Este exemplar corresponde à redação final da tese defendida pelo aluno e aprovada pela Comissão julgadora.

29 Outubro 1986

Rubens B. de Castro

ESTUDO_DE_TÉCNICAS_PERTURBATIVAS_PARA_APLICAÇÃO
A_LASERS_SEMICONDUTORES

Frente XI
Newton Cossário Fratocchi

Orientador: Antonio Rubens Britto de Castro

Tese apresentada ao Instituto de Física Globo Wataghin da Universidade Estadual de Campinas como parte dos requisitos à obtenção do título de Mestre em Ciências. Outubro de 1986
Ao Gabriel e à Valéria
Sinceros agradecimentos aos professores, funcionários e colegas do IFGW pela colaboração na feitura deste trabalho.

Agradeço, de maneira especial, ao professor Antônio Rubens pela extrema dedicação e competência em sua orientação.

Agradeço aos professores Francisco Prince e Mauro Monteiro pelas proveitosas discussões e ao amigo José Manuel pelos auxílios no computador.

Agradecimentos ao CNPq e à FAPESP pelo financiamento deste trabalho.
RESUMO

Desenvolvemos uma teoria de perturbação, baseada no esquema perturbativo de Au e Aharonov, para aplicação à equação de Helmholtz.

Obtivemos, com esta teoria, o ganho modal num laser de heteroestrutura dupla, com perfil de índice de refração do tipo sech 2 , comparando os resultados com aqueles obtidos pelo "método do índice de refração efetivo".

Testamos a teoria para aplicação a guias dieletricos cilíndricos, e portanto a fibras ópticas.

Aplicamos a teoria no cálculo da corrente de limiar no laser "inverted gain profile" como função da energia do foton da emissão e da largura da região ativa.

Discutimos soluções particulares para as equações elípticas que surgem na teoria de perturbação.

Por último, baseado em resultados experimentais e nos estudos teóricos feitos neste trabalho sobre o laser "inverted gain profile" propomos um projeto de integração monolítica destes lasers num "laser-array", discutindo as características esperadas do seu funcionamento.
ÍNDICE

Cap I - Introdução__pag.1

Cap II - Teoria de Perturbação______________________________pag.6
 II.1) Proposição Geral da Teoria______________________________pag.6
 II.2) Teoria para auto-estados não perturbados sem nodos____pag.8
 II.3) Teoria para auto-estados não perturbados com nodos____pag.10

Cap III - Testes da Teoria de Perturbação______________________pag.14
 III.1) Cálculo do ganho modal num laser de heterojunção
dupla com perfil de índice de refração do tipo sech²_______pag.15
 III.2) Teste da teoria de perturbação para aplicação a
 guias dieletricos cilíndricos__________________________pag.23

Cap IV - Aplicação ao laser "Inverted Gain Profile"___________pag.28
 IV.1) Introdução__pag.28
 IV.2) Problema "ordem zero"_______________________________pag.29
 IV.3) Densidade de portadores injetados____________________pag.31
 IV.4) Aplicação da teoria de perturbação____________________pag.34

Apêndice A - Discussão de solução para a equação elástica em
casos particulares___________________________________pag.37

Apêndice B - Projeto de um "laser-array" usando o laser
"Inverted Gain Profile"_______________________________pag.49
Introdução

Os lasers de semicondutor são de grande interesse nos campos de comunicações ópticas [1] e espectroscopia [2,3], entre outros.

No caso de espectroscopia Raman, seriam desejados lasers de semi-
condutor com alta potência de saída, tendo operação monomodo longitu-
dinal. É sabido que a integração desses lasers numa matriz monolíti-
ca, o "laser-array", além de aumentar a potência de saída, favorece a
operação monomodo [4,5].

A possibilidade de obtenção de emissão com alta pureza espectral
e a linearidade da dependência da saída com a corrente de injeção per-
mitindo a modulação em altas frequências; a necessidade de fontes de
alimentação muito simples devido sua alta eficiência e ainda suas
dimensões mínimas tornam-no elemento fundamental à optoeletrônica.

Recentemente tem-se desenvolvido lasers a partir de fibras-ópti-
cas dopadas com terras raras [6]. O bombeamento desses dispositivos
é feito por lasers semicondutores. Uma variante dessa técnica utili-
za "laser-arrays" de alta potência para bombear, não fibras ópticas,
mas cristais de Nd:YAG, gerando emissão estimulada em 1.06 μm [7].

Essencialmente o laser de semicondutor é um diodo, ou seja uma
juntão p-n; a recombinação de portadores injetados é o fator responsá-
vel pela emissão de fótons. Para que a recombinação de portadores
gere fótons e não vibrações na rede cristalina são necessários semi-
condutores de gap direto [8] tais como GaAs, InP, InAs, etc.. A
emissão coerente é favorecida pela presença de uma cavidade resonante
obtida pela clivagem do semicondutor em planos cristalinos transver-

pag.1
sais a direção de propagação, formando as facetas semirefletoras. A Fig 1 esboça esquematicamente esta cavidade.

O laser tal qual fora descrito há pouco apresenta diversos problemas sérios como: necessidade de altas correntes de injeção (1.5A) devido a região de ganho ser muito larga e o confinamento dos campos muito baixo; a produção de uma emissão instável ocorrendo em diversos filamentos ao longo da junção [8]. Sendo assim diversas modificações tornaram-se necessárias ficando o dispositivo com estrutura bem mais complexa.

Para o confinamento da corrente, e portanto a eliminação de instabilidades na emissão, foram desenvolvidas técnicas de contactos metálicos estreitos ("stripes") de tal forma a reduzirmos a região de ganho a uma pequena parte da junção. Com esta corrente localizada o confinamento lateral (na direção paralela à junção) é conseguido devendo a haver ganho somente nesta região de injeção.

O confinamento na direção perpendiculares a junção é conseguido através de junções de dupla heteroestrutura que consistem num sanduíche composto por um semicondutor muito pouco dopado, tipo p ou n, que é a região de ganho, colocado entre a junção p-n formada por semicondutores altamente dopados com Al. A razão deste confinamento perpendiculares é o batente de índice de refração formado entre os semicondutores do sanduíche.

Tem-se desenvolvido, também, lasers com confinamento lateral favorecido por batentes de índice de refração nesta direção. Este batente é conseguido usando-se, por exemplo, técnicas de difusão de Zn [9], ou onterrando uma "messa" com a dupla heteroestrutura já descrita, em material de índice de refração mais baixo [10], ou ainda usando outros procedimentos [11].
Devemos notar que estes batentes são formados devido à diminuição do índice de refração do semicondutor na presença de Al [12] ou Zn.

A Fig 2 esboça um laser com "stripe" e confinamento passivo usando difusão de Zn e heterojunção dupla.

Para estudarmos as características de funcionamento deste dispositivo, tomando-se como modelo matemático um guia de ondas dieletrico retangular formado pelos batentes lateral e vertical, devemos obter os modos passíveis de propagação neste guia e posteriormenre verificar qual destes modos podem resultar em ganho na cavidade.

A corrente de injeção frequentemente produz uma distribuição de carga não uniforme.

Sem a corrente de injeção, portanto desconsiderando a não uniformidade do meio, a resolução do problema é, em princípio, simples. Das equações de Maxwell obtemos as equações de onda e com estas, supondo dependência temporal \(\exp(\pm i\omega t) \) e dependência na direção de propagação \(\exp(\pm ikz) \), chegamos a um conjunto de seis equações bidimensionais de Helmholtz (dependendo das coordenadas transversais à direção de propagação) independentes para as componentes de \(\vec{E} \) e \(\vec{H} \). Podemos, de fato, obter todas as componentes resolvendo apenas a equação de Helmholtz para as componentes longitudinais dos campos \(\vec{E} \) e \(\vec{H} \) [13].

Fazendo isso e impondo condições de continuidade de \(\vec{E} \) e \(\vec{H} \) paralelos e \(B \) e \(D \) normais às interfaces, obtemos os auto-estados e auto-valores para o problema, ou seja, obtemos os modos \(EM \) e a constante de propagação longitudinal \(k \). \(k \) reflete as condições de ganho ou absorção no meio sendo, portanto, usada para identificar os modos capazes de produzir emissão estimulada na cavidade.
Introdução

Com a corrente de injeção o problema complica-se consideravelmente. A não uniformidade do meio resulta em equações de onda acopladas para as diversas componentes dos campos. Para este problema um desacoplamento aproximado fora proposto [14] resultando em equações para as componentes dos campos que diferem da equação de Helmholtz por termos proporcionais à derivada da permissividade dielétrica no meio. Considerando-se estes termos e ainda, principalmente, que a dependência do índice de refração com a posição devido à injeção de portadores não é simples ficamos com problema a auto-valores extremamente complexo.

Nossa proposta é resolver este problema com base num esquema perturbativo. Uma teoria de perturbação do tipo de Rayleigh-Schroedinger para a equação de Helmholtz unidimensional foi descrita por Adams [15]. Ela dá correções aos auto-estados e auto-valores. No entanto, envolve somas infinitas de diferenças recíprocas entre auto-valores. Em física atômica, é frequentemente possível considerar só os primeiros termos devido a terem os outros termos auto-valores muito distanciados desses primeiros, além de que os estados ligados estão muito longe do contínuo. Este não é o caso para os guias dielétricos que são, em geral, projetados para suportar somente um modo (o fundamental ou um dos primeiros excitados) sendo este o único estado ligado. Propomos usar uma teoria de perturbação baseada no esquema perturbativo de Au-Aharonov [16]. Este esquema não envolve somas sobre diferenças recíprocas de auto-valores.

No capítulo II desenvolvemos esta teoria de perturbação extendendo-a teoria de Au-Aharonov para problemas com mais de 1 dimensão. No capítulo III aplicamos os resultados desta teoria a dois problemas de.
Introdução

interesse prático. O primeiro é um estudo teórico de lasers guiados por ganho (com batente lateral passivo) comparando-se os resultados com os obtidos por tratamentos usuais. No segundo, testamos a teoria para ser aplicada a fibras ópticas monomodo. No capítulo IV faz-se uma aplicação ao laser ”Inverted Gain Profile” (F.Prince, N B Patel; Proceedings ICOC-8833, 25D3-10) desenvolvido na Unicamp. Aqui obtemos curvas de densidade de corrente limiar em função de alguns parâmetros de projeto deste laser. Rediscutimos também o problema da injeção de portadores na região ativa para a obtenção do índice de refração no meio.

O apêndice A trata de soluções em casos particulares para a equação olíptica não homogênea que surge nos cálculos de correções para os auto-estados na teoria de perturbação. Discutem-se, também, as condições de contorno a serem impostas de tal forma a termos soluções únicas.

O apêndice B é um projeto de um laser-array, usando o laser ”Inverted Gain Profile”, baseado nos resultados experimentais de Prince e Patel e nos resultados teóricos do capítulo IV. Discutem-se princípios básicos de funcionamento em geral, bem como as características de funcionamento esperadas para o dispositivo projetado.
1.1) Proposição geral da teoria de perturbação

Considerando as dificuldades na resolução da equação bidimensional de Helmholtz para as componentes longitudinais dos campos, apresentamos um esquema perturbativo para tal. Este esquema basia-se na teoria de perturbação unidimensional de Au-Aharonov [16].

Queremos obter os auto-estados e auto-valor de:

\[
\left[\nabla_x^2 + \epsilon(r) \omega^2 / c^2 \right] \Phi(x, y) = E \Phi(x, y) \quad (2.1)
\]

Onde \(\nabla_x^2 \) é laplaciano em relação às coordenadas transversais \(x \) e \(y \); \(\epsilon(r) \) é a função dielétrica no meio e \(E \) é o quadrado da constante de propagação. A permissividade magnética é feita unitária.

Considerando \(\epsilon = \epsilon_0 + \epsilon \Delta \), onde \(\Delta \) é a perturbação propomos como solução:

\[
\Phi = F \exp(-Q) \quad e \quad E = \sum_{n} \xi_n E_n \quad (2.2.a)
\]

onde,

\[
F = \sum_{n} \xi_n F_n(x, y) \quad ; \quad Q = \sum_{n} \xi_n Q_n(x, y) \quad (2.2.b)
\]

pag. 5
Observamos que $\Phi_0 = F_0 \exp(-Q_0)$ é a solução do problema não perturbado, considerada conhecida.

$$[\nabla_t^2 + e_0 \nabla^2/c^2] \Phi_0 = E_0 \Phi_0$$ \hspace{1cm} (2.3)

Notemos que F é incluído para garantir a possibilidade de Φ ter nodos, portanto os nodos de Φ_0 são os nodos de F_0.

Pretendemos resolver o problema para dois casos particulares: a) Φ_0 não tem nodo e então fazemos $F = 1$; b) Φ_0 tem um nodo e o problema tem simetria cilíndrica; fazemos $F = \pm (\rho - \rho_0)$, onde ρ_0 é a posição do nodo.
11.2) Teoria para auto-estados não perturbados sem nodos

Neste caso (2.2.a) torna-se:

\[\Phi = \exp(-Q) \quad E = \sum \xi^n E_n \quad (2.4) \]

Substituindo-se (2.4) e (2.3) em (2.1) e agrupando-se os termos de igual potência de \(\xi \), temos:

\[\sum_{m=0}^{\infty} \xi^m \operatorname{div} \bar{q}_m - \sum_{n=0}^{\infty} \xi^n \bar{q}_n \cdot \bar{q}_{n,m} + E_m = \left(e_0 + \xi \Delta \right) (w/C)^2 \quad (2.5) \]

onde \(\bar{q} = \operatorname{grad} Q \).

Para \(m=0 \) reencontramos (2.3), para \(m > 0 \) temos:

\[m=1 \quad \operatorname{div} \left[\bar{q}_1 \exp(-2Q) \right] = \left[\Delta \frac{w}{C^3} - E_1 \right] \exp(-2Q) \quad (2.6.a) \]

\[m=j \quad \operatorname{div} \left[\bar{q}_j \exp(-2Q) \right] = \quad (2.6.b) \]

\[\left[\sum_{l=1}^{n-1} \bar{q}_l \cdot \bar{q}_{n-l} - E_j \right] \exp(-2Q) \quad ; \quad j > 1 \]

Integrando-se em todo espaço, sendo \(\Phi_0 \) localizado, e usando o teorema de Stokes, temos:

\[E_1 = \iint \Delta \Phi_0 \Phi_0(x,y)^2 \, dx \, dy / \iint \Phi_0(x,y)^2 \, dx \, dy \quad (2.7.a) \]

\[E_n = \iint \left[\sum_{l=1}^{n-1} \bar{q}_l \cdot \bar{q}_{n-l} \right] \Phi_0(x,y)^2 \, dx \, dy \quad (2.7.b) \]

sendo \(\Delta \equiv (w/C)^2 \Delta \).
Substituindo-se de maneira iterativa as equações (2.6), (2.7), podemos obter \(\Phi(x, y) \) até a ordem de perturbação desejada desde que seja possível a solução de equações do tipo:

\[
\text{div} \ [A(\bar{r})\text{grad}(Q)] = P(\bar{r})A(\bar{r}) \tag{2.8}
\]

Vekua [17] mostra que há uma única função de Green em qualquer região limitada onde o lado direito de (2.8) e \(A(r) \) sejam analíticos. Esta função de Green pode ser obtida transformando-se a equação homogênea associada numa equação integral do tipo de Volterra.

Deve-se observar que \(\text{grad}(Q) \) é obtido a menos de uma função \(\bar{\psi} = \text{rot}(\bar{K}) \). Para casos de simetria cilíndrica podemos obter uma solução considerando \(\bar{\psi} = 0 \). Neste caso usamos a função de Green para o operador divergente, ficando \(\text{grad}(Q) \) dado por:

\[
A(\bar{r})\text{grad}[Q(\bar{r})] = \iint d^2\bar{r}' A(\bar{r}') \Delta(\bar{r} - \bar{r}') / 2\pi|\bar{r} - \bar{r}'|^2 \tag{2.9}
\]

Como \(\Phi(\bar{r}) \), e portanto \(A(\bar{r}) \), não tem nós nodos podemos obter \(Q(\bar{r}) \), a menos de uma constante, por integração direta.

O apêndice A trata da solução de (2.8) para alguns casos particulares incluindo uma discussão sobre as condições de contorno a serem impostas ao problema de tal forma a termos soluções únicas.
11.3) Teoria para auto-estados não perturbados com um nodo em problemas com simetria.

Neste caso \(\Phi_0 = \pm (\rho - \rho_0) \exp(-Q_0) \) sendo o sinal \(+ \) ou \(- \) dado pelo sinal da derivada de \(\Phi_0 \) no nodo \(\rho_0 \). Consideraremos nos cálculos a seguir \(\Phi_0 = -(\rho - \rho_0) \exp(-Q_0) \).

Temos que:

\[
\nabla^2 [F \exp(-Q)] = \left(\text{div} (\vec{f}) - 2\vec{f} \cdot \vec{q} - F \text{div} (\vec{q}) + q^2 F \right) \exp(-Q)
\]

(2.10)

Usando as séries de potências de \(\xi \) para \(F \) e \(Q \), substituindo (2.10) em (2.1), temos:

\[
\sum_{n=0}^{\infty} \xi^n \left(\text{div} (\vec{f}_n) + (w/C)^2 e_0 F_n + \Delta F_{n-l} \right)
\]

(2.11)

\[
\sum_{l=0}^{n} \left(2\vec{f}_{n-l} \cdot \vec{q}_l - F_{n-l} \left[\text{div} (\vec{q}_l) \right] - E_{n-l} \vec{F}_l + F_{n-l} \left(\sum_{p=0}^{l} \vec{q}_{l-p} \cdot \vec{q}_p \right) \right) = 0 ; F_l \equiv 0
\]

Estamos interessados somente nas correções até primeira ordem.

Basta-nos obter as equações vindas de (2.11) para \(n=0 \) e \(n=1 \).

Para \(n=0 \) obtemos uma relação entre \(F_1 \) e \(Q_1 \) que veremos mais tarde ser de grande importância.

\[
(-\text{div} (\vec{q}_0)) + \left| \vec{q}_0 \right|^2 + (w/C)^2 e_0 F_0 = -2\vec{f}_0 \cdot \vec{q}_0 - \text{div} (\vec{f}_0)
\]

(2.12)

Em \(\rho = \rho_0 \), temos, sendo \(F_0 = -(\rho - \rho_0) \) (portanto \(\vec{f}_0 = -\vec{f} \)) e considerando \(\vec{q}_0 \) bem comportado:

pag.10
\[
\text{grad}[Q(\rho_0)] \cdot \hat{\rho} = 1/2\rho_0
\] (2.13)

Para n=1, usando (2.12), temos:

\[
div\left(-\bar{q}_1 F_0^2 + \bar{f}_1 F_0 - \bar{f}_0 F_1 \exp(-2Q_0) \right)
= -(\Delta - E_1)F_0^2 \exp(-2Q_0)
\] (2.14)

Integrando-se (2.14) em todo espaço, sendo \(\Phi_0 \) localizado e usando o teorema de Stokes, temos:

\[
E_1 = \int\int d^3\bar{r}' \Delta(\bar{r}') |\Phi_0(\bar{r}')|^2 / \int\int d^3\bar{r}' |\Phi_0(\bar{r}')|^2
\] (2.15)

Este resultado é idêntico à (2.7.a). Resta-nos obter a perturbação ao campo, em primeira ordem, usando (2.14). Usando a função de Green analogamente ao procedimento em (2.9) temos:

\[
\text{rot}(\overrightarrow{K}) + (-\bar{q}_1 F_0^2 + \bar{f}_1 F_0 - \bar{f}_0 F_1) \exp(-2Q_0) = -\overrightarrow{V}(\bar{r})
\] (2.16)

onde \(\overrightarrow{K} \) é um vetor arbitrário e \(\overrightarrow{V}(\bar{r}) \) é dado por:

\[
\overrightarrow{V}(\bar{r}) = \int\int d^3\bar{r}'' \left(\Delta - E_1 \right) |\Phi_0(\bar{r}'')|^2 (\bar{r}'' - \bar{r}') / 2\pi |\bar{r}'' - \bar{r}'|^2
\] (2.17)

Notemos que a obtenção do auto-estado em ordem 1 implica a determinação de \(F_0 \) e \(Q_0 \), o que é feito a partir de (2.16). Parece óbvio não termos solução única devida a função vetorial arbitrária \(\overrightarrow{K} \). A escolha de uma certa função \(\overrightarrow{K} \) deve influenciar todo o cálculo de correções de ordem mais alta de tal forma que o resultado perturbativo final seja independente dela.

pag.11
Consideremos agora o caso de simetria cilíndrica (pode-se obter os mesmos resultados para problemas unidimensionais ou com simetria esférica). Neste caso particular $\bar{\omega} = \text{rot}(\bar{K})$ pode ser feito nulo sem nos levar a inconsistências, desde que a perturbação também seja simétrica.

As equações (2.13), (2.16) e (2.17) reduzem-se a:

$$\text{grad}[Q(\rho)] = \frac{\dot{\rho}}{2\rho_0} \quad (2.18)$$

$$[-\bar{q}_i F_0^i - \bar{F}_1 (\rho - \rho_0) + F_1 \exp(-2Q_0) = -V(\rho) \quad (2.19)$$

$$\bar{V}(\rho) = \frac{(1/\rho) \int_0^\rho \left(\rho - E_1 \right) |\rho'(\rho)|^2 \rho' d\rho'}{\rho} \quad (2.20)$$

Por simplicidade tentamos uma solução fazendo F_1 constante e portanto $\bar{f}_1 = 0$. Sendo assim (2.19) nos dá:

$$F_1 = -V(\rho) \exp[2Q_0(\rho)] \quad (2.21)$$

Q_1 pode ser obtido a menos de uma constante aditiva:

$$Q_1(\rho) = \int_0^\rho \left(F_1 + V(\rho) \exp[2Q_0(\rho)] \right) (\rho' - \rho_0^2) d\rho' \quad (2.22)$$

É óbvio que Q_1 não será aceitável se divergir. Podemos observar em (2.22) que Q_1 diverge em $\rho = \rho_0$ se a expansão do segundo membro de (2.19) em série de Taylor tiver o termo linear. Esse termo tem coeficiente $\frac{\dot{\rho}}{2\rho_0}$ dado por:
\[\lambda = \left(\frac{\partial}{\partial \rho} \exp(-2Q_0) - 2V \frac{\partial}{\partial \rho} \exp(2Q_0) \right) \rho \] (2.23)

A equação (2.20) nos dá:

\[\frac{d}{d\rho} (V) = -V \left(\frac{\partial}{\partial \rho} \right) \rho \]

Substituindo-se (2.18) e (2.23) temos finalmente que \(\lambda = 0 \). Portanto não há termo linear e \(Q_1 \), dado por (2.22), é bem comportado no nódulo.

Desta maneira fica determinada uma solução que nos possibilita correções até primeira ordem. O estudo para auto-estados com nódulos em ordens mais altas de perturbação e sem simetria, bem como o problema de auto-estados com mais de um nódulo fogem do intuito deste trabalho.

Mesmo com estas restrições a teoria pode ter muitas aplicações como veremos nos capítulos seguintes.
A guisa de teste vamos aplicar a teoria descrita no capítulo II a dois problemas concretos. a) Calculamos o ganho modal G_m num laser de semicondutor guiado por ganho, com perfil de índice de refração do tipo $\text{sech}^2[18,19]$; o resultado é comparado com o obtido pelo "método do índice de refração efetivo" [20,21,19]; b) Testamos a teoria para campos de "ordem zero" com nodos num guia de ondas dielétrico cilíndrico.
III.1) Cálculo do ganho modal \(G_m \) num laser de heterojunção dupla com perfil de índice de refração do tipo sech\(^2\).

O laser guiado por ganho é composto por uma heteroestrutura dupla para o confinamento transversal do campo, sendo, para o confinamento da corrente, utilizada a técnica de contactos metálicos estreitos. A Fig 3a mostra esquematicamente o laser e o sistema de coordenadas usado nos cálculos a seguir.

A corrente confinada e a variação da temperatura gerada por ela tem como efeito a formação de um perfil de índice de refração na direção \(x \) (paralela à junção). A Fig 3b esboça o comportamento, segundo o modelo de sech\(^2\), da parte complexa da função dieletrica \(e(x,y) \) que notamos ser negativa em \(|x|<2x_0\) e \(|y|<d_1\) sendo portanto responsável pelo guiamento por ganho nesta região. Este modelo permite-nos escrever:

\[
e(x,y) = e(y) + \delta_0 \text{sech}^2(x/x_0) + \delta_1(y)\text{sech}^2(x/x_0) \quad (3.1)
\]

onde:
\[
e(y) = \begin{cases} \epsilon_D + i\epsilon_\perp, \text{para } |y| < d/2 \\ \epsilon_\parallel + i\epsilon_\perp, \text{para } |y| > d/2 \end{cases} \quad \delta_1(y) = \delta_1(y) + i\delta_1(y)
\]

sendo \(d \) a espessura da região ativa e \(\epsilon_\parallel > \epsilon_\perp \), \(|\delta_0|, |\delta_1(y)|. \)

Desprezando-se os efeitos de \(\text{grad}[e(x,y)] \), considerando-se a dependência em \(z \) e \(t \) como \(\exp[i(\beta z - \omega t)] \), podemos obter os campos no guia resolvendo a equação de Helmholtz bidimensional:

\[
[\nabla_t^2 + e(w/c)^2] \varphi(x,y) = \varphi^2 \varphi(x,y) \quad (3.2)
\]
A obtenção de G_m vem diretamente da obtenção de β ou melhor da parte complexa de β que está relacionada com o ganho e absorção no meio.

Temos que:

$$G_m = 2\pi \int m(\beta)$$ \hspace{1cm} (3.3)

Substituindo-se (3.1) em (3.2) vemos grande dificuldade na resolução devido a que em geral não é possível separar variáveis.

Para resolvemos (3.2) aproximadamente, vamos escrever a função dieletrica como uma soma de duas partes, uma "complicada" mas "pequena", outra "grande" mas suficientemente simples para configurar um problema de ordem zero de resolução exata.

Vamos deixar no problema de ordem zero a dependência "transversal" (em y) da parte real do índice de refração n_r ("batente" resultante da heteroestrutura) e de contribuições a n_r dependentes só da variável "lateral" (em x). Como perturbação sobram então a dependência "transversal" da parte imaginária do índice de refração e termos dependendo simultaneamente das variáveis "lateral" e "transversal".

$$\varepsilon(x,y) = \varepsilon'(y) + \delta \tanh^2 \left(\frac{x}{x_0} \right)$$ \hspace{1cm} (3.4)

$$\Delta \varepsilon(x,y) = \varepsilon''(y) + \delta \varepsilon \tanh \left(\frac{x}{x_0} \right)$$

onde $\varepsilon'(y)$ e $\varepsilon''(y)$ são as partes real e imaginária de $\varepsilon(y)$ tanto dentro como fora do guia.

Fazendo $\phi = X(x)Y(y)$ o problema "ordem zero" leva-nos ao seguinte par de equações:

pag.16
\[x'' + \left(\frac{w}{c} \right)^2 \sech^2 \left(x/x_0 \right) x = \xi^2 x \]

(3.5)

\[y_{\gamma}'' + \left(\frac{w}{c} \right)^2 \epsilon \left(y \right) y_{\gamma} = \left(\beta_0^2 - \xi^2 \right) y_{\gamma} \]

(3.6)

onde \(\xi^2 \) é a constante de separação.

O modo fundamental para a equação (3.5) é dado por:

\[x = \cosh^2 \left(x/x_0 \right) \]

(3.7)

sendo que \(\xi^2 = (\mu/x_0)^2 \) e \(\mu \) é a raiz, com parte real positiva, de:

\[\mu (\mu - 1) = x_0 \left(\frac{w}{c} \right)^2 \]

(3.8)

O modo fundamental para a equação (3.6) é dado por:

\[y = \begin{cases}
\cos (\nu \eta) & \text{para } |\eta| < 1 \\
\text{Bexp} (-u \eta) & \text{para } |\eta| > 1 ; \eta = 2y/d
\end{cases} \]

(3.9)

Da equação (3.6) para as regiões externa e interna no guia dielétrico temos, dada a solução (3.9), que \(u \) e \(v \) devem satisfazer:

\[v^2 + u^2 = (\epsilon_0^\gamma - \epsilon_\gamma) \left(\frac{wd}{2c} \right)^2 \]

(3.10)

sendo o auto-valor \(\beta_0^2 \) dado por:

\[\beta_0^2 = \left(\frac{\mu}{x_0} \right)^2 + \left(\frac{w}{c} \right)^2 \epsilon_0^\gamma - 4 \left(\frac{v}{d} \right)^2 \]

(3.11)
A equação que falta para determinarmos u e v, o portanto obtermos o auto-valor sem perturbação, vem das condições de contorno nas interfaces da junção. Devido à variação do índice de refração ser muito mais lenta na direção paralela à junção do que na direção transversal, esperamos o mesmo comportamento dos campos. Neste caso podemos satisfazer as condições de contorno considerando uma polarização aproximadamente TE ou TM. Escolhendo-se o caso TE, que devido ao favorecimento das reflexões nas faces deve suplantar o modo TM, fazemos $B_T = \phi(x,y)$ e então podemos obter H e E por [13]:

$$
\begin{align*}
\vec{H}_t & = \vec{H}_y = (i\beta_0/\gamma^2)\hat{y} \partial \phi/\partial y \\
\vec{E}_t & = \vec{E}_x = (i\omega/c\gamma^2)\hat{x} \partial \phi/\partial y
\end{align*}
$$

(3.12)

onde consideramos $\partial \phi/\partial x = 0$ e $\gamma^2 = \epsilon_p (\omega/C)^2 - \beta_0^2 + \xi^2 = (2/d)^2 (\nu^2)$. Fazendo então E_x e H_z contínuos nas interfaces temos então:

$$
u = v \cotg(v)
$$

(3.13)

$$
B = \exp(u) \cos(v)
$$

Ficam então determinados o auto-estado e auto-valor, para o problema sem perturbação, apesar de resolução do par de equações transcendenciais (3.10) e (3.13)

O próximo passo é incluir as correções no auto-valor devido a inclusão de ΔE na equação de Helmholtz. Segundo a teoria de perturbação, o auto-valor perturbado é dado por:

$$
\beta^2_{\text{pert}} = \beta_0^2 + \beta_1^2 + \beta_2^2 + \ldots
$$

(3.14)
Tomando-se a perturbação até primeira ordem e supondo $\beta^2 \ll \beta_0$ tomamos:

$$\beta_{pert} = \beta_0 + (\beta^2 / \beta_0) / 2$$ \hspace{1cm} (3.15)

onde β_1 é dado, segundo a equação (2.7.a) por

$$\beta_1^2 = \frac{\int \int \left| 0_o(x', y') \right|^2 (w/C)^2 \left[\epsilon''(y') + \epsilon_i(y') \operatorname{sech}^2(x/x_0) \right] dx' dy'}{\int \int \left| 0_o(x', y') \right|^2 dx' dy'}$$ \hspace{1cm} (3.16)

As equações (3.15) e (3.16) foram obtidas também por Kapon e colaboradores [22] no contexto de uma perturbação do tipo Rayleigh-Schroedinger [15].

As equações (3.15) e (3.16) diferem da expressão variacional dada por Kogelnik [23] apenas em notação. Nossa constante de propagação "efetiva" foi obtida por meio de uma média da perturbação na função dielétrica sobre o campo ordem zero, em concordância qualitativa com o "método do índice de refração efetivo" [20]. Deve-se notar que (3.15) e (3.16), no entanto, são apenas um primeiro passo de um processo iterativo que pode, em princípio, ser levado a ordens mais altas. Neste sentido a aproximação descrita há pouco, usando a teoria de perturbação, é mais útil que as aproximações variacionais ou de índice efetivo.

Na resolução de (3.16) obtemos finalmente G_m dado por:

$$G_m = \int m \left(2\beta_0 + (w/C)^2 \left[\epsilon''_1 + i (T \epsilon''_1 + (1-T)\epsilon''_2) \right] / \beta_0 \right)$$ \hspace{1cm} (3.17)

pag.19
onde,

$$\mathcal{Y} \equiv \int \int \cosh^{2(\mu+1)}(x/x_0) dx/ \int \int \cosh^{2\mu}(x/x_0) dx$$ \hspace{1cm} (3.17.a)$$

$$\vec{\delta}_{1} \equiv \int \delta_{1}(y) |Y(y)| \ dy/ \int \ dy |Y(y)| = \delta_{1} + i \ \delta_{1}''$$ \hspace{1cm} (3.17.b)$$

$$T = \int_{0}^{\infty} dy |Y(y)|^2 / \int_{0}^{\infty} dy |Y(y)|^2$$ \hspace{1cm} (3.17.c)$$

Outra forma de tratar este problema [24] é transformar a equação (3.2) num problema dependente só da direção paralela à junção através de uma média na direção perpendicular. Assim sendo, sobra-nos um problema a auto-valores envolvendo a equação de Helmholtz e um "índice de refração efetivo".

Neste caso a solução da equação de ondas φ_0 é a mesma exceto que $X(x) = \cosh^{\mu}(x/x_0)$, sendo,

$$\bar{\mu}(\mu - 1) = x_0^2 (w/C)^2 [\delta_0 + \delta_1(y)]$$ \hspace{1cm} (3.18)$$

Seguindo [19] e [24], calculamos

$$\bar{G} = \int \int dx dy 2K(x,y)(w/C)|\varphi_0(x,y)|^2 / \int \int dx dy |\varphi_0(x,y)|^2$$ \hspace{1cm} (3.19)$$

onde $K(x,y)$ está relacionado com $e(x,y)$ através de $e(x,y) = [N(x,y) + iK(x,y)]$. Considerando a parte complexa da constante dieletrica bem menor que a parte real temos o ganho modal médio dado por:
\[\bar{G} = (w/C)(1 - \frac{\varepsilon_0}{\sqrt{\varepsilon_0^*}} + (1 - T) \frac{\varepsilon_T}{\sqrt{\varepsilon_T^*}}) + \frac{\varepsilon_0}{\sqrt{\varepsilon_0}} \left[\frac{T}{\sqrt{\varepsilon_D^*}} + (1 - T) \frac{\varepsilon_0}{\sqrt{\varepsilon_T^*}} + \delta_1' \right] \]

sendo que \(\bar{\gamma} \) é calculado como em (3.17.a) porém usando-se \(\bar{\mu} \).

Ficamos agora em condições de comparar \(C_m \), (3.17), com \(\bar{G} \), (3.20), que notamos serem diferentes. É ilustrativo o caso onde \(\delta_1 = 0 \), \(\varepsilon_0 = \varepsilon_T = 0 \). Neste caso, a perturbação, em realidade não existe e o método aqui desenvolvido leva-nos a um resultado exato que é o mesmo que o obtido pela resolução direta deste problema quando não consideramos estes termos. O quociente \(\bar{G}/C_m \) deve ser um se a aproximação do ganho modal médio estiver correta. Esse quociente foi calculado numericamente para valores convenientes dos parâmetros. Fizemos \(\varepsilon_0 = 12.0 \), \(\varepsilon_T = 11.0 \),

\((w/C) = 2\pi/\lambda_o \) sendo \(\lambda_o = 0.8 \mu m \), \(0.6 < (w/C)d < 3.0 \), \(3.5 < (w/C)x_0 \geq 15 \), \(\delta_0'' = -0.001 \) e \(-0.1 \) [25], \(\delta_0' = 0 \). Estes valores são adequados para lasers de dupla heteroestrutura de GaAs/GaAlAs. Neste intervalo numérico o quociente \((C_m - \bar{G})/\bar{G} \) depende de \(T \), fator de confinamento (3.17.c), mas não depende de \((w/C)x_0 \), nem de \(\delta_0'' \). A Fig 4 mostra este resultado. A discrepância pode chegar a 8% para valores altos de \(T \).

Considerando que na situação que acabamos de discutir, o resultado desenvolvimento teórico para obtenção de \(C_m \) é exato, concluímos que o método de perturbação é mais confiável, em geral, que a "aproximação do ganho modal médio."

É interessante mencionar que quando Cook e Nash [26] introduziram o conceito de "ganho modal médio" \(\bar{G} \) através de (3.19) eles o fizeram.
como um auxílio ao entendimento do significado físico de G_m obtido resolvendo-se o problema de auto-valores, e isto somente após mostrar explicitamente que naquele caso, $\bar{G} = G_m$.

Deve ser notado também que muitas das quantidades envolvidas em (3.17) e (3.20) dependem fortemente do comprimento de onda fazendo a discrepância entre \bar{G} e G_m ter uma dependência espectral. Isto deve ser especialmente importante se usarmos estas expressões para obtermos a largura espectral da curva de ganho.
III.2) Teste da teoria de perturbação para aplicação a guias dielétricos cilíndricos.

O estudo de guias dielétricos cilíndricos é extremamente importante devido à sua aplicação a fibras ópticas. Com a teoria descrita em (11.2) podemos obter perturbativamente, até primeira ordem, os modos de propagação e correspondentes auto-valores em fibras monomodo. As fibras monomodo são projetadas para suportar somente o modo fundamental que possui simetria cilíndrica [27]. O uso da teoria para campos "ordem zero" com nodos é necessário porque, como será visto mais adiante, as componentes longitudinais dos campos têm nodo(s) no interior do guia qualquer que seja o modo.

Tomamos como problema de "ordem zero" um guia de ondas formado por um cilindro dielétrico (no caso da fibra o quartzo) de permissividade \(e_0 \) e raio a num meio (o ar, por exemplo) de permissividade \(e_f \).

Os tipos de perturbação a serem tratadas pelo método devem ser variações suaves e com simetria cilíndrica do índice de refração em toda seção circular do guia. Um exemplo de problema típico para aplicação do método é a perturbação do encapamento de proteção das fibras. Esta perturbação entraria como variações na parte complexa do índice de refração na região de guiamento no núcleo de vidro (causadas por tensões na operação de encapamento) em cujo caso a obtenção dos auto-estados exatos não é trivial.

Para verificarmos a aplicabilidade e esboçarmos o uso da teoria discutimos uma situação ainda mais simples: Primeiramente obtenos, de maneira exata, os auto-valores e auto-estados do problema "ordem zero" e de um problema "objeto" que difere do primeiro apenas no valor
da permissividade dielétrica dada por \(\varepsilon_0 = \varepsilon_0 + \Delta \). Em seguida obtemos a solução do problema "objeto" a partir da perturbação de \(\Delta \) no problema "ordem zero".

A solução do problema de guia de ondas cilíndrico para o modo fundamental, que é de nosso interesse, fica muito simplificada. Neste caso a invariância sob rotações nos permite separar os modos nas polarizações TE e TM, sendo os campos obtidos por [28]:

\[
\text{Caso TE: } B_\rho = (ik/\gamma_\varphi^2) \frac{\partial B_z}{\partial \rho}; \quad B_z = \varphi_0 \quad (3.21)
\]

\[
E_\varphi = -\frac{\omega}{Ck} B_\rho
\]

\[
\text{Caso TM: } B_\varphi = \left(ik/\gamma_\varphi^2\right) \frac{\partial E_z}{\partial \rho}; \quad E_z = \varphi_0 \quad (3.22)
\]

\[
E_\rho = \frac{ck/\sigma_0 w}{\gamma_\varphi^2} B_\varphi
\]

sendo \(\gamma_\varphi^2 = e_\rho (w/C)^2 - k^2 \). \(\varphi_0 \) deve ser dado por:

\[
\varphi_0 = \begin{cases}
J_0(\gamma \rho) , & \rho < a \\
A K_0(\beta \rho) , & \rho > a
\end{cases} \quad (3.23)
\]

Tomando-se o caso TE, temos que as condições de continuidade impostas a \(B_\rho \) e \(E_\varphi \) implicam na determinação de \(\gamma \) e \(\beta \) através do par de equações:

\[
J_1(\gamma a)/\gamma J_0(\gamma a) + K_1(\beta a)/\beta K_0(\beta a) = 0 \quad (3.24)
\]

\[
\gamma^2 + \beta^2 = (\varepsilon_0 - \sigma_\rho)(w/C)^2
\]

ficando \(A = J_1(\gamma a)/K_0(\beta a) \).
Com \(\chi \) e \(\rho \) temos a constante longitudinal de propagação:

\[
k^2 = e_0(w/C) - \frac{\chi^2}{a^2} \quad (3.25)
\]

Seguindo este procedimento podemos obter a solução exata tanto do problema "ordem zero" como do problema "objeto".

Deve-se notar, segundo (3.24), que sendo \(K_1/K_0 > 0 \), então \(\chi = 0 \), para o caso fundamental, deve estar compreendido entre as primeiras raízes de \(J_0(x) \) e \(J_1(x) \). Daí a ocorrência obrigatória de um nodo no interior do cilindro justificando o uso da teoria para campos "ordem zero" com nodos.

Querendo-se resolver o problema "objeto" usando a teoria de perturbação escrevemos a perturbação ao problema "ordem zero" como:

\[
\text{perl} = \begin{cases}
(w/C)^2 \Delta & \rho < a ; \quad \frac{\partial \Delta}{\partial \rho} = 0 \\
\text{zero} & \rho > a
\end{cases} \quad (3.25)
\]

Sendo assim, usando (2.15), podemos obter \(E_1 \), ou seja, a contribuição em primeira ordem a \(k^2 \) como:

\[
E_1 = (w/C)^2 \Delta T \quad (3.26)
\]

onde \(T \) é o fator de confinamento.

A partir de (2.20) temos \(V(\rho) \) dado por:

\[
V(\rho) = (w/C)^2 \Delta (1-T)(\rho/2a)[J_0^2(\chi \rho) + J_1^2(\chi \rho)] \quad (3.27)
\]

pag.25
Segundo (2.21), obtemos \(F_1 \) a partir do cálculo de (3.27) em

\[
F_1 = \exp[2Q_0(\rho_0)](w/C)^2 \Delta (T - 1)(\rho_0/2a)[J_1(\tau_{\rho_0})]^2 \tag{3.28}
\]

Por definição, \(\exp[-Q_0(\rho_0)] = \lim_{\rho_0 \to \rho_0} J_0(\tau \rho)/J_0(\tau \rho_0) = \tau J_1(\tau \rho_0) \) ficamos com:

\[
F_1 = (w/C)^2 \Delta (T - 1)(\rho_0/2a\tau^2) \tag{3.29}
\]

Usando (2.22), (3.27) e (3.29) fica determinado o auto-estado com correções até primeira ordem através do cálculo de \(Q_1 \).

\[
Q_1 = \int \rho^2 \Delta (T - 1)\omega(\tau \rho) \, d\rho \tag{3.30}
\]

onde \(\omega \equiv (1/2a)(\rho_0/\tau^2(\rho_0 - \rho)^2 - \rho [J_1^2(\tau \rho)/J_0^2(\tau \rho) + 1]) \)

Os cálculos descritos acima, bem como a comparação com a teoria de perturbação foram feitos num caso específico cujos parâmetros estão dados na Tab 1. Para estes parâmetros nota-se que a perturbação \(\Delta \) altera o valor da constante dieletrica do problema "ordem zero" em 10%. O resultado do auto-valor a partir da aplicação da teoria de perturbação difere do resultado exato apenas por 1%. Graficamos na Fig 5 os auto-estados obtidos nos problemas: "ordem zero", com perturbação e "objeto". Podemos observar que longe do nodo o problema com perturbação leva a resultados muito bons com diferença em torno de 1%. Na região do nodo temos o máximo de erro, que chega a 50%, porém em todos os pontos nota-se que a teoria de perturbação
leva a um auto-estado do problema "objeto" mais próximo do correto que o auto-estado de ordem zero.

A partir destes resultados acreditamos ter a teoria grande confiabilidade podendo ser aplicada a casos mais complexos e de interesse prático.

Deve-se notar que as técnicas numéricas utilizadas nestes cálculos foram as mais elementares possíveis. O uso de técnicas mais refinadas deve melhorar os resultados do método de perturbação.
Aplicação do laser "Inverted Gain Profile"

IV.1) Introdução

Descrevemos neste capítulo uma aplicação prática da teoria de perturbação. Calculamos perturbativamente a corrente de limiar para o laser "Inverted Gain Profile" (F. Prince, N. Patel; Proceedings 100C-83, 29D3-10) como função da energia do foton de emissão e da largura da região ativa.

Apesar de que os lasers semicondutores são operados bem acima do limiar, uma análise da corrente de limiar é ainda útil. Ela reflete as características de operação sob correntes mais altas tais como a natureza dos modos transversais e a distribuição dos campos próximos às facetas. Neste capítulo calculamos a corrente de limiar para um laser semicondutor de GaAs/GaAlAs desenvolvido por Prince e Patel na UNICAMP.

A seção (IV.2) descreve o "problema ordem zero". Na seção (IV.3) calculamos a densidade de portadores injetados na região ativa do laser. Na seção (IV.4) usamos o índice de refração complexo perturbado para obter, via teoria de perturbação em primeira ordem, a constante de propagação longitudinal k. k é diretamente relacionado com o ganho modal Gm e portanto com a corrente de limiar. Isto é feito para várias larguras de região ativa e várias energias do foton de emissão nas proximidades da energia do gap. Veremos que as correntes calculadas são menores que aquelas medidas experimentalmente.
IV.2) Problema "ordem zero"

O laser "Inverted Gain Profile" [29] mostrado na Fig 6a, é baseado numa heteroestrutura dupla convencional. A região ativa é composta por Ga$_{0.34}$Al$_{0.66}$As muito pouco dopado limitada acima e abaixo por camadas confinantes de Ga$_{0.7}$Al$_{0.3}$As com índice de refração cerca de 10% menor. O confinamento lateral dos campos EM é conseguido devido à difusão de Zn nos dois lados da região central com largura 2L, pois o Zn diminui o índice de refração do Ga$_{0.7}$Al$_{0.3}$As e ainda permite um caminho de corrente para a injeção lateral.

Na ausência de injeção, tomamos como modelo um prisma de material dieletrico com secção retangular de dimensões 2L x 2d envolvido por outro meio dieletrico nos quatro lados. Isto despreza a condutividade finita do meio lateral com Zn.

A solução exata deste problema envolve uma expansão das componentes dos campos em harmônicos circulares [30]. As expressões resultantes são extremamente complexas. Inspirados em Marcatilli [31], usaremos uma aproximação escalar. Neste caso para ondas guiadas, a componente do campo $\phi(x,y)$ deve satisfazer as seguintes condições:

a) $\phi(x,y)$ é solução da equação de Helmholtz em todo espaço:

$$\left(\nabla^2 - \frac{1}{c^2}\omega^2 - k_0^2\right)\phi(x,y) = 0 \quad (4.1)$$

aqui n_0 é o índice de refração da região, ω é a frequência, k_0 é a constante de propagação longitudinal.
b) $\phi(x,y)$ é uma função oscilante na região central ecai exponencialmente fora.

$$
\phi = \begin{cases}
A\cos(\alpha x + \xi) & ; |x| < L \\
B\exp(-\beta |x|) & ; |x| > L
\end{cases} \begin{cases}
C\cos(\gamma y) & ; |y| < d \\
D\exp(-\eta |y|) & ; |y| > d
\end{cases}
$$

(4.2)

$\xi = 0$ para modos pares e $\xi = -\pi/2$ para modos ímpares.

c) $\phi(x,y)$ satisfaz nas quatro fronteiras as condições:

$$
\phi, \frac{\partial \phi}{\partial x} \text{ contínuos em } x = \pm L
$$

(4.3)

$$
\phi, \frac{\partial \phi}{\partial y} \text{ contínuos em } y = \pm d
$$

Estas condições do contorno resultam em dois pares de equações transcendenciais, das quais, pode-se, então, obter as constantes α, β, γ e η.

Na Tab 2 estão listados alguns dos valores destas constantes para diferentes energias de fóton e larguras de região ativa.
IV.3) Densidade de Portadores Injetados

De acordo com a Fig 7a, a região \(-L < x, y < -d\) está sob potencial zero. Em \(y = -d\) há uma junção p-n. A corrente entra nas região ativa pelo lado \(x = -L\), \(-d < y < d\) e sai em \(y = -d\) após passar pela junção p-n.

Sejam \(V(x,y)\) e \(J(x,y)\) o potencial e a densidade de corrente.

Sejam \(V(x) = (1/2d) \int_{-d}^{d} dyV(x,y)\), e \(J_x(x) = (1/2d) \int_{-d}^{d} dyJ(x,y)\).

Considerando o meio óhmico, com resistividade \(\rho\), \(\rho J(x) = -dV/dx\), enquanto a densidade de corrente na junção é \(J_y(x) = J_{oy}(exp\nu - 1)\).

A voltagem adimensional \(\nu\) satisfaz a equação aproximada:

\[
d^2\nu/d\xi^2 - \exp(\nu) = 0
\]

onde:

\[
\nu \equiv l_ieV(x)/k_BT ; \xi \equiv x/L ; \alpha \equiv J_{oy}ple1/2dk_BT
\]

Aqui, \(l_i\) é a carga do elétron, \(k_B\) é a constante de Boltzmann e \(T\) é a temperatura absoluta.

Queremos a solução de (4.4) sujeita as seguintes condições de contorno fisicamente plausíveis: \(J_x(x=-L) = 0\) e \(J_x(x=\infty) = 0\), onde \(L\) é a corrente de injeção total e \(l\) é o comprimento do laser. A segunda condição pode ser somente parcialmente satisfeita por dispositivos práticos com largura finita. A solução é

\[
\nu(\xi) = \ln \left[2(\xi + \xi_0)\right]
\]

com

\[
\xi_0 \equiv 4\alpha k_BTld/ple1
\]

pag.31
A Tab 3 mostra valores para os parâmetros físicos e geométricos. Obtem-se \(\kappa = 4.8 \times 10^8 \text{ cm}^3 \); e também, se \(I = 100 \text{ mA} \) e \(l=300 \text{ \mu m} \), tem-se \(\xi_0 = 1.24 \times 10^{-13} \) (adimensional). Em \(1 \text{ \mu m} \) distante da extremidade onde a corrente é injetada, a densidade de corrente através da junção deve ser \(\sim 80 \) vezes inferior do que aquela na borda. O aumento da voltagem através da junção deve estar próximo a 1.55 V.

As densidades de corrente e de carga \(j^+ \), \(n^+ \) estão relacionadas por:

\[
\frac{dn_-}{dt} = Rn_+n_- + \frac{1}{l_1e_1} \text{div} j^-
\]
\[
\frac{dn_+}{dt} = Rn_-n_+ + \frac{1}{l_1e_1} \text{div} j^+
\]

No estado estacionário, fazendo-se \(n = n_- \), \(j = j_- \) obtemos para \(n_- \),

\[
n_- = - \left(\frac{\xi}{l_1e_1} \right) \text{div} j^-
\]

onde \(\xi = Rn_+n_- \) é a taxa de recombinação para os elétrons, que é medida diretamente [32].

Obtem-se

\[
n_- = n_0 (1 + \xi/\xi_0)
\]

\[
n_0 = l_1e_1/2d_1e_1\xi_0
\]

Usando-se os parâmetros da Tab 3 , \(n_0 \sim 2.4 \times 10^{21} \text{ cm}^{-3} \).

No sentido de aplicar estes resultados na descrição de um dispositivo real com largura 2L, excitado simetricamente, fazemos...
Aplicação ao laser "Inverted Gain Profile"

\[n(x) = \begin{cases}
 \text{zero} & \text{se } |x| > L \\
 n \left[1 + \left(\frac{x}{L_0} \right)^2 \right] & \text{se } |x| < L
\end{cases} \quad (4.10) \]

Há uma discontinuidade artificial em \(\frac{dn}{dx} \) \(x=0 \), que é no entanto sem importância para os propósitos de aplicação prática, pois

1) A discontinuidade é pequena se comparada com \(\frac{dn}{dx} \) nos outros pontos.

2) A equação (4.4), de qualquer forma, não é precisa para baixas correntes de injeção (i.e., longe das extremidades);

3) O comportamento deste laser é dominado pelas regiões com altas densidades de carga próximas às extremidades;

4) Os efeitos de difusão devem tornar a curva \(n(x) \) suave.

Seja \(L_0 \) o comprimento de difusão. Então a densidade de carga difundida é:

\[\tilde{n}(x) = \left(\frac{1}{2L_0} \right) \left[\exp(-x/L_0) \int_{-L}^{x} \exp(x'/L_0)n(x')dx' - \int_{x}^{L} \exp(-x'/L_0)n(x')dx' \right] \quad (4.11) \]

A Fig 7 mostra as densidades normalizadas de carga \(\tilde{n}(x)/n_0 \) para o caso onde \(L/L_0 = 3 \) e \(\xi_0/L_0 = 0.026 \). Podemos ver que o valor de pico de \(\tilde{n}(x) \) é quase 100 vezes menor que \(n_0 \).

A expressão (4.11) será usada na próxima seção para calcular, a cada ponto, a mudança no índice de refração devido a injeção de portadores.

pag. 33
IV.4) Aplicação da Teoria de Perturbação

As componentes do campo da secção (IV.2) são modificadas pela injeção do corrente.

Usando o tratamento perturbativo descrito anteriormente pretendemos obter as corretações até primeira ordem do auto-valor da equação (4.1). Isto permite-nos estimar os efeitos da injeção no campo, via dependência do índice de refração complexo \(n = n_{re} + jK_{re} \) com a corrente de injeção \(I \).

A perturbação à equação de Helmholtz é então:

\[
V_i = [n_{re} + jK_{re}] - n_0^2 \left(\frac{\omega}{c} \right)^2
\]

(4.12)

Aplicando a teoria de perturbação temos que o auto-valor com correcções até primeira ordem é dado por:

\[
k_{re}^2 = k_0^2 + \int \int \left| \phi(x,y) \right|^2 V_i \, dx \, dy / \int \int \left| \phi(x',y') \right|^2 \, dx \, dy
\]

(4.13)

O auto-valor perturbado será, em geral, complexo. A parte imaginária de \(k_{re} \) está relacionada com o ganho modal \(G_m \) (3.3) o qual aparece na equação do limiar:

\[
\ln(R) = G_m \Delta
\]

(4.14)

onde \(R \) é a reflectância da faceta.

O procedimento consiste em, começando com uma corrente de injeção muito baixa, (a) especificar-se a energia do foton e resolver-se o
problema de ordem zero; (b) computar-se a integral em (4.13) numeri-
camente utilizando em cada ponto \((x,y)\) a densidade de portadores \(N\) de-
da em (4.11). A dependência do índice de refração com \(N\) foi tomada
da literatura [25], interpolação sendo usada conforme necessário. (c)
a corrente \(I\) é incrementada até que a equação de limiar seja satisfei-
ta.

Os resultados estão apresentados na Fig 8 como um conjunto de
densidades de corrente limiar contra a energia do foton de emissão,
para diferentes valores da largura \(2L\). Para \(L\) pequeno, apenas o modo
fundamental é suportado. Para \(L\) maiores, alguns modos excitados são
possíveis.

Este laser, segundo resultados experimentais opera no modo funda-
mental para \(L<3 \mu m\), porém sob altas correntes de limiar. O primeiro
modo excitado pode ser obtido para \(L>7.5 \mu m\) tendo densidade de cor-
rente limiar em torno de \(2KA/cm^2\). Concordando com estes resultados
obtivemos densidades de corrente limiar muito mais altas para o caso
\(L=2 \mu m\) no modo fundamental \((\approx 1.5KA/cm^2)\), que para o primeiro excitado
com \(L=10 \mu m\) \((\approx 0.5KA/cm^2)\). Neste último caso, como podemos observar, a
densidade de corrente limiar mínima calculada é cerca de quatro vezes
inferior ao resultado experimental. É sabido que fugas de corrente
estão sempre presentes em dispositivos práticos. Isto pode explicar
a discrepância entre dados experimentais e teóricos.

Os mínimos de corrente de limiar ocorrem para energias de emissão
abaixo do espectro medido do laser. Isto pode ser entendido facil-
mente. Consideramos GaAs puro nos cálculos enquanto que em dispo-
tivos práticos há um pouco de Al na região ativa [33]. Dopagem com
Al aumentam o gap do GaAs [34].
O uso de apenas campos "ordem zero" para discutir a operação em modos excitados não leva a uma boa concordância quantitativa com a observação experimental. Isto mostra que a perturbação causada pela injeção de corrente é forte e então correções em ordens mais altas devem ser importantes. A obtenção de soluções para a equação (2.8) no caso geral, sem simetria, segundo a teoria de perturbação, nos permitiria estas correções, daí sua grande relevância.

O modelo do guia dielétrico retangular onde despreza-se a condutividade do Zn difundido e a obtenção aproximada dos campos "ordem zero" neste guia devem ser também citados como fatores que influem nesta discrepância.

Deve-se observar que não levamos em conta efeitos de temperatura.

A despeito destas simplificações, o resultado de que modos excitados têm menor corrente de limiar aparece naturalmente da teoria e está em boa concordância com as medidas experimentais.

Nossos resultados sugerem que as fugas de corrente nos dispositivos experimentalmente testados não é desprezível.
1) Discussão sobre as condições de contorno.

Conforme vimos no capítulo II, no cálculo das correções Ψ para os auto-estados ocorrem equações elásticas com a seguinte estrutura:

$$\text{div} \left[\rho(F) \nabla \Psi \right] = \rho(F)P(F) \quad \text{A1}$$

Aqui $\rho(F) > 0$, $P(F)$, são contínuas em uma região conexa Ω.

A solução proposta por Vekua [17] é muito restritiva já que só é válida e possível de ser obtida em regiões limitadas onde $\rho(F)$ e $P(F)$ são analíticas. Pouco se sabe sobre soluções de A1 em regiões ilimitadas. Não é claro quais condições de contorno devem ser impostas no infinito.

Queríamos obter soluções para A1 válidas em regiões ilimitadas (e talvez em todo espaço) com $\rho(F)$ e $P(F)$ não necessariamente analíticos.

Naturalmente a existência e unicidade de tais soluções depende criticamente das condições de contorno impostas ao problema.

Apresentamos abaixo dois exemplos onde, após especificar condições de contorno fisicamente plausíveis, construímos uma solução e demonstramos sua unicidade.

Isto sugere que deva ser possível provar resultados análogos em geral.
Apêndice A - Discussão sobre a equação elástica

Começamos discutindo qual seja o comportamento desejado para \(\psi \) no infinito:

No desenvolvimento da teoria no capítulo II consideramos \(\rho(\mathbf{r}) \) e \(P(\mathbf{r}) \) tais que a propriedade

\[
\iint_\mathbf{V} \rho(\mathbf{r}) P(\mathbf{r}) d^3\mathbf{r} = 0
\]

\(\Lambda_2 \)

é válida.

Ora, este resultado implica, integrando-se \(\Lambda_1 \) em todo espaço, em que:

\[
\lim_{\mathbf{V} \to \infty} \int_\partial \rho(\mathbf{r}) \left(\frac{\partial \psi}{\partial n} \right) ds = 0
\]

\(\Lambda_3 \)

Isso sugere impor como primeira condição de contorno, então:

\[
\rho(r, \theta, \phi) \left(\frac{\partial \psi}{\partial r} \right) \xrightarrow{r \to \infty} r^{-2-\alpha}, \quad \alpha > 0
\]

\(\Lambda_4 \)

ou ainda mais depressa.

Pelo mesmo argumento se \(\rho(\mathbf{r}) \) se anula na fronteira de \(\mathbf{V} \) (isto é, se \(S(\mathbf{V}) \) é uma superfície nodal do problema de ordem zero), o equivalente de \(\Lambda_4 \) é

\[
\rho(r, \theta, \phi) \frac{\partial \psi}{\partial n} \mid_{S(\mathbf{V})} = \text{zero}
\]

\(\Lambda_5 \)

Queremos também \(\psi \) limitada e localizada. \(\psi \) limitada seria inconsistente com nossa teoria de perturbação. Sua localização é esperada devido à localização da perturbação e dos campos de ordem zero.
Sendo a equação elíptica de segunda ordem para Ψ, exigimos também que Ψ tenha derivadas até segunda ordem contínuas.

Para que uma solução obtida para A_1 seja útil devemos antes mostrar que é única, dado um certo $\rho(r)$. Nos casos que discutiremos a seguir mostramos explicitamente que a solução da homogênea associada a A_1, sujeita às condições descritas a pouco, só admite solução trivial, o que garante a unicidade da solução para a não homogênea.

2) Resolução de A_1 para $\rho(\mathbf{r}) = \exp(-r^p)$, com $p>0$.

a) Unicidade da solução.

A homogênea associada pode ser escrita como:

$$\exp(-r^p) [\nabla^2 \Psi - (pr^{p-1}) \partial \Psi / \partial r] = 0$$

Qualquer $\Psi (r,\theta,\varphi)$ bem comportado pode ser expandido em harmônicos esféricos $\Psi = \sum_{l,m} f_{lm}(r) Y_{lm} (\theta,\varphi)$. A condição A4 recai sobre os coeficientes f_{lm} desta expansão. Devemos notar que, rigorosamente falando, A4 impõe condições apenas à f_{∞}, pois para $l\neq 0$ a integração de $Y_{lm} (\theta,\varphi)$ sobre o ângulo sólido resulta em zero independentemente da parte radial. Impomos adicionalmente então que os f_{lm}, $l\neq 0$, satisfaçam as mesmas condições que f_{∞}. Ficamos com:

$$\rho(r) \partial f_{lm} / \partial r \rightarrow r^{-2-p}, \; \ast > 0$$

Substituindo-se a expansão de Ψ na equação A6 obtemos a seguinte equação para $f_{lm}(r)$.

pag. 39
Apêndice A - Discussão sobre a equação elástica

\[\frac{d^2 f_{lm}}{dr^2} + (1/r)(2 - pr^p)\frac{df_{lm}}{dr} - l(l+1)f_{lm}/r = 0 \]

A8

Se \(p=0 \) temos soluções para A8 do tipo \(f_{lm}(r) = A_k r^l + B_k r^{-l} \) que só satisfazem as condições de contorno escolhendo-se \(\lambda_1 = \text{zero} = B_k \), qualquer que seja \(l \). Então \(p=0 \) só admite a solução trivial.

Para \(p \neq 0 \) e \(l=0 \) temos que \(F = \frac{df_{lm}}{dr} \), segundo A12, é dado por

\[F = C \exp(r^p)/r^2 \]

A9

Esta solução leva a que \(\rho(r) \frac{\psi}{dr} \) caia no infinito como \(1/r^2 \) isto é, \(\alpha = 0 \), e portanto viola a condição A7; além disso, sendo \(F \) descontínua na origem, \(\psi \) e \(\frac{\psi}{dr} \) também o serão. Portanto se \(p > 0 \) e \(l=0 \), \(f_{lm}(r) = \text{zero} \) em toda parte.

No caso geral para \(p \neq 0 \) e \(l=1,2,3,... \) transformamos a equação A6 para a variável \(t = r^p \), ficando com

\[y'' + [(p+1)/tp-1]y' - (1/pt)^2 \lambda(l+1)y = 0 \]

A10

onde \(f_{jm}(r) = y(t) \).

Seja \(y(t) = t^s u(t) \), com \(s \) a determinar. Temos, então, a seguinte equação para \(u(t) \):

\[u'' + [(2sp+p+1)/pt-1]u' + \]

\[[s(s-1)/t^2 + s(p+1)/pt^2 - l(l+1)/p^2 t^2 - s/t]u = 0 \]

A11

pag.40
Apêndice A - Discussão sobre a equação elástica

Escolhendo-se s para que λ_1 recaia na forma hipergeométrica confluente, temos duas possibilidades: $s = 1$ ou $s = -l - 1$. Rejeitamos a segunda pois nos leva a $f_{lm}(r) u(t) r^{-l-1}$ que diverge na origem. Fazendo $s = 1$ temos então a seguinte equação para u:

$$tu'' + [(2l+p+1)/p - t]u' - (l/p)u = 0$$ \hspace{1cm} A12

cuja solução regular na origem é

$$u(t) = F_1\left(\frac{l}{p}; 2l/p + 1/p + 1; t\right)$$ \hspace{1cm} A13

sendo F_1 a função hipergeométrica confluente [35].

Portanto $f_{lm}(r)$ fica:

$$f_{lm}(r) = r^l F_1\left(\frac{l}{p}; 2l/p + 1/p + 1; r^p\right)$$ \hspace{1cm} A14

Para $r \gg 1$, temos que [35]

$$\rho(r) \frac{\partial f_{lm}}{\partial r} \rightarrow T \left(\frac{(2l + 1/p + 1)p}{(l/p)r^2}\right)$$ \hspace{1cm} A15

onde T é a função gama.

Portanto vemos que A15 viola a condição A7. Sendo assim esgotamos todas as possibilidades de soluções não triviais para A5. Portanto a equação não-homogênea tem solução única. Podemos agora tentar obter esta solução em dois casos particulares.
Apêndice A - Discussão sobre a equação elíptica

b) Caso \(\rho(\vec{r}) = \exp(-r^2) \)

\[P(\vec{r}) = \frac{n(n+1)(1+r)^2 + 2(2+n)r - 6}{(1+r)^n} \]

Notemos que a perturbação \(P(r) \) dada é limitada e localizada quando \(n > 2 + \epsilon, \epsilon > 0 \), sendo inteiramente coerente com problemas físicos concretos.

Verificamos por inspeção que uma solução é

\[\Psi(r) = r^n (1 + r)^{\epsilon} \quad A16 \]

Em virtude da discussão feita há pouco, esta solução é a única.

\(\Psi(r) \) além de ser limitada, tem as mesmas características de localização que \(P(r) \). Acreditamos que esta concordância de comportamento entre \(P(r) \) e \(\Psi(r) \) deverá ocorrer também no caso geral para \(P(\vec{r}) \) e \(p \) quaisquer.

c) Caso \(\rho(\vec{r}) = \exp(-r^p), p > 0 \) e \(P(\vec{r}) \) arbitrário.

Tendo em mente os resultados do exemplo passado exigimos aqui apenas que \(P(\vec{r}) \) seja localizado para que \(\Psi \) tenha este comportamento.

Sendo \(\rho(\vec{r}) \) e \(P(\vec{r}) \) bem comportados podemos expandi-los em harmônicos esféricos:

\[\Psi(r) = \sum_{l,m} \Psi_{lm}(r)Y_{l,m}(\Theta, \Phi) \quad A17 \]

\[P(r) = \sum_{l,m} P_{lm}(r)Y_{l,m}(\Theta, \Phi) \]
Apêndice A - Discussão sobre a equação elástica

Substituindo-se \(\lambda_{17} \) em \(\lambda_{6} \), considerando-se a ortogonalidade dos harmônicos esféricos, obtemos:

\[
\text{div}(\rho(r) \text{grad } \psi_{\ell m}) = \rho(r) \psi_{\ell m}(r) \quad \text{; para } \ell = m = 0 \quad (A18a)
\]

\[
\rho(r) \frac{\partial}{\partial r} \left(r^2 \frac{\partial \psi_{\ell m}}{\partial r} \right) - \rho(r) l(l+1) \psi_{\ell m} + r^2 \left(\frac{\partial \rho}{\partial r} \right) \frac{\partial \psi_{\ell m}}{\partial r} = r^2 \rho(r) \psi_{\ell m} \quad \text{; para } \ell \neq 0
\]

sendo que os \(\psi_{\ell m}(r) \) estão sujeitos à condição \(\lambda_{7} \).

a.1) Obtenção de \(\psi_{\ell 0}(r) \)

Integrando-se \(A18a \) de \(r \) a \(\infty \), considerando, segundo a condição de contorno \(\lambda_{7} \), que \(r^2 \rho(r) \frac{\partial \psi_{\ell 0}}{\partial r} \bigg|_{r=\infty} = 0 \), temos que:

\[
\frac{d\psi_{\ell 0}(r)}{dr} = - \left(r^2 \frac{\partial \rho(r)}{\partial r} \right) \left[\int_{r}^{\infty} r'^2 \rho(r') \psi_{\ell 0}(r') dr' \right]
\]

Integrando-se novamente,

\[
\psi_{\ell 0}(r) = - \left(r^2 \rho(\alpha) \right) \left[\int_{\alpha}^{\infty} r'^2 \rho(r') \psi_{\ell 0}(r') dr' \right]
\]

Verifiquemos agora o comportamento de \(\psi_{\ell 0} \) nos extremos \(r=0 \) e \(r=\infty \).

Consideraremos \(P_{\ell 0}(r) \) limitado e localizado satisfazendo \(P_{\ell 0}(r) < r^{-\xi} \) com \(\xi > 0 \) para \(r > r_0 \).

Sendo assim em \(r \to \infty \) podemos majorar \(\psi_{\ell 0} \), como:
Apêndice A - Discussão sobre a equação elíptica

\[|\Psi_{\infty}(r)| \leq \int_0^{r} (d\chi/\chi^2) = 1/r \quad \text{A21} \]

E portanto \(\Psi_{\infty} \) é localizada.

Em \(r \to 0 \) é conveniente observar que A2 implica em

\[-\int_0^r r^2 \rho(r) P_{\infty}(r) dr = \int_0^\infty r^2 \rho(r) P_{\infty}(r) dr \quad \text{A22} \]

de tal forma que A20 pode ser reescrita como

\[\Psi_{\infty} = -\int r^2 [\chi^3 \exp(-\chi^2)] \int_0^\infty \exp(-\rho^2) P_{\infty}(\rho) d\rho \quad \text{A23} \]

Para \(\alpha \) suficientemente pequeno, considerando que \(P_{\infty}(r) \) varia lentamente junto a origem, a integral em \(\rho \) de A23 resulta em \(\alpha^3 \) e portanto o integrando vai como \(\alpha \). O integrando em A23 cai com \(1/\alpha^2 \) para \(r \to 0 \). Portanto a integral A23 é limitada na origem.

a.2) Obtenção de \(\Psi_{\infty}(r) \).

Podemos resolver a equação não homogênea A18b obtendo a função de Green \(g_{\infty}(r,r') \) do problema. Dada \(g_{\infty}(r,r') \) temos que

\[\Psi_{\infty}(r) = \int_0^\infty g_{\infty}(r,r') r^2 \rho(r') P_{\infty}(r') dr' \quad \text{A24} \]

Para obttermos \(g_{\infty}(r,r') \) temos que encontrar duas soluções LI. \(u_1 \) e \(u_2 \), da equação homogênea associada em A18b que satisfaçam as condições:

pag.44
Apêndice A - Discussão sobre a equação elítica

\[u_1, (r=0) \text{ regular na origem} \]
\[u_2, (r=\infty) \text{ nula no infinito} \]

A homogênea associada em A18b tem as mesmas soluções que a equação A8, a qual mostramos poder ser transformada numa equação hipergeométrica confluente (A12). Sendo assim escolhemos:

\[
\begin{align*}
 u_1 &= C_1 r^{1/p} F_1 \left(\frac{\lambda}{p}, 2 \frac{\lambda}{p} + \frac{1}{p} + 1, r^p \right) \\
 u &= C_2 r^0 U \left(\frac{\lambda}{p}, 2 \frac{\lambda}{p} + \frac{1}{p} + 1, r^p \right)
\end{align*}
\]

Aqui, \(U(a, c; x)\) é a segunda solução padronizada da equação hipergeométrica confluente [35].

Da teoria de função de Green unidimensional, calculando-se o Wronskiano \(W(u_1, u_2)\), temos que \(g_{\lambda m}(r, r')\) é dada por

\[
\begin{cases}
 K(\lambda, p) r^\gamma r'^\gamma F_1 \left(a, c; r^p \right) U(a, b; r'^p) \\
 K(\lambda, p) r^0 r'^0 F \left(a, c; r'^p \right) U(a, b; r^p)
\end{cases}
\]

onde \(a = \frac{\lambda}{p}, c = 2\frac{\lambda}{p} + 1/p + 1\) e \(K(\lambda, p) = \Gamma(a)/\Gamma(b)\)

Verifiquemos o comportamento assintótico de \(\Psi_{\lambda m}(r)\) \(p>0\)

Partindo de A24 temos que

\[
\begin{align*}
 \Psi_{\lambda m}(r) &= \int_0^r [g_{\lambda m}(r, r')] r'^\gamma r'^2 \exp(-r'^p) P_{\lambda m}(r') dr' + \\
 &+ \int_0^\infty [g_{\lambda m}(r, r')] r'^\gamma r'^2 \exp(-r'^p) P_{\lambda m}(r') dr'
\end{align*}
\]

pag.45
Usando A27 temos que

\[\Psi_{lm}(r)/K(l,p) = r^l U(r^P) \int_0^r r^{-1} F_l(r^P) r^{-2} \exp(-r^P) P_{lm}(r') dr' + \]

\[r^l F_l(r^P) \int_r^\infty r^{-1} U(r^P) r^{-2} \exp(-r^P) P_{lm}(r') dr' \]

Supondo que \(P_{lm}(r') \) é limitado na origem e comporta-se como \(r^{-\xi} \), \(\xi > 0 \) no infinito; notando que em \(r \rightarrow 0 \), \(F_l(r^P) \rightarrow 1 \) e \(U(a,b; r^P) \rightarrow r^{(l-1)} \), enquanto que em \(r \rightarrow \infty \), \(F_l(r^P) \rightarrow \frac{[1/K(l,p)]}{r^{-(l-P)}} \), \(\exp(r^P) \) e \(U(r^P) \rightarrow r^{-\xi} \), temos que

\[\Psi_{lm}(r)/K(l,p) \rightarrow 2r^2 \quad \text{em} \quad r \rightarrow 0 \]

\[\Psi_{lm}(r)/K(l,p) \rightarrow r^{2-P-\xi} + r^P(M-l)^{-1}/K(l,p) \quad \text{em} \quad r \rightarrow \infty \]

onde \(M \) é um inteiro positivo ou nulo e \(M > (3/\xi - \xi/\xi - 1) \).

Vemos que \(\Psi_{lm} \) é limitado na origem e ainda será localizado dependendo do valor de \(M \). Por sua vez \(M \) depende da localização de \(\rho(r) \) e \(P(\xi) \). Por exemplo, se \(p=0 \) e \(\xi=1 \) podemos fazer \(M=0 \) e \(\Psi_{lm} \) cai com \(1/r \) no infinito. Enfim, \(\Psi_{lm} \) limitado em toda parte é perfeitamente satisfatório fisicamente.

Verificamos também se a solução apresentada em A29 satisfaz a condição A7. Derivando-se A29, temos
Apêndice A - Discussão sobre a equação elástica

\[\frac{d\psi_{\ell m}}{dr} = \{ \sqrt{r} \frac{d}{dr} U(r) + r^3 \frac{dU(r)}{dr} \} \int_0^r J_1(r')dr' + \int_0^r \frac{d}{dr} F_1(r') + r^3 \frac{dF_1(r')}{dr} \int_r^\infty J_2(r')dr' \]

onde \(J_1(r) = r^{k+2} F_1(r) \exp(-r^p) P(r) \) e \(J_2(r) = r^{k+2} U(r) \exp(-r^p) P_{\ell m}(r) \)

As derivações em relação aos limites inferior e superior nas integrais em A29 cancelam-se exatamente.

Tomando-se as expressões assintóticas para \(F_1(r^p) \) e \(U(r^p) \) em A31, temos que

\[\rho(r) \frac{d\psi_{\ell m}}{dr} \approx \{ \sqrt{l(l+1)/r^{p+l}} \} \exp(-r^p) \int_0^r J_1(r')dr' + \int_0^r \frac{d}{dr} J_2(r')dr' \]

Podemos mostrar também em \(r \to \infty \) que: \(\int_0^r J_1 dr \) é finito se \(P(r) \to r^{p-2-\beta} \) com \(p, \beta > 0 \); \(\int_0^\infty J_2 dr \) é finito para \(p > 0 \) e ainda, se \(p > 1 \) e \(\beta > 0 \), sendo que \(P(r) \to r^{p-2-\beta} \), \(\int_0^\infty J_2 dr < \frac{\rho}{r^{p+1/p}} \exp(-r) \). A condição A7 fica então plenamente satisfeita.

3) Caso sem simetria esférica:

\[P(\vec{r}) = \left[\frac{\sin \theta}{(1+r)^{n+1}} \right] \left[(2r + 2r^2 + (2+2r-n))(r-f(\theta)) \right] + (2r + [3-2r^2 - r(n+1)/(1+r)](r-f(\theta))) + \left[(4 + (6-n)r + (2-n)(r-f(\theta)))r(r-f(\theta)) \right] + \frac{2}{(1+r)^2} \left[2\cos^2(\theta) - 6\sin \theta \cos(\theta)(d^2f/d\theta^2) (r-f(\theta)) \right] \]

\[\rho(\vec{r}) = \left| r - f(\theta) \right| \exp(-r^2); \quad f(\theta) > 0 \text{ é diferenciável para todo } 0 \leq \theta \leq \pi \]
Apêndice A - Discussão sobre a equação elática

Notemos que neste problema $\rho(\vec{r})$ tem dependência em θ e além disso tem nodos em $r=f(\theta)$. $P(\vec{r})$ é limitado para todo r, θ e no infinito $P(\vec{r}) \to r^{-\nu+4}$ sendo portanto localizado se $n > 4$.

Por inspecção, verificamos que uma solução, não necessariamente a única já que não demonstramos a unicidade da solução neste caso, é

$$
\Psi(\vec{r}) = r^\nu \sin^2 \theta (r-f(\theta))/(1+r)^\lambda
$$

Devemos observar tal qual os exemplos anteriores $\Psi(\vec{r})$ segue o comportamento de $P(\vec{r})$. $\Psi(r)$ é limitado e se $n > 4$ temos que $\Psi(\vec{r})$ é localizado. Além disso é óbvio que $\rho(r)\partial \psi /\partial r \to 0$ como $\exp(-r^2)$. $r \to \infty$

Portanto $\Psi(\vec{r})$ satisfaz todas as condições de contorno.

pag. 48
A condição fundamental para a operação de um laser-array é o acoplamento entre modos. Sob condições otimizadas de acoplamento pode-se ter, entre outros: potências de emissão mais altas, menor dispersão angular no campo distante e maior pureza espectral do que aquela obtida por lasers isolados.

O acoplamento é máximo quando as constantes de propagação longitudinal dos lasers individuais são próximas umas das outras [39]. Em cada laser, dada uma frequência de operação, podemos obter a constante de propagação pela resolução de um problema a auto-valores (equação de Helmholtz mais condições de contorno). Então encontramos a relação de dispersão espectral:

\[\rho^2 - n^2 (\omega/c)^2 - k^2 \]

(B1)

onde \(\rho^2 \) é o auto-valor do problema.

\(\rho^2 \) depende das características estruturais do laser, tais como geometria da heterojunção, índices de refração e corrente de injeção.

Os lasers que compõem o array, na prática não são exatamente iguais; eles devem, portanto, ter relações de dispersão (B1) algo diferente um do outro. Então somente algumas frequências de operação, aquelas correspondentes às intersecções das curvas de dispersão individuais podem resultar em acoplamento eficiente. Esta é a base física que justifica a melhor pureza espectral de laser-arrays operando sob condições de acoplamento.
Devemos ressaltar também que a constante longitudinal de propagação deve satisfazer a condição de limiar (4.14), onde entram as características da cavidade ressonante. Se fazemos o array de tal maneira que haja ganho apenas numa única das possíveis frequências de acoplamento ele irá operar numa condição monomodo longitudinal [4].

Outra importante consideração de projeto é a dependência linear da potência de saída com a corrente de injeção. Para isso, devemos evitar transições entre modos transversais nos lasers. Essas transições mudam a estrutura dos campos, e portanto o ganho modal, abruptamente e isto pode resultar numa perda de linearidade ("kinks") na curva da potência de saída versus corrente.

No laser "Inverted Gain Profile" o segundo modo excitado pode ser alcançado apenas para larguras de região ativa maiores que 7μm, para lasers mais estreitos apenas o primeiro modo excitado pode ser suportado. O modo fundamental deverá sofrer mais perdas que o 1º excitado devido a distribuição espacial de portadores neste laser. Portanto se a largura da região ativa é 6μm, apenas o primeiro modo transversal pode ser eficientemente suportado.

O espaçamento entre lasers altera profundamente o acoplamento. Cálculos numéricos [97] num caso muito simplificado, onde a amplitude do campo é constante sobre toda a faceta retangular mostram que a "força" do acoplamento é uma função oscillante no espaço. Para uma faceta de largura 6μm e desprezando-se a variação da amplitude do campo ao longo da superfície da faceta, esta teoria prediz que o acoplamento será máximo se o espaçamento for 12μm; isto estabelecerá uma diferença de fase entre lasers vizinhos de π rad. Isto considerando apenas um acoplamento por difração "espontâneo". Deve-se notar
que uma eficiência e capacidade de controle muito maiores são esperadas se proporcionalmente adicionamos à cavidade ressonante uma grade de fase projetada de maneira adequada [38].

A escolha do número de elementos no array é governada por considerações tanto práticas (fonte de corrente, dimensão total do dispositivo) como teóricas (possível perda de acoplamento devida a gradientes transversais de temperatura, veja abaixo). Seja $N = 10$.

A Fig 6b esboça o array projetado.

Segundo a teoria escalar de difração [39], [40] obtemos:

$$I_{mas} = C I_{U}(sen\theta) \cdot A(sen\theta)$$

$$A(sen\theta) = \frac{1 - \cos[N(kDsen\theta + \phi)]}{1 - \cos(kDsen\theta + \phi)}$$

onde θ é o ângulo entre a direção do campo distante e a normal da faceta; ϕ é a diferença de fase entre lasers subsequentes; D é o espaçamento; U é o padrão de difração de um dos lasers isolado.

A equação (B2) tem dois fatores. O primeiro descreve o padrão de difração de um laser isolado. Este padrão é, considerando-se a diferença de fase de π rad. entre os extremos do campo no primeiro modo excitado para cada laser, um envelope com dois picos simetricamente colocados em torno da normal à faceta, separados por $\approx 17^\circ$. O segundo é um padrão periódico separado por $\approx 4^\circ$, também posto simetricamente em torno da normal à faceta. Então segundo (B2), o campo distante apresentará dois picos simetricamente postos em torno da normal à faceta, separados por $\approx 17^\circ$.

Dados os resultados teóricos e experimentais da corrente de limiar e esperando-se menor fuga de corrente num array deveremos ter
Apêndice B - Projeto de um laser-array

\[I_{\text{um}} \sim 270 \text{ mA e portanto } J_{\text{um}} \sim 1.35 \text{ kA/cm}^2. \]

O fluxo de calor na região da junção causa um gradiente transversal de temperatura que é proporcional a potência total dissipada no dispositivo, e também ao número de componentes no array.

Considerando-se que o gap depende da temperatura, este gradiente tenderá a deslocar os picos espetrais dos componentes do array de forma diferente.

Foi mostrado [37] que o acoplamento entre modos pode estar presente somente se:

\[\delta \lambda < \lambda_1 T / 2 \eta n l \] \hspace{1cm} (B3)

Aqui \(l \) é a distância entre facetas e \(\eta \) é a eficiência de conversão.

Usando parâmetros térmicos da literatura e considerando 100% de eficiência de conversão, estimamos que este array com dez componentes irá violar a condição (B3) se \(P_{\text{um}} > 150 \text{ mW} \) por faceta [41]. De fato, considerando-se que a máxima potência no laser "Inverted Gain Profile" foi 10 \(\text{mW} \), um array com dez elementos deve operar sob um máximo de 100 \(\text{mW} \) por faceta, e a condição espectral não seria violada.

Mostramos então que uma integração monolítica do laser "Inverted Gain Profile" num laser-array pode ser conseguida usando-se técnicas de fotolitografia convencionais.
Referências

(1) T.Li, Physics Today, 24-31 (May 1985)
(6) S.B.Poole, D.N.Payne e M.E.Fermaz, Electron. Lett. 21, 737 (1985)
(18) F.D.Nunes, "Dinamical factor and its influence on lasing threshold condition for stripe geometry lasers", não publicado.

(30) J. E. Goell; B.S.T.J. 48(7), 2072-2102 (1969)

(31) E. A. J. Marcatilii; B.S.T.J. 48(7), 2133-2160 September (1969)

(36) Amnon Yariv; IEEE J. Quantum Eletron., QE-9, 919-933 (1973)

(37) N. G. Basov, E. M. Belenov and V. S. Letokhov; Soviet Physics-technical Physics, 10, 845-850 (1965)

Legenda das Tabelas

Tab.1 Parâmetros usados no teste da teoria de perturbação a guias de ondas cilíndricas dielétricos (cap. II).

Tab.2 Valores das constantes do auto-estado "ordem-zero" para o laser "inverted gain profile" sob diferentes energias do fóton de emissão e larguras da região ativa.

Tab.3 Parâmetros relacionados com a distribuição de portadores injetados no laser "inverted gain profile".
Fig. 1 Esquema de um laser de semicondutor com contacto largo. A injeção de corrente se dá por toda a junção o que torna necessária altas correntes para se obter emissão estimulada. As facetas semirefletoras indicadas formam a cavidade resonante responsável pela emissão coerente. Essas facetas são obtidas por clivagens do semicondutor em planos cristalinos perpendiculares à direção de propagação da onda.

Fig. 2 Esquema de um laser com "stripe", confinamento lateral e vertical. Nota-se o contacto metálico estreito "stripe" confinando a injeção numa parte restrita da junção. A heterojunção é formada por um sanduíche de três semicondutores, tendo o componente central índice de refração mais alto. A região pontilhada é composta pela heterojunção com difusão de Zn. A região de ganho é o retângulo hachurado. Este confinamento é obtido pelos batentes de índice de refração criados pela heterojunção e pela difusão de Zn.

Fig. 3 a) Secção transversal esquemática de um laser de dupla heteroestrutura com perfil de índice de refração do tipo sech^2 e sistema de coordenadas adotado nos cálculos de ganho modal (cap.11).

b) Comportamento da parte imaginária de e(x,y) com as direções "lateral"(x) e "transversal"(y) segundo o modelo de sech^2.
Discrepância relativa entre o ganho modal G_m, e o "ganho modal médio" \bar{G} em função do fator de confinamento transversal T para uma laser de dupla heteroestrutura com ganho do tipo sech². $\delta_{ij}^f = 0$, $e_{x''} = e_{y''} = 0$

Componente longitudinal normalizada $B_z(\rho)/B_z(0)$ nos problemas: "ordem zero", com perturbação,"objeto", na região interna do guia dielétrico cilíndrico.

O máximo erro ocorre na região próxima ao nodo. Nota-se que a correção da perturbação no problema "ordem zero" faz, em todos os pontos, que o problema perturbado esteja mais próximo do problema "objeto" que o problema "ordem zero"

Secção transversal do laser "inverted gain profile" mostrando a região ativa e o sistema de coordenadas adotados no texto.

Projeto de um "laser-array" usando uma integração monolítica dos dispositivos descritos em a).

Geometria da região ativa para a discussão da injeção de corrente no laser "inverted gain profile"

Distribuição de cargas, dentro e fora da região ativa, antes e depois de levarmos em conta a difusão de portadores, para $L/L_\eta = 3$ e $\xi_0/\chi L_\eta = 0.026$.
Fig. 8 Dependência da corrente de limiar com a largura da região ativa e com a energia do foton da emissão calculados no laser "inverted gain profile". Notam-se menores densidades de corrente para o 1º modo excitado.
<table>
<thead>
<tr>
<th>Símbolo</th>
<th>Problema ordem-zero</th>
<th>problema exato</th>
</tr>
</thead>
<tbody>
<tr>
<td>ε_D</td>
<td>2.0</td>
<td>2.2</td>
</tr>
<tr>
<td>ε_F</td>
<td>1.0</td>
<td>1.2</td>
</tr>
<tr>
<td>$\omega (\frac{C}{\varepsilon}) \delta$</td>
<td>9.0</td>
<td>10.8</td>
</tr>
</tbody>
</table>

ε_D = permissividade dieletrica do guia cilindrico.
ε_F = permissividade dieletrica do meio que envolve o guia.
δ = raio do cilindro

$\delta = \varepsilon_D - \varepsilon_F$
<table>
<thead>
<tr>
<th>Photon energy (eV)</th>
<th>Active region width (μm)</th>
<th>α (μm⁻¹)</th>
<th>β (μm⁻¹)</th>
<th>γ (μm⁻¹)</th>
<th>η (μm⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.37</td>
<td>2</td>
<td>0.102</td>
<td>0.057</td>
<td>8.845</td>
<td>3.860</td>
</tr>
<tr>
<td>1.38</td>
<td>2</td>
<td>0.102</td>
<td>0.057</td>
<td>8.961</td>
<td>4.005</td>
</tr>
<tr>
<td>1.39</td>
<td>2</td>
<td>0.103</td>
<td>0.058</td>
<td>7.035</td>
<td>4.099</td>
</tr>
<tr>
<td>1.37</td>
<td>10</td>
<td>0.232</td>
<td>0.534</td>
<td>8.845</td>
<td>3.860</td>
</tr>
<tr>
<td>1.38</td>
<td>10</td>
<td>0.233</td>
<td>0.539</td>
<td>8.961</td>
<td>4.005</td>
</tr>
<tr>
<td>1.39</td>
<td>10</td>
<td>0.233</td>
<td>0.544</td>
<td>7.035</td>
<td>4.099</td>
</tr>
<tr>
<td>Quantity</td>
<td>Symbol</td>
<td>Values</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------------------</td>
<td>--------</td>
<td>-------------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resistivity of GaAs</td>
<td>ρ</td>
<td>6×10^{-2} Ωcm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current density parameters</td>
<td>J_{dy}</td>
<td>10^{-26} Amp/cm2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electron charge</td>
<td>$</td>
<td>e</td>
<td>$</td>
<td>1.6×10^{-19} Coul</td>
<td></td>
</tr>
<tr>
<td>Thickness of active region</td>
<td>$2L$</td>
<td>10^{-5} cm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal energy</td>
<td>$k_B T$</td>
<td>4.15×10^{-21} joule</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carrier lifetime</td>
<td>τ</td>
<td>3×10^{-9} sec</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
FIG. 1
FIG. 3
\[\frac{E_0}{a \, l_n} = 0.26 \]

\[\frac{L}{l_n} = 3 \]

Figure 2

(normalized charge density)