Cinemática e Dinâmica de uma Máquina Injetora de Plásticos

Autor: José Carlos Freire da Rocha Jr.
Orientador: Prof. Dr. Ilmar Ferreira Santos
Cinemática e Dinâmica de uma Máquina Injetora de Plásticos

Autor: José Carlos Freire da Rocha Jr.
Orientador: Prof. Dr. Ilmar Ferreira Santos

Curso: Engenharia Mecânica
Área de Concentração: Mecânica dos Sólidos e Projeto Mecânico

Dissertação de mestrado apresentada à comissão de Pós-Graduação da Faculdade de Engenharia Mecânica, como requisito para a obtenção do título de Mestre em Engenharia Mecânica.

Campinas, 1999
S.P. - Brasil
FICHA CATALOGRÁFICA ELABORADA PELA
BIBLIOTECA DA ÁREA DE ENGENHARIA - BAE - UNICAMP

Rocha Jr., José Carlos Freire da
Cinemática e dinâmica de uma máquina injetora de plásticos. / José Carlos Freire da Rocha Jr.--Campinas, SP: [s.n.], 1999.

Orientador: Ilmar Ferreira Santos.
Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Mecânica.

Cinemática e Dinâmica de uma Máquina Injetora de Plásticos

Autor: José Carlos Freire da Rocha Jr.
Orientador: Prof Dr. Ilmar Ferreira Santos

Prof. Dr. Ilmar Ferreira Santos, Presidente
DPM/FEM/UNICAMP

Prof. Dr. Marco Lúcio Bittencourt
DPM/FEM/UNICAMP

Prof. Dr. Paulo Sérgio Graziano Magalhães
FEAGRI/UNICAMP

Campinas, 30 de março de 1999
Dedicatória

Dedico este trabalho à minha amada esposa, pelo constante apoio e incentivo.
Agradecimentos

Agradeço primeiramente ao Prof. Dr. Ilmar Ferreira Santos pela orientação, incentivo, compreensão e trabalho dedicado a mim e a esta dissertação.

Ao Prof. Dr. Marco Lúcio Bittencourt pelo apoio no início do curso e ajuda na escolha do trabalho.

À Indústrias ROMI e colegas de serviço pelos recursos e informações técnicas fornecidos.

A meus pais, sogro e sogra e familiares que souberam compreender os momento de ausência e sempre acreditaram em mim.

A todos os colegas da pós-graduação, professores e funcionários do Departamento de Projeto Mecânico que de uma forma ou de outra me ajudaram nestes 3 anos de trabalho.

- E finalmente, em especial, à minha esposa pela compreensão, apoio, incentivo e dedicação que sempre estiveram presentes, mesmo nos momentos mais difíceis.
Sumário

1 **Introdução** ... 1

2 **Aspectos Gerais** 5
 2.1 Molde .. 5
 2.2 Máquina Injetora de Plásticos 6
 2.3 Unidade de Fechamento 7
 2.3.1 Unidade de Fechamento Hidráulica 8
 2.3.2 Unidade de Fechamento Mecânica 9
 2.3.2.1 Sistema de Fechamento de Joelhos Simples 11
 2.3.2.2 Sistema de Fechamento de Joelhos Duplos 12
 2.3.2.2.1 Sistema de Fechamento de Joelhos Duplos - 4 e 5 pontos 12
 2.4 Caracterização do Problema 14

3 **Modelagem Matemática** 20
 3.1 Sistemas de Referência 21
 3.2 Vetores de Posição e Equações de Vínculo 23
 3.3 Vetores de Velocidade 28
 3.3.1 Vetores de Velocidade Linear Absoluta 29
 3.3.2 Vetores de Velocidade Angular Absoluta 29
 3.4 Vetores de Aceleração 30
 3.4.1 Vetores de Aceleração Angular Absoluta 31
 3.4.2 Vetores de Aceleração Linear Absoluta 33
 3.5 Propriedades Geométricas dos Corpos 40
 3.6 Cálculo da Rigidez Equivalente do Conjunto 45
 3.7 Diagrama de Corpo Livre 48
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.7.1</td>
<td>Aplicação do Método de Newton</td>
<td>48</td>
</tr>
<tr>
<td>3.7.2</td>
<td>Aplicação do Método de Euler</td>
<td>57</td>
</tr>
<tr>
<td>3.8</td>
<td>Matriz do Sistema</td>
<td>65</td>
</tr>
<tr>
<td>4</td>
<td>Resultados Teóricos</td>
<td>74</td>
</tr>
<tr>
<td>4.1</td>
<td>Valores Iniciais</td>
<td>74</td>
</tr>
<tr>
<td>4.2</td>
<td>Simulações</td>
<td>75</td>
</tr>
<tr>
<td>5</td>
<td>Metodologia Proposta</td>
<td>80</td>
</tr>
<tr>
<td>5.1</td>
<td>Verificação da Força de Travamento</td>
<td>80</td>
</tr>
<tr>
<td>5.2</td>
<td>Verificação da Unidade Hidráulica</td>
<td>81</td>
</tr>
<tr>
<td>6</td>
<td>Conclusões e Perspectivas Futuras</td>
<td>83</td>
</tr>
<tr>
<td></td>
<td>Referências Bibliográficas</td>
<td>85</td>
</tr>
</tbody>
</table>
Resumo

Este trabalho tem como objetivo simular o funcionamento do mecanismo de fechamento de uma máquina injetora de plásticos de 5 pontos, com a finalidade de gerar dados para projetá-la de maneira mais eficiente. Foi desenvolvido um programa computacional, para a análise cinemática e dinâmica do mecanismo, considerando-se os vínculos, a geometria do mecanismo, o atrito entre componentes, as propriedades geométricas como massa, inércia e centro de gravidade, e em seguida aplicando-se o método de Newton-Euler. Com os resultados gerados, é possível determinar a força de travamento disponível para a máquina e a curva da força de fechamento, viabilizando o dimensionamento, de maneira mais precisa e econômica, do sistema hidráulico da máquina, que fornece a vazão de óleo necessária para realizar o movimento. Os resultados desse trabalho são de fundamental importância para o projeto otimizado deste tipo especial de máquina, assim como para pesquisas futuras na área de análise estrutural ou projeto do sistema de controle, onde é necessário o conhecimento do comportamento dinâmico da máquina e de seus componentes.

Palavras Chave

- Plásticos, Máquina Injetora, Unidade de Fechamento, Força de Travamento
Abstract

The simulation of an injection molding machine clamp mechanism is presented in this work aiming data generation to design in a wiser way. A computational program was written, for mechanism kinematic and dynamic analysis, considering the constraints, the mechanism geometry, friction between components, geometric properties (mass, inertia and gravity center) and applying the Newton-Euler method. With the aftermath, it is possible to determine the clamp force available and the closing force curve, making possible to project in a precise and economical way, the hydraulic system, which supplies the oil outlet needed to execute the motion. The results are of fundamental importance in the optimization of such machines, for future studies where it is necessary to know the dynamic behavior of the machine and its components, in structural analysis or control system design.

Keywords

- Plastics, Injection Molding Machine, Clamp System, Clamp Force
3.9 Centro de massa do corpo 5 ... 38
3.10 Centro de massa do corpo 6 ... 38
3.11 Cruzeta (corpo 7) e cilindro de fechamento 39
3.12 Corpo 1 e base móvel de referência B₁ 40
3.13 Corpo 2 e base móvel de referência B₂ 41
3.14 Corpo 3 e base móvel de referência B₃ 41
3.15 Corpo 7 (cruzeta) e sistema inercial I 43
3.16 Corpo 8 (placa móvel) .. 44
3.17 Vista superior da unidade de fechamento 45
3.18 Vista frontal da unidade de fechamento 46
3.19 Representação das rigidezes dos articuladores traseiros e frontais ... 47
3.20 Representação das rigidezes da unidade de fechamento 48
3.21 Diagrama de corpo livre do articulador traseiro superior (corpo 1) ... 49
3.22 Diagrama de corpo livre do articulador dianteiro superior (corpo 2) ... 50
3.23 Diagrama de corpo livre do articulador da cruzeta superior (corpo 3) ... 51
3.24 Diagrama de corpo livre do articulador traseiro inferior (corpo 4) ... 52
3.25 Diagrama de corpo livre do articulador dianteiro inferior (corpo 5) ... 53
3.26 Diagrama de corpo livre do articulador da cruzeta inferior (corpo 6) ... 54
3.27 Acionador dos articuladores da cruzeta (corpo 7) 55
3.28 Placa móvel (corpo 8) .. 56
3.29 Atrito entre eixo e furo .. 58
3.30 Vetor x^T .. 66
4.1 Mecanismo recuado (posição inicial) ... 74

4.2 Gráfico do deslocamento da placa móvel (corpo 8) em função do deslocamento do cilindro de fechamento ou cruzeta (corpo 7) .. 76

4.3 Gráfico da razão entre velocidade da placa móvel (corpo 8) e velocidade do cilindro de fechamento ou cruzeta (corpo 7) ... 77

4.4 Gráfico da força de travamento em função da rigidez do tirante e do conjunto formado por placa do cilindro, articuladores, placa móvel, molde e placa fixa 77

4.5 Gráfico da multiplicação da força do cilindro em função do curso da placa móvel 78

4.6 Gráfico de comparação da influência do momento de inércia no esforço necessário do cilindro de fechamento .. 79

5.1 Equalização dos tirantes .. 80

5.2 Ponte para medição do esforço de tração .. 81
Lista de Tabelas

4.1 Dados da geometria dos componentes ... 75
Nomenclatura

Letras latinas

B_1 sistema de referência inercial (definido pelos vetores unitários $\vec{i}, \vec{j}, \vec{k}$)
B_1 sistema de referência móvel (definido pelos vetores unitários $\vec{i}_1, \vec{j}_1, \vec{k}_1$)
B_2 sistema de referência móvel (definido pelos vetores unitários $\vec{i}_2, \vec{j}_2, \vec{k}_2$)
B_3 sistema de referência móvel (definido pelos vetores unitários $\vec{i}_3, \vec{j}_3, \vec{k}_3$)
B_4 sistema de referência móvel (definido pelos vetores unitários $\vec{i}_4, \vec{j}_4, \vec{k}_4$)
B_5 sistema de referência móvel (definido pelos vetores unitários $\vec{i}_5, \vec{j}_5, \vec{k}_5$)
B_6 sistema de referência móvel (definido pelos vetores unitários $\vec{i}_6, \vec{j}_6, \vec{k}_6$)
x, y, z coordenadas cartesiana da base B_1
x_1, y_1, z_1 coordenadas cartesiana da base B_1
x_2, y_2, z_2 coordenadas cartesiana da base B_2
x_3, y_3, z_3 coordenadas cartesiana da base B_3
x_4, y_4, z_4 coordenadas cartesiana da base B_4
x_5, y_5, z_5 coordenadas cartesiana da base B_5
x_6, y_6, z_6 coordenadas cartesiana da base B_6
T_{η_1} matriz de transformação da base B_1 para a base B_1
T_{η_2} matriz de transformação da base B_1 para a base B_2
T_{η_3} matriz de transformação da base B_1 para a base B_3
T_{η_4} matriz de transformação da base B_1 para a base B_4
T_{η_5} matriz de transformação da base B_1 para a base B_5
T_{η_6} matriz de transformação da base B_1 para a base B_6
A_x componente da reação no ponto A, representada no eixo x da base inercial
A_y componente da reação no ponto A, representada no eixo y da base inercial
B_x componente da reação no ponto B, representada no eixo x da base inercial
B_y componente da reação no ponto B, representada no eixo y da base inercial
C_x componente da reação no ponto C, representada no eixo x da base inercial
C_y componente da reação no ponto C, representada no eixo y da base inercial
D_x componente da reação no ponto D, representada no eixo x da base inercial
D_y componente da reação no ponto D, representada no eixo y da base inercial
E_x componente da reação no ponto E, representada no eixo x da base inercial
E_y componente da reação no ponto E, representada no eixo y da base inercial
F_x componente da reação no ponto F, representada no eixo x da base inercial
F_y componente da reação no ponto F, representada no eixo y da base inercial
componente da reação no ponto G, representada no eixo x da base inercial
componente da reação no ponto G, representada no eixo y da base inercial
componente da reação no ponto H, representada no eixo x da base inercial
componente da reação no ponto H, representada no eixo y da base inercial
componente da reação no ponto I, representada no eixo x da base inercial
componente da reação no ponto I, representada no eixo y da base inercial
componente da reação no ponto O, representada no eixo x da base inercial
componente da reação no ponto O, representada no eixo y da base inercial
força do cilindro de fechamento sobre a cruzeta, representada no eixo x da base inercial

força de atrito contrária ao movimento
reação do eixo no corpo 7, representado no eixo x y da base inercial
reação da base no corpo 8, representado no eixo x y da base inercial
posição da cruzeta, ou haste do cilindro de fechamento, representada no eixo x da base inercial
variação da posição da cruzeta
posição do ponto B e G da placa do cilindro, representada no eixo x da base inercial
posição absoluta da placa móvel
comprimento dos articuladores da cruzeta (corpos 3 e 6)
comprimento dos articuladores dianteiros (corpos 2 e 5)
comprimento dos articuladores traseiros (corpos 1 e 4)
distância entre os pontos D e O ou E e I, representada no eixo y da base inercial
distância entre os pontos B e D ou G e E, representada no eixo y da base inercial
distância entre os corpos 7 e 8, medida no eixo x da base inercial entre os pontos D e O ou E e I
distância entre os pontos A e C ou F e H
projeção de \(d_{AC} \) no eixo x da base móvel B₁ ou base móvel B₄
projeção de \(d_{AC} \) no eixo y da base móvel B₁ ou base móvel B₄
distância, na base inercial, entre o centro de gravidade do corpo 7 e ponto de aplicação das reações no eixo x
distância, na base inercial, entre o centro de gravidade do corpo 7 e ponto de aplicação das reações no eixo y
distância, na base inercial, entre o centro de gravidade do corpo 8 e ponto de aplicação das reações no eixo x
distância, na base inercial, entre o centro de gravidade do corpo 8 e ponto de aplicação das reações no eixo y
distância, na base inercial, entre o centro de gravidade do corpo 7 e a reação \(R_y \)
distância, na base inercial, entre o centro de gravidade do corpo 8 e a reação \(N_y \)
posição medida no eixo x do centro de gravidade do corpo 1
posição medida no eixo y do centro de gravidade do corpo 1
posição medida no eixo x do centro de gravidade do corpo 2
posição medida no eixo y do centro de gravidade do corpo 2
X_{CG3} posição medida no eixo x do centro de gravidade do corpo 3
Y_{CG3} posição medida no eixo y do centro de gravidade do corpo 3
X_{CG4} posição medida no eixo x do centro de gravidade do corpo 4
Y_{CG4} posição medida no eixo y do centro de gravidade do corpo 4
X_{CG5} posição medida no eixo x do centro de gravidade do corpo 5
Y_{CG5} posição medida no eixo y do centro de gravidade do corpo 5
X_{CG6} posição medida no eixo x do centro de gravidade do corpo 6
Y_{CG6} posição medida no eixo y do centro de gravidade do corpo 6
m_1 massa do corpo 1
m_2 massa do corpo 2
m_3 massa do corpo 3
m_4 massa do corpo 4
m_5 massa do corpo 5
m_6 massa do corpo 6
m_7 massa do corpo 7
m_8 massa do corpo 8
I_{ZZ1} momento de inércia em relação ao eixo z do corpo 1
I_{ZZ2} momento de inércia em relação ao eixo z do corpo 2
I_{ZZ3} momento de inércia em relação ao eixo z do corpo 3
I_{ZZ4} momento de inércia em relação ao eixo z do corpo 4
I_{ZZ5} momento de inércia em relação ao eixo z do corpo 5
I_{ZZ6} momento de inércia em relação ao eixo z do corpo 6
d diâmetro do eixo
d_1 diâmetro do eixo dos articuladores
d_2 diâmetro do eixo da cruzeta
\dot{x}_{78} velocidade relativa entre os corpos 7 e 8
\dot{x}_{pm} velocidade linear absoluta do corpo 8
\dot{x}_7 velocidade linear absoluta do corpo 7
\ddot{x}_{78} aceleração relativa entre os corpos 7 e 8
\ddot{x}_{pm} aceleração linear absoluta do corpo 8
\ddot{x}_7 aceleração linear absoluta do corpo 7
M_A momento em torno do ponto A, representado na base inercial
M_B momento em torno do ponto B, representado na base inercial
M_C momento em torno do ponto C, representado na base inercial
M_D momento em torno do ponto D, representado na base inercial
M_E momento em torno do ponto E, representado na base inercial
M_F momento em torno do ponto F, representado na base inercial
M_G momento em torno do ponto G, representado na base inercial
M_H momento em torno do ponto H, representado na base inercial
M_I momento em torno do ponto I, representado na base inercial
M_O momento em torno do ponto O, representado na base inercial
g aceleração da gravidade
k_{TR} rigidez dos tirantes
k_{CONJ}
rigidez do conunto sem os tirantes

x_{ELONG}
estiramento dos tirantes

x_{ENC}
encurtamento do conjunto

F_{TIR}
força de tração nos tirantes

F_{CONJ}
força de compressão sobre o conjunto

Letras gregas

η_1
ângulo entre a base móvel solidária ao corpo 1 e a base inercial

η_2
ângulo entre a base móvel solidária ao corpo 2 e a base inercial

η_3
ângulo entre a base móvel solidária ao corpo 3 e a base inercial

η_4
ângulo entre a base móvel solidária ao corpo 4 e a base inercial

η_5
ângulo entre a base móvel solidária ao corpo 5 e a base inercial

η_6
ângulo entre a base móvel solidária ao corpo 6 e a base inercial

$\dot{\eta}_1$
velocidade angular absoluta da base móvel 1

$\dot{\eta}_2$
velocidade angular absoluta da base móvel 2

$\dot{\eta}_3$
velocidade angular absoluta da base móvel 3

$\dot{\eta}_4$
velocidade angular absoluta da base móvel 4

$\dot{\eta}_5$
velocidade angular absoluta da base móvel 5

$\dot{\eta}_6$
velocidade angular absoluta da base móvel 6

$\ddot{\eta}_1$
aceleração angular absoluta da base móvel 1

$\ddot{\eta}_2$
aceleração angular absoluta da base móvel 2

$\ddot{\eta}_3$
aceleração angular absoluta da base móvel 3

$\ddot{\eta}_4$
aceleração angular absoluta da base móvel 4

$\ddot{\eta}_5$
aceleração angular absoluta da base móvel 5

$\ddot{\eta}_6$
aceleração angular absoluta da base móvel 6

α
ângulo do articulador da cruzeta em relação à horizontal

$\vec{\omega}_1$
vetor de velocidade angular absoluta do corpo 1 representado na base inercial

$\vec{\omega}_2$
vetor de velocidade angular absoluta do corpo 2 representado na base inercial

$\vec{\omega}_3$
vetor de velocidade angular absoluta do corpo 3 representado na base inercial

$\vec{\omega}_4$
vetor de velocidade angular absoluta do corpo 4 representado na base inercial

$\vec{\omega}_5$
vetor de velocidade angular absoluta do corpo 5 representado na base inercial

$\vec{\omega}_6$
vetor de velocidade angular absoluta do corpo 6 representado na base inercial

$\vec{\omega}_1$
vetor de aceleração angular absoluta do corpo 1 representado na base inercial

$\vec{\omega}_2$
vetor de aceleração angular absoluta do corpo 2 representado na base inercial

$\vec{\omega}_3$
vetor de aceleração angular absoluta do corpo 3 representado na base inercial

$\vec{\omega}_4$
vetor de aceleração angular absoluta do corpo 4 representado na base inercial

$\vec{\omega}_5$
vetor de aceleração angular absoluta do corpo 5 representado na base inercial

$\vec{\omega}_6$
vetor de aceleração angular absoluta do corpo 6 representado na base inercial

μ
coeficiente de atrito

$B_1 \Omega$
velocidade angular do sistema móvel de referência representado na base móvel B1
\(\dot{\theta} \) velocidade angular do corpo

\(\partial \) derivada parcial

\(\varepsilon \) deformação relativa

\(\sigma \) tensão

Subscritos

\(b_i \) vetor genérico, o subscrito anterior indica que o vetor está representado na base \(B_i \)

Vetores e Matrizes

negrito minúsculo vetor

negrito maiúsculo matriz
Capítulo 1

Introdução

Não é sem razão que os plásticos experimentaram um desenvolvimento tão rápido. Plásticos são materiais com uma larga faixa de aplicações. Suas propriedades podem ser resumidas como se segue:

- São leves, com a densidade variando entre 800 a 2200 kg/m³, sendo mais leves que metais e cerâmicas;
- Tem uma grande e variada faixa de propriedades mecânicas, podendo ser moles e flexíveis ou duros e rígidos;
- Podem ser processados de maneira simples e econômica a baixas temperaturas, em formato de peças complexas que, frequentemente, não necessitam de acabamento final, requisitando pouca energia para produção e processo em relação a outros métodos de transformação;
- Podem ser reutilizados e reciclados por meio de diferentes métodos.

Nos E.U.A., a indústria do plástico, composta por fabricantes de máquinas, moldes e plástico como matéria-prima, gerou empregos continuamente nas últimas duas décadas, mesmo quando a taxa de emprego caiu na indústria. De 1991 a 1994 a taxa de emprego cresceu 16% na indústria do plástico (Society of the plastic industry, 1997).
No Brasil, não é diferente. O consumo de plástico vem crescendo ano após ano e ainda tem um grande potencial para crescer. O consumo per capita é de apenas 20 kg/pessoa por ano, enquanto que é de 70 kg/pessoa na Europa e em torno de 100 kg/pessoa nos E.U.A.

Entre os processos de transformação do plástico, a injeção é o segmento que prevalece na área, representando ao redor de 49% das peças obtidas, enquanto que a extrusão tem uma fatia de 28% e o sopro tem participação de 18%, cabendo o restante aos demais processos de moldagem do plástico (Brazil Plastics in the Internet, 1997).

Portanto, a injeção de plásticos representa um dos mais importantes métodos de produção em processamento de plásticos, tendo algumas características que fazem a utilização deste método vantajosa, especialmente para produção em massa de peças de geometria complexa. Estas características são:

- Caminho direto da resina para a peça acabada;
- Nenhum ou mínimo acabamento é necessário em peças injetadas.
- O processo pode ser totalmente automatizado;
- Boa reprodutibilidade de produção.

A faixa de peças que podem ser produzidas em injeção de plásticos vai das menores engrenagens e rolagem até grandes recipientes. O peso das peças injetadas é da ordem de 10^{-5} até 10^3 N.

As máquinas injetoras de plástico são máquinas que transformam o plástico na forma de grãos em peças acabadas. A transformação é feita pela plastificação do material e sua injeção sob pressão no molde, onde é solidificado tomando a forma da cavidade. O processo não é novo, mas apesar de ter sido patenteado em 1872, só em 1926 as primeiras máquinas passaram a ser produzidas em série (Rubin, 1972). O uso dessas máquinas vem crescendo muito nestes últimos anos, de modo que a tecnologia empregada vem se desenvolvendo cada vez mais.

Os dois componentes essenciais de uma máquina injetora são a unidade injetora e a unidade de fechamento (Johannaber, 1983).
A unidade injetora é responsável pela plastificação do material, aquecendo e derretendo-o, e pela injeção sob pressão do plástico derretido para dentro do molde.

A unidade de fechamento é responsável pelo movimento de abertura e fechamento do molde, composto por duas partes, e por assegurar que o molde não abrirá durante o processo de injeção do plástico. Uma metade do molde fica fixa numa placa, enquanto a outra é presa a uma placa que desliza horizontalmente até se encontrarem, fechando-se então o molde. Após a injeção e solidificação do plástico no molde, o molde é aberto para que a peça possa ser expulsa (Ireland, 1978).

Para garantir que a peça a ser moldada na máquina injetora tenha um bom acabamento é necessário que o plástico seja injetado a altíssimas pressões (até 200 MPa) para evitar "rexupes" ou má formação da peça, ou até mesmo perdas de características do material. Devido às estas pressões, há uma força, de ordem de várias toneladas, que tenta separar as duas partes do molde. Apenas como exemplo, para injetar um copo de plástico é necessário cerca de 500 kN de força de fechamento, para que o molde permaneça fechado. Para atingir a força necessária de fechamento, existe um mecanismo que além de abrir e fechar o molde, multiplica a força aplicada ao mesmo, gerada por um cilindro hidráulico.

Conhecendo-se o comportamento dinâmico do mecanismo, pode-se dimensionar corretamente a força instantânea necessária para acionar o mecanismo segundo a necessidade imposta pelo processo e também a relação de multiplicação de forças dada pelo mecanismo. Tendo o conhecimento da variação dessa força, o dimensionamento do sistema hidráulico da máquina (bombas, reservatório e motor) pode ser feito mais precisamente.

As máquinas existentes no mercado possuem 4 pontos, numa referência ao número de articulações existentes no mecanismo, e é mais fácil de se encontrar literatura a respeito, como no modelo proposto por Cappela (1995) e na verificação da força de travamento feita por Peterson e Reuter (1994). No entanto, por serem as máquinas de 5 pontos mais recentes, existem poucas publicações relativas aos objetivos deste trabalho.
Por estes motivos, resolveu-se desenvolver um sistema computacional que baseado na geometria e cinemática do modelo, servisse de ferramenta para o desenvolvimento do projeto de uma máquina 5 pontos, fornecendo as reações dinâmicas do modelo estudado e visando projetar da maneira mais eficiente, sem a necessidade de se construir um protótipo.
Capítulo 2

Aspectos Gerais

Neste capítulo são apresentados conceitos básicos necessários para a compreensão do funcionamento do mecanismo, assim como a revisão de literatura sobre o projeto de unidades de fechamento.

2.1 Molde

O molde é a cavidade que será preenchida pelo plástico injetado. É composto de duas partes, que se juntam para receber o plástico injetado e se separam para expulsar a(s) peça(s). Possui canais para resfriamento do plástico. A Figura (2.1) mostra um cesto de plástico sendo extraído do respectivo molde.

Figura 2.1: Molde de um cesto de plástico
2.2 Máquina Injetora de Plásticos

A Figura (2.2) apresenta uma máquina injetora de plásticos *ROMI* com seus principais componentes indicados. O processo de injeção ocorre conforme descrito a seguir:

![Máquina Injetora de Plásticos](image)

Figura 2.2 - Máquina injetora de plásticos *ROMI*: 1 - placa móvel, 2 - molde, 3 - placa fixa, 4 - tirante, 5 - cilindro hidráulico de fechamento, 6 - acionador dos articuladores (cruzeta), 7 - articulador traseiro, 8 - placa extratora, 9 - funil de alimentação, 10 - parafuso plastificador, 11 - resistências elétricas, 12 - cilindro de injeção, 13 - placa do cilindro, 14 - saída de peças, 15 - base da máquina, 16 - motor hidráulico e 17 - bico de injeção.

Alimenta-se a máquina com grânulos plásticos, através do funil (9). Com o orifício do bico de injeção (17) fechado, o parafuso plastificador (10) gira com o torque fornecido pelo motor hidráulico (16). Com essa rotação e auxílio das resistências elétricas (11), o plástico se funde formando uma massa que se acumula no bico de injeção. Obtendo-se a quantidade necessária de material para injetar, o molde (2) deve estar fechado, preparado para receber o plástico fundido. Em seguida, o conjunto de injeção se move, permitindo que o bico de injeção seja introduzido dentro do molde, preparando-se, para ao ser aberto o orifício do mesmo, a massa possa ser injetada sob pressão por meio do deslocamento axial do parafuso plastificador originado pelo cilindro de injeção (12). Ao término da injeção, espera-se o tempo de resfriamento e então o molde é aberto, expulsando-se a(s) peça(s) injetada(s) com a placa extratora (8), através da saída de peças (14).
2.3 Unidade de Fechamento

É um processo bastante rápido, permitindo uma produção seriada com tempos de ciclo da máquina de até 1 segundo, dependendo do tamanho da peça a ser injetada.

A unidade injetora é formada pelos componentes (9), (10), (11), (12), (16) e (17) e é responsável pela plastificação e injeção do material.

2.3 Unidade de Fechamento

Outro componente essencial da máquina injetora de plásticos é a unidade de fechamento, que é responsável pela abertura e fechamento do molde e extração da(s) peça(s). Tem também a função de suportar a força causada pela injeção do plástico sob pressão, evitando que o molde se abra. Por exemplo: deseja-se injetar um CD, utilizando PC (Policarbonato) à temperatura de 300°C e pressão de 84 MPa. Sabendo-se que o CD tem diâmetro de 0,120 m, sua área projetada é dada por:

\[A = \frac{\pi \cdot 0.120^2}{4} \approx 1,13 \cdot 10^{-2} \, m^2 \]

Portanto, calcula-se a força de separação do molde pela equação:

\[F = \text{pressão} \cdot A = 84 \cdot 10^6 \cdot 1,13 \cdot 10^{-2} \approx 950 \, kN \]

Logo, seria necessário uma máquina com força de fechamento superior à força de separação do molde para injetar-se o CD.

A força de fechamento é usada para especificar uma máquina e é dada geralmente em toneladas-força ou kN, referindo-se à força de fechamento disponível. Exemplo: Máquina Injetora com 3000 kN (300 tf) de força de fechamento.

Segundo Michaeli (1995) existem dois tipos básicos de unidade de fechamento que realizam as funções descritas anteriormente:
2.3 Unidade de Fechamento

- unidade de fechamento hidráulica;
- unidade de fechamento mecânica.

2.3.1 Unidade de Fechamento Hidráulica

O sistema de fechamento hidráulico, conforme Figura (2.3), baseia-se num cilindro hidráulico com a haste fixada diretamente na placa móvel (1) gerando o deslocamento axial da mesma e a força de fechamento necessária. É usado geralmente em máquinas menores com força de fechamento abaixo de 1000 kN, pois os custos crescem muito em máquinas maiores devido às dificuldades em garantir as tolerâncias de usinagem em diâmetros grandes, à necessidade de vedações eficientes e de equipamentos como motores e bombas de alta capacidade para fornecer o fluxo de óleo necessário. A sequência do acionamento dá-se da seguinte forma:

Primeiramente, injeta-se óleo sob pressão no cilindro de fechamento rápido para permitir o fechamento do molde (2) por meio do deslocamento da placa móvel (1) na direção da placa fixa (3). No momento em que as duas partes do molde se tocam, injeta-se óleo sob pressão no cilindro principal de fechamento (5), proporcionando uma força de fechamento proporcional à área do pistão principal suficiente para impedir que a força de separação do molde, ao injetar-se o material, possa abri-lo. Ao exercer a força de fechamento, a camisa do cilindro principal de fechamento, que está fixada numa placa recebe o esforço de reação do cilindro, estirando os tirantes (4) que por sua vez estão fixados nessa placa e na placa fixa que recebe o esforço do cilindro através do molde, gerando-se então, a força de compressão sobre o molde. Para se ter ideia do tamanho do cilindro principal de fechamento, basta multiplicar a área do pistão pela pressão de trabalho do óleo. Para uma pressão padrão de 17,5 MPa, é necessário que o diâmetro do pistão principal seja de no mínimo 0,270 m para atingir 1000 kN de força de fechamento sobre o molde. Assim fica fácil entender porque este sistema não é muito utilizado em máquinas com força de fechamento superior a 1000 kN, pois o diâmetro necessário do pistão principal passa a ser muito grande, implicando em algumas desvantagens, como maior reservatório devido à quantidade de óleo, trocador de calor com capacidade maior e custos de fabricação elevados.
2.3 Unidade de Fechamento

Figura 2.3 - Unidade de fechamento hidráulica: 1 - placa móvel, 2 - molde, 3 - placa fixa, 4 - tirantes e 5 - cilindro principal de fechamento.

2.3.2 Unidade de Fechamento Mecânica

O sistema de fechamento mecânico, ilustrado na Figura (2.2), baseia-se num mecanismo multiplicador de forças formado pelos articuladores (7) e cruzeta (6), acionados pelo cilindro hidráulico (5). Possui como principais vantagens sobre o sistema de fechamento hidráulico a velocidade de fechamento/abertura do molde alcançada com cilindros hidráulicos relativamente menores (para máquina de 3000 kN, necessita-se de diâmetro do pistão de 0.075 m contra os 0.470 m de uma máquina hidráulica), e ao fechar-se o molde, não há mais necessidade de energia para manter a força de fechamento durante a injeção do plástico, pois o mecanismo "trava". Este sistema possibilita também, devido às suas relações geométricas, velocidades maiores que no sistema hidráulico até a uma pequena distância de contato entre as duas metades do molde, diminuindo-se a velocidade em seguida e aumentando a força de fechamento. Ocorre então, um fechamento suave do molde. É o sistema mais utilizado em máquinas com força de fechamento entre 1500 e 10000 kN (Scigert e Fueller, 1991). Este sistema permite uma velocidade de 10 a
2.3 Unidade de Fechamento

20% maior e uma necessidade de potência de 10 a 20% menor do que em uma máquina hidráulica (Klein e Bichler, 1991).

A unidade de fechamento mecânica é composta pelos seguintes componentes da Figura (2.2):

1. Placa móvel;
2. Molde da peça a ser injetada;
3. Placa fixa;
4. Tirantes;
5. Cilindro de fechamento;
6. Cruzeta;
7. Articuladores;
8. Placa extratora;
13. Placa do cilindro;
14. Saída de peças;
15. Base da máquina.

A seguir descreve-se a sequência do acionamento do sistema de fechamento mecânico de acordo com Cappella (1995):

Enquanto a unidade injetora está plastificando o material a ser injetado, a unidade de fechamento deve estar se preparando para receber o plástico. Injeta-se óleo à vazão constante no cilindro de fechamento (5) fazendo com que a cruzeta (6) se movimente axialmente acionando os articuladores (7) que por sua vez, provocam o deslocamento horizontal da placa móvel (1) guiada pelos tirantes (4), produzindo o fechamento do molde (2). Ao ocorrer o contato entre as partes do molde, injeta-se óleo à pressão máxima do sistema e então ocorre a deformação elástica do mecanismo de fechamento. Essa deformação é causada pelo fato de o conjunto formado pelos articuladores, placa móvel, placa do cilindro, placa fixa e molde ser um pouco maior que o comprimento dos tirantes. Com isso, os tirantes são estirados e o mecanismo sofre um esforço de compressão que vai garantir a força de fechamento sobre o molde. A Figura (2.4) mostra o
2.3 Unidade de Fechamento

momento de contato do molde em uma unidade de fechamento mecânica com o tirante superior em corte para melhor visualização. As duas partes do molde já estão em contato e o ângulo \(\alpha \) é menor que 90°. A partir deste momento ocorre a deformação elástica do conjunto até que o ângulo \(\alpha \) seja igual a 90°, "travando" a máquina e não é mais necessário atuar sobre o cilindro hidráulico para manter o molde fechado.

![Diagrama de Unidade de Fechamento Mecânica](image)

Figura 2.4 - Unidade de fechamento mecânica

Dentro das unidades de fechamento mecânicas, as máquinas podem ser classificadas como de joelhos simples (*mono-toggle*) ou de joelhos duplos (*bi-toggle*), que caracterizam-se por um ou dois conjuntos de articuladores responsáveis pelo fechamento e travamento do molde. A Figura (2.4) representa uma unidade de fechamento mecânica de joelhos duplos.

2.3.2.1 Sistema de Fechamento de Joelhos Simples

O sistema de joelhos simples é geralmente utilizado em máquinas pequenas com até 1000 kN de força de fechamento. Caracteriza-se por ser um sistema ágil e pelo esforço ser centralizado no molde, obtendo-se melhor contato entre as placas e o molde (Ireland, 1978). Na Figura (2.5)
pode-se observar uma máquina com sistema de fechamento de joelhos simples com a articulação distendida e com a haste do cilindro de fechamento totalmente avançada.

![Diagrama de fechamento mecânico de joelhos simples](image)

Figura 2.5 - Sistema de fechamento mecânico de joelhos simples

2.3.2.2 Sistema de Fechamento de Joelhos Duplos

Ao contrário do sistema de fechamento de joelhos simples, este sistema utiliza dois conjuntos de articuladores para fazer o travamento da máquina, pois como se trabalha com dimensões de molde maiores, há necessidade de melhor distribuição do esforço sobre o molde, mantendo o maior contato possível entre sua superfície e as placas móveis e fixa. A Figura (2.4) mostra uma unidade de fechamento mecânica de joelhos duplos. Este sistema é utilizado em máquinas de porte maior.

2.3.2.2.1 Sistema de Fechamento de Joelhos Duplos - 4 e 5 pontos

Os sistemas de fechamento são subclassificados também como sendo de 4 pontos ou 5
2.3 Unidade de Fechamento

pontos, numa referência ao número de articulações num conjunto de joelhos. O sistema de 4 pontos necessita de um cilindro de fechamento com curso em torno de 1,0 a 1,25 vezes o curso da placa móvel, enquanto que para o sistema de 5 pontos essa relação baixa para 0,7 a 0,9 vezes, permitindo-se tempos menores para a abertura e fechamento do molde, porém com uma necessidade de força maior do cilindro. (Rahman e Schott, 1994). Na Figura (2.6) observa-se uma comparação entre os sistema de 4 e 5 pontos de uma máquina injetora de 7000 kN de força de fechamento. Nota-se que, na parte superior, que representa uma máquina 5 pontos, há uma articulação a mais em relação ao esquema da máquina 4 pontos representada na parte inferior. O articulador da cruzeta (2) está vinculado ao articulador traseiro (1) por meio de um terceiro eixo que não coincide com o eixo do articulador frontal (3), como ocorre na configuração para 4 pontos. Nota-se ainda que, para o mesmo curso da placa móvel (1170 mm), é necessário um curso do cilindro de fechamento 0,385 m menor, proporcionando velocidades de abertura/fechamento maiores, fazendo com que a dinâmica se torne importante. Mas por outro lado, é necessário um esforço maior, pois o "braço" de aplicação da força é menor. Logo o diâmetro necessário do cilindro de fechamento é maior (0,160 m contra 0,125 m no sistema de 4 pontos). Em função também da geometria, a multiplicação de forças conseguida por meio do mecanismo acionador e da deformação elástica é menor para a unidade de 5 pontos. Consegue-se uma relação de multiplicação da força de acionamento de cerca de 21 a 28 vezes, enquanto que na unidade de 4 pontos, esta relação vai de 37 a 43.

![Figura 2.6 - Comparação entre sistemas de 4 e 5 pontos: 1 - articulador traseiro, 2 - articulador da cruzeta, 3 - articulador dianteiro](image-url)
2.4 Caracterização do Problema

Com a necessidade de se desenvolver novos projetos que visassem ganhos em produção de peças, menor custo de fabricação, menor consumo de energia elétrica e ganho em espaço físico com o encurtamento da máquina, resolveu-se adotar o sistema de fechamento de 5 pontos. Porém, o dimensionamento dos outros componentes da máquina, como bombas, motor elétrico, cilindro e válvulas, deve ser feito de acordo com as características do novo projeto, ou seja, é a multiplicação de forças do mecanismo que vai definir qual o diâmetro do cilindro necessário para ocorrer o travamento da máquina. É a velocidade de fechamento que vai definir a vazão das bombas, e esta vazão é que vai definir o motor elétrico para fornecer o torque suficiente ou potência necessária. Com isso passa-se a projetar a máquina de maneira mais eficiente, podendo-se otimizar o uso dos componentes.

Foi então que viu-se surgir a necessidade de conhecer o comportamento do mecanismo de 5 pontos, para poder sanar todas as dúvidas existentes sobre a unidade de fechamento. Assim, após um a revisão bibliográfica, constatou-se que existiam poucas informações referentes a sistema de fechamento de 5 pontos para máquinas injetoras e as existentes não levavam em consideração a dinâmica da máquina.

Peterson e Reuter (1994) montaram um dispositivo que podia medir a deformação, e consequentemente a força aplicada sobre o molde. O dispositivo se baseava em extensômetros montados a 90°, formando uma ponte de Wheatstone, nos 4 tirantes da máquina que davam o estiramento de cada um dos tirantes, como mostrado na Figura (2.7). Assim definia-se, com a medida do pistão do cilindro de fechamento e da pressão de travamento, a relação de multiplicação entre a força de travamento e força disponível no cilindro. Porém, a análise feita foi apenas estática, não se preocupando com a dinâmica do conjunto e com o incorreto dimensionamento das bombas e motor elétrico.

Cappella (1995) desenvolveu um modelo matemático, baseado na geometria e atrito rotacional nas articulações, mas sem se preocupar com as propriedades de inércia dos articuladores e placas e com os atritos de deslizamento entre placa móvel e base, e cruzeta e eixo.
2.4 Caracterização do Problema

Figura 2.7 - Extensômetros para medir esforço de tração nos tirantes

Os resultados do travamento foram confrontados com a instrumentação feita utilizando extensômetros, chegando-se a dados coerentes. Vale lembrar que o coeficiente de atrito funciona nesse caso como variável de ajuste. Como o coeficiente de atrito não pode ser determinado facilmente neste caso, já que as reações durante o deslocamento relativo entre os articuladores e pinos são variáveis, o que se faz é ajustar o valor do atrito para que seu modelo chegue o mais próximo do resultado experimental. Levou-se em consideração também a deformação elástica do conjunto, calculando a constante de mola. Porém, mais uma vez, não se preocupou com o correto dimensionamento dos outros componentes da unidade.

Fung et al. (1997) preocupou-se em determinar em mecanismos 4 e 5 pontos, as velocidades e acelerações para estimar as forças de inércia que fornecem a base para calcular as forças de acionamento necessárias porém não considerou-se o atrito nas articulações. Foram utilizadas técnicas de multi-corpos para calcular a posição, velocidade e aceleração do mecanismo de joelhos. Para análise dinâmica, utilizou-se do princípio de Hamilton e método dos multiplicadores de Lagrange para formular as equações do movimento. Utilizando-se das relações geométricas, as quais levam a equações algébricas não lineares, e do método de Lagrange, o qual fornece as equações diferenciais de movimento, resolvem-se os sistemas de equações numéricas com auxílio do método numérico Runge-Kutta e Newton-Raphson.
Portanto, nenhum trabalho citado abordou o problema de mecanismo 5 pontos levando-se em consideração o coeficiente de atrito nas articulações e o momento de inércia dos corpos.

Tem-se como objetivos desenvolver uma ferramenta para tornar o projeto de um mecanismo de 5 ponto mais eficiente e verificar a influência da inércia e do coeficiente de atrito no movimento do mecanismo.

Aproveitando-se ainda o conhecimento do comportamento da multiplicação de forças dada pelo mecanismo, pode-se determinar a força de travamento da máquina. Quando atinge-se tal condição, não é mais necessário atuar sobre o cilindro de fechamento. Conforme a Figura (2.4), o ângulo α formado entre o articulador da cruzeta e a horizontal indica quando a máquina "travou". No momento em que as duas partes do molde entram em contato, o ângulo α é menor que 90°. Ao atingir 90° a máquina estará travada.

O travamento pode ser explicado da seguinte maneira:

Quanto mais próxima a placa móvel estiver de seu fim de curso, maior é a força de fechamento disponível. Como o conjunto formado pela placa do cilindro, articuladores traseiros, articuladores dianteiros, placa móvel, molde, placa fixa (sem sofrerem nenhuma solicitação), é ligeiramente mais comprido que o comprimento útil dos tirantes (entre as placas fixa e do cilindro), ao fechar-se o molde, este conjunto será comprimido, enquanto que os tirantes serão estirados. Isto equivale-se a dizer que uma mola é comprimida e colocada em um dispositivo como o mostrado na Figura (2.8). O espaço entre as placas do dispositivo é menor do que o comprimento da mola quando em repouso (Figura 2.8a). Ao colocar-se a mola comprimida no dispositivo (Figura 2.8b), os tirantes sofrerão alongamento até chegar-se a um ponto de equilíbrio entre deformação da mola e alongamento dos tirantes (Figura 2.8c). Não importa o quanto a mola seja comprimida antes de ser colocada no dispositivo, as deformações ocorrem em função da característica de rigidez do conjunto, fazendo-se que haja um equilíbrio entre as forças aplicada na mola e no dispositivo. Por meio da Figura (2.9) pode-se tirar a seguinte relação entre a rigidez dos tirantes e do conjunto:
2.4 Caracterização do Problema

\[F_{CONJ} = k_{CONJ} \cdot x_{enc} \quad (2.1) \]

\[F_{TIR} = k_{TIR} \cdot x_{elong} \quad (2.2) \]

sendo \(k_{TIR} \) a rigidez dos tirantes, \(k_{CONJ} \) a rigidez do conjunto sem os tirantes, \(x_{elong} \) o estiramento dos tirantes, \(x_{enc} \) o encurtoamento do conjunto, \(F_{TIR} \) a força de tração nos tirantes e \(F_{CONJ} \) a força de compressão sobre o conjunto.

Como \(F_{TIR} = F_{CONJ} \) tem-se:

\[k_{TIR} = \frac{x_{enc}}{x_{elong}} \cdot k_{CONJ} \quad (2.3) \]

Figura 2.8 - (a) dispositivo composto por 2 placas, 2 tirantes e mola em repouso; (b) mola comprimida e dispositivo em repouso; (c) mola comprimida colocada no dispositivo, alcançando posição de equilíbrio, com alongamento dos tirantes e encurtoamento da mola em relação ao tamanho original quando em repouso.
A Figura (2.9) mostra a deformação dos tirantes e conjunto em função da força aplicada, chegando-se a um ponto de equilíbrio. Pode-se chegar a um sistema equivalente achando-se a rigidez da máquina que depende da deformação do conjunto \((x_{long} - x_{enc})\), como mostrado na Figura (2.10).

Figura 2.9 - Deformação dos tirantes e conjunto em função da força aplicada

Figura 2.10 - Deformação da máquina em função da força aplicada
2.4 Caracterização do Problema

Assim fica fácil de entender a Figura (2.11), podendo definir-se a máxima força de travamento que o mecanismo pode desenvolver. Como a placa móvel não chegará até o fim de curso, pois a deformação do conjunto a impede, o travamento se dará no equilíbrio das deformações dos tirantes e conjunto. Mas para haver essas deformações e equilíbrio, é necessário que o mecanismo tenha disponível o esforço de fechamento para essa posição da placa móvel. O travamento ocorre quando coincide-se a tangente da força de fechamento disponível com a curva da constante de mola (rigidez da máquina). Se o conjunto não for rígido o suficiente, por exemplo, com o molde de borracha, a curva da constante de mola desloca-se para baixo, e assim o travamento não ocorre. Se o conjunto for rígido demais, a curva da constante de mola desloca-se para cima, e passa a cortar a curva da força de fechamento disponível em dois pontos diferentes. A máquina trava com força de travamento mais baixa do que a especificada.

![Graph of friction force and contact point of mold](image)

Figura 2.11 - Gráfico da força de travamento e ponto de contato do molde

Do gráfico pode-se obter ainda o ponto de contato entre as partes do molde, indicado pelo cruzamento da reta da constante de mola com o eixo horizontal e conhecido como *kiss point*. A distância deste ponto até o eixo vertical mostra a deformação total ocorrida do conjunto. No gráfico da Figura (2.11), verifica-se que a força de travamento da máquina está próxima à 2500 kN, enquanto que o conjunto tem deformação de 7×10^{-5} m aproximadamente.
Capítulo 3

Modelagem Matemática

Os vários componentes do mecanismo em estudo, a máquina injetora de plásticos, realizam somente rotações em torno de um mesmo eixo, caracterizando um movimento plano. Convencionou-se utilizar rotações em torno do eixo Z. Como os corpos não podem ser modelados como partículas, pois as forças não atuam em um único ponto do corpo, utiliza-se a teoria de múltiplos corpos rígidos para descrever a dinâmica do mecanismo. No caso de movimentos espaciais obtém-se 6 equações para o equilíbrio de cada corpo, sendo 3 relacionadas aos movimentos de translação e 3 aos movimentos de rotação. No entanto, como se trata de movimentos planos, estas equações são reduzidas a somente 3 : 2 equações para descrever os movimentos de translação e 1 para os movimentos de rotação (Santos, 1997). O mecanismo é formado por 8 corpos como é mostrado na Figura (3.1), o que nos fornece 24 equações.

Primeiramente definiu-se os sistemas de referência com as respectivas matrizes de transformação de coordenadas. A seguir foram escritos os vetores de posição de cada corpo em suas bases de referência e calculados os vetores de velocidade e aceleração linear do centro de massa dos corpos rígidos e as velocidades e acelerações angulares dos mesmos, baseado nas relações geométricas dos movimentos, levando-se em consideração as restrições físicas de movimento e vínculos cinemáticos de cada corpo. Com o auxílio do diagrama de corpo livre de cada corpo e das respectivas propriedades físicas, como massa e tensor de inércia, pode-se determinar pelo método de Newton-Euler, a equação do movimento e as reações dinâmicas no domínio do tempo. Por fim, desenvolveu-se e implementou-se, num programa em Turbo Pascal, a solução numérica do sistema de equações utilizando Newton-Raphson para resolver as 24 equações não-lineares.
3.1 Sistemas de Referência

Figura 3.1 - Sistemas de referência inercial e móveis da unidade de fechamento

Para facilitar a representação dos vetores, convencionou-se utilizar sistemas de referências auxiliares para representar o movimento de qualquer ponto pertencente aos corpos indicados. O primeiro sistema de coordenadas definido é o referencial inercial, ou base inercial $B_1 (x,y,z)$. Os outros sistemas de referência são definidos como rotações em torno do eixo Z, perpendicular ao plano xy, da base inercial B_1. Os ângulos que definem estas rotações, representam as rotações que os corpos rígidos podem realizar. Estes sistemas de referência são definidos como:

- $B_i (x,y,z)$: referencial inercial
- $B_i (x_i,y_i,z_i)$: rotação do corpo i em torno de z. Com i variando de 1 a 6.
3.1 Sistemas de Referência

A partir das definições de rotação e ângulos entre os sistemas de referência e base inercial, é possível escrever as matrizes de transformação de coordenadas entre a base dos corpos e a base fixa. A Figura (3.2) mostra a rotação representada pelo ângulo \(\eta_i \) da base \(B_i \) \((x_i, y_i, z_i)\) em torno da base inercial.

\[
\mathbf{T}_{\eta_i} = \begin{bmatrix}
\cos \eta_i & \sin \eta_i & 0 \\
\sin \eta_i & \cos \eta_i & 0 \\
0 & 0 & 1
\end{bmatrix}
\]

\[
B s = \mathbf{T}{\eta_i} \cdot _s s
\]

\((3.1 \text{ a } 3.6)\)

Figura 3.2 - Sistemas de referência móvel \(B_i \) e matriz de transformação de coordenadas

As equações (3.1) a (3.6) representam a transformação de um vetor na base inercial para as bases móveis representadas na Figura genérica (3.2) com os respectivos ângulos de rotação em torno do eixo \(Z \).

Não há necessidade de utilizar bases móveis nos corpos 7 e 8, já que só apresentam movimentos de translação, que são facilmente representados na base inercial.
3.2 Vetores de Posição e Equações de Vínculo

Por meio das relações geométricas do mecanismo, pode-se descrever os ângulos das matrizes de transformação de coordenadas dos componentes do mecanismo em função do deslocamento do cilindro de fechamento conforme Figura (3.3). Isto é, com o deslocamento axial do cilindro de fechamento, cada componente do mecanismo tem uma nova posição no plano, definida por suas características geométricas (medidas) e vínculos. Conhecendo-se as posições e vínculos, pode-se escrever expressões que definam os ângulos das bases móveis em relação a inercial instantaneamente.

![Diagrama de mecanismo](image)

Figura 3.3 - Equações vetoriais fechadas

Escrevendo-se as equações vetoriais fechadas para os polígonos ACDO e EFHI e para os triângulos BCD e GFE, obtem-se as equações de vínculo (3.7), (3.8), (3.9) e (3.10), indicadas na Figura (3.4) com as respectivas medidas.

\[
\vec{r}_{OA} + \vec{r}_{AC} + \vec{r}_{CD} + \vec{r}_{DO} = \vec{0} \tag{3.7}
\]

\[
\vec{r}_{HI} + \vec{r}_{HF} + \vec{r}_{FE} + \vec{r}_{EI} = \vec{0} \tag{3.8}
\]

\[
\vec{r}_{BC} + \vec{r}_{CD} + \vec{r}_{DB} = \vec{0} \tag{3.9}
\]
3.2 Vetores de Posição e Equações de Vínculo

\[\vec{r}_{OE} + \vec{r}_{PE} + \vec{r}_{EG} = \vec{0} \] \hspace{1cm} (3.10)

Figura 3.4 - Equações de vínculos

Estes vetores são descritos como:

\[\vec{r}_{OA} \] : vetor de posição do ponto O até a origem do sistema móvel B₂, representado na base inercial, correspondente ao comprimento do articulador dianteiro (corpo 2).

\[\vec{r}_{AC} \] : vetor de posição da origem do sistema móvel B₂ até o ponto C, representado na base inercial, correspondente à distância dos pontos A e C do articulador traseiro (corpo 1).

\[\vec{r}_{CD} \] : vetor de posição do ponto C até a origem do sistema móvel B₃, representado na base inercial, correspondente ao comprimento do articulador da cruzeta (corpo 3).

\[\vec{r}_{DO} \] : vetor de posição da origem do sistema móvel B₃ até o ponto O da placa móvel (corpo 8), representado na base inercial.
3.2 Vetores de Posição e Equações de Vínculo

\(\mathbf{r}_{IH} \) : vetor de posição do ponto I até a origem do sistema móvel B₅, representado na base inercial, correspondente ao comprimento do articulador dianteiro (corpo 5).

\(\mathbf{r}_{HF} \) : vetor de posição da origem do sistema móvel B₅ até o ponto F, representado na base inercial, correspondente à distância dos pontos H e F do articulador traseiro (corpo 4).

\(\mathbf{r}_{FE} \) : vetor de posição do ponto F até a origem do sistema móvel B₆, representado na base inercial, correspondente ao comprimento do articulador da cruzeta (corpo 6).

\(\mathbf{r}_{EI} \) : vetor de posição da origem do sistema móvel B₆ até o ponto I da placa móvel (corpo 8), representado na base inercial.

\(\mathbf{r}_{BC} \) : vetor de posição da origem do sistema móvel B₁ até o ponto C do articulador da cruzeta (corpo 3), representado na base inercial.

\(\mathbf{r}_{DB} \) : vetor de posição do ponto D até a origem do sistema móvel B₃, representado na base inercial.

\(\mathbf{r}_{GF} \) : vetor de posição da origem do sistema móvel B₄ até o ponto G do articulador da cruzeta (corpo 6), representado na base inercial.

\(\mathbf{r}_{BG} \) : vetor de posição do ponto E até a origem do sistema móvel B₄, representado na base inercial.

Escrevendo-se os vetores de posição indicados na figura (3.4) no sistema de referência onde a sua representação é o mais fácil possível, tem-se:

\[
\begin{align*}
\mathbf{r}_{OA}^{B_1} &= \begin{pmatrix} -l_{AD} \\ 0 \\ 0 \end{pmatrix} \\
\mathbf{r}_{AC}^{B_3} &= \begin{pmatrix} -I_p \\ -y_p \\ 0 \end{pmatrix} \\
\mathbf{r}_{CD}^{B_3} &= \begin{pmatrix} 0 \\ -l_{AC} \\ 0 \end{pmatrix} \\
\mathbf{r}_{DO} &= \begin{pmatrix} x_{78} \\ y_{78} \\ 0 \end{pmatrix}
\end{align*}
\]
3.2 Vetores de Posição e Equações de Vínculo

\[
\begin{align*}
\mathbf{B}_4 \mathbf{r}_{IH} &= \begin{pmatrix}
-l_{AD} \\
0 \\
0
\end{pmatrix}, & \quad \mathbf{B}_4 \mathbf{r}_{HF} &= \begin{pmatrix}
-l_p \\
y_p \\
0
\end{pmatrix}, & \quad \mathbf{B}_4 \mathbf{r}_{FE} &= \begin{pmatrix}
0 \\
0 \\
0
\end{pmatrix}, & \quad \mathbf{i} \mathbf{r}_{El} &= \begin{pmatrix}
x_{78} \\
y_{78} \\
0
\end{pmatrix} \\
\mathbf{B}_4 \mathbf{r}_{BC} &= \begin{pmatrix}
l_{AT} - l_p \\
-y_p \\
0
\end{pmatrix}, & \quad \mathbf{i} \mathbf{r}_{DB} &= \begin{pmatrix}
x_p - x_C \\
y_{D2} \\
0
\end{pmatrix}, & \quad \mathbf{B}_4 \mathbf{r}_{GF} &= \begin{pmatrix}
l_{AT} - l_p \\
y_p \\
0
\end{pmatrix}, & \quad \mathbf{i} \mathbf{r}_{EG} &= \begin{pmatrix}
x_p - x_C \\
y_{D2} \\
0
\end{pmatrix}
\end{align*}
\]

Reescrevendo as equações (3.7) a (3.10), utilizando-se das equações de transformação de coordenadas (3.1) a (3.6), obtém-se:

\[
\begin{align*}
\begin{pmatrix}
-l_{AD} \cdot \cos \eta_2 \\
-l_{AD} \cdot \sin \eta_2 \\
0
\end{pmatrix} + \begin{pmatrix}
-l_p \cdot \cos \eta_1 + y_p \cdot \sin \eta_1 \\
l_{AC} \cdot \sin \eta_3 \\
0
\end{pmatrix} + \begin{pmatrix}
l_{AC} \cdot \sin \eta_3 \\
-l_{AC} \cdot \cos \eta_3 \\
0
\end{pmatrix} + \begin{pmatrix}
x_{78} \\
y_{78} \\
0
\end{pmatrix} &= \begin{pmatrix}
0 \\
0 \\
0
\end{pmatrix} \\
(3.11)
\end{align*}
\]

\[
\begin{align*}
\begin{pmatrix}
-l_{AD} \cdot \cos \eta_5 \\
-l_{AD} \cdot \sin \eta_5 \\
0
\end{pmatrix} + \begin{pmatrix}
l_{AT} - l_p \cdot \cos \eta_4 - y_p \cdot \sin \eta_4 \\
-l_p \cdot \sin \eta_4 + y_p \cdot \cos \eta_4 \\
l_{AC} \cdot \cos \eta_6 \\
0
\end{pmatrix} + \begin{pmatrix}
l_{AC} \cdot \sin \eta_6 \\
0 \\
0
\end{pmatrix} + \begin{pmatrix}
x_{71} \\
y_{71} \\
0
\end{pmatrix} &= \begin{pmatrix}
0 \\
0 \\
0
\end{pmatrix} \\
(3.12)
\end{align*}
\]

\[
\begin{align*}
\begin{pmatrix}
l_{AT} - l_p \cdot \cos \eta_1 + y_p \cdot \sin \eta_1 \\
l_{AT} - l_p \cdot \sin \eta_1 - y_p \cdot \cos \eta_1 \\
0
\end{pmatrix} + \begin{pmatrix}
l_{AC} \cdot \sin \eta_3 \\
-l_{AC} \cdot \cos \eta_3 \\
0
\end{pmatrix} + \begin{pmatrix}
x_p - x_C \\
y_{D2} \\
0
\end{pmatrix} &= \begin{pmatrix}
0 \\
0 \\
0
\end{pmatrix} \\
(3.13)
\end{align*}
\]

\[
\begin{align*}
\begin{pmatrix}
l_{AT} - l_p \cdot \cos \eta_4 - y_p \cdot \sin \eta_4 \\
l_{AT} - l_p \cdot \sin \eta_4 + y_p \cdot \cos \eta_4 \\
0
\end{pmatrix} + \begin{pmatrix}
l_{AC} \cdot \sin \eta_6 \\
l_{AC} \cdot \cos \eta_6 \\
0
\end{pmatrix} + \begin{pmatrix}
x_p - x_C \\
y_{D2} \\
0
\end{pmatrix} &= \begin{pmatrix}
0 \\
0 \\
0
\end{pmatrix} \\
(3.14)
\end{align*}
\]

Assim define-se, por meio dos sistemas de equações (3.11) a (3.14), as seguintes equações para as posições angulares dos componentes do mecanismo e consequentemente das bases móveis solidárias aos mesmos:

\[
l_{AD} \cdot \sin \eta_2 = y_{78} - l_p \cdot \sin \eta_1 - y_p \cdot \cos \eta_1 - l_{AC} \cdot \cos \eta_3
\]
(3.15)
3.2 Vetores de Posição e Equações de Vínculo

\[l_{AD} \cdot \sin \eta_5 = -y_{78} - l_p \cdot \sin \eta_4 + y_p \cdot \cos \eta_4 + l_{AC} \cdot \cos \eta_6 \] (3.16)

\[l_{AC} \cdot \cos \eta_5 = (l_{AT} - l_p) \cdot \sin \eta_1 - y_p \cdot \cos \eta_1 + y_{D2} \] (3.17)

\[l_{AC} \cdot \cos \eta_6 = -(l_{AT} - l_p) \cdot \sin \eta_4 - y_p \cdot \cos \eta_4 + y_{D2} \] (3.18)

Por meio das equações (3.11) a (3.14) é possível também obter-se as variáveis \(x_{78} \) e \(x_c \).

Pode-se escrever \(x_{PM} \) como se segue:

\[x_{78} = l_{AD} \cdot \cos \eta_3 + l_p \cdot \cos \eta_1 - y_p \cdot \sin \eta_1 - l_{AC} \cdot \sin \eta_3 \] (3.19)

\[x_c = x_p + (l_{AT} - l_p) \cdot \cos \eta_1 + y_p \cdot \sin \eta_1 + l_{AC} \cdot \sin \eta_3 \] (3.20)

\[x_c = x_p + (l_{AT} - l_p) \cdot \cos \eta_4 - y_p \cdot \sin \eta_4 - l_{AC} \cdot \sin \eta_6 \] (3.21)

\[x_{PM} = x_c + x_{78} \] (3.22)

sendo \(x_c \) o deslocamento absoluto do cilindro e consequentemente da cruzeta (corpo 7), \(x_{78} \) o deslocamento relativo entre os corpos 8 e 7 e \(x_{PM} \) o deslocamento absoluto da placa móvel.

Como não é possível definir explicitamente um ângulo em função dos demais, resolve-se pelo método de Newton-Raphson implementado em um programa em Turbo Pascal. Com um incremento \(\Delta x_c \) em \(x_c \) e os demais valores iniciais das outras variáveis, obtém-se por meio das equações (3.17) e (3.20), os valores de \(\eta_1 \) e \(\eta_3 \). Utilizando-se da equação (3.15), completa-se com \(\eta_2 \) os valores dos ângulos para a parte superior do mecanismo da máquina. De maneira análoga, utilizando-se das equações (3.16), (3.18) e (3.21), determinam-se os valores para os ângulos da parte inferior do mecanismo \(\eta_4 \), \(\eta_5 \) e \(\eta_6 \).
3.3 Vetores de Velocidade

Dada a velocidade de deslocamento do cilindro \(x_c \), calcula-se por meio da derivação das equações de vínculo, o vetor de velocidade linear absoluta do corpo 8, o vetor de velocidade relativa entre os corpos 7 e 8 e os vetores das velocidades angulares absolutas dos corpos que sofrem rotação.

3.3.1 Vetores de Velocidade Linear Absoluta

Para obter os valores de velocidade linear absoluta, apenas derivou-se em relação ao tempo, as equações (3.19) e (3.22), obtendo-se as equações descritas abaixo:

\[
\dot{x}_{78} = -\dot{\eta}_2 \cdot l_{AD} \cdot \sin \eta_2 - \dot{\eta}_1 \cdot (l_p \cdot \sin \eta_1 + y_p \cdot \cos \eta_1) - \dot{\eta}_3 \cdot l_{AC} \cdot \cos \eta_3
\]
(3.23)

\[
\dot{x}_{PM} = \dot{x}_C + \dot{x}_{78}
\]
(3.24)

3.3.2 Vetores de Velocidade Angular Absoluta

Para obter os valores das velocidades angulares absoluta, optou-se por derivar os sistemas de equações (3.13) e (3.14) e resolver os novos sistemas de equações (3.25) e (3.26):

\[
\begin{bmatrix}
- (l_{AT} - l_p) \cdot \sin \eta_1 + y_p \cdot \cos \eta_1 \\
 (l_{AT} - l_p) \cdot \cos \eta_1 + y_p \cdot \sin \eta_1
\end{bmatrix}
\begin{bmatrix}
l_{AC} \cdot \cos \eta_3 \\
l_{AC} \cdot \sin \eta_3
\end{bmatrix}
\begin{bmatrix}
\dot{\eta}_1 \\
\dot{\eta}_3
\end{bmatrix}
= \begin{bmatrix}
\dot{x}_C \\
0
\end{bmatrix}
\]
(3.25)

\[
\begin{bmatrix}
- (l_{AT} - l_p) \cdot \sin \eta_4 - y_p \cdot \cos \eta_4 \\
 (l_{AT} - l_p) \cdot \cos \eta_4 - y_p \cdot \sin \eta_4
\end{bmatrix}
\begin{bmatrix}
l_{AC} \cdot \cos \eta_6 \\
l_{AC} \cdot \sin \eta_6
\end{bmatrix}
\begin{bmatrix}
\dot{\eta}_4 \\
\dot{\eta}_6
\end{bmatrix}
= \begin{bmatrix}
\dot{x}_C \\
0
\end{bmatrix}
\]
(3.26)
3.3 Vetores de Velocidade

Resolvendo-se os sistemas de equações pelo método de Cramer, obtém-se os valores das velocidades angulares absolutas para os corpos 1, 3, 4 e 6 conforme descrito nas equações (3.27) a (3.30):

\[\dot{\eta}_i = \frac{\dot{x}_C \cdot \sin \eta_5}{\sin \eta_3 \cdot (l_{AT} - l_p) \cdot \sin \eta_i + \frac{y_p \cdot \cos \eta_i}{l_{AT}}} - \cos \eta_3 \cdot (l_{AT} - l_p) \cdot \cos \eta_i + \frac{y_p \cdot \sin \eta_i}{l_{AT}} \]

\[\dot{\eta}_3 = \frac{-\dot{x}_C \cdot \left(\cos \eta_i + \frac{y_p \cdot \sin \eta_i}{l_{AT} - l_p} \right)}{l_{AC} \cdot \sin \eta_3 \cdot \left(\sin \eta_i + \frac{y_p \cdot \cos \eta_i}{l_{AT} - l_p} \right) - l_{AC} \cdot \cos \eta_3 \cdot \left(\cos \eta_i + \frac{y_p \cdot \sin \eta_i}{l_{AT} - l_p} \right)} \]

\[\dot{\eta}_4 = \frac{l_{AD} \cdot \sin \eta_6 \cdot \dot{x}_C}{l_{AT} - l_p} \]

\[\dot{\eta}_6 = \frac{-\dot{x}_C \cdot \left(\cos \eta_i - \frac{y_p \cdot \sin \eta_i}{l_{AT} - l_p} \right)}{l_{AC} \cdot \sin \eta_6 \cdot \left(\sin \eta_i - \frac{y_p \cdot \cos \eta_i}{l_{AT} - l_p} \right) + l_{AC} \cdot \cos \eta_6 \cdot \left(\cos \eta_i - \frac{y_p \cdot \sin \eta_i}{l_{AT} - l_p} \right)} \]

E por meio da derivada das segundas linhas das equações (3.11) e (3.12), encontram-se os valores das velocidades angulares absoluta dos corpos 2 e 5:

\[\dot{\eta}_2 = -\dot{\eta}_1 \cdot \left(l_p \cdot \cos \eta_i - \frac{y_p \cdot \sin \eta_i}{l_{AT}} \right) + \dot{\eta}_3 \cdot l_{AD} \cdot \sin \eta_3 \]

\[\dot{\eta}_5 = -\dot{\eta}_4 \cdot \left(l_p \cdot \cos \eta_i + \frac{y_p \cdot \sin \eta_i}{l_{AT}} \right) - \dot{\eta}_6 \cdot l_{AD} \cdot \sin \eta_6 \]
3.4 Vetores de Aceleração

Os vetores de velocidade angular absoluta para os sistemas móveis de referência B_1, B_2, B_3, B_4, B_5 e B_6, são dados para as bases móveis respectivamente por:

$$
\begin{align*}
\omega_1 &= \begin{bmatrix} 0 \\ \hat{n}_1 \end{bmatrix}, \\
\omega_2 &= \begin{bmatrix} 0 \\ \hat{n}_2 \end{bmatrix}, \\
\omega_3 &= \begin{bmatrix} 0 \\ \hat{n}_3 \end{bmatrix}, \\
\omega_4 &= \begin{bmatrix} 0 \\ \hat{n}_4 \end{bmatrix}, \\
\omega_5 &= \begin{bmatrix} 0 \\ \hat{n}_5 \end{bmatrix}, \\
\omega_6 &= \begin{bmatrix} 0 \\ \hat{n}_6 \end{bmatrix} \quad \text{(3.33) a (3.38)}
\end{align*}
$$

3.4 Vetores de Aceleração

Em função da aceleração do deslocamento do cilindro \dot{x}_c, calcula-se pela derivada segunda das equações de vínculo, os vetores das acelerações angulares absolutas dos corpos que sofrem rotação, o vetor de aceleração linear absoluta do corpo 8, o vetor de aceleração relativa entre os corpos 7 e 8 e os vetores de aceleração linear absoluta do centro de massa de cada corpo.
3.4 Vetores de Aceleração

3.4.1 Vetores de Aceleração Angular Absoluta

Novamente, optou-se por derivar os sistemas de equações (3.13) e (3.14) duas vezes em relação ao tempo, e resolver os novos sistemas de equações (3.39) e (3.40) por Cramer objetivando os valores das acelerações angulares absolutas $\ddot{\eta}_1, \ddot{\eta}_3, \ddot{\eta}_4$ e $\ddot{\eta}_6$:

\[
\begin{bmatrix}
-(l_{AT} - l_p) \cdot \sin \eta + y_p \cdot \cos \eta \\
(l_{AT} - l_p) \cdot \cos \eta + y_p \cdot \sin \eta
\end{bmatrix}
\begin{bmatrix}
l_{AC} \cdot \cos \eta_3 \\
l_{AC} \cdot \sin \eta_3
\end{bmatrix}
\begin{bmatrix}
\ddot{\eta}_1 \\
\ddot{\eta}_3
\end{bmatrix}
= \begin{bmatrix}
\dddot{x}_c + \ddot{\eta}_3^2 \cdot [-(l_{AT} - l_p) \cdot \cos \eta + y_p \cdot \sin \eta] + \ddot{\eta}_4^2 \cdot l_{AC} \cdot \sin \eta_3 \\
\ddot{\eta}_3 \cdot [-(l_{AT} - l_p) \cdot \sin \eta - y_p \cdot \cos \eta] - \ddot{\eta}_4^2 \cdot l_{AC} \cdot \cos \eta_3
\end{bmatrix} \tag{3.39}
\]

\[
\begin{bmatrix}
-(l_{AT} - l_p) \cdot \sin \eta_4 - y_p \cdot \cos \eta_4 \\
(l_{AT} - l_p) \cdot \cos \eta_4 - y_p \cdot \sin \eta_4
\end{bmatrix}
\begin{bmatrix}
l_{AC} \cdot \cos \eta_6 \\
l_{AC} \cdot \sin \eta_6
\end{bmatrix}
\begin{bmatrix}
\ddot{\eta}_4 \\
\ddot{\eta}_6
\end{bmatrix}
= \begin{bmatrix}
\dddot{x}_c + \ddot{\eta}_4^2 \cdot [-(l_{AT} - l_p) \cdot \cos \eta_4 - y_p \cdot \sin \eta_4] - \ddot{\eta}_6^2 \cdot l_{AC} \cdot \sin \eta_6 \\
\ddot{\eta}_4 \cdot [-(l_{AT} - l_p) \cdot \sin \eta_4 + y_p \cdot \cos \eta_4] + \ddot{\eta}_6^2 \cdot l_{AC} \cdot \cos \eta_6
\end{bmatrix} \tag{3.40}
\]

\[
\ddot{\eta}_1 = \frac{\sin \eta_3 \cdot (\dddot{x}_c + \ddot{\eta}_3^2 \cdot (l_{AT} - l_p) \cdot \cos \eta + y_p \cdot \sin \eta) + \ddot{\eta}_4^2 \cdot l_{AC} \cdot \sin \eta_3) - \cos \eta_3 \cdot (\ddot{\eta}_3 \cdot (l_{AT} - l_p) \cdot \sin \eta_4 - y_p \cdot \cos \eta_4) - \ddot{\eta}_3^2 \cdot l_{AC} \cdot \cos \eta_3)}{\sin \eta_3 \cdot (-(l_{AT} - l_p) \cdot \sin \eta + y_p \cdot \cos \eta) - \cos \eta_3 \cdot (l_{AT} - l_p) \cdot \cos \eta_4 + y_p \cdot \sin \eta_4)} \tag{3.41}
\]
3.4 Vetores de Aceleração

\[
\ddot{\eta}_b = \frac{\left(y_p \cdot \cos \eta_h - \sin \eta_h\right) \left(\dot{x}_C + \dot{\eta}_4^2 \cdot \left(l_{at} - l_p\right) \cdot \cos \eta_a - y_p \cdot \sin \eta_a\right) \cdot \left(y_p \cdot \cos \eta_h + \dot{\eta}_4 \cdot l_{ac} \cdot \cos \eta_b\right) - \dot{x}_C \cdot \left(\cos \eta_h + y_p \cdot \sin \eta_h\right) \cdot \frac{\dot{\eta}_4}{l_{at} - l_p} \cdot \frac{\dot{x}_C}{l_{at} - l_p} \cdot \left(\cos \eta_h + y_p \cdot \sin \eta_h\right) + \dot{\eta}_4 \cdot l_{ac} \cdot \sin \eta_b}{l_{ac} \cdot \sin \eta_b \left(\frac{\sin \eta_h + y_p \cdot \cos \eta_h}{l_{at} - l_p}\right) - \frac{\sin \eta_h}{l_{at} - l_p} \cdot \left(\cos \eta_h + y_p \cdot \sin \eta_h\right)}
\]

(3.42)

\[
\ddot{\eta}_h = \frac{-\left(\dot{x}_C + \dot{\eta}_4^2 \cdot \left(l_{at} - l_p\right) \cdot \cos \eta_a - y_p \cdot \sin \eta_a\right) - \dot{\eta}_6 \cdot l_{ac} \cdot \sin \eta_h \cdot \sin \eta_h + \cos \eta_h \cdot \left(\dot{\eta}_4^2 \cdot \left(l_{at} - l_p\right) \cdot \sin \eta_h + y_p \cdot \cos \eta_h\right) + \dot{\eta}_6 \cdot l_{ac} \cdot \cos \eta_h}{\left(\frac{\sin \eta_h}{l_{at} - l_p} \cdot \left(l_{at} - l_p\right) \cdot \sin \eta_a - y_p \cdot \sin \eta_a\right)}
\]

(3.43)

\[
\ddot{\eta}_b = \frac{\left(y_p \cdot \cos \eta_h - \sin \eta_h\right) \left(\dot{x}_C + \dot{\eta}_4^2 \cdot \left(l_{at} - l_p\right) \cdot \cos \eta_a - y_p \cdot \sin \eta_a\right) \cdot \left(y_p \cdot \cos \eta_h + \dot{\eta}_4 \cdot l_{ac} \cdot \cos \eta_b\right) + \frac{\dot{x}_C}{l_{at} - l_p} \cdot \frac{\dot{x}_C}{l_{at} - l_p} \cdot \left(\cos \eta_h - y_p \cdot \sin \eta_h\right) + \dot{\eta}_6 \cdot l_{ac} \cdot \cos \eta_h}{l_{ac} \cdot \sin \eta_h \left(\frac{\sin \eta_h - y_p \cdot \cos \eta_h}{l_{at} - l_p}\right) - \frac{\sin \eta_h}{l_{at} - l_p} \cdot \left(\cos \eta_h - y_p \cdot \sin \eta_h\right)}
\]

(3.44)

Pela derivada segunda da segunda linha das equações (3.11) e (3.12), encontra-se os valores das acelerações angulares absoluta dos corpos 2 e 5:

\[
\ddot{\eta}_2 = \ddot{\eta}_2 \cdot l_{ad} \cdot \sin \eta_2 - \dot{\eta}_4 \cdot \left(l_p \cdot \cos \eta_2 - y_p \cdot \sin \eta_2\right) + \ddot{\eta}_4 \cdot \left(l_p \cdot \sin \eta_2 + y_p \cdot \cos \eta_2\right) + \dot{\eta}_4 \cdot l_{ac} \cdot \sin \eta_2 + \dot{\eta}_4 \cdot l_{ac} \cdot \cos \eta_2
\]

(3.45)

\[
\ddot{\eta}_5 = \ddot{\eta}_5 \cdot l_{ad} \cdot \sin \eta_5 - \dot{\eta}_4 \cdot \left(l_p \cdot \cos \eta_5 + y_p \cdot \sin \eta_5\right) + \ddot{\eta}_4 \cdot \left(l_p \cdot \sin \eta_5 - y_p \cdot \cos \eta_5\right) - \left(\dot{\eta}_6 \cdot l_{ac} \cdot \sin \eta_5 + \dot{\eta}_6 \cdot l_{ac} \cdot \cos \eta_5\right)
\]

(3.46)
3.4 Vetores de Aceleração

Os vetores de aceleração angular absoluta para os sistemas móveis de referência B₁, B₂, B₃, B₄, B₅ e B₆, são dados para as bases móveis respectivamente por:

\[
\begin{align*}
\dot{\omega}_1 &= \begin{bmatrix} 0 \\ 0 \\ \vec{\eta}_1 \end{bmatrix}, \quad \dot{\omega}_2 &= \begin{bmatrix} 0 \\ 0 \\ \vec{\eta}_2 \end{bmatrix}, \quad \dot{\omega}_3 &= \begin{bmatrix} 0 \\ 0 \\ \vec{\eta}_3 \end{bmatrix}, \quad \dot{\omega}_4 &= \begin{bmatrix} 0 \\ 0 \\ \vec{\eta}_4 \end{bmatrix}, \quad \dot{\omega}_5 &= \begin{bmatrix} 0 \\ 0 \\ \vec{\eta}_5 \end{bmatrix}, \quad \dot{\omega}_6 &= \begin{bmatrix} 0 \\ 0 \\ \vec{\eta}_6 \end{bmatrix}
\end{align*}
\] (3.47) a (3.52)

3.4.2 Vetores de Aceleração Linear Absoluta

Como os corpos 7 e 8 só têm um grau de liberdade de translação, ou seja, só podem mover-se ao longo da direção x da base inercial, pode-se escrever diretamente as expressões para as acelerações lineares absolutas, por meio da derivada segunda das equações (3.19) e (3.22) em relação ao tempo:

\[
\begin{align*}
\ddot{x}_m &= -\vec{\eta}_2 \cdot l_{AD} \cdot \sin \eta_2 - \vec{\eta}_2 \cdot l_{AD} \cdot \cos \eta_2 - \vec{\eta}_1 \cdot (l_p \cdot \sin \eta_1 + y_p \cdot \cos \eta_1) - \\
&\quad \vec{\eta}_4 \cdot (l_p \cdot \cos \eta_4 - y_p \cdot \sin \eta_4) + \vec{\eta}_5 \cdot l_{AC} \cdot \cos \eta_5 + \vec{\eta}_5 \cdot l_{AC} \cdot \sin \eta_5 \\
\ddot{x}_p &= \ddot{x}_C + \ddot{x}_m
\end{align*}
\] (3.53)

Para os corpos rígidos de 1 a 6, é necessário calcular as acelerações lineares do centro de massa, para depois aplicar o método de Newton-Euler e calcular as reações dinâmicas.

Conforme a Figura (3.5), pode-se descrever o vetor de posição do centro de massa do corpo 1 em relação à origem da base móvel B₁. O vetor \(b \vec{r}_{B\rightarrow CO} \) pode ser representado na base móvel B₁ e na base inercial conforme equações (3.55) e (3.56):

![Diagrama 3.5 - Centro de massa do corpo 1](image-url)
3.4 Vetores de Aceleração

\[a_r = r_{B-CG_1} \]

\[r_{B-CG_1} = \begin{Bmatrix} x_{CG_1} \\ -y_{CG_1} \\ 0 \end{Bmatrix} \]

\[r_{B-CG_1} = \begin{Bmatrix} x_{CG_1} \cdot \cos \eta_1 + y_{CG_1} \cdot \sin \eta_1 \\ x_{CG_1} \cdot \sin \eta_1 - y_{CG_1} \cdot \cos \eta_1 \\ 0 \end{Bmatrix} \]

(3.55) e (3.56)

e, conhecendo-se os vetores de velocidade e aceleração angular, dados por \(\omega_1 \) e \(\omega_2 \), equações (3.33) e (3.47), pode-se determinar por meio da equação (3.57) o vetor de aceleração linear do centro de massa do corpo 1:

\[a_1^* = a_B + \omega_1 \times i_r B-CG_1 + \omega_1 \times a_1 \times i_r B-CG_1 + 2 \times i_r \omega_1 \times a_{rel} + 2 \times i_r v_{rel} + i_r a_{rel} \]

(3.57)

Sabendo-se que \(a_B = 0 \) e \(B, v_{rel} = 0 \), pois o ponto B não realiza movimento algum no sistema de referência inercial, e trata-se de um corpo rígido, não havendo velocidade relativa entre os pontos B e CG1, substitui-se os vetores já transformados para a base inercial, na expressão (3.57), obtendo-se:

\[a_1^* = \begin{Bmatrix} -(x_{CG_1} \cdot \cos \eta_1 + y_{CG_1} \cdot \sin \eta_1) \cdot \dot{\eta}_1^2 - (x_{CG_1} \cdot \sin \eta_1 - y_{CG_1} \cdot \cos \eta_1) \cdot \ddot{\eta}_1 \\ -(x_{CG_1} \cdot \sin \eta_1 - y_{CG_1} \cdot \cos \eta_1) \cdot \dot{\eta}_1^2 + (x_{CG_1} \cdot \cos \eta_1 + y_{CG_1} \cdot \sin \eta_1) \cdot \ddot{\eta}_1 \\ 0 \end{Bmatrix} \]

(3.58)

Para o corpo 2, representado na Figura (3.6), o vetor \(r_{A-CG_2} \) dá a distância entre a origem da base móvel B2 e o centro de massa do corpo 2, descrita abaixo nas bases móvel B2 e inercial:

\[a_r = r_{A-CG_2} \]

\[r_{A-CG_2} = \begin{Bmatrix} x_{CG_2} \\ 0 \\ 0 \end{Bmatrix} \]

\[r_{A-CG_2} = \begin{Bmatrix} x_{CG_2} \cdot \cos \eta_2 \\ x_{CG_2} \cdot \sin \eta_2 \\ 0 \end{Bmatrix} \]

(3.59) e (3.60)

Figura 3.6 - Centro de massa do corpo 2
3.4 Vetores de Aceleração

O vetor da aceleração linear do centro de massa do corpo 2 na base inercial, é dado por:

\[\dot{a}_2 = \dot{a}_A + \dot{\omega}_2 \times l_r_{A-CG2} + \omega_2 \times \omega_2 \times l_r_{A-CG2} + 2 \cdot \omega_2 \times l_{rel} \times v_{rel} + l_{rel} \]

(3.61)

A aceleração do ponto A na base inercial é dada por:

\[\dot{a}_A = \dot{\omega}_A \times l_r_{BA} + \omega_1 \times \omega_1 \times l_r_{BA} \]

(3.62)

O vetor \(l_r_{BA} \) é representado nas bases móvel \(B_1 \) e inercial conforme descrito abaixo:

\[
\begin{align*}
l r{BA} & = \begin{pmatrix}
I_{AT} \\
0 \\
0
\end{pmatrix} \\
& \text{e} \\
1 r{BA} & = \begin{pmatrix}
I_{AT} \cdot \cos \eta_1 - I_{AT} \cdot \sin \eta_1 \\
I_{AT} \cdot \sin \eta_1 + I_{AT} \cdot \cos \eta_1 \\
0
\end{pmatrix}
\end{align*}
\]

(3.63) e (3.64)

Com isso, obtém-se o vetor de aceleração absoluta do ponto A:

\[
\dot{a}_A = \begin{pmatrix}
- \dot{\eta}_1 \cdot I_{AT} \cdot \cos \eta_1 - \dot{\eta}_1 \cdot I_{AT} \cdot \sin \eta_1 \\
- \dot{\eta}_1 \cdot I_{AT} \cdot \sin \eta_1 + \dot{\eta}_1 \cdot I_{AT} \cdot \cos \eta_1 \\
0
\end{pmatrix}
\]

(3.65)

Sabendo-se que o corpo 2 também é um corpo rígido, a velocidade relativa entre o centro de massa do corpo 2 e a origem do sistema de referência do respectivo corpo, é nula, e continua nula também quando representado no sistema inercial. Com isso, aplica-se o vetor representado na equação (3.65), e os vetores já transformados para o sistema de referência inercial, obtendo-se a representação do vetor da aceleração linear do centro de massa do corpo 2:

\[
\dot{a}_2 = \begin{pmatrix}
- \dot{\eta}_1 \cdot I_{AT} \cdot \cos \eta_1 - \dot{\eta}_1 \cdot I_{AT} \cdot \sin \eta_1 - \dot{\eta}_2 \cdot x_{CG2} \cdot \cos \eta_2 - \dot{\eta}_2 \cdot x_{CG2} \cdot \sin \eta_2 \\
- \dot{\eta}_1 \cdot I_{AT} \cdot \sin \eta_1 + \dot{\eta}_1 \cdot I_{AT} \cdot \cos \eta_1 - \dot{\eta}_2 \cdot x_{CG2} \cdot \sin \eta_2 + \dot{\eta}_2 \cdot x_{CG2} \cdot \cos \eta_2 \\
0
\end{pmatrix}
\]

(3.66)

Para o corpo 3, indica-se na Figura (3.7) o vetor \(l_r_{D-CG3} \) do ponto de origem do sistema móvel \(B_3 \) até o centro de massa do corpo 3, representado-o em seguida nos sistemas de referência móvel \(B_3 \) e inercial.
3.4 Vetores de Aceleração

\[u, r_{D-CG_3} = \begin{bmatrix} 0 \\ y_{CG_3} \\ 0 \end{bmatrix} \quad \text{e} \quad r_{D-CG_3} = \begin{bmatrix} -y_{CG_3} \cdot \sin \eta_3 \\ y_{CG_3} \cdot \cos \eta_3 \\ 0 \end{bmatrix} \]

(3.67) e (3.68)

Figura 3.7 - Centro de massa do corpo 3

O vetor da aceleração linear do centro de massa do corpo 3 na base inercial, é dado por

\[\ddot{r}^*_3 = \dot{a}_D + \dot{\omega}_3 \times \dot{r}_{D-CG_3} + \omega_3 \times (\omega_3 \times \dot{r}_{D-CG_3}) + 2 \dot{\omega}_3 \times \dot{v}_{rel} + \ddot{v}_{rel} + a_{rel} \]

(3.69)

Sabe-se que a aceleração do ponto D é a mesma do corpo 7, e que a velocidade relativa do centro de massa do corpo 3 em relação à origem do sistema de referência 3, é nula, pois trata-se de um corpo rígido. Logo:

\[\ddot{r}_D = \begin{bmatrix} \dot{x}_C \\ 0 \\ 0 \end{bmatrix} \quad \text{e} \quad \dot{v}_{rel} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \]

(3.70) e (3.71)

Portanto, pode-se escrever a expressão (3.69) como se segue:

\[\ddot{r}^*_3 = \begin{bmatrix} \ddot{x}_C + \dot{\eta}^2_3 \cdot y_{CG_3} \cdot \sin \eta_3 - \dot{\eta}^2_3 \cdot y_{CG_3} \cdot \cos \eta_3 \\ -\dot{\eta}^2_3 \cdot y_{CG_3} \cdot \cos \eta_3 - \dot{\eta}^2_3 \cdot y_{CG_3} \cdot \sin \eta_3 \\ 0 \end{bmatrix} \]

(3.72)
3.4 Vetores de Aceleração

Para os corpos 4, 5 e 6 pode-se definir de maneira análoga à feita para os corpos 1, 2 e 3, as acelerações lineares dos respectivos centros de massa:

$$\begin{bmatrix}
-\left(x_{CG4} \cdot \cos \eta_4 - y_{CG4} \cdot \sin \eta_4\right) \cdot \ddot{\eta}_4 - \left(x_{CG4} \cdot \sin \eta_4 + y_{CG4} \cdot \cos \eta_4\right) \cdot \dddot{\eta}_4 \\
-\left(x_{CG4} \cdot \sin \eta_4 + y_{CG4} \cdot \cos \eta_4\right) \cdot \ddot{\eta}_4 + \left(x_{CG4} \cdot \cos \eta_4 - y_{CG4} \cdot \sin \eta_4\right) \cdot \dddot{\eta}_4 \\
0
\end{bmatrix}$$ \hspace{1cm} (3.73)

Figura 3.8 - Centro de massa do corpo 4

Para o corpo 4, figura (3.8), encontra-se a expressão (3.73) para a aceleração linear do centro de massa:

A aceleração do ponto H, equação (3.74), é essencial para definir a equação (3.75), que representa a aceleração linear do centro de massa do corpo 5, representado na figura (3.9):

$$\begin{bmatrix}
-\ddot{\eta}_4 \cdot l_{AT} \cdot \cos \eta_4 - \dddot{\eta}_4 \cdot l_{AT} \cdot \sin \eta_4 \\
-\dddot{\eta}_4 \cdot l_{AT} \cdot \sin \eta_4 + \ddot{\eta}_4 \cdot l_{AT} \cdot \cos \eta_4 \\
0
\end{bmatrix}$$ \hspace{1cm} (3.74)

$$\begin{bmatrix}
-\ddot{\eta}_5 \cdot l_{AT} \cdot \cos \eta_4 - \dddot{\eta}_5 \cdot l_{AT} \cdot \sin \eta_4 - \ddot{\eta}_5 \cdot x_{CG5} \cdot \cos \eta_5 - \dddot{\eta}_5 \cdot x_{CG5} \cdot \sin \eta_5 \\
-\ddot{\eta}_5 \cdot l_{AT} \cdot \sin \eta_4 + \dddot{\eta}_5 \cdot l_{AT} \cdot \cos \eta_4 - \ddot{\eta}_5 \cdot x_{CG5} \cdot \sin \eta_5 + \dddot{\eta}_5 \cdot x_{CG5} \cdot \cos \eta_5 \\
0
\end{bmatrix}$$ \hspace{1cm} (3.75)
3.4 Vetores de Aceleração

Figura 3.9 - Centro de massa do corpo 5

Para o corpo 6, Figura (3.10), são consideradas as mesmas restrições do corpo 3, como:

\[\begin{align*}
\dot{a}_G &= \begin{pmatrix}
\dot{x}_C \\
0 \\
0
\end{pmatrix} \\
&= \begin{pmatrix}
0 \\
0
\end{pmatrix}
\end{align*} \quad (3.76) \text{ e } (3.77) \]

Obtém-se então, a equação (3.78):

\[\begin{align*}
\dot{a}_b^* &= \begin{pmatrix}
\dot{x}_C - \dot{\eta}_6 \cdot y_{CG6} \cdot \sin \eta_6 + \ddot{\eta}_6 \cdot y_{CG6} \cdot \cos \eta_6 \\
\dot{\eta}_6 \cdot y_{CG6} \cdot \cos \eta_6 + \ddot{\eta}_6 \cdot y_{CG6} \cdot \sin \eta_6 \\
0
\end{pmatrix}
\end{align*} \quad (3.78) \]

Figura 3.10 - Centro de massa do corpo 6
3.4 Vetores de Aceleração

Já para os corpos 7, Figura (3.11), e 8, como só há possibilidade de movimentos na direção do eixo x, da base inercial, torna-se fácil definir as equações para as acelerações lineares do centro de massa.

Como o cilindro de fechamento hidráulico está conectado diretamente no corpo 7 (cruzeta), a aceleração linear do centro de massa da cruzeta é a mesma do cilindro:

\[
\dot{a}_c^* = \begin{bmatrix} \dot{x}_c \\ 0 \\ 0 \end{bmatrix}
\]

(3.79)

Figura 3.11 - Cruzeta (corpo 7) e cilindro de fechamento

A aceleração linear do centro de massa do corpo 8 (placa móvel) é a aceleração da placa móvel:

\[
\dot{a}_s^* = \begin{bmatrix} \dot{x}_{FS} \\ 0 \\ 0 \end{bmatrix}
\]

(3.80)
3.5 Propriedades Geométricas dos Corpos

Por tratar-se de geometrias complexas, resolveu-se utilizar o programa computacional AutoCad R.13 para definir o momento de inércia, o peso e o centro de massa de cada corpo do mecanismo em estudo.

Figura 3.12 - Corpo 1 e base móvel de referência B₁ - propriedades geométricas obtidas com auxílio do AutoCad

Para o corpo 1 da Figura (3.12), definem-se as seguintes propriedades:

- massa total = 41,1 kg;
- coordenadas do centro de massa em relação à origem da base móvel B₁:
 \[x_{CG₁} = 0,193 \text{ m} \]
 \[y_{CG₁} = -0,004 \text{ m} \]
 \[z_{CG₁} = 0,000 \text{ m} \]
- momento de inércia de massa em torno do eixo \(z₁ \):
 \[I_{zz₁} = 2,302 \text{ kg.m}^2 \]

A Figura (3.13) ilustra a geometria do corpo 2. As suas propriedades são apresentadas a seguir:
3.5 Propriedades Geométricas

Figura 3.13 - Corpo 2 e base móvel de referência B₂ - propriedades geométricas obtidas com auxílio do AutoCad

- massa total = 43,7 kg;
- coordenadas do centro de massa em relação à origem da base móvel B₂:
 \(x_{CO2} = 0,225 \) m
 \(y_{CO2} = 0,000 \) m
 \(z_{CO2} = 0,000 \) m
- momento de inércia de massa em torno do eixo \(z_2 \):
 \(I_{zz2} = 3,405 \) kg.m²

O corpo 3, mostrado na figura (3.14), é caracterizado pelas propriedades geométricas e de massa listadas em seguida:

Figura 3.14 - Corpo 3 e base móvel de referência B₁ - propriedades geométricas obtidas com auxílio do AutoCad
3.5 Propriedades Geométricas

- massa total = 5,8 kg;
- coordenadas do centro de massa em relação à origem da base móvel B₃:
 \(x_{CG3} = 0,000 \, \text{m} \)
 \(y_{CG3} = 0,063 \, \text{m} \)
 \(z_{CG3} = 0,000 \, \text{m} \)
- momento de inércia de massa em torno do eixo \(z₃ \):
 \(I_{zz3} = 0,042 \, \text{kg} \cdot \text{m}^2 \)

De maneira análoga, definem-se as propriedades para os demais articuladores:

Corpo 4:

- massa total = 41,1 kg;
- coordenadas do centro de massa em relação à origem da base móvel B₄:
 \(x_{CG4} = 0,193 \, \text{m} \)
 \(y_{CG4} = 0,004 \, \text{m} \)
 \(z_{CG4} = 0,000 \, \text{m} \)
- momento de inércia de massa em torno do eixo \(z₄ \):
 \(I_{zz4} = 2,302 \, \text{kg} \cdot \text{m}^2 \)

Corpo 5:

- massa total = 43,7 kg;
- coordenadas do centro de massa em relação à origem da base móvel B₅:
 \(x_{CG5} = 0,225 \, \text{m} \)
 \(y_{CG5} = 0,000 \, \text{m} \)
 \(z_{CG5} = 0,000 \, \text{m} \)
- momento de inércia de massa em torno do eixo \(z₅ \):
 \(I_{zz5} = 3,405 \, \text{kg} \cdot \text{m}^2 \)

Corpo 6:
3.5 Propriedades Geométricas

- massa total = 5.8 kg;
- coordenadas do centro de massa em relação à origem da base móvel B₆:
 \[x_{CG6} = 0.000 \text{ m} \]
 \[y_{CG6} = -0.063 \text{ m} \]
 \[z_{CG6} = 0.000 \text{ m} \]
- momento de inércia de massa em torno do eixo \(z \):
 \[I_{zz6} = 0.042 \text{ kg.m}^2 \]

Para os corpos 7 e 8, as únicas propriedades de interesse são as massas, pois só realizam translação. A figura (3.15) mostra a cruzeta e o sistema de referência inercial, e a figura (3.16) mostra a placa móvel. A massa dos respectivos corpos é dada por:

- Massa do corpo 7 = 129,4 kg
- Massa do corpo 8 = 1460,8 kg

Figura 3.15 - Corpo 7 (cruzeta) e sistema inercial I. Propriedades obtidas com auxílio do AutoCad
Figura 3.16 - Corpo 8 (placa móvel). Propriedades obtidas com auxílio do AutoCad
3.6 Cálculo da Rigidez Equivalente do Conjunto

Para determinar a força de travamento em função da deformação do conjunto, é necessário conhecer a rigidez equivalente do conjunto. E para se calcular a rigidez equivalente, é necessário calcular a rigidez de cada corpo.

Os corpos 1, 2, 3, 4, 5, 6, 7 e 8, ilustrados nas Figuras (3.17) e (3.18), pertencem ao conjunto que se deforma quando atua-se a força de travamento por meio do cilindro hidráulico. Enquanto os corpos de 1 a 7 sofrem compressão, o conjunto de tirantes (corpo 8) sofre alongamento.

Com o auxílio do software de elementos finitos (Cosmos), aplicou-se uma força conhecida ao modelo de cada um dos corpos, obtendo-se as respectivas deformações no sentido longitudinal da máquina, levando-se em consideração o material e representando fielmente a solicitação a que cada corpo é submetido. Com isso consegue-se determinar a rigidez de cada corpo.

Figura 3.17 - Vista superior da unidade de fechamento: 1 - placa do cilindro, 2 - placa móvel, 3 - placa fixa, 4 - molde, 5 - articulador traseiro, 6 - articulador dianteiro externo, 7 - articulador dianteiro interno, 8 - tirantes.
3.6 Cálculo da Rigidez Equivalente do Conjunto

A placa do cilindro (1) sofre uma deformação de $7,0 \times 10^{-5}$ m no sentido longitudinal da máquina para uma solicitação de 3000 kN, logo sua rigidez pode ser dada pela seguinte expressão:

$$k_1 = \frac{F}{\Delta x} = \frac{3000\text{kN}}{0.00007\text{m}} = 4.29 \times 10^7 \text{kN/m}$$ \hspace{1cm} (3.81)

sendo k_1 a rigidez do corpo 1, F a força de solicitação e Δx a deformação do corpo.

Figura 3.18 - Vista frontal da unidade de fechamento: 1 - placa do cilindro, 2 - placa móvel, 3 - placa fixa, 4 - molde, 5 - articulador traseiro, 6 - articulador dianteiro externo, 7 - articulador dianteiro interno, 8 - tirantes.

De maneira análoga, calcula-se a rigidez dos demais corpos:

$$k_2 = \frac{3000\text{kgN}}{0.000102\text{m}} = 2.93 \times 10^7 \text{kN/m}$$ \hspace{1cm} (3.82)

$$k_3 = \frac{3000\text{kN}}{0.000057\text{m}} = 5.26 \times 10^7 \text{kN/m}$$ \hspace{1cm} (3.83)

$$k_4 = \frac{3000\text{kN}}{0.000081\text{m}} = 3.70 \times 10^7 \text{kN/m}$$ \hspace{1cm} (3.84)

$$k_5 = \frac{100\text{kN}}{0.0000190\text{m}} = 5.26 \times 10^6 \text{kN/m}$$ \hspace{1cm} (3.85)
3.6 Cálculo da Rigidez Equivalente do Conjunto

\[k_6 = \frac{10000 \text{ kgf}}{0,0000405 \text{ m}} = 2,47 \cdot 10^8 \text{ kgf/m} \]
(3.86)

\[k_7 = \frac{10000 \text{ kgf}}{0,0000256 \text{ m}} = 3,90 \cdot 10^8 \text{ kgf/m} \]
(3.87)

\[k_8 = \frac{75000 \text{ kgf}}{0,001008 \text{ m}} = 0,74 \cdot 10^8 \text{ kgf/m} \]
(3.88)

A Figura (3.19) representa a rigidez dos articuladores dianteiros (corpos 6 e 7) e traseiros (corpo 5) vistos na Figura (3.17), possibilitando o cálculo da rigidez equivalente \(k_{eq} \):

![Diagrama de rigidez](image)

Figura 3.19 - Representação das rigidezes dos articuladores traseiros e frontais

\[k_{eq} = \frac{2 \cdot k_5 \cdot (2 \cdot k_6 + k_7)}{(2 \cdot k_5 + 2 \cdot k_6 + k_7)} = 4,81 \cdot 10^8 \text{ kgf/m} \]
(3.89)

Calcula-se então a rigidez equivalente do conjunto, \(k_{eq} \), com o auxílio da Figura (3.20) que mostra o esquema de rigidez da Figura (3.18). A rigidez \(k_{eq} \) é a rigidez de compressão (sem os tirantes).
3.7 Diagrama de Corpo Livre

Figura 3.20 - Representação das rigidezes da unidade de fechamento

\[
\frac{1}{k_{eq}} = \frac{1}{k_1} + \frac{1}{2 \cdot k_{eq1}} + \frac{1}{k_2} + \frac{1}{k_4} + \frac{1}{k_5} \quad (3.90)
\]

\[
k'_{eq} = 4.82 \cdot 10^4 \text{kgf/m}
\]

\[
k_{eq} = k'_{eq} + 4 \cdot k_8 = 7.8 \cdot 10^4 \text{kgf/m} \quad (3.91)
\]

3.7 Diagrama de Corpo Livre

O diagrama de corpo livre é a representação de todos os esforços, reações e momentos atuantes sobre um corpo de forma independente. Baseado no mesmo, pode-se escrever as equações do equilíbrio dinâmico para os corpos por Newton-Euler.

3.7.1 Aplicação do Método de Newton

Baseado na 2ª lei de Newton, pode-se escrever que o somatório de todas as forças aplicadas sobre um corpo, isolado de seus vínculos ou pontos de contato, e representadas no sistema de referência inercial é igual a variação da quantidade de movimento linear:
3.7 Diagrama de Corpo Livre

\[\sum F = \frac{d(m \cdot v^*)}{dt} = \dot{m} \cdot v^* + m \cdot a^* \]

(3.92)

Como no sistema mecânico em questão \(\dot{m} = 0 \), tem-se:

\[\sum F = m \cdot a^* \]

Para o corpo 1, representado na Figura (3.21), obtém-se a equação (3.93) para a aplicação do método de Newton:

Figura 3.21 - Diagrama de corpo livre do articulador traseiro superior (corpo 1)
3.7 Diagrama de Corpo Livre

$$\sum F = m_i \cdot a_i$$

$$
\begin{bmatrix}
B_x \\
B_y \\
0
\end{bmatrix} + \begin{bmatrix}
C_x \\
C_y \\
0
\end{bmatrix} + \begin{bmatrix}
-A_x \\
-A_y \\
0
\end{bmatrix} + \begin{bmatrix}
0 \\
0 \\
0
\end{bmatrix} = m_i \begin{bmatrix}
-x_{CG1} \cdot \cos \eta_i + y_{CG1} \cdot \sin \eta_i \cdot \ddot{y}_i^2 - (x_{CG1} \cdot \sin \eta_i - y_{CG1} \cdot \cos \eta_i) \cdot \ddot{y}_i \\
-x_{CG1} \cdot \sin \eta_i - y_{CG1} \cdot \cos \eta_i \cdot \ddot{y}_i^2 + (x_{CG1} \cdot \cos \eta_i + y_{CG1} \cdot \sin \eta_i) \cdot \ddot{y}_i \\
0
\end{bmatrix}
$$

(3.93)

A Figura (3.22) mostra o diagrama de corpo livre do corpo 2, utilizado para definir a equação (3.94), resultante da aplicação do método de Newton.

Figura 3.22 - Diagrama de corpo livre do articulador dianteiro superior (corpo 2)
3.7 Diagrama de Corpo Livre

\[\sum_i F = m_2 \cdot a_2^* \]

\[
\begin{bmatrix}
A_x \\
-A_y
\end{bmatrix} + \begin{bmatrix}
O_x \\
O_y
\end{bmatrix} + \begin{bmatrix}
0 \\
-m_2 \cdot g
\end{bmatrix} = m_2 \cdot \begin{bmatrix}
-\dot{\eta}_1^2 \cdot I_{AT} \cdot \cos \eta_1 - \dot{\eta}_1 \cdot I_{AT} \cdot \sin \eta_1 - \dot{\eta}_1^2 \cdot x_{CG2} \cdot \cos \eta_2 - \dot{\eta}_2 \cdot x_{CG2} \cdot \sin \eta_2 \\
-\dot{\eta}_1^3 \cdot I_{AT} \cdot \sin \eta_1 + \dot{\eta}_1 \cdot I_{AT} \cdot \cos \eta_1 - \dot{\eta}_2^3 \cdot x_{CG2} \cdot \sin \eta_2 + \dot{\eta}_2 \cdot x_{CG2} \cdot \cos \eta_2 \\
0
\end{bmatrix}
\]

(3.94)

Abaixo, pode-se ver a Figura (3.23), representando o corpo 3, e em seguida a aplicação do Método de Newton, na equação (3.95).

Figura 3.23 - Diagrama de corpo livre do articulador da cruzeta superior (corpo 3)

\[\sum_i F = m_3 \cdot a_3^* \]
3.7 Diagrama de Corpo Livre

\[
\begin{bmatrix}
-C_x \\
-C_y \\
0
\end{bmatrix}
+ \begin{bmatrix}
D_x \\
D_y \\
0
\end{bmatrix}
+ \begin{bmatrix}
0 \\
-m_s \cdot g \\
0
\end{bmatrix}
= m_3 \cdot \begin{bmatrix}
x_c + \ddot{\eta}_3 \cdot y_{CG3} \cdot \sin \eta_3 - \ddot{\eta}_3 \cdot y_{CG3} \cdot \cos \eta_3 \\
- \ddot{\eta}_3 \cdot y_{CG3} \cdot \cos \eta_3 - \ddot{\eta}_3 \cdot y_{CG3} \cdot \sin \eta_3 \\
0
\end{bmatrix}
\]

(3.95)

Já para o corpo 4, Figura (3.24), a equação obtida (3.96) é semelhante a equação do corpo 1:

Figura 3.24 - Diagrama de corpo livre do articulador traseiro inferior (corpo 4)

\[
\sum F = m_4 \cdot \ddot{a}_4
\]

\[
\begin{bmatrix}
G_x \\
G_y \\
0
\end{bmatrix}
+ \begin{bmatrix}
F_x \\
F_y \\
0
\end{bmatrix}
+ \begin{bmatrix}
-H_x \\
-H_y \\
0
\end{bmatrix}
+ \begin{bmatrix}
0 \\
-m_4 \cdot g \\
0
\end{bmatrix}
= m_4 \cdot \begin{bmatrix}
-(x_{CG4} \cdot \cos \eta_4 - y_{CG4} \cdot \sin \eta_4) \cdot \ddot{\eta}_4 \\
-(x_{CG4} \cdot \sin \eta_4 + y_{CG4} \cdot \cos \eta_4) \cdot \ddot{\eta}_4 \\
0
\end{bmatrix}
\]

(3.96)
O balanço de forças no corpo 5 é ilustrado na Figura (3.25). Fazendo-se uso da segunda lei de Newton chega-se a:

\[\sum F = m_5 \cdot a_5 \]

\[
\begin{pmatrix}
H_x \\
-H_y \\
0
\end{pmatrix} +
\begin{pmatrix}
I_x \\
I_y \\
0
\end{pmatrix} +
m_5 \cdot g = m_5 \begin{pmatrix}
-\dot{\eta}_4 \cdot I AT \cdot \cos \eta_4 - \ddot{\eta}_4 \cdot I AT \cdot \sin \eta_4 - \ddot{\eta}_5 \cdot x_{CG} \cdot \cos \eta_5 - \ddot{\eta}_5 \cdot x_{CG} \cdot \sin \eta_5 \\
-\ddot{\eta}_4 \cdot I AT \cdot \sin \eta_4 + \dot{\eta}_4 \cdot I AT \cdot \cos \eta_4 - \ddot{\eta}_5 \cdot x_{CG} \cdot \sin \eta_5 + \dot{\eta}_5 \cdot x_{CG} \cdot \cos \eta_5 \\
0
\end{pmatrix}
\] \hspace{1cm} (3.97)

Figura 3.25 - Diagrama de corpo livre do articulador dianteiro inferior (corpo 5)

Para o corpo 6, mostrado na Figura (3.26), o balanço de forças pode ser descrito por meio da seguinte equação:
3.7 Diagrama de Corpo Livre

Figura 3.26 - Diagrama de corpo livre do articulador da cruzeta inferior (corpo 6)

\[\sum F = m_6 \cdot a_6^* \]

\[
\begin{pmatrix}
-F_x \\
-F_y \\
0
\end{pmatrix} + \begin{pmatrix}
-E_x \\
-E_y \\
0
\end{pmatrix} + \begin{pmatrix}
0 \\
-m_6 \cdot g \\
0
\end{pmatrix} = m_6 \cdot \begin{pmatrix}
\hat{x}_C - \hat{n}_6 \cdot y_{CG6} \cdot \sin \eta_6 + \hat{n}_6 \cdot y_{CG6} \cdot \cos \eta_6 \\
\hat{y}_6 \cdot y_{CG6} \cdot \cos \eta_6 + \hat{n}_6 \cdot y_{CG6} \cdot \sin \eta_6 \\
0
\end{pmatrix}
\]

(3.98)

Os corpos de 1 a 6 só apresentam atrito rotativo, o que causa um momento de resistência que será considerado na aplicação do método de Euler. Para os corpos 7 e 8, há atrito linear de deslizamento entre os corpos e as guias por onde estes deslizam. Para isso, considera-se uma força de resistência sempre contrária ao movimento dada pela equação (3.99):
$F_{at} = -sinal(\dot{x}) \cdot \mu \cdot N$

sendo μ, o coeficiente de atrito entre as superfícies de deslizamento;

$sinal(\dot{x})$, o sinal da velocidade do corpo;

N, a reação da superfície sobre o corpo.

Com isso, pode-se escrever o balanço de forças para os corpos 7 e 8 utilizando-se a segunda lei de Newton. Para o corpo 7, Figura (3.27), obtém-se:

Figura 3.27 - Acionador dos articuladores ou cruzeta (corpo 7)
\[\sum F = m_r \cdot \ddot{a} \]

\[
\begin{bmatrix}
-D_x \\
-D_y \\
0
\end{bmatrix} + \begin{bmatrix}
E_x \\
E_y \\
0
\end{bmatrix} + \begin{bmatrix}
F_c \\
0 \\
0
\end{bmatrix} + \begin{bmatrix}
-R_f \cdot \mu \cdot \text{sin}(\bar{x}_c) \\
R_f \\
0
\end{bmatrix} + \begin{bmatrix}
0 \\
-m_r \cdot g \\
0
\end{bmatrix} = m_r \begin{bmatrix}
\ddot{x}_c \\
0 \\
0
\end{bmatrix}
\]

A reação \(N_Y \) entre a superfície de apoio e o corpo 8 é mostrada na Figura (3.28), e de acordo com a equação (3.96) e aplicação do método de Newton, obtém-se a equação (3.101):

Figura 3.28 - Placa móvel (corpo 8)
3.7 Diagrama de Corpo Livre

\[\sum F = m_x \ddot{a}_x \]

\[
\begin{bmatrix}
-O_x \\
-O_y \\
0
\end{bmatrix} + \begin{bmatrix} -I_x \\
-I_y \\
0 \end{bmatrix} + \begin{bmatrix}
-N_y \cdot \mu \cdot \sin(\dot{x}_{PM}) \\
0 \\
0
\end{bmatrix} + \begin{bmatrix} -F_T \\
-m_x \cdot g \\
0 \end{bmatrix} = m_x \begin{bmatrix}
\ddot{x}_{PM} \\
0 \\
0
\end{bmatrix}
\]

(3.101)

A força de compressão do molde só ocorre quando as duas metades do molde entram em contato. Logo a força de compressão sobre a placa móvel \(F_T \) é dada por:

\[
\begin{cases}
F_T = 0 & \text{se não há contato entre as metades do molde} \\
F_T = k_{eq} \cdot (x_c - x_{cont}) & \text{quando há contato entre as metades do molde}
\end{cases}
\]

(3.102)

sendo \(x_{cont} \) a posição do cilindro de fechamento quando inicia-se o contato entre as metades do molde.

3.5.2 Aplicação do Método de Euler

A equação de Euler descreve que o somatório dos momentos provocados pelas forças, tanto externas como de reação, em relação a um ponto qualquer, é igual a variação da quantidade de momento angular do corpo rígido:

\[\sum M_A = \frac{d}{dt} \left(\sum_{B_a} H_{A} \right) + \sum_{B_a} \Omega \times B_a H_A \]

(3.103)
3.7 Diagrama de Corpo Livre

Vale lembrar que fica mais prático derivar a equação da quantidade de movimento angular no sistema de referência solidário ao corpo B_n, pois o tensor de inércia permanece independente do tempo e o vetor de velocidade angular do sistema móvel de referência $b_n \Omega$, coincide com o vetor de velocidade angular do corpo $b_n \omega$ para todos os corpos neste trabalho.

Para os corpo de 1 a 6, existe o atrito rotativo nas articulações causando um momento de resistência dado pela equação (Beer, 1973):

$$M_{at} = -sinal(\dot{\theta}) \cdot \mu \cdot M'$$

(3.104)

sendo μ, o coeficiente de atrito entre as superfícies deslizantes;
$\dot{\theta}$, a velocidade angular do corpo em questão;
$sinal(\dot{\theta})$, o sinal da velocidade angular do corpo;
M', o momento causado pela força de reação, considerando-se um braço com a metade do diâmetro do eixo deslizante dentro da articulação.

![Figura 3.29- Atrito entre eixo e furo](image)
3.7 Diagrama de Corpo Livre

Por meio da Figura (3.29) pode-se deduzir a expressão para o momento de resistência. A força de atrito é dada pelo produto da força de reação R pelo coeficiente de atrito. Assim, o momento de reação é dado pela multiplicação da força de atrito pelo braço d/2, onde d é o diâmetro do eixo e portanto, d/2 é a distância do ponto de atuação da força de atrito até o centro do eixo. Assim:

\[F_{at} = \mu \cdot R \]
\[M = F_{at} \cdot \frac{d}{2} \Rightarrow M = \mu \cdot R \cdot \frac{d}{2} \Rightarrow M = \mu \cdot M' \]

sendo \[M' = R \cdot \frac{d}{2} \]

Como o momento de resistência é sempre contrário ao movimento, deve-se introduzir essa consideração na fórmula chegando-se a equação (3.104) citada anteriormente.

Aplicando-se a equação de Euler para o corpo 1, Figura (3.21), obtém-se a equação abaixo:

\[m_t \cdot \left(P \times \left(T_\pi \cdot C \right) + \left(T_\pi \cdot A \right) + \left(T_\pi \cdot P \right) + M_A + M_B + M_C = \right. \left. \frac{d}{dt} \left(B_1 \cdot \omega_1 \right) + B_2 \cdot \Omega_1 \times \left(B_1 \cdot I_B \cdot \omega_1 \right) + m_t \cdot \left(B_1 \cdot \left(B_2 \cdot \omega_{CO1} \times B_2 \cdot a_B \right) \right) \]

\[m_t \cdot \left(B_1 \cdot \left(B_2 \cdot \omega_{CO1} \times B_2 \cdot a_B \right) \right) = 0 \]

Considerando-se que a aceleração do ponto B é nula, e o movimento é plano com o tensor descrito nas direções principais de inércia X₁, Y₁ e Z₁, tem-se respectivamente que:

\[\frac{d}{dt} \left(B_1 \cdot \omega_1 \right) = 0 \]
\[\frac{d}{dt} \left(B_2 \cdot \omega_2 \right) = 0 \]
\[\frac{d}{dt} \left(B_3 \cdot \omega_3 \right) = 0 \]
pois os vetores \(\Omega \) e \(\alpha \) são paralelos.

Assim, substituindo-se as considerações acima e os vetores na equação (3.107) citada anteriormente obtem-se a equação

\[
(\mathbf{I}_2 - \mu) \cdot (\mathbf{C} \cdot \sin h + C_t \cdot \cos h + \mathbf{C}_y \cdot \cos h) = \mathbf{I}_3 \cdot \dot{\mathbf{h}}
\]

Analogamente, obtém-se para o corpo 2 a seguinte equação:

\[
\mathbf{r}_2 \times \mathbf{x}_2 + \mathbf{r}_2 \times \mathbf{x}_2 \cdot \mathbf{r}_2 = \mathbf{I}_2 \cdot \frac{d\mathbf{w}}{dt} = \mathbf{I}_2 \cdot \frac{d\mathbf{\omega}_2}{dt}
\]

sendo:

\[
\begin{bmatrix}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{bmatrix}
\]

\[
\begin{bmatrix}
-\dot{\theta} & 0 & 0 \\
0 & -\dot{\theta} & 0 \\
0 & 0 & \dot{\theta}
\end{bmatrix}
\]

\[
\begin{bmatrix}
\dot{\theta} & 0 & 0 \\
0 & \dot{\theta} & 0 \\
0 & 0 & -\dot{\theta}
\end{bmatrix}
\]
Substituindo-se as equações (3.112) e (3.113) na equação (3.111) chega-se a:
\[
\begin{aligned}
\dot{\eta}_2 \cdot \left(O_y \cdot \cos \eta_2 - O_x \cdot \sin \eta_2 \right) - m_2 \cdot x_{e_1} \cdot \left(\sin \eta_2 \cdot I_{AR} \left(\dot{\eta}_1 \cdot \cos \eta_1 + \dot{\eta}_1 \cdot \sin \eta_1 \right) + \cos \eta_2 \left(- \dot{\eta}_1^2 \cdot I_{AR} \cdot \sin \eta_1 + \dot{\eta}_1 \cdot I_{AR} \cdot \cos \eta_1 + g \right) \right) + \\
- \mu \cdot \frac{d_1}{2} \cdot \sin(a_2) \left(\sqrt{A_x^2 + A_y^2} + \sqrt{O_x^2 + O_y^2} \right) = I_{zz2} \cdot \ddot{\eta}_2
\end{aligned}
\] (3.114)

Para descrever o equilíbrio rotacional do corpo 3, Figura (3.23), utiliza-se mais uma vez a equação de Euler:
\[
\begin{aligned}
\dot{\eta}_3 \cdot r_{DC} \times \left(T_{n_3} \cdot C \right) + r_{DC03} \times \left(T_{n_3} \cdot P \right) + M_C + M_D = \dot{\eta}_3 \cdot I_3 \cdot \frac{d(\eta_3 \cdot \omega_3)}{dt} + \Omega_3 \times \left(\dot{\eta}_3 \cdot I_{D} \cdot \omega_3 \right) + m_3 \cdot \left(r_{D - CO3} \times \dot{\eta}_3 \cdot \omega_3 \right)
\end{aligned}
\] (3.115)

Considerando-se o movimento plano
\[
\dot{\eta}_3 \cdot \Omega_3 \times \left(\dot{\eta}_3 \cdot I_{D} \cdot \omega_3 \right) = 0
\] (3.116)

e reescrevendo-se o vetor de aceleração do ponto D na base móvel B3
\[
\begin{bmatrix}
\ddot{x}_C \cdot \cos \eta_3 \\
\ddot{y}_C \cdot \sin \eta_3 \\
0
\end{bmatrix}
\] (3.117)

chega-se à seguinte equação:
\[
\begin{aligned}
\dot{\eta}_3 \cdot \left(C_x \cdot \cos \eta_3 + C_y \cdot \sin \eta_3 \right) + m_3 \cdot y_{CO1} \cdot \left(- \cos \eta_3 \cdot \ddot{x}_C + g \cdot \sin \eta_3 \right) + - \mu \cdot \frac{d_2}{2} \cdot \sin(a_3) \cdot \left(\sqrt{C_x^2 + C_y^2} + \sqrt{D_x^2 + D_y^2} \right) = I_{zz3} \cdot \ddot{\eta}_3
\end{aligned}
\] (3.118)
3.7 Diagrama de Corpo Livre

De maneira similar a do corpo 1, chega-se à equação (3.119) para o corpo 4, fazendo-se novamente as considerações de movimento plano e que a aceleração linear absoluta do ponto \(G \) é nula, ou seja:

\[
\begin{aligned}
&g_4 r_{GH} \times (T_{n_4} \cdot H) + g_4 r_{GF} \times (T_{n_4} \cdot F) + g_4 r_{GC_{G4}} \times (T_{n_4} \cdot P) + M_G + M_F + M_H = g_4 I_G \cdot \frac{d(b_4 \omega_4)}{dt} + b_4 \Omega_4 \times (b_4 I_{G' B_4} \omega_4) + m_4 \cdot (b_4 r_{G-CG_{4}} \times b_4 a_G)
\end{aligned}
\]

(3.119)

sendo:

\[
\begin{aligned}
g_4 \Omega_4 \times (b_4 I_{G} \cdot \omega_4) = 0
\end{aligned}
\]

(3.120)

e:

\[
\begin{aligned}
m_4 \cdot (b_4 r_{G-CG_{4}} \times b_4 a_G) = 0
\end{aligned}
\]

(3.121)

Logo:

\[
\begin{aligned}
l_{AT} \cdot (H_x \cdot \sin \eta_4 + H_y \cdot \cos \eta_4) + (l_{AT} - l_p) \cdot (-F_x \cdot \sin \eta_4 + F_y \cdot \cos \eta_4) - y_p \cdot (F_x \cdot \cos \eta_4 + F_y \cdot \sin \eta_4) + m_4 \cdot g \cdot (-x_{CG_4} \cdot \cos \eta_4 + y_{CG_4} \cdot \sin \eta_4) +
\end{aligned}
\]

\[
- \mu \cdot \text{inial}(\eta_4) \cdot \left[\frac{d_1}{2} \cdot \left(\sqrt{G^2_1 + G^2_2} + \sqrt{H^2_x + H^2_y} \right) + \frac{d_1}{2} \cdot \sqrt{F^2_x + F^2_y} \right] = l_{r_{r_{i_4}}}
\]

(3.122)

A aplicação da equação de Euler para o corpo 5, figura (3.25), leva à seguinte expressão:

\[
\begin{aligned}
g_5 r_{H} \times (T_{n_5} \cdot I) + g_5 r_{HCG_5} \times (T_{n_5} \cdot P) + M_H + M_I = g_5 I_H \cdot \frac{d(b_5 \omega_5)}{dt} + b_5 \Omega_5 \times (b_5 I_{H' B_5} \omega_5) + m_5 \cdot (b_5 r_{HCG_5} \times b_5 a_H)
\end{aligned}
\]

(3.123)
3.7 Diagrama de Corpo Livre

Considerando-se movimento plano:

\[\beta_3 \Omega_3 \times (\beta_3 I_H \cdot \omega_3) = 0 \] \hspace{1cm} (3.124)

e sabendo-se que a aceleração do ponto H representado na base B₃ vale:

\[\beta_3 a_H = \begin{bmatrix}
\cos \eta_3 \cdot l_{AT} \cdot (\hat{\eta}_4 \cdot \cos \eta_4 - \hat{\eta}_4 \cdot \sin \eta_4) + \sin \eta_3 \cdot l_{AT} \cdot (-\hat{\eta}_4 \cdot \sin \eta_4 + \hat{\eta}_4 \cdot \cos \eta_4) \\
- \sin \eta_3 \cdot l_{AT} \cdot (\hat{\eta}_4 \cdot \cos \eta_4 - \hat{\eta}_4 \cdot \sin \eta_4) + \cos \eta_3 \cdot l_{AT} \cdot (-\hat{\eta}_4 \cdot \sin \eta_4 + \hat{\eta}_4 \cdot \cos \eta_4) \\
0
\end{bmatrix} \] \hspace{1cm} (3.125)

chega-se a:

\[l_{AT} \cdot (\hat{\eta}_4 \cdot \sin \eta_3 + \hat{\eta}_4 \cdot \cos \eta_3) - m_s \cdot x_{CO_3} \cdot (\sin \eta_3 \cdot l_{AT} \cdot (\hat{\eta}_4 \cdot \cos \eta_4 + \hat{\eta}_4 \cdot \sin \eta_4) + \cos \eta_3 \cdot (\hat{\eta}_4 \cdot l_{AT} \cdot \sin \eta_4 + \hat{\eta}_4 \cdot l_{AT} \cdot \cos \eta_4 + g)) \\ - \mu \cdot \frac{d_1}{2} \cdot \sin \alpha (\hat{\eta}_3) \cdot (\sqrt{H_x^2 + H_y^2} + \sqrt{I_1^2 + I_2^2}) = I_{zz_3} \cdot \hat{\eta}_3 \] \hspace{1cm} (3.126)

Analogamente, o equilíbrio rotacional do corpo 6, representado pela Figura (3.26) pode ser descrito por:

\[\beta_6 r_{EF} \times (\beta_6 T_6) + \beta_6 r_{BCO_6} \times (\beta_6 T_6 \cdot \mathbf{p}) + M_E + M_F = \beta_6 I_E \cdot \frac{d(\beta_6 \Omega_6)}{dt} + \beta_6 \Omega_6 \times (\beta_6 I_E \cdot \beta_6 \omega_6) + m_6 \cdot (\beta_6 r_{EF-BCO_6} \times \beta_6 a_E) \] \hspace{1cm} (3.127)

sendo:

\[\beta_6 \Omega_6 \times (\beta_6 I_E \cdot \omega_6) = 0 \] \hspace{1cm} (3.128)

e:

\[\beta_3 \Omega_3 \times (\beta_3 I_H \cdot \omega_3) = 0 \]
3.7 Diagrama de Corpo Livre

\[
\begin{align*}
\kappa_a \kappa_R &= \begin{cases}
\dot{x}_C \cdot \cos \eta_6 \\
-\dot{x}_C \cdot \sin \eta_6 \\
0
\end{cases}
\end{align*}
\]

(3.129)

Logo:

\[
-l_{AC} \cdot \left(F_x \cdot \cos \eta_6 + F_y \cdot \sin \eta_6 \right) - m_6 \cdot \gamma_{CG} \cdot \left(\cos \eta_6 \cdot \ddot{x}_C + g \cdot \sin \eta_6 \right) - \mu \cdot \frac{d_2}{2} \cdot \sin(\eta_6) \cdot \left(\frac{E_x^2 + E_y^2}{\sqrt{F_x^2 + F_y^2}} \right) = I_{zz} \cdot \ddot{\eta}_6
\]

(3.130)

Finalmente, para os corpos 7 e 8, não há necessidade de se calcular os tensores de inércia, já que os corpos não giram e, portanto, a somatória de momentos é nula.

O equilíbrio rotacional do corpo 7 é dado por:

\[
i_{CG7-O} x \cdot D + i_{CG7-R} x \cdot E + i_{CG7-R} y \cdot R_y + M_D + M_R = 0
\]

(3.131)

Expansando-se a equação (3.131) tem-se termos não nulos somente na direção Z, os quais são dados por:

\[
x_{df} \cdot (E_y - D_y) + y_{df} \cdot (D_x + E_x) - x_{df} \cdot R_y - \mu \cdot \frac{d_2}{2} \cdot \left(\sin(\eta_6) \cdot \sqrt{D_x^2 + D_y^2} + \sin(\eta_6) \cdot \sqrt{E_x^2 + E_y^2} \right) = 0
\]

(3.132)

Analogamente para o corpo 8, tem-se:

\[
i_{CG8-O} x \cdot O + i_{CG8-R} x \cdot I + i_{CG8-N} \cdot N_y + M_O + M_I = 0
\]

(3.133)
Expandindo-se a equação (3.133), chega-se a:

\[x_{df2} \cdot (O_y + I_y) + y_{df2} \cdot (O_x - I_x - N_x \cdot \mu \cdot \text{sen}(\hat{\eta}_{pm})) + x_{df4} \cdot N_y - \mu \cdot \frac{d}{2} \cdot \left(\text{sen}(\hat{\eta}_2) \cdot \sqrt{O_x^2 + O_y^2} + \text{sen}(\hat{\eta}_3) \cdot \sqrt{I_x^2 + I_y^2} \right) = 0 \] (3.134)

Com as propriedades geométricas dos 8 corpos que compõem o mecanismo, as 16 equações geradas do desdoblamento dos 8 sistemas de equações (3.93), (3.94), (3.95), (3.96), (3.97), (3.98), (3.100) e (3.101), as quais são responsáveis por descrever o equilíbrio de forças dinâmicas nos 8 corpos, mais as 8 equações dadas por (3.110), (3.114), (3.118), (3.122), (3.125), (3.130), (3.132) e (3.134), as quais representam o equilíbrio de momentos dinâmicos e mais as 6 equações dadas por (3.41), (3.42), (3.43), (3.44), (3.45) e (3.46), as quais representam as equações de vínculos cinemáticos do mecanismo, pode-se montar um sistema de equações e resolvê-las simultaneamente, encontrando-se os valores das reações dinâmicas e equações de movimento a cada instante de análise.

3.8 Matriz do Sistema

Para resolver as equações descritas anteriormente, escreveu-se um sistema de equações não-linear de dimensão 30, proveniente de 23 equações de reação, sendo uma delas a força do atuador hidráulico \(F_C \), 1 equação que ora é de movimento, ora é reação dinâmica, dependendo do curso da placa móvel e 6 equações de aceleração angular \(\hat{\eta}_1, \hat{\eta}_2, \hat{\eta}_3, \hat{\eta}_4, \hat{\eta}_5 \) e \(\hat{\eta}_6 \) provenientes da derivada segunda das equações de vínculo.

Ressalta-se que a placa móvel apresenta uma equação de movimento antes de tocar o molde, onde a força aplicada sobre o mesmo é nula. Ao tocarem as duas metades do molde, a equação continua como uma equação de movimento, onde a força aplicada é uma função da deformação do conjunto molde, placas, articuladores e tirantes. Esta deformação acontece até o valor de
3.8 Matriz do Sistema

aproximadamente $1,5 \times 10^3$ m. A partir daí, a equação de movimento transforma-se em uma equação de reação (força de travamento), pois a aceleração e a velocidade tornam-se nulas na compressão máxima do conjunto.

Pode-se escrever o sistema de equações da seguinte maneira:

sendo A, a matriz formada pela derivada parcial do conjunto de 30 equações ($i=1,2,3,...30$ e $j=1,2,3,...30$) em relação as variáveis do vetor x:

$$ a_{i,j} = \frac{\partial f_i}{\partial x_j} $$

A, elementos da matriz A

x, o vetor formado pelas variáveis que se desejam encontrar os valores

b, o vetor formado pelas equações com sinal invertido:

$$ b_i = -f_i $$

O sistema é escrito dessa maneira para que possa ser resolvido pelo método de Newton-Raphson, implementado em uma rotina de Turbo Pascal. Optou-se por utilizar este método porque há equações não-lineares no sistema, como no caso do atrito entre os corpos, onde a reação resultante é composta por duas componentes de reação R_x e R_y, que $R = \sqrt{R_x^2 + R_y^2}$ fazem da parte do vetor x:

$$ \begin{bmatrix} A_x & A_y & B_x & B_y & C_x & C_y & D_x & D_y & E_x & E_y & F_x & F_y & G_x & G_y & H_x & H_y & I_x & I_y & O_x & O_y & R_x & R_y & N_y & F_C & F_T & \ddot{\theta}_1 & \ddot{\theta}_2 & \ddot{\theta}_3 & \ddot{\theta}_4 & \end{bmatrix} $$

Figura 3.30 - Vetor x^T

A Figura (3.30) apresenta o vetor x transposto com os 30 elementos referentes as reações dinâmicas e acelerações angulares.
Os elementos da matriz A são dados por:

$a_{1,1} = -1.0 \quad a_{1,3} = 1.0 \quad a_{1,5} = 1.0 \quad a_{1,25} = m_1 \cdot (x_{CG_1} \cdot \sin \eta_1 - y_{CG_1} \cdot \cos \eta_1)$

$a_{2,2} = 1.0 \quad a_{2,4} = 1.0 \quad a_{2,6} = 1.0 \quad a_{2,25} = -m_1 \cdot (x_{CG_1} \cdot \cos \eta_1 + y_{CG_1} \cdot \sin \eta_1)$

$a_{3,1} = 1.0 \quad a_{3,19} = 1.0 \quad a_{3,25} = m_2 \cdot l_{AT} \cdot \sin \eta_1 \quad a_{3,26} = m_2 \cdot x_{CG_2} \cdot \sin \eta_2$

$a_{4,2} = -1.0 \quad a_{4,20} = 1.0 \quad a_{4,25} = -m_2 \cdot l_{AT} \cdot \cos \eta_1 \quad a_{4,26} = -m_2 \cdot x_{CG_2} \cdot \cos \eta_2$

$a_{5,5} = -1.0 \quad a_{5,7} = 1.0 \quad a_{5,27} = m_3 \cdot y_{CG_3} \cdot \cos \eta_3$

$a_{6,6} = -1.0 \quad a_{6,8} = 1.0 \quad a_{6,27} = m_3 \cdot y_{CG_3} \cdot \sin \eta_3$

$a_{7,11} = 1.0 \quad a_{7,13} = 1.0 \quad a_{7,15} = -1.0 \quad a_{7,28} = m_4 \cdot (x_{CG_4} \cdot \sin \eta_4 + y_{CG_4} \cdot \cos \eta_4)$

$a_{8,12} = 1.0 \quad a_{8,14} = 1.0 \quad a_{8,16} = 1.0 \quad a_{8,28} = -m_4 \cdot (x_{CG_4} \cdot \cos \eta_4 - y_{CG_4} \cdot \sin \eta_4)$

$a_{9,15} = 1.0 \quad a_{9,17} = 1.0 \quad a_{9,28} = m_5 \cdot l_{AT} \cdot \sin \eta_4 \quad a_{9,29} = m_5 \cdot x_{CG_5} \cdot \sin \eta_5$

$a_{10,16} = -1.0 \quad a_{10,18} = 1.0 \quad a_{10,28} = -m_5 \cdot l_{AT} \cdot \cos \eta_4 \quad a_{10,29} = -m_5 \cdot x_{CG_5} \cdot \cos \eta_5$

$a_{11,9} = -1.0 \quad a_{11,11} = -1.0 \quad a_{11,30} = -m_6 \cdot y_{CG_6} \cdot \cos \eta_6$

$a_{12,10} = -1.0 \quad a_{12,12} = -1.0 \quad a_{12,30} = -m_6 \cdot y_{CG_6} \cdot \sin \eta_6$

$a_{13,7} = -1.0 \quad a_{13,9} = 1.0 \quad a_{13,21} = -\mu \cdot sinal(\dot{x}_C) \quad a_{13,23} = 1.0$

$a_{14,8} = -1.0 \quad a_{14,10} = 1.0 \quad a_{14,21} = 1.0$

$a_{15,17} = -1.0 \quad a_{15,19} = -1.0 \quad a_{15,22} = -\mu \cdot sinal(\dot{x}_{\tau_1} + \dot{x}_C) \quad a_{15,24} = -1$

$a_{15,25} = m_8 \cdot (l_p \cdot \sin \eta_1 + y_p \cdot \cos \eta_1) \quad a_{15,26} = m_8 \cdot l_{AD} \cdot \sin \eta_2 \quad a_{15,27} = m_8 \cdot l_{AC} \cdot \sin \eta_3$

$a_{16,18} = -1.0 \quad a_{16,20} = -1.0 \quad a_{16,22} = 1.0$
\[a_{17,1} = l_{AT} \cdot \sin \eta_1 - \mu \cdot \frac{d_1}{2} \cdot \sin \beta_1 \cdot \frac{1}{\sqrt{A_x^2 + A_y^2}}\]

\[a_{17,2} = l_{AT} \cdot \cos \eta_1 - \mu \cdot \frac{d_1}{2} \cdot \sin \beta_1 \cdot \frac{1}{\sqrt{A_x^2 + A_y^2}}\]

\[a_{17,3} = -\mu \cdot \frac{d_1}{2} \cdot \sin \beta_1 \cdot \frac{1}{\sqrt{B_x^2 + B_y^2}} \quad a_{17,4} = -\mu \cdot \frac{d_1}{2} \cdot \sin \beta_1 \cdot \frac{1}{\sqrt{B_x^2 + B_y^2}}\]

\[a_{17,5} = y_p \cdot \cos \eta_1 - l_{AT} \cdot \sin \eta_1 + l_p \cdot \sin \eta_1 - \mu \cdot \frac{d_2}{2} \cdot \sin \beta_1 \cdot \frac{1}{\sqrt{C_x^2 + C_y^2}}\]

\[a_{17,6} = l_{AT} \cdot \cos \eta_1 - l_p \cdot \cos \eta_1 + y_p \cdot \sin \eta_1 - \mu \cdot \frac{d_2}{2} \cdot \sin \beta_1 \cdot \frac{1}{\sqrt{C_x^2 + C_y^2}} \quad a_{17,23} = -l_{zz}\]

\[a_{18,1} = -\mu \cdot \frac{d_1}{2} \cdot \sin \beta_2 \cdot \frac{1}{\sqrt{A_x^2 + A_y^2}} \quad a_{18,2} = -\mu \cdot \frac{d_1}{2} \cdot \sin \beta_2 \cdot \frac{1}{\sqrt{A_x^2 + A_y^2}}\]

\[a_{18,19} = -l_{AD} \cdot \sin \eta_2 - \mu \cdot \frac{d_1}{2} \cdot \sin \beta_2 \cdot \frac{1}{\sqrt{O_x^2 + O_y^2}}\]

\[a_{18,20} = l_{AD} \cdot \cos \eta_2 - \mu \cdot \frac{d_1}{2} \cdot \sin \beta_2 \cdot \frac{1}{\sqrt{O_x^2 + O_y^2}}\]

\[a_{18,25} = -m_2 \cdot x_{CO} \cdot (\sin \eta_2 \cdot l_{AT} \cdot \sin \eta_1 + \cos \eta_2 \cdot l_{AT} \cdot \cos \eta_1) \quad a_{18,26} = -l_{zz}\]

\[a_{19,5} = l_{AC} \cdot \cos \eta_3 - \mu \cdot \frac{d_2}{2} \cdot \sin \beta_3 \cdot \frac{1}{\sqrt{C_x^2 + C_y^2}}\]

\[a_{19,6} = l_{AC} \cdot \sin \eta_3 - \mu \cdot \frac{d_2}{2} \cdot \sin \beta_3 \cdot \frac{1}{\sqrt{C_x^2 + C_y^2}}\]

\[a_{19,7} = -\mu \cdot \frac{d_2}{2} \cdot \sin \beta_3 \cdot \frac{1}{\sqrt{D_x^2 + D_y^2}} \quad a_{19,8} = -\mu \cdot \frac{d_2}{2} \cdot \sin \beta_3 \cdot \frac{1}{\sqrt{D_x^2 + D_y^2}}\]
3.8 Matriz do Sistema

\[a_{19,27} = -l_{zz} \]

\[a_{20,11} = -y_p \cdot \cos \eta_4 - l_{AT} \cdot \sin \eta_4 + l_p \cdot \sin \eta_4 - \mu \cdot \frac{d_2}{2} \cdot \sin \hat{\eta}_4 \cdot \frac{1}{\sqrt{F_X^2 + F_Y^2}} \]

\[a_{20,12} = l_{AT} \cdot \cos \eta_4 + l_p \cdot \cos \eta_4 - y_p \cdot \sin \eta_4 - \mu \cdot \frac{d_2}{2} \cdot \sin \hat{\eta}_4 \cdot \frac{1}{\sqrt{F_X^2 + F_Y^2}} \]

\[a_{20,13} = -\mu \cdot \frac{d_1}{2} \cdot \sin \hat{\eta}_4 \cdot \frac{1}{\sqrt{G_X^2 + G_Y^2}} \]

\[a_{20,14} = -\mu \cdot \frac{d_1}{2} \cdot \sin \hat{\eta}_4 \cdot \frac{1}{\sqrt{G_X^2 + G_Y^2}} \]

\[a_{20,15} = l_{AT} \cdot \sin \eta_4 - \mu \cdot \frac{d_1}{2} \cdot \sin \hat{\eta}_4 \cdot \frac{1}{\sqrt{H_X^2 + H_Y^2}} \]

\[a_{20,16} = l_{AT} \cdot \cos \eta_4 - \mu \cdot \frac{d_1}{2} \cdot \sin \hat{\eta}_4 \cdot \frac{1}{\sqrt{H_X^2 + H_Y^2}} \]

\[a_{21,15} = -\mu \cdot \frac{d_1}{2} \cdot \sin \hat{\eta}_5 \cdot \frac{1}{\sqrt{I_X^2 + I_Y^2}} \]

\[a_{21,16} = -\mu \cdot \frac{d_1}{2} \cdot \sin \hat{\eta}_5 \cdot \frac{1}{\sqrt{I_X^2 + I_Y^2}} \]

\[a_{21,17} = -l_{AD} \cdot \sin \eta_5 - \mu \cdot \frac{d_1}{2} \cdot \sin \hat{\eta}_5 \cdot \frac{1}{\sqrt{I_X^2 + I_Y^2}} \]

\[a_{21,18} = l_{AD} \cdot \cos \eta_5 - \mu \cdot \frac{d_1}{2} \cdot \sin \hat{\eta}_5 \cdot \frac{1}{\sqrt{I_X^2 + I_Y^2}} \]

\[a_{21,28} = -m_s \cdot x_{CO_3} \cdot (\sin \eta_4 \cdot l_{AT} \cdot \sin \eta_5 + \cos \eta_5 \cdot l_{AT} \cdot \cos \eta_4) \]

\[a_{21,29} = -l_{zz} \]

\[a_{22,9} = -\mu \cdot \frac{d_2}{2} \cdot \sin \hat{\eta}_6 \cdot \frac{1}{\sqrt{E_X^2 + E_Y^2}} \]

\[a_{22,10} = -\mu \cdot \frac{d_2}{2} \cdot \sin \hat{\eta}_6 \cdot \frac{1}{\sqrt{E_X^2 + E_Y^2}} \]

\[a_{22,11} = -l_{AC} \cdot \cos \eta_6 - \mu \cdot \frac{d_2}{2} \cdot \sin \hat{\eta}_6 \cdot \frac{1}{\sqrt{F_X^2 + F_Y^2}} \]
3.8 Matriz do Sistema

\[a_{22,12} = -l_{AC} \cdot \sin \eta_6 - \mu \cdot \frac{d_2}{2} \cdot \sin \alpha_6 \cdot \frac{1}{\sqrt{E_x^2 + F_y^2}} \quad a_{22,30} = -I_{22,4} \]

\[a_{23,7} = y_{df} - \mu \cdot \frac{d_1}{2} \cdot \sin \alpha_3 \cdot \frac{1}{\sqrt{D_x^2 + D_y^2}} \quad a_{23,8} = -x_{df} - \mu \cdot \frac{d_2}{2} \cdot \sin \alpha_3 \cdot \frac{1}{\sqrt{D_x^2 + D_y^2}} \]

\[a_{23,9} = y_{df} - \mu \cdot \frac{d_2}{2} \cdot \sin \alpha_6 \cdot \frac{1}{\sqrt{E_x^2 + E_y^2}} \quad a_{23,10} = x_{df} - \mu \cdot \frac{d_1}{2} \cdot \sin \alpha_6 \cdot \frac{1}{\sqrt{E_x^2 + E_y^2}} \]

\[a_{23,21} = -x_{df} \]

\[a_{24,17} = -y_{df} - \mu \cdot \frac{d_1}{2} \cdot \sin \alpha_2 \cdot \frac{1}{\sqrt{I_x^2 + I_y^2}} \quad a_{24,18} = x_{df} - \mu \cdot \frac{d_1}{2} \cdot \sin \alpha_2 \cdot \frac{1}{\sqrt{I_x^2 + I_y^2}} \]

\[a_{24,19} = y_{df} - \mu \cdot \frac{d_2}{2} \cdot \sin \alpha_2 \cdot \frac{1}{\sqrt{O_x^2 + O_y^2}} \quad a_{24,20} = x_{df} - \mu \cdot \frac{d_2}{2} \cdot \sin \alpha_2 \cdot \frac{1}{\sqrt{O_x^2 + O_y^2}} \]

\[a_{24,22} = x_{df} - \mu \cdot \sin \left(\alpha_{PM} \right) \cdot y_{df} \]

\[a_{25,25} = l_{AC} \cdot \sin \eta_3 \cdot \left(l_p - l_{AT} \right) \cdot \sin \eta_1 + y_p \cdot \cos \eta_1 \cdot \left(l_{AT} - l_p \right) \cdot \cos \eta_1 + y_p \cdot \sin \eta_1 \]

\[a_{26,25} = l_p \cdot \cos \eta_1 - y_p \cdot \sin \eta_1 \quad a_{26,26} = l_{AD} \cdot \cos \eta_2 \quad a_{26,27} = -l_{AC} \cdot \sin \eta_3 \]

\[a_{27,27} = l_{AC} \cdot \sin \eta_3 \cdot \left(l_p - l_{AT} \right) \cdot \sin \eta_1 + y_p \cdot \cos \eta_1 \cdot \left(l_{AT} - l_p \right) \cdot \cos \eta_1 + y_p \cdot \sin \eta_1 \]

\[a_{28,28} = l_{AC} \cdot \sin \eta_3 \cdot \left(l_{AT} - l_p \right) \cdot \sin \eta_4 + y_p \cdot \cos \eta_4 \cdot \left(l_{AT} - l_p \right) \cdot \cos \eta_4 + y_p \cdot \sin \eta_4 \]

\[a_{29,29} = l_p \cdot \cos \eta_4 + y_p \cdot \sin \eta_4 \quad a_{29,29} = l_{AD} \cdot \cos \eta_5 \quad a_{29,30} = l_{AC} \cdot \sin \eta_6 \]

\[a_{30,30} = -l_{AC} \cdot \sin \eta_6 \cdot \left(l_p - l_{AT} \right) \cdot \sin \eta_4 - y_p \cdot \cos \eta_4 \cdot \left(l_{AT} - l_p \right) \cdot \cos \eta_4 + y_p \cdot \sin \eta_4 \]
Os demais elementos não citados são nulos.

O vetor independente b é dado por:

$$
b_1 = -\left(-A_x + B_x + C_x + m_1 \cdot \left(x_{co_1} \cdot \cos \eta_1 + y_{co_1} \cdot \sin \eta_1 \right) \cdot \dot{\eta}_1^2 + m_1 \cdot \left(x_{co_1} \cdot \sin \eta_1 - y_{co_1} \cdot \cos \eta_1 \right) \cdot \ddot{\eta}_1 \right)
$$

$$
b_2 = -\left(A_y + B_y + C_y - m_1 \cdot \left(-x_{co_1} \cdot \sin \eta_1 + y_{co_1} \cdot \cos \eta_1 \right) \cdot \dot{\eta}_1^2 + m_1 \cdot \left(x_{co_1} \cdot \cos \eta_1 + y_{co_1} \cdot \sin \eta_1 \right) \cdot \ddot{\eta}_1 - m_1 \cdot g \right)
$$

$$
b_3 = -\left(A_x + O_x + m_2 \cdot l_{AT} \cdot \cos \eta_2 \cdot \dot{\eta}_2^2 + m_2 \cdot \dot{\eta}_2 \cdot x_{co_2} \cdot \cos \eta_2 + m_2 \cdot \left(-\dot{\eta}_2 \cdot l_{AT} \cdot \sin \eta_2 - \dot{\eta}_2 \cdot x_{co_2} \cdot \sin \eta_2 \right) \right)
$$

$$
b_4 = -\left(-A_y + O_y - m_2 \cdot \left(-\dot{\eta}_2^2 \cdot l_{AT} \cdot \sin \eta_2 - \dot{\eta}_2 \cdot x_{co_2} \cdot \sin \eta_2 + \dot{\eta}_2 \cdot l_{AT} \cdot \cos \eta_2 + \dot{\eta}_2 \cdot x_{co_2} \cdot \cos \eta_2 + g \right) \right)
$$

$$
b_5 = -\left(-C_x + D_x - m_3 \cdot \left(x_{co_3} \cdot \sin \eta_3 - \dot{\eta}_3 \cdot y_{co_3} \cdot \cos \eta_3 \right) \right)
$$

$$
b_6 = -\left(-C_y + D_y - m_3 \cdot \left(\dot{\eta}_3^2 \cdot y_{co_3} \cdot \cos \eta_3 - \dot{\eta}_3 \cdot y_{co_3} \cdot \sin \eta_3 + g \right) \right)
$$

$$
b_7 = -\left(F_x + G_x - H_x - m_4 \cdot \left(-x_{co_4} \cdot \cos \eta_4 + y_{co_4} \cdot \sin \eta_4 \right) \cdot \dot{\eta}_4^2 + m_4 \cdot \left(x_{co_4} \cdot \sin \eta_4 + y_{co_4} \cdot \cos \eta_4 \right) \cdot \ddot{\eta}_4 \right)
$$

$$
b_8 = -\left(F_y + G_y + H_y - m_4 \cdot \left(-x_{co_4} \cdot \sin \eta_4 - y_{co_4} \cdot \cos \eta_4 \right) \cdot \dot{\eta}_4^2 + m_4 \cdot \left(x_{co_4} \cdot \cos \eta_4 - y_{co_4} \cdot \sin \eta_4 \right) \cdot \ddot{\eta}_4 - m_4 \cdot g \right)
$$

$$
b_9 = -\left(H_x + I_x + m_5 \cdot \left(\dot{\eta}_5^2 \cdot l_{AT} \cdot \cos \eta_5 + \dot{\eta}_5 \cdot x_{co_5} \cdot \cos \eta_5 \right) \right) + m_5 \cdot \left(\dot{\eta}_5 \cdot l_{AT} \cdot \sin \eta_5 + \dot{\eta}_5 \cdot x_{co_5} \cdot \sin \eta_5 \right)
$$

$$
b_{10} = -\left(-H_y + I_y - m_5 \cdot \left(-\dot{\eta}_5^2 \cdot l_{AT} \cdot \sin \eta_5 - \dot{\eta}_5 \cdot x_{co_5} \cdot \sin \eta_5 + \dot{\eta}_5 \cdot l_{AT} \cdot \cos \eta_5 + \dot{\eta}_5 \cdot x_{co_5} \cdot \cos \eta_5 + g \right) \right)
$$

$$
b_{11} = -\left(-E_x - F_x - m_6 \cdot \left(x_{co_6} \cdot \sin \eta_6 - \dot{\eta}_6 \cdot y_{co_6} \cdot \cos \eta_6 \right) \right)
$$

$$
b_{12} = -\left(-E_y - F_y - m_6 \cdot \left(\dot{\eta}_6^2 \cdot y_{co_6} \cdot \cos \eta_6 + \dot{\eta}_6 \cdot y_{co_6} \cdot \sin \eta_6 + g \right) \right)
$$

$$
b_{13} = -\left(-D_x + E_x + F_c - R_x \cdot \mu \cdot \sin \left(\dot{x}_c \right) - m_7 \cdot \dot{x}_c \right)
$$

$$
b_{14} = -\left(-D_y + E_y + R_y - m_7 \cdot g \right)$$
3.8 Matriz do Sistema

\[b_{15} = -\left(-O_X - I_X - N_Y \cdot \mu \cdot \text{sin} \left[\bar{r}_c - \bar{r}_b \cdot l_{AD} \cdot \text{sin} \eta_2 - \bar{r}_b \cdot \left(l_p \cdot \text{sin} \eta + y_p \cdot \text{cos} \eta \right) - \bar{r}_b \cdot l_{AC} \cdot \text{cos} \eta_b \right] - F_r + \right. \\
\left. - m_s \cdot \left[\bar{r}_c - \bar{r}_b^2 \cdot l_{AD} \cdot \text{cos} \eta_2 - \bar{r}_b^2 \cdot \left(l_p \cdot \text{cos} \eta - y_p \cdot \text{sin} \eta \right) + \bar{r}_b^2 \cdot l_{AC} \cdot \text{sin} \eta_b + \bar{r}_b^2 \cdot l_{AD} \cdot \text{sin} \eta_2 - \bar{r}_b \cdot l_p \cdot \text{sin} \eta + y_p \cdot \text{cos} \eta \right] - \bar{r}_b \cdot l_{AC} \cdot \text{cos} \eta_b \right) \\

\[b_{16} = -\left(-O_Y - I_Y - N_Y - m_s \cdot g \right) \]

\[b_{17} = -\left(l_{AT} - l_p \cdot \left(-C_X \cdot \text{sin} \eta_2 + C_Y \cdot \text{cos} \eta_2 \right) + y_p \cdot \left(C_X \cdot \text{cos} \eta + C_Y \cdot \text{sin} \eta \right) + l_{AT} \cdot \left(A_X \cdot \text{sin} \eta_2 + A_Y \cdot \text{cos} \eta \right) - m_s \cdot g \cdot \left(x_{CO} \cdot \text{cos} \eta_2 + y_{CO} \cdot \text{sin} \theta \right) - \right. \]

\[\left(\mu \cdot \frac{d_1}{2} \cdot \text{sin} \left[\bar{r}_b \cdot \left(\sqrt{B_X^2 + B_Y^2} + \sqrt{A_X^2 + A_Y^2} \right) - \mu \cdot \frac{d_s}{2} \cdot \text{sin} \left[\bar{r}_b \cdot \left(\sqrt{C_X^2 + C_Y^2} \right) - I_{ZZ} \cdot \bar{r}_b \right] \right) \right) \]

\[b_{18} = -\left(\frac{l_{AD} \cdot \left(O_X \cdot \text{cos} \eta_2 - O_Y \cdot \text{sin} \eta_2 \right) - m_s \cdot x_{CO} \cdot \left(\text{sin} \eta_2 \cdot \text{cos} \theta + \eta_2 \cdot \text{sin} \eta \right) + \text{cos} \eta_2 \cdot \left(- \eta_2^2 \cdot l_{AT} \cdot \text{sin} \eta_2 + \bar{r}_b \cdot l_{AT} \cdot \text{cos} \eta_2 + g \right) \right)^+ \]

\[b_{19} = -\left(l_{AD} \cdot \left(C_X \cdot \text{cos} \eta_3 + C_Y \cdot \text{sin} \eta_3 \right) + m_s \cdot y_{CO} \cdot \left(\text{cos} \eta_3 \cdot \bar{r}_c + \text{sin} \eta_3 \cdot g \right) - \mu \cdot \frac{d_s}{2} \cdot \text{sin} \left[\bar{r}_b \cdot \left(\sqrt{C_X^2 + C_Y^2} + \sqrt{D_X^2 + D_Y^2} \right) - I_{ZZ} \cdot \bar{r}_b \right] \right) \]

\[b_{20} = -\left(l_{AT} \cdot \left(H_X \cdot \text{sin} \eta_4 + H_Y \cdot \text{cos} \eta_4 \right) + \left(l_{AT} - l_p \right) \cdot \left(-F_X \cdot \text{sin} \eta_4 + F_Y \cdot \text{cos} \eta_4 \right) - y_p \cdot \left(F_X \cdot \text{cos} \eta_4 + F_Y \cdot \text{sin} \eta_4 \right) + m_s \cdot g \cdot \left(-x_{CO} \cdot \text{cos} \eta_4 + y_{CO} \cdot \text{sin} \eta_4 \right) - \right. \]

\[\left. - \mu \cdot \frac{d_s}{2} \cdot \text{sin} \left[\bar{r}_b \cdot \left(\sqrt{H_X^2 + H_Y^2} + \sqrt{G_X^2 + G_Y^2} \right) - \mu \cdot \frac{d_s}{2} \cdot \text{sin} \left[\bar{r}_b \cdot \left(\sqrt{F_X^2 + F_Y^2} \right) - I_{ZZ} \cdot \bar{r}_b \right] \right) \right) \]

\[b_{21} = -\left(l_{AD} \cdot \left(\sqrt{H_X^2 + H_Y^2} + \sqrt{G_X^2 + G_Y^2} \right) - l_{AT} \cdot \left(\text{sin} \eta_4 \cdot \bar{r}_b \cdot \left(\text{cos} \eta_4 \cdot \eta_4^2 + \eta_4 \cdot \text{sin} \eta_4 \right) + \right. \]

\[\left. \text{cos} \eta_4 \cdot \left(- l_{AT} \cdot \text{sin} \eta_4 \cdot \eta_4^2 + g + \eta_4 \cdot l_{AT} \cdot \text{cos} \eta_4 \right) \right) \right) \]

\[b_{22} = -\left(-l_{AC} \cdot \left(F_X \cdot \text{cos} \eta_6 + F_Y \cdot \text{sin} \eta_6 \right) - m_s \cdot y_{CO} \cdot \left(\text{cos} \eta_6 \cdot \bar{r}_c + \text{sin} \eta_6 \cdot g \right) - \mu \cdot \frac{d_s}{2} \cdot \text{sin} \left[\bar{r}_b \cdot \left(\sqrt{E_X^2 + E_Y^2} + \sqrt{F_X^2 + F_Y^2} \right) - I_{ZZ} \cdot \bar{r}_b \right] \right) \]

\[b_{23} = -\left(x_{df} \cdot \left(F_Y - D_Y \right) + y_{df} \cdot \left(F_X + D_X \right) - x_{df} \cdot \text{sin} \left[\bar{r}_b \cdot \left(\sqrt{D_X^2 + D_Y^2} + \sqrt{E_X^2 + E_Y^2} \right) \right) \right) \]
3.8 Matriz do Sistema

\[b_{14} = -\left(x_{df1} \cdot (O_y + l_y) + y_{df1} \cdot (O_x - l_x - N_y \cdot \mu \cdot \text{sinal}(\tilde{x}_{ph})) + x_{df2} \cdot N_y - \mu \cdot \frac{d_1}{2} \cdot \left(\text{sinal}(\tilde{n}_h) \cdot \sqrt{O_x^2 + O_y^2} + \text{sinal}(\tilde{n}_h) \cdot \sqrt{I_x^2 + I_y^2} \right) \right) \]

\[b_{25} = -\left(l_{ac} \cdot \sin \eta_3 \cdot ((l_p - l_{AT}) \cdot \sin \eta_h + y_p \cdot \cos \eta_h) - l_{ac} \cdot \cos \eta_3 \cdot ((l_{AT} - l_p) \cdot \cos \eta_h + y_p \cdot \sin \eta_h) \cdot \tilde{n}_h + \right) \]

\[-l_{ac} \cdot \sin \eta_3 \cdot (\tilde{x}_c + \tilde{n}_h^2 \cdot ((l_{AT} - l_p) \cdot \cos \eta_h + y_p \cdot \sin \eta_h) + \tilde{n}_3^2 \cdot l_{ac} \cdot \sin \eta_3) + l_{ac} \cdot \cos \eta_3 \cdot \left(\tilde{n}_h^2 \cdot ((l_{AT} - l_p) \cdot \sin \eta_h - y_p \cdot \cos \eta_h) - \tilde{n}_3^2 \cdot l_{ac} \cdot \cos \eta_3 \right) \]

\[b_{26} = -\left(l_{ad} \cdot \cos \eta_2 \cdot \tilde{n}_h + \tilde{n}_h \cdot (l_p \cdot \cos \eta_h - y_p \cdot \sin \eta_h) - \tilde{n}_3 \cdot l_{ad} \cdot \sin \eta_3 - \tilde{n}_2 \cdot l_{ad} \cdot \sin \eta_2 + \tilde{n}_3 \cdot (l_p \cdot \sin \eta_h + y_p \cdot \cos \eta_h) - \tilde{n}_2 \cdot l_{ac} \cdot \cos \eta_3 \right) \]

\[b_{27} = \left(l_{ac} \cdot \sin \eta_3 \cdot ((l_p - l_{AT}) \cdot \sin \eta_h + y_p \cdot \cos \eta_h) - l_{ac} \cdot \cos \eta_3 \cdot ((l_{AT} - l_p) \cdot \cos \eta_h + y_p \cdot \sin \eta_h) \cdot \tilde{n}_3 + \right) \]

\[-\left(((l_p - l_{AT}) \cdot \sin \eta_h + y_p \cdot \cos \eta_h) \cdot (\tilde{n}_h^2 \cdot ((l_{AT} - l_p) \cdot \sin \eta_h - y_p \cdot \cos \eta_h) - \tilde{n}_3^2 \cdot l_{ac} \cdot \cos \eta_3) + \right) \]

\[\left(((l_{AT} - l_p) \cdot \cos \eta_h + y_p \cdot \sin \eta_h) \cdot (\tilde{x}_c + \tilde{n}_h^2 \cdot ((l_{AT} - l_p) \cdot \cos \eta_h + y_p \cdot \sin \eta_h) + \tilde{n}_3^2 \cdot l_{ac} \cdot \sin \eta_3) \right) \]

\[b_{28} = \left(-l_{ac} \cdot \sin \eta_6 \cdot ((l_p - l_{AT}) \cdot \sin \eta_4 - y_p \cdot \cos \eta_4) + l_{ac} \cdot \cos \eta_6 \cdot ((l_{AT} - l_p) \cdot \cos \eta_4 - y_p \cdot \sin \eta_4) \cdot \tilde{n}_4 + \right) \]

\[l_{ac} \cdot \sin \eta_6 \cdot (\tilde{x}_c + \tilde{n}_4^2 \cdot ((l_{AT} - l_p) \cdot \cos \eta_4 - y_p \cdot \sin \eta_4) - \tilde{n}_6^2 \cdot l_{ac} \cdot \sin \eta_6) - l_{ac} \cdot \cos \eta_6 \cdot (\tilde{n}_4^2 \cdot ((l_{AT} - l_p) \cdot \sin \eta_4 + y_p \cdot \cos \eta_4) + \tilde{n}_6^2 \cdot l_{ac} \cdot \cos \eta_6, \right) \]

\[b_{29} = -\left(l_{ad} \cdot \cos \eta_5 \cdot \tilde{n}_3 + \tilde{n}_3 \cdot (l_p \cdot \cos \eta_4 + y_p \cdot \sin \eta_4) + \tilde{n}_6 \cdot l_{ac} \cdot \sin \eta_6 - \tilde{n}_5^2 \cdot l_{ad} \cdot \sin \eta_5 - \tilde{n}_4^2 \cdot (l_p \cdot \sin \eta_4 - y_p \cdot \cos \eta_4) + \tilde{n}_6^2 \cdot l_{ac} \cdot \cos \eta_6 \right) \]

\[b_{30} = \left(-l_{ac} \cdot \sin \eta_6 \cdot ((l_p - l_{AT}) \cdot \sin \eta_4 - y_p \cdot \cos \eta_4) + l_{ac} \cdot \cos \eta_6 \cdot ((l_{AT} - l_p) \cdot \cos \eta_4 - y_p \cdot \sin \eta_4) \cdot \tilde{n}_6 + \right) \]

\[-\left(((l_p - l_{AT}) \cdot \sin \eta_4 - y_p \cdot \cos \eta_4) \cdot (\tilde{n}_4^2 \cdot ((l_{AT} - l_p) \cdot \sin \eta_4 + y_p \cdot \cos \eta_4) + \tilde{n}_6^2 \cdot l_{ac} \cdot \cos \eta_6) + \right) \]

\[\left(((l_{AT} - l_p) \cdot \cos \eta_4 - y_p \cdot \sin \eta_4) \cdot (\tilde{x}_c + \tilde{n}_4^2 \cdot ((l_{AT} - l_p) \cdot \cos \eta_4 - y_p \cdot \sin \eta_4) - \tilde{n}_6^2 \cdot l_{ac} \cdot \sin \eta_6) \right) \]}
Capítulo 4

Resultados Teóricos

O objetivo deste capítulo é simular o funcionamento do mecanismo com o uso do modelo matemático criado, variando-se alguns parâmetros, como coeficiente de atrito e momento de inércia dos corpos, gerando dados para comparação e discussão.

4.1 Valores iniciais

Para realizar a simulação é necessário que sejam fornecidos os valores das variáveis do modelo. A Figura (4.1) mostra a máquina na posição inicial. A tabela (4.1) fornece os dados referentes à geometria dos componentes e posição inicial:

Figura 4.1 - Mecanismo recuado (posição inicial)
4.1 Valores Iniciais

<table>
<thead>
<tr>
<th>Variável</th>
<th>Valor</th>
<th>Variável</th>
<th>Valor</th>
<th>Variável</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>L_AT</td>
<td>0.380 m</td>
<td>m₂</td>
<td>43.7 kg</td>
<td>eta₆</td>
<td>81.0 graus</td>
</tr>
<tr>
<td>L_AD</td>
<td>0.450 m</td>
<td>m₃</td>
<td>5.8 kg</td>
<td>deta₁</td>
<td>0</td>
</tr>
<tr>
<td>l_p</td>
<td>0.1362 m</td>
<td>m₄</td>
<td>41 kg</td>
<td>deta₂</td>
<td>0</td>
</tr>
<tr>
<td>l_AC</td>
<td>0.125 m</td>
<td>m₅</td>
<td>43.7 kg</td>
<td>deta₃</td>
<td>0</td>
</tr>
<tr>
<td>x₇₈</td>
<td>0.4682 m</td>
<td>m₆</td>
<td>5.8 kg</td>
<td>deta₄</td>
<td>0</td>
</tr>
<tr>
<td>y₇₈</td>
<td>0.140 m</td>
<td>m₇</td>
<td>129.4 kg</td>
<td>deta₅</td>
<td>0</td>
</tr>
<tr>
<td>y₉₈</td>
<td>0.0568 m</td>
<td>m₈</td>
<td>1460.8 kg</td>
<td>deta₆</td>
<td>0</td>
</tr>
<tr>
<td>x₉₈</td>
<td>0.2908 m</td>
<td>Izz₁</td>
<td>2.302 kg.m²</td>
<td>ddeta₁</td>
<td>0</td>
</tr>
<tr>
<td>x₉₉</td>
<td>0</td>
<td>Izz₂</td>
<td>3.405 kg.m²</td>
<td>ddeta₂</td>
<td>0</td>
</tr>
<tr>
<td>y₀₂</td>
<td>0.205 m</td>
<td>Izz₃</td>
<td>0.041603 kg.m²</td>
<td>ddeta₃</td>
<td>0</td>
</tr>
<tr>
<td>x₀₁</td>
<td>0.193 m</td>
<td>Izz₄</td>
<td>2.302 kg.m²</td>
<td>ddeta₄</td>
<td>0</td>
</tr>
<tr>
<td>y₀</td>
<td>-0.004 m</td>
<td>Izz₅</td>
<td>3.405 kg.m²</td>
<td>ddeta₅</td>
<td>0</td>
</tr>
<tr>
<td>x₀₂</td>
<td>0.225 m</td>
<td>Izz₆</td>
<td>0.041603 kg.m²</td>
<td>ddeta₆</td>
<td>0</td>
</tr>
<tr>
<td>y₁₀</td>
<td>0</td>
<td>d₁</td>
<td>0.085 m</td>
<td>dxₜ</td>
<td>0.2112 m/s</td>
</tr>
<tr>
<td>x₁₀</td>
<td>0</td>
<td>d₂</td>
<td>0.038 m</td>
<td>dxₚₘ</td>
<td>0</td>
</tr>
<tr>
<td>y₁₁</td>
<td>0.0625 m</td>
<td>xₐ₁</td>
<td>0.0136 m</td>
<td>ddxₜ</td>
<td>0</td>
</tr>
<tr>
<td>x₁₂</td>
<td>0.193 m</td>
<td>yₐ₁</td>
<td>0.255 m</td>
<td>ddxₚₘ</td>
<td>0</td>
</tr>
<tr>
<td>y₁₃</td>
<td>0.004 m</td>
<td>xₐ₁₃</td>
<td>0.0164 m</td>
<td>x₉₉</td>
<td>0.52799937 m</td>
</tr>
<tr>
<td>x₁₄</td>
<td>0.225 m</td>
<td>eta₁</td>
<td>-119.2 graus</td>
<td>x₉₉</td>
<td>0.000623 m</td>
</tr>
<tr>
<td>y₁₅</td>
<td>0</td>
<td>eta₂</td>
<td>36.4 graus</td>
<td>x₉₉</td>
<td>0.0010077 m</td>
</tr>
<tr>
<td>x₁₆</td>
<td>0</td>
<td>eta₃</td>
<td>-81.0 graus</td>
<td>kₐₐ</td>
<td>4.82.10⁸ kgf/m</td>
</tr>
<tr>
<td>y₁₇</td>
<td>0.0625 m</td>
<td>eta₄</td>
<td>119.1 graus</td>
<td>kₜₜ</td>
<td>2.94.10⁸ kgf/m</td>
</tr>
<tr>
<td>m₁</td>
<td>41 kg</td>
<td>eta₅</td>
<td>-36.4 graus</td>
<td>kₕₕ</td>
<td>7.80.10⁸ kgf/m</td>
</tr>
</tbody>
</table>

Tabela 4.1: Dados da geometria dos componentes

4.2 Simulações

Simula-se inicialmente o modelo, com velocidade de fechamento (dxₜ) constante e igual a 0.2112 m/s. O tempo total do ciclo é de 5,0 segundos, totalizando 2,5 segundos para o
4.2 Simulações

fechamento e 2,5 segundos para a abertura. O deslocamento do cilindro de fechamento é de 0.528 m, enquanto o deslocamento da placa móvel é de 0.650 m.

A Figura (4.2) mostra o deslocamento da placa móvel em função do deslocamento do cilindro de fechamento. Percebe-se que no início do movimento há um deslocamento menor do cilindro de fechamento para um deslocamento maior da placa móvel. Essa relação se torna proporcional e próximo ao ponto de contato do molde, a relação entre os deslocamentos modifica-se, sendo necessário um grande deslocamento da cilindro de fechamento para haver um deslocamento pequeno na placa móvel. Assim, assegura-se um fechamento do molde suave e preciso, evitando-se choques.

![Gráfico do deslocamento da placa móvel x deslocamento do cilindro de fechamento](image)

Figura 4.2 - Gráfico do deslocamento da placa móvel (corpo 8) em função do deslocamento do cilindro de fechamento ou cruzeta (corpo 7).

O mesmo pode se observar na Figura (4.3), que ilustra a razão entre a velocidade da placa móvel e a velocidade da cruzeta em função do deslocamento do cilindro de fechamento em relação à sua posição inicial. Nota-se que essa relação é favorável à placa móvel desde o início do movimento até cerca de 70% do curso da cruzeta (0.373 m), ou seja, nesse trecho a velocidade da placa móvel é sempre maior que a velocidade do cilindro. A partir dessa posição, a relação torna-
se inversa e no momento em que o molde se toca, a velocidade da placa móvel é bem menor que a velocidade da cruzeta, tornando-se nula no fim de curso.

Figura 4.3 - Gráfico da razão entre velocidade da placa móvel (corpo 8) e velocidade do cilindro de fechamento ou cruzeta (corpo 7).

Figura 4.4 - Gráfico da força de travamento em função da rigidez do tirante e do conjunto formado por placa do cilindro, articuladores, placa móvel, molde e placa fixa.
4.2 Simulações

Na Figura (4.4) pode-se observar o ponto de equilíbrio entre o estiramento dos tirantes e a deformação do conjunto formado pela placa do cilindro, articuladores, placa móvel, molde e placa fixa. Para a máquina em questão, a força de travamento é de 3032,5 kN. Houve uma deformação maior do conjunto do que alongamento dos tirantes devido à rigidez do conjunto ser menor do que a dos tirantes.

A Figura (4.5) apresenta a simulação da multiplicação da força do cilindro em função da placa móvel para diferentes coeficientes de atrito. Quanto mais próximo do fim de curso, maior a multiplicação do esforço do cilindro de fechamento. Sendo assim, há força suficiente para ocorrer o travamento para a máquina em questão, pois o diâmetro do pistão do cilindro é de 0,1 m e a pressão de trabalho é de 17,5 MPa, logo a força gerada pelo cilindro é de cerca de 137,50 kN, necessitando de uma multiplicação de cerca de 22 vezes para chegar a força de travamento na posição de equilíbrio de deformações.

Figura 4.5 - Gráfico da multiplicação da força do cilindro em função do curso da placa móvel

Na simulação da Figura (4.6), percebe-se que se desconsiderar-se o momento de inércia
4.2 Simulações

dos corpos, não há influência na força de travamento, já que no instante do travamento as acelerações são bem baixas. Mas durante o percurso do cilindro e placa móvel da posição inicial até início do contato do molde, quanto menor os valores dos momentos de inércia, maior o esforço necessário para manter a placa em movimento para a mesma velocidade do cilindro de fechamento constante. Isto acontece, porque a inércia dos articuladores ajuda a manter as acelerações dos mesmos.

Figura 4.6 - Gráfico de comparação da influência do momento de inércia no esforço necessário do cilindro de fechamento
Capítulo 5

Metodologia Proposta

Este capítulo tem como finalidade dar orientações para que se possa obter os dados experimentalmente podendo confrontar com os dados obtidos do capítulo anterior.

5.1 Verificação da Força de Travamento

A força de travamento pode ser obtida diretamente por meio da medição do estiramento dos tirantes, mas antes é necessário ter certeza de que os mesmos estão equalizados, isto é, que todos serão submetidos à mesma tensão. Para se fazer a equalização e medição existem vários métodos. O método apresentado na Figura (5.1) é muito simples, consistindo na medição do estiramento do tirante com o auxílio de uma barra de diâmetro e comprimento conhecidos, por meio de relógios comparadores. Como o funcionamento da máquina produz pequenos impactos, este método torna-se não muito preciso.

Figura 5.1 - Equalização dos tirantes
5.2 Verificação da Unidade Hidráulica

Na Figura (5.1), 1 e 3 são suportes fixos no tirante, 2 é a barra de aço em que serão feitas as medições, 4 o relógio comparator para se fazer a medição e 5 o molde ou espaçador. Repete-se a medição nos 4 tirantes até obter-se o mesmo estiramento para todos. Para ajustar o estiramento, existe em cada tirante uma porca que permite o posicionamento axial do mesmo, possibilitando aumentar ou diminuir o comprimento útil de estiramento. Conhecendo-se o diâmetro e o comprimento da barra, pode-se facilmente determinar pela teoria da Elasticidade, a tensão atuante nos tirantes e a força que age em cada um. A soma da força de todos os tirantes é igual à força de travamento da máquina.

Outra maneira de verificar a força de travamento é com o uso de extensômetros, como mostrado na Figura (2.7). São colados 4 extensômetros a 90 graus entre si numa circunferência do tirante e montando-se uma, ou meia, ponte de Wheatstone, como mostrado na Figura (5.2), é possível determinar a tensão e o esforço atuante em cada tirante.

![Figura 5.2 - Ponte para medição do esforço de tração](image)

5.2 Verificação da Unidade Hidráulica

Com o auxílio da curva da força de fechamento obtida do capítulo anterior, é possível obter a curva de pressão necessária no cilindro de fechamento para que o mecanismo se movimente no sentido de fechamento do molde. Conhecendo-se o diâmetro do cilindro, utiliza-se então a equação:
5.2 Verificação da Unidade Hidráulica

\[P = \frac{4 \cdot F_c}{\pi \cdot d_c^2} \]

(5.1)

sendo
P, a pressão no cilindro hidráulico;

\(F_c \), a força com que a haste do cilindro aciona o mecanismo;

\(d_c \), o diâmetro do cilindro.

para se obter a curva de pressão hidráulica necessária para acionar o mecanismo com uma velocidade pré-estabelecida.

No comando da máquina é possível determinar a pressão e vazão que atuam no cilindro de fechamento, gerados por meio da unidade hidráulica formada pelo motor elétrico, bomba, válvulas e reservatório. Definindo-se estes parâmetros em função do deslocamento da cruzeta, pode-se monitorá-los por meio de um transdutor de pressão, colocado no cilindro de fechamento, e no caso da vazão, por meio de um potenciômetro linear acoplado à cruzeta, que determina a posição em que se encontra, bastando multiplicar a área do cilindro pela velocidade de deslocamento para encontrar a vazão de óleo. Ou ainda, é possível por meio do comando, trabalhar com os valores mínimos de pressão e vazão que possibilitem o movimento do mecanismo.

Assim é possível determinar se as curvas levantadas na teoria estão de acordo com as curvas encontradas na prática.
Capítulo 6

Conclusões e Perspectivas Futuras

A força de travamento de uma máquina injetora de plásticos é determinada por diversos fatores, tais como rigidez do molde, rigidez do mecanismo e tirantes, multiplicação da força atuante no cilindro de fechamento, pressão de travamento, dimensões do cilindro e coeficiente de atrito. A inércia dos corpos não tem influência na força de travamento da máquina, porém altera os esforços necessários para realizar a abertura e fechamento do molde.

Com a implementação deste trabalho, pode-se projetar de maneira mais eficiente o mecanismo de travamento da máquina, tendo em mente a otimização do circuito hidráulico e do mecanismo de multiplicação.

Podem ser analisados facilmente várias configurações para diferentes sistemas de fechamento de 5 pontos, levando-se em consideração as velocidades e acelerações dos corpos de interesse e o esforço necessário para posterior dimensionamento dos componentes hidráulicos.

Apresentou-se algumas simulações numéricas baseadas em dados de uma máquina real. Com este trabalho, é possível determinar uma configuração que apresente resultados mais satisfatórios, já que esta máquina foi desenvolvida sem maiores recursos de projeto. Notou-se que o aumento do coeficiente de atrito faz necessitar um esforço maior para obter a força de travamento necessária, porém foi possível observar que a inércia dos corpos não exerce
influência na obtenção da força de travamento, já que o travamento ocorre quando a velocidade e acelerações dos corpos são bem baixas.

Pode-se utilizar o trabalho para determinar o esforço atuante em cada corpo, possibilitando o estudo da fadiga de cada elemento e aumentando a confiabilidade da máquina.

Outra aplicação possível seria a determinação da posição, velocidade e aceleração da placa móvel em função do deslocamento do cilindro com auxílio do comando lógico, possibilitando eliminar um potenciômetro linear que indicaria à máquina tais informações.

E, por meio da comprovação da metodologia proposta no capítulo anterior, pode-se utilizar o programa desenvolvido neste trabalho para pesquisas futuras no projeto de sistemas de controle ou onde seja necessário o conhecimento do comportamento dinâmico da máquina e de seus componentes.
Referências Bibliográficas

SOCIETY OF THE PLASTICS INDUSTRY. *Industry info.* Disponível: