ESTE EXEMPLAR CORRESPONDE A REDAÇÃO OFICIAL DA Tese DEFENDIDA POR PAULO CORRÊA LIMA, E APROVADA EM 24/07/87

UMA ESTRUTURA TARIFÁRIA PARA ENERGIA ELÉTRICA, BASEADA EM CUSTOS MARGINAIS

CPEBALHO apresentado à Comissão de Pós-Graduação da Faculdade de Engenharia de Campinas, como parte dos requisitos para a obtenção de título de Mestre em Engenharia Mecânica.

CAMPINAS, SP - BRASIL JULHO DE 1987
UNIVERSIDADE ESTADUAL DE CAMPINAS
FACULDADE DE ENGENHARIA DE CAMPINAS
DEPARTAMENTO DE ENERGIA

TESE DE : MESTRADO

TÍTULO DA TESE : UMA ESTRUTURA TARIFÁRIA PARA ENERGIA ELÉTRICA, BASEADA EM CUSTOS MARGINAIS

AUTOR : PAULO CORREA LIMA

ORIENTADOR : SÉRGIO VALDIR BAJAY

APROVADO POR :

CAMPINAS, SP - BRASIL
JULHO DE 1987
AGRADECIMENTOS

Ao amigo Bajay, por tudo,
ao Durval pela efetiva participação no desenvolvimento deste trabalho,
aos colegas da FEC, especialmente ao Dulcídio, Afonso, Arnaldo e Horta, pelo apoio,
a Cristina e Pedro, pela paciência e estímulo,
a Célia, pela dedicação e interesse na edição deste trabalho.

Este trabalho de pesquisa contou com um suporte financeiro da Fundação de Amparo à Pesquisa do Estado de São Paulo – FAPESP.
A meus pais, Edyr e Joaquim.

A Cristina e Pedro.
Este trabalho é dirigido para a conceituação de uma estrutura tarifária para a energia elétrica baseada em custos marginais, e para a obtenção dos custos marginais de geração em sistemas hidrotérmicos de potência.

Inicialmente é apresentada a abordagem contábil, tradicionalmente utilizada na elaboração das estruturas tarifárias. Apresenta-se as diversas tarifas contábeis e sua evolução. Faz-se uma discussão sobre as limitações dessa forma de tarificação, e sobre os desequilíbrios observados no financiamento do setor no período após o primeiro choque do petróleo, oriundos principalmente do modelo tarifário adoptado.

A seguir faz-se a conceituação dos custos marginais da energia elétrica, primeiramente para sistemas puramente térmicos, abordando-se os custos marginais de geração, transmissão e distribuição. Num segundo momento são apresentados os custos marginais de geração em sistemas hidrotérmicos, destacando-se as suas características mais importantes.

A metodologia proposta para o cálculo dos custos marginais de geração de sistemas hidrotérmicos tem como elemento principal um modelo de planejamento de expansão baseado em programação linear, que é resolvido de uma forma iterativa para incorporar as não linearidades das funções de geração.

O modelo é aplicado a um sistema da região SUDESTE, o sistemas FURNAS, mas fazendo-se hipóteses simplificadoras sobre a interligação com os demais sistemas de geração.

Finalmente, faz-se uma análise dos resultados obtidos, relacionando-os com as características do crescimento do parque gerador de FURNAS nos próximos anos.
ABSTRACT

This work is directed to the discussion of the concepts involved in a tariff structure for electric energy, based on marginal costs, and to the obtention of generation marginal costs in hydrothermal power systems.

Initially, the accounting approach, traditionally used for tariff making, is introduced. The several variants of this type of tariff and their evolution are presented. Their limitations are discussed, together with the unbalances observed in the financing of the power supply industry after the first oil price shock, due mainly to the tariff model adopted.

After, the marginal costs of generation, transmission and distribution are approached. Next, the generation marginal costs for hydrothermal systems are presented, with emphasis on their main features.

The proposed methodology for the calculation of generation marginal costs of hydrothermal systems has as main component an expansion planning model based on linear programming, that is solved iteratively, to incorporate the non-linearities of the generation functions.

The model is applied to a power system in the Southeast region, the FURNAS system, with some simplifying assumptions concerning the interties with other power systems.

Finally, the results obtained are analysed, relating them to the growth pattern of FURNAS generation system in the next years.
ÍNDICE

CAPÍTULO 1 - INTRODUÇÃO.. 1
1.1. Um sistema hidrotérmico de potência.......................... 2
1.2. Usinas hidrelétricas... 3
1.3. Usinas termelétricas... 6
1.4. Operação do sistema.. 8
1.5. Custos e tarifas.. 9
1.6. Objetivos e programa da tese................................. 11

CAPÍTULO 2 - TARIFAS CONTÁBEIS E FINANCIAMENTO DO SETOR ELÉTRICO... 13
2.1. Aspectos da legislação em vigor no Brasil..................... 14
2.2. Os custos contábeis... 14
2.3. Tipos de tarifas contábeis....................................... 16
2.4. Tarifas contábeis no Brasil...................................... 18
2.5. Limitações das tarifas contábeis............................... 19
2.6. Financiamento do setor elétrico brasileiro.................. 22
2.6.1. A remuneração das parcelas componentes da tarifa..... 22
2.6.2. A equalização tarifária.. 23
2.6.3. As restrições tarifárias e a indivisibilidade dos investimentos.. 24

CAPÍTULO 3 - CUSTOS MARGINAIS..................................... 27
3.1. Teoria básica dos custos marginais............................. 28
3.2. Indivisibilidade dos investimentos............................ 31
3.3. Extensão dos modelos simplificados.......................... 33
3.4. O custo marginal de longo prazo................................ 35
3.4.1. Os custos marginais de capacidade.......................... 35
3.4.2. Custo marginal de energia..................................... 35
3.4.3. Custos relativos ao consumidor.............................. 36
3.5. Sistemas hidrelétricos... 38
3.5.1. Sistemas puramente hidrelétricos............................ 42
3.5.2. Sistemas hidrotérmicos....................................... 46
3.6. O cálculo dos custos marginais no Brasil..................... 50
3.6.1. Os custos marginais de geração.............................. 50
3.6.2. Custo marginal de redes....................................... 54
3.6.2.1. A interconexão... 54
3.6.2.2. A repartição... 55
3.6.2.3. A distribuição... 56
LISTA DE FIGURAS

FIGURA 1 - Representação de um sistema de potência.................. 3
FIGURA 2 - Esquema de uma usina hidrelétrica......................... 5
FIGURA 3 - Esquema de operação de uma usina termelétrica.......... 6
FIGURA 4 - Custo incremental de geração de uma usina termelétrica.. 7
FIGURA 5 - Curvas de carga típicas... 9
FIGURA 6 - Diagrama da demanda versus suprimento para o consumo de energia elétrica......................... 11
FIGURA 7 - Esquema simplificado para determinação do custo marginal.. 30
FIGURA 8 - Efeitos da indivisibilidade dos investimentos nos custos.. 31
FIGURA 9 - Modelo para o estabelecimento do preço para os horários de ponta e fora da ponta.............. 33
FIGURA 10 - Uso da realimentação dos preços para se estimar tarifas baseadas no CMLP.................................. 35
FIGURA 11 - Relação entre os custos de déficit, os custos de suprimento e os custos totais no grau de confiabilidade ótimo.. 37
FIGURA 12 - Evolução de uma típica curva anual de permanência de carga... 40
FIGURA 13 - Previsão da demanda de ponta................................. 40
FIGURA 14 - Variação anual da vazão afluente ao reservatório equivalente de um sistema puramente hidrelétrico... 45
FIGURA 15 - Atendimento de uma curva de carga diária típica para um sistema hidrotérmico, com predominância de usinas termelétricas em um caso e hidrelétricas no outro... 48
FIGURA 16 - Valor da água num sistema hidrotérmico................. 49
FIGURA 17 - Curva de permanência de carga

FIGURA 18 - Usinas hidrelétricas e termelétricas de Furnas

FIGURA 19 - Projeções das demandas de ponta e energia

FIGURA 20 - Diagrama de blocos do algoritmo do modelo proposto

FIGURA 21 - Gráfico do cronograma de instalação das usinas de Serra da Mesa e Cana Brava

FIGURA 22 - Gráfico do cronograma de instalação das usinas de São Domingos e Peixe

FIGURA 23 - Curva altura líquida de queda versus armazenamento da Usina de Itumbiara

FIGURA 24 - Curva altura líquida de queda versus armazenamento da Usina de Furnas

FIGURA 25 - Curva altura líquida de queda versus armazenamento da Usina de Peixoto

FIGURA 26 - Curva altura líquida de queda versus armazenamento da Usina de Marimbondo

FIGURA 27 - Curva altura líquida de queda versus armazenamento da Usina de Funil

FIGURA 28 - Curva altura líquida de queda versus armazenamento da Usina de Serra da Mesa

FIGURA 29 - Curva altura líquida de queda versus armazenamento da Usina de Foz do Bezerra

FIGURA 30 - Curva altura líquida de queda versus armazenamento da Usina de São Domingos

FIGURA 31 - Curva altura líquida de queda versus armazenamento da Usina de Peixe
TABELA 1 - Situações de geração de um sistema hidrotérmico...... 10

TABELA 2 - Custo marginal a longo prazo - Interrelações....... 52

TABELA 3 - Níveis de tensão da rede de repartição.............. 56

TABELA 4 - Identificações entre os anos do período de planejamento e os anos de período hidrológico crítico..... 85

TABELA 5 - Capacidades instaladas nas usinas de Serra da Mesa e Cana Brava, em MW, para as diversas hidraulicidades do período crítico... 90

TABELA 6 - Capacidades instaladas nas usinas de Foz do Bezerra e Peixe, em MW, para as diversas hidraulicidades do período crítico... 91

TABELA 7 - Valores das variáveis duais das restrições de atendimento do consumo de energia para cada intervalo, em 10^5 US$/MW.semestre... 98

TABELA 8 - Valores das variáveis duais das restrições de atendimento da demanda de ponta para cada intervalo, em 10^5 US$/MW.semestre.. 97

TABELA 9 - Valor corrente dos custos marginais de ponta e de energia, para os diversos intervalos................. 99

TABELA 10 - Dados das usinas hidrelétricas existentes..............111

TABELA 11 - Dados das usinas hidrelétricas candidatas..........112

TABELA 12 - Dados das usinas termelétricas......................113
CAPÍTULO 1

INTRODUÇÃO

======
1.1. UM SISTEMA HIDROTÉRMICO DE POTÊNCIA

Um sistema de geração de energia elétrica é formado por um conjunto de usinas que transformam recursos energéticos primários ou secundários em energia elétrica e são conectadas às áreas de consumo através da rede elétrica, que é constituída por subestações e por linhas de transmissão e de distribuição.

As usinas geradoras de energia elétrica podem ser usinas convencionais, sendo estas as mais comuns e que respondem pelo grosso da geração de energia do país, do tipo hidrelétricas ou termelétricas, e usinas não-convencionais, estando entre estas as usinas solares, eólicas, etc.

As áreas de consumo configuram o mercado de energia que é formado por uma carga primária e cargas secundárias. O sistema gerador deve satisfazer continuamente a carga primária, e apenas em situações de emergência é admissível reprimi-la, caracterizando então o que é denominado um corte de carga. Quando o sistema é capaz de gerar a baixo custo em níveis acima da demanda primária, é atrativo incentivar consumidores especiais a utilizar energia. As cargas desses consumidores são denominadas cargas secundárias. Elas recebem energia a uma tarifa abaixo da carga primária, mas sem garantia de continuidade após um certo período, ou mesmo sem nenhuma garantia de continuidade.

Os sistemas de potência elétrica normalmente apresentam interligações com sistemas vizinhos, o que permite trocas energéticas. São as chamadas importações e exportações de energia.

A Figura 1 apresenta uma representação de um sistema hidrotérmico de potência com as características mencionadas anteriormente. O parque gerador de energia elétrica no Brasil é formado quase que em sua totalidade por usinas convencionais, hidrelétricas e termelétricas, e esse fato justifica a apresentação de somente esses dois tipos de usina na representação do sistema. Nas seções 1.2 e 1.3 se apresentam os princípios básicos de funcionamento dessas usinas. As importações de energia e o corte de carga podem ser modelados no sistema como "usinas termelétricas" de elevado custo de geração.
FIGURA 1 - Representação de um sistema de potência

1.2. USINAS HIDRELÉTRICAS

Nas usinas hidrelétricas a eletricidade é produzida a partir da energia potencial da água dos rios, que se transforma inicialmente em energia cinética e depois em energia mecânica, nas turbinas; esta última é então convertida em energia elétrica nos geradores.

Uma usina hidrelétrica normalmente se utiliza de um reservatório, a montante da barragem, de modo a controlar a vazão do rio e aumentar a altura de queda da água. As usinas chamadas de rio d'água são aquelas que não têm reservatório para acumulação da água ou aquelas nas quais o reservatório, por ser de pequeno porte, não permite a regularização das vazões afluentes naquele sitio.
As usinas hidrelétricas se caracterizam por serem usinas que necessitam de grandes investimentos no momento de sua construção. Por outro lado, suas grandes vantagens são a de utilizarem um recurso renovável, terem um custo operacional muito pequeno, e não serem fontes poluidoras. E também, quando comparadas com as usinas térmicas, apresentam uma confiabilidade maior na geração de energia e operam com muito menos pessoal.

As variáveis mais importantes na modelagem matemática de uma usina hidrelétrica para intervalos discretos de tempo, como mostrado na Figura 2, são:

\[m \]

\[z \] - Representa o volume de água defluente de usinas imediatamente a montante da usina considerada, no mesmo intervalo de tempo ou em intervalos anteriores, devido ao tempo de propagação das ondas d'água.

\[m \]

\[y \] - Representa o volume de água afluente ao reservatório considerado, devido a vazões não regularizadas.

\[m \]

\[x \] - É o volume de água armazenado no reservatório no começo do intervalo \(m \). Esse volume não pode exceder a capacidade do reservatório \((x) \), nem ser menor que um valor mínimo \((x) \).

\[m \]

\[u \] - É o volume de água turbinado na usina durante o intervalo \(m \).

Existe um limite superior de turbinagem \((u) \) devido à capacidade de engolimento das turbinas.

\[m \]

\[v \] - É o volume de água vertido do reservatório durante o intervalo \(m \).

\[m \]

\[e \] - É o volume de água que evaporou do reservatório durante o intervalo \(m \).

\[m \]

\[i \] - Representa o volume de água perdido por infiltração nas paredes do reservatório durante o intervalo \(m \).
m

\(\Delta H \) - É a altura líquida de queda da água disponível para a produção de energia elétrica, durante o intervalo \(m \). A altura líquida de queda é a diferença entre a cota de montante, \(H_1 \), que é função do volume armazenado no reservatório, e a cota de juzante, \(H_2 \), que é função do volume de água turbinada e vertida, menos as perdas de carga hidráulicas na adução e no retorno da água turbinada, que dependem da vazão turbinada, \(\Delta H(u) \).

\[\Delta H = H_1(x) - H_2(u + v) - \Delta H_p(u) \]

FIGURA 2 - Esquema de uma usina hidrelétrica

A energia gerada pela usina hidrelétrica durante o intervalo \(m \), \(h \), é expressa pela função de geração:

\[h = \rho \cdot g \cdot v \cdot \Delta H \cdot u \quad (1.1) \]

onde \(\rho \) é a densidade da água, \(g \) é a aceleração da gravidade e \(v \) é o rendimento do conjunto turbina-generador.

A equação dinâmica que determina a evolução do volume de água armazenado no reservatório satisfaz o princípio da conservação da massa, podendo ser expressa conforme indicado abaixo:

\[x_{m+1} = x_m + y_m + z_m - u - v - e - i \quad (1.2) \]
Nos estudos de planejamento da operação e planejamento da expansão de sistemas hidrotérmicos de potência frequentemente se descontam valores médios estimados de e i da vazão afluentes não-regularizada y, simplificando-se, assim, o modelamento.

1.3. USINAS TERMELETRICAS

Existem diversos tipos de usinas térmicas convencionais, que diferem entre si principalmente na maneira como o calor é produzido. Este pode ser obtido com a utilização de carvão, óleo ou gás, ou ainda utilizando-se um reator nuclear.

Em qualquer um dos casos o tipo de operação é similar, como mostrado na Figura 3. Queima-se o combustível numa caldeira para a obtenção de vapor superaquecido a alta pressão. Esse vapor é encaminhado para a turbina onde parte de sua energia térmica é convertida em energia mecânica, que por sua vez, é transformada em energia elétrica no gerador. Depois de utilizado, o vapor é condensado e retorna à caldeira, fechando o ciclo do vapor.

![Diagrama de Usina Termelétrica](image)

FIGURA 3 - Esquema de operação de uma usina termelétrica
O capital necessário para a construção de uma usina termelétrica pode ser relativamente baixo, mas seus custos operacionais (momento os custos de combustível) são frequentemente altos. Con- vém salientar que os combustíveis utilizados por essas usinas são combustíveis fósseis não renováveis e são agentes de poluição do ar, além de aumentar a temperatura da fonte de água fria.

As usinas nucleares usualmente têm um custo de capital mais elevado que as demais termelétricas e um custo de combustível me- nor. Esta usina não é poluente do ar, mas trabalha em níveis ele- vados de radioatividade e gera uma certa quantidade de lixo atômi- co.

A função que representa o custo incremental de geração das usinas termelétricas pode ser indicada como:

\[C = f(g) \]

onde \(g \) é a geração da usina. Esta função é crescente com \(g \) e convexa, conforme ilustrado na Figura 4.

![Figura 4 - Custo incremental de geração de uma usina termelétrica](image-url)

A geração de energia elétrica por usinas térmicas é limitada superiormente pela capacidade máxima de geração \(g \). O limite inferior \(g \), quando diferente de zero, pode ser consequência de restrições operativas, como no caso das usinas nucleares, quando não estão em manutenção.
1.4. OPERAÇÃO DO SISTEMA

Ao se operar um sistema de produção de energia elétrica procura-se o melhor compromisso entre as fontes de geração, para o atendimento da demanda ao longo do período em estudo. No caso do horizonte de planejamento ser de longo prazo com demanda de energia crescente, procura-se também o melhor compromisso entre o aumento no custo da operação, para atender o crescimento da demanda e a instalação de novas unidades geradoras.

As várias alternativas para o atendimento da demanda são comparadas através de critérios, expressos matematicamente na forma de funcionais. Esses funcionais refletem o custo de operação, resultante de gastos com combustíveis, importações de energia e prejuízos causados pela repressão da demanda, ou incorporam objetivos de segurança e confiabilidade. O planejamento ótimo procura a política de geração e expansão que minimize ou maximize um determinado funcional.

Quando um sistema hidrelétrico é capaz de armazenar água, é preciso avaliar, continuamente, a conveniência de utilizar os recursos hidráulicos, evitando gerar nas usinas termelétricas, ou guardar água, na expectativa de benefícios no futuro. A decisão é dificultada pela natureza aleatória das vazões fluviais, a limitação na capacidade dos reservatórios, e o acoplamento hidráulico das usinas.

Conforme mencionado anteriormente, os custos de geração das usinas termelétricas são funções crescentes da carga atendida. Sendo inevitável operá-las, é conveniente tentar uniformizar a geração ao longo do período de planejamento e encontrar a melhor participação de cada unidade.

A demanda de energia tem ciclos diários, semanais e anuais, conforme ilustrado na Figura 5. Quando um sistema gerador não consegue atender à demanda, através de recursos próprios ou importações, é obrigado a reprimi-la, isto é, cortar carga.
1.5. CUSTOS E TARIFAS

O que se procura alcançar na operação de um sistema hidrotérmico de potência, como descrito na seção anterior, é a minimização de custos no fornecimento da energia elétrica.

Estes custos são de dois tipos: custos operacionais, cujo componente principal é o custo dos combustíveis utilizados para geração nas usinas termelétricas, e custos de investimento, devido à construção de novas unidades geradoras, sejam elas usinas hidrelétricas ou usinas termelétricas mais eficientes.

A contabilização das despesas incorridas por uma empresa fornecedora de energia elétrica num certo período é uma tarefa relativamente fácil de ser realizada. Tarefa mais árdua, no entanto, é aquela de ratear os custos pelos consumidores do sistema, montando uma estrutura tarifária. Pode-se exemplificar esta afirmação com as seguintes situações. Por exemplo, se um consumidor deseja aumentar seu consumo numa hora fora da ponta do sistema, ou seja, numa hora em que o sistema não está congestionado e as perdas são menores, e numa estação chuvosa, quando há abundância de água nos reservatórios, este consumidor estará sendo suprido com uma energia de custo barato para a empresa fornecedora. No entanto, se este mesmo consumidor aumentar seu consumo, num horário de ponta e numa estação de seca, quando o nível dos reservatórios está baixo e o sistema está utilizando suas usinas termelétricas para suprir o mercado, a empresa estará aumentando substancialmente seus custos operacionais para suprir essa nova parcela de energia. Em certos casos, inclusive, um crescimento previsto da demanda dá origem a novos investimentos no setor.
A obtenção dos valores reais dos custos nas diversas situações que caracterizam um sistema hidrotérmico de potência, mostradas na Tabela 1, é fundamental para se chegar a uma estrutura tarifária mais justa para o setor.

TABELA 1 - Situações de geração de um sistema hidrotérmico

<table>
<thead>
<tr>
<th>PERÍODO HIDROLÓGICO</th>
<th>PERÍODO DE CONSUMO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FONTA</td>
</tr>
<tr>
<td>úmido</td>
<td>XX</td>
</tr>
<tr>
<td>seco</td>
<td>XXXX</td>
</tr>
</tbody>
</table>

X representa o custo relativo para o sistema, na geração de energia elétrica em cada uma das situações da tabela.

Se o cálculo das tarifas se der somente sobre uma contabilização dos custos do período passado, não se obterá um rateio justo.

As empresas de energia elétrica no Brasil tradicionalmente têm utilizado a metodologia contábil para a obtenção da estrutura tarifária. Diversas formas de tarifas contábeis são aplicadas. Podemos citar:

- As tarifas planas, que mantêm o mesmo custo unitário independente do consumo;

- As tarifas por bloco, que caracterizam as tarifas residenciais, nas quais o custo da energia elétrica é crescente na medida em que se ultrapassarem certos parâmetros de consumo;

- As tarifas binômias, em que a energia elétrica é cobrada em duas parcelas diferentes, uma representando o consumo de energia e a outra representando a demanda máxima de potência.
A partir de 1977, a ELETROBRÁS, o DNAEE (Departamento Nacional de Águas e Energia Elétrica), e as demais empresas de energia elétrica do país, assessoradas por técnicos franceses da EDF ("Electricité de France"), têm realizado um esforço no sentido de identificar os custos reais do fornecimento da energia elétrica, para as diferentes situações de consumo. Isso tem sido feito com o intuito de se obter uma estrutura tarifária eficaz e mais justa para toda a sociedade.

As ferramentas computacionais utilizadas pela ELETROBRÁS e demais concessionárias foram desenvolvidas utilizando conceitos de simulação matemática. Os programas de simulação geralmente oferecem ao usuário uma boa solução factível para o problema em questão, mas não garantem que esta seja a melhor solução possível.

1.6. OBJETIVOS E PROGRAMA DA Tese

O objetivo deste trabalho é o de desenvolver uma ferramenta de programação matemática baseada em algoritmos de otimização para a obtenção dos custos de fornecimento de energia elétrica.

Os custos assim obtidos, diferentemente daqueles obtidos através de programas de simulação, são custos mínimos para o fornecimento de energia elétrica, garantindo assim uma alocação mais eficiente dos recursos disponíveis, que são bastante escassos na atual conjuntura nacional.

Isto é feito através do desenvolvimento de uma modelagem, baseada em métodos de programação matemática, que possibilita a obtenção de um programa de investimentos para a instalação de novas usinas e planeja a operação do sistema, de modo a atender demanda crescente de energia elétrica, minimizando os custos de operação e os custos de expansão do sistema, ou seja, os custos de fornecimento. Sendo este um modelo de programação matemática, as variáveis duais das restrições de atendimento dos consumidores fornecem os custos de operação e os custos de investimento do sistema, refletindo a dimensão do esforço que se deve fazer para atender os consumidores nas diferentes situações, de uma maneira ótima.

As variáveis duais assim obtidas podem constituir a base de uma estrutura tarifária norteada pelos custos marginais, originando tarifas mais justas para o consumidor, em geral.
No Capítulo 2 deste trabalho se analisam as tarifas de energia elétrica baseadas em custos contábeis, suas diversas formas de aplicação e suas implicações na remuneração das empresas concessionárias de energia elétrica.

O Capítulo 3 contém uma apresentação das tarifas baseadas em custos marginais e suas vantagens para uma maior racionalidade na estrutura tarifária e consequente comportamento dos consumidores.

O Capítulo 4 apresenta os diversos aspectos envolvidos na expansão de um sistema hidrotérmico de potência.

No Capítulo 5 se formula o modelo proposto neste trabalho para a resolução deste problema e se discute a sua dinâmica de utilização.

O Capítulo 6 apresenta os resultados obtidos com o modelo desenvolvido. Finalmente no Capítulo 7 se colocam as conclusões do trabalho, assim como recomendações para possíveis desdobramentos futuros.
CAPÍTULO 2

TARIFAS CONTÁBEIS E FINANCIAMENTO DO SETOR ELÉTRICO

==
Neste capítulo são apresentadas as estruturas tarifárias tradicionalmente utilizadas no setor elétrico. Estas tarifas são baseadas nos custos contábeis dos sistemas de fornecimento de energia elétrica. Discutem-se, inicialmente, alguns aspectos da legislação em vigor no país sobre tarifas de energia elétrica. Em seguida apresentam-se a abordagem contábil utilizada na estruturação de tarifas, as tarifas mais usuais e a estrutura tarifária no Brasil. Após, são analisadas as limitações desse tipo de abordagem.

2.1. ASPECTOS DA LEGISLAÇÃO EM VIGOR NO BRASIL

Conforme o Artigo 167 da Constituição Federal, um dos objetivos das tarifas de energia elétrica é permitir o "melhoramento e expansão dos serviços eletricitários no país".

O Artigo 180 do Decreto nº 25.243 de 10.03.43 do Código das Águas determina que as tarifas deverão ser fixadas em forma de "serviço pelo custo". Este princípio está bem expresso no Decreto nº 62.724 de 17.05.68, regulado pela portaria DNAEE nº 96 de 07.06.68, onde num de seus considerandos lê-se: "Considerando-se a necessidade de reparti-lo, de maneira que, a cada grupo de consumidores seja atribuída a fração equivalente ao custo de serviço que lhe for prestado." E também expressa a preocupação de: "dar a cada categoria de consumidores a convicção de estar pagando um preço justo pelos serviços que recebe e a sensação de não estarem injustiçados pelo preço que outras categorias estão pagando". Fica bastante evidente a linha adotada pelo legislador, de que as tarifas expressem os custos causados ao sistema, e que proponham que cada grupo de consumidores pague os custos por ele causados.

2.2. OS CUSTOS CONTÁBEIS

A abordagem contábil para a obtenção das tarifas de energia elétrica usualmente começa com uma avaliação dos ativos e passivos da empresa, novos e antigos, sobre os quais são aplicadas regras de depreciação, a fim de se derver os custos anuais relativos à capacidade. Em seguida, faz-se uma avaliação de diversos custos operacionais, custos de combustível, entre outros custos relativos à energia. Alguns custos, como os de manutenção, têm componentes fixos e variáveis, e são alocados nos custos relati-
vos à capacidade e nos custos relativos à energia, respectivamen-
te. Finalmente, têm alguns custos, como aqueles de medição e ela-
boração de contas, que são relativos aos consumidores, e não são
correlacionados nem à demanda de capacidade, nem à de energia. O
procedimento, então, é o de alocar estes custos tão equitativa-
mente quanto for possível, entre os consumidores, através da es-
trutura tarifária. A noção de equitativo é a de que os consumido-
res são responsáveis por cobrir os custos contábeis que se consi-
dera que eles impuseram à empresa fornecedora.

Com algumas pesquisas realizadas sobre padrões de demanda
dos consumidores, as empresas mais avançadas são capazes de ava-
liar quanto que cada classe de consumidores está contribuindo pa-
ra a demanda de ponta, e consequentemente, para os custos contá-
beis relativos à capacidade. A partir daí, os custos relativos à
energia e os relativos ao consumidor são agregados, e uma tarifa
baseada em custos contábeis é formulada para cada classe de con-
sumidores.

Tipicamente, um consumidor pode ter na sua conta uma combi-
natação de um, dois ou três elementos: uma taxa fixa ou mínima de
modo a cobrir os custos relativos ao consumidor: uma taxa por ki-
lowatt relativa à sua contribuição nos custos de capacidade; e
uma taxa por kilowatt-hora. Simplificações são frequentemente
adotadas, algumas baseadas em complicadas análises que, frequen-
temente, podem levar a tarifas mais simples e que atingem os ob-
jetivos da abordagem contábil. Por exemplo, às vezes são encon-
trados consumidores que gastam mais kilowatts-hora, e gastam re-
lativamente menos kilowatts nas horas de demanda de ponta. Quando
a demanda de ponta e o consumo de energia são empiricamente rela-
cionados dessa maneira, é possível se simplificar as tarifas,
eliminando a taxa de kilowatts, pela incorporação desta, à taxa
de kilowatts-hora. Aos consumidores (mesmo grandes consumidores)
e está oferecida uma tarifa de kilowatts-hora em blocos decres-
centes, porque o total dos requisitos de capacidade para cada ki-
lowatt-hora consumido, diminui com o número de kilowatts-hora
consumidos. Em adição a isso, a taxa fixa ou mínima deve ser in-
corporada ao primeiro bloco, obtendo-se uma tarifa bastante sim-
plificada, relacionada somente com o consumo de kilowatts-hora.
De posse das relações empíricas usadas na derivação das tarifas,
esta tarifa simplificada, certamente vai de encontro aos princí-
pios de equitatividade, pelos quais os consumidores devem pagar
pelos custos contábeis a eles alocados. Esta é, de uma forma sim-
plificada, a base de um sistema contábil ideal. Nesse processo,
uma quantidade imensa de informações deve ser coletada e manipu-
lada, e as empresas que pagam consultores para realizar esse tipo
de trabalho, verificam ser este um processo muito demorado e inus-
tante caro. A seção seguinte, mostra os tipos de tarifas obtidas
a partir desta metodologia.
2.3. TIPOS DE TARIFAS CONTÁBEIS

Os tipos de tarifas contábeis que têm sido utilizados acompanharam a evolução da economia da indústria de eletricidade, a proporção que ficavam melhor definidos seus fundamentos econômicos e técnicos, e à medida em que foram inventados e adaptados aparelhos de medição a custos acessíveis. Os tipos de tarifas mais usados [ELETROBRÁS, 1976] são descritos abaixo, assim como suas vantagens e desvantagens, à luz do conceito contábil de tarifação.

a) TARIFA FIXA OU "A FORTAÎT"

Foi o primeiro tipo de tarifa a ser utilizado na indústria de Energia Elétrica. A tarifa fixa ou "a fortait" é definida por um preço determinado a priori. Neste caso, as despesas referentes à potência instalada do sistema podem perfeitamente ser calculadas por aproximação e computadas na tarifa. Por exemplo, pode-se cobrar Cz$ 10,00 por mês, por cada lâmpada de 100 W. Entretanto as despesas com a energia fornecida não podem ser computadas e o que se faz é prever um determinado tempo de utilização. Quanto maior for o tempo de utilização real em relação ao previsto, menor será a tarifa unitária. As principais razões que levaram as empresas de Energia Elétrica ao uso deste tipo de tarifa foram a inexistência de medidores de energia e de dados objetivos ou servissem de base ao cálculo das despesas.

b) TARIFA PLANA

Esta tarifa cobra simplesmente a unidade de energia consumida. Por exemplo, Cz$ 1,00 por kWh vendido. Evidentemente a escolha deste tipo de tarifa surgiu com a invenção do medidor de kWh.

A utilização da tarifa plana pode ser justificada para consumidores residenciais com estrutura de consumo relativamente uniforme e de pequeno porte. Entretanto, esta não é recomendada em aplicações industriais por não concorrer para melhorar o grau de utilização das instalações, pois o preço total do serviço independe do fator de carga do consumidor.
c) TARIFA DE DEGRAUS

Este tipo decorreu da tarifa plana, com o objetivo de diminuir o preço médio do kWh para os grandes consumos de energia. Entretanto, como nos tipos anteriores, não distribui de maneira justa os custos relativos à potência instalada entre os consumidores. A tarifa de degraus consiste, basicamente, na determinação de valores médios por kWh para grupos de consumidores, entre certos limites de consumo. Por exemplo, Cz$ 1,00/kWh para consumos até 100 kWh/mês, Cz$ 0,90/kWh para consumos de 101 a 200 kWh/mês, Cz$ 0,80/kWh para consumos de 201 a 300 kWh/mês, e Cz$ 0,70/kWh para consumos acima de 301 kWh/mês.

A diferenciação por degraus, como é fácil constatar, apresenta um grave inconveniente de ordem geral, que reside no fato de tornar-se possível pagar valores menores para consumos maiores. Assim, se considerarmos no exemplo acima um consumidor que demanda 200 kWh por mês, ele pagará Cz$ 180,00, enquanto que outro que atinge 205 kWh por mês pagará somente Cz$ 164,00. O incentivo ao desperdício de energia é uma constante neste tipo de tarifa, o que fez com que fosse completamente abandonado.

d) TARIFA EM BLOCO

As tarifas de degraus evoluíram para um tipo mais aperfeiçoado que é a tarifa em bloco. Esta consiste em repartir a quantidade de energia por blocos, a cada um dos quais corresponde um determinado preço do kWh. Ao consumo total do cliente, ao contrário do método anterior, serão aplicadas diversas taxas, conforme o número de blocos nele compreendidos, como por exemplo, Cz$ 1,00/kWh para os primeiros 50 kWh mensais, Cz$ 0,80/kWh para os seguintes 100 kWh mensais e Cz$ 0,60/kWh para o consumo excedente a 150 kWh mensais. Assim, um cliente que consome 180 kWh mensais, pagará um preço total de Cz$ 148,00. Vê-se, portanto, que com este tipo de tarifa em blocos não existem os inconvenientes apontados no sistema de tarifa em degraus, e os preços totais são sempre crescentes com o consumo, reduzindo-se, com este, unicamente os preços unitários, quando os blocos são decrescentes.

Entretanto, embora este tipo de tarifa aparente vantagens e facilidade de ser entendida pelo consumidor, ela não fornece uma divisão justa para o custo da demanda e, por causa disso, é indesejável tanto para o produtor como para o consumidor. Como exemplo deste inconveniente, citamos o fato de que dois consumidores com mesmo consumo de kWh e diferentes demandas (kW) pagam contas idênticas.
Assim, somente para grupos de consumidores de características muito semelhantes, tais como os consumidores residenciais, pode ser vantajoso o seu uso.

e) TARIFA DE HOPKINSON

A tarifa introduzida por John Hopkinson no ano de 1892, se divide em duas partes, uma referente à potência máxima demandada e outra que se refere à energia consumida. Na sua primeira parte, são contabilizadas as despesas de potência instalada do sistema e as despesas de consumidor; e na segunda parte, são contabilizadas as despesas operativas decorrentes da energia fornecida. A tarifa de Hopkinson em sua forma mais simples pode ser exemplificada por:

- Custo de demanda (potência máxima): Cz$ 100,00 por mês por kW demandado;

- Custo da energia: Cz$ 1,00 por mês por kW consumido.

Este tipo de tarifa pode se apresentar, no custo da energia, sob forma de blocos. Nas suas formas mais complexas, também na parte relativa à demanda, os preços são distribuídos por bloco de demanda, de modo a favorecer os grandes consumidores, cujo custo unitário de fornecimento pode ser menor.

2.4. TARIFAS CONTÁBEIS NO BRASIL

O fornecimento de energia elétrica é um serviço de custo crescente ao longo da cadeia produção-transporte-distribuição. Na medida em que o nível de tensão decresce, aumenta o número de equipamentos, os requisitos operacionais e de manutenção.

Assim, no Brasil, os consumidores foram divididos em grupos por faixa de tensão. Para os consumidores da faixa de tensão acima de 2,3 kV, formou-se o grupo A, que está dividido em quatro subgrupos que são A1, A2, A3 e A4, com níveis de tensão de 230 kV ou mais, 88 a 138 kV, 20 a 69 kV e 2,3 a 13,8 kV, respectivamente. O outro grupo é o B, onde estão localizados os consumidores abaixo de 2,3 kV.
Os consumidores do grupo A foram tarifados sob a forma binômia, com uma tarifa para a componente de demanda de potência e outra para o consumo de energia. Aos consumidores do grupo B são aplicadas tarifas monôminias, isto é, somente o consumo de energia é cobrado.

A tarifa binômia em energia elétrica se justifica plenamente pela natureza das duas componentes. A potência elétrica é normalmente colocada à disposição do consumidor de forma permanente, significando determinados custos associados. O uso da potência ao longo do tempo define o consumo de energia, cuja produção envolve outras variáveis físicas e outros custos. Os maiores custos de medição (tarifa binômia) para os consumidores em alta tensão se justificam pelo alto consumo de potência e energia correspondentes, e reduzido número de consumidores, 52.284, representando 62.4% do consumo nacional. Na baixa tensão, as demandas são de menor porte e é bastante elevado o número de consumidores, 16.752.127, representando 37.4% do consumo (dados de dezembro de 1980) [MINISTÉRIO DAS MINAS E ENERGIA, 1981-a].

2.5. LIMITAÇÕES DAS TARIFAS CONTÁBEIS

A primeira limitação da abordagem contábil é a de que, a não ser por coincidência, os custos obtidos contabilmente são bastante diferentes daqueles relevantes para a alocação de recursos. Uma das razões para que isso aconteça é que a abordagem contábil se ocupa em cobrir os custos incorridos no passado, enquanto que, para uma alocação eficiente de recursos, são os atuais recursos que utilizados ou economizados por decisão do consumidor que são importantes.

Vale dizer, a fim de se exemplificar o que foi dito acima, que o primeiro "Estudo do Sistema Tarifário Brasileiro de Energia Elétrica com Base nos Custos Marginais" publicou a seguinte série de evolução do índice do valor real dos bens e instalações em serviço (imobilizado) por energia vendida [ALMEIDA, 1983]:
<table>
<thead>
<tr>
<th>ANO</th>
<th>ÍNDICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1969</td>
<td>100</td>
</tr>
<tr>
<td>1970</td>
<td>106</td>
</tr>
<tr>
<td>1971</td>
<td>109</td>
</tr>
<tr>
<td>1972</td>
<td>103</td>
</tr>
<tr>
<td>1973</td>
<td>105</td>
</tr>
<tr>
<td>1974</td>
<td>107</td>
</tr>
<tr>
<td>1975</td>
<td>118</td>
</tr>
<tr>
<td>1976</td>
<td>121</td>
</tr>
<tr>
<td>1977</td>
<td>129</td>
</tr>
</tbody>
</table>

Essa série indica que, embora de 1970 até 1973/74, o custo médio de desenvolvimento da capacidade do setor tenha se mantido relativamente constante, esse custo em 1975 já começou a ser crescente, indicando que a toda solicitação adicional de energia o setor realizava um esforço maior para supri-la, do que aquele realizado para suprir um acréscimo semelhante de energia no passado.

Os preços são as quantidades pagas por um consumo adicional, e devem estar relacionados com os custos incrementais de atender esse consumo adicional. Se novos consumidores são conectados ao sistema, ou se consumidores já existentes aumentam seu consumo (por exemplo, durante as horas de pico de carga), talvez certas adições à capacidade de geração e transmissão sejam necessárias. É importante portanto que os preços expressem ao consumidor os custos referentes a tais mudanças de consumo. O mesmo argumento é válido no outro sentido. Se os consumidores reduzem seu consumo (por exemplo, durante as horas de pico) esses custos são cortados, e se os preços refletem esses custos, a economia nas suas contas de luz será proporcional à economia de recursos.

Portanto, os preços devem estar relacionados ao valor dos recursos utilizados ou economizados, e a avaliação desses recursos – a estimativa de custo – requer uma estimativa que vislumbre o futuro. A estimativa baseada no passado, da abordagem tradicional, cria a ilusão de que os recursos que podem ser utilizados ou economizados são tão caros ou tão baratos como aqueles do passa-
do. Por um lado, esse fato pode causar um excesso de investimento e desperdícios, e, por outro lado pode levar a uma insuficiência de investimentos e a desnecessários déficits de energia.

Uma outra razão pela qual os custos contábeis diferem dos custos relevantes para uma adequada alocação de recursos é a de que a estrutura tarifária tradicional é baseada na divisão dos custos contábeis pelo número de consumidores. Isto gera tarifas relacionadas com os custos médios ao invés de tarifas relacionadas com os custos marginais. Mas para uma eficiente alocação de recursos, os custos devem estar relacionados aos custos ocasionados pelas mudanças de consumo, isto é, o que é necessário, são preços relacionados aos custos marginais, e não aos custos médios. A agregação de um novo consumidor ou um crescimento no consumo de um consumidor já existente vai ocasionar custos adicionais à empresa fornecedora, enquanto que uma redução no consumo ocasiona uma redução nos custos. Estas alterações nos custos é que devem estar expressas nas tarifas.

A abordagem contábil incorpora uma visão muito estreita de justiça e equitatividade, pois os consumidores devem pagar pela parcela dos custos contábeis que lhes foi alocada. Esta parcela dos custos, conforme explicado anteriormente, pode diferir muito dos custos que o consumidor está fazendo a empresa fornecedora incorrer. Além desse fato, é evidente que tal alocação de custos pode envolver julgamentos arbitrários. Justiça é certamente um atributo das tarifas em relação aos consumidores, e não em relação aos custos por si só. Por exemplo, depende do consumidor ser rico ou pobre, de determinado consumo ocorrer em regiões carentes, e assim por diante.

Uma terceira limitação da utilização da abordagem contábil para a estruturação das tarifas, é que esta não exprime os efeitos incentivadores das tarifas.

As tarifas geralmente devem ser mais simples que a estrutura de custos que elas representam, devido a certas restrições como o fato da cobrança na maioria dos casos só poder ser realizada mensalmente, o fato de existirem limitações quanto às possíveis variações no valor das tarifas, quando há variações na demanda e nas condições de fornecimento, além do fato da medição ser relativamente cara e consequentemente os menores consumidores deverão ter um sistema de medição bastante simples, pois somente para os grandes consumidores uma medição mais aprimorada é viável. A simplificação é, portanto, uma questão central na elaboração das políticas de medição e tarificação. Do ponto de vista econômico, as simplificações das tarifas devem ser elaboradas de modo que estas expressem tanto quanto possível os efeitos motivadores do consumo ou de economia de energia, ou seja, que o consumidor saiba quando o aumento de consumo é caro e quando ele é barato.
Devido aos grandes requisitos de capital dos sistema de potência, é necessário que as tarifas proporcionem um retorno adequado sobre o capital imobilizado e, além disso, gerem uma contribuição significativa para o autofinanciamento da futura expansão do sistema. No entanto, equitativamente, estabelecimento de metas financeiras e análise de custos requerem estudos separados na formação da tarifa. Primeiramente se deve fazer uma análise de custos, para então se considerar as necessidades de retorno financeiro, dentro de uma visão do que é justo. Soluções de compromisso podem ser necessárias, mas é fundamental se iniciar o processo de obtenção das tarifas com uma objetiva análise de custos.

2.6. FINANCIAMENTO DO SETOR ELÉTRICO BRASILEIRO

Esta seção tem o objetivo de analisar o impacto no financiamento e na expansão do setor elétrico brasileiro devido à utilização da estrutura contábil para o cálculo das tarifas, e devido a mudanças no quadro energético ocorridas a partir de 1974.

Alguns fatores foram mais marcantes em causar desequilíbrios para o setor, e entre estes podemos citar as distorções das remunerações das parcelas componentes das tarifas, a equalização tarifária, as restrições tarifárias e a indivisibilidade dos investimentos nas grandes obras de geração.

2.6.1. A REMUNERAÇÃO DAS PARCELAS COMPONENTES DA TARIFA

O decreto 62.724 de 17.05.68 apresenta uma estrutura para as tarifas de energia elétrica, cuja coerência desaparece no seu Artigo 14. Este determina que a parcela relativa à componente da demanda de potência, deverá atender a remuneração de diversos itens como:

- A remuneração legal;

- A quota de reversão ou amortização;

- A quota de depreciação; e,

- O saldo da conta de resultados a compensar.
A parcela relativa ao consumo de energia, por seu turno, deverá atender somente aos custos de exploração. Desta forma, os valores encontrados não corresponderão aos verdadeiros custos incorridos por cada uma das parcelas.

As empresas concessionárias logo verificaram que a tarifa proposta remunerava a componente de demanda de potência acima dos custos necessários ao seu fornecimento. Esse fato tornou inevitável a tentativa das empresas de construir usinas ou supermotorizar as usinas existentes, com o intuito prioritário de atender a demanda de potência, a fim de realizar o benefício proporcionado pela legislação [MINISTÉRIO DAS MINAS E ENERGIA, 1981-a].

2.6.2. A EQUALIZAÇÃO TARIFÁRIA

Até o ano de 1974 as tarifas de energia elétrica das diversas empresas no Brasil eram diferenciadas por área de concessão de cada empresa, levando em conta o custo de serviço de cada uma. Os níveis que essas diferenças se situavam eram capazes de influenciar nas decisões de localização das diversas atividades econômicas, a industrial em particular.

A tendência de longo prazo, certamente, não seria a manutenção. do baixo nível do preço real da energia elétrica em áreas de mercado concentrado, como a da LIGHT, comparativamente às demais. Isto porque os novos aproveitamentos hidrelétricos ao tenderem a se afastar dos centros consumidores, implicando em gastos crescentes de transmissão e/ou na necessidade de uso em maior escala de termoelétricas, elevariam o custo médio real da energia elétrica nesses mercados.

Em 1975 inicia-se o processo de equalização tarifária, antecipando essa tendência, e trazendo neta queda do preço relativo em determinadas áreas (aumento mais que proporcional na área da LIGHT), a possibilidade de um deslocamento parcelado das atividades econômicas. Esse processo foi uma forma de ajustar as políticas do setor com os objetivos do II Plano Nacional de Desenvolvimento, que enfatizava a necessidade de se promover a desconcentração industrial, dando estímulo a um melhor equilíbrio, no triângulo São Paulo - Rio - Belo Horizonte, e aos polos industriais no Sul e Nordeste.

Para operacionalizar o processo de equalização foi criada a Reserva Global de Garantia (RGG), a ser obtida através da contribuição de todas as concessionárias com quotas de até 2% sobre o "Imobilizado Reversível". O valor obtido para a RGG depositado em
conta vinculada à ELETROBRÁS, passou a ser movimentado de modo a garantir o equilíbrio econômico daquelas empresas cujos custos previstos se situassem acima da receita prevista.

Foi criada, também, uma conta especial – Conta de Consumo de Combustível (CCC), que vigorando a partir de 1975 passou a se constituir em reserva financeira para cobertura do custo de combustíveis fósseis. Essa conta é formada através da contribuição de todas as empresas, proporcionalmente à energia vendida aos consumidores finais, o que implica na distribuição do ônus da geração térmica necessária ao sistema interligado entre todos os consumidores desse sistema.

Obviamente, estas sistemáticas, que possibilitaram a implementação da equalização tarifária no território nacional, constituem um desestímulo a uma gestão mais eficiente das concessionárias de energia elétrica brasileiras.

2.6.3. AS RESTRIÇÕES TARIFÁRIAS E A INDIVISIBILIDADE DOS INVESTIMENTOS

No período de 1975 a 1977 foram mudados os critérios de cálculo do investimento remunerável, o que influenciou consideravelmente na capacidade de geração dos recursos setoriais. Uma das mudanças principais refere-se ao que foi estabelecido no Decreto-Lei nº 1506, de 23.12.76, quanto à forma de avaliação dos bens e instalações em serviço (imobilizado) da empresa de energia elétrica [ALMEIDA, 1983].

Esse novo critério, embora corrigisse eventuais distorções que ocorriam no passado, certamente reduziu a capacidade de geração interna de recursos do setor, visto que a partir desse momento, a remuneração passou a incidir sobre uma base menor do que resultaria se o critério anterior continuasse sendo aplicado.

A definição do Capital de Giro para efeito de remuneração, introduzida pelo mesmo Decreto-Lei nº 1506, foi outro fator que tendeu a reduzir a capacidade de geração de recursos no setor. Esse capital de giro, na forma como foi concebido, passou a apresentar-se rulo para grande número de empresas do setor.

Do ponto de vista da formação dos recursos setoriais de uma maneira geral, esse conjunto de medidas afetou não só os níveis de geração interna de recursos, mas também, os provenientes da Reserva Global de Reversão, do Imposto Único de Energia Elétrica (IUEE) e do Empréstimo Compulsório.
Assim é que a participação da Reserva Global de Reversão foi também afetada, uma vez que diminuiu a base geradora desses recursos (o Imobilizado Reversível). Por outro lado, as outras fontes importantes de recursos setoriais – o IUEE e o Empréstimo Compulsório – que dependem da evolução da tarifa fiscal, tiveram suas participações reduzidas na formação dos recursos do setor, dada a evolução desfavorável das tarifas.

Esses fatos, mais a redução relativa dos recursos provenientes da participação societária da ELETROBRAS e dos governos estadual e federal, fizeram com que o período 1974-1979 se caracterizasse por uma redução na participação dos recursos próprios no total dos recursos do consolidado das concessionárias.

A contrapartida foi uma evidente elevação, também significativa, da participação dos recursos de terceiros na estrutura de financiamentos das concessionárias, que, de um porcentual de 51,8% em 1974, cresceu anualmente, atingindo 71,8% do total de recursos em 1979.

Paralelamente às restrições tarifárias, é importante observar o comportamento das inversões no setor após 1975, que continua num ritmo acelerado, pelo menos até 1977 nas empresas supridoras, enquanto as empresas distribuidoras têm o ritmo de crescimento de suas inversões consideravelmente retardado. A partir de 1977, observa-se uma redução real nas inversões do setor, para os dois tipos de empresas. No entanto, a compressão dos investimentos nas empresas supridoras foi menos acentuada devido a indivisibilidade dos investimentos nas grandes obras de geração, particularmente as executadas pelo ELETRONORTE (Usina de Tucuruí) e pela ITAIPU BINACIONAL. As inversões dessas duas empresas somadas ultrapassaram em 1979, 1/4 do total investido no ano pelo setor.

Esse desajuste, provocado pela necessidade de crescimento da capacidade geradora num quadro de limitação tarifária, se reflete na estrutura de financiamento dos dois grupos de concessionárias. De uma maneira geral observa-se a já esperada tendência ao decréscimo da participação de todas as fontes formadoras dos recursos próprios, no total de recursos utilizados pelo setor.

Essa queda deve-se fundamentalmente, no caso das distribuidoras, às condições tarifárias desfavoráveis a que já se fez referência, e nas supridoras deve-se, também, ao ciclo relativamente longo das obras de grande porte (que iniciaram a ser entregues em meados dos anos 80), exigindo esforço significativo em inversões anuais sem a contrapartida em termos de geração interna de recursos, o que dependia da entrada dessas obras em operação.

Dentro desse quadro de investimentos, as empresas tenderam a complementar suas necessidades de recursos recorrendo basicamente
a empréstimos no exterior, cuja participação como fonte de recursos das mesmas foi crescente. A evolução desse quadro para os dias atuais mostra uma participação significativa do setor elétrico no total da dívida externa brasileira.

Assim, após a mudança no quadro energético, o setor passou a apresentar desequilíbrios tanto a nível global - crescente participação dos recursos extra-setoriais no seu financiamento e redução na sua capacidade de inversões - quanto ao nível de orientação de seus investimentos - compressão das inversões das distribuidoras devido, além da estrutura de financiamento desfavorável, às indivisibilidades das inversões em grandes obras de geração.

Fatores tais como: a estabilização da economia, que deve permitir reajustes favoráveis nas tarifas, e a reativação do mercado quando da entrada das primeiras unidades de Itaipu e Tucuruí, tendem, certamente, a contribuir para o reequilíbrio do setor nos diversos níveis citados.

No entanto, torna-se importante a formulação de um novo modelo tarifário que favoreça um processo de mudança estrutural no setor, de modo que uma vez recuperada a economia, seja afastada a possibilidade de um ciclo semelhante de desequilíbrios no futuro.
CAPÍTULO 3

CUSTOS MARGINAIS

==========
Este capítulo apresenta as ideias básicas envolvidas na conceituação dos custos marginais e analisa os impactos nesses custos, da instalação de unidades de geração com longo prazo de maturação. A seguir é apresentada uma extensão aos modelos simplificados e os custos marginais de longo prazo com suas componentes mais significativas. A obtenção dos custos é discutida tradicionalmente para sistemas termelétricos. Em sistemas puramente hidrelétricos ou em sistemas mistos, o regime hidrológico dos rios que compõem o sistema exerce uma influência marcante na operação desses sistemas e, por conseguinte, nos custos marginais dos mesmos. Faz-se uma análise dessa influência nos custos marginais de geração. Finalmente, apresenta-se a metodologia de cálculo dos custos marginais utilizada pela ELETROBRAS.

3.1. TEORIA BÁSICA DOS CUSTOS MARGINAIS

A Figura 6 mostra um diagrama simples de demanda-suprimento que pode ser utilizado para esclarecer as razões de se estabelecerem preços para a energia semelhantes aos seus custos marginais. Seja EFGD o curva de demanda, que determina para um dado preço a demanda, em kWh, de eletricidade. AGS é a curva de suprimento e representa o custo marginal de suprir um incremento adicional no fornecimento.

Tomando-se o preço p e a demanda Q, o benefício total é representado pela "disposição de pagar do consumidor", isto é, a área OEFJ, sob a curva de demanda. O custo do suprimento dessa demanda é representado pela área OAHJ, sob a curva de suprimento. Portanto, o benefício líquido, ou seja, o benefício total menos o custo de suprimento é dado pela área AEFH.

O máximo benefício líquido é atingido quando o preço é estabelecido igual ao custo marginal nas condições ótimas de mercado representadas pelo ponto G, para uma demanda Q e um preço p. Em termos matemáticos, o benefício líquido (BL) é dado por:

\[
BL = \int_{0}^{Q} p(q) dq - \int_{0}^{Q} CM(q) dq
\]

onde \(p(Q)\) e \(CM(Q)\) são as equações das curvas de demanda e de suprimento, respectivamente. O valor máximo de BL é obtido fazendo-se
FIGURA 6 - Diagrama da demanda versus suprimento para o consumo de energia elétrica

\[\frac{d(BL)}{dQ} = p(Q) - CM(Q) = 0 \tag{3.2} \]

que é o ponto \((P_0, Q_0)\) no qual se interceptam as curvas de demanda e de suprimento.

A análise, até o momento, foi somente estática. Agora, ao se considerar o efeito dinâmico do crescimento da demanda do ano de índice zero para o ano de índice 1, tem-se um deslocamento da curva de demanda de \(D_0\) para \(D_1\). Assumindo que o preço \(p_0\) estivesse prevalecendo no ano zero, um excesso de demanda \(GK\) ocorreria no primeiro ano. O procedimento ideal seria o de o suprimento crescer para \(Q_1\) e o novo preço de mercado ficar estabelecido em \(p_1\). No entanto, as informações que dizem respeito à obtenção da curva de demanda \(D_1\) podem estar incompletas, tornando-se difícil localizar o ponto \(L_1\).
São muito grandes as dificuldades de se obter de uma forma bastante precisa a curva de demanda e a curva de custo marginal de suprimento. Dessa forma, como um primeiro passo, pode-se aumentar o suprimento até \(Q' \) a um preço \(p' \), como mostrado na Figura 7. A existência de um excesso de demanda MN indica que ambos, o suprimento e o preço devem ser incrementados. A situação oposta ocorreria com um superdimensionamento de \(L \), que levaria a um excesso de suprimento. Nesse caso seria necessário esperar o crescimento da demanda, até esta atingir a capacidade instalada. Dessa maneira iterativa é possível caminhar ao longo da curva de custo marginal até o ponto ótimo. Quando o ótimo é atingido, observa-se paralelamente um crescimento de demanda. Portanto, a meta a ser atingida é móvel e pode nunca ser alcançada. No entanto, a regra básica de se estabelecer o preço igual ao custo marginal e aumentar o suprimento na perspectiva de atingir o ótimo, ainda é uma regra válida.

FIGURA 7 - Esquema simplificado para determinação do custo marginal
3.2. INDIVISIBILIDADE DOS INVESTIMENTOS

A análise dos efeitos da indivisibilidade dos investimentos reconhece o fato que, para se obter os ganhos propiciados pela economia de escala, as adições de capacidade dos sistemas de potência (especialmente na geração) tendem a ser grandes e de longo prazo de maturação (Figura 8). Suponhamos que no ano zero, a máxima capacidade de suprimento seja Q_0, enquanto a combinação ótima do preço e da demanda seja (p_0, Q_0), que são pontos da curva de demanda D_0 e da curva de custo marginal de curto prazo, "CMCP". A curva "CMCP" está baseada nos custos de combustível, de operação e de manutenção, isto é, ela exprime os custos de suprimento para uma dada capacidade instalada.

FIGURA 8 - Efeitos da indivisibilidade dos investimentos nos custos
Na medida em que a demanda cresce de \(D \) para \(D' \), o preço \(p \) da energia deve ser aumentado para \(p' \) para se estabilizar o mercado no curto prazo, pois a capacidade instalada está fixa e a curva de suprimento é vertical em \(Q \). Quando a curva de demanda for \(D' \) e o preço for \(p' \), então uma usina é adicionada ao sistema e a capacidade é incrementada para \(Q' \). Assim que o incremento de capacidade for completado, o custo marginal de curto prazo volta para sua antiga tendência. Para a curva de demanda \(D' \), o valor correspondente na curva "CMCP" é \(p' \), que é um valor menor que \(P \).

Geralmente as grandes flutuações de preço durante esse processo fazem com que ele seja inaceitável para os consumidores. Este problema pode ser evitado com a utilização da abordagem do custo marginal de longo prazo ("CMLP") e pelo reconhecimento da necessidade de se estabelecer um preço diferenciado para a carga de ponta, conforme descrito a seguir.

O modelo simplificado de estabelecimento de preços para a carga de ponta que está mostrado na Figura 9 contém duas curvas de demanda. \(D \) representa o pico de demanda durante, por exemplo, as horas do final da tarde e começo de noite, quando a carga de energia elétrica é maior, e \(D' \) indica a demanda fora da ponta, nas horas restantes do dia, quando as cargas são mais baixas. A curva de custo marginal está simplificada, por se assumir um tipo de usina isolada, na qual os custos marginais de curto prazo do combustível, da operação e de manutenção são dados pela constante \(a \) e os custos marginais de longo prazo, que são os custos de adição de capacidade, são dados pela constante \(b \). Os custos de capacidade podem envolver, por exemplo, os valores dos investimentos anualizados e distribuídos ao longo da vida útil do equipamento. O diagrama é estático, tendo sido criado para ilustrar que a pressão para o aumento de capacidade vem basicamente da demanda dos horários de ponta \(D' \), e que a demanda \(D' \) dos horários fora da ponta \(D \) não exerce nenhuma pressão sobre \(D \), a capacidade instalada. A regra ótima para o estabelecimento dos preços tem agora duas parcelas, correspondendo a dois períodos com preços distintos (diferenciados pelas horas do dia): preços para o período de ponta \(p = a + b \) e preços para o período fora de ponta.
ra de ponta \((p = a)\).

\[
O_p
\]

FIGURA 9 - Modelo para o estabelecimento do preço para os horários de ponta e fora da ponta

Fica claro com estes resultados que os consumidores dos horários de ponta, aqueles que causam adições de capacidade, são os que devem assumir a responsabilidade pelos custos de capacidade, assim como os custos de combustível, operação e manutenção no período. Os consumidores dos horários de fora da ponta não devem pagar pelos custos de capacidade.

3.3. EXTENSÃO DOS MODELOS SIMPLIFICADOS

Os modelos apresentados até o momento foram deliberadamente idealizados e simplificados para esclarecer os princípios básicos envolvidos. As extensões desses modelos incorporam uma análise dos aspectos econômicos de um sistema real de potência. A seguir são abordadas as três maiores complicações práticas que esses modelos apresentam.
Em primeiro lugar, o procedimento usualmente adotado nos estudos de tarifação com base nos custos marginais requer um processo iterativo entre custo e preço da energia elétrica, conforme ilustrado na Figura 10. Tipicamente, obtêm-se projeções a longo prazo da demanda de electricidade, a partir de um modelo de demanda em que se assume uma provável evolução do preço da energia elétrica. Então, usando dados e modelos de sistemas de potência, é proposto um conjunto de planos de expansão do sistema. Estes planos atendem a demanda prevista com um grau pré-fixado de confiabilidade. É escolhida entre essas alternativas a que tem o menor custo de expansão do sistema. Finalmente, o CMLP é obtido com base no programa de expansão de mínimo custo; as tarifas resultantes são baseadas nos custos marginais ajustados, que levam em conta restrições financeiras, sociais e políticas. Se as novas tarifas estimadas foram significativamente diferentes daquelas originalmente assumidas, então, as novas tarifas devem realinhar o modelo para revisar as previsões de demanda e repetir os cálculos para a obtenção do CMLP.

Na teoria, esse procedimento iterativo poderia ser repetido até que a demanda prevista, os preços, e as tarifas baseadas no CMLP se tornassem bastante consistentes. Na prática, as incertezas na elasticidade - preço e em outros dados sugerem uma abordagem mais pragmática, na qual os CMLP obtidos, seriam usados após somente uma iteração como base para calcular e implementar a estrutura tarifária. A demanda então é observada durante um certo período, o CMLP é recalculado, e as tarifas são revisadas de modo a se aproximar do ótimo, que talvez tenha se modificado como descrito previamente.

O segundo ponto é que as inter-relações entre suprimento e demanda, incerteza, margem de reserva, e custos associados a déficits de energia levantam certos problemas. Conforme mencionado anteriormente, o plano de custo mínimo para a expansão do sistema, assume um grau pré-determinado de confiabilidade do sistema. A confiabilidade do sistema pode ser medida, dentre outras formas, pela Probabilidade de Perda de Carga (LDP) e pela Margem de Reserva. Portanto, os custos marginais dependem do grau de confiabilidade considerado na obtenção do plano de expansão.

A teoria econômica sugere que a confiabilidade do sistema também deveria ser tratada como uma variável a ser otimizada e que ambos, custo e confiabilidade, deveriam ser otimizados simultaneamente. O custo ótimo é o custo marginal descrito anteriormente. O nível de confiabilidade ótimo é, então, obtido quando o custo marginal de adição de capacidade para melhorar a confiabilidade é igual ao valor esperado do custo que seria incorrido pelo consumidor, caso se concretizassem os déficits de suprimento de energia evitados pelo incremento de capacidade. Estas conside-
FIGURA 10 - Uso da realimentação dos preços para se estimar tarifas baseadas no CMLP
rações levam a uma abordagem mais generalizada do planejamento da expansão do sistema, como mostrado abaixo.

Considerando-se a equação simplificada para o benefício líquido (BL) de consumo de eletricidade, que deve ser maximizado:

\[BL(D,C) = BT(D) - CS(D,C) - CD(D,C) \] (3.3)

onde \(BT \) é o benefício total do consumo quando não há déficits de energia, \(CS \) representa os custos de suprimento, \(CD \) os custos de déficit (custos para o consumidor derivados de déficits de energia), \(D \) é a demanda e \(C \) o grau de confiabilidade.

Na abordagem tradicional, ambos, \(D \) e \(C \), são fixados exogenamente e o benefício líquido \(BL \) é maximizado quando o custo de suprimento é minimizado. Este é um planejamento convencional da expansão de sistemas de potência, baseado no custo mínimo. Se, entretanto, \(C \) é tratado como uma variável, então

\[
\frac{d(BL)}{dC} = -\left(\frac{\partial (CS+CD)}{\partial C}\right) + \left(\frac{\partial (BT-CS-CD)}{\partial D}\right) \frac{\partial D}{\partial C} = 0 \] (3.4)

é a condição de primeira ordem necessária à maximização. Depois, assumindo \(\frac{\partial D}{\partial C} = 0 \), obtém-se que

\[
\frac{\partial CS}{\partial C} = -\frac{\partial CD}{\partial C}. \] (3.5)

Portanto, como descrito anteriormente, a confiabilidade do sistema aumenta com o acréscimo na capacidade do sistema, até que a condição acima seja satisfeita. Na Figura 11, na medida que a confiabilidade aumenta, os custos de déficit diminuem, enquanto os custos de suprimento crescem rapidamente. A confiabilidade é otimizada em \(C^* \), quando a tangente à curva de suprimento é igual à negativa da tangente da curva de custo de déficit. Uma maneira alternativa de expressar este resultado é que, desde que o benefício total é independente da confiabilidade, o benefício líquido é maximizado quando o custo total \(CT = (CS + CD) \) é minimizado. O critério acima é um que efetivamente resume a abordagem tradicional do planejamento da expansão ao menor custo, minimizando somente os custos do sistema.
FIGURA 11 - Relação entre os custos de déficit, os custos de suprimento e os custos totais no grau de confiabilidade ótimo

No entanto, a implementação desta prática de utilizar a confiabilidade como uma variável na obtenção do plano de expansão de sistemas de potência, é extremamente dificultada pela polêmica questão de se definirem as curvas do custo de déficit de energia, como função da confiabilidade. A ocorrência de déficits de energia elétrica causa grandes transtornos às sociedades modernas, muito dependentes dessa forma de energia. Esta dependência é comprovada com a penalização de hospitais, sistemas de transporte eletrificados, sistemas de sinalização urbanos, entre outros importantes sistemas usuários de eletricidade, quando da ocorrência de déficits.

O terceiro ponto é que alguns aspectos práticos podem ser levantados pela necessidade de definir-se entre o CMCP e o CMLP. Uma explicação simplificada deve esclarecer esta questão. O CMCP é definido em termos econômicos como o custo de atender um incremento adicional de consumo com a capacidade do sistema fixa. O CMLP é o custo de se atender um crescimento de consumo, sustentado indefinidamente no futuro, quando provavelmente serão necessários ajustes na capacidade do sistema. Se há um incremento de consumo, os custos de operação do sistema e os custos associados aos riscos de déficit (especialmente durante os horários de pico)
crescerão. Da mesma forma, no longo prazo, um crescimento da demanda resultará num aumento correspondente nos custos de operação, assim como nos custos de expansão da capacidade. No curto e no longo prazo deve ocorrer um aumento equivalente nos custos operacionais. A regra da confiabilidade ótima assegura que o custo marginal do risco de déficit e o custo marginal de expansão da capacidade também são equivalentes. Portanto, quando o sistema é operado e planejado de uma maneira ótima - isto é, a capacidade e o grau de confiabilidade são ótimos - os custos marginais de curto prazo e de longo prazo coincidem. A estimativa e o uso do custo marginal de longo prazo é a opção mais simples, quando o sistema está próximo desta situação.

Entretanto, se o plano de expansão do sistema é sub-ótimo, desvios significativos entre o CMCP e o CMLP devem ser resolvidos dentro de uma abordagem política para os preços. Por exemplo, após 1973 algumas empresas começaram a substituir as usinas termelétricas por novas usinas hidrelétricas com o objetivo de economizar combustível. Tal situação poderia resultar num significativo excesso de capacidade e em custos marginais de capacidade bastante baixos a curto e médio prazo, justificando com isso a redução das tarifas de demanda a níveis menores que as do CMLP. Nessa situação, no entanto, na medida em que a demanda de ponta cresce e que o sistema se aproxima do seu ponto de operação ideal, as tarifas de capacidade deveriam crescer novamente para os níveis do CMLP. Se as tarifas de demanda são estabelecidas num nível muito abaixo dos CMLP por muito tempo, pode ser que a demanda seja superestimulada. Tal situação poderia ocasionar déficits custosos de energia ou a necessidade antieconômica de se adiantar investimentos em capacidade que só seriam realizados no futuro. Além de que, quando os preços tivessem que ser aumentados para atingir os níveis do CMLP, a transição poderia ser consideravelmente abrupta, resultando em sentimentos de descontentamento por parte dos consumidores.

3.4. O CUSTO MARGINAL DE LONGO PRAZO

O custo marginal de longo prazo pode ser definido de uma maneira geral como o custo incremental de todos os ajustes realizados no plano de expansão do sistema e na operação do sistema, devido a um crescimento incremental da demanda que é sustentado no futuro. Usualmente o termo "incremental" é ligado a uma pequena mas finita variação de custo ou demanda, enquanto que o termo "marginal" é interpretado em seu significado matemático, que representa uma mudança infinitesimal.
Para o cálculo do CMLP identificam-se três principais categorias de custos marginais, que são os custos de capacidade, os custos de energia e os custos relativos ao consumidor. Os custos marginais de capacidade são basicamente os custos de investimento em geração, transmissão e distribuição, de modo a fornecer uma potência adicional. Os custos marginais de energia são os custos de operação, que incluem os custos com combustíveis, necessários para suprir um consumo adicional de energia. Os custos marginais relativos ao consumidor representam os custos adicionais de medição e cobrança. Quando necessário, esses elementos do CMLP devem ser diferenciados por períodos do dia, níveis de voltagem, etc. Estas três categorias de custos são discutidas com mais detalhe a seguir.

3.4.1. OS CUSTOS MARGINAIS DE CAPACIDADE

Considere na Figura 12 a curva de permanência de carga anual típica de um sistema, ABEF, para um ano inicial designado por 0. Ela está dividida em duas partes, ponta (período OH) e fora da ponta (período HF). À medida que a demanda cresce no decorrer do tempo, a curva de permanência também cresce em tamanho, e a demanda de ponta resultante das previsões é dada pela curva D da Figura 13. O CMLP de capacidade deve ser determinado examinando-se a seguinte questão: qual é a mudança nos custos de capacidade do sistema, ΔC, associadas a um incremento sustentado da demanda ΔD, no período da ponta, a longo prazo? Este incremento está indicado pela área hachurada na Figura 12 e pela linha pontilhada D + ΔD na Figura 13. Consequentemente o CMLP de geração seria ΔC/ΔD, onde o incremento da demanda ΔD é marginal no tempo e no consumo de energia. Em teoria, ΔD pode ser tanto positivo quanto negativo, ou seja, ambos, incremento e decremento, são considerados simetricamente. O procedimento mais simples, no entanto, seria de considerar somente um incremento positivo na demanda.

Para um sistema que tenha um cronograma de expansão ótimo, uma mudança no programa de expansão da geração para atender a uma nova carga incremental deve consistir no adiantamento da data de instalação de uma usina planejada para o futuro, ou a inserção de uma nova usina, como por exemplo uma turbina a gás ou uma usina hidrelétrica de ponta. Quando o planejamento do sistema utiliza algoritmos computacionais, a mudança nos custos de capacidade ΔC, é determinada simulating-se a expansão e a operação do sistema com e sem um incremento de demanda ΔD. Quando se tem uma estrutura tarifária mais sofisticada, com diversos intervalos de tempo no horizonte de planejamento, o CMLP para cada intervalo
FIGURA 12 - Evolução de uma típica curva anual de permanência de carga

FIGURA 13 - Previsão da demanda de ponta
deve ser estimado utilizando-se o modelo computacional para a expansão do sistema, com um incremento de carga na demanda do sistema sustentado durante todo o horizonte de planejamento. Este método que simula o planejamento ótimo é baseado no conceito dinâmico do CMLP.

Quando não se dispõe de modelos computacionais, usa-se derivar os custos marginais de considerações simples, baseadas numa interpretação mais estática do CMLP. Supondo que uma usina com turbinas a gás é utilizada para atender a demanda de ponta do sistema, então o CMLP de capacidade de geração é aproximadamente o custo de se adiantar a instalação de 1 kW dessa usina. Esse custo é estimado pelo custo de instalação de 1 kW, depreciado em parcelas anuais durante a vida útil da usina, e ajustado pela margem de reserva (MR), e pela porcentagem de perda de carga (P) derivada do uso do equipamento. Portanto,

\[C_{\text{CMLP}} = (\text{Custo anual do kW}) \times \frac{(1+\text{MR})}{(1-\text{P}/100)} \]

(3.6)

Em seguida, calcula-se o CMLP da transmissão e distribuição do sistema. Geralmente os custos de investimento em transmissão e distribuição são alocados no incremento de capacidade, pois esses equipamentos são dimensionados principalmente com base na demanda de ponta em kW que é transmitida e distribuída e não nos kWhs. Particularmente na distribuição do sistema, no entanto, a capacidade de uma determinada subestação (transformadores, disjuntores e demais equipamentos de medição e controle) depende da demanda de ponta do local, que não necessariamente ocorre no mesmo período da ponta do sistema global. Este fato pode complicar consideravelmente a alocação dos custos de capacidade de distribuição do sistema, nos diversos períodos. Esse é o momento da introdução do conceito dos diversos níveis de tensão. A distribuição do sistema é organizada em níveis de tensão de suprimento. No Brasil os consumidores são organizados em dois grupos, o A com os subgrupos A1, A2, A3 e A4, e o grupo B. Os consumidores de cada nível de tensão têm seus custos definidos unicamente pelos custos incorridos no nível de tensão imediatamente superior.

A abordagem mais simples para se estimar os CMLP de Transmissão e Distribuição é a do Custo Incremental Médio (CIM). Suponha que no ano i houve um incremento na demanda suprida, \(\Delta M W \), em relação ao ano anterior, e um investimento, \(I_i \), associado ao atendimento desse incremento. Então, o CIM é dado por:
\[
CIM = \left[\frac{T}{\sum_{i=0}^{i=L} \frac{1}{(1+r)^i}} \right] / \left[\sum_{i=L}^{i=L+\Delta MW} \frac{1}{(1+r)^i} \right] \]

(3.7)

onde \(r \) é a taxa de atualização (por exemplo, o custo de oportunidade do capital), \(T \) é o horizonte de planejamento e \(L \) é o tempo de atraso médio entre a data da realização do investimento e a da liberação do equipamento para uso.

Assuma que o CIM para o subgrupo A1 foi obtido e depreciado ao longo da vida média do equipamento para a obtenção do custo marginal \(\Delta\text{CMLP} \). Então o CMLP total de capacidade durante o período de ponta para o subgrupo A1 é dado por:

\[
\text{CMLP} = \frac{\text{CMLP}_{a1}}{(1-P/100)} + \Delta\text{CMLP}_{a1} \]

(3.8)

onde \(P \) é a porcentagem de perda de potência de ponta na transformação de \(A0 \) para \(A1 \). Este procedimento é repetido para a obtenção dos CMLPs dos níveis inferiores de tensão.

3.4.2. CUSTO MARGINAL DE ENERGIA

Em um sistema puramente termelétrico, o custo marginal de energia durante o período de ponta do sistema é o custo de operação (incluindo o custo do combustível) da última usina alocada por ordem de mérito (eficiência econômica) para atender a carga do sistema e consequentemente um incremento da demanda de ponta. Este custo deve ser ajustado para cada nível de tensão de acordo com os fatores de perda no período de ponta do sistema, da mesma maneira que o custo marginal de capacidade.

O CMLP de energia no período fora da ponta, em um sistema termelétrico, correspondente a um incremento de carga nesse período é o custo de operação da usina menos eficiente economicamente, utilizada nesse período. Podem ocorrer exceções a essa generalização, quando a usina marginal utilizada nesse período não for necessariamente a usina menos eficiente. Por exemplo, usinas com um longo período de aquecimento para entrada em operação podem ser mantidas operando fora da ponta, quando elas tiverem que atender o período de ponta consecutivo, mesmo havendo no período...
fora da ponta usinas disponíveis mais eficientes. Esse fato corresponde a um processo de minimização de custos sobre diversos períodos, ao invés de um período considerado isoladamente. Além disso, como a eficiência térmica das usinas varia com a potência gerada, uma simples relação linear usualmente utilizada entre os custos de geração e a potência gerada, deve ser substituída por uma relação realística e não linear. Também, o fator de perdas para ajustar os custos fora da ponta é menor que o fator de perda dos horários de ponta, pois as perdas resistivas são uma função do quadrado da corrente e são muito maiores nos horários de ponta.

O custo marginal de energia de sistemas com participação hidrelétrica é discutido na seção 3.5.

3.4.3. CUSTOS RELATIVOS AO CONSUMIDOR

A alocação da parcela de custos de investimento e de operação relativos aos sistemas de distribuição ao consumidor final, está provado ser bastante difícil. Este insucesso se deve principalmente à dificuldade de se identificar os componentes do custo relativos aos consumidores numa rede de distribuição. Seja no caso de uma rede necessária para suprir um mínimo de carga ou, quando se usa um modelo de regressão sobre os dados históricos, para se obter equações como:

\[
\text{Custos de distribuição} = a + b \text{ (demanda de ponta) } + \\
+ c \text{ (número de consumidores) } \quad (3.9)
\]

É particularmente difícil se obter parâmetros independentes no modelo de regressão apresentado, pois o número de consumidores e a demanda de ponta estão usualmente bastante correlacionados.

É mais simples, portanto, se considerar os custos dos sistemas de distribuição como custos de capacidade, menos aqueles custos fixos e variáveis claramente identificados como custos relativos aos consumidores. Os custos fixos seriam os custos de reparos gerais das linhas de distribuição, custo dos medidores e de mão-de-obra para a instalação. Os custos variáveis seriam, entre outros, os custos de medição, de execução das contas e administrativos.
3.5. SISTEMAS HIDRELÉTRICOS

Existe uma série de pontos na análise de sistemas hidrelétricos ou de sistemas mistos: térmicos e hidráulicos, onde a variação sazonal é particularmente importante para o cálculo do CMLP. Aqui também é necessário para uma análise mais aprofundada, a utilização de modelos computacionais para o planejamento de longo prazo, a fim de se simular diferentes incrementos de demanda e observar seus efeitos nos custos de capacidade e de energia do sistema, conforme descrito na seção anterior. Na ausência de modelos mais sofisticados para se obter o CMLP, um método simplificado de análise é descrito abaixo [MUNASINGHE & WARFORD, 1982].

3.5.1. SISTEMAS PURAMENTE HIDRELÉTRICOS

Para se apresentar de uma maneira clara a análise de sistemas puramente hidrelétricos, é necessário se fazer algumas considerações:

- O conjunto de usinas e reservatórios é modelado como um único reservatório e usina equivalentes;

- As vazões não regularizadas afluente aos reservatórios são tratados deterministicamente, ignorando-se as incertezas;

- Faz-se a análise do sistema para um ano de operação, para se ilustrar os principais fatores que devem ser considerados para a obtenção do CMLP.

Estas simplificações não alteram as conclusões básicas que podem ser tiradas do modelo.

A Figura 14 mostra uma curva típica de vazão afluente ao reservatório equivalente. Do mês 0 ao mês 5 o reservatório está sendo deplecionado por se estar numa estação de seca, e a água necessária para a geração de energia excede a vazão afluente ao reservatório. Portanto, do ponto A ao ponto B o reservatório está sendo constantemente deplecionado e, no ponto B este se encontra no seu nível mais baixo. Num sistema bem planejado e bem operado, o volume útil do reservatório neste momento está quase vazio, contendo somente uma pequena margem de reserva de água armazenada.
Os meses entre o 5º e o 10º representam o período da estação úmida, no qual a vazão não regularizada afluiente ao reservatório excede a turbinagem necessária. O reservatório, portanto, tem um processo de enchimento entre os pontos B e C. No mês 8 o reservatório já está com sua capacidade de armazenamento esgotada, e o excesso de água é vertido, na medida em que permanece positiva a diferença entre a vazão afluente e a turbinagem necessária para suprir a demanda diária de geração de energia. No ponto D, cessa o vertimento, e o início da estação seca requer novamente o deplecionamento do reservatório entre o 10º e o 12º mês. Após o ponto A', o ciclo anual descrito acima passa a se repetir.

FIGURA 14 – Variação anual da vazão afluiente ao reservatório equivalente de um sistema puramente hidrelétrico

Quando um vertimento significativo de água ocorre durante diversos meses, e é uma tendência que pode permanecer nos anos seguintes, então o custo marginal de energia para esse período pode ser essencialmente zero. Assumindo-se que há suficiente capacidade instalada para atender a demanda de ponta, um incremento de energia pode ser gerado a partir da utilização dessa água, que do contrário, seria vertida. O único custo marginal envolvido é um pequeno incremento nos custos de operação e manutenção. Numa situação inversa à apresentada, uma requisição de capacidade de armazenamento ocorre, quando a diferença entre a vazão afluente e a turbinagem é negativa, e os custos correspondentes a essa si-
tuação representam os custos marginais de energia durante a esta-
ção seca. Incorre-se no custo marginal de longo prazo de potên-
cia, semelhante ao do sistema térmico discutido anteriormente,
quando se necessita de uma capacidade adicional de geração, ne-
cessária para sustentar um incremento na demanda de ponta do sis-
tema.

Em resumo, em sistemas puramente hidrelétricos o custo mar-
ginal de longo prazo de capacidade de geração incorrido durante o
período de ponta do sistema, está baseado no custo do aumento da
capacidade de atendimento da ponta do sistema, isto é, o aumento
da motorização das usinas. O custo incremental de energia, que é
significativo nas estações secas, é o custo da expansão da capa-
cidade de armazenamento dos reservatórios. Em certos casos pode
ser justificado se alocação de um custo dos reservatórios aos custos de capacidade. Essa situação se apresenta em casos on-
de é necessária uma capacidade adicional de armazenamento, para
se obter uma capacidade adicional de geração de potência.

Quando, num sistema, é significativo o vertimento de água
numa estação de chuvas, os custos de energia podem ser bem pequen-
os, envolvendo somente os custos de operação e manutenção do
sistema. Quando a demanda não pressiona a capacidade de atendi-
mento de ponta, o custo incremental de capacidade de geração deve
ser ignorado. Se um sistema tem energia como a restrição prin-
cipal para o seu crescimento, e os incrementos de capacidade são
necessários primordialmente para a geração de energia, pois o de-
ficit de energia precede as restrições de capacidade para vários
anos no futuro, então, nesse caso, a distinção entre os custos de
ponta e fora da ponta, e entre os custos de capacidade e de ener-
gia se torna difusa.

3.5.2. SISTEMAS HIDROTÉRMICOS

A estimativa dos custos marginais em sistemas mistos, com-
postos de usinas termelétricas e hidrelétricas, depende principi-
almente das usinas do sistema que são utilizadas para geração em
cada período. Algumas configurações básicas podem ilustrar os
princípios que determinam os cálculos para o CMLP.

Num primeiro caso, considere-se um sistema predominantemente
termelétrico, no qual toda a água disponível é utilizada na gera-
ção e as usinas termelétricas são necessárias durante todo o ano.
O atendimento de uma curva de carga diária típica está ilustrado
na Figura 15a. A área hachurada I na figura representa as usinas
termelétricas a vapor, que são utilizadas na base do sistema para
geração durante as 24hs do dia. A área hachureada III representa as usinas a gás, que são utilizadas para atender à demanda de ponta do sistema. Toda a água afluente aos reservatórios das usinas hidrelétricas durante o ano é armazenada e seu uso é representado pela área II da Figura 15a, de modo a suplementar a geração térmica diária. Os princípios para a análise do CMLP para este sistema seguem os procedimentos descritos anteriormente para um sistema puramente térmico.

O princípio geral que determina o valor da água utilizada pelo sistema hidrotérmico, como por exemplo representado pela área II da Figura 15a, está analisado abaixo, utilizando-se recursos geométricos. A Figura 16 representa a utilização das usinas hidrelétricas pelo sistema, como descrito anteriormente, com o objetivo de minimização de custos. As usinas a gás, que têm custos de capital baixos e alto custo de operação, estão representadas pela linha contínua de maior inclinação e são usadas para atendimento da ponta do sistema. As usinas a vapor, que são intensivas em capital e têm um baixo custo operacional, estão representadas pela linha contínua de menor inclinação, e são operadas na base do sistema. Na medida em que a água dos reservatórios é utilizada para geração, entre esses dois tipos de usinas, é atribuído um valor para a água, que está representado pela linha pontilhada.

A posição desta linha é determinada pelas condições de operação, que visam assegurar que toda a água disponível seja utilizada durante o ano para o suprimento de energia, como está representado pela área hachureada na curva anual de permanência de carga. Essa área também corresponde à área II da Figura 15a que não está hachureada. O coeficiente angular intermediário da linha pontilhada indica que o custo de cada kWh de geração hidrelétrica se situa entre os custos de energia das usinas de ponta e das usinas termelétricas de base. Uma outra maneira de se determinar o valor da água em sistemas mistos é baseado no custo equivalente da geração térmica que deixa de ser utilizada.

A segunda configuração é aquela na qual as usinas hidrelétricas contribuem mais que as termelétricas para o atendimento da carga do sistema. Neste caso, as usinas termelétricas operam continuamente, para suplementar o fornecimento de geração hidrelétrica nos meses mais secos do ano. Esse modo de operação está indicado na Figura 15b, onde a área hachureada I representa a geração térmica e as demais áreas representam geração hidrelétrica.

De modo a minimizar o valor presente dos custos do sistema para um horizonte de longo prazo, a menor quantidade possível de capacidade térmica deve ser instalada, e deve operar na base do sistema (24 horas por dia) nas estações secas, com a geração hidráulica atendendo as demandas de ponta, a partir da utilização
da água armazenada. A situação é inversa nas estações chuvosas; de modo a evitar o vertimento de água, a máxima capacidade hidráulica é utilizada continuamente, conforme representado pela área I. As usinas termelétricas provêm a energia restante necessária para o suprimento da área II.

FIGURA 15 - Atendimento de uma curva de carga diária típica para um sistema hidrotérmico, com predominância de usinas termelétricas em um caso e hidrelétricas no outro.
FIGURA 16 – Valor da água num sistema hidrotérmico

Nessa situação, um incremento de energia é atendido sempre com a operação de usinas termelétricas, ou seja, em qualquer momento que uma quantidade de energia adicional é necessária, incorre-se em custos marginais de combustível, tanto nas estações úmidas quanto nas estações secas, e tanto nos horários de ponta quanto nos horários fora de ponta. Mesmo que uma certa quantidade a mais de água possa ser turbinada para suprir uma demanda adicional de energia num certo período, esse fato implica que deverá haver uma maior geração térmica num outro momento, para compensar a perda de água. E, na medida que a capacidade térmica está totalmente utilizada, divide-se o custo marginal de adição de capacidade pelo número de horas de plena utilização e, a este quociente somam-se os custos marginais de combustíveis, obtendo-se assim o custo marginal de energia. O incremento da demanda mostrado na área IV pode ser atendido com o aumento da capacidade instalada das usinas hidrelétricas. O custo adicional de energia da área IV deve ser suprido pelo aumento da capacidade térmica, e
isso já foi computado no custo marginal de energia. Portanto, o custo marginal de capacidade durante o período de ponta é o custo incremental de capacidade hidrelétrica menos o custo referente à fração da capacidade térmica utilizada para geração de energia.

Outras configurações de sistemas hidrotérmicos são possíveis, mas usualmente o CMLP para esses casos pode ser analisado de forma análoga à vista aqui.

3.6. O CÁLCULO DOS CUSTOS MARGINAIS NO BRASIL

Nesta seção apresenta-se a metodologia de cálculo do custo marginal de energia elétrica, que está sendo empregada pela ELETROBRÁS para a obtenção dos custos marginais de geração, de transmissão e distribuição, utilizados a posteriori, na formação das tarifas.

3.6.1. OS CUSTOS MARGINAIS DE GERAÇÃO

No Brasil, o parque gerador de energia elétrica é composto de um sistema hidrotérmico predominantemente hidráulico. A expansão do sistema brasileiro nos próximos anos se dará basicamente pela construção de novas usinas hidrelétricas, que são em sua grande maioria usinas de média queda, com grande capacidade de armazenamento. Nos planos de expansão do sistema, os orçamentos preparados para cada projeto incluem todos os gastos previstos, não havendo distinção entre as instalações que são necessárias para a produção de energia e aquelas que apenas aumentam a capacidade de ponta.

Nesses planos, a expansão da capacidade geraJora é ajustada pelo crescimento dos requisitos de energia. Esses requisitos são supridos pelo aumento da capacidade de geração, que se dá de uma maneira discreta, em função do porte das máquinas e dos reservatórios. A indivisibilidade dos investimentos faz com que o acréscimo do custo anual de produção varie substancialmente ao longo do período de planejamento. O Ministério das Minas e Energia [1981-b] optou pela obtenção de um valor único, referido ao início do horizonte, que representa o custo marginal de longo prazo, utilizando-se da expressão:
\[
\text{CMLP} = \sum_{k=0}^{N-1} (1+i)^{-k} \text{CAN}
\]

onde:

CMLP - Custo marginal de longo prazo, em US$/MWh;

CAN - Acréscimo do custo anual de produção, devido às usinas que entram em operação no ano \(k \), em US$;

IR - Incremento dos requisitos de energia no ano \(k \), em MW/ano;

\(i \) - Taxa de desconto;

\(N \) - Final do horizonte de planejamento.

A solução encontrada para a diferenciação do custo marginal a longo prazo entre ponta e energia, foi a de se valorizar a capacidade de ponta das usinas geradoras, pelo custo de construção de usinas especializadas para operação em ponta. O custo marginal de energia à longo prazo resulta do programa de obras do plano de expansão, descontando-se em cada usina o custo de instalação da potência equivalente à sua motorização valorizada pelo custo marginal de expansão da capacidade de ponta.

Por seu turno, as usinas de ponta apresentam uma pequena capacidade de geração de energia. Assim sendo, é necessário deduzir do orçamento das usinas o crédito referente à capacidade de geração de energia, valorizada pelo custo marginal da energia adicionada ao sistema. Como para determinar o custo marginal da energia adicional, é necessário utilizar o custo da ponta alternativa, existe uma clara interdependência no processo.

Além disso, deve ser observado que as usinas de ponta não operam de forma contínua. Sua produção de energia é concentrada nos períodos onde a demanda de ponta é mais elevada. Caso a energia produzida nesse horário tenha maior valor, a contribuição de energia da usina de ponta deverá ser valorizada pelo custo marginal de energia na ponta.

As equações que mostram as interrelações entre os custos estão indicadas na Tabela 2. A diferença entre os custos marginais de energia, na ponta e fora da ponta, é a única incógnita.
que impede a solução do conjunto de equações deste quadro. A determinação do parâmetro α será apresentada em seguida.

TABELA 2 - Custo marginal a longo prazo - Interrelações

\[
\begin{align*}
\text{CMP} & = \text{CIP} - 8.76 \times FC \times \text{CME}' \\
\text{CME} & = \text{CMLP} - \text{CMP} \times \frac{P}{8.76 \cdot Q} \\
\text{CME} & = \beta \text{CME}' + (1-\beta) \cdot \text{CME}'' \\
\text{CME}' & = \alpha \text{CME}''
\end{align*}
\]

onde:

- \text{CMP} - Custo marginal de ponta, em US$/kW.ano;
- \text{CIP} - Custo de construção de usinas especializadas para operação em ponta, em US$/kW.ano;
- \text{CME} - Custo marginal de energia, em US$/MWh;
- \text{CME}' - Custo marginal de energia na ponta, em US$/MWh;
- \text{CME}'' - Custo marginal de energia fora da ponta, em US$/MWh;
- \text{CMLP} - Custo marginal a longo prazo, em US$/MWh;
- \text{P} - Potência total adicionada ao sistema, em MW;
- \text{T} - Acréscimo do requisito de energia no período, em MW
- \text{Q} - Acréscimo do requisito de energia no período, em MW.ano;
- \text{FC} - Fator de capacidade da usina de ponta;
β - Parcela do tempo representada pelo período de ponta;

α - Diferença relativa entre os custos de energia na ponta e fora da ponta.

Como o sistema gerador é constituído por usinas hidrelétricas e usinas termelétricas de base, não existem usinas térmicas como as turbinas a gás, que operariam somente nos horários de ponta. Estas últimas caracterizariam uma diferença no custo de produção devido ao elevado custo do combustível para sua operação. Por outro lado, existem razões físicas que levam a uma maior necessidade de água no período de ponta, para produzir uma mesma quantidade de energia que fora da ponta. Os dois principais motivos são: a elevação do canal de fuga, reduzindo a altura de queda e, consequentemente o rendimento energético da água, e a necessidade de se turbinar uma quantidade de água acima do ponto ótimo do conjunto turbo-gerador.

O procedimento adotado pela ELETROBRÁS foi simular a operação do sistema com dois tipos de curva de carga, conforme indicado na Figura 17. A primeira com a curva de permanência de carga de três patamares, representando razoavelmente a situação real do sistema. A segunda com a curva de carga plana (linha pontilhada da figura), representando a situação limite de indiferença nos pontos horários. Em ambos os casos o requisito de energia foi o mesmo.

FIGURA 17 - Curva de permanência de carga
A simulação foi realizada ao longo do período crítico da configuração. A diferença de armazenamento no final do período no caso plano representa uma economia de água devida à não operação em ponta. Consequentemente, a energia firme do caso plano é maior e a perda de energia firme foi atribuída ao consumo adicional de ponta.

A determinação de \(\alpha \), diferença relativa entre os custos marginais de energia na ponta e fora da ponta, foi feita pela expressão a seguir:

\[
\alpha = 1 + \frac{\Delta EF}{\Delta EP}
\]

(3.15)

onde:

\(\Delta EF \) - Energia firme adicional obtida com a curva de carga plana, em MW ano;

\(\Delta EP \) - Energia demandada no horário de ponta, acima do requisito médio, em MW ano.

Quanto à diferença sazonal dos custos de produção nos períodos úmido e seco, optou-se por não se considerar este fenômeno no cálculo dos custos marginais.

3.6.2. CUSTO MARGINAL DE REDES

A rede elétrica no Brasil é dividida em três grandes grupos, segundo suas funções no sistema: interconexão, repartição e distribuição.

3.6.2.1. A INTERCONEXÃO

A rede de interconexão tem como função escoar a potência gerada nas usinas para os centros consumidores. Ela é constituída de um sistema tronco de Extra Alta Tensão (EAT) e algumas tensões de nível inferior que atendam esta finalidade. A variável que ex-
plica o desenvolvimento dessa rede, num horizonte de planejamento de longo prazo, é a potência instalada nas usinas. Tal ocorre porque existe aleatoriedade nas afluências às usinas, e o sistema de transmissão tem que ser dimensionado para permitir o processamento de toda a vazão turbinável, de modo a evitar vertimentos desnecessários.

Para o cálculo dos custos marginais do sistema de interconexão, segue-se a abordagem do Custo Incremental Médio (CIM), que é apresentada na seção 3.4.1, na parte referente ao cálculo dos custos marginais de transmissão. No Brasil, são obtidos valores de custos marginais regionalizados para os três subsistemas do país, que são Norte/Nordeste, Sudeste/Centro-Oeste e Sul.

3.6.2.2. A REPARTIÇÃO

A malha do subsistema de repartição inicia-se nas subestações Extra-Alta/Alta Tensão e destina-se a suprir os consumidores de maior porte e as subestações de distribuição. O balizamento de seus limites, em termos de tensões utilizadas, aparece na Tabela 3.

As tensões inferiores a 69 kV não tem condições técnicas de transporte de energia a médias distâncias, o que as exclui das funções de repartição.

Para os subsistemas de repartição o uso da demanda como variável determinante dos investimentos é perfeitamente viável, como mostra o Relatório Técnico sobre Custos Marginais das Malhas de Repartição e das Redes de Distribuição, de dezembro de 1984, da ELETROBRÁS. Esta afirmação permite duas opções de cálculo para os custos marginais de repartição, que são o CIM, mostrado anteriormente, e o custo marginal calculado a partir das Leis de Quantidade de Obras (LQC).

A Lei da Quantidade de Obras surgiu de estudos de como crescem certos tipos de obras com o crescimento da demanda associada. Obtém-se, então, uma lei de crescimento representativa, com a potência como variável independente. Com sua aplicação, e uma vez definidas as obras (ou agregados) que entram na expansão do sistema de repartição, obtém-se a taxa média de investimento. A partir desta taxa é calculado o custo de desenvolvimento anual, e então pode-se calcular o custo marginal.
TABELA 3 - Níveis de tensão da rede de repartição

<table>
<thead>
<tr>
<th>FUNÇÃO</th>
<th>NÍVEL TARIFÁRIO</th>
<th>TENSÃO</th>
</tr>
</thead>
<tbody>
<tr>
<td>REPARTIÇÃO</td>
<td>A1</td>
<td>230 kV</td>
</tr>
<tr>
<td></td>
<td>A2</td>
<td>entre 88 e 138 kV</td>
</tr>
<tr>
<td></td>
<td>A3</td>
<td>menor ou igual a 69 kV</td>
</tr>
</tbody>
</table>

3.6.2.3. A DISTRIBUIÇÃO

Considera-se Distribuição todas as obras do Sistema Elétrico, a jusante das linhas de Repartição, operando em tensões abaixo de 69 kV, e as subestações abaixadoras, em qualquer tensão primária e com tensão secundária menor que 69 kV.

Na expansão das redes de distribuição é possível a aplicação da Lei da Quantidade de Obras, onde os investimentos são estimados a partir da utilização do consumo de energia (kWh) nos cálculos, ao invés da demanda de ponta. Aqui, também, obtém-se a taxa média de investimento, mas que é agregada às despesas previstas com a manutenção do sistema, obtida através de uma lei própria, para o cálculo do custo de desenvolvimento anual, obtendo-se, após, o custo marginal.

Deve-se citar, também, que um aumento no consumo de energia elétrica ocasiona acréscimos de comprimento de redes e um aumento da bitola dos condutores das redes, que são considerados na metodologia adotada. Os custos de manutenção, por seu turno, são decrescentes no tempo, devido ao progresso tecnológico dos equipamentos, e crescentes com a idade do bem, devido à degradação dos materiais e causas externas agindo sobre os agregados.

Como foi colocado acima, é usado o consumo como variável determinante dos investimentos em distribuição. Nas outras funções do sistema elétrico (Geração, Interconexão, Repartição) tal opção não se faz necessária, uma vez que há suficientes medidas de demanda para gerar os custos marginais em seu formato adequado, is-
to é, custos por kilowatt. Assim, deve-se fazer a conversão dos custos de distribuição, por kWh, para custos por kW de ponta, para homogeneização com os demais custos a montante do sistema, já produzidos nesta unidade. Para que a conversão seja eficiente, é necessário que se disponha de suficiente conhecimento das curvas de carga das Subestações AT/MT, ponto onde a conversão dos custos marginais se torna imperativa. Este cálculo é realizado utilizando-se o conceito do fator de carga do consumidor geral [MINISTÉRIO DAS MINAS E ENERGIA - DNAEE, 1984].
CAPÍTULO 4

PLANEJAMENTO DE OPERAÇÃO E EXPANSÃO DE SISTEMAS DE POTÊNCIA

======================================
Este capítulo apresenta o problema do planejamento da geração de energia elétrica. No Brasil, a parcela de custos de geração corresponde aproximadamente a 55% do total dos custos envolvidos no fornecimento dessa forma de energia. Este fato realça a importância dos estudos que visam otimizar o planejamento da operação e da expansão dos sistemas de geração. Na seção 4.1 apresenta-se o problema do planejamento da operação de sistemas hidrotérmicos de potência e na seção 4.2 são abordados os algoritmos mais utilizados na resolução desse problema. Na seção 4.3 por sua vez apresenta-se o problema do planejamento da expansão dos sistemas hidrotérmicos e na seção 4.4 os algoritmos mais usados na resolução desse problema.

4.1. PLANEJAMENTO DA OPERAÇÃO DE SISTEMAS DE POTÊNCIA

Para se abordar o problema do planejamento de operação, inicialmente é necessário se descrever as prioridades e as restrições envolvidas na operação de sistemas de potência. É exigência fundamental que o sistema atenda a demanda de energia elétrica na área sob sua responsabilidade. Por outro lado, deve procurar satisfazer esse requisito a um custo mínimo, evitando desperdiçar os recursos naturais e econômicos disponíveis, além de considerar aspectos de confiabilidade, segurança e preservação do meio ambiente. No Brasil, onde quase todo o setor elétrico é formado por empresas do Estado, os objetivos citados acima são perfeitamente compatíveis com o papel que as empresas públicas devem desempenhar.

No início, os primeiros sistemas de potência eram constituídos por apenas uma usina, térmica ou hidráulica. Os sistemas geravam a energia solicitada e, na eventualidade de não conseguirem atender à demanda reprimiam o consumo, isto é, realizavam cortes de carga. Pode-se dizer que não existia o problema do planejamento de operação. As únicas restrições que deviam ser atendidas no caso das usinas hidrelétricas diziam respeito a exigências técnicas e de usos múltiplos da água, como: manter um armazenamento mínimo no reservatório e turbinar um volume mínimo de água para evitar o efeito de cavitacao nas pás das turbinas; limitar a turbinagem e vertimento à capacidade dos equipamentos e da obra civil; e manter uma vazão mínima a jusante da usina devido a outros usos da água.

Quando os sistemas geradores passaram a operar com mais de uma unidade, tornou-se necessário descobrir a forma mais eficaz de coordenar o uso dos equipamentos. Por exemplo, com a existência de várias máquinas térmicas, surgiram diversas questões
como: quantas máquinas devem ser ligadas ao mesmo tempo; quando as máquinas devem ser ligadas; quanta energia deve gerar cada máquina; quando é conveniente parar máquinas para manutenção?

A utilização simultânea de usinas térmicas e hidrelétricas levanta outras questões, além daquelas típicas de sistemas puramente térmicos. O custo de geração hidrelétrica praticamente independe da quantidade de energia produzida. No entanto, os recursos primários (água) são limitados e de natureza aleatória. Se a usina hidrelétrica tem capacidade de armazenar vazões afluentes, é necessário encontrar, a cada instante, o compromisso entre usar os recursos hidráulicos evitando gerar nas usinas térmicas, a fim de economizar recursos econômicos e, guardar água para turbinar em momento mais oportuno, economizando recursos naturais.

O planejamento se torna mais difícil quando existem várias usinas hidrelétricas. A localização e posição relativa dessas usinas podem ter um papel importante. Se as usinas estão construídas em uma mesma bacia hidrográfica é necessário contemplar o acoplamento hidráulico, isto é, a água turbinada ou vertida numa usina é convertida em vazão afluente para a usina a jusante.

Mais dois fatores complicadores estão presentes no planejamento da operação. A não linearidade da função de geração das usinas hidrelétricas e a demanda de energia, que além de ter ciclos diários, semanais e anuais, é também um parâmetro sujeito a incertezas, de previsão difícil em períodos longos.

Os grandes sistemas de potência brasileiros são predominantemente hidrelétricos e mais de 90% da energia elétrica produzida no país é de origem hidráulica. Como as fontes de energia hidrelétrica são limitadas, é obrigatório um bom planejamento da operação nesses sistemas. Caso contrário, não se pode garantir sequer a exigência básica de gerar o suficiente para atender a demanda.

4.2. MODELOS DE PLANEJAMENTO DA OPERAÇÃO

A partir de 1940, uma série enorme de trabalhos foi publicada sobre o planejamento da operação de sistemas de potência, mostrando todo o esforço que tem sido desenvolvido na melhor identificação do problema, em toda a sua complexidade, e na busca de soluções. O objetivo permanece o mesmo, o de diminuir os custos de produção. O advento dos computadores teve uma influência fundamental nesse processo, e propiciou a implantação de diversos modelos baseados em simulação, programação linear e não linear e,
mais recentemente, métodos de decomposição.

Os modelos de simulação foram aplicados inicialmente a sistemas puramente térmicos, que são majoritários em termos da capacidade instalada hoje no mundo. A simulação determinística consiste na alocação da geração correspondente a cada usina, na curva de permanência de carga, até que a demanda seja completamente atendida. Essa alocação é realizada obedecendo a uma ordem de sequência determinada pelos custos marginais crescentes de produção de energia [ANDERSON & TURVEY, 1977]. Na medida em que a demanda cresce ou decresce, a posição relativa das usinas na curva de permanência de carga é alterada de forma a acompanhar as mudanças ocorridas. Dessa maneira, os custos operacionais do sistema vão estar num mínimo, pois as usinas com maiores custos operacionais estarão gerando um mínimo de potência, ou mesmo paradas.

Os modelos de simulação probabilística usam o conceito de distribuição de probabilidades, para descrever a carga do sistema e as saídas forçadas das unidades geradoras [BOOTH, 1972-a; SULLIVAN, 1977]. O modelo estatisticamente incorpora o efeito aleatório das saídas forçadas no atendimento da curva de permanência de carga, através de um processo de convolução. Para este objetivo, um modelo de carga e um modelo de saídas forçadas são combinados a fim de se obter um modelo de carga equivalente. As usinas são, então, convoluidas na curva de carga equivalente, de forma a propiciar custos mínimos de produção. Esses modelos de simulação podem ser aplicados satisfatoriamente em sistemas dominados por usinas térmicas e com quantidades relativamente pequenas de usinas hidrelétricas.

Para o planejamento da operação de sistemas predominantemente hidrelétricos é utilizado em horizontes de longo prazo o método de curva limite [KUIPER, 1973; CARVALHO & PIMENTEL, 1979]. A curva limite é obtida na simulação dos sistemas, e para a execução destas é utilizado o conceito de reservatório equivalente.

A representação por reservatório equivalente supõe a geração hidrelétrica como uma função linear do volume d'água turbinado. Um fator de conversão, correspondente a energia gerada por unidade de volume turbinado, é associado a cada usina do sistema. Tal fator é denominado "produtividade" da usina. A água armazenada em um reservatório é transformada em energia quando turbinada na usina imediatamente a jusante, e em todas as usinas a jusante, até a foz do(s) rio(s). Definindo-se o fator de conversão acumulado, como a soma dos fatores de conversão de todas as usinas hidrelétricas a jusante do reservatório, a energia potencial acumulada é o produto do fator de conversão acumulado pelo volume útil de água existente no reservatório.
A energia potencial total reunida no sistema, isto é, a energia acumulada no reservatório equivalente, é o somatório da energia de cada reservatório. O procedimento utilizado para o cálculo da energia afluente ao reservatório equivalente é análogo ao descrito acima.

Em seguida é realizada a simulação, com as diversas hidráulicas existentes no histórico de vazões. Determinam-se as necessidades mínimas de armazenamento a cada intervalo de tempo do horizonte de planejamento, de modo a não se observarem cortes de carga. A curva envoltória das necessidades mínimas de armazenamento é chamada curva limite.

Através da simulação obtém-se uma política de operação do reservatório equivalente, mas o que frequentemente é necessário, é a política de operação de cada reservatório do sistema. A distribuição do armazenamento do reservatório equivalente pelos reservatórios componentes é feita usando-se algumas regras de alocação. No Brasil, os reservatórios são classificados, em termos de prioridade de operação, de acordo com as perdas marginais esperadas de energia, causadas pelo decréscimo de uma unidade de energia armazenada em cada um deles. Esta regra é baseada no fato de que, durante o deplecionamento do reservatório, a redução de altura líquida de queda produz uma redução na produtividade da usina.

Como foi visto, a curva limite só guarda informações sobre a operação do sistema nos anos do período crítico do histórico. Portanto, implica que a operação do sistema utilizando-se dessa metodologia é insatisfatória para períodos de hidráulica mais favorável.

O conceito de reservatório equivalente é também utilizado em modelos baseados em Programação Dinâmica, que é uma técnica desenvolvida por Bellman [1957] para resolver problemas de decisões sequenciais. Esta técnica proporciona uma maneira simples de contemplar aleatoriedades, notabilizando a Programação Dinâmica Estocástica como a estratégia mais utilizada para o tratamento da aleatoriedade das vazões fluviais [PRONOVOUST, 1978; COSTA et alii, 1983; QUINTANA & CHIKHANI, 1981; SHERKAT et alii, 1985]. As necessidades computacionais da Programação Dinâmica convencional, exponencialmente crescentes com o número de variáveis de estado do problema, limitam fortemente as aplicações desta técnica. Versões iterativas, bem mais sofisticadas, como a Programação Dinâmica Diferencial Discreta e a Programação Dinâmica por Aproximações Sucessivas permitem a utilização de um maior número de variáveis, de estado, mas os tempos de processamento são ainda elevados.

A programação dinâmica também tem sido utilizada em conjunto com técnicas de decomposição e coordenação. Soares [1980] e Lyra
[1979] aplicaram a decomposição dual ao problema da otimização de sistemas hidrotérmicos, de modo a separar em um subproblema específico as usinas hidrelétricas. Nesse subproblema o objetivo é a maximização da geração hidrelétrica, onde Lyra aplicou a Programação Dinâmica Diferencial Discreta.

Os métodos de decomposição têm sido utilizados mais recentemente na solução do problema do planejamento da operação de sistemas hidrotérmicos e têm se mostrado bastante promissores. Pereira e Pinto [1983] aplicaram um método para coordenar o planejamento da operação de médio e curto prazo do sistema hidrotérmico da região sudeste do Brasil, utilizando o método de decomposição de Benders. Esta técnica permitiu traduzir as restrições elétricas do curto prazo, como uma restrição a ser adicionada ao problema de planejamento da operação de médio prazo, através de um corte de Benders. Habibollahzadeh e Bubenko [1986] aplicaram o método de decomposição de Benders para a operação de sistemas hidrotérmicos de potência, no planejamento de operação de curto prazo, onde o problema mestre, que abrange as variáveis inteiras, define a entrada ou não em operação de usinas térmicas. O subpro-
blema comporta somente variáveis contínuas e considera o problema do despacho econômico.

4.3. PLANEJAMENTO DA EXPANSÃO DE SISTEMAS DE POTÊNCIA

Para o problema do planejamento da expansão de sistemas de potência, pode-se dizer que os objetivos a serem atingidos são os mesmos do problema de planejamento da operação, mas considerando-se a demanda crescente no tempo. Ou seja, é exigência fundamental que o sistema atenda ao crescimento da demanda de energia elétrica na área sob sua responsabilidade. Por outro lado, deve procurar satisfazer esse requisito minimizando o valor presente dos investimentos e custos de operação do sistema, evitando desperdiçar os recursos naturais e econômicos disponíveis, além de considerar aspectos de confiabilidade, segurança e preservação do meio ambiente.

Para o atendimento desses objetivos, torna-se necessário descobrir, entre um elenco de possibilidades de expansão do sistema, qual é que melhor satisfaz aos objetivos e restrições do planejamento.

Na expansão de sistemas puramente termelétricos, o problema de planejar a expansão passa pelo estudo dos investimentos necessários e pelos ganhos operacionais, em termos de diminuição de custos, que a entrada em operação de uma usina mais moderna vai propiciar. No entanto, este problema não é de grande complexidade, pois a avaliação dos benefícios operacionais para uma usina térmica é direta, considerando a não limitação de suprimento de seu combustível.

Para o estudo da expansão de sistemas hidrotérmicos, é necessário se fazer uma análise dinâmica das novas usinas, devido às restrições de aleatoriedade dos recursos hídricos e dos aco-plamentos hidráulicos, entre outros. A performance energética de cada usina candidata é avaliada através de uma simulação da operação do parque gerador hidrotérmico, acrescido da nova usina proposta. Assim, é possível se fazer uma avaliação consistente das diversas alternativas de expansão. Esta análise é particularmente importante no Brasil, pois o fator determinante da expansão de nosso sistema tem sido o balanço energético, e não o balanço de ponta.

Concomitantemente ao estudo das opções de novas usinas, é necessária a determinação do cronograma de expansão, pois o montante dos investimentos requeridos na construção de novas usinas
é imenso, o que faz a coordenação de entrada em operação das mesmas assumir um papel importante no processo. Qualquer economia oriunda de um adiantamento ou atraso de entrada em operação pode ser bastante atraente. Cumpre salientar, também, que a demanda de energia elétrica assumida inicialmente é dependente do plano de expansão adotado. Pensando-se nesse problema, verifica-se que uma forma prática de tratá-lo é através de interações entre a demanda e o suprimento. Ao se formular um programa de expansão assume-se uma dada demanda (preferencialmente relacionada com algum tipo de política de preços) e obtém-se uma solução de mínimo custo, para em seguida se estimar uma nova demanda com base nos custos marginais e nos novos preços.

Diversas abordagens têm sido utilizadas para solucionar o problema de planejamento da expansão de sistemas hidrotérmicos. A seção seguinte comenta algumas dessas metodologias.

4.4. MODELOS DE PLANEJAMENTO DA EXPANSÃO

A ELETROBRAS e outras empresas do setor elétrico brasileiro se utilizam de modelos de planejamento de expansão baseados em simulação, para a definição do plano de expansão do parque gera-dor, em horizontes de planejamento que variam de dez a quinze anos (CARVALHO & PIMENTEL, 1979). Quando há a necessidade de se incorporarem novas usinas ao sistema, as diversas possibilidades são analisadas, simulando-se o sistema e verificando-se quais são os custos e as economias de combustível para o sistema, associados à implantação de cada usina e o respectivo ganho energético do sistema. Em função dessa análise, toma-se a decisão de construção de uma usina e faz-se uma nova simulação, até que todas as necessidades de atendimento do mercado tenham sido atendidas. Este modelo usa a representação de reservatório equivalente, e os princípios de operação estão baseados ou nas curvas limites ou na programação dinâmica estocástica.

Na busca da solução do problema de expansão, o modelo de simulação não oferece uma solução otimizada, nem apresenta nenhuma referência a outras soluções possíveis. Os modelos que são apresentados a seguir utilizam técnicas de programação matemática e oferecem soluções de mínimo custo.

A programação dinâmica é uma das técnicas de programação matemática utilizada para o planejamento da expansão de sistemas de potência. Booth (1972-b) propôs um método, combinando simulação probabilística e programação dinâmica. O processo de otimização é realizado em malha aberta e reduz o problema estocástico a uma
série de otimizações determinísticas. As usinas hidrelétricas são tratadas de uma forma bastante simplificada. Kuiper [1973] aplicou a programação dinâmica à expansão do sistema hidrelétrico do sudeste brasileiro. Cada possível estado de expansão é avaliado fazendo-se uma simulação baseada na agregação de usinas (Reservatório Equivalente) e na curva limite. É proposta, portanto, uma otimização para a expansão do sistema, sem a preocupação de se otimizar o planejamento da operação.

Um modelo desenvolvido por Oyama [1983] mostrou que é possível acrescentar, também ao planejamento de expansão de sistemas usando PL, o tratamento da questão da confiabilidade do sistema de geração. Este trabalho foi aplicado ao estudo da expansão do parque gerador do Japão, composto predominantemente por usinas termelétricas convencionais e nucleares.

A limitação da aplicação da PL no problema do planejamento da expansão de sistemas de potência reside no fato de que as unidades geradoras das usinas hidrelétricas em geral, e as do elenco de possibilidades do plano de expansão em particular, tem uma potência previamente definida. A solução encontrada nos modelos de PL, na maioria dos casos, não equivale ao equipamento disponível. É necessário, portanto, para a obtenção de soluções mais precisas, a incorporação de variáveis inteiras, para se modelar a entrada em operação das novas unidades.

Para resolver este problema para a expansão de sistemas termelétricos, Fernando et alii [1978] utilizaram o Método dos Custos Combinados. A solução do problema da expansão é obtida com o uso de programação inteira, através da aplicação do método "Branch and Bound", onde os parâmetros de operação são calculados, iterativamente, através de simulações probabilísticas. A si-
mulação probabilística considera os valores esperados de perda de carga e de energia não atendida, como parâmetros de confiabilidade usados para se estimar de uma forma realista os custos de operação associados ao plano de expansão proposto.

A performance deste método depende de dois fatores: primeiramente, das características de convergência do método nas iterações entre o problema mestre e os subproblemas, antes que a solução ótima seja obtida; e, em segundo lugar, da eficiência em encontrar as soluções do problema mestre e dos subproblemas. Este último fator nada tem a ver com o método de decomposição propriamente dito.

Uma aplicação do método para sistemas hidrotérmicos, com significativa geração hidrelétrica, foi apresentada por Côté [1983]. O problema de alternativas de investimento (problema mestre) é resolvido através do uso de programação inteira heurística, e o subproblema de operação é formulado como um problema de otimização de fluxo em redes, para o qual existem algoritmos de resolução bastante eficientes.

A bibliografia sobre planejamento da operação e da expansão de sistemas de potência é bastante ampla. No entanto, ainda hoje problemas importantes continuam em aberto e novos problemas são colocados, em decorrência do aumento em tamanho, complexidade e importância dos grandes sistemas de potência interligados.
CAPÍTULO 5

O MODELO PROPOSTO PARA A OBTENÇÃO DOS CUSTOS

MARGINAIS DE GERAÇÃO
Neste capítulo é proposto um modelo para o cálculo dos custos marginais de geração de energia elétrica para um sistema com predominância de usinas hidrelétricas. Inicialmente é apresentado o parque gerador atual, as usinas candidatas e os mercados de ponta e de consumo de energia a serem atendidos. A seguir, apresenta-se o modelo para a obtenção do plano de expansão do sistema e dos custos marginais de geração. Finalmente, são discutidos os critérios a serem utilizados para a determinação do plano de expansão.

5.1. UM ESTUDO DE CASO

Procurou-se estudar um sistema de geração com as características da maioria dos sistemas geradores encontrados no Brasil. Ou seja, um sistema de geração hidrotérmico, com predominância de usinas hidrelétricas. O sistema de FURNAS - Centrais Elétricas S.A. atendia aos requisitos citados. Este é parte integrante do sistema interligado do sudeste e desempenha um papel importantíssimo no parque gerador do país. A empresa forneceu os dados do sistema de geração necessários à execução deste trabalho, que são apresentados a seguir.

A Figura 18 apresenta as usinas termelétricas e as cascatas das usinas hidrelétricas do sistema, juntamente com os dados sobre potência das usinas e capacidades dos reservatórios. O sistema é composto atualmente de sete usinas hidrelétricas, números 2, 4 a 9 e 11, sendo duas destas a fio d'água, e três usinas termelétricas, números 17, 18 e 19. São candidatas ao plano de expansão da empresa as usinas hidrelétricas de números 12 a 16. Os reservatórios de números 1, 3, 8 e 10 pertencem a outros sistemas, porém, pelo fato de estarem imediatamente a montante das cascatas do sistema em estudo, influenciam a operação deste último e são levados em conta, sem a geração correspondente.

A Figura 19 ilustra as demandas de ponta e de energia (em termos de potência média) para o período de planejamento em estudo. Estas projeções correspondem à demanda a ser atendida pela geração interna do sistema, e excluem as compras de energia de Itaipu. É interessante observar que, praticamente todo o crescimento da demanda total do sistema até o ano de 1990 é atendido pela entrada em operação de Itaipu. Somente após este ano é que a demanda de ponta e energia do parque gerador de FURNAS volta a crescer.

Dados técnicos e econômicos adicionais relevantes para a modelagem proposta, estão contidos no ANEXO 1.
FIGURA 18 - Usinas hidrelétricas e termelétricas de Furnas
FIGURA 19 - Projeções das demandas de ponta e energia

5.2. O MODELO DE PLANEJAMENTO DE EXPANSÃO

Para a determinação dos custos marginais de geração do sistema FURNAS, faz-se necessária a determinação do plano de expansão do parque gerador e de sua política de operação.

A construção de uma usina hidrelétrica envolve períodos de quatro a oito anos, dependendo do porte da usina. Neste estudo, então, adotou-se um horizonte de planejamento de 10 (dez) anos, de modo a se verificar a evolução da expansão do parque gerador e, também, a evolução dos custos marginais. Este horizonte de 10 (dez) anos foi dividido em vinte intervalos semestrais, onde cada 2 intervalos representam um ano. O primeiro representa o período úmido ou de maior incidência de chuvas e o segundo representa o período seco ou de menor incidência de chuvas.

O modelo proposto tem, portanto, como objetivos a determinação de um cronograma ótimo de construção de novas usinas e uma operação ótima do sistema, a longo prazo. Este objetivo deve ser atingido com a minimização dos custos de capital e dos custos operacionais do sistema de geração, atendendo simultaneamente às demandas de ponta e energia, durante o horizonte de planejamento.

A Função Objetivo deve expressar os objetivos citados acima. Para se determinar a expansão do parque gerador, a parte da Função Objetivo referente às variáveis de capacidade das usinas hi-
drelétricas candidatas ao plano de expansão, pode ser expressa de duas formas distintas.

No primeiro caso, as variáveis de capacidade, \(G_{i,t} \), exp

pressam a capacidade nominal instalada da usina hidrelétrica \(i \), para um certo intervalo \(t \), do horizonte de planejamento.

A função objetivo em relação a estas variáveis seria a seguinte:

\[
\min \sum_{t=1}^{T} \sum_{i=1}^{N} \frac{C_{i,t} \cdot G_{i,t} \cdot (1+iT)}{i,T}
\]

onde:

\(T \) = número de intervalos contidos (semestres) no horizonte de planejamento;

\(N \) = número de usinas hidrelétricas candidatas ao plano de expansão.

hc = custo unitário atualizado de capital e encargos fixos, em US$/MW semestre, da usina hidrelétrica \(i \), no tempo \(t \). Este custo é obtido da seguinte forma:

\[
hc = \frac{C_{i,t}}{(1+j)^t}
\]

onde:

\(j \) = taxa de retorno semestral;

hc = custo unitário de capital e encargos fixos, em US$/MW semestre, da usina hidrelétrica \(i \).
\[C_i = C_{t_i} \left[\frac{j(1+j)^n}{(1+j)^n - 1} \right] \] (5.3)

onde

\[C_{t_i} \]

= custo unitário de capital e encargos fixos, em US$/MW, da usina hidrelétrica \(i \).

\[C_{et_{i,T}} \]

= é o custo unitário atualizado de capital e encargos fixos, em US$/MW.suíste, da usina hidrelétrica \(i \), no último intervalo do horizonte de planejamento. Este custo é obtido da seguinte forma:

\[C_{et_{i,T}} = ET \cdot C_{t_{i,T}} \quad \text{para} \quad i = 1, \ldots, N \quad \text{e} \quad \begin{array}{c} \text{hc} \end{array} \] (5.4)

\[ET = \frac{1}{1 - \frac{1}{1+j}} \] (5.5)

onde

\[ET \]

= é um fator multiplicativo que propicia a correção dos efeitos terminais do programa de expansão.

Embora a influência dos custos atualizados que ocorrem nos últimos intervalos de planejamento possa ser pequena, os efeitos terminais ocasionados pelo truncamento do período de estudo podem ser ainda significativos em alguns casos. O efeito do truncamento é ignorar os custos incorridos após o horizonte de planejamento. A aproximação utilizada para incluir estes efeitos terminais assume que os custos de capital e encargos fixos após o término do período de planejamento relacionam-se com os custos correspondentes ao último intervalo através de uma série geométrica, cuja
razão corresponde à taxa de desconto adotada. Os componentes desta série infinita são somados, no limite, e o resultado é atualizado para o início do período de planejamento. O fator multiplicativo ET possibilita esta correção dos efeitos terminais do programa de expansão.

Neste caso, uma vez tomada a decisão de instalação de uma

certa capacidade \(G \), esta deverá permanecer como valor mínimo

para os próximos intervalos, de modo a garantir a consistência do
fluxo de caixa. Portanto, deve-se incluir na modelagem a seguinte
restrição:

\[
\begin{align*}
\text{hc} & \quad \text{hc} \\
G & \leq G \quad \text{para } i = 1, \ldots, N \quad \text{e } t = 1, \ldots, T \quad (5.6) \\
i, t & \quad i, t+1 \quad \text{hc}
\end{align*}
\]

Uma segunda abordagem seria a de se exprimir as capacidades
das usinas candidatas ao plano de expansão na função objetivo
através de incrementos de capacidade.

A função objetivo em relação a estas variáveis seria a se-
guinte:

\[
\begin{align*}
N & \\
\text{hc} & \quad \text{hc} \\
\min & \quad \Sigma \\
i=1 & \quad t=1 \quad \text{hc} \\
\Sigma & \quad C_i \quad . \quad I \\
i, t & \quad i, t
\end{align*}
\]

onde

\[
\begin{align*}
\text{hc} & = \text{um incremento de capacidade da usina hidrelétrica } i, \text{ no} \\
i, t & \quad \text{intervalo } t, \text{ em MW. Fazendo-se uma equivalência com a} \\
\text{variável de capacidade nominal tem-se:}
\end{align*}
\]

\[
\begin{align*}
\text{hc} & \quad \text{hc} \\
G & \leq \Sigma \quad I \quad \text{para } i = 1, \ldots, N \quad \text{e } t = 1, \ldots, T \quad (5.8) \\
i, t & \quad s=1 \quad i, s \quad \text{hc}
\end{align*}
\]
hc

Ci = representa o custo unitário atualizado de um incremento de capacidade, em US$/MW-\text{semestre}$, da usina hidrelétrica i, no intervalo t. Neste custo está embutido o impacto deste incremento em todo o período de amortização do capital, conforme indicado a seguir.

hc

Para a obtenção de Ci, parte-se do pressuposto que os custos expressos nas funções objetivos, em ambas as abordagens, devem ser semelhantes, para um mesmo programa de expansão. Portanto, para uma dada usina hidrelétrica i, temos:

$$\sum_{t=1}^{T-1} hc_{i,t} + \sum_{t=1}^{T} hc_{i,t} = \sum_{t=1}^{T} Ci_{i,t} . I$$ \hspace{1cm} (5.9)

$$\sum_{t=1}^{T-1} hc_{i,s} + \sum_{s=1}^{s} hc_{i,s} + \sum_{i,s}^{i,T} hc_{i,s} + \sum_{s=1}^{s} hc_{i,s} = \sum_{i,s}^{i,T} Ci_{i,s} . I$$ \hspace{1cm} (5.10)

$$\sum_{t=1}^{T} \left[\sum_{s=t}^{s} hc_{i,s} + \sum_{i,s}^{i,T} hc_{i,s} \right] = \sum_{i,s}^{i,T} Ci_{i,s} . I$$ \hspace{1cm} (5.11)

$$hc_{i,t} = \sum_{s=t}^{s} C_{i,s} + Cet_{i,s}$$ \hspace{1cm} (5.12)

A abordagem de incrementos de capacidade foi a escolhida para a resolução do problema apresentado. Nesta é desnecessária a inclusão da restrição de valor mínimo de capacidade para o intervalo subsequente, diminuindo o número de restrições necessárias à modelagem, e consequentemente a matriz de restrições.

A Função Objetivo completa a ser minimizada é dada por:
\[
\begin{align*}
N \\
\text{hc} \\
\Sigma \\
\min \\
i=1 \\
t=1 \\
\frac{}{} \\
T \\
\left[\\
\begin{array}{cccc}
\text{hc} & \text{hc} & \text{hc} & \text{hc} \\
\text{Ci} & \text{I} & + & \text{O} & \text{Z} \\
i,t & i,t & i,t & i,t & i,t \\
\end{array}
\right] + \\
\end{align*}
\]

\[
\begin{align*}
T \\
\Sigma \\
\sum_{t=1}^{N} \left(\begin{array}{c}
\text{he} \\
\Sigma \\
\end{array}
ight) \\
\begin{array}{cccc}
0 & \text{he} & 0 & \text{he} \\
j,t & j,t & j,t & j,t \\
\end{array} \\
+ \\
\sum_{k=1}^{N} \left(\begin{array}{c}
\text{te} \\
\Sigma \\
\end{array}
ight) \\
\begin{array}{cccc}
0 & \text{te} & 0 & \text{te} \\
k,t & k,t & k,t & k,t \\
\end{array} \\
\end{align*}
\]

onde

\[
N (N) = \text{número de usinas hidrelétricas (termelétricas) existentes no início do período de planejamento e as previamente programadas para entrar em operação durante o horizonte de planejamento. Em algumas restrições é usado, para maior simplicidade, somente o índice N, que inclui as usinas hidrelétricas existentes (N), assim como as usinas hidrelétricas cadas (N).}
he
he

\[
\begin{align*}
\text{hc} & \left(\begin{array}{c}
\text{he} \\
0 \\
i,t \\
\end{array} \right) = \text{custo unitário atualizado dos encargos variáveis, em US$/MWh, da usina hidrelétrica candidata i (hidrelétrica existente j, termelétrica existente k), no intervalo t.} \\
\text{hc} & \left(\begin{array}{c}
\text{te} \\
0 \\
i,t \\
\end{array} \right) = \text{geração da usina hidrelétrica candidata i (hidrelétrica existente j, termelétrica existente k), em MWh, no intervalo t.} \\
\end{align*}
\]

As principais restrições matemáticas do modelo estão indicadas a seguir:
(a) Atendimento da demanda de ponta instantânea

\[\sum_{N} \sum_{N} \sum_{N}^{} \sum_{he}^{} \sum_{te}^{} \sum_{N}^{} \sum_{hc}^{} \sum_{t}^{} \sum_{hc}^{} \sum_{\Sigma}^{} G + \Sigma G + \sum_{\Sigma}^{} I \geq D_p(1+r), \]

\[j=1 \quad j,t \quad k=1 \quad k,t \quad i=1 \quad s=1 \quad i,s \quad t \quad t \]

para \(t = 1, \ldots, T \) \hspace{1cm} (5.14)

onde

\[D_p = \] demanda de ponta instantânea, em MW, no intervalo \(t \);

\[r = \] margem de reserva de capacidade, em MW, no intervalo \(t \).

(b) Atendimento da demanda de energia

\[\sum_{N} \sum_{N} \sum_{N}^{} \sum_{hc}^{} \sum_{hc}^{} \sum_{he}^{} \sum_{he}^{} \sum_{te}^{} \sum_{te}^{} \sum_{\Sigma}^{} Z + \Sigma Z + \sum_{\Sigma}^{} Z \geq D, \text{ para } t=1, \ldots, T \] \hspace{1cm} (5.15)

\[i=1 \quad i,t \quad j=1 \quad j,t \quad k=1 \quad k,t \quad t \]

onde

\[D = \] demanda de energia, em MWh, no intervalo \(t \).

(c) Função de geração das usinas hidrelétricas

A função de geração das usinas hidrelétricas é dada pela seguinte restrição:
onde

\[Z = (2,61 \times 10^6) \cdot e \cdot k \cdot (U \cdot H) \leq 0 \] (5.16)

\(i, t \quad t \quad i, t \quad i, t \)

\[Z = \text{energia, em MWh, gerada na usina hidrelétrica } i, \text{ durante o intervalo } t; \]

\[U = \text{turbinagem média, em m/s, da usina hidrelétrica } i, \text{ no intervalo } t; \]

\[H = \text{altura líquida média de queda, em m, da usina hidrelétrica } i, \text{ no intervalo } t; \]

\[e = \text{eficiência da usina hidrelétrica } i; \]

\[k = \text{número de segundos no intervalo } t; \]

\[t \]

\[(2,61 \times 10^6) \] é um fator de conversão de unidades.

A expressão (5.16) é não-linear e não separável, pois \(U \) e \(H \), ambas variáveis, formam um produto. A restrição pode ser linearizada se escrita como duas restrições, uma com um valor assumido para a turbinagem, \(\hat{U} \), e outra com um valor assumido para a altura líquida de queda, \(\hat{H} \). Os valores a serem assumidos inicialmente por \(\hat{H} \) e \(\hat{U} \) devem ser obtidos através de um conhecimento prévio das usinas.

\[Z = (2,61 \times 10^6) \cdot e \cdot k \cdot \hat{U} \cdot (\hat{H}) \leq 0 \] (5.17)

\(i, t \quad t \quad i, t \quad i, t \)
\[Z - (2,61 \times 10^{}) \cdot e \cdot k \cdot \hat{\mathbf{U}} \cdot (\mathbf{U}) \leq 0 \quad (5.18) \]

\[
i, t \quad t, i, t \quad i, t
\]

Após a solução do modelo, os valores iniciais de \(\hat{\mathbf{U}} \) e \(\hat{\mathbf{H}} \) são comparados com os valores obtidos. Se a diferença entre ambos não estiver dentro de uma certa tolerância, assumem-se novos valores para \(\hat{\mathbf{U}} \) e \(\hat{\mathbf{H}} \) e uma nova solução é obtida.

Esta abordagem iterativa deve convergir na maioria dos casos em duas iterações. Outras técnicas de linearização, baseadas em apenas uma restrição, com valores assumidos constantes para \(\mathbf{H} \) ou \(\mathbf{U} \), geram soluções não realísticas em muitos casos, como apresentado por Cohon [1978].

A altura líquida de queda está relacionada com o armazenamento no reservatório da usina hidrelétrica \(i \) através da seguinte função:

\[\mathbf{H} = \sigma (\mathbf{S}) \quad \text{,} \quad (5.19) \]

\[
i, t \quad i, i, t
\]

que é dependente da forma do vale no sítio da usina \(i \). Estas funções são apresentadas de uma forma gráfica para as usinas hidrelétricas, a menos das a fio d'água, no ANEXO 2, e foram incorporadas ao modelo através de uma aproximação linear, da seguinte forma:

\[\mathbf{H} = a \cdot \mathbf{S} + b \quad \text{,} \quad (5.20) \]

\[
i, t \quad i, i, t \quad i
\]

Substituindo-se esta expressão para \(\mathbf{H} \) em (5.17) e (5.18) tem-se:

\[Z - (2,61 \times 10^{}) \cdot e \cdot k \cdot \hat{\mathbf{U}} \cdot (\alpha \cdot \mathbf{S} + b) \leq 0 \quad (5.21) \]

\[
i, t \quad t, i, t \quad i, i, t \quad i, i, t
\]
\[
Z = (2,61 \times 10^{6}) \cdot e \cdot k \cdot (a \cdot S + b) \cdot (U) \leq 0 \quad (5.22)
\]

Reordenando-se (5.21), resulta:

\[
Z = (2,61 \times 10^{6}) \cdot e \cdot k \cdot \hat{U} \cdot a \cdot S +
\]

\[
(2,61 \times 10^{6}) \cdot e \cdot k \cdot \hat{U} \cdot b \leq 0 \quad (5.23)
\]

Define-se, agora:

\[
k_1 = (2,61 \times 10^{6}) \cdot e \cdot k \cdot \hat{U} \cdot a \quad (5.24)
\]

\[
k_2 = (2,61 \times 10^{6}) \cdot e \cdot k \cdot \hat{U} \cdot b \quad (5.25)
\]

\[
k_3 = (2,61 \times 10^{6}) \cdot e \cdot k \cdot (a \cdot S + b) \quad (5.26)
\]

Substituindo-se em (5.22) e (5.23), obtém-se, finalmente:

\[
Z = k_1 \cdot S \leq k_2 \quad \text{para } i = 1, \ldots, Nh \quad (5.27)
\]

\[
i, t \quad i, t \quad i, t \quad t = 1, \ldots, T
\]
Z - k3 .U \leq 0, \quad \text{para } i = 1, \ldots, Nh \quad \text{e } \quad t = 1, \ldots, T,

(5.28)

\[i, t \quad i, t \quad i, t \]

que expressam as restrições da função de geração de energia. As constantes k1, k2 e k3 são atualizadas a cada nova iteração.

(d) Limites de capacidade para as usinas candidatas

\[t \quad hc \quad -hc \]
\[\sum_{s=1}^{N} I_s \leq G \quad \text{para } i=1, \ldots, N, \quad t=1, \ldots, T, \quad (5.29) \]
\[\begin{array}{l}
\text{onde}
\end{array} \]

- \(hc \)

\[G = \quad \text{limite superior, em MW, da capacidade da usina hidrelétrica candidata } i, \quad \text{no intervalo } t. \]

(e) Balanço dinâmico dos reservatórios das usinas hidrelétricas

\[S_i,t+1 = S_i,t + Y_{i,t} + \sum_{n \in Q} (U_{i,n,t} + V_{i,n,t}) - U_{i,t} - V_{i,t} \]

\[\text{para } i = 1, \ldots, N \quad \text{e } t = 1, \ldots, T \quad (5.30) \]

\[\begin{array}{l}
\text{onde}
\end{array} \]

\[t \]
\[S_i,t = \quad \text{volume útil no reservatório da usina hidrelétrica } i, \quad \text{em } \]
\[m, \quad \text{no intervalo } t; \]
Y _i,t = \text{ vazão não regularizada afluente ao reservatório da usina hidrelétrica } i, \text{ no intervalo } t, \text{ em } m; \\
Q _i = \text{ conjunto de usinas hidrelétricas imediatamente a montante da usina } i; \\
U _i,t = \text{ vazão turbinada pela usina hidrelétrica } i, \text{ em } m, \text{ no intervalo } t; \\
V _i,t = \text{ vazão vertida pela usina hidrelétrica } i, \text{ em } m, \text{ no intervalo } t.

(f) Limites nos armazenamentos e defluências dos reservatórios

\[S _i,t \leq S _i \text{ para } i = 1,\ldots,N \text{ e } t = 1,\ldots,T, \text{ } (5.31) \]
\[U _i,t \leq U _i \text{ para } i = 1,\ldots,N \text{ e } t = 1,\ldots,T, \text{ } (5.32) \]
\[V _i,t + U _i,t \geq U_{min} \text{ para } i=1,\ldots,N \text{ e } t=1,\ldots,T, \text{ } (5.33) \]

onde

\[S = \text{ volume útil do reservatório da usina hidrelétrica } i, \text{ em } m; \]
\[U = \text{ engolimento das turbinas da usina hidrelétrica } i, \text{ em } m; \]
\[U_{min} = \text{ vazão mínima, em } m, \text{ a jusante da usina hidrelétrica } i. \]
(g) Limites superiores para geração de energia

\[
Z \leq \sum_{i,t} d_{i,t} I_{i,s} \text{ para } i=1,\ldots,N \text{ e } t=1,\ldots,T, \quad (5.34)
\]

\[
Z \leq d_{j,t} G_{j,t} \text{ para } j=1,\ldots,N \text{ e } t=1,\ldots,T, \quad (5.35)
\]

\[
Z \leq d_{k,t} G_{k,t} \text{ para } k=1,\ldots,N \text{ e } t=1,\ldots,T, \quad (5.36)
\]

onde

\[
d_{i,t} \left(\frac{\text{he}}{\text{te}} \right) = \text{disponibilidade da usina hidrelétrica candidata } i \text{ (hidrelétrica existente } j, \text{ termelétrica existente } k), \text{ no intervalo } t.
\]

O modelo apresentado tem a função objetivo linear e está sujeito a restrições lineares. Foi, portanto, resolvido por um algoritmo de programação linear. Este modelo de programação linear será doravante chamado de Módulo de Planejamento.

5.3. OBTENÇÃO DOS CUSTOS MARGINAIS DE GERAÇÃO

Como foi definido na seção 3.4, o custo marginal de longo prazo pode ser definido, de uma maneira geral, como o custo marginal de todos os ajustes realizados no plano de expansão e na operação do sistema, devido a um crescimento marginal da demanda, que é sustentado no futuro.

O modelo proposto neste trabalho trata simultaneamente a expansão e a operação do sistema. Portanto, um aumento marginal da demanda de ponta do sistema, cujo atendimento é garantido pela
restrição (5.14), e um aumento marginal da demanda de energia do sistema, cujo atendimento é garantido pela restrição (5.15), causarão ajustes na operação e expansão do sistema.

Este ajuste pode ser medido pelos valores das variáveis duais dessas restrições de atendimento da demanda de ponta e da demanda de energia [SACAROVITCH, 1971]:

\[
\pi_P = \frac{3(\text{Função Objetivo})}{3(D_p)} \quad \text{para} \quad t = 1, \ldots, T \quad (5.37)
\]

\[
\pi_E = \frac{3(\text{Função Objetivo})}{3(D_e)} \quad \text{para} \quad t = 1, \ldots, T \quad (5.38)
\]

Nas expressões acima, \(\pi_P \) e \(\pi_E \) são as variáveis duais associadas às restrições (5.14) e (5.15), respectivamente.

5.4. A METODOLOGIA PROPOSTA

Conforme prática das concessionárias brasileiras, neste trabalho também se adota o período crítico hidrológico do sistema, como o determinante do programa de expansão. Isto significa que, mesmo com a repetição das piores hidrologias do histórico, o sistema será capaz de atender os requisitos de ponta e energia. Para garantir este critério, é necessário que se faça a coincidência do período crítico com cada ano do horizonte de planejamento, onde em cada um destes casos é resolvido o modelo de planejamento proposto na seção 5.2. Na medida que as identificações hidrológicas se sucedem, a partir daquela referente à coincidência do início do período de planejamento com o primeiro ano do período crítico, conforme indicado na Tabela 4, impõem-se restrições matemáticas, quanto à capacidade mínima instalada para cada usina candidata ao plano de expansão, em uma dada identificação, em relação à capacidade instalada na identificação anterior, como expresso matematicamente abaixo:
<table>
<thead>
<tr>
<th>CASOS</th>
<th>HIDRAULICIDADES</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1951 52 53 54 55 56 57 58 59 60</td>
</tr>
<tr>
<td>3</td>
<td>1950 51 52 53 54 55 56 57 58 59</td>
</tr>
<tr>
<td>4</td>
<td>1949 50 51 52 53 54 55 56 57 58</td>
</tr>
<tr>
<td>5</td>
<td>1948 49 50 51 52 53 54 55 56 57</td>
</tr>
<tr>
<td>6</td>
<td>1947 48 49 50 51 52 53 54 55 56</td>
</tr>
</tbody>
</table>

\[
s = 1 \quad i, s, h \quad -i, t, h \quad \text{para} \quad i=1, \ldots, N \quad \text{e} \quad t=1, \ldots, T \quad (5.39)
\]

\[
\frac{t \cdot hc}{\sum_{i=1}^{N} G_{-i, t, h} \cdot \frac{hc}{s=1 \quad i, s, h -i, t, h}} \quad \text{para} \quad i=1, \ldots, N \quad \text{e} \quad t=1, \ldots, T \quad (5.40)
\]

onde

\[
G_{-i, t, h} = \text{limite inferior, em MW, da capacidade da usina hidrelétrica i, no intervalo t, para a hidraulicidade h.}
\]
Note que não há necessidade que o índice h apareça na restrição de cada resolução do modelo proposto.

Para o atendimento da demanda de ponta do sistema foi considerada uma margem de reserva de capacidade, r, constante e com valor de 10% da demanda de ponta instantânea do intervalo de planejamento t.

Nas restrições de limites superiores para a geração de energia, os valores de disponibilidade das usinas foram calculados da seguinte maneira:

$$
hc \left(\begin{array}{c}
he \\
d \\
\end{array} \right)_{i,t} \left(\begin{array}{c}
te \\
d \\
k,t \\
\end{array} \right)_{j,t} = 1 - \text{indisponibilidade relativa a saídas forçadas} - \text{indisponibilidade relativa à manutenção programada}.
$$

O diagrama de blocos da Figura 20 apresenta a dinâmica da obtenção do plano de expansão do parque gerador de energia elétrica e das variáveis duais das restrições de demanda de ponta e energia.

O Módulo Gerador de Dados tem a função de compor a matriz de restrições e os vetores de dados do programa linear a ser resolvido no Módulo de Planejamento. Esta geração automática da matriz de restrições é fundamental em um modelo iterativo, como o aqui proposto. Este módulo é parametrizável, de modo a poder compor os mais diversos problemas de aplicação, segundo a modelagem proposita.

O módulo de planejamento é resolvido a cada iteração utilizando-se o programa MINOS ("Modular In-Core Nonlinear Optimization System"). Este sistema é uma implementação eficiente e confiável do Método Simplex Revisado para Programação Linear, que combina técnicas de matrizes esparsas com métodos numéricos estáveis para os cálculos envolvendo a matriz básica [MURTASH & SAUNDERS, 1977]. O programa permite a canalização de variáveis, o que possibilitou que uma série de resoluções fossem traduzidas através da determinação de valores máximos e mínimos para variáveis, não sendo necessário se aumentar a matriz de restrições.
FIGURA 20 - Diagrama de blocos do algoritmo do modelo proposto
CAPÍTULO 6

RESULTADOS OBTIDOS

====================
O plano de expansão do parque gerador de energia elétrica, fornecido pelo modelo proposto, é apresentado neste capítulo. São, também, apresentados os valores das variáveis duais relativas às restrições de atendimento da demanda de ponta e do consumo de energia do sistema.

Os valores obtidos para as variáveis duais são analisados, a fim de se avaliar seus impactos no plano de expansão, e se determinar os custos marginais.

6.1. O PLANO DE EXPANSÃO

O plano de expansão do parque gerador foi obtido conforme descrito na seção 5.4. As Tabelas 5 e 6 apresentam os valores de capacidade instalada de cada usina candidata, em cada intervalo de planejamento, para as diversas hidraulicidades do período crítico. No caso da capacidade instalada permanecer a mesma, em relação à hidraulicidade anterior, este valor é suprimido da tabela. A tabela foi montada dessa maneira para facilitar a visualização de quando as novas expansões de capacidade ocorreram e qual a hidraulicidade responsável por esta expansão. As linhas tracejadas, sob os valores da tabela, indicam a incidência do período crítico nas diversas hidraulicidades. Estas linhas mostram como o período crítico "avança" ao longo do horizonte de planejamento.
<table>
<thead>
<tr>
<th>USINAS</th>
<th>HIDRAULICIDADES</th>
<th>ANOS DO HORIZONTE DE PLANEJAMENTO / PERÍODOS ÓDIDOS (U) - PERÍODOS SECOS (S)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>U</td>
</tr>
<tr>
<td>SERRA</td>
<td>1952-1961</td>
<td>368</td>
</tr>
<tr>
<td></td>
<td>1951-1960</td>
<td>384</td>
</tr>
<tr>
<td></td>
<td>1950-1959</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1949-1958</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1948-1957</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1947-1956</td>
<td></td>
</tr>
<tr>
<td>MESA</td>
<td>1952-1961</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1951-1960</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1950-1959</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1949-1958</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1948-1957</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1947-1956</td>
<td></td>
</tr>
<tr>
<td>CANA</td>
<td>1952-1961</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1951-1960</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1950-1959</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1949-1958</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1948-1957</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1947-1956</td>
<td></td>
</tr>
<tr>
<td>BRAVA</td>
<td>1952-1961</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1951-1960</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1950-1959</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1949-1958</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1948-1957</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1947-1956</td>
<td></td>
</tr>
</tbody>
</table>
TABELA 6 - Capacidades instaladas nas usinas de Foz do Bezerra e Peixe, em MW, para as diversas hidrulicidades do período crítico

<table>
<thead>
<tr>
<th>Anos do Horizonte de Planejamento / Períodos Úmidos (U) - Períodos Secos (S)</th>
<th>FOZ</th>
<th>DO</th>
<th>BEZERRA</th>
<th>PEIXE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1953-1961</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1954-1960</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1955-1959</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1956-1958</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1957-1956</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1958-1957</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1959-1960</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1960-1961</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1961-1960</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1962-1961</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Nas Figuras 21 e 22 são apresentados, de uma forma gráfica, os cronogramas de instalação das usinas de Serra da Mesa, Cana Brava, São Domingos e Peixe, números 12, 13, 14 e 16 respectivamente, na Figura 18, que foram as usinas selecionadas dentre as candidatas. Observa-se que as usinas de Serra da Mesa e Peixe tiveram o início de sua instalação coincidente com os prazos mínimos impostos no programa (1986 para Serra da Mesa e 1987 para Cana Brava). Nesses momentos, essas duas usinas são instaladas parcialmente, havendo em seguida, um período onde não ocorrem novas expansões. Este processo é motivado por uma contração da geração interna de Furnas, devido à entrada da usina de Itaipu, como havia sido mencionado anteriormente. Somente após o ano de 1989 é que a geração interna volta a ter um crescimento a taxas históricas. Observa-se, então, a continuidade da expansão do parque gerador, com as usinas de Serra da Mesa e Peixe e, também, o início da instalação das usinas hidrelétricas de Cana Brava e São Domingos.
FIGURA 21 - Gráfico do cronograma de instalação das usinas de Serra da Mesa e Cana Brava
FIGURA 22 - Gráfico do cronograma de instalação das usinas de São Domingos e Peixe

| ANOS DO HORIZONTE DE PLANEJAMENTO / PERÍODOS ÓMIDOS (U) - PERÍODOS SECOS (S) |
|--|--|
| U | S | S | U | S | U | S | S | S | S |

SÃO DOMINGOS

PEIXE
6.2. VARIÁVEIS DUAS DAS RESTRIÇÕES DE DEMANDA

As Tabelas 7 e 8 apresentam, respectivamente, as variáveis duais relativas às restrições de atendimento do consumo de energia e da demanda de ponta do sistema. Os valores das variáveis duais são apresentados para as diversas hidraulicidades que foram utilizadas na obtenção do plano de expansão. Os espaços em branco na tabela representam zeros e as linhas tracejadas indicam a incidência do período crítico nas diversas hidraulicidades.

Ao se analisar as duas tabelas, a primeira observação que salta aos olhos é o fato dos valores das variáveis duais relativas às restrições de atendimento à demanda de ponta serem quase todos nulos. Estes valores só não foram nulos quando o período crítico incidiu sobre os primeiros anos do horizonte de planejamento. Nestes casos, a expansão do sistema para os anos de 1992 e 1993 ocorreu sob hidraulicidades bastante favoráveis. Nestes intervalos, então, o fator determinante da expansão do sistema foi a necessidade de atendimento da demanda de ponta do sistema.

Nas demais posições das tabelas, o que se percebe é o inverso da situação descrita acima. Ou seja, a expansão do parque gerador se dá em função da dificuldade de se atender ao consumo de energia durante o período crítico. Este fato pode ser observado com muita clareza na Tabela 7. Verifica-se para as diversas hidraulicidades, que durante os anos do período crítico aumenta sensivelmente o valor das variáveis duais relativas às restrições de consumo de energia. Ou seja, qualquer incremento no consumo de energia durante o período crítico, implicará num custo mais alto ao sistema de geração.

Nos intervalos do horizonte de planejamento fora do período crítico, para as diversas hidraulicidades, o valor da variável dual relativa ao consumo de energia é significativamente mais baixo para os intervalos secos e, em sua maioria, zero para os intervalos úmidos.

Uma segunda observação importante a ser feita, é o fato de que, nos anos onde houve uma paralisação do crescimento da geração de Furnas, e até mesmo uma pequena diminuição, os valores das variáveis duais das restrições de atendimento do consumo de energia são significativamente menores que nos demais intervalos. Esta observação vale principalmente para a incidência do período crítico nestes intervalos. Este comportamento das variáveis duais já era esperado, pois havendo quase que uma ociosidade no sistema de geração de Furnas, o custo de um incremento no consumo traria, sem dúvida, menores custos para o sistema de geração.
TABELA 7 - Valores das variáveis duais das restrições de atendimento do consumo de energia para cada intervalo, em 10 US$/MW.semestre

<table>
<thead>
<tr>
<th>ANOS DO HORIZonte DE PLANEJAMENTO</th>
<th>PERÍODOS ÓTIMOS (U)</th>
<th>PERÍODOS SEGUES (S)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>U</td>
<td>S</td>
</tr>
<tr>
<td>1984-1981</td>
<td>1.97</td>
<td>88.1</td>
</tr>
<tr>
<td>1985-1986</td>
<td>1.52</td>
<td>48.2</td>
</tr>
<tr>
<td>1986-1987</td>
<td>0.7</td>
<td>34.3</td>
</tr>
<tr>
<td>1987-1988</td>
<td>0.7</td>
<td>34.3</td>
</tr>
<tr>
<td>1988-1989</td>
<td>0.7</td>
<td>34.3</td>
</tr>
<tr>
<td>1989-1990</td>
<td>0.7</td>
<td>34.3</td>
</tr>
<tr>
<td>1990-1991</td>
<td>0.7</td>
<td>34.3</td>
</tr>
<tr>
<td>1991-1992</td>
<td>0.7</td>
<td>34.3</td>
</tr>
<tr>
<td>1992-1993</td>
<td>0.7</td>
<td>34.3</td>
</tr>
<tr>
<td>1993-1994</td>
<td>0.7</td>
<td>34.3</td>
</tr>
</tbody>
</table>

MAIOR VALOR DA VARIÁVEL DUAL
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1952 - 1961</td>
<td></td>
<td>.02</td>
<td>.26</td>
<td>4.65</td>
<td></td>
</tr>
<tr>
<td>1951 - 1960</td>
<td></td>
<td>.04</td>
<td></td>
<td>4.35</td>
<td></td>
</tr>
<tr>
<td>1950 - 1959</td>
<td></td>
<td>3.88</td>
<td></td>
</tr>
<tr>
<td>1949 - 1958</td>
<td></td>
<td>4.65</td>
<td></td>
</tr>
<tr>
<td>1948 - 1957</td>
<td></td>
<td>4.65</td>
<td></td>
</tr>
<tr>
<td>1947 - 1956</td>
<td></td>
<td>4.65</td>
<td></td>
</tr>
<tr>
<td>MAIOR VALOR DA VARIÁVEL DUAL</td>
<td></td>
<td>.02</td>
<td>.26</td>
<td>4.65</td>
<td></td>
</tr>
</tbody>
</table>

TABELA 8 - Valores das variáveis duais das restrições de atendimento da demanda de ponta para cada inter-
6.3. CUSTOS MARGINAIS DE GERAÇÃO

A Tabela 9 apresenta os custos marginais correntes de geração de energia elétrica do Sistema FURNAS, nas suas parcelas de custo marginal de ponta e de custo marginal de energia, para cada intervalo do horizonte de planejamento. Esses custos foram obtidos com a aplicação das seguintes equações sobre as variáveis duais de ponta e energia:

\[
\text{CMP} = (1+i)^{\pi_P} \quad \text{para} \quad t = 1, \ldots, T \quad (6.1)
\]

\[
\text{CME} = (1+i)^{\pi_E} \quad \text{para} \quad t = 1, \ldots, T \quad (6.2)
\]

Os custos da Tabela 9 correspondem à geração interna de FURNAS. Eles devem ser compostos com os custos marginais da energia elétrica proveniente de Itaipu, para se obter os custos marginais de geração do sistema, que irão alimentar os cálculos tarifários.

Neste trabalho, houve uma preocupação com a obtenção dos custos marginais de longo prazo. Nos estudos de curto prazo são obtidos os custos marginais de energia nos períodos de ponta e fora da ponta da curva de carga diária, com modelos adequados a este propósito. Uma das metodologias é aquela proposta pelo Ministério das Minas e Energia [1981-b], com a aplicação das equações (3.13) e (3.14).

A seguir, são incorporados aos custos de geração, os custos marginais de transmissão, repartição e distribuição da energia elétrica. Para se suavizar as variações bruscas dos custos de um intervalo para outro, recomenda-se empregar o procedimento da média móvel, cuja aplicação é tradicional na análise e formação de preços, quando os custos apresentam grandes flutuações.

Finalmente, são realizados os ajustes financeiros para se garantir a remuneração do capital, de acordo com uma dada taxa de retorno, que deve se situar próxima dos 10% ao ano, segundo a legislação em vigor.
TABELA 9 - Valor corrente dos custos marginais de ponta e de energia, para os diversos intervalos

<table>
<thead>
<tr>
<th>ANO</th>
<th>CUSTO MARGINAL DE ENERGIA, CME, EM US$/MWh</th>
<th>CUSTO MARGINAL DE PONTA, CMP, EM US$/kW.SEMESTRE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1984</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1985</td>
<td>48,3</td>
<td>0</td>
</tr>
<tr>
<td>1986</td>
<td>48,3</td>
<td>0</td>
</tr>
<tr>
<td>1987</td>
<td>47,3</td>
<td>0</td>
</tr>
<tr>
<td>1988</td>
<td>46,2</td>
<td>0</td>
</tr>
<tr>
<td>1989</td>
<td>17,7</td>
<td>0</td>
</tr>
<tr>
<td>1990</td>
<td>45,1</td>
<td>0</td>
</tr>
<tr>
<td>1991</td>
<td>48,3</td>
<td>0</td>
</tr>
<tr>
<td>1992</td>
<td>336,5</td>
<td>4,5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>61,3</td>
</tr>
<tr>
<td>1993</td>
<td>190,1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1205,9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>INTERVALOS*</th>
<th>U</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(*) U = Intervalos Úmidos;
S = Intervalos secos

Nesse momento, também, são calculadas as tarifas subsidiadas para determinadas categorias sociais, regiões menos favorecidas ou fins específicos, como por exemplo as tarifas para os sistemas de transporte coletivos movidos a energia elétrica, como trolei-bus, metrô e trens suburbanos.
Cumpre salientar que a estrutura tarifária deve ser simples, do ponto de vista do consumidor, para melhor orientá-lo no seu consumo de energia. A estrutura dos preços também deve ser estável. No caso de custos marginais crescentes, como os obtidos, as tarifas devem expressar este crescimento de uma forma gradual.
CAPÍTULO 7

CONCLUSÃO

========
Neste trabalho foram analisadas as diversas formas de tarifação de energia elétrica dentro do modelo contábil e as tarifas baseadas nos custos marginais. Foram apontadas as formas pelas quais, nas tarifas contábeis, pode-se incorrer no erro de se beneficiar algumas classes de consumidores em detrimento de outras. Além disso, essas tarifas orientam mal o crescimento do setor elétrico, em função da má distribuição da remuneração das diferentes parcelas de custo.

Comentou-se como a estrutura de custos contábeis no Brasil remunerava excessivamente a parcela de atendimento da demanda de ponta, o que ocasionava uma supermotorização das usinas pelas concessionárias. Na análise dos resultados do estudo de caso desenvolvido neste trabalho, pode-se constatar este efeito através do fato de que o consumo de energia foi, basicamente, o fator determinante da expansão do sistema no período estudado.

Por outro lado, discutiram-se os benefícios e dificuldades de implantação de uma estrutura tarifária baseada nos custos marginais, analisando suas vantagens em termos de eficiência econômica, equidade e neutralidade. Esta tarifa, com a denominação de horosazonal, já vem sendo oferecida no país há alguns anos, em caráter opcional, nos setores industriais atendidos em alta tensão, e tem mostrado resultados promissores, em termos da sinalização que fornece ao consumidor para um uso mais racional da energia elétrica.

Uma contribuição importante deste trabalho é a proposta de um modelo de planejamento de expansão da geração do setor elétrico, de implementação inédita no Brasil, baseado em linearizações sucessivas e programação linear.

O modelo oferece dois importantes resultados dentro do estudo de planejamento da expansão de um sistema de potência. Primeiramente, fornece os custos marginais de expansão da geração, ponto inicial de construção da estrutura tarifária horosazonal. O modelo fornece, também, um cronograma ótimo de construção de novas usinas. Esses resultados ainda requerem algum refinamento, para levar em conta a instalação de cada grupo gerador, de uma dada capacidade nominal.

Este trabalho mostrou a aplicabilidade do modelo proposto em um estudo de caso com um sistema real de geração da região sudeste brasileira. Para atingir este objetivo implementou-se o modelo e sua base de dados, vencendo-se uma série de pequenas dificuldades, até se chegar à configuração final do modelo para a aplicação estudada. Como resultados foram obtidos os custos marginais de longo prazo de ponta e energia desse sistema.
Para a obtenção de boas tarifas de energia elétrica, a partir dos custos marginais de geração, há um longo caminho a ser percorrido, cujas dificuldades teóricas e práticas são tão grandes quanto as enfrentadas nesta tese. Mesmo não havendo grandes dificuldades técnicas, há um grande potencial de melhoramento na obtenção precisa dos custos marginais de transmissão, repartição e distribuição. Mas, os grandes campos de pesquisa residem nas partes financeira e social da elaboração da tarifa, após todos os custos estarem definidos. Na análise financeira, deve-se estruturar as tarifas mantendo a mensagem de eficiência que os custos marginais oferecem, garantindo, porém, o retorno do investimento às taxas requeridas. Na análise social, se qualificam e quantificam os diversos subsídios que são oferecidos a segmentos carentes ou preferenciais da sociedade.

O modelo de planejamento de expansão da geração, proposto nesta tese, também pode evoluir em algumas direções que podem trazer significativas melhorias à modelagem:

(a) A incorporação de variáveis inteiras na modelagem da capacidade das usinas candidatas ao plano de expansão;

(b) O aumento do número de intervalos para o mesmo horizonte de planejamento, de modo que cada intervalo corresponda a um trimestre ou quadrimestre;

(c) A utilização de técnicas de decomposição e coordenação para separar as modelagens de expansão e de operação do parque gerador;

(d) O tratamento estocástico das vazões afluentes aos reservatórios das usinas hidrelétricas, factível quando se decompõe o problema de acordo com o mencionado no item (c);

(e) O tratamento integrado do planejamento de expansão de sistemas de potência que compartilham entre si as mesmas bacias fluviais e são interligados elétricamente.

Resumindo, este trabalho propõe uma metodologia eficiente para a obtenção dos custos marginais de geração de energia elétrica, base para um sistema tarifário horosazonal. Esta tarifa, conforme comprovado em diversos países, pode contribuir significativamente para uma exploração mais racional dos recursos energéticos e uma distribuição mais justa de seus benefícios.
REFERÊNCIAS BIBLIOGRÁFICAS

ANEXO 1

DADOS DO ESTUDO DE CASO

============================
<table>
<thead>
<tr>
<th>USINA</th>
<th>POTÊNCIA [MW]</th>
<th>VOLUME ÚTIL [Mm³]</th>
<th>DISPONIBILIDADE</th>
<th>VAZÃO MÍNIMA [Mm³/semestre]</th>
<th>a</th>
<th>b</th>
<th>e</th>
</tr>
</thead>
<tbody>
<tr>
<td>ITUMBIARA</td>
<td>2.100</td>
<td>12.454</td>
<td>0.895</td>
<td>10.514</td>
<td>2.01</td>
<td>58.403</td>
<td>0.00880</td>
</tr>
<tr>
<td>FURNAS</td>
<td>1.280</td>
<td>17.217</td>
<td>0.915</td>
<td>5.439</td>
<td>1.06</td>
<td>75.151</td>
<td>0.00862</td>
</tr>
<tr>
<td>PEIXOTO</td>
<td>476</td>
<td>2.500</td>
<td>0.945</td>
<td>4.205</td>
<td>5.22</td>
<td>30.717</td>
<td>0.00834</td>
</tr>
<tr>
<td>ESTREITO</td>
<td>1.100</td>
<td>-</td>
<td>0.915</td>
<td>6.482</td>
<td>-</td>
<td>63.095</td>
<td>0.00882</td>
</tr>
<tr>
<td>PORTO COLOMBA</td>
<td>320</td>
<td>-</td>
<td>0.915</td>
<td>6.482</td>
<td>-</td>
<td>23.409</td>
<td>0.00873</td>
</tr>
<tr>
<td>MARIMBONDO</td>
<td>1.440</td>
<td>5.260</td>
<td>0.915</td>
<td>9.486</td>
<td>3.85</td>
<td>41.687</td>
<td>0.00850</td>
</tr>
<tr>
<td>FUNIL</td>
<td>216</td>
<td>0.606</td>
<td>0.915</td>
<td>1.265</td>
<td>31.69</td>
<td>57.548</td>
<td>0.00826</td>
</tr>
</tbody>
</table>

a, b: constantes da equação \(H_i \cdot t \cdot a_i \cdot S_i \cdot t + b_i \)

e: produtividade, em \(\frac{MW}{m^3 \cdot m} \)
<table>
<thead>
<tr>
<th>USINA</th>
<th>POTÊNCIA [MW]</th>
<th>VOLUME ÚTIL [Mm³]</th>
<th>DISPONIBILIDADE [Mm³/semestre]</th>
<th>VAZÃO MÍNIMA a</th>
<th>CUSTO UNITÁRIO [US$/KW]</th>
</tr>
</thead>
<tbody>
<tr>
<td>SERRA DA MESA</td>
<td>1.200</td>
<td>42.300</td>
<td>0.895</td>
<td>1.170</td>
<td>952</td>
</tr>
<tr>
<td>CANA BRAVA</td>
<td>480</td>
<td>-</td>
<td>0.915</td>
<td>1.581</td>
<td>1.327</td>
</tr>
<tr>
<td>FOZ DO BEZERRA</td>
<td>330</td>
<td>22.910</td>
<td>0.915</td>
<td>0.490</td>
<td>1.493</td>
</tr>
<tr>
<td>SÃO DOMINGOS</td>
<td>300</td>
<td>4.385</td>
<td>0.915</td>
<td>0.553</td>
<td>2.114</td>
</tr>
<tr>
<td>PEIXE</td>
<td>1.065</td>
<td>9.900</td>
<td>0.895</td>
<td>6.103</td>
<td>1.138</td>
</tr>
</tbody>
</table>

a, b: constantes da equação $H_{t,c} = a_i S_i^{1/3} t^{-b_i}$

e: produtividade, em $\frac{MW}{m^3 \cdot m}$
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ANGRA I</td>
<td>625</td>
<td>0,660</td>
<td>193</td>
<td>12,47</td>
</tr>
<tr>
<td>SANTA CRUZ I</td>
<td>430</td>
<td>0,830</td>
<td>-</td>
<td>47,06</td>
</tr>
<tr>
<td>SANTA CRUZ II</td>
<td>163</td>
<td>0,830</td>
<td>-</td>
<td>49,91</td>
</tr>
</tbody>
</table>
ANEXO 2

CURVAS DE ALTURA LÍQUIDA DE QUEDA EM FUNÇÃO

DO ARMazenamento
FIGURA 23 - Curva altura líquida de queda versus armazenamento da Usina de Itumbiara
FIGURA 24 - Curva altura líquida de queda versus armazenamento da Usina de Furnas
FIGURA 25 - Curva altura líquida de queda versus armazenamento da Usina de Peixoto
FIGURA 26 - Curva altura líquida de queda versus armazenamento da Usina de Marimbondo
FIGURA 27 - Curva altura líquida de queda versus armazenamento da Usina de Funil
FIGURA 28 - Curva altura líquida de queda versus armazenamento da Usina de Serra da Mesa
FIGURA 29 - Curva altura líquida de queda versus armazenamento da Usina de Foz do Bezerra
FIGURA 30 - Curva altura líquida de queda versus armazenamento da Usina de São Domingos
FIGURA 31 - Curva altura líquida de queda versus armazenamento da Usina de Peixe