KAREN CRISTINE CERONI CAZARIN

Campinas, 23 de Fevereiro de 2006.

Prof. Dr. Flávio Ailton Duque Zambroite
Orientador

AVALIAÇÃO DO RISCO DAS MISTURAS QUÍMICAS PARA A SAÚDE HUMANA:
desafios e perspectivas

CAMPINAS
2006

BIBLIOTECA CENTRAL
DESENVOLVIMENTO
COLEÇÃO
UNICAMP
AVALIAÇÃO DO RISCO DAS MISTURAS QUÍMICAS PARA A SAÚDE HUMANA:
desafios e perspectivas

Dissertação de Mestrado apresentada à Pós-Graduação
da Faculdade de Ciências Médicas da Universidade
Estadual de Campinas, para obtenção do título de Mestre
em Saúde Coletiva.

ORIENTADOR: PROF. DR. FLÁVIO AILTON DUQUE ZAMBRONE

CAMPINAS
2006
Cazarin, Karen Cristine Ceroni

Orientador: Flávio Ailton Duque Zambrone
Dissertação (Mestrado) Universidade Estadual de Campinas. Faculdade de Ciências Médicas.

Título em inglês: Human health risk assessment of chemical mixtures: challenges and perspectives

Keywords: • Risk assessment
• Pesticide
• Toxicity

Área de concentração: Epidemiologia

Titulação: Mestrado

Banca examinadora: Prof Dr Flávio Ailton Duque Zambrone (Orient.)
Prof Dr Satoshi Kitamura
Profa. Dra. Ione Pellegatti Lemonica

Data da defesa: 23/02/2006
BANCA EXAMINADORA DA DISSERTAÇÃO

Orientador: Prof Dr Flávio Ailton Duque Zambrone

Membros:

1. Prof. Dr. Flávio Ailton Duque Zambrone

2. Prof. Dr. Satoshi Kitamura

3. Profa. Dra. Ione Pellegatti Lemonica

Curso de Pós-Graduação em Saúde Coletiva da Faculdade de Ciências Médicas da Universidade Estadual de Campinas

Campinas, 23 de fevereiro de 2006
DEDICATÓRIA

Aos meus pais queridos, Luiz e Shirley, pelo apoio incansável e vigoroso.

Ao meu esposo Rafael, pela dedicação e carinho.
AGRADECIMENTOS

A Deus pelo surpreendente dom da vida e pelas possibilidades que ela nos propicia.

Ao meu orientador, Prof. Dr. Flávio Zambrone, pela convivência, ensinamentos e oportunidades.

Ao Dr. Richard Hertzberg e Dr. Christopher Borgert, pelo material científico e pelas discussões realizadas.

Aos Profs. Drs. Ione Lemonica, Satoshi Kitamura e Ângelo Trapé, pela análise minuciosa e valiosas sugestões.

À minha amiga e mestre, Cristiana L. Corrêa, pelo apoio e sugestões.

À Mariana Soares pelo auxílio na normalização das referências.

Aos meus colegas de turma, pelos bons momentos de convivência e intensas discussões.

Aos professores do Departamento de Medicina Preventiva e Social, pelos ensinamentos.

À minha família, aos meus amigos, às minhas colegas de trabalho e a todos que me apoiaram para a concretização desse trabalho.

Agradeço pelos desafios existentes, pela vontade, pela perseverança e pelas conquistas dignas da luta...
“Saber para melhor sentir, sentir para melhor fazer.”

(Paul Cézanne)
<table>
<thead>
<tr>
<th>SUMÁRIO</th>
<th>PÁG.</th>
</tr>
</thead>
<tbody>
<tr>
<td>RESUMO</td>
<td>xxxv</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>xxxix</td>
</tr>
<tr>
<td>1- INTRODUÇÃO</td>
<td>33</td>
</tr>
<tr>
<td>2- OBJETIVOS</td>
<td>47</td>
</tr>
<tr>
<td>2.1- Objetivo geral</td>
<td>49</td>
</tr>
<tr>
<td>2.2- Objetivos específicos</td>
<td>49</td>
</tr>
<tr>
<td>3- MÉTODO</td>
<td>51</td>
</tr>
<tr>
<td>4- RESULTADOS E DISCUSSÃO</td>
<td>55</td>
</tr>
<tr>
<td>4.1- Programas internacionais para a evolução da avaliação de misturas químicas</td>
<td>57</td>
</tr>
<tr>
<td>4.1.1- Estados Unidos</td>
<td>58</td>
</tr>
<tr>
<td>4.1.2- Europa</td>
<td>62</td>
</tr>
<tr>
<td>4.2- Método proposto internacionalmente para a condução da avaliação do risco das misturas químicas</td>
<td>65</td>
</tr>
<tr>
<td>4.3- Modelo de avaliação do risco para misturas simples</td>
<td>69</td>
</tr>
<tr>
<td>4.4- Dados iniciais para a condução da avaliação do risco à saúde das misturas simples a partir de seus componentes</td>
<td>72</td>
</tr>
<tr>
<td>4.5- Origem dos dados toxicológicos para a condução da avaliação do risco para misturas simples a partir de seus componentes</td>
<td>73</td>
</tr>
<tr>
<td>4.5.1- A contribuição dos estudos de toxicidade</td>
<td>74</td>
</tr>
<tr>
<td>4.5.2- Conhecendo o modo de ação</td>
<td>76</td>
</tr>
</tbody>
</table>
4.5.3- O estudo das interações químicas..78
4.5.4- A extrapolação das interações nas altas doses para as baixas doses..88
4.5.5- Outros dados utilizados para prever a toxicidade.........................93

5- CONCLUSÃO..95

6- REFERÊNCIAS BIBLIOGRÁFICAS..99

7- APÊNDICE...123
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACGIH</td>
<td>American Conference of Governmental Industrial Hygienists</td>
</tr>
<tr>
<td>ANVISA</td>
<td>Agência Nacional de Vigilância Sanitária</td>
</tr>
<tr>
<td>ATSDR</td>
<td>Agency for Toxic Substances and Disease Registry</td>
</tr>
<tr>
<td>BIREME</td>
<td>Biblioteca Virtual em Saúde</td>
</tr>
<tr>
<td>CDC</td>
<td>Centers for Disease Control</td>
</tr>
<tr>
<td>FDA</td>
<td>Food and Drug Administration</td>
</tr>
<tr>
<td>FOSIE</td>
<td>Food and Safety in Europe</td>
</tr>
<tr>
<td>FQPA</td>
<td>Food and Quality Protection Agency</td>
</tr>
<tr>
<td>IBAMA</td>
<td>Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis</td>
</tr>
<tr>
<td>ILSI</td>
<td>International Life Institute</td>
</tr>
<tr>
<td>MOAEL</td>
<td>Minimum observed adverse effect level (nível de mínimo efeito adverso observável)</td>
</tr>
<tr>
<td>LILACS</td>
<td>Literatura Latino-Americana e do Caribe me Ciências da Saúde</td>
</tr>
<tr>
<td>LOAEL</td>
<td>Lowest observed adverse effect level (menor nível de efeito adverso observável)</td>
</tr>
<tr>
<td>MEDLINE</td>
<td>Literatura Internacional em Ciências da Saúde da National Library of Medicine (Biblioteca Nacional de Medicina dos Estados Unidos)</td>
</tr>
<tr>
<td>NAS</td>
<td>National Academy of Science</td>
</tr>
<tr>
<td>NERI</td>
<td>Danish Environmental Research Institute</td>
</tr>
<tr>
<td>NIEHS</td>
<td>National Institute of Environmental Health Sciences</td>
</tr>
<tr>
<td>NIOSH</td>
<td>The National Institute for Occupational Safety and Health</td>
</tr>
</tbody>
</table>
NOAEL
No observed adverse effect level (nível de efeito adverso não observável)

NoMIRACLE
Novel Methods for Integrated Risk Assessment of Cumulative Stressors in Europe

NRC
National Research Council

OECD
Organisation for Economic Co-Operation and Development

OSHA
Occupational Safety and Health Act

PUBMED
Base de dados do MEDLINE

REA
Relação estrutura-atividade

SCIELO
Scientific Eletronic Library On Line

SIA
Sistema de Informação de Agrotóxicos

SOT
Society of Toxicology (Sociedade de Toxicologia Norte Americana)

TNO
Nutrition and Food Research of Netherlands

USEPA
United States Environmental Protection Agency (Agência de Proteção Ambiental dos Estados Unidos)

WHO
World Health Organization (Organização Mundial da Saúde)
<p>| Figura 1- | Modelo de saúde pública | 38 |
| Figura 2- | Etapas envolvidas no método proposto de avaliação do risco de misturas baseados na disponibilidade e qualidade dos dados segundo USEPA | 68 |
| Figura 3- | Fluxograma decisório para escolha do método de avaliação do risco de mistura química de acordo com a natureza e disponibilidade dos dados | 71 |
| Figura 4- | Modelo de isobolograma para avaliação de interação de substâncias químicas | 84 |</p>
<table>
<thead>
<tr>
<th>Quadro 1-</th>
<th>Misturas de praguicidas registradas no Brasil</th>
<th>44</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quadro 2-</td>
<td>Principais forças-tarefa nos Estados Unidos e publicações de métodos para a avaliação do risco das misturas químicas</td>
<td>61</td>
</tr>
<tr>
<td>Quadro 3-</td>
<td>Principais forças-tarefa na Europa e publicações de métodos para a avaliação do risco das misturas químicas</td>
<td>64</td>
</tr>
<tr>
<td>Quadro 4-</td>
<td>Definições e terminologia acerca das interações</td>
<td>82</td>
</tr>
</tbody>
</table>
RESUMO
O Homem está exposto diariamente a substâncias de diferentes naturezas no seu cotidiano, sendo que essa exposição múltipla pode ocorrer simultaneamente ou sequencialmente a um conjunto de substâncias, a partir do seu uso e da liberação dessas no ambiente. Por essa razão, a preocupação quanto aos métodos empregados na avaliação do risco para a saúde humana para as misturas químicas, tem sido crescente. As substâncias presentes em uma mistura podem ou não interagir entre si e alterar suas características químicas e toxicológicas. Na avaliação do risco de misturas, o interesse não é apenas identificar a toxicity (ou perigo) de um componente, mas a possível interação que os componentes possam apresentar e sua implicação na determinação dos níveis aceitáveis de exposição. O objetivo do trabalho foi analisar criticamente o método proposto de avaliação do risco para a saúde humana para as misturas simples, no que diz respeito às etapas que envolvem a análise dos dados toxicológicos da mistura ou de seus componentes. O estudo foi desenvolvido segundo o método exploratório e pesquisa bibliográfica, sendo investigadas as propostas internacionais de avaliação, com a finalidade de apontar os principais benefícios e limitações de cada modelo proposto. Assim, foi possível identificar particularidades relativas ao modelo padrão de avaliação utilizado para substâncias isoladas e concluir que, para as misturas, o método de avaliação do risco para a saúde humana deve ser abrangente o suficiente para contemplar a necessidade científica, mas não austero a ponto de limitar as discussões caso-a-caso e de perpassar os limites da ciência.
ABSTRACT
The human being has been exposed to chemicals daily by different sources because the activities of their quotidian. This multiple exposure can occur concomitantly or sequentially by a group of chemicals due to their use and the release to the environment. For this reason, the methods applied to assess the risk of chemical mixtures, have been asked. The chemicals which compose a mixture could or not interacting changing their chemical and toxicology characteristics. In the risk assessment of mixtures, the goal is not just identify the toxicity (or hazard) of the components, but the interaction that can occur between themselves and the impact to determine acceptable limits of exposure. The goal of this study was scrutinize the method internationally purposed to assess the risk for human health by the exposure to simple mixtures, mainly about the stages related to toxicological data of mixtures or of their components. This study was done by exploratory method and by bibliographic investigation. The discussion of those international purposes focused on the main advantages and the limitations of each model, being possible identify the differences between the standard models of risk assessment to single chemicals. It was possible to conclude to the mixtures, that the method to evaluate the risks to human health must be so ample to regard the scientific necessity, but not so strict to limit the case-by-case evaluation and not to permit extrapolate the limits of science.
1- INTRODUÇÃO
O conhecimento de que o uso de substâncias químicas pelo homem pode levar a diversos tipos de prejuízo para a saúde impulsionou a comunidade científica ao estudo mais detalhado dos fatores que exercem direta contribuição no processo de avaliação do risco, com a finalidade de promover a proteção à saúde.

A maior evolução na avaliação da segurança das substâncias foi resultado da influência das necessidades governamentais para a regulamentação de produtos. A preocupação com o estudo da toxicidade das substâncias e com suas consequências para a saúde foi intensificada em meados do século XVIII e século XIX, a partir da revolução industrial, devido ao resultado da produção e da liberação, em grande escala, de novas substâncias no ambiente (GALLO, 1996).¹

Diversas leis que controlam a produção, o uso e a liberação de substâncias no ambiente foram elaboradas ao longo dos anos. Atualmente, a regulamentação de produtos químicos normalmente envolve a avaliação por meio da análise individualizada de seus componentes. Entretanto, as exposições reais, ao contrário, provém da combinação de agentes biológicos, químicos e físicos que podem influenciar na manifestação dos efeitos adversos sobre o organismo. Em geral, a exposição ocorre principalmente através do consumo de alimentos e de água, da exposição ambiental, residencial e ocupacional (HERTEZBERG et al, 2000; MONOSSON, 2005; SEXTON et al, 1995).

Apesar de o método de avaliação do risco conduzido para substâncias isoladas ser uma ferramenta importante e geralmente aceita com a finalidade da proteção ambiental e da saúde humana, a validade e a abrangência do mesmo vem sendo estudada devido à particularidade das condições reais de exposição aos produtos químicos (VAN ZORGE, 1996).

As tentativas de predizer os efeitos causados por diversos tipos de misturas vêm interessando farmacologistas e toxicologistas por décadas. Na farmacologia, um dos desafios tem sido desenvolver métodos que possam predizer se a combinação de

medicamentos poderá interagir adversamente, aumentando sua toxicidade ou reduzindo sua eficácia (BORGERT, 2004).

Na toxicologia, o desafio primordial tem sido desenvolver métodos para predizer a toxicidade resultante da exposição combinada a diversas substâncias presentes no meio ambiente, através do ar, da água, dos alimentos, dos medicamentos e de outros produtos de consumo. Esses desafios são formidáveis do ponto de vista biológico, químico e estatístico e apresentam significativos obstáculos para a formulação dos métodos para a avaliação do risco da exposição às misturas (BORGERT, 2004).

Para determinar a ocorrência de efeitos nocivos sobre uma população exposta, a avaliação do risco de substâncias químicas isoladas tem sido uma ferramenta muito utilizada. Esse método inclui diversos elementos, que seguem a própria definição do risco: a descrição dos efeitos adversos à saúde baseada na avaliação de resultados de estudos epidemiológicos, clínicos e toxicológicos; na extrapolação de resultados desses estudos para predizer o tipo e estimar a amplitude desses efeitos nos seres humanos sob determinadas condições de exposição; em julgamentos tais como o número e particularidades das pessoas expostas nas diversas intensidades e durações. Além disso, a avaliação deve incluir as incertezas inerentes ao processo de inferência do risco (NATIONAL RESEARCH COUNCIL, 1983).

Para estimar o risco, baseado nessas premissas, um método que envolve diversas etapas deve ser conduzido. A base dessa avaliação inclui, portanto, o conhecimento da capacidade da substância de causar efeitos nocivos (toxicidade ou perigo) e as condições em que determinada população estará em contato com o produto (exposição): via, duração e frequência.

A toxicidade pode ser definida como a capacidade inerente e potencial de determinada substância em causar efeitos nocivos a um organismo vivo. Esses efeitos só se manifestam se ocorrer o contato ou exposição desse organismo à substância que apresenta essa propriedade. Esse contato pode ocorrer através de diversas vias (oral, dérmica, inalatória, ocular) por período de tempo variável, de acordo com as condições de uso do produto ou mesmo devido à exposição não-intencional.

Introdução

36
O risco é definido, portanto, como a probabilidade de ocorrência de um efeito nocivo em um organismo vivo (perigo), em determinadas condições de exposição.

O processo de avaliação do risco para a exposição às substâncias isoladas abrange quatro etapas principais (NATIONAL RESEARCH COUNCIL, 1983):

1) **Identificação do Perigo**: identifica os efeitos tóxicos em um sistema biológico causados pela exposição a um agente químico (ex: câncer, malformações, hepatotoxicidade, etc.). A maior parte desses efeitos é determinada em estudos em animais de laboratório ou em outros sistemas teste com a finalidade de se avaliar os órgãos-alvo de toxicidade, o tipo de resposta tóxica e o mecanismo de toxicidade, nas diferentes condições e magnitudes de exposição nos modelos experimentais.

2) **Avaliação Dose-Resposta**: caracteriza a relação entre a dose de um agente químico que entrou em contato com o sistema teste e a incidência de efeitos adversos para a saúde na população exposta. A avaliação dose-resposta geralmente requer a extrapolação das altas doses testadas nos animais de laboratório para as baixas doses de exposição humana. É nessa etapa que os métodos de extrapolação utilizados para predizer a incidência de efeitos na população humana e caracterizar as incertezas estatísticas e biológicas devem ser descritos e justificados.

3) **Avaliação da Exposição Humana**: etapa em que a exposição ao agente químico é medida ou estimada, considerando sua magnitude, frequência, duração e via, assim como o tamanho e a natureza das populações humanas expostas ao agente.

4) **Caracterização do Risco**: etapa na qual a incidência de efeitos para a saúde é estimada sob as diversas condições de exposição humana descritas na etapa anterior. É desenvolvida em combinação com a avaliação dose-resposta e a avaliação da exposição. É nessa etapa que as incertezas identificadas nas etapas anteriores devem ser consideradas.
A avaliação do risco não deve ser conduzida se, na primeira etapa, *(Identificação do Perigo)* nenhum efeito tóxico tenha sido observado, uma vez que uma substância que não age adversamente sobre um sistema biológico, não oferece riscos à saúde humana *(NATIONAL RESEARCH COUNCIL, 1983)*.

O método de avaliação do risco às substâncias químicas contribui para a análise prévia da relação risco-benefício da exposição em uma população. Além disso, esse método é útil para a determinação de um nível de exposição seguro, ou seja, exposição essa que não cause prejuízo à saúde da população. Sendo assim, esse método de avaliação é imprescindível para a manutenção da saúde pública.

O modelo de saúde pública prevê três níveis principais de atuação (Figura 1), sendo o de maior prioridade, o de nível da prevenção, já que antecipa a possível ocorrência de efeitos nocivos. O segundo, envolve as medidas de intervenção na população acometida, quando a prevenção primária falha. A remediação e o tratamento dos indivíduos são os últimos recursos, os quais requerem tratamento profissional dos prejuízos e incapacidades dos indivíduos acometidos *(SEXTON et al, 1995)*.

![Figura 1- Modelo de saúde pública (adaptado de SEXTON et al, 1995).](image-url)
As decisões de aceitabilidade de uma população aos riscos, inclusive da exposição às misturas químicas, devem ser, portanto, guiadas pelos princípios da saúde pública. Porém, estas dependerão da consistência das informações e de sua exatidão e confiabilidade, quanto aos dados de exposição, dos efeitos para a saúde e da relação entre esses dois parâmetros (SEXTON et al, 1995).

Portanto, o conhecimento dos efeitos adversos causados por exposições às misturas deve ser parte integrante da proteção à saúde pública (SEXTON et al, 1995). Para isso, torna-se essencial a estimativa do risco, voltada especificamente às particularidades das misturas químicas.

Segundo o dicionário Michaelis (2005), uma mistura é definida como “a união em proporções indefinidas, e sem combinação química, de corpos que conservam as suas propriedades específicas”.

O dicionário on-line Websters conceitua uma mistura como “um produto que consiste de duas ou mais substâncias conjuntas, não em proporções fixas e que não sofram interação química” (WEBSTER’S ONLINE DICTIONARY WITH MULTILINGUAL THESAURUS TRANSLATION, 2005).

A Agency for Toxic Substances and Disease Registry (2004) conceitua mistura como “qualquer combinação de duas ou mais substâncias, independente da origem ou proximidade espacial ou temporal que pode contribuir para um efeito potencial em uma população receptora”.

Diversas terminologias e definições têm sido propostas internacionalmente no campo das misturas, a fim de esclarecer qual tipo de combinação deverá ser considerada nas avaliações internacionalmente propostas.

1) **Misturas simples**: combinação de duas ou mais substâncias conhecidas e quimicamente identificáveis. Quando uma mistura é formada de dois componentes apenas, a mesma é conceituada como *mistura binária*.

Exemplos: produtos comerciais (saneantes, praguicidas, cosméticos, etc...) ou misturas provenientes da exposição a múltiplos agentes no ambiente de trabalho.

2) **Misturas complexas**: combinação de grande quantidade de substâncias (centenas de milhares), não sendo todas conhecidas e nem sempre podendo ser quimicamente identificadas.

Exemplos: destilados de petróleo, vapores de fundição e de solda, aminas heterocíclicas, produtos de combustão de derivados de petróleo (diesel), partículas sólidas, fumaça de cigarro, poeira de madeira, entre outros.

Na Europa, outras definições foram propostas. Segundo o Conselho de Saúde da Holanda (*Health Council*), a distinção prática para determinar as conseqüências da exposição às combinações de substâncias está entre combinações especificadas ou definidas e as misturas. Essa definição estabelece que todas as substâncias que compõem as combinações definidas sejam conhecidas, o que pode não acontecer em uma mistura (JONKER et al, 2004).

A principal característica de uma mistura é, portanto a simultaneidade da exposição aos seus constituintes, como resultado de sua ocorrência combinada. O campo das misturas abrange as substâncias que estão presentes de forma simultânea no determinado momento da exposição humana, seja uma combinação ou associação em um produto de origem industrial, seja no meio ambiente, como resultado da exposição simultânea às substâncias isoladas, seja em uma atividade industrial ou ocupacional.

No ambiente, as misturas químicas também podem se formar como resultado de um processo de transformação. A composição e a quantidade de misturas presentes no meio podem sofrer alterações se os componentes forem susceptíveis a processos de degradação como fotólise, hidrólise e biodegradação. Essas reações de transformação podem ocorrer no solo, no ar, e na água (ENVIRONMENTAL..., 2001). Entretanto, o estudo desse tipo de
formação ambiental das misturas não será o foco desse trabalho, sendo este voltado àquelas combinações que ocorrem a partir da mistura intencional de substâncias nos produtos comercializados, em especial às misturas simples.

Nesta monografia, o termo misturas será considerado como qualquer combinação entre substâncias químicas, proveniente da composição de produtos comerciais (misturas planejadas).

As substâncias presentes em uma mistura, homogênea ou heterogênea, podem ou não interagir quimicamente entre si, podendo alterar suas características químicas e toxicológicas.

A interação pode ocorrer intrinsecamente na própria mistura, sendo que os seus constituintes podem interagir quimicamente, gerando outros produtos com toxicidade diferenciada dos originais.

Ou então, a interação entre os componentes pode ocorrer biologicamente, após a exposição à mistura, interferindo no comportamento cinético desses compostos ou na ligação com os sítios de ação.

Portanto, na avaliação do risco de misturas, o interesse não é apenas avaliar a toxicidade (ou perigo) de um componente, mas também a possível interação que os componentes possam apresentar e sua implicação na determinação dos níveis aceitáveis de exposição. A partir do conhecimento da ação combinada, e dos conceitos de interação ou não-interação de seus constituintes, diversos métodos para a condução da avaliação do risco das misturas químicas têm sido propostos.

Para descrever uma combinação relacionada à não-interação de seus componentes, termos como aditividade de resposta, aditividade de dose e interação zero são utilizados (KÖNEMMAN, PIETERS, 1996).

A não-interação é postulada por dois princípios básicos introduzidos por Loewe em 1929 e por Bliss em 1939.
A aditividade de Loewe é baseada no conceito de que um agente não pode interagir com si próprio. Assim, Loewe assumiu que dois compostos que não interagem comportam-se como diluições um do outro quando combinados (BORGET et al, 2001).

Matematicamente esse princípio é expresso da seguinte forma:

\[\frac{A}{A^*} + \frac{B}{B^*} = I \]

onde \(\frac{A}{A^*} \) e \(\frac{B}{B^*} \) são frações igualmente efetivas a \(A \) e \(B \), respectivamente.

Desse princípio surge o conceito da aditividade de dose ou de concentração.

A aditividade de doses é aplicada quando cada substância se comporta como uma diluição de todas as outras substâncias da mistura, ou seja, a resposta da combinação é a resposta esperada da dose equivalente de uma substância índice. Diz-se substância índice aquela substância selecionada como a base para a padronização da toxicidade dos componentes da mistura. Essa deve apresentar a maior quantidade de informações toxicológicas e deve ter uma relação dose-resposta claramente definida. A aditividade de dose é aplicada para substâncias que apresentam mesmo modo de ação ou mesmo órgão-alvo de toxicidade (HERTEZBERG et al, 2000; BORGERT, 2004).

O segundo modelo de não-interação, baseado no princípio de Bliss, é relacionado à independência de respostas. Esse princípio é aplicado para a aditividade de respostas, em que os efeitos de uma combinação dos compostos \(A \) e \(B \) são calculados a partir dos efeitos individuais dos mesmos (\(E_A \) e \(E_B \)). O conceito implica a independência funcional dos componentes de uma combinação, pois um não interfere na ação do outro e não altera sua ação. Matematicamente, o princípio de independência de Bliss pode ser expresso:

\[E_{A \cdot B} = E_A + E_B - (E_A \times E_B) \]

onde \(E \) é a probabilidade de um efeito (BORGET et al, 2001).

A aditividade de respostas é utilizada quando a resposta tóxica (taxa, incidência, risco ou probabilidade de efeito) da combinação é igual à soma condicional das respostas dos componentes, ou seja, é aplicada para misturas compostas de substâncias que apresentam ações diferenciadas, caracterizadas por modos de ação ou órgãos-alvo diferenciados de toxicidade (HERTEZBERG et al, 2000; BORGERT, 2004).
A interação zero representa o efeito de não interação, ou seja, quando ações antagonistas ou sinergistas não ocorrem, caracterizando a aditividade entre dois ou mais componentes (SHUNEL, 1996).

 Poucos países têm desenvolvido procedimentos para avaliar e prevenir os riscos de exposições combinadas, e têm incorporado essa questão na sua política de gerenciamento do risco (VAN ZORGE, 1996).

 No Brasil, a comercialização da maioria, senão de todos os produtos em que a exposição humana ocorre, é regulamentada levando-se em conta o perigo (e não o risco) para a saúde e para o meio ambiente.

 Nesse contexto, considerar a avaliação da toxicidade (perigo) de misturas seria enriquecedor, uma vez que diversos produtos registrados apresentam a característica de possuir, em sua composição, dois ou mais ingredientes ativos.

 Em um levantamento realizado no Sistema de Informação de Agrotóxicos (SIA), foi possível observar a quantidade de misturas de praguicidas registradas no país.

 O SIA é um banco de dados, instituído pelo Decreto no 4.074 de janeiro de 2002, que contém informações de interesse público relativas ao uso e registro de produtos agrotóxicos. O sistema é mantido e atualizado pela ANVISA e pelo Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis (IBAMA), a partir dos processos de registro concluídos pelos órgãos (AGÊNCIA NACIONAL DE VIGILÂNCIA SANITÁRIA, 2005).
Os dados obtidos demonstram que, do total de formulações registradas no país (n=2046), 240 foram identificadas como sendo misturas (Quadro 1). A maior parte das misturas registradas são misturas binárias, ou seja, formulações compostas de dois ingredientes ativos.

Quadro 1- Misturas de praguicidas registradas no Brasil

<table>
<thead>
<tr>
<th>Classe</th>
<th>Número de formulações registradas</th>
<th>Número de formulações compostas de dois ou mais ingredientes ativos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acaricida</td>
<td>135</td>
<td>03</td>
</tr>
<tr>
<td>Bactericida</td>
<td>12</td>
<td>02</td>
</tr>
<tr>
<td>Cupinicina</td>
<td>07</td>
<td>-</td>
</tr>
<tr>
<td>Feromônio</td>
<td>21</td>
<td>03</td>
</tr>
<tr>
<td>Formicida</td>
<td>31</td>
<td>-</td>
</tr>
<tr>
<td>Fungicida</td>
<td>232</td>
<td>38</td>
</tr>
<tr>
<td>Herbicida</td>
<td>313</td>
<td>62</td>
</tr>
<tr>
<td>Inseticina</td>
<td>299</td>
<td>11</td>
</tr>
<tr>
<td>Nematicida</td>
<td>24</td>
<td>-</td>
</tr>
<tr>
<td>Subtotal</td>
<td>1074</td>
<td>119</td>
</tr>
<tr>
<td>Regulador de Crescimento</td>
<td>1002</td>
<td>121</td>
</tr>
<tr>
<td>Total</td>
<td>2076</td>
<td>240</td>
</tr>
</tbody>
</table>

— nenhuma mistura registrada

Portanto, com base no cenário atual, é de grande valia o estabelecimento de critérios que direcionem a avaliação do risco desse tipo de mistura, com base nos modelos internacionalmente propostos e nas recentes discussões acerca das misturas químicas.

Assim, para que a regulamentação contele a realidade das misturas químicas, uma avaliação dos critérios científicos deve ser realizada com a finalidade de discernir entre as discussões realizadas ao longo das últimas décadas. Dessa forma, os critérios poderão ser futuramente adotados em diversos âmbitos da comercialização dos produtos químicos.
Considerando todas essas questões, surge a necessidade do desenvolvimento de uma nova divisão ou área da toxicologia, baseada em uma Toxicologia Preditiva. Essa área contemplaria o estudo dos métodos para estimar ou prever a ocorrência de efeitos tóxicos para a saúde humana, a partir da utilização de ferramentas diferenciadas daquelas utilizadas como padrão no atual modelo de avaliação (YANG, 1996).

O presente trabalho voltar-se-á à discussão da interação biológica dos constituintes de uma mistura simples e também ao modo como essa interação poderia impactar na toxicidade e, consequentemente, no risco dessa exposição para a saúde humana. Isso porque muitos dos produtos comercializados no país, de uso cotidiano, são constituídos por diversas substâncias simultaneamente. É para esse tipo de mistura que a análise crítica dos critérios aplicados no método internacionalmente proposto de avaliação do risco das misturas químicas para a saúde humana, será conduzida.

Primeiramente, porque é para esse tipo de misturas que há maior disponibilidade de informações e para o qual todos os modelos que contemplam o método de avaliação do risco proposto podem ser conduzidos.
2- OBJETIVOS
2.1- Objetivo geral

Perscrutar as fases críticas do método proposto de avaliação do risco para a saúde humana das misturas químicas, no que diz respeito às etapas que envolvem a análise dos dados toxicológicos da mistura ou de seus componentes.

2.2- Objetivos específicos

a) Investigar os modelos propostos internacionalmente para a avaliação do risco à saúde de misturas químicas, enfatizando a etapa da identificação do perigo e suas implicações para o estabelecimento de um modelo sistemático, a partir da utilização de dados de diversas naturezas.

b) Analisar criticamente os critérios utilizados para a escolha dos modelos na condução da avaliação do risco às misturas simples.

c) Verificar as limitações durante a condução das principais etapas da avaliação do risco para a saúde humana propostas para as misturas químicas, no que diz respeito às considerações toxicológicas do processo.
3- MÉTODO
O estudo foi desenvolvido segundo o método exploratório e de pesquisa bibliográfica.

Para o cumprimento dos objetivos apontados foram realizados levantamentos bibliográficos e pesquisas em literatura científica nacional e internacional, em bases de dados e sistemas de bibliotecas presenciais ou virtuais (BIREME, PUBMED, LILACS, SciELO, entre outros).

As informações utilizadas foram obtidas de artigos publicados em revistas indexadas, de guias (Guidances) e de protocolos (Guidelines) publicados por Agências Governamentais ou outras Organizações públicas e privadas principalmente dos Estados Unidos e Europa, assim como de publicações elaboradas e disponibilizadas por diversas Universidades internacionais.

O principal material utilizado na pesquisa foi proveniente de fontes secundárias de dados, de cunho científico, que permitem a cobertura de uma variedade de fenômenos muito mais ampla do que se poderia pesquisar diretamente.

A pesquisa inicial baseou-se na identificação dos países que têm trabalhado, nos últimos anos, com a avaliação do risco de misturas, assim como na análise dos diferentes métodos propostos internacionalmente. Dessa forma, foi possível direcionar a pesquisa, priorizando a coleta de dados em fontes científicamente idôneas e relevantes para o estabelecimento de um universo amostral adequado para ser utilizado no presente trabalho.

Foram, portanto, identificados os principais grupos, considerados exercerem papel chave na discussão mundial da elaboração e implementação dos métodos de avaliação do risco das misturas químicas para a saúde humana. Com base nessas discussões, o trabalho foi elaborado, complementado pelas discussões de diversos outros grupos paralelos ou indiretamente relacionados que têm fornecido contribuição científica a partir de suas atividades.

A partir da análise dos diferentes métodos de avaliação do risco de misturas propostos mundialmente, os critérios e elementos bases para sua condução serão identificados e discutidos.
4- RESULTADOS E DISCUSSÃO
Atualmente, a discussão acerca da avaliação de misturas tem levado os toxicologistas a confrontar-se com diversos pontos críticos: 1) o homem, assim como os outros organismos no ecossistema, está exposto a uma mistura de substâncias e não às substâncias isoladamente; 2) há uma lacuna relacionada ao conhecimento das interações toxicológicas das misturas químicas, considerando a numerosa quantidade de misturas presentes no ambiente; 3) é impraticável, e até impossível, utilizar os métodos da toxicologia convencional para avaliar as interações toxicológicas provenientes das misturas químicas; 4) há uma preocupação crescente a respeito da utilização e sacrifício de elevado número de animais de experimentação utilizados na pesquisa biomédica e 5) é inapropriado manter os métodos de avaliação utilizados para substâncias isoladas, no presente cenário de avaliação do risco de misturas (YANG, 1996, SEXTON et al, 1995).

A partir da análise dos métodos propostos, foi possível identificar algumas das limitações ainda existentes no processo de avaliação do risco de misturas, além de demonstrar qual dos modelos seria o mais apropriado para a avaliação do risco às misturas simples.

Segundo as propostas internacionais, a decisão de utilizar um ou outro modelo de avaliação e a forma de evolução do processo dependerá do tipo de informação disponível a respeito da mistura em questão.

4.1- Programas internacionais para a evolução da avaliação de misturas químicas

Diversos programas e grupos formados por representantes da comunidade científica, industrial, governamental e regulatória, entre outros, foram e têm sido criados em todo o mundo para discutir a exposição às combinações de substâncias (misturas químicas) e as propostas de avaliação da toxicidade e do risco dessa exposição para a saúde humana.

Diversas discussões têm sido realizadas ao longo das últimas décadas, resultando no avanço do entendimento das exposições múltiplas e na consequente publicação de diversos documentos relacionados. A pesquisa demonstrou que os principais grupos de pesquisadores, reguladores e representantes da comunidade
envolvidos ativamente no processo da avaliação do risco das misturas químicas estão locados nos Estados Unidos e na Europa.

Esses grupos, em sua maioria, são vinculados aos Órgãos governamentais, Institutos de Pesquisa, Universidades e Organizações independentes, os quais têm discutido e publicado diversos guias, manuais, documentos suporte e relatórios que estabelecem critérios para a identificação e a caracterização do perigo e a avaliação do risco de misturas químicas.

4.1.1- Estados Unidos

Nos Estados Unidos, o reconhecimento de que a exposição à combinação de substâncias pode exercer um papel na produção de efeitos para a saúde humana resultou em diversas leis voltadas para a pesquisa no campo das misturas químicas. Um exemplo disso é o Food Quality Protection Act (FQPA) e a Safe Drinking Water Act Amendments de 1996 (FQPA, 1996)².

Os Estados Unidos foram pioneiros em considerar a segurança das misturas químicas. A legislação desse país demonstra a preocupação com a segurança dos produtos químicos disponibilizados ao meio ambiente e à população (MONOSSON, 2005; TEUSCHLER et al, 2004):

- Federal Food Drug and Cosmetic Act (1938): avaliação de segurança de novas drogas, aditivos alimentares e níveis específicos de tolerância para praguicidas e outras substâncias nos alimentos.

- Comprehensive Environmental Response, Compensation, and Liability Act (CWRCLA) (1980): primeira Lei de importância que abordou e definiu amplamente os poluentes ambientais, incluindo as misturas químicas.

- Clean Air Act (1955): estabelece critério de qualidade do ar (limites de liberação de substâncias- 1971). Considera o impacto cumulativo de substâncias provenientes de múltiplas origens (poluentes no ar podem interagir produzindo efeitos adversos à saúde).

- Toxic Substances Control Act (1976): voltado para as misturas comerciais e industriais e seu impacto no ambiente e na saúde humana.

- Occupational Safety and Health Act (OSHA- 1970): proteção do trabalhador da exposição às substâncias perigosas através do estabelecimento de padrões e protocolos para substâncias isoladas.

Para cumprir as recomendações propostas pelas legislações anteriormente citadas, diversos grupos e forças tarefa foram formados, especificamente voltados à discussão das misturas químicas.

Nos Estados Unidos, diversas Agências governamentais e grupos da comunidade científica têm se destacado nesse contexto, principalmente a U. S. Environmental Protection Agency (USEPA), Agency for Toxic Substances and Disease Registry (ATSDR), Centers for Disease Control (CDC), National Institute of Environmental Health Sciences (NIEHS), The National Institute for Occupational Safety and Health (NIOSH), Occupational Safety and Health Administration (OSHA), American Conference of Governmental Industrial Hygienists (ACGIH), National Academy of Science/ National Research Council (NAS/NRC) e a Society of Toxicology (SOT).

O primeiro Manual de importância para o estudo de um método para avaliar as substâncias presentes em mistura, foi publicado em 1986 (THOMAS, 1986). Em 1996, foi publicado o Food Quality Protection Act (FQPA), sendo essa a recomendação regulatória que trata mais especificamente das misturas químicas (FQPA, 1996). Diversos programas voltaram-se às misturas químicas em resposta ao FQPA, como ocorreu com o EPA Office of Pesticide Program (OPP), que agrupou os praguicidas, de acordo com o mecanismo comum de ação, para a avaliação do risco cumulativo e agregado da exposição residencial e através do consumo de água e de alimentos. Assim, o grupo dos praguicidas organofosforados foi o primeiro a ser avaliado quanto à exposição cumulativa, uma vez que a inibição da acetilcolinesterase foi identificada como o mecanismo de ação tóxico comum entre os compostos deste grupo (FOX, 2003; RICE et al, 2004; TEUSCHLER, 2002; U. S. ENVIRONMENTAL PROTECTION AGENCY, 1988, 1999, 2002, 2003b). O Quadro 3. ilustra as principais publicações e os grupos ativamente envolvidos na discussão e na proposta de um método de avaliação do risco para misturas químicas nos Estados Unidos. Além disso, relaciona a diferença de abordagem quanto ao tipo de mistura considerada pelos grupos em suas discussões.
<table>
<thead>
<tr>
<th>Instituição</th>
<th>Principal Abordagem</th>
<th>Principais Publicações</th>
</tr>
</thead>
<tbody>
<tr>
<td>USEPA</td>
<td>Misturas simples e complexas</td>
<td>1) Guidelines for the health risk assessment of chemical mixtures (1986)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4) Supplementary guidance for conducting health risk assessment of chemical mixtures (2000)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5) Guidance on Cumulative Risk Assessment of Pesticide Chemicals that have a common mechanism of toxicity (2002)</td>
</tr>
<tr>
<td>ACGIH</td>
<td>Misturas complexas - exposição ocupacional</td>
<td>1) Threshold Limit Values for Chemical Substances and Physical Agents and Biological Exposure Indices (2000)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2) Complex mixture (1988)</td>
</tr>
</tbody>
</table>

4.1.2-Europa

Diversos países membros da Comunidade Européia têm se destacado nas discussões para a elaboração de métodos apropriados para a avaliação do risco de misturas químicas, como o Reino Unido pela Food Standards Agency através do Committee on Toxicity, a Holanda pelo Health Council of the Netherlands através da Nutrition and Food Research (TNO), assim como diversas Instituições como o International Life Institute (ILSI Europe) através do programa Food and Safety in Europe (FOSIE), a Organisation for Economic Co-Operation and Development (OECD), entre outros (FOOD STANDARDS AGENCY, 2005; HUGHES; WOODS, 2002; LOOKE, [2003]; JONKER et al, 2004; NATIONAL RESEARCH COUNCIL, 1988, 1989; ORGANIZATION FOR ECONOMIC CO-OPERATION AND DEVELOPMENT, 2000, 2001).

Um importante projeto desenvolvido na Europa é coordenado pelo Danish Environmental Research Institute (NERI), denominado de NoMiracle: Novel Methods for Integrated Risk Assessment of Cumulative Stressors in Europe. Esse projeto conta com a participação de 43 institutos de pesquisa de 17 países: Dinamarca, Reino Unido, Alemanha, Holanda, Itália, República Checa, Polônia, Portugal, Bélgica, Áustria, Finlândia, Lituânia, Suíça, Suécia, Espanha, Bulgária e França. O principal objetivo desse programa é desenvolver uma avaliação de risco integrada, fornecendo subsídios científicos para a avaliação do risco de praguicidas, biocidas, produtos farmacêuticos e outras substâncias. As misturas químicas e as interações com diversos tipos de
estressores tais como patógenos, alérgenos e condições climáticas, integram os objetivos do programa, assim como o desenvolvimento de novos métodos para avaliar os riscos cumulativos de exposições combinadas; melhor entendimento das misturas complexas e desenvolvimento de ferramentas adequadas para condução da avaliação da exposição entre outros. O NoMiracle também embasará a elaboração da nova legislação Européia voltada para o registro de substâncias denominado REACH (Registration, Evaluation and Authorisation of Chemicals) (LOOKE, [2003]; LIKANEN, WALLSTRÖM, 2003).

Diversos países da Europa e os Estados Unidos têm trabalhado conjuntamente no desenvolvimento de um Sistema Harmonizado de Classificação e Rotulagem das Substâncias, o conhecido GHS (Globally Harmonized System of Classification and Labelling of Chemicals). Esse sistema foi desenvolvido para estabelecer critérios harmonizados para a classificação das substâncias e misturas químicas de acordo com os perigos físicos, para a saúde e o meio ambiente e para estabelecer elementos harmonizados na comunicação do perigo através dos rótulos e das fichas de segurança dos produtos. A OECD, especificamente, exerce um importante papel na proposta do GHS, já que formou uma Força-Tarefa que desenvolveu os critérios de classificação dos perigos para a saúde e para o meio ambiente (UNITED NATIONS, 2005).

Diferenciado dos outros programas já citados que focam o processo de avaliação do risco das misturas químicas, o GHS enfoca a classificação do perigo.

Resultados e Discussão
63
Quadro 3 - Principais forças-tarefa na Europa e publicações de métodos para a avaliação do risco das misturas químicas

<table>
<thead>
<tr>
<th>País</th>
<th>Instituição</th>
<th>Principal Abordagem</th>
<th>Principais Publicações</th>
</tr>
</thead>
<tbody>
<tr>
<td>Holanda</td>
<td>TNO</td>
<td>Misturas simples e complexas</td>
<td>1) Safety Evaluation of Chemical Mixtures and Combinations of Chemical and Non-Chemical Stressors (2004)</td>
</tr>
<tr>
<td>Comunidade</td>
<td>OECD</td>
<td>Misturas simples e complexas</td>
<td>1) Hazard Classification for Chemical Mixtures in OECD Countries (2000)</td>
</tr>
<tr>
<td>Européia</td>
<td></td>
<td></td>
<td>2) Harmonised Hazard Classification Criteria for Mixtures (2001)</td>
</tr>
</tbody>
</table>
4.2- Método proposto internacionalmente para a condução da avaliação do risco das misturas químicas

Métodos para avaliar o risco dos diferentes tipos de misturas químicas têm sido discutidos pelos diversos programas e forças-tarefa instaurados para essa finalidade (MILESON et al, 1999).

O método que tem sido proposto internacionalmente considera três modelos principais de avaliação e baseia-se em uma abordagem por etapas, ou seja, o atendimento de critérios relativos à qualidade e disponibilidade dos dados toxicológicos de uma mistura definirá o modelo mais adequado para a condução da avaliação do risco para a saúde para cada tipo de mistura.

Este método não define os estudos toxicológicos que minimamente devem ser conduzidos para contemplar cada modelo. Ao contrário, a proposta baseia-se na utilização de dados toxicológicos já existentes para a mistura, sendo esse o principal critério que definirá como a avaliação de risco será realizada.

Portanto, a seleção inicial do modelo para a avaliação do risco de misturas dependerá do julgamento científico quanto à qualidade e disponibilidade dos dados de toxicidade e da composição química da mistura a ser avaliada com o objetivo de eleger um dos possíveis modelos de avaliação (ENVIRONMENTAL..., 2001; BORGET et al, 2001; MILESON et al, 1999).

Diferentemente do método utilizado para a avaliação do risco para a saúde humana de substâncias isoladas, no qual distintas etapas são consideradas (1) Identificação do Perigo, 2) Caracterização do Perigo, 3) Avaliação da Exposição e 4) Caracterização do Risco), o método proposto para avaliar o risco da exposição humana às misturas químicas não identifica claramente essas etapas, nem considera explicitamente os mesmos critérios na evolução desse procedimento.

A esquematização desse método (Figura 2) foi realizada com base nas diferentes literaturas, guias e manuais, elaborados com a finalidade de direcionar a avaliação do risco de misturas e de estabelecer critérios para cada um dos modelos, mas, principalmente, nos documentos publicados pelos Estados Unidos.
Isso porque os modelos propostos para a avaliação do risco das misturas químicas foram inicialmente discutidos e regrados por Agências governamentais norte-americanas, como a *U.S. Environmental Protection Agency* (USEPA) e a *Agency for Toxic Substances and Diseases Registry* (ATSDR).

Diversos países membros da Comunidade Européia partiram do método inicialmente proposto pelos Estados Unidos e têm adequado cada etapa às suas necessidades e particularidades. Basicamente, os países europeus têm realizado discussões e publicado manuais que exploram cada uma das fases abordadas no modelo norte-americano, principalmente no que diz respeito aos métodos de determinação das interações biológicas, às particularidades acerca das condições de exposição para cada tipo de mistura (por exemplo, a exposição agregada de misturas, através das diferentes vias), entre outros (FOOD STANDARDS AGENCY, 2005; JONKER et al, 2004).

Segundo o método proposto pela USEPA, os critérios para definir qual modelo deverá melhor predizer os efeitos da exposição das misturas para a saúde, devem ser considerados, em uma análise por etapas (Figura 2):

Etapa 1: O primeiro preceito para iniciar a avaliação do risco das misturas é analisar a natureza dos dados disponíveis: se para a mistura ou para os componentes da mistura e se os dados disponíveis são suficientes para fundamentar a avaliação do risco a ser conduzida:

a) **se para a mistura:**

1) Necessária disponibilidade de estudos toxicológicos conduzidos com a mistura completa. Os resultados devem ser suficientes para predizer a toxicidade nas condições de exposição humana de interesse, considerando mesma via, duração, frequência e níveis de exposição.

b) **se para os componentes da mistura:**

1) Necessário conhecimento da composição química da mistura (composição quali-quantitativa), para que a proporcionalidade das respostas observadas nos estudos tradicionais de toxicidade para as substâncias isoladas, seja considerada nesse modelo de avaliação.
2) Necessária disponibilidade de estudos toxicológicos para cada componente da mistura, que identifique os órgãos alvo de toxicidade, os efeitos tóxicos de relevância (endpoints), o comportamento cinético, o modo e mecanismo de ação tóxico e que permita a construção da curva dose-resposta para cada endpoint determinado.

3) Necessário o conhecimento das possíveis interações toxicocinéticas e toxicodinâmicas entre os componentes da mistura.

Etapa 2: Depois de avaliada a disponibilidade dos dados e a qualidade dos mesmos, é possível optar por qual modelo seguir: se aquele fundamentado nas informações da mistura ou de seus componentes.

Etapa 2a: A avaliação do risco com base nos dados da mistura química pode ser conduzida, caso as informações tenham sido geradas ou para a própria mistura, ou para misturas similares, ou para um grupo de misturas similares

Etapa 2b: Para a avaliação do risco com base nos dados dos componentes da mistura, deve-se definir se os mesmos apresentam toxicidade semelhante, ou seja, se apresentam modo ou mecanismo de ação semelhantes ou independentes. Além disso, o potencial de interação entre os componentes também deve ser conhecido (ENVIRONMENTAL..., 2001; HERTZBERG et al, 2000). Essa determinação definirá qual modelo para caracterização do risco deverá ser conduzido posteriormente:

1) Se os componentes apresentam mesmo mecanismo de ação (similaridade toxicológica) e respondem ao modelo de não-interação, então a avaliação por aditividade de doses deve ser aplicada.

2) Se os componentes apresentam mecanismo de ação diferenciados (independência toxicológica) e respondem ao modelo de não-interação, então a avaliação por aditividade de resposta deve ser aplicada.

3) Se os componentes da mistura sofrem interação toxicocinética ou toxicodinâmica, independente de seu mecanismo de ação então o Índice de Interação deve ser determinado.

Resultados e Discussão

67
Após este julgamento inicial, o avaliador já tem disponíveis informações suficientes para a tomada de decisão do melhor modelo a ser utilizado frente à presença ou não de interação entre os componentes.

Figura 2- Etapas envolvidas no método proposto de avaliação do risco de misturas baseados na disponibilidade e qualidade dos dados segundo USEPA (adaptado de HERTZBERG et al, 2000).

Resultados e Discussão

68
4.3- Modelo de avaliação do risco para misturas simples

Como visto, o método de avaliação do risco para as misturas deve-se iniciar com a análise da natureza e da qualidade de dados já existentes, para que um dos modelos propostos seja seguido. Obviamente, dados sem qualidade ou escassos limitarão a condução da avaliação e, nesse caso, os mesmos devem ser adequados.

Dessa forma, três modelos de avaliação puderam ser identificados: 1) para a mistura em questão (aquela que se quer avaliar o risco); 2) para misturas ou grupo de misturas similares, ou 3) para os componentes conhecidos da mistura (Figura 3).

Modelo 1: Se os dados estiverem disponíveis para a *mistura propriamente dita*, esse método deve ser preferencialmente utilizado, já que considera intrinsecamente as possíveis interações entre seus componentes. Esse método geralmente é empregado para misturas complexas uma vez que sua caracterização quali-quantitativa é limitada.

Nesse caso a avaliação do risco pode ser conduzida com os dados disponíveis, se completos.

Modelo 2: Se não há disponibilidade de dados da mistura propriamente dita, deve-se avaliar a disponibilidade de dados de *misturas ou grupos de misturas suficientemente similares*. Estas são consideradas misturas que apresentam mesma composição qualitativa, entretanto com alguma diferença quantitativa, ou mesmo aquelas que são compostas de grande parte, mas não por todos os componentes da mistura. Além disso, para serem comparáveis, ambas as misturas devem apresentar concentrações dos componentes proporcionalmente semelhantes, assim como serem semelhantes quanto ao comportamento ambiental e efeitos para a saúde.

Modelo 3: Se não há disponibilidade de nenhum tipo de informação da mistura propriamente dita ou de misturas ou grupo de misturas similares, deve-se utilizar dados disponíveis para os componentes isolados da mistura de interesse. Esse método aplica-se, em geral, para misturas simples, uma vez que é indispensável o conhecimento de todas as substâncias que compõem a mistura. Assim, a composição qualitativa (quais substâncias químicas estão presentes na mistura) e a composição quantitativa (qual a concentração de cada substância na mistura) devem estar disponíveis para a condução da avaliação do risco por esse modelo. O objetivo principal da avaliação quantitativa com base na avaliação dos componentes é aproximar-se, ao máximo, de um valor que seria encontrado, caso a mistura fosse testada (HERTZBERG et al, 2000).
Para a avaliação do risco das misturas simples, os três modelos poderiam ser aplicados, caso os dados necessários estiverem disponíveis. Porém, algumas limitações e particularidades de cada método podem impossibilitar sua condução.

Por exemplo, quando se preconiza o seguimento do Modelo 1 (Figura 3) de avaliação, o qual deve utilizar dados que foram gerados com a própria mistura, as limitações seriam muito menores e poder-se-ia considerar o modelo de maior confiança, já que, nesse caso, as extrapolações e estimativas inerentes ao processo de avaliação do risco são muito menos frequentes. Entretanto, os dados que contêm os requerimentos para esse tipo de avaliação são geralmente escassos.

Para a avaliação de misturas simples, o Modelo 3, elaborado a partir das informações acerca dos componentes, é considerado o mais apropriado. Primeiro, porque é impraticável considerar que todas as misturas devem ser testadas quanto à toxicidade em ensaios com animais de laboratório, como prioriza o Modelo 1 de avaliação. Assim, a recondução de estudos de toxicidade é desnecessária se os mesmos já estiverem disponíveis para cada um de seus constituintes. Além disso, o manuseio dos dados é facilitado, uma vez que não está restrito a apenas uma mistura específica, sendo assim possível conduzir a avaliação para diversos tipos de mistura, mesmo que as mesmas apresentem diferenças em sua composição (qualitativas ou quantitativas).

Devido à natureza genérica dos dados, uma avaliação da possível interação que pode ocorrer entre os componentes da mistura deve ser conduzida nesse modelo, o que não se aplica aos anteriores. Isso porque, quando se avalia o risco a partir das informações dos componentes separadamente, o potencial de interação não é diretamente considerado nos dados de toxicidade disponíveis e deve, portanto, ser determinado para integrar o processo de avaliação do risco para misturas simples (ENVIRONMENTAL..., 2001).
Figura 3- Fluxograma decisório para escolha do método de avaliação do risco de mistura química de acordo com a natureza e disponibilidade dos dados.
4.4- Dados iniciais para a condução da avaliação do risco à saúde das misturas simples a partir de seus componentes

Com base no conhecimento do processo de avaliação do risco das misturas simples através de seus componentes, foi possível identificar quais devem ser as informações mínimas disponíveis para que sua condução seja possível:

1) **Conhecimento da composição química da mistura**: as substâncias presentes devem ser identificadas quimicamente (composição qualitativa) e suas concentrações (composição quantitativa) devem ser especificadas. O veículo/adjuvantes presentes na mistura devem ser conhecidos, uma vez que estes podem impactar nas propriedades da mistura e no seu potencial de toxicidade.

2) **Conhecimento da toxicocinética dos componentes**: o comportamento cinético de cada componente no organismo deve ser conhecido, uma vez que esse pode determinar um dos tipos de interação biológica.

3) **Conhecimento dos efeitos tóxicos dos componentes**: a toxicidade de cada componente deve ser conhecida, a partir da determinação dos efeitos adversos ou efeitos tóxicos, manifestados em determinado órgão, tecido, ou sistema celular ou molecular.

4) **Conhecimento dos mecanismos de toxicidade dos componentes**: os passos-chave entre a interação de cada componente com seu sítio de ação (celular/molecular) e a manifestação de um efeito adverso devem ser conhecidos da maneira mais detalhada possível.

5) **Conhecimento da curva dose-resposta dos componentes**: a relação entre as concentrações/doses administradas a um sistema teste e a ocorrência de um efeito tóxico deve ser estabelecida para cada componente, a partir dos dados disponíveis dos estudos de toxicidade, permitindo sua demonstração gráfica.

6) **Conhecimento do potencial de interação entre os componentes**: a possível ocorrência de interação deve ser conhecida para a mistura em questão, considerando as proporções dos componentes presentes. Caso
esse parâmetro não esteja disponível para a mistura, é possível estimar o potencial de interação através de outros dados disponíveis dos componentes, tais como mecanismos de toxicidade, curva-dose resposta e órgãos - alvo de toxicidade.

A obtenção dessas informações é extremamente variável e pode provir de diversas fontes. Algumas delas serão aqui elucidadas, com o intuito de demonstrar a diversidade de dados e algumas das limitações encontradas no decorrer do processo.

4.5- Origem dos dados toxicológicos para a condução da avaliação do risco para misturas simples a partir de seus componentes

Os pesquisadores da área da toxicologia de misturas têm se deparado com diferentes desafios na produção de dados de toxicidade relevantes e adequados para seu uso científico no processo de avaliação da toxicidade das misturas (JONKER et al, 2004).

Um dos desafios é determinar se os dados são suficientes e adequados para a condução da avaliação do risco. Diversas são as fontes de dados que podem ser consideradas para essa finalidade.

Atualmente, o estudo das propriedades toxicológicas de uma substância tem sido intensamente discutido. A busca pela pesquisa direcionada e adequada que contemple todos os efeitos e mecanismos de relevância, evitando a condução de estudos desnecessários, é o maior desafio.

Por essa razão, esforços têm sido despendidos para garantir que os estudos de toxicidade sejam cientificamente apropriados e necessários, sem serem redundantes, e que sejam importantes para o processo de avaliação do risco. Assim, a proposta é que o estudo de avaliação do risco, assim como os estudos que devem ser gerados, seja elaborado caso-a-caso, o que aumentaria sua eficiência, reduziria o uso de animais de experimentação, faria melhor uso dos recursos e reduziria os artefatos das técnicas de experimentação.
Essa proposta faz parte de um programa internacional promovido pelo *International Life Science Institute* (ILSI), através do *Health and Environmental Sciences Institute*, que envolve principalmente membros do governo, da indústria e da comunidade científica acadêmica. Basicamente essa proposta traz uma nova abordagem da priorização para a condução de ensaios de toxicidade de maior relevância no processo de avaliação do risco e apóia que o processo deve ser realizado por etapas, a fim de ser alcançada uma margem de segurança aceitável. O intuito é que a toxicidade seja avaliada a partir de um modelo mais bem delineado, que reduza as incertezas, a partir do momento em que intensifica o rigor científico e o direcionamento de toda a pesquisa. Essa discussão está relacionada principalmente à avaliação do risco dos praguicidas, já que o comitê técnico que está realizando essas avaliações é o *Technical Committee on Agricultural Chemical Safety Assessment* (ACSA), mas essa tendência pode e deve ser aplicada para a maior parte dos agentes químicos (ILSI HEALTH AND ENVIRONMENTAL SCIENCES INSTITUTE, 2005).

4.5.1- A contribuição dos estudos de toxicidade

A utilização dos dados de toxicidade dependerá do número de componentes presentes na mistura e o âmbito no qual a toxicidade da mistura necessita ser caracterizada, em termos da relação dose-resposta e dos efeitos tóxicos individuais e possível ocorrência de interação (JONKER et al, 2004).

Os estudos de toxicidade podem contribuir para a determinação dos efeitos tóxicos relacionados com a exposição (em nível de experimentação) ao componente da mistura, indicando, inclusive, os órgãos-alvo de toxicidade e fornecendo subsídios para a construção da curva dose-resposta de cada componente. Além disso, estudos mecanicistas podem estar disponíveis, assim como estudos de cinética, os quais podem ser utilizados para estimar se os componentes da mistura sofrem ou não interações biológicas. Diversas informações podem ser obtidas, por exemplo, da condução de estudos de toxicidade com animais de experimentação ou de outros modelos experimentais (estudos *in vivo, in vitro* e outros métodos alternativos).
A maior dificuldade é a disponibilidade de estudos que fomem os dados necessários para a condução da avaliação do risco a partir dos componentes, como o conhecimento da toxicocinética, determinação dos efeitos tóxicos, dos órgãos-alvo de toxicidade, dos mecanismos de ação, da presença de interações que modifiquem as respostas dos componentes, e de dados que possibilitem o estabelecimento da curva dose-resposta.

Muito poucos estudos consideram a ocorrência de interação entre as substâncias, entretanto focam a exposição sequencial de duas substâncias diferentes ou a exposição às misturas binárias (HERTZBERG, TEUSCHLER, 2002; MONOSSON, 2005; ENVIRONMENTAL..., 2001).

A condução de estudos in vivo adicionais aos disponíveis deve ser indicada apenas após prévia avaliação, que inclui diversos outros métodos que priorizem a condução de experimentos em outros sistemas teste. Esta recomendação direciona para a utilização de métodos alternativos à experimentação in vivo, com o objetivo da utilização racional de animais de experimentação, do refinamento dos estudos toxicológicos, a partir da utilização de ferramentas que avaliem previamente o efeito tóxico de relevância e as possíveis interações, objetivando o direcionamento da condução dos estudos de toxicidade e a consequente redução de tempo e custo. Para isso, diversas alternativas podem ser consideradas nessa avaliação, tais como a condução de estudos in vitro ou ex vivo, partindo de espécies inferiores ou de culturas de células e tecidos (JONKER et al., 2004; CAZARIN, CORRÊA, ZAMBRONE, 2004).

A utilização de ensaios in vitro na pesquisa de misturas permite a investigação mais precisa do modo de ação em nível celular (mechanismo de ação) e permite avaliar mais detalhadamente o tipo de ação combinada dos componentes de uma mistura. Além disso, permite a avaliação do potencial tóxico relativo de diferentes misturas, principalmente das misturas complexas, nas quais a composição qualitativa e quantitativa é altamente variável (ENVIRONMENTAL..., 2001).

Muitos estudos in vitro podem ser também utilizados com o objetivo de comparar os achados em diversos cenários de exposição às misturas, utilizando cultura de células e tecidos para o estudo das diferenças entre as espécies (ENVIRONMENTAL..., 2001).
Os estudos in vitro fornecem informações relevantes para a determinação da toxicidade das misturas, complementando os dados de estudo in vivo e fornecendo informações mais detalhadas sobre o mecanismo de ação e as possíveis interações entre os componentes.

Assim, os testes in vitro são considerados essenciais na estratégia de ensaios da toxicologia integrada. O progresso científico no campo da biologia molecular e celular permite agora a utilização de sistemas teste in vitro que podem ser utilizados para o estudo minucioso do mecanismo de ação de misturas, através da genômica e da proteômica.

Os ensaios in vitro apresentam diversas particularidades que implicam o seu grande auxílio para o estudo de misturas, tais como: 1) possibilidade de direcionamento da pesquisa e desenvolvimento de sistemas testes específicos às necessidades; 2) redução do tempo e do custo da pesquisa, já que ensaios in vitro, utilizados como investigação preliminar, podem direcionar a pesquisa, evitando a repetição de testes inadequadamente delineados, além de, na maior parte das vezes, serem conduzidos em um menor período de tempo.

A maior limitação ou obstáculo nesse tipo de ensaio é a ausência de protocolos, uma vez que cada estudo deve ser delineado de acordo com as necessidades da pesquisa.

4.5.2- Conhecendo o modo de ação

Ao contrário dos modelos empíricos que descrevem as relações matemáticas entre os níveis de exposição e os efeitos, as possíveis interações entre os componentes de uma mistura podem ser dadas em termos de modelos mecanicistas (JONKER et al, 2004).

O modo de ação tem demonstrado ser claramente um conceito útil, servindo como o principal direcionador de informações relacionadas a uma substância específica no processo de avaliação do risco. Na avaliação qualitativa, a natureza da toxicidade observada, juntamente com informações da substância em questão, fornece uma clara compreensão do modo de ação, que é a seqüência de eventos pela qual uma forma ativa
da substância ou um produto de metabolismo interage com o organismo, levando à resposta observada. As informações obtidas de uma avaliação mecanicista identificam os elementos, relacionados à dosimetria tecidual, que influenciará, por exemplo, na relação dose-resposta (CLEWELL, 2005).

Dois diferentes conceitos têm sido utilizados neste contexto: modo de ação e mecanismo de ação. A distinção entre estes termos é extremamente crítica na avaliação do risco de mistura, já que a escolha do modelo para predizer os efeitos das misturas químicas (ex: adição de dose ou adição de resposta) dependerá dos tipos de informações disponíveis e se os dados mecanicistas dos componentes das misturas são descritos em termos do modo ou do mecanismo de ação (BORGERT et al, 2004).

O mecanismo de ação pode ser definido como a sequência de eventos moleculares, a partir da absorção de determinada quantidade de uma dose efetiva para a produção de uma resposta biológica específica.

O modo de ação é o conjunto de sinais fisiológicos, bioquímicos e comportamentais que caracteriza um efeito biológico específico (BUTTERWORTH, CONOLLY, MORGAN, 2004; DELLARCO, WILTSE, 2004; BORGERT et al, 2004; U. S. ENVIRONMENTAL PROTECTION AGENCY, 1999).

O entendimento da ação de determinada substância depende necessariamente do conhecimento das etapas que levam a dose efetiva do composto ao alvo biológico de ação. Ou seja, o mecanismo de ação depende: 1) do metabolismo e da distribuição da substância no organismo e subsequente influência na concentração disponibilizada nos alvos moleculares de ação; 2) dos alvos moleculares de ação; 3) da via bioquímica afetada pela ação da substância no alvo molecular, resultando na interferência dessas vias; 4) das conseqüências em nível celular e tecidual da interferência sobre a via bioquímica; 5) dos órgãos ou tecidos nos quais se localizam os alvos moleculares e bioquímicos; 6) da resposta fisiológica aos efeitos bioquímicos e celulares; 7) da resposta do órgão alvo aos efeitos bioquímicos, celulares e fisiológicos; 8) dos diversos efeitos sobre o organismo; 9) das relações causais e temporais entre as etapas mecanicistas; 10) da relação dose-resposta associada a cada etapa (BORGERT et al, 2004).
A determinação da similaridade entre modos ou mecanismos de ação de determinada mistura permitirá o direcionamento da avaliação da toxicidade da mistura por determinado modelo: ou pela adição de doses ou pela adição de respostas.

Os manuais publicados pelas Agências, relacionados às misturas químicas e interações, não apresentam, em sua maioria, critérios para definir se duas misturas são suficientemente similares, para a utilização da adição de doses como método preferencial de avaliação. A EPA considera que a presença de um modo de ação similar é um forte fator para essa decisão, preferencialmente à simples identificação de um órgão alvo de toxicidade (BORGERT et al, 2004).

4.5.3- O estudo das interações químicas

O principal motivo pelo qual diferentes métodos são propostos para a avaliação do risco das misturas químicas para a saúde humana é a possível interação que pode ocorrer entre seus constituintes. Essa atividade cruzada poderia levar a uma alteração completa da atividade das substâncias, tornando-as mais ou menos tóxicas.

Deve-se enfatizar que a natureza da interação pode ser alterada com as condições de exposição, incluindo a magnitude, a duração, a sequência, a proporção dos componentes e o efeito avaliado. Os possíveis mecanismos de interação podem, portanto, ser divididos em três categorias (JONKER et al, 2004; KRIGER, 2001; MUMTAZ, HERTZBERG, 1993):

1) Mecanismo direto de interação entre as substâncias: a substância interage diretamente com outra, causando uma alteração química em um ou mais componentes. Na maioria dos casos, essa ação resulta na redução da toxicidade, assim como da eficácia e é um dos princípios comuns dos tratamentos com antídotos. A ocorrência de efeitos tóxicos exacerbados é muito menos frequente nesse tipo de interação.

2) Mecanismo toxicocinético: envolve alterações no metabolismo (biotransformação) ou na biodisponibilidade de uma substância, e são, frequentemente, divididos em efeitos sobre a absorção, distribuição, metabolismo e excreção. Essencialmente as interações toxicocinéticas
alteram a quantidade de um agente tóxico que atingirá o local de ação sem afetar a interação com o receptor. Quando se trata da interação de substâncias em doses muito baixas, espera-se que o impacto nas fases cinéticas seja muito menor.

3) **Interações toxicodinâmicas**: envolve alterações sobre a resposta nos sitios de ação (receptores) ou na susceptibilidade a um efeito tóxico. Tais interações incluem, por exemplo, a imunomodulação, alteração de fatores fisiológicos protetivos (depleção ou indução) e alterações no reparo de tecidos e na hemodinâmica. Além disso, as interações toxicodinâmicas podem ocorrer no mesmo receptor celular. Se as substâncias interagem em um mesmo receptor, o efeito resultante é o antagonismo de receptor. Porém, se a interação ocorre em diferentes receptores e causa efeitos opostores, o efeito resultante é denominado de antagonismo funcional.

Assim, as interações podem ocorrer na fase toxicocinética, nas etapas de absorção, distribuição, metabolismo e excreção, ou na fase toxicodinâmica (ex: efeitos sobre os receptores, células ou órgãos). Na maior parte dos casos de interação cinética, a indução e inibição enzimática, ou ambas, são as mais frequentes, uma vez que a etapa de metabolismo é um dos determinantes mais importantes da toxicidade de uma substância, já que o agente tóxico pode ser eliminado (detoxicação) ou intermediários tóxicos podem ser formados (bioativação) (GROten, Feron, SUHnel, 2001; ENVIRONMENTAL ..., 2001).

Em geral, as substâncias que interferem na atividade das enzimas de biotransformação, assim como nos processos de absorção e excreção, podem interferir na toxicidade de outros compostos (GROten, Feron, SUHnel, 2001).

Diversas descrições acerca das interações têm sido propostas nos últimos 50 anos.

O estudo da interação química iniciou em 1939, com C.I. Bliss, que definiu as principais categorias da ação química combinada (*joint chemical action*) (MOnOSSON, 2005):

Resultados e Discussão

79
1) **Ação independente**: refere-se às substâncias que agem independentemente através de diferentes modos ou mecanismos de ação, sendo que a presença de uma substância não impacta a toxicidade da outra. Neste caso, a toxicidade poderia ser prenunciada a partir do conhecimento das substâncias isoladas.

2) **Ação similar**: refere-se às substâncias que causam efeitos similares, frequentemente através de mecanismos semelhantes, sendo que a presença de uma substância pode impactar a toxicidade da outra (ex: se duas substâncias agem no mesmo receptor no organismo, o efeito resultante pode ser maior com a presença de ambas). Neste caso, a toxicidade também poderia ser prenunciada a partir do conhecimento das substâncias isoladamente.

3) **Ação sinérgica**: refere-se às substâncias que interagem e levam a um efeito maior do que o apresentado isoladamente pelas substâncias. Neste caso, a interação não poderia ser prenunciada através da avaliação das substâncias isoladas. Embora as interações sinérgicas possam resultar em novos efeitos, estes parecem ser mais raros (JONKER et al, 2004; MONOSSON, 2005).

Dessa forma, a expressão *ação combinada* é aplicada como significado de qualquer exposição a duas ou mais substâncias químicas, seja simultaneamente, seja sequencialmente (KÖNEMMAN, PIETERS, 1996).

Com relação à magnitude de resposta, as substâncias, quando combinadas, podem modificar seu modo de ação e isso dependerá de as mesmas sofrerem ou não sofrerem interação. A interação é identificada quando uma substância interfere na magnitude de resposta da outra. Essa interação pode ocorrer de duas formas: pelo aumento ou pela redução da magnitude de um efeito esperado das substâncias presentes na mistura. Isso quer dizer que se uma substância A causa um efeito sinérgico, uma resposta maior do que a esperada pela soma da ação da substância A e da substância B é observada. Caso contrário, se uma substância A causa uma redução do efeito esperado da ação da substância B, então a mesma age por antagonismo.
De outra forma, podem estar presentes, na mistura, substâncias que não interagem entre si. Neste caso a não-interação resulta na soma dos efeitos das substâncias, sem que uma interfira na magnitude de efeito da outra (AGENCY FOR TOXIC SUBSTANCES AND DISEASE REGISTRY, 2004).

Diz-se, portanto, que uma substância interage com outra, quando seu efeito resulta em nível maior ou menor do que a soma dos efeitos das substâncias isoladamente (AGENCY FOR TOXIC SUBSTANCES AND DISEASE REGISTRY, 2004):

\[A + B = AB \text{ (não interação: aditividade)} \]

\[A + B = C \text{ (interação: sendo que } C \text{ pode ser maior ou menor do que a soma de } A \text{ e } B \)\]

Grande dificuldade é encontrada na padronização dos termos relacionados à interação química.

Muitos autores têm diferenciado cada termo de forma a classificá-lo como relacionado ou não a um mecanismo de interação. É o caso, por exemplo, de Hertzberg et al, (1999); Mumtaz e Hetzberg (1993), a Agência de Proteção dos Estados Unidos (USEPA) e a Agência para registro de Doenças e Substâncias dos Estados Unidos (ATSDR) (Quadro 2) (AGENCY FOR TOXIC SUBSTANCES AND DISEASE REGISTRY, 2004). Entretanto, outros autores preferiram simplificar e generalizar a adoção dos termos relacionados à interação química. Groten, Feron e Sühnel (2001) adotam uma terminologia simplista, utilizando apenas os termos sinergismo, quando o efeito resultante da interação das substâncias é mais forte do que os efeitos esperados e antagonismo, quando o efeito resultante da interação é menor do que os efeitos esperados das substâncias isoladas.

Já, segundo o Health Council da Holanda (2002), os efeitos combinados são classificados em: 1) efeitos semelhantes com interação; 2) efeitos semelhantes sem interação; 3) efeitos diferentes com interação; 4) efeitos diferentes sem interação. Esta classificação diz respeito, resumidamente, às substâncias que possuem mecanismos de ação semelhantes ou não e em ambos os casos podem ou não interagir entre si (JONKER et al, 2004).
Neste trabalho, as definições propostas pela Holanda serão adotadas. O Quadro 2 traz as definições estabelecidas mundialmente, relacionadas às misturas químicas e aos tipos de interação possíveis entre os componentes.

Quadro 4- Definições e terminologia acerca das Interações (AGENCY FOR TOXIC SUBSTANCES AND DISEASE REGISTRY, 2004).

<table>
<thead>
<tr>
<th>Interação</th>
<th>Quando o efeito de uma mistura é diferente da aditividade baseada na relação dose-resposta dos compostos individualmente.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aditividade</td>
<td>Quando o efeito da mistura pode ser estimado da soma dos níveis de exposição (pesado pela potência) ou dos efeitos dos compostos individualmente.</td>
</tr>
<tr>
<td>Influência não aparente</td>
<td>Quando um componente, o qual não é tóxico a um sistema ou órgão particular, não influencia a toxicidade de um segundo composto naquele sistema ou órgão.</td>
</tr>
<tr>
<td>Sinergismo</td>
<td>Quando o efeito da mistura é maior do que aquele estimado pela aditividade com base na toxicidade dos compostos individualmente.</td>
</tr>
<tr>
<td>Potenciação</td>
<td>Quando um composto, que não apresenta um efeito tóxico sobre um sistema ou órgão, aumenta o efeito de um segundo composto naquele sistema ou órgão.</td>
</tr>
<tr>
<td>Antagonismo</td>
<td>Quando o efeito da mistura é menor do que aquele estimado pela aditividade com base na toxicidade dos compostos individualmente.</td>
</tr>
<tr>
<td>Inibição</td>
<td>Quando um composto que não apresenta um efeito tóxico em determinado sistema ou órgão reduz o efeito aparente de um segundo composto naquele sistema ou órgão.</td>
</tr>
</tbody>
</table>

É importante enfatizar que a natureza da interação pode ser alterada com as condições de exposição, incluindo magnitude, duração, sequência, proporção relativa dos componentes e o efeito avaliado (JONKER et al, 2004).

Dessa forma, a possível interação entre componentes de uma mistura deve ser conhecida, e a avaliação do risco das misturas para a saúde humana deve ser conduzida baseada nessa premissa.
A ocorrência de interações químicas em uma mistura pode ser determinada de diversas maneiras. Uma delas é através da condução de ensaios em que os componentes são testados em sistemas teste, nas proporções presentes na mistura e que corresponde ao potencial nível de exposição humana.

Esse é o principal ponto de discussão para esse modelo, uma vez que a base para o estudo das interações é o conhecimento do mecanismo de ação de todos os constituintes da mistura. Assim, quanto mais detalhado for esse conhecimento em níveis celulares e moleculares, menos incertezas deverão ser aplicadas ao processo. Entretanto, se esse conhecimento se restringir ao modo de ação e órgão-alvo de toxicidade, maior incerteza deve ser embutida na predição da ocorrência de interações.

Diversos métodos podem ser utilizados no estudo das interações. Cassee e cols. (1983) determinaram um método para esta finalidade (JONKER et al, 2004). Esse é um dos mais comuns para definir se a avaliação do risco, com base nos componentes, deve ser realizada por adição de dose ou de resposta. O método baseia-se no estudo da possível interação entre os componentes, com base no órgão-alvo de toxicidade e efeitos tóxicos observados, caso não haja disponibilidade de informações a respeito do mecanismo de ação. Essa avaliação pode ser realizada por um método gráfico denominado isobolograma (isobologram) (Figura 4).

Um isobolograma é um gráfico que representa o efeito combinado entre duas substâncias, sendo que as doses das substâncias A e B são dispostas nos eixos x e y, relativas às doses experimentalmente determinadas para um mesmo efeito tóxico.

Graficamente, tem-se caracterizada a curva dose-resposta da combinação entre os agentes A e B, sendo também denominada de linha de isoefeito ou isóbolo (Isobole). Se essa representação gráfica é caracterizada por uma linha reta, significa que os compostos não sofrem interação e respondem ao modelo de aditividade. Caso contrário, quando a representação gráfica é caracterizada por uma curva, o modelo de interação é caracterizado e corresponde à interação por sinergismo ou antagonismo (Figura 4).

Assim, essa análise baseia-se na comparação das doses dos componentes da mistura em que o efeito adverso ocorre. Essa dose é denominada, portanto, de dose efetiva e deve ser padronizada para um tipo de resposta (efeito adverso). Nesse caso, a
significância estatística (em porcentagem) de uma resposta é estabelecida para que a comparação entre as doses efetivas (ED) possa ser realizada.

A dose efetiva deve ser fixada de acordo com a incidência (porcentagem) considerada significativa para ocorrência de determinado efeito. Por exemplo, se uma resposta tóxica é considerada significativa se sua incidência for igual ou maior a 10% (ex: número de animais com tumores hepáticos), portanto a dose que leva ao aparecimento do efeito nessa incidência (10%) é determinada ser a ED₁₀.

No caso de uma mistura binária, a ED₁₀ deve ser avaliada para ambos os componentes. A partir dessa avaliação é possível determinar se os componentes podem sofrer interação (antagonismo ou sinergismo) ou se não sofrem interação, podendo então a mistura ser avaliada pelo método de aditividade (HERTZBERG et al, 2000).

![Diagrama de isobolograma](image)

Figura 4 - Modelo de isobolograma para avaliação de interação de substâncias químicas a partir de dados da mistura (fonte: DREßLER, MULLER, SÜHNEL, [199-?])

Diversas alterações pelo modelo proposto de isobolograma foram sugeridas, na tentativa de fazer possível a diferenciação da aditividade de dose e de resposta, ou na tentativa de aplicar o modelo a uma mistura de grande número de substâncias (JONKER et al, 2004).

Entretanto, essa representação gráfica para análise das interações apresenta algumas desvantagens, como a necessidade de extensa disponibilidade de dados, incluindo níveis de efeitos tóxicos, com detalhes das magnitudes de resposta.

Resultados e Discussão

84
(incidências dos efeitos em cada grupo de animais tratados com as diferentes doses). Além disso, não há um método estatístico simples para análise dos dados obtidos no isobolograma. O estudo da interação entre componentes pode ser realizado, por exemplo, a partir de programas computadorizados (softwares) desenvolvidos para essa finalidade, como é o caso do CombiTool (DREßLER, MÜLLER, SÜHNEL, [199-?]; JONKER et al, 2004).

Além da determinação gráfica, através do isobolograma, as interações podem ser determinadas a partir da análise da curva dose-resposta. Esse método baseia-se no estabelecimento da relação entre a concentração de cada componente na mistura e os efeitos observados. A grande vantagem desse método é a possibilidade de incluir todos os efeitos obtidos e não requer uma equação dose-resposta para cada substância individualmente (JONKER et al, 2004).

Segundo ampla pesquisa científica realizada por Borget e cols (2001), para que uma avaliação satisfatória das interações seja realizada, alguns critérios devem ser considerados. Segundo Borgert e cols, a aplicação desses critérios pode auxiliar o avaliador de risco a distinguir se um estudo é completo e confiável:

Critério 1. A curva dose-resposta para os componentes da mistura deve ser **adequadamente determinada** (BORGET et al, 2001)

Sem a determinação adequada da curva dose-resposta, não é possível concluir se o efeito biológico de uma mistura foi devido às interações entre os componentes. Essa determinação deve ser suficiente para demonstrar a inclinação da reta (slope), o ponto de inflexão (inflection point), os níveis de resposta máxima e mínima, e deve incluir o intervalo de doses, correspondendo às combinações de doses testadas.

Critério 2. Uma hipótese de “não-interação” apropriada deve ser determinada e utilizada como base para a investigação de sinergismo e antagonismo (BORGET et al, 2001)

a partir do conhecimento do modo de ação dos componentes, partindo do princípio que sua combinação não leva à mudança da resposta tóxica esperada, ou seja, um componente não interfere na ação do outro nem altera sua ação na presença do outro.

Critério 3. A combinação dos componentes de uma mistura deve ser suficientemente avaliada para apoiar os objetivos do estudo de interação (CASSEE et al, 1998; BORGET et al, 2001).

As características farmacológicas e toxicológicas de uma mistura dependem da identidade química de seus componentes, assim como da concentração da mistura e da concentração relativa de cada componente na mistura.

Isso quer dizer que o estudo da interação deve ser realizado com a mistura, na concentração e com as concentrações de cada componente que corresponderá aos níveis de exposição. Isso porque a interação entre os componentes da mistura, caso ocorra, pode variar de acordo com a dose que aquela mistura é testada e com a concentração de seus componentes.

Por esta razão é difícil estabelecer uma regra global para ser aplicada para todas as possíveis combinações de dose em um mistura. Essa avaliação deve ser realizada caso-a-caso e a interpretação da interação deve ser aplicada a uma mistura especificamente.

Critério 4. Ensaios estatísticos devem ser utilizados para distinguir se a resposta produzida por uma combinação de doses é diferente (maior ou menor) daquela esperada pela hipótese de “não-interação” (BORGET et al, 2001).

Há uma tendência de se avaliar apenas se a resposta difere estatisticamente do grupo controle e se a resposta da combinação de doses difere estatisticamente das repostas individuais dos componentes.

Entretanto, uma conclusão de ocorrência de interação deve ser suportada por outras análises estatísticas, lançando mão de uma análise paramétrica (teste de hipótese), partindo de uma premissa de não-interação (hipótese zero ou nula). Para determinar a ocorrência de interação, é necessário estabelecer um intervalo de confiança aceitável, referente à resposta biológica para a ocorrência de não-interação.
Uma variedade de métodos estatísticos pode ser utilizada para avaliar se os componentes de uma mistura interagem ou não, como teste-t, modelos lineares incluindo a ANOVA, regressão múltipla e regressão logística.

Dessa forma, um dos critérios para avaliar a qualidade de um estudo de interação é a possibilidade de uma análise estatística apropriada a partir dos dados obtidos.

Critério 5. As interações devem ser avaliadas em níveis relevantes de organização biológica (BORGET et al, 2001).

Os resultados obtidos de um estudo *in vivo* conduzido para a avaliação da interação podem ser de difícil interpretação se não houver informações do nível de organização biológica.

Isso porque numerosas interações que podem ocorrer em nível molecular, bioquímico e celular nunca se manifestariam em um organismo ou em uma população de animais, já que os efeitos relacionados à interação não podem ser diferenciados nos organismos de alta organização biológica.

Por exemplo, as interações que ocorrem em nível molecular poder-se-iam manifestar em um organismo superior (ex: roedores) apenas em doses tóxicas (doses elevadas). Além disso, o comportamento cinético *in vivo* pode interferir nas interações farmacodinâmicas que poderiam ser observadas *in vitro*.

Assim, o conhecimento em múltiplos níveis de organização biológica é necessário para caracterizar apropriadamente as interações que ocorrem em sistemas biológicos mais complexos. Cada nível de organização biológica apresenta limitações para o estudo das interações, as quais podem ser minimizadas pela seleção do nível mais relevante para a finalidade do estudo. Se há falha na escolha do sistema teste, interpretações equivocadas podem ser feitas.
4.5.4-A extrapolação das interações nas altas doses para as baixas doses

Um fator que deve ser considerado, quando do estudo das interações entre os componentes, é a extrapolação das doses. Isso porque é necessário prever a ocorrência de interações com base nos efeitos e mecanismos determinados nos estudos de experimentação, os quais utilizam doses muito maiores daquelas a que o homem estará exposto. A maior dificuldade é estabelecer se as interações que ocorrem nas maiores doses são representativas daquelas que ocorreriam nas menores doses, as quais estão relacionadas à exposição humana.

Esse é um grande entrave quando se considera os protocolos tradicionais para o estudo de efeitos em substâncias isoladas. Isso porque as doses utilizadas nos modelos experimentais são muito superiores àquelas em que ocorre a exposição humana (os limites de exposição recomendados). O Health Council da Holanda cita que, em 1985, não havia pesquisa sobre as combinações de substâncias nesse nível de dose ou de concentração. Em 2002, poucos dados a respeito estavam disponíveis (HEALTH COUNCIL OF THE NETHERLANDS, 2002).

Como utilizar dados obtidos de modelos experimentais, já que é conhecida a diferença de resposta e de comportamento tóxico, devido aos diferentes níveis de doses? Além da dose, o Comitê acredita que as vias de exposição devam também ser avaliadas nesse contexto.

Os dados obtidos a partir de desenhos experimentais tradicionais podem ser utilizados ou extrapolados para a avaliação de combinação de substâncias?
A maior limitação, nesse caso, está relacionada à suspeita de que interações podem ocorrer em um cenário e não em outro. Por essa razão, diversas pesquisas foram e têm sido conduzidas na tentativa de responder essa questão.

Estudos delineados para avaliar misturas compostas de diferentes substâncias em concentrações relevantes no ambiente (ex: concentrações próximas ao LOAEL ou NOAEL) têm levado a conclusões divergentes. Enquanto um estudo sugeriu, como regra, que misturas presentes no ambiente, em concentrações abaixo do NOAEL, não representariam preocupação para a saúde (já que efeitos interativos foram relatados apenas em níveis de LOAEL, ou seja, em níveis nos quais efeitos tóxicos foram observados) (CASSEE et al, 1998; MONOSSON, 2005; JONKER et al, 2004), outro estudo demonstrou que mesmo baixos níveis de exposição às misturas podem levar a alguns efeitos biológicos não detectados pelos métodos comuns de avaliação (MONOSSON, 2005).

Um novo conceito, denominado hormesis, traz novas perspectivas acerca do comportamento dose-resposta de um composto em baixos níveis de exposição. Esse modelo se diferencia dos outros denominados threshold (o qual é representado por uma curva dose-resposta não linear e apresenta um nível de exposição seguro) e não-threshold (o qual é representado por uma curva dose-resposta linear, sem apresentar um nível de dose seguro). Ao contrário, o modelo da hormesis se baseia em uma curva dose-resposta em formato de U, representando um efeito contrário/inibitório nas baixas doses se comparado com aqueles detectados nas maiores doses (CALABRESE, BALDWIN, 2001a, 2002a, 2003b).

Nesse caso, a existência de um efeito benéfico nos menores níveis de exposição a um determinado agente, poderia ser considerada na determinação dos fatores de incerteza do processo de avaliação do risco.

Entretanto, a determinação da resposta hormética não é abordada nos modelos tradicionais de experimentação. A identificação do perigo é baseada nos estudos de toxicidade, incluindo os ensaios de toxicidade crônica, os quais não são desenhados para avaliar explicitamente os conceitos da hormesis. As limitações dos desenhos de estudo incluem o número limitado de doses, o espaçamento entre as doses testadas, os requerimentos de certos níveis de doses abaixo do NOAEL, o uso de
animais e endpoints com apropriadamente de conhecimento da incidência de doenças, entre outros. Por essa razão para uma avaliação aprioriada da dose resposta hormética, ainda é necessário tempo e outras pesquisas, além de novas análises da validade de se utilizar esse conceito como padrão no processo de avaliação do risco (DESESSO, WATSON, 2005; CALABRESE, BALDWIN, 2003b; CALABRESE, 2005b, 2005c; CHRISTIANI, ZHOU, 2002).

De qualquer maneira, o impacto da diferença entre as doses testadas nos experimentos e os níveis de exposição humana aos componentes da mistura, sobre o potencial de interação, é discutível.

Estudos têm demonstrado que as interações estudadas em níveis nos quais são observados efeitos nos estudos de experimentação (LOAEL), não devem ser extrapoladas para as condições reais de exposição, já que essa corresponde a níveis muito inferiores (abaixo do NOAEL obtido nos estudos) daqueles considerados para o estudo do potencial de interação. Assim, considera-se que baixos níveis de exposição não provocam efeitos relevantes (quanto às possíveis interações) para a saúde humana; entretanto, seria prudente considerar exceções à regra (MONOSSON, 2005).

Um programa de pesquisa foi iniciado pela TNO Nutrition and Food Research, para sobre os dados faltantes, relacionado à relevância de efeitos em baixos níveis de dose (próximos ao NOAEL) em exposição prolongada. Para isso, diversos estudos foram conduzidos, em ratos, com misturas de componentes conhecidos, com modos de ação similares ou independentes (JONKER et al, 2004).

Misturas compostas de substâncias que agem em diferentes órgãos alvo foram testadas em diferentes doses, de acordo com efeitos tóxicos das substâncias isoladas: 1) dose sem efeito tóxico (NOAEL); 2) dose menor do que o NOAEL (1/3 e 1/10 do NOAEL), representando a exposição humana e 3) dose que causou mínimo efeito tóxico (MOAEL). Os estudos demonstraram que a exposição simultânea a esses compostos não constituiu um perigo aumentado quando comparado com a exposição às substâncias separadamente, desde que os níveis de exposição humana não ultrapassem os valores de NOAEL determinados em estudos experimentais para os componentes da mistura (JONKER et al, 2004).
Misturas de componentes que atuam sobre o mesmo órgão-alvo, entretanto por diferentes modos de ação, também foram avaliadas. Da mesma forma, em nível no qual o efeito tóxico em questão não é observado quando da avaliação dos componentes em separado, a mistura não apresentou potencial tóxico (em nível de NOAEL e ¼ de NOAEL). Jonker (2003) concluiu, portanto, que é improvável a ocorrência de efeitos adversos quando os componentes presentes na mistura estão em níveis inferiores aos seus limiares de doses (threshold) individuais determinados nos estudos de experimentação (JONKER et al, 2004).

Entretanto, em ambas as situações, quando os níveis de dose referentes ou próximos ao LOAEL foram testados, resposta tóxica foi observada, variando sua severidade para maior ou menor daquela observada com os componentes em separado (JONKER et al, 2004).

No caso de misturas compostas de substâncias que apresentam modos de ação similares, assim como mesmo órgão-alvo de toxicidade, a ocorrência de não-interação, através do modelo de additividade, foi testada em estudos conduzidos com doses próximas ao NOAEL (1/2, 1/3 ou 1/4 do LOAEL) e ao LOAEL dos componentes. Pode-se observar que substâncias as quais apresentam mesmo órgão-alvo de toxicidade e mesmo modo de ação respondem ao modelo de aditividade de dose, já que resposta tóxica foi observada quando da exposição simultânea e repetida dessas substâncias, em níveis abaixo do limiar de dose (threshold) individual (JONKER et al, 2004).

Para as misturas simples é possível a condução de estudos adicionais, se forem julgados necessários, para avaliar a ocorrência das interações nos níveis reais de exposição, uma vez que sua composição é conhecida. Preferivelmente, a mistura deve ser testada, tanto nas altas concentrações, quanto nas baixas concentrações (ENVIRONMENTAL..., 2001).

Uma vez que as interações biológicas podem afetar o comportamento cinético das substâncias no organismo ou interferir na toxicodinâmica, a condução de estudos adicionais deve contemplar esses dois parâmetros, sendo priorizados os estudos in vitro, de acordo com os resultados obtidos dos estudos conduzidos com as maiores doses.
Isso quer dizer que, se há uma suspeita de que as substâncias interagem, alterando, por exemplo, seu metabolismo hepático, então convém o delineamento, por exemplo, de ensaios in vitro com enzimas metabolizadoras hepáticas, para que as doses reais sejam testadas e o impacto sobre o metabolismo seja comprovado.

Ao contrário, se a suspeita da interação recair sobre a interferência nos sítios de ação, estudos mecanicistas podem ser propostos com essa finalidade, baseados nos tecidos e órgão-alvo de toxicidade dos constituintes. Esse tipo de estudo é recomendado quando, em uma mistura, diversos dos constituintes atuam sobre um mesmo órgão, tecido ou sistema celular ou molecular.

A palavra predizer é de importância crítica dentre todas as definições envolvidas na avaliação do risco. Isso quer dizer que o efeito da mistura nem sempre é medido experimentalmente. O mesmo pode ser estimado a partir da relação dose-resposta das substâncias isoladas. O efeito estimado pode ser derivado da aplicação da aditividade de resposta ou aditividade de dose, ambos são globalmente aceitos como modelos válidos da não-interação. Esses conceitos têm sido extensivamente revisados. Para a avaliação do risco, o ponto crítico é que as interações (sinergismo e antagonismo) não podem ser diretamente testadas. Até certo ponto, essas interações são deduzidas de resultados experimentais que desviaram de um modelo de não-interação baseado nas características dose-resposta dos compostos isolados da mistura.

Não há testes ou modelos que possam ser universalmente utilizados para as combinações químicas. A escolha dos experimentos e modelos, bem como a forma como devem ser delineados, serão sempre estabelecidos caso-a-caso. O mesmo se aplica para a interpretação dos resultados (HEALTH COUNCIL NETHERLAND, 2002).

Com o avanço da biologia celular e molecular, nas últimas décadas, particularmente com relação à evolução da genômica, proteômica e bioinformática, a área da toxicologia de misturas químicas poderá sofrer avanços revolucionários. Os ensaios conduzidos em animais de laboratório não parecem ser totalmente adequados para fornecer dados suficientes nesse processo de avaliação do risco. Isso porque, em geral, esses métodos não são desenvolvidos para fornecer informações quantitativas do trajeto da substância no organismo (toxicocinética) ou da interação com os receptores,

Resultados e Discussão

92
considerando o tempo e a intensidade de ação, na manifestação da resposta tóxica (toxicodinâmica). Assim, mesmo se essas interações toxicológicas forem detectadas, as bases mecanicistas desse processo permanecem desconhecidas na maioria das vezes.

As análises computadorizadas (bioinformática) terão seu uso progressivamente aumentado na solução de problemas complexos. Um exemplo disso são os modelos que predizem o comportamento cinético ou sugerem os possíveis efeitos tóxicos a partir da avaliação da relação estrutura-atividade. Esta ferramenta é nova na toxicologia e pode ser utilizada para obtenção de dados faltantes da toxicidade das substâncias em separado ou em combinação. A ideia é de que cada substância pode ser descrita e representada por um limitado número de características estruturais, as quais determinam as propriedades biológicas e tóxicas da substância. A consideração essencial é a de que dados faltantes no processo de avaliação do risco de misturas podem ser preenchidos por dados obtidos por extrapolações, utilizando modelos desenvolvidos para essa proposta (HEALTH COUNCIL OF THE NETHERLANDS, 2002).

4.5.5- Outros dados utilizados para predizer a toxicidade

Relação estrutura-atividade (REA)

Intuitivamente, os toxicologistas iniciaram a consideração de que substâncias com grupos funcionais reativos e de maior nível de exposição humana apresentavam maior relevância no processo de avaliação do risco (MUNRO, et al, 1996).

Depois de limitadas tentativas de integrar os dados da relação estruturaatividade no processo de avaliação do risco, esse paradigma tem sido fortemente defendido, discutido e já tem sido incorporado ao processo. Um exemplo é sua inclusão nos protocolos internacionais (OECD, FDA, WHO) que estabelecem procedimentos para a condução de estudos de toxicidade, sendo citado como dado preliminar para a identificação do perigo e anterior à decisão da condução de um estudo in vivo (MUNRO, et al, 1996).
É um preceito básico e bem conhecido da química que as propriedades de uma substância, incluindo sua toxicidade inerente, são determinadas por sua estrutura química (MUNRO, et al, 1996).

O principal objetivo da pesquisa da relação estrutura atividade quantitativa (QSAR) é desenvolver modelos racionais para estimar a toxicidade de substâncias que apresentem dados limitados e para avaliar o potencial das substâncias em causar efeitos adversos. Tais modelos facilitam a estimativa dos efeitos tóxicos potenciais de um grande número de compostos e sua relação com outras substâncias da mesma classe. Estes modelos não substituem os ensaios tradicionais de toxicidade, porém auxiliam a avaliação, até que dados adequados tornem-se disponíveis. Além disso, seu uso pode ajudar na priorização dos testes de toxicidade e em outros usos potenciais como em uma situação de emergência (MUMTAZ et al, 1995).
5- CONCLUSÃO
A realização de uma avaliação de risco estruturada que atenda aos requerimentos científicos deve ser priorizada, quando se trata da exposição humana às misturas simples ou a qualquer tipo de agente químico.

Entretanto, para as misturas químicas, essa avaliação não segue os mesmos critérios e mesmos moldes do método aplicado à avaliação de substâncias isoladas. Isso devido às diferentes abordagens de um processo e de outro. Dessa forma, não é possível estabelecer etapas distintas, quando se trata da avaliação do risco das misturas, como o é no modelo tradicional para substâncias isoladas.

A forma de abordagem como a proposta, para a condução da avaliação do risco das misturas, traz grandes avanços para a discussão científica individualizada e direcionada para cada situação. Essa proposta rompe com os requisitos inflexíveis de requerimentos de dados toxicológicos, por exemplo, sem que haja um raciocínio e uma discussão lógica a respeito do processo de avaliação de risco como um todo.

As misturas comerciais, ou seja, aquelas que correspondem aos produtos químicos que apresentam, em sua composição, diversos ingredientes ativos são o principal exemplo das misturas simples. Para esse tipo de mistura, na qual a composição é completamente conhecida, o melhor modelo para avaliar o risco do seu uso é aquele que considera os dados de seus componentes.

Algumas limitações poderam ser identificadas nesse modelo de avaliação e devem ser consideradas, inclusive quando da atribuição das incertezas do processo.

Devido às diversas limitações, novas abordagens têm sido investigadas e tecnologias aplicadas, a fim de contemplar novos dados para as avaliações toxicológicas. Exemplos disso são: a tecnologia computadorizada, modelos matemáticos e estatísticos, estudos de toxicidade a curto-prazo com bases mecanicistas, metodologias da biologia celular e molecular, novos estudos in vitro como dados preliminares da toxicidade das misturas, métodos desenvolvidos para o entendimento dos dados obtidos da genômica e da proteômica (através da bioinformática).
O conhecimento dos requerimentos para a condução adequada da avaliação do risco para misturas, assim como de suas limitações, garante que as decisões, durante o processo, sejam cientificamente embasadas e suas incertezas sejam estabelecidas e incorporadas.

Há necessidade do desenvolvimento de novas ferramentas para que os requisitos do processo sejam mais bem atendidos. Porém, mesmo frente a algumas limitações, é possível utilizar as informações disponíveis, se as mesmas forem bem avaliadas e adequadamente empregadas.

Para isso, a condução da avaliação deve ser realizada por especialistas familiarizados com o processo e suas limitações, para que o julgamento aplicado em cada etapa contemple as questões científicas, enquanto novas recomendações ainda estão sendo elaboradas.
6- REFERÊNCIAS BIBLIOGRÁFICAS

AGENCY FOR TOXIC SUBSTANCES AND DISEASE REGISTRY. *Chemical Mixtures Program*. 2002.

Referências Bibliográficas
103

CLEWELL, H. Understanding Mechanisms of, and Mechanistic Models for, Chemical Mixtures. [S.I.]: Centers for Human Health Assessment, [200-?].

DE ROSA, C. Tools and Data Needs to Assess Multiple Chemical Exposures Atlanta: Agency for Toxic Substance Disease Registry, [200-?].

DESESSO, J. M.; WATSON, R. E. Should apparently beneficial effects of low dose exposures to agents be integrated into risk assessments performed by the U.S. Environmental Protection Agency? Biological Effects of Low Level Exposures, vol. 13, n° 1, 2005.

DREßLER, V.; MÜLLER, G.; SÜHNEL, J. CombiTool – A New Computer Program for Analyzing Combination Experiments with Biologically Active Agents. Jena, Germany: Institut für Molekulare Biotechnologie, [199-?].

Referências Bibliográficas

108

HANSEN, O. C. Quantitative Structure-Activity Relationships (QSAR) and Pesticides. [S.I.]: Ministry of the Environmental of Denmark, 2004

HEARL, F. J. Occupational Exposure to Chemical Mixtures. [S.I.]: National Institute for Occupational Safety and Health, [200-?].

Referências Bibliográficas

114

SÜHNEL, J. Parallel Dose-Response Curves in Combination Experiments. Jena, Germany: Institut für Molekulare Biotechnologie, [199-?].

7- APÊNDICE
APÊNDICE 1

TERMOS E CONCEITOS BÁSICOS

Ação química combinada: Ação exercida sobre um organismo biológico, a partir da exposição a dois ou mais agentes tóxicos.

Composição qualitativa: diz respeito ao tipo de composto presente na mistura

Composição quantitativa: diz respeito a concentração e/ou quantidade de cada composto presente na mistura

Curva dose-resposta: representação gráfica da relação entre a magnitude da exposição (ou dose) e a incidência e ou severidade de um efeito tóxico.

Dose efetiva: dose que resultou no efeito através de sua interação com o sitio de ação.

Efeito tóxico: efeito conhecido ou esperado ocorrer como resultado da exposição a uma substância química ou a uma mistura de substâncias e que afeta adversamente a qualidade de vida (exemplos: mortalidade, necrose renal, cardiomiopatia, entre outros).

Endpoint: efeito tóxico de relevância consequente da exposição ao agente químico, e que resulta do seu modo e mecanismo de ação.

Exposição combinada: exposição a mais de uma substância, através de uma ou mais vias de exposição: via alimentar, via inalatória e via dérmica. As exposições podem ocorrer simultaneamente ou sequencialmente em um curto período de tempo uma após a outra.

Hormesis: modelo dose-resposta que considera efeitos inibitórios de toxicidade decorrentes da exposição a baixas doses.

LOAEL: menor nível de efeito adverso observável. Menor nível de exposição detectado na qual o efeito tóxico se manifesta. É obtido em condições de experimentação.

Mecanismo de ação tóxica: sequência de eventos moleculares, da absorção de uma dose à produção de uma resposta biológica específica.
Mistura: qualquer combinação de duas ou mais substâncias, independente da origem ou proximidade espacial ou temporal que pode contribuir para um efeito potencial em uma população receptora.

Misturas complexas: combinação de grande quantidade de substâncias (centenas de milhares), não sendo todas conhecidas e nem sempre podendo ser quimicamente identificadas.

Misturas simples: combinação de duas ou mais substâncias conhecidas e quimicamente identificáveis.

Modo de ação tóxica: conjunto de sinais fisiológicos, bioquímicos e comportamentais caracterizando um efeito biológico específico.

Mistura binária: mistura composta de apenas dois constituintes conhecidos.

Perigo: capacidade nociva inerente de uma substância

Praguicida: Qualquer substância ou mistura de substâncias com a finalidade de prevenir, destruir, repelir ou mitigar qualquer praga.

Risco: Probabilidade de ocorrência de um efeito sob determinadas condições de exposição

Risco cumulativo: riscos combinados de exposições a diversas substâncias, que em geral apresentam mesmo modo de ação.

Risco agregado: riscos combinados de exposições por diferentes vias a uma substância específica.

Threshold: limiar de dose em uma curva dose–resposta que representa o início de um efeito tóxico devido ao aumento do nível de exposição a um determinado composto. Substâncias que apresentam um modelo threshold, são aquelas que aumentam sua toxicidade de acordo com o aumento da magnitude de exposição. Em geral esse limiar de dose representa uma concentração entre os níveis de NOAEL e LOAEL determinados em um estudo de experimentação.