,0</td>
<td>9.854</td>
<td>0,15</td>
</tr>
<tr>
<td>IAC 226 com casca</td>
<td>670</td>
<td>1.228,0</td>
<td>6.700</td>
<td>0,18</td>
</tr>
<tr>
<td>Guarani com casca</td>
<td>640</td>
<td>902,4</td>
<td>6.502</td>
<td>0,14</td>
</tr>
</tbody>
</table>
Escolhemos a variedade IAC 80 e a purificação foi realizada sem retirar as cascas das sementes. Neste ponto contornamos um passo moroso, uma vez que as cascas eram retiradas manualmente, com auxílio de uma espátula.

Foram realizadas previamente preparações a fim de se estabelecer uma metodologia que fosse capaz de fornecer uma boa atividade enzimática, um bom fator de purificação e rendimento. A resina de hidroxiapatita não deu bom resultado sendo, portanto descartada como passo da purificação.

A partir destas tentativas, estabelecemos uma metodologia que tornou possível isolar duas frações de fosfatases ácidas (AP1 e AP2). Foi realizada a purificação da fração (AP1) por apresentar maior atividade específica (AP1: 0,67 UE/mg e AP2: 0,25 UE/mg). A fração AP1 apresentou no final da purificação uma atividade específica de 230 UE/mg de proteína e fator de purificação de 2100 vezes (Tabela 2). Este valor foi compatível e até mesmo superior a outros encontrados na literatura (Tabela 3).

Obteve-se um rendimento final de cerca de 8% para a fração AP1, valor determinado a partir das unidades totais obtidas na primeira etapa da purificação. Mas, se calcularmos o rendimento em relação às unidades totais do Pool 1 da SP-Sephadex, notamos que o rendimento foi de 26%.

Discutiremos a seguir os aspectos mais relevantes de cada etapa do processo de purificação.
TABELA 2

Purificação da Fosfatase Ácida das sementes de mamona.

<table>
<thead>
<tr>
<th>Etapa</th>
<th>Volume (mL)</th>
<th>UE Totais</th>
<th>Proteína Total (mg)</th>
<th>A.E. UE/mg</th>
<th>Purificação (X)</th>
<th>Rendimento (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extrato Bruto</td>
<td>2.140</td>
<td>4.100</td>
<td>36.000</td>
<td>0,11</td>
<td>1,0</td>
<td>100,0</td>
</tr>
<tr>
<td>Precipitação</td>
<td>385</td>
<td>4.768</td>
<td>19.635</td>
<td>0,24</td>
<td>2,2</td>
<td>116</td>
</tr>
<tr>
<td>(NH₄)₂SO₄(90%) e Cetônica (1:1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SP-Sephadex AP1</td>
<td>42</td>
<td>1.260</td>
<td>1.872</td>
<td>0,67</td>
<td>6,1</td>
<td>30</td>
</tr>
<tr>
<td>AP2</td>
<td>320</td>
<td>2.280</td>
<td>8.614</td>
<td>0,25</td>
<td>2,3</td>
<td>55</td>
</tr>
<tr>
<td>DEAE-Sephadex *</td>
<td>20</td>
<td>1.100</td>
<td>378</td>
<td>2,91</td>
<td>26,5</td>
<td>26</td>
</tr>
<tr>
<td>Sephacryl S-200</td>
<td>20</td>
<td>2.094</td>
<td>30</td>
<td>68,43</td>
<td>622</td>
<td>51</td>
</tr>
<tr>
<td>ConA Sepharose</td>
<td>6</td>
<td>336</td>
<td>1.47</td>
<td>230</td>
<td>2.100</td>
<td>8,2</td>
</tr>
</tbody>
</table>

A partir desta etapa só a fração AP1 foi purificada

TABELA 3

Atividade Específica e Grau de Purificação de Diferentes Fosfatases Ácidas de plantas.

<table>
<thead>
<tr>
<th>Fonte</th>
<th>Atividade Específica (UE/mg)</th>
<th>Purificação (X)</th>
<th>Referência</th>
</tr>
</thead>
<tbody>
<tr>
<td>Endospermas de milho</td>
<td>3</td>
<td>6</td>
<td>MIERNYK, 1992</td>
</tr>
<tr>
<td>Coleóptiles de cevada</td>
<td>25</td>
<td>57</td>
<td>PASQUALINI et alii, 1992</td>
</tr>
<tr>
<td>Sementes de amendoim</td>
<td>160</td>
<td>433</td>
<td>BASHA, 1984</td>
</tr>
<tr>
<td>Sementes quiescentes de soja</td>
<td>50</td>
<td>910</td>
<td>FERREIRA, 1995</td>
</tr>
<tr>
<td>Sementes de mamona</td>
<td>230</td>
<td>2.100</td>
<td>Presente Dissertação</td>
</tr>
</tbody>
</table>
4.1.1 Obtenção do extrato

As condições ótimas para a obtenção do extrato foram previamente determinadas no laboratório. O extrato (2140 mL), contendo a enzima solúvel, apresentou 1,91 UE/mL ou 0,11 UE/mg (Tabela 2). Fosfatases ácidas ligadas à parede celular não foram extraídas uma vez que não foi utilizado nenhum reagente como NaCl ou detergente durante a obtenção do extrato.

4.1.2 Precipitação com sulfato de amônio (90%) e Cetônica (1:1)

A precipitação com sulfato de amônio 90% era seguida de diálise contra água antes da precipitação cetônica. Nas tentativas de se aprimorar a técnica de purificação, notamos que é possível realizar esta etapa sem o passo da diálise, o que permitiu um ganho de tempo.

O extrato bruto foi tratado com sulfato de amônio a 90% de saturação para garantir que todas as frações contendo atividade enzimática pudessem ser precipitadas. A precipitação cetônica (1:1) foi de fundamental importância pois pode retirar grande parte dos lipídios presentes, uma vez que as sementes de mamona têm grande quantidade de gordura. Parte da proteína contaminante (aproximadamente 50%) foi eliminada após diálise contra tampão acetato 0,01 M, pH 5,0 e centrífugação. A atividade específica foi de 0,24 UE/mg (Tabela 2).
4.1.3 **Cromatografia em SP-Sephadex**

Através da cromatografia em SP-Sephadex (Figura 1) foi possível separar duas frações contendo atividade (AP1 e AP2), coincidentes com dois picos de proteína. A fração AP1 foi eluída durante a lavagem com o tampão de equilíbrio (tampão acetato 0,05M, pH 5,0) sugerindo portanto, que o pl desta enzima é menor ou igual a 5,0. A fração AP2, foi eluída com tampão fosfato 0,3M, pH 6,0. Normalmente, a eluição de proteínas da coluna de troca iônica é feita pela mudança do pH ou da força iônica. Neste caso, a eluição foi realizada tanto pela mudança de pH quanto por ion afinidade utilizando fosfato de acordo com o método descrito por LAWRENCE & VAN ETTEN, 1981, aproveitando-se a afinidade que o mesmo tem pela enzima, uma vez que é um clássico inibidor competitivo das fosfatases ácidas. Isto fez com que as fosfatases presentes na amostra fossem eluídas, possivelmente, por alteração de suas cargas líquidas e, consequentemente, das suas estruturas conformacionais. Este tipo de eluição é importante pois muitas outras proteínas contaminantes ficaram retidas na coluna. Após esta cromatografia, a fração AP1 apresentou uma atividade específica de 0,67 UE/mg de proteína (Tabela 2). A fração AP2 apresentou um atividade específica de 0,25 UE/mg de proteínas.
4.1.4 **Cromatografia em DEAE-Sephadex**

Este passo foi de fundamental importância pois permitiu purificar ainda mais a fração API (Figura 2), proporcionando uma redução em mais de 40% de proteínas contaminantes. A atividade específica aumentou cerca de 4 vezes para 2,91 UE/mg, enquanto o rendimento caiu para 26% (Tabela 2).

4.1.5 **Cromatografia em Sephsacryl S-200**

A principal função da cromatografia em Sephacryl S-200 foi eliminar uma grande quantidade de proteínas de menor massa molecular (Figura 3), resultando em um aumento expressivo de cerca 24 vezes da atividade específica (Tabela 2) em relação à etapa anterior.

4.1.6 **Cromatografia em ConA-Sepharose**

Esta foi a última cromatografia no processo de purificação (Figura 4). A enzima eluída apresenta uma atividade cerca de 3 vezes maior que na fase anterior, apesar de mais da metade da enzima não ter sido eluída, também observado para as sementes quiescentes de soja (FERREIRA, 1995). A atividade específica e o fator de purificação foram de 230 e 2100 respectivamente (Tabela 2).
4.2 **ESTUDOS ELETROFÓRÉTICOS EM CONDIÇÕES NÃO DESNATURANTES pH 8,3**

A figura 5 mostra a eletroforese realizada em condições não desnaturantes em pH 8,3 da fração API purificada. O gel corado para atividade enzimática (A) apresentou uma banda difusa coincidente com a banda presente no gel B, corado para proteína. A coloração para o Gel C foi feita com o objetivo de confirmar se a fração também seria uma glicoproteína pois, durante a purificação, verificamos que a enzima se ligava à resina de Con-A Sepharose. De acordo com o resultado obtido verificou-se bandas coincidentes nos géis A, B e C.
Figura 1. Cromatografia em SP-Sephadex

A coluna de SP-Sephadex (4,5 x 16,5 cm) foi equilibrada com tampão acetato 0,05 M, pH 5,0. O primeiro pico foi obtido durante a lavagem com o tampão de equilíbrio. A eluição foi realizada através de um gradiente linear descontínuo (tampão fosfato 0,25M, pH 6,0), a partir do tubo 74 e 136, respectivamente. Foram coletados 12 mL/tubo e o fluxo durante a cromatografia foi mantido em 180mL/h.
Figura 2. Cromatografia da fração AP1 em DEAE-Sephadex

A coluna de DEAE-Sephadex (3,0 x 110 cm) foi equilibrada com tampão Tris-HCl 0,01 M, pH 7,5. A eluição foi realizada aplicando-se gradiente linear de NaCl (0,3 M) a partir do tubo 74 coletando-se 12 mL/tubo. Durante a cromatografia, o fluxo da corrida foi mantido em 180 mL/h.
Figura 3. Cromatografia da fração AP1 em Sephacryl S-200

A coluna de Sephacryl S-200 (2,4 x 6,0 cm) foi equilibrada com tampão acetato 0,1 M, pH 7,5 contendo fosfato 0,3 M. A eluição foi realizada com tampão de equilíbrio, coletando-se 12mL/tubo e, durante a cromatografia, o fluxo da corrida foi mantido em 60 mL/h.
Figura 4. Cromatografia da fração AP1 em ConA-Sepharose 4B

A coluna de ConA-Sepharose 4B (1,8 x 5,6 cm) foi equilibrada com tampão acetato 0,1 M, pH 5,0 contendo 0,25 M de NaCl. Logo após, foi passado na coluna, o mesmo tampão contendo 1 M de NaCl. A eluição foi realizada a partir do tubo 47 com tampão fosfato 0,1 M, pH 6,0, contendo 0,5 M de α-Metilmanopiranosídeo. Foram coletados 12 mL/tubo e o fluxo durante a cromatografia foi mantido em 60 mL/h.
Figura 5. Eletroforese em condições não desnaturantes, pH 8,3, da fração AP1.

As amostras foram coradas para atividade enzimática (gel A), proteína (gel B) e para carboidratos (gel C). A quantidade de amostra aplicada no gel A foi de 12,5 μg e nos géis B e C foi de 25 μg. As condições de corrida foram descritas em Métodos 3.2.5.5.
4.3 **Determinação da Massa Molecular**

O perfil de eluição da fração AP1, utilizando a coluna Shim Pack Diol 150 para HPLC (Shimadzu), exibiu um único pico de atividade coincidente com o de proteína (Figura 6). O cálculo da massa molecular relativa (Mr) foi realizado através do gráfico de log Mr x Tr/Tr₀, onde Tr é o tempo de retenção e Tr₀ é o tempo de retenção do Azul de Dextrano (Figura 7), resultando em uma massa relativa de aproximadamente 60 KDa. Este valor é similar ao relatado na literatura para FAc de plantas. PAUL & WILLIAMSON em 1987, utilizando HPLC, determinou a Mr da FAc de cultura de células, sendo de 51 KDa. Através de SDS-PAGE, o valor da Mr da FAc de sementes de algodão foi de 55 KDa (BHARGAVA & SACHAR, 1987).

4.4 **Estudos Cinéticos**

4.4.1 **Efeito do Tempo de incubação**

O estudo do tempo de incubação (Figura 8) nos mostra que a reação é linear até 60 min. Este resultado torna-se importante, pois nos mostra que a FAc mantém uma atividade proporcional em larga faixa de tempo de incubação. Nos experimentos cinéticos, manteve-se o tempo de incubação em 10 min, resultando na hidrólise de cerca de 10% do pNPP utilizado.
4.4.2 **Efeito da concentração da enzima**

Houve grande proporcionalidade entre as concentrações de enzima utilizadas no experimento e a velocidade da reação, mostrando-nos que as condições do ensaio foram adequadas, com relação à concentração de substrato e tempo de incubação, para as concentrações de enzima testadas (Figura 9).
Figura 6. Perfil de eluição da fração AP1 em HPLC
Foi aplicado 20 uL da fração AP1 na coluna Shim Pack Diol (HPLC Shimadzu). O pico de proteína coincide com o pico de atividade enzimática, determinado conforme Métodos 3.2.1.a (não mostrado). O eixo da ordenada mostra os valores obtidos pelo aparelho, em unidades arbitrárias.
Figura 7. Determinação da Massa Molecular.

A Mr foi determinada pela filtração em gel na coluna Shim Pack Diol-150 acoplada a um sistema HPLC (Shimadzu). Foram utilizados os seguintes marcadores de Mr: Glicose Oxidase (152 KDa), BSA (67 KDa), Ovoalbumin (43 KDa) e Ribonuclease B (14,7 KDa).
O ensaio foi realizado conforme descrito em Métodos (3.2.1.a), utilizando o pNPP (5 mM) como substrato. A reação foi iniciada pela adição da enzima (0,03 μg).

O ensaio foi realizado conforme descrito em Métodos (3.2.1.a) utilizando o pNPP como substrato (5 mM) e tempo de reação de 10 min. A reação foi iniciada pela adição do substrato.
4.5 **Efeito do pH**

Estudando-se o efeito do pH (Figura 10), constatamos que o pH ótimo é em torno de 5,5, compatível aos encontrados na literatura (STASWICK, 1994; KANEKO et alii, 1990; CHING et alii, 1987). Em valores de pH acima de 5,5, a atividade começa a decair abruptamente. No pH 2,5 ocorreu ativação da enzima, observado também em FAc de AMr do figado de cobaia (TAGA, 1979) e FAc de BMr de rim bovino (GRANJEIRO, 1994). Este efeito não é devido a hidrólise ácida porque no tubo controle, sem a presença de enzima, não ocorreu a formação de produto e também porque estudos realizados em nosso laboratório demonstraram que quando se utilizou o tampão citrado no mesmo valor de pH não se observou esta ativação, sendo a atividade praticamente zero. Isto indica que provavelmente esta interação esteja relacionada entre a enzima e a glicina.

Observou-se também uma atividade significativa em pH 2,5. Uma atividade enzimática elevada, em meio ácido (pH 2,5), já havia sido descrita para uma fosfatase ácida de *E. coli* (DASSA et alii, 1982).

4.5.1 Determinação da Km e Vmax.

Variando-se a concentração de substrato (pNPP) de 0,050 a 10 mM, obteve-se uma hipérbole retangular típica, compatível com a equação de Michaelis-Menten (Figura 11). A Km para o pNPP foi de 0,52 mM, sendo da
mesma ordem de grandeza de outras FAC de plantas relatadas na literatura: 0,56 mM para embrião de algodão (BHARGAVA & SACHAR, 1987); 0,3 mM para suspensão de células de soja (LEBANSK et alii, 1992); 0,2 mM para sementes de papoula (CHUNG & POLYA, 1992). Uma exceção pode ser observada para cotilédones de soja (ULLAH & GIBSON, 1988), onde a Km era cerca de dez vezes menor. A Vmax para o pNPP foi de 95,8 μmol min⁻¹.

4.5.2 **Efeito da temperatura na atividade**

O efeito da temperatura na atividade enzimática da FAC de mamona foi avaliada medindo-se a taxa da reação, k (μmol min⁻¹), em diferentes temperaturas (10 a 70°C). Na figura 12A, podemos observar que a k é diretamente proporcional à temperatura de 10 a 45°C, apresentando uma grande diminuição na k a partir de 50°C (Figura 12B). Isto nos dá uma temperatura ótima em torno de 45°C, muito menor que a obtida para as FAC purificadas da semente de soja (FERREIRA, 1995), em torno de 70°C.

Utilizando o gráfico de Arrhenius (ln k x T⁻¹), determinamos a energia de ativação para a hidrólise do pNPP como sendo de 55,21 kJ K⁻¹ mol⁻¹ (Figura 13). Este valor é superior ao relatado para as formas AP-I e AP-II do caule em germinação de *Vigna radiata* (DE-KUNDU & BANERJEE, 1990). BISWAS & CUNDIFF (1991), calcularam as energias de ativação de múltiplas formas da fosfatase ácida da semente de *Vigna radiata* em germinação (AP-I, AP-II, AP-III e AP-IV), para a hidrólise do pNPP, como sendo 51,9; 46,9; 25,1; 33,5
kJ mol\(^{-1}\), respectivamente. ZHANG & VAN ETTEN (1991) realizaram estudos de dependência da temperatura para a FAc de baixa massa molecular do coração bovino nos valores de pH 5,0 e 7,0 e revelaram energias de ativação praticamente idênticas para o passo limitante da reação (56,9 e 58,9 kJ.mol\(^{-1}\), respectivamente).
Figura 10. Efeito do pH na atividade da enzima.
O ensaio foi realizado conforme descrito em método (3.2.1.a), utilizando o pNPP (5 mM) como substrato e tempo de reação de 10 min. Os tampões utilizados na concentração de 100 mM, foram: Glicina (pH 2,5 e 9,0), Acetato (pH 3,0 a 5,5), Bis-Tris (pH 6,0) e Imidazol (pH 7,0 e 8,0).
Figura 11. Determinação dos parâmetros cinéticos Km e Vmax.
O ensaio foi realizado como descrito em Métodos (3.2.1.a) utilizando-se diferentes concentrações de pNPP. A reação foi iniciada pela adição de 0,03 μg de enzima. A Km e a Vmax foram calculadas pelo ajuste da curva (Hipérbole retangular).
Figura 12. Efeito da temperatura na atividade fosfatásica.

A atividade enzimática foi determinada como descrito em Métodos (3.2.1.a), em diferentes temperaturas, variando-se o tempo de incubação. Em (A) as temperaturas foram variadas de 10 a 45°C, e em (B), de 50 a 75°C.

Utilizando o gráfico de Arrhenius (ln k x T⁻¹), onde k é a inclinação das retas da Figura 12.A, obtivemos uma energia de ativação de 55,21 kJ K⁻¹ mol⁻¹ para a hidrólise do pNPP.
4.5.3 **Efeito de metais na atividade**

A análise da Figura 14 nos permite verificar que não houve diferença significativa tanto na atividade mesma quando houve pré-incubação por 10 min da enzima na presença de metais (1 mM). A atividade enzimática foi bastante baixa em presença de \(\text{Cu}^{+2} \), \(\text{Zn}^{+2} \) promoveu uma inibição de cerca de 80%, ao passo que \(\text{Fe}^{+2} \) e \(\text{Co}^{+2} \) inibiram em torno de 30%.

Por outro lado, \(\text{Mg}^{+2} \), \(\text{Mn}^{+2} \) e \(\text{Ca}^{+2} \) não provocaram qualquer efeito na atividade da enzima. Isto nos mostra que a enzima não depende destes metais para sua atividade, ao contrário do que ocorre com diversas pirofosfatases e fosfatases alcalinas (KRISHAN & GNANAM, 1988; MAYER et alii, 1961), sendo um dos fatores que permite distinguí-las da fosfatase ácida.

4.5.4 **Efeito de compostos na atividade**

Reagentes redutores de grupos sulfidrilas como DTT, GSH e β-mercaptopetanol não apresentaram efeito considerável sobre a atividade da enzima (Figura 15). Estes reagentes podem até causar um aumento da atividade enzimática por protegerem a enzima da oxidação seus grupos -SH, essenciais para a catálise.

A guanosina, ao contrário da adenina, normalmente é um ativador das FAc. de baixa massa molecular relativa (TANIZAKI et alii, 1977; DISSING et
ali, 1993; GRANJEIRO, 1994). Contudo, nenhum destes compostos, apresentou qualquer efeito na atividade enzimática (Figura 15).

A enzima não foi inibida pelo EDTA (Figura 15) mostrando que a mesma não depende de metal para catalisar a reação, fato já esperado em função da insensibilidade da enzima em presença de Mg$^{2+}$, Ca$^{2+}$ e Mn$^{2+}$ (Figura 15).

Não foram observadas reações de transfosforilação pois, ao invés da ativação característica, ocorreu inibição da atividade na presença dos potenciais aceptores de fosfato: metanol, etanol e glicerol (Figura 15). Em FAc de plantas estas reações não são observadas, ao contrário do que ocorre com FAc de BMr de mamíferos, sendo hoje bem conhecida como uma das características destas FAc (BALDIJÃO, 1972; ZHANG & VAN ETTEN, 1990).

O SDS, detergente aniônico, na concentração de 0,05% inibiu praticamente toda a atividade enzimática (Figura 15), provavelmente devido à alteração da estrutura terciária da proteína, pois, este detergente, faz com que os resíduos hidrofóbicos da proteína fiquem expostos. Exceção a este tipo de inibição observa-se em FAc de feijão que, mesmo na presença de 0,1% de SDS, apresentou ainda 72% de atividade (DE-KANDU & BANERJEE, 1990). O Triton X-100 (detergente neutro) e DTAB (detergente catiônico) não apresentaram efeito. A ativação da enzima por Triton X-100 é comumente encontrada em FAc de BMr de origem animal (GRANJEIRO, 1994) e algumas
vezes em plantas (PANARA et alii, 1992). A fração AP1 da FAc de sementes de soja apresentou 42% de ativação para o Triton X-100, esta ativação possivelmente foi devido a interação deste detergente com o domínio hidrofóbico da enzima (FERREIRA, 1995).

4.5.5 **Efeito de inibidores**

O tartarato (5 mM) não inibiu a atividade enzimática. A não inibição por este composto é comum para FAc de plantas (ROSSI et alii, 1981; PASQUALINI et alii, 1992; FUJISAWA et alii, 1993). A inibição por pCMB (1 mM) e molibdato (0,1 mM) se deve ao fato dos mesmos se ligarem especificamente a grupos -SH livres, essenciais para a catálise enzimática (Figura 16). A inibição de cerca de 15% da atividade pelo piridoxal (0,1 mM), mostra que a enzima não apresenta resíduo de lisina essencial para a catálise, pois este composto forma base de Schiff com estes resíduos, impedindo a reação. O fosfato (10 mM) inibiu 80% da atividade na concentração de 10 mM, o que é comum para as FAc, pois, o fosfato, é um dos produtos da reação e atua como um clássico inibidor competitivo. A inibição por fluoreto (5 mM) foi da ordem de 90%, ligeiramente menor que a observada para as fosfatases da semente de soja (FERREIRA, 1995). Quanto ao vanadato (0,1 mM), este apresentou uma inibição considerável, na ordem de 80%. Dos compostos mencionados, foram selecionados o fosfato inorgânico, molibdato, o-vanadato e o fluoreto para a determinação da concentração do composto que inibe 50%
da atividade enzimática (I₅₀), devido serem os melhores inibidores dentre os testados.

No que diz respeito à determinação dos valores da I₅₀, para o fosfato inorgânico foi de 5,48 mM, molibdato 9,24 x 10⁻⁵ mM, o-vanadato 0,015 mM e fluoreto 0,55 mM (Figura 17).

Podemos observar que o efeito de metais, compostos e inibidores foi instantâneo porque estes apresentaram o mesmo comportamento quando pré-incubados.

4.5.6 Estudo da especificidade para substratos

Utilizando um amplo número de compostos fosforilados disponíveis, principalmente os potencialmente fisiológicos, verificamos que apenas alguns foram significativamente hidrolisados (Figura 18), ao contrário do que acontece com outras FAC de plantas (KAWABE et alii, 1984; BASHA, 1984; DE-KUNDU & BANERJEE, 1990; BISWAS & CUNDIFF, 1991; FERREIRA, 1995). Como era de se esperar para uma enzima pura, não houve hidrólise do ácido fítico, descartando-se possíveis contaminações por fitases, normalmente presentes em plantas (GIBSON & ULLAH, 1988). Dois dos substratos bastante hidrolisados, o pNPP e o β-naftil-P são sintéticos. O composto Tyr-P (tirosina fosfato) foi 60% hidrolisado, apresentando-se como possível substrato fisiológico. Apesar da atividade alta sobre pirofosfato (PPi), a hipótese de se tratar de uma pirofosfatase foi descartada uma vez que estas
são muito específicas para o PPI e, normalmente, não são inhibidas pelo fluoreto, o que as distingue das fosfatases.
Figura 14. Efeito de metais na atividade de fosfatase ácida.

A enzima foi pré-incubada durante 10 min. A atividade foi determinada como descrito em Métodos 3.2.1.b para todos os metais, sendo a reação iniciada pela adição de 0,123 μg de enzima. A atividade na ausência de metais foi tomada como 100%. A concentração dos metais foi de 1 mM.
Figura 15. Efeito de compostos na atividade enzimática.

A enzima foi pré-incubada durante 10 min. A atividade enzimática foi realizada como descrito em Métodos (3.2.1.a), na ausência (controle) ou presença de diferentes compostos. A reação foi iniciada pela adição de 0,03 μg de enzima.
Figura 16. Efeito de inibidores na atividade.
A atividade foi determinada como descrito em Métodos (3.2.1.a) na ausência (controle) ou presença de potenciais inibidores. A reação foi iniciada pela adição de 0,016 μg de enzima.
Figura 17. Efeito da concentração de inibidores na atividade da Fosfatase Ácida de Mamona.

A reação foi realizada com diferentes concentrações de inibidor. A atividade foi determinada como em Métodos (3.2.5.8.) utilizando 0,3 ug de enzima/tubo e pNPP como substrato.
Figura 18. Estudo da especificidade

A atividade da enzima sobre diferentes substratos (5 mM) foi medida através dos Métodos (3.2.1.b). A reação foi iniciada pela adição de substrato e a atividade sobre o pNPP foi tomada como 100%.
5. PERSPECTIVAS

Os resultados obtidos neste projeto são extremamente estimulantes, uma vez que, além de inéditos, abrem uma nova frente de pesquisa em FAC, especialmente com relação ao aprofundamento dos estudos cinéticos.

Isto se deve ao fato de existir pouquíssimos trabalhos sobre a FAC de mamona. Os poucos existentes estão mais voltados aos aspectos fisiológicos.

Dentre nossas observações, será interessante determinar os parâmetros cinéticos para a hidrólise do PPI e Tyr-P. Estudo detalhado de inibidores, determinação dos tipos de inhibição, bem como as constantes para os inibidores mais significativos.

Como esta enzima provavelmente é uma glicoproteína, a determinação da concentração de carboidrato total ou, até mesmo a identificação de seus açúcares constituintes, seria importante.

Do ponto de vista físico-químico, será interessante realizar estudos eletroforéticos em condições desnaturantes a fim de verificar a existência das heterogeneidades características de glicoproteínas.
6. REFERÊNCIAS BIBLIOGRÁFICAS

BALDIJÃO, C.E.M. (1972)-Fosfatase ácida de cérebro de boi. Mecanismo de catálise, Tese de Doutorado, Instituto de Química/USP.

BOROUGHS, H. (1954)-Studies on the acid phosphatases of green leaves,
Arch. Biochem. Biophys., 49:30-42.

BUDDE, R.J.A. & CHOLLET, R. (1988)-Regulation of enzyme activity in

CHAIMOVICH, H. & NOME, F. (1970)-Purification and properties of an

phosphotyrosyl-protein phosphatase from wheat seedlings, *Biochim.

CHING, T. M., LIN, T. P. & METZGER, R. J. (1987)-Purification and
properties of acid phosphatase from plump and shriveled seeds of

CHUNG, R. P-T. & POLYA, G. M. (1992)-Copurification and
characterization of poppy seed phosphatase and phosphoprotein

COHEN, P. (1989)-The structure and regulation of protein phosphatases,

Purification, characterization and interaction with a phosphatase,

DASSA, E. CAHU, M., DESJOYAUX-CHEREL B. & BOQUET, P. L.
(1982)-The acid phosphatase with optimum pH of 2.5 of *Escherichia

De ARAÚJO, P.S.; MIES, V. & MIRANDA, O. (1976)-Subcellular
distribution of low-molecular-weight acid phosphatases, *Biochim.

Purification and characterization of a phosphoenolpyruvate
phosphatase from *Brassica nigra* suspension cells, *Plant Physiol.*, 90:
734-741.

Purification, characterization and subcellular localization of and acid
phosphatase from *Brassica nigra* suspension cells. Comparison with
phosphoenolpyruvate phosphatase, *Arch. Biochem. Biophys.* 286:226-
232.

DUFF, S. M. G., SARATH, G. & PLAXTON, W. C. (1994)-The role of acid
phosphatases in plant phosphorus metabolism, *Physiol. Plant.*, 90:
791-800.

FERENS, M. & MORAWIECKA, B. (1985)-Rye germ acid phosphatase:
properties of the enzyme and its activation by lectins, *Phytochemistry*,
24:2839-2842.

FERREIRA, C. V. (1995)-Purificação e caracterização da fosfatase ácida
de sementes de soja quiescentes, *Tese de mestrado*, Instituto de
Biologia/UNICAMP.

FISHER, L. (1969)-An introduction to gel chromatography. In Laboratory
Techniques in Biochemistry and Molecular Biology, vol. I. Edited by T.
S. Work and E. Work.

Characterization of intermediate-molecular-weight acid phosphatase

FUJISAWA, K., KATSUMATA, Y. & YOSHINO M. (1993)-Human seminal
phosphatase: properties and comparison with plant phosphatases,

GOMES, P. B. (1978)-Caracterização e comparação de fosfatases ácidas, Dissertação de Mestrado, Instituto de Química/U.S.P..

GRANJEIRO, J. M. (1994)-Purificação e caracterização da fosfatase ácida do rim bovino, Tese de mestrado, Instituto de Biologia/UNICAMP.

KANELLIS, A. K., SOLOMOS, T. & MATTOO A. (1989)-Changes in sugars, enzymic activities and acid phosphatase isoenzyme profiles of
bananas ripened in air or stored in 2,5% O₂ with and without ethylene, *Plant Physiol.*, **90**: 251-258.

MIERNYK, J.A., 1992-Purification and characterization of the major acid phosphatase isoyme by maize endosperm cultures, Phytochemistry, 31:2613-2616.

TAGA, E.M. (1979)-Fosfatase ácida de fígado de cobaia: purificação, estudos eletroforéticos e algumas propriedades. Tese de Doutoramento, Instituto de Química/USP.

