MODELO DE SISTEMA INTEGRADO
DE PRODUTO E PROCESSO
COM MELHORIA CONTÍNUA DA QUALIDADE

Autor: Iris Bento da Silva
Orientador: Prof. Dr. Ettore Bresciani Filho
MODELO DE SISTEMA INTEGRADO
DE PRODUTO E PROCESSO
COM MELHORIA CONTÍNUA DA QUALIDADE

Autor: Iris Bento da Silva
Orientador: Prof. Dr. Ettore Bresciani Filho

Curso: Engenharia Mecânica
Área de concentração: AE - Materiais e Processos de Fabricação

Tese de doutorado apresentada à comissão de Pós-graduação da Faculdade de Engenharia Mecânica, como requisito para a obtenção do título de Doutor em Engenharia Mecânica.

Campinas, 2000
SP - Brasil
Silva, Iris Bento da
Si38m

Modelo de sistema integrado de produto e processo com melhoria contínua da qualidade / Iris Bento da Silva.-
-Campinas, SP: [s.n.], 2000.

Orientador: Ettore Bresciani Filho.
Tese (doutorado) - Universidade Estadual de
Campinas, Faculdade de Engenharia Mecânica.

1. Controle de qualidade . 2 Sistemas de fabricação integrada por computador. 3. Indústria mecânica. 4.
III. Universidade Estadual de Campinas. Faculdade de
Engenharia Mecânica. III. Título.
UNIVERSIDADE ESTADUAL DE CAMPINAS
FACULDADE DE ENGENHARIA MECÂNICA
DEPARTAMENTO DE MATERIAIS E PROCESSOS
TESE DE DOUTORADO

MODELO DE SISTEMA INTEGRADO
DE PRODUTO E PROCESSO
COM MELHORIA CONTÍNUA DA QUALIDADE

Autor: Iris Bento da Silva
Orientador: Prof. Dr. Ettore Bresciani Filho

Prof. Dr. Ettore Bresciani Filho, Presidente
Universidade Estadual de Campinas

Prof. Dr. Sérgio Tonini Button
Universidade Estadual de Campinas

Prof. Dr. Antônio Batocchio
Universidade Estadual de Campinas

Prof. Dr. Gilmar Ferreira Batata
Universidade Estadual de São Paulo

Prof. Dr. Ademir José Petenate
Universidade Estadual de Campinas

Campinas, 22 de Março de 2000
Dedicatória

Aos meus pais, Armando (*in memoriam*) e Eunice.
À minha esposa, Maria José, pelo apoio e compreensão, e
aos meus filhos Daniel Ricardo e Viviane Maria.
Agradecimentos

Ao Prof. Dr. Ettore Bresciani Filho pela valiosa orientação, inestimável amizade e apoio.

Ao Sr. Arnaldo Frederico Meschnark, presidente, e diretores do Sindicato Nacional da Indústria de Forjaria, pelo apoio.

Ao Srs. Valdir Tenório Gomes, Ernesto Delbon Fantini, Gustavo Moliterno da Cruz, Fernando Zaranella Ceccarelli, Felipe Donnangelo, Marcos Bacceto, João Vicente Faria, Claudio Jorge de Souza, Dorival Munhoz Junior, Antonio Carlos Galvão e David Workman pela colaboração na discussão sobre temas da qualidade.

À Paola Maria Felipe dos Anjos pela revisão gramatical do texto. À Maria Cecília Martins Faria pela digitação. Ao Sérgio Eitutis pelo desenho dos sistemográfos.

A todos aqueles que, diretamente ou indiretamente, colaboraram para a realização deste trabalho.
O leitor é, desde agora, convidado pelo autor a oralizar, quanto possível, o que, estando escrito, possa, como escrito, se tornar, ao mesmo tempo, oral e até musicalmente vivente e convivente. Talvez a grande arte de um escritor à procura de comunicar-se com leitores esteja nessa capacidade de, escrevendo para ser lido, discorrer quase falando, para ser compreendido, sendo também ouvido. O ouvido do leitor gosta de lhe serem dirigidas palavras-imagens e não apenas das abstratas, possam chegar ao extremo de acariciarem esta outra forma de receptividade de quem lê: a auditiva.

Gilberto Freyre
Índice

Capítulo 1

1. Introdução ... 1
 1.1. Evolução da organização fabril .. 2
 1.2. Competitividade da indústria global ... 5
 1.3. Melhoria contínua da qualidade: uma proposta ... 9
 1.4. Modelagem de qualidade .. 12

Capítulo 2

2. Processo de negócios ... 18
 2.1. Definição de processos ... 19
 2.2. Processo de melhoria contínua .. 19
 2.3. Mapeamento de processo ... 21
 2.4. Gerenciamento de negócios ... 23
 2.5. Desenvolvimento e fabricação do produto ... 24
 2.6. Visão sistêmica: teoria do sistema geral ... 28
 2.7. Processo de negócios da empresa ... 34
 2.8. Processo de negócios da forjaria ... 36
 2.8.1. Desenvolvimento de negócio da forjaria .. 38
 2.8.2. Desenvolvimento do projeto do forjado ... 39
 2.8.3. Implantação do forjado .. 39
 2.8.4. Fabricação do forjado ... 40
 2.8.5. Gerenciamento da venda ... 41
 2.9. Desenvolvimento do produto forjado .. 43
 2.9.1. Atendimento ao cliente da forjaria .. 43
 2.9.2. Desenvolvimento do forjado .. 44
2.10. Processo de forjamento a quente ... 45
 2.10.1. Recebimento da matéria-prima ... 47
 2.10.2. Corte da barra ... 48
 2.10.3. Aquecimento do tarugo ... 49
 2.10.4. Forjamento ... 49
 2.10.5. Rebarbação e furação ... 51
 2.10.6. Normalização .. 52
 2.10.7. Esmerilhamento .. 52
 2.10.8. Decapagem mecânica .. 53
 2.10.9. Expedição do forjado ... 54
 2.10.10. Classificação dos processadores ... 55

Capítulo 3

3. Sistema de qualidade ... 57
 3.1. Norma ISO 9000 .. 57
 3.1.1 Garantia ao cliente ... 58
 3.1.2. ISO série 9000 ... 59
 3.1.3. Certificação ... 62
 3.2. Sistema de qualidade ISO 9001 .. 63
 3.2.1. Gerenciamento de qualidade ... 65
 3.2.2. Desenvolvimento do projeto ... 67
 3.2.3. Fabricação de produto .. 67
 3.2.4. Fornecedor .. 68
 3.2.5. Satisfação do cliente ... 69
 3.3. Sistema de qualidade da empresa .. 70
 3.4. Sistema de qualidade da forjaria .. 75
 3.4.1. Gerenciamento de qualidade ... 78
 3.4.2. Desenvolvimento do projeto ... 80
 3.4.3. Fabricação de forjado ... 82
 3.4.4. Fornecedor .. 84
3.4.5. Satisfação do cliente... 86
3.4.6. Classificação dos processadores ... 87
3.5. Sistema de qualidade do forjamento a quente............................... 88
 3.5.1. Controle do recebimento da matéria-prima............................ 93
 3.5.2. Controle do corte da barra.. 95
 3.5.3. Controle do aquecimento do tarugo...................................... 96
 3.5.4. Controle do forjamento... 98
 3.5.5. Controle da rebarbação e da furação.................................... 100
 3.5.6. Controle da normalização .. 102
 3.5.7. Controle do esmerilhamento.. 104
 3.5.8. Controle da decapagem mecânica....................................... 106
 3.5.9. Controle da expedição... 107

Capítulo 4

4. Melhoria contínua e integração... 109
 4.1. Gerenciamento de processo integrado..................................... 112
 4.1.1. Envolvimento.. 115
 4.1.2. Variáveis do produto e do processo.................................. 116
 4.1.3. Padronização de processos .. 118
 4.1.4. Manual de processos.. 119
 4.1.5. Monitoramento de processos 120
 4.1.6. Diagnose e melhoria.. 121
 4.2. Integração e automação... 122
 4.2.1. Integração e automação do projeto.................................. 129
 4.2.2. Integração e automação do processo de fabricação................ 130
 4.2.3. Planejamento e controle da manufatura 132
 4.2.4. Integração da manutenção.. 133
 4.2.5. Automação da qualidade.. 134
 4.2.6. Automação da movimentação e estocagem............................ 135
 4.2.7. Desdobramento da função qualidade.................................. 135
6.2. Avaliação dos sistemógrafos ... 205
 6.2.1. Desdobramento e conexões ... 205
 6.2.2. Níveis dos processadores .. 210
6.3. Integração e automação ... 211
6.4. Indicadores de qualidade ... 212
 6.4.1. Refugo ppm .. 212
 6.4.2. Custo de qualidade .. 215
6.5. Satisfação do cliente ... 218

Capítulo 7

7. Conclusões .. 221
 7.1. Sistema de qualidade ... 224
 7.2. Avaliação dos sistemógrafos .. 225
 7.3. Integração e automação .. 226
 7.4. Indicadores de qualidade .. 226
 7.5. Satisfação do cliente ... 227
 7.6. Sugestões para trabalhos futuros .. 227
 7.7. Conclusões finais ... 228

Referências bibliográficas ... 230
Resumo

A emergência da microeletrônica e da transmissão de informação propiciou uma maior integração entre o desenvolvimento do produto e do processo de fabricação no setor de forjados. Além disso, a reorientação desse setor, sobretudo no ramo das autopeças, levou-nos a pensar, como Taylor e Ford o fizeram em sua época, sobre a forma na qual se deve pautar a organização do trabalho nas forjarias, a fim de garantir a qualidade e a competitividade. No entanto, o desafio hoje é diferente, principalmente no que diz respeito ao elemento humano. Nossa proposta do *modelo de sistema integrado de produto e processo com melhoria contínua de qualidade* surgiu dessa reflexão e traz algumas propostas que pudemos desenvolver.

Desde 1990, com a abertura da economia, a forjaria, no Brasil, passou a enfrentar mudanças e desafios agravados pela redução progressiva das tarifas alfandegárias. Tal fato permitiu a vinda de produtos estrangeiros com preço e qualidade mundiais, influenciando o perfil do mercado consumidor, que se tornou mais exigente tendo em vista os parâmetros internacionais. As forjarias brasileiras deparraram-se com uma concorrência acentuada, principalmente com as forjarias da Índia, Turquia e China em razão do preço e com as forjarias do Japão, Alemanha e Estados Unidos, que além disso possuem tecnologia. Ante tal contexto, em que a competitividade é fator essencial para a sobrevivência de nossas forjarias, o que implica a obtenção de qualidade e baixo custo, faz-se necessário um modelo de melhoria contínua da qualidade cujo principal ponto de apoio seja a mudança no gerenciamento que, como vimos, tem aparecido historicamente como fator essencial no desenvolvimento da indústria. Para enfrentar tal desafio, no nosso modelo, o projeto do produto e do processo é mais integrado e, por meio do treinamento, procuramos qualificar os colaboradores para que acompanhem o constante processo de mudança organizacional, absorvam novas tecnologias e possam implementar o processo de melhoria contínua.

O ponto central deste trabalho consiste em desenvolver um modelo de qualidade em uma forjaria pertencente a uma empresa do setor metalo-mecânico. Partimos, assim, do princípio de que o fator mais importante na operação de uma forjaria é o conhecimento dos sistemas que se relacionam com as variáveis e os parâmetros do nível de qualidade. Por intermédio da análise desses sistemas, pode-se estabelecer condições para um modelo adequado a um fabricante “classe mundial”, buscando-se satisfazer o cliente. O modelo de qualidade proposto foi desenvolvido por meio de pesquisa, de análise e de desenvolvimento de três sistemas: processo de negócios, sistema de qualidade (SQ) e melhoria contínua. O estudo desses processos foi apoiado na teoria do sistema geral.

Considerando o processo de negócios e o sistema de qualidade da forjaria (SQF) foi desenvolvido, neste trabalho, o modelo inicial de qualidade (MIQ). A implantação do MIQ mostrou que o resultado do nível de qualidade, quando comparado com o sistema de qualidade anterior da forjaria, apresentou melhor desempenho, porém, ainda aquiêm dos valores encontrados nas forjarias chamadas de ponta. Observando o modelo MIQ e considerando o sistema de melhoria contínua, foi desenvolvido o modelo de qualidade (MQ) da forjaria. A análise da implantação do MQ deu-se por intermédio do indicador de qualidade, do custo de qualidade, da avaliação da satisfação do cliente e da evolução do modelo com base na teoria do sistema geral. Os resultados obtidos com essa implantação foram comparados com os valores encontrados anteriormente na forjaria e pôde-se notar que houve uma melhoria do nível de qualidade compatível com as forjarias de primeiro mundo.

Palavras chave:
Qualidade, Produtividade, Melhoria Contínua, Integração, Negócios.
Abstract

The advent of microelectronics and of the transmission of information has created a greater integration between the development of the product and the fabrication process in the sector of forge. Besides, the orientation of this sector, especially in the branch of the auto parts, caused us to think, as Taylor and Ford had already done at their time, about the way whereby the organization of labor should be done in the forges to assure quality and competitiveness. However, the challenge is different today, mainly as regards the human resource. Our proposal of the *model for a product and process integrated system with continuous improvement of the quality* arose from this thought and brings some propositions that we could develop.

Since 1990, with the lifting of the economy barriers, the forge, in the Brazil, began to face changes and challenges on top of which there was the factor of the reduced import taxes. This brought about the importation of products at worldwide quality and price levels, thus influencing the profile of the consumer market, which became more demanding in face of the international parameters. The Brazilian forges faced a strong competition mainly from India, Turkey and China with reference to price, and from Japan, Germany and United States with reference to technology on top of price. In this industrial and commercial environment, in which competitiveness is the essential factor for the survival of the Brazilian forges – because it demands quality and low cost – a model of continuous improvement of the quality became necessary. The core point of this model is the change in the management that, as we have seen, has historically been present as the essential factor in the development of the industry. To face this challenge, our model proposes a closer integration between the project of the product and that of the process. By means of training, we have searched to qualify the employees to interact with the constant process of organization change. They should also be prepared to absorb new technologies and to be able to implement the process of continuous improvement.

The central point of this work consists in the development of a quality model in a forge of the auto parts sector. We started from the principle that the most important factor in the operation of a forge is the knowledge of systems that interrelate themselves with the variables and the parameters of the quality level. Through the analysis of these systems, conditions may be established for a model adequate for a world class manufacturer and at the same time looking forward, to the satisfaction of the customer. The quality model proposed was developed through the research, analysis and development of three systems: business process, quality system (QS) and continuous improvement. The study of these processes was based on the theory of the general system.

Taking into consideration the business process and the quality system of the forge, we developed the FQS (Forge Quality System) and the initial IQM (Initial Quality Model). The implementation of the IQM revealed that the results of the quality level, when compared to previous quality system of the forge, presented better performance, even if not to the full expectation of the values that are present in the state-of-the-art forges. Observing the IQM and considering the continuous improvement system, we developed the QM (Quality Model) of the forge. The analysis of the implementation of the QM was made through the indicator of quality, the cost of quality, the assessment of the customer satisfaction and the evolution of the model with base on the theory of the general system. The results obtained with this implementation were then compared with the values that existed before in the forge and the outcome was an improvement of the level of quality compatible with that of forges in the developed countries.

Key words: Quality, Productivity, Continuous Improvement, Integration, Business.
Lista de figuras

Capítulo 2

1. Processo: a) sequência de atividades; b) industrial automotivo................................. 19
2. Processo de melhoria contínua: a) funcional e multifuncional; b) melhoria contínua; c) satisfação do cliente... 20
3. Mapeamento de processos... 22
4. Gerenciamento de estratégias e negócios... 23
5. Processo de desenvolvimento e fabricação do produto... 25
6. Desenvolvimento do produto na empresa convencional... 26
7. Desenvolvimento do produto na empresa “unidade de negócios”............................. 27
8. Sistemógrafo e seus processadores.. 29
9. Matriz estrutural do sistema geral... 30
10. Conexões simples e elaboradas.. 31
11. Níveis do processador.. 32
12. Sistemógrafo do processo de negócios da empresa... 35
13. Sistemógrafo do processo de negócios da forjaria.. 37
14. Sistemógrafo de desenvolvimento de negócio da forjaria..................................... 38
15. Sistemógrafo de desenvolvimento do projeto do forjado..................................... 39
16. Sistemógrafo da implantação do forjado... 40
17. Sistemógrafo de fabricação de forjado... 41
18. Sistemógrafo do gerenciamento da venda em uma forjaria.................................. 42
19. Sistemógrafo de desenvolvimento do produto.. 44
20. Sistemógrafo do processo de forjamento a quente... 46
21. Sistemógrafo de recebimento da matéria-prima.. 47
22. Sistemógrafo do corte da barra... 48
23. Sistemógrafo de aquecimento do tarugo.. 49
24. Sistemógrafo de forjamento.. 50
25. Sistemógrafo da rebarbação e da furação.. 51
26. Sistemógrafo de normalização.. 52
Capítulo 3

30. Aplicação da norma ISO 9000... 60
31. Gerenciamento do sistema ISO 9000... 61
32. Sistemógrafo de sistema de qualidade ISO (SQI)................................... 64
33. Sistemógrafo do gerenciamento de qualidade....................................... 66
34. Sistemógrafo de desenvolvimento de projeto....................................... 67
35. Sistemógrafo da fabricação... 68
36. Sistemógrafo do fornecedor... 69
37. Sistemógrafo da satisfação do cliente... 73
38. Sistemógrafo do sistema de qualidade da empresa (SQE)...................... 73
39. Sistemógrafo do sistema “real” de qualidade da empresa (SQe)............. 74
40. Sistemógrafo do sistema de qualidade da forjaria (SQF)....................... 76
41. Sistemógrafo do sistema “real” de qualidade da forjaria (SQf)................. 77
42. Sistemógrafo do gerenciamento de qualidade....................................... 78
43. Sistemógrafo do gerenciamento “real” de qualidade............................. 79
44. Sistemógrafo do desenvolvimento de projeto....................................... 81
45. Sistemógrafo do desenvolvimento “real” de projeto.............................. 81
46. Sistemógrafo da fabricação de forjado... 83
47. Sistemógrafo da fabricação “real” de forjado....................................... 83
48. Sistemógrafo do fornecedor... 85
49. Sistemógrafo “real” do fornecedor.. 85
50. Sistemógrafo da satisfação do cliente.. 86
51. Sistemógrafo da satisfação “real” do cliente.. 87
52. Controle de qualidade do processo de forjamento a quente.................... 90
53. Sistemógrafo do sistema de qualidade do forjamento a quente (SQFQ)... 92
54. Sistemógrafo do sistema “real” de qualidade do forjamento a quente (SQfq)... 93
Capítulo 4

73. Sistemógrafo do gerenciamento de processo integrado (GPI).............................. 114
74. Sistemógrafo de envolvimento... 116
75. Sistemógrafo das variáveis.. 117
76. Sistemógrafo de padronização.. 118
77. Sistemógrafo de manual... 120
78. Sistemógrafo de monitoramento.. 121
79. Sistemógrafo de diagnose.. 122
80. Sistemógrafo da integração e automação (IA)... 126
81. Processadores da manufatura integrada por computador (CIM)........................ 127
82. Processadores do gerenciamento de qualidade total (TQM)............................... 128
83. Processadores “Just in time” (JIT) ... 129
84. Sistemógrafo do gerenciamento humano (GH) .. 139
85. Processadores do comprometimento .. 142
86. Sistemógrafo do planejamento estratégico de qualidade (PEQ) 143
87. Sistemógrafo de estratégia da manufatura ... 144
88. Planejamento estratégico de qualidade .. 145

Capítulo 5

89. Modelo inicial de qualidade da forjaria (MIQ) .. 158
90. Modelo de qualidade da forjaria (MQ) ... 159
91. Sistemógrafo do modelo inicial de qualidade da forjaria (MIQ) 161
92. Sistemógrafo do modelo de qualidade da forjaria (MQ) 162
93. Sistemógrafo do gerenciamento de qualidade (MIQ) 167
94. Sistemógrafo do gerenciamento de qualidade (MQ) 168
95. Sistemógrafo do desenvolvimento do projeto (MIQ) 170
96. Sistemógrafo do desenvolvimento do projeto (MIQ) 171
97. Sistemógrafo do desenvolvimento do projeto (MQ) 175
98. Sistemógrafo da fabricação de forjado (MIQ) .. 176
99. Sistemógrafo do fornecedor (MIQ) .. 178
100. Sistemógrafo do fornecedor (MQ) .. 178
101. Sistemógrafo da satisfação do cliente (MIQ) .. 180
102. Sistemógrafo da satisfação do cliente (MQ) .. 181
103. Sistemógrafo da melhoria contínua (MQ) .. 183
104. Organograma da forjaria .. 190
105. Processador da implementação do modelo e da qualidade 191
Lista de tabelas

Capítulo 2

2. Desenvolvimento do sistema de qualidade da empresa ... 71

Capítulo 4

3. Estratégia para redução de custos de qualidade ... 147

Capítulo 5

4. Atribuição de responsabilidade no modelo MQ .. 189
5. Cronograma de implantação .. 195

Capítulo 6

6. Resultados da auditoria interna nos elementos ISO 9001 202
7. Auditoria do cliente no sistema de qualidade .. 205
8. Desdobramento e conexões dos processadores ... 209
9. Nível dos processadores ... 210
10. Integração e automação ... 212
11. Indicador ppm .. 214
12. Custo da qualidade ... 217
13. Avaliação da satisfação do cliente .. 220
Siglas

ABC Activities based cost
ABM Activities based management
ABNT Associação brasileira de normas técnicas
ABS American bureau of shipping
AGV Autonomous guided vehicle
Anfavea Associação nacional de fabricação de veículos automotores
APQP Planejamento avançado da qualidade do produto
BSI British standard institute
BVQI Bureau veritas quality international
CAD Computer aided design
CAE Computer aided engineering
CAM Computer aided manufacturing
CAPP Computer aided process planning
CAQ Computer aided quality
CBF Centro brasileiro de forjarias
CCQ Círculo de controle de qualidade
CEO Chief executive office
CEP Controle estatístico de processos
CI College international
CIM Computer integrated manufacturing
CLP Controlador lógico programável
CNC Computer numerical control
DFM Design for manufacturing
DNC Distributed numerically controlled
DNV Det norske veritas
GH Gerenciamento humano
GPI Gerenciamento de processo integrado
GT Group technology
FCAV Fundação Carlos Alberto Vanzolini
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FEM</td>
<td>Finite element method</td>
</tr>
<tr>
<td>Fifo</td>
<td>First in – first out</td>
</tr>
<tr>
<td>FMC</td>
<td>Flexible manufacturing cell</td>
</tr>
<tr>
<td>FMEA</td>
<td>Failure mode effects analysis</td>
</tr>
<tr>
<td>FMS</td>
<td>Flexible manufacturing system</td>
</tr>
<tr>
<td>IA</td>
<td>Integração e automação</td>
</tr>
<tr>
<td>IBQN</td>
<td>Instituto brasileiro de qualidade nuclear</td>
</tr>
<tr>
<td>Inmetro</td>
<td>Instituto nacional de metrologia, normalização e qualidade</td>
</tr>
<tr>
<td>ISO</td>
<td>International organization for standardization</td>
</tr>
<tr>
<td>JIT</td>
<td>Just in time</td>
</tr>
<tr>
<td>LR</td>
<td>Lloydes register</td>
</tr>
<tr>
<td>MIQ</td>
<td>Modelo inicial de qualidade da forjaria</td>
</tr>
<tr>
<td>MPT</td>
<td>Manutenção produtiva total</td>
</tr>
<tr>
<td>MRP I</td>
<td>Material requirement planning</td>
</tr>
<tr>
<td>MRP II</td>
<td>Manufacturing resources planning</td>
</tr>
<tr>
<td>MQ</td>
<td>Modelo de qualidade da forjaria</td>
</tr>
<tr>
<td>NACCB</td>
<td>National accreditation of council for bodies</td>
</tr>
<tr>
<td>Nafta</td>
<td>North america free trade agreement</td>
</tr>
<tr>
<td>PBPQ</td>
<td>Programa brasileiro de produtividade e qualidade</td>
</tr>
<tr>
<td>PDCA</td>
<td>Plan-do-check-act</td>
</tr>
<tr>
<td>PEQ</td>
<td>Planejamento estratégico de qualidade</td>
</tr>
<tr>
<td>PFQ</td>
<td>Processo de forjamento a quente</td>
</tr>
<tr>
<td>PLR</td>
<td>Participação nos lucros e nos resultados</td>
</tr>
<tr>
<td>PNE</td>
<td>Processo de negócios da empresa</td>
</tr>
<tr>
<td>PNF</td>
<td>Processo de negócios da forjaria</td>
</tr>
<tr>
<td>PC</td>
<td>Pedido em carteira</td>
</tr>
<tr>
<td>PP</td>
<td>Programa de produção</td>
</tr>
<tr>
<td>PPAP</td>
<td>Production part approval process</td>
</tr>
<tr>
<td>PV</td>
<td>Programa de vendas</td>
</tr>
<tr>
<td>QFD</td>
<td>Quality function deployment</td>
</tr>
<tr>
<td>QS</td>
<td>Quality system</td>
</tr>
</tbody>
</table>
QSA Avaliação do sistema de qualidade
RAB Registrar accreditation board
SAE Society american engineer
SAP Sucesso através de pessoas
SE Simultaneous engineering
SGA Sistema de gestão ambiental
SGS Société général de surveillance
Sindiforja Sindicato nacional da indústria de forjarias
Sindipeças Sindicato nacional da indústria de componentes para veículos automotores
Smci Sistema de melhoria contínua e integração
Smed Single minute exchanging die
SQ Sistema de qualidade
SQE Sistema de qualidade da empresa
SQe Sistema “real” de qualidade da empresa
SQF Sistema de qualidade da forjaria
SQf Sistema “real” de qualidade da forjaria
SQFQ Sistema de qualidade do forjamento a quente
SQfq Sistema “real” de qualidade do forjamento a quente
SQI Sistema de qualidade ISO 9001
TQC Total quality control
TQM Total quality management
TSG Teoria do sistema geral
UEN Unidade estratégica de negócios
WCM World class manufacturing
Capítulo 1

Introdução

O ponto central deste trabalho é o desenvolvimento de um modelo de qualidade que será aplicado em uma forjaria pertencente a uma empresa do setor metalo-mecânico e que contemplará a integração de sistema de produto e processo (de fabricação) com melhoria contínua de qualidade.

Tal modelagem será apoiada na evolução da organização fabril, na competitividade, no processo de melhoria contínua e na teoria do sistema geral\(^1\) (TSG).

Iniciaremos com a descrição dos processos de negócios de uma empresa (PNE) e de uma forjaria (PNF). Com base nesses dados, apresentaremos os seus sistemas de qualidade (SQE e SQF) e, paralelamente, descreveremos um sistema de qualidade apoiado na ISO 9001 (SQI). Todos esses sistemas serão analisados e discutidos sob o prisma da TSG.

Descreveremos, a seguir, neste trabalho, os processos de melhoria contínua. Tais processos são: gerenciamento do processo integrado (GPI), integração e automação (IA), gerenciamento humano (GH) e planejamento estratégico da qualidade (PEQ).

Percorridas essas etapas, apresentaremos o modelo inicial de qualidade (MIQ) que, submetido ao processo de melhoria contínua, se transformará no modelo de qualidade (MQ).

Este é composto pelos seguintes subsistemas de qualidade: o gerenciamento da qualidade, o desenvolvimento do projeto (do produto e do processo), a fabricação do produto, o fornecedor, a satisfação do cliente e a melhoria contínua.

\(^1\)A teoria do sistema geral está descrita em *La théorie du système général. Théorie de la modélisation*. Ver Moigne (1994).
A elaboração desse sistema é fruto da observação da dificuldade que as forjarias têm para garantir a qualidade e a competitividade.

Partimos, assim, do princípio de que o fator mais importante na operação de uma forjaria é o conhecimento dos sistemas que se relacionam com as variáveis e os parâmetros do nível de qualidade. Por intermédio da análise desses sistemas, podem-se estabelecer condições para um modelo adequado a um fabricante “classe mundial” (WCM – world class manufacturing), na busca da satisfação do cliente.

Nossa proposta de modelo surgiu com o salto tecnológico da chamada revolução tecnocientífica, que suplantou a primeira e a segunda revolução industrial. Esse grande salto apoiou-se na integração e automação.

No entanto, no decorrer de nossos estudos, ficaram evidentes a importância capital do elemento humano nesse processo de automação e a necessidade de preparar as pessoas para enfrentar a mudança do processo organizacional e que possam absorver as novas tecnologias.

Esse caminho levou-nos a desenvolver os processos de melhoria contínua que se apoiaram na inovação e na criatividade dos trabalhos em grupo, bem como na integração e automação.

Dando início ao desenvolvimento do modelo de sistema integrado de produto e processo com melhoria contínua da qualidade, vamos apresentar a questão da evolução da organização fabril.

1.1. Evolução da organização fabril

O início da era industrial ocorreu há mais de dois séculos, na Inglaterra, com a invenção da máquina a vapor (1765) e do tear mecânico (1785). Essas novas tecnologias, que deflagraram o que conhecemos hoje como a primeira revolução industrial², impulsionaram

principalmente o desenvolvimento da indústria têxtil, cuja fonte de calor e força mecânica era o carvão mineral.

Durante décadas após o seu surgimento, a produtividade industrial dependeu essencialmente da habilidade e do ritmo do trabalho dos operários. Percebendo a profundidade de tal relação, F.W. Taylor\(^3\) desenvolveu métodos e pesquisas que elevaram o patamar da organização fabril. Na posição de gerente, Taylor dedicou-se a criar um sistema capaz de reduzir o tempo de trabalho empregado na fabricação de produtos: decompos o processo produtivo nas suas atividades elementares e reorganizou-o a fim de extrair o máximo de trabalho com a maior rapidez possível. Cronometrou cada movimento simples, aumentou o número de contramestres para controlar as atividades de cada seção e instituiu prêmios de produtividade, revolucionando, assim, a organização das fábricas.

Nas décadas finais do século XIX, houve um progresso tecnológico ainda maior que desencadeou o início da segunda revolução industrial\(^4\). O processo Bessemer de transformação do ferro em aço inaugurou a siderurgia moderna. O dinamo permitiu a substituição do vapor pela eletricidade, que se consolidou como força motriz da indústria. O motor a combustão interna e a utilização do petróleo como combustível alicerçaram a indústria automobilística, que se tornou o principal ramo da economia mundial do século XX.

Nessa nova etapa, a industrialização descentralizou-se geograficamente. A arrancada industrial dos Estados Unidos, após a guerra da secessão (1861-65), assinalou o declínio da hegemonia britânica. Na Europa, a França, a Alemanha e a Itália tornavam-se potências industriais, assim como o Japão no extremo oriente.

Na década de 20, com Henry Ford, a organizaçã o do trabalho sofre uma nova revolução, adaptando-se ao novo patamar tecnológico e à expansão do consumo. Na sua fábrica pioneira, Ford concebeu o sistema de linha de montagem, no qual os trabalhadores permanecem em postos fixos enquanto uma correia transporta as peças. A linha de montagem especializou os operários, fazendo-os realizar operações simples e repetitivas, e eliminou a

\(^3\) Ver Taylor (1909) no seu livro *Principles of scientific management.*

\(^4\) Ver Magnoli (1997: 18).
necessidade de habilidades particulares. Tal sistema propiciou uma significativa elevação da produtividade.

Durante os anos 70, houve outro salto tecnológico com a chamada revolução tecnocientífica. Os fundamentos dessa nova era começam com a emergência da microeletrônica e da transmissão de informação, de um lado, e com a automação e a robotização dos processos produtivos, de outro. Um conjunto de novos ramos industriais – computadores, telecomunicação, robótica, biotecnologia – e produtos revolucionários deslocou o núcleo da acumulação de riquezas e marginalizou as fábricas tradicionais.

Tal desenvolvimento ocorreu em razão da intensa aplicação da ciência e do conhecimento na elaboração de novos produtos que se distinguem pela variedade de versões adaptáveis a nichos de mercados com exigências específicas.

Além disso, o conceito de produção seriada para mercados homogêneos foi abandonado. A meta fordistica de redução de preços por meio da constante ampliação da escala de produção foi substituída pelo contínuo aperfeiçoamento tecnológico dos produtos e pela incorporação de maior valor a cada nova versão.

A concepção e a execução desses produtos foram separadas, tanto lógica como geograficamente. A produção em larga escala se realiza, frequentemente, em plantas industriais estabelecidas em regiões ou países em que a força de trabalho é abundante e barata. As operações produtivas repetitivas são modernizadas pela automação e a mão-de-obra é amplamente substituída por robôs industriais nas áreas de risco.

Essa reorientação do setor fabril, sobretudo no ramo das indústrias de autopeças, nos instigou a pensar, como Taylor e Ford o fizeram em sua época, sobre a forma na qual se deve pautar a organização do trabalho nas forjarías, a fim de garantir a qualidade e a competitividade. No entanto, o desafio hoje é diferente, principalmente no que diz respeito ao elemento humano. O uso de máquinas altamente sofisticadas exige uma nova maneira de preparo e constante atualização dos operários.
Nossa proposta do modelo de sistema integrado de produto e processo com melhoria contínua da qualidade surgiu dessa reflexão e traz algumas propostas que desenvolveremos posteriormente. Antes disso, faremos uma pequena análise do panorama atual da indústria mundial, com ênfase nas forjarias brasileiras, nosso objeto de estudo, que traz elementos importantes para discussão.

1.2. Competitividade da indústria global

Atualmente a competitividade no panorama da indústria global se encontra organizado desta forma: declínio da indústria japonesa com a massificação das técnicas gerenciais e ascensão da indústria americana com a produção enxuta.

A indústria japonesa, na década de 90, no setor automotivo, embora apresentando competitividade, registrou os efeitos do excesso de aplicação da técnica just in time e da automação.

Por outro lado, a indústria americana apresenta uma excelente recuperação na competitividade com a aplicação da produção enxuta, transformando várias fábricas em nível mundial. O melhor desempenho do sistema dos fornecedores, a introdução de novos produtos e a melhoria da qualidade são mostrados nessa indústria.

No mercado europeu, as fábricas onde se encontra a implantação dessa mesma técnica de produção têm excelente desempenho; porém aquelas com características de protecionismo nacional apresentam dificuldade para desafiar a globalização.

6 Por produção enxuta ou lean manufacturing entende-se a aplicação de técnicas especiais. Dentre elas, destacam-se o inventário mínimo, o set-up (preparação e montagem) rápido, o gerenciamento total da qualidade, a integração e automação, a manutenção produtiva total e a redução de níveis hierárquicos. Ver Womack, Jones e Roos (1992: 39-98). A empresa enxuta poderá evoluir para a empresa ágil (rápida, global, customizada, com qualidade e produtiva).

7 Ao discutir o cenário global do setor automotivo, Ferro (1993: 1-8) procura descrever as tendências da indústria japonesa, americana, europeia e dos países em desenvolvimento. O autor aqui não descarta a aplicação do just in time e da automação; porém, no caso japonês, afirma que esses processos começam a saturar-se.

8 O just in time é uma técnica japonesa que procura reduzir o inventário fabricando uma peça na hora certa e na quantidade exata.
Nos países emergentes, apesar da crise asiática, a indústria coreana está galgando melhores posições; a mexicana desenvolve um processo de modernização aliado a novos investimentos provenientes do Nafta (*North America Free Trade Agreement*); a chinesa também se destaca nesse contexto e a brasileira, por sua vez, busca a modernização da linha de produtos e remodela o programa de qualidade e produtividade.

No Brasil, somente sobreviverá no mercado global a empresa que souber surpreender o cliente e deixar a concorrência atônita. No caso da indústria de forjados, existe a possibilidade de alcançar uma posição competitiva no cenário internacional. Nossa indústria, assim como a americana, caminha na direção da produção enxuta, com a modernização de produtos, de processos e de gestão e novas relações com os fornecedores e com a mão-de-obra.

Desde 1990, com a abertura da economia, a forjaria passou a enfrentar mudanças e desafios agravados pela redução progressiva de tarifas alfandegárias. Tal fato permitiu a vinda de produtos estrangeiros com preço e qualidade mundiais, influenciando o perfil do mercado consumidor, que se tornou mais exigente tendo em vista os parâmetros internacionais. Além disso, continuamos a conviver com excessiva carga tributária aliada à incerteza da política econômica do país.

Em face de questões como a desvalorização da moeda, o patamar extremamente elevado dos juros e os altos encargos tributários e sociais vigentes no país, produzir com *qualidade em nível de primeiro mundo* e ainda procurar o aprimoramento dos produtos são exigências que poucas empresas fornecedoras podem cumprir. Um dos piores inimigos de nossas indústrias, além dos demais anteriormente descritos, é o famoso "custo Brasil!"⁹, que, segundo o Sindipeças (Sindicato Nacional da Indústria de Componentes para Veículos Automotores), é superior ao de muitos países, na ordem de 15% a mais em relação ao preço internacional.

Além dessas dificuldades particulares, a forjaria brasileira enfrenta uma fase de turbulência mundial com o aumento da competição entre as diversas montadoras, num cenário de queda ou crescimento limitado dos principais mercados: o americano, o europeu e o asiático. O excesso de capacidade produtiva nos principais centros consumidores contribui para uma redução significativa na lucratividade.

No entanto, as montadoras, no país, julgam que as autopeças, incluindo-se as forjarias, estão melhores nos níveis de qualidade, na pontualidade da entrega e no controle do processo. Tomando-se como base o número de defeitos, a comparação entre os anos de 1990 e 1991 revela neste último uma melhoria de 16%, subindo para 32% em 1992 e em 1993 apresenta um índice de 50%\(^{10}\).

Todavia essa superioridade é insuficiente para se atingir padrões internacionais. As forjarias, assim como os fabricantes de autopeças, vivem momentos de apreensão depois que produtos estrangeiros chegaram ao mercado nacional\(^{11}\). Segundo o Sindipeças, prevê-se que metade das 500 empresas representadas pelo sindicato, sendo elas responsáveis no mínimo por 95% da produção de autopeças nacionais, não conseguirá adequar-se às exigências cada vez maiores do mercado, abrindo a possibilidade de ocorrer falências.

Observando tal comportamento, vê-se que a modernização pode garantir a disputa e a sobrevivência dessas empresas, desde que tenham condições de investimento para se tornarem competitivas. Na batalha pela competitividade há três grupos de fornecedores classificados no Sindipeças\(^{12}\). O primeiro é aquele que está preparado: possui a ISO 9000, já adequou os seus recursos humanos e modernizou seu parque fabril; constitui-se de cerca de 80 empresas em todo o Brasil, sendo pelo menos 35% multinacionais européias, 40% americanas e somente 25% brasileiras\(^{13}\). No segundo grupo, composto por 200 empresas, concentram-se aquelas que estão se modernizando, buscando a redução de preços e a melhoria da qualidade. O terceiro grupo conta com 220 empresas que não tentaram e não conseguirão enfrentar a

\(^{10}\) A situação do nível de qualidade, da década de 1990, nas autopeças é discutida em Booz-Alen & Hamilton (1993: 4-36).

\(^{11}\) O caminho a ser percorrido pelas diversas autopeças no Brasil é analisado pelo Sindipeças (Butori, 1996: 24-31).

\(^{12}\) Ver Butori (1996: 24-31) em que se discute a classificação das autopeças tendo como parâmetro a competitividade.

competitividade. Daí a previsão de que metade dos fornecedores permanecerão, sendo eles do primeiro e do segundo grupos. Os demais, desaparecerão ou serão incorporados. Observa-se, também, que, mesmo empresas do primeiro e do segundo grupo serão incorporadas até o final desta década (2000).

Da mesma forma, de acordo com o Sindiforja/CBF (Sindicato Nacional da Indústria de Forjarías/Centro Brasileiro de Forjarías), das 60 empresas representadas pelo sindicato, subentende-se que 30 a 35 delas sobreviverão no mercado. Empresas alemãs e americanas, líderes na forjaría brasileira, permanecerão e outras de renome, nesse segmento, instalar-se-ão no país. Forjarías remanescentes poderão, ainda, ser incorporadas por outras de maior destaque.

Esse prognóstico se baseia no fato de as peças fabricadas no exterior com preços competitivos e altíssima qualidade tornarem-se uma ameaça para os fabricantes do país. As forjarías brasileiras14 deparam-se com uma concorrência acentuada, principalmente com as forjarías da Índia, Turquia e China em razão do preço e com as forjarías do Japão, Alemanha e Estados Unidos que além disso possuem tecnologia15. Com base nas cotações mundiais e na possibilidade de adquirir forjados no exterior com melhores preços e tecnologias, as montadoras e autópeças passaram a fazer exigências às forjarías brasileiras.

A importação de produtos pela indústria brasileira aumentou de 3%, no início da década de 90, para 15% nos dias atuais (1996), índice que deve crescer para 20%, nos próximos anos, segundo a Anfavea (Associação Nacional de Fabricação de Veículos Automotores)16. Não só as fornecedoras estão sob pressão: as montadoras também se sentem ameaçadas com a entrada de carros estrangeiros no país e passaram a buscar qualidade e preços melhores para seus veículos, fazendo cada vez mais exigências às fornecedoras. Nessa situação, ao estabelecer parceria com os chamados sistêmistas, as montadoras reduzem a participação na montagem de seus veículos. Cabe a elas a tarefa da concepção dos modelos, o

15 Hoje, com o advento da ISO 14000, o mundo procura forjarías com tecnologia: net shape, custo, qualidade, serviço e, sobretudo, forjarías ecológicas.
gerenciamento do processo de montagem, o controle final de qualidade e a comercialização do veículo.

Ante tal contexto, em que a competitividade é fator essencial para a sobrevivência de nossas empresas, o que implica a obtenção de qualidade e baixo custo, faz-se necessário um modelo de melhoria contínua da qualidade cujo principal ponto de apoio seja a mudança no gerenciamento que, como vimos, tem aparecido historicamente como fator essencial no desenvolvimento da indústria.

1.3. Melhoria contínua de qualidade: uma proposta

Desde o início da organização fabril a questão produtividade estava em estudo. Havia uma expectativa exacerbada a respeito da possibilidade das máquinas de substituir o trabalho humano. Com o advento da automação e informatização, essa possibilidade aumentou e veio se concretizando ao longo dos anos, até tornar a atuação do homem dispensável em uma infinidade de situações. Porém, hoje, a competitividade e qualidade dependem muito mais da inovação e da criatividade, que são encontradas no processo de melhoria contínua.

A inovação\(^{17}\) dos métodos e processos sugerida pelos grupos de trabalho, já aplicada nas forjarias de ponta muito contribuiu ao gerenciamento nessas indústrias. Segundo Freyre em *Ferro e civilização no Brasil*, “Estaria começando uma espécie de nova onda, rompendo a estrutura da considerada era industrial. E assinalada por descentralização e desmassificação, estaria desacreditando prognósticos tanto de Karl Marx como de Henry Ford. A *taylorização* estaria já pertencendo ao passado. O operário estaria para tornar-se novo tipo de trabalhador. A produção, também, com a criatividade passando a contar mais. A organização de indústrias assemelhando-se a móveis de Calder, pela flexibilidade\(^{18}\).”

De acordo com os dados observados podemos perceber nitidamente as transformações apontadas por Freyre. Em razão disso, houve uma evolução na produtividade e qualidade do

setor fabril do país entre 1994 e 1997, em relação ao início dos anos 9019. Apesar do decréscimo de 12% no tempo gasto para entrega dos produtos, dos fabricantes do setor metalo-mecânico, ocorreu uma melhoria na pontualidade das entregas e o giro dos estoques aumentaram 100% e 65%, respectivamente. Porém esses valores estão aquém dos valores globalizados.

Além disso, novas possibilidades de progresso da indústria brasileira também são sinalizadas por uma empresa de consultoria20 que percebe uma possibilidade de crescimento substancial do país, sem grandes investimentos. Esse acréscimo pode ser conseguido pela adoção de novas técnicas gerenciais. Como exemplo, uma empresa do ramo de construção civil pode simplificar cada etapa realizada dentro do canteiro de obras preparando um manual que descreva quais são os meios mais produtivos para se construir um prédio, do alicerce ao telhado. Por meio dessa padronização e do treinamento da mão-de-obra podem-se reduzir os níveis hierárquicos e fazer com que os operários ganhem mais autonomia em suas funções. Essa empresa também pode investir em informatização, rever sua estrutura gerencial, dividindo-se em unidades de negócios, nos quais cada gerente é responsável pelo investimento e pelo lucro. Outra recomendação é incentivar a participação nos lucros e resultados (PLR), estimulando os funcionários a atingir as metas propostas.

A utilização do programa brasileiro de produtividade e qualidade21, também é decisiva para a obtenção de novos parâmetros para enfrentar a competitividade. A abertura de mercado é saudável para o consumidor e aumenta a competição na indústria. Os programas de melhoria nas empresas brasileiras conseguem, hoje, competir com as indústrias europeias, porém há muito o que otimizar, ao comparar com a indústria americana e a japonesa.

Tais medidas, que propomos como base para um modelo de melhoria contínua, podem contribuir substancialmente para a redução de custos na qualidade. Houve época em que o custo era simplesmente adicionado ao lucro resultando no preço. Nesse período, no Brasil, não havia controle dos custos, repassava-se a inflação, o lucro era absurdamente alto e os

19 Ver Economia & Negócios (1998: B1-5).
20 McKinsey cita as técnicas mais produtivas de gerenciamento em Economia & Negócios (1998: B1-5).
21 O PBPO – programa brasileiro de produtividade e qualidade lançado no governo Collor é analisado em Booz-Allen & Hamilton (1993: 4-56).
preços eram praticamente determinados e imputados ao consumidor. Posteriormente, o mercado passou por uma transformação na qual o preço é por ele estabelecido, é o chamado "preço objetivo" (target price), do qual é subtraído o custo, ainda alarmante, tendo-se como consequência um lucro mínimo ou até mesmo um prejuízo. Atualmente, do preço ainda definido pelo mercado, é subtraído o lucro estabelecido pelo acionista, tendo-se como resultado o "custo objetivo" (target cost22). Vê-se, portanto, que as forjarias, nesse modelo, podem encontrar oportunidades de reduzir o custo de qualidade.

A redução do custo e a melhoria contínua da qualidade do forjado são fatores de sobrevivência num mercado consumidor cada vez mais competitivo, em que permanecem as forjarias de ponta. Modernizar sistemas e máquinas, qualificar a mão-de-obra, criar mecanismos de controle, conseguir envolvimento dos fornecedores e colaboradores tornaram-se medidas prioritárias e fundamentais às forjarias, para que se possam aumentar seus padrões de qualidade.

Considerando o conjunto de fatores analisados, propomos, por meio de um modelo, melhorar continuamente a qualidade, integrar produto e processo, reduzir custos, aplicar novas tecnologias, oferecer melhores serviços e consolidar a confiança dos participantes do processo industrial intra e interempresa.

Nesse modelo, o projeto do produto e processo é desenvolvido por intermédio da integração de sistemas e do planejamento estratégico de negócios. Por meio do treinamento, procura-se qualificar os colaboradores para que acompanhem o constante processo de mudança organizacional, absorvam novas tecnologias e possam implementar o processo de melhoria contínua.

22Além do target cost existem outras técnicas de análise de custo, tais como: ABC (activities based cost), ABM (activities based management) e kaizen cost (custo apoiado em melhorias contínuas).
1.4. Modelagem de qualidade

O objetivo principal deste trabalho, conforme dissemos no início dessa introdução, consiste em desenvolver um modelo de qualidade em uma forjaria. Neste modelo defenderemos a tese de que a integração de sistema de produto e processo com melhoria contínua de qualidade tornou-se fator crítico na competitividade.

Partimos, assim, para o modelo de qualidade proposto, que foi desenvolvido por meio de pesquisa, de análise e de desenvolvimento de três sistemas: processo de negócios, sistema de qualidade (SQ) e melhoria contínua. O estudo desses processos foi apoiado na teoria do sistema geral23.

O primeiro sistema analisado24 está dividido em: processo de negócios da empresa25 (PNE) e processo de negócios da forjaria (PNF). Esses processos foram desdobrados nos seguintes subsistemas: o desenvolvimento de negócios, o desenvolvimento do projeto, a implantação do produto e do processo, a fabricação do produto e o gerenciamento da venda.

Na forjaria, a fabricação do forjado, que é um dos subsistemas do PNF, é desenvolvida por intermédio do processo de forjamento a quente (PFQ), sendo o mais utilizado nas forjarias brasileiras; porém, a tendência é inovar com processos mais econômicos, como o forjamento a morno ou a frio26. O processo de forjamento a quente inicia-se com o recebimento da matéria-prima (aço em forma de barra), segue-se com o corte da barra, para se obter um tarugo, que é aquecido à temperatura de 1.250 °C e forjado em uma prensa. Em seguida, o forjado é submetido às operações de tratamento térmico e de acabamento e é expedido ao cliente.

A segunda análise foi a do sistema de qualidade (SQ), o qual muito contribuiu ao modelo desenvolvido. Esse sistema está subdividido em: sistema de qualidade ISO279001 (SQI), sistema de qualidade da empresa (SQE), sistema de qualidade da forjaria (SQF) e sistema de qualidade do forjamento a quente (SQFQ). Todos esses sistemas de qualidade são

23 Ver Bresciani (1995: 1-5).
24 Ver Capítulo 2.
25 Os processos de gerenciamento de uma empresa são discutidos em Rozenfeld (1995: 9-45).
26 Ver Silva (1984: 39-58).
compostos por: gerenciamento de qualidade, desenvolvimento do projeto, fabricação, fornecedor e satisfação do cliente.

O sistema de qualidade ISO 9001 (SQI) sugere a implantação da norma ISO 9001 na forjaria. Ele é constituído principalmente dos seguintes elementos: a responsabilidade da administração, a ação corretiva e preventiva, a auditoria interna, o treinamento, o controle do projeto do produto e do processo, o rastreamento, o controle de produto não-conforme, a aquisição e a assistência técnica. A visão sistêmica do SQI focaliza os requisitos do cliente, orientando o gerenciamento em todos os aspectos que possam afetar a qualidade do produto e o seu serviço.

O sistema de qualidade28 da empresa (SQE), por sua vez, deu-se por intermédio das propostas de Feigenbaum29 e pelo processo de negócios da empresa (PNE). O SQE é planejado como um sistema “ideal”, ou seja, deveria estar atendendo a um nível aceitável de qualidade, porém, ao se verificar o SQE no “chão-de-fábrica” pode-se constatar um nível inferior ao projetado. Essa degeneração do SQE o transformou no sistema de qualidade “real” da empresa (SQe).

O desenvolvimento do SQF deu-se a partir do sistema de qualidade da empresa (SQE) e do processo de negócios da forjaria (PNF). Da mesma forma que no SQE, também ocorreu na forjaria a transformação do SQF em sistema de qualidade “real” da forjaria (SQf).

Já o sistema da qualidade do forjamento a quente (SQFQ) deu-se a partir do processo de forjamento a quente (PFQ) e do sistema de qualidade da forjaria (SQF). Nesse sistema também ocorreu a diferença entre o planejado como “ideal” e o verificado no “chão-de-fábrica” chamado “real”. Dessa forma o SQFQ sofreu uma transformação para o sistema “real” de qualidade do forjamento a quente (SQfq).

28 Ver Capítulo 3.
29 Ver Feigenbaum (1991: 7-12) no livro Total quality control no qual discute os conceitos para a concepção de sistemas de qualidade.
O terceiro sistema analisado\(^{30}\) foi o de melhoria contínua. Esse sistema foi pesquisado e desenvolvido em função da necessidade de se aprimorar a qualidade na forjaria. A melhoria contínua é composta de: gerenciamento de processo integrado (GPI), integração e automação (IA), gerenciamento humano (GH) e planejamento estratégico de qualidade (PEQ).

O gerenciamento de processo integrado (GPI) (IPM – *integrated process management*) como melhoria contínua foi desenvolvido por Slater\(^{31}\) e é um sistema cuja função engloba: o envolvimento, a identificação das variáveis de entrada e de saída, a pacronização, o manual de processos, o monitoramento, a diagnose e a melhoria. Dessa maneira, o GPI busca a satisfação do cliente por intermédio da inovação dos processos, da motivação dos colaboradores e do monitoramento do desenvolvimento do projeto e da fabricação do produto.

A integração e a automação (IA), que também são um sistema voltado à melhoria contínua, contribuíram para o modelo de qualidade proposto. São formadas pelos subsistemas: o CIM (*computer integrated manufacturing* – manufatura integrada por computador), o TQM (*total quality management*) e o JIT (*just in time*). O CIM enfatiza a integração e a cibernética, enquanto o TQM e o JIT se pautam no gerenciamento\(^{32}\).

Na automação e na integração de uma fábrica está presente o CIM\(^{33}\), o qual responde à crescente necessidade de se produzir com melhor qualidade no ambiente competitivo. Na automação se encontram os computadores, máquinas de comandos numéricos (CNC – *computer numerical control*), controladores lógicos programáveis (CLPs), robôs, etc. Na integração é empregado o conceito CAD/CAM (*computer aided design/computer aided manufacturing*) que faz o projeto (desenho) do produto e a sua fabricação assistida por computador. O CAPP (*computer aided process planning*) é outra técnica de integração que elabora o projeto do processo, no qual se definem: as máquinas, as ferramentas, os parâmetros de manufaturabilidade, as condições de *set-up* e os instrumentos de medição.

\(^{30}\) Ver Capítulo 4.

\(^{31}\) Encontra-se aqui a proposta de um modelo para gerenciamento integrado da qualidade (Slater, 1991: 107).

\(^{32}\) A integração e a automação de uma empresa são analisadas em Silva (1992: 5-16).

O TQM, outra maneira de integração, é o gerenciamento e o controle do ciclo da vida do produto, desde a sua concepção, desenvolvimento, fabricação, incluindo a sua garantia. Nesse sistema, qualquer funcionário da organização, desde o mais alto executivo até o operador no “chão-de-fábrica” é envolvido com a qualidade.

A integração também pode ser conduzida pelo just in time (JIT) que é a fabricação do produto no tempo mínimo, contudo com qualidade. Nesse caso, a redução do tempo obtém-se: na fila34, na preparação da máquina (set-up) e no transporte, permitindo flexibilidade ao fluxo de produção. A empresa que possui a manufatura em lay-out celular, o MPT (manutenção produtiva total) e que envolve as pessoas, já estará preparada para a aplicação do JIT, o qual, além da redução de tempo, também reduz o inventário de peças em processo.

O gerenciamento humano (GH), também sugerido como sistema de melhoria contínua, focaliza o aspecto das pessoas que compõem a empresa, envolvendo-as, estimulando-as e beneficiando-as em suas atividades, de tal forma que ambos, empresa e grupo de pessoas, sejam bem sucedidos.

O planejamento estratégico de qualidade35 (PEQ), outro item proposto como um sistema de melhoria contínua, tem como enfoque a estratégia de negócios e a estratégia de manufatura da forjaria. A estratégia de negócios é entendida como a análise dos fatores externos à forjaria, que estão fora do seu controle: o mercado, a ciência e a sociedade política. A estratégia de manufatura da forjaria é a análise dos fatores internos à forjaria, os quais estão sob seu domínio: a capacidade produtiva, o custo, os recursos humanos e o nível de qualidade.

Considerando o processo de negócios e o sistema de qualidade, foi desenvolvido, neste trabalho36, o modelo inicial de qualidade (MIQ) que está fundamentado diretamente no processo de negócios da forjaria (PNF), no sistema de qualidade da empresa (SQE), no sistema de qualidade da forjaria (SQF) e no sistema de qualidade ISO 9001 (SQI). A implantação do MIQ mostrou que o resultado do nível de qualidade, quando comparado com

34 Tempo de fila ou de espera é o tempo em que o produto em processo fica aguardando a vacância de uma máquina que está no roteiro de fabricação.

35 Uma abordagem de um planejamento estratégico de uma empresa, considerando-se os fatores externos e internos são discutidos em Gunn (1988: 21-61).
o SQF, apresenta melhor desempenho, porém, ainda aquém dos valores encontrados nas forjarías chamadas de ponta. Além disso, houve muita dificuldade no envolvimento dos colaboradores da forjaria para se obter o comprometimento com a qualidade.

Todavia, observando o modelo MIQ e considerando o sistema de melhoria contínua foi desenvolvido o modelo de qualidade (MQ) da forjaria. A análise da implantação do MQ deu-se por intermédio do indicador de qualidade, do custo da qualidade, da avaliação do SQ pelo cliente e da avaliação da competitividade. Os resultados obtidos com essa implantação foram comparados com os valores encontrados anteriormente na forjaria e pôde-se notar que houve uma melhoria do nível de qualidade compatível com as forjarías de “classe mundial”.

O MQ é composto pelos seguintes subsistemas: o gerenciamento da qualidade, o desenvolvimento do projeto (do produto e do processo), a fabricação do forjado, o fornecedor, a satisfação do cliente e a melhoria contínua.

O gerenciamento da qualidade estabelece uma organização focalizada na satisfação do cliente. Os colaboradores são motivados a fim de que se alcance o seu envolvimento e consequente comprometimento. A satisfação do cliente e o comprometimento dos colaboradores integram o gerenciamento da qualidade com o desenvolvimento do projeto.

O desenvolvimento do projeto do produto e do processo é o subsistema de qualidade no qual o produto é projetado em função dos requisitos do cliente. Esse subsistema define o processo de fabricação de acordo com as características do produto.

O subsistema de fabricação do forjado é responsável pelo gerenciamento da qualidade de implantação do projeto e da produção do forjado. O subsistema de fornecedor gerencia todo o sistema de aquisição. O subsistema de satisfação do cliente é a qualidade assegurada na venda e na pós-venda, dando total garantia ao cliente por intermédio da avaliação do desempenho do produto e do serviço.

34 Ver Capítulo 5.
A melhoria contínua é um subsistema de qualidade pertencente ao MQ que, por intermédio do envolvimento, da comunicação e da confiança, procura alcançar sempre um nível de qualidade superior ao dos competidores. O envolvimento com as pessoas da forjaria é a propulsão dos sistemas de qualidade (SQs). A comunicação exerce um papel preponderante na integração do envolvimento e da confiança. E a confiança conduz ao processo de decisão e ação (decision-making) a qual é compartilhada entre os grupos de trabalho e os gerentes. Ainda, a melhoria contínua incentiva a forjaria para que o processo de participação possa fluir de baixo para cima, sempre que possível, buscando-se a autonomia dos colaboradores. Isso é o sucesso através de pessoas (SAP)!

Com base nos resultados\(^{37}\) da implantação deste modelo\(^{38}\) acreditamos que por meio da melhoria contínua poderemos alcançar\(^{39}\) níveis de qualidade de forjaria de primeiro mundo.

Após a introdução, em que apresentamos o objetivo, a justificativa e a descrição do modelo de qualidade (MQ), vamos no próximo capítulo apresentar o processo de negócios de uma empresa e de uma forjaria. O processo de negócios é a mola propulsora dos sistemas de qualidade, em outras palavras, para se definir o sistema de qualidade, toda empresa deve primeiramente desenhar a arquitetura do seu processo de negócios.

\(^{37}\) Ver, no capítulo 6, as definições de medidas de desempenho.

\(^{38}\) O modelo de qualidade proposto neste trabalho poderá ser adaptado a diversos tipos de empresa. Dessa forma, durante o desenvolvimento dos demais capítulos (dois a sete), quando se ler forjaria, pode-se substituir por empresa, forjado por produto, aço por matéria-prima, forjamento a quente por processo de fabricação de um produto, prensa por máquina e matriz por ferramental.

\(^{39}\) Ver Capítulo 7.
Capítulo 2

Processo de negócios

Este capítulo tem o intuito investigar cada etapa do molde de processo de negócios aplicado nas empresas em geral, detendo-se, a seguir, especificamente na forjaria, no processo industrial automotivo, que é o tema deste trabalho.

Tal estudo será feito sob a ótica da teoria do sistema geral (TSG), a qual servirá de base para a implantação do processo de melhoria contínua, que será criado em função dos problemas apresentados no processo de negócios da empresa.

Iniciaremos com a definição de processo em si e de processo de melhoria contínua, discutindo também os sistemas básicos de organização das empresas sobre os quais será aplicada nossa proposta de modelo.

 Faremos, a seguir, o mapeamento dos processos de uma empresa qualquer, detectando seus problemas em cada subsistema: gerenciamento de negócios e desenvolvimento e fabricação do produto.

 Percorridas essas etapas, discutiremos a teoria do sistema geral e sua aplicação no processo de negócios da empresa, para, depois, repetir a mesma análise especificamente na forjaria.

 Optamos por esse caminho em razão da possibilidade de a nossa proposta de modelo de melhoria contínua ser aplicada em qualquer tipo de empresa e não apenas na forjaria, onde foi testada.
2.1. Definição de processo

O processo é a maneira de realizar atividades em sucessões lógicas de estados\(^1\) ou de mudanças, ou seja, o processo é uma “caixa preta” que transforma um ou mais dados recebidos na entrada em um ou mais resultados obtidos na saída (vide figura 1a). Essa definição também pode ser aplicada aos negócios de qualquer empresa, como, por exemplo, a forjaria.

![Diagrama de processo](image)

(a) Sequência de atividades

![Diagrama de processo](image)

(b) Industrial automotivo

Figura 1 — Processo

No processo industrial automotivo, no qual nos detemos neste trabalho, (vide figura 1b), o fornecedor aciaria processa o ferro gusa obtendo o aço, que por sua vez é enviado à forjaria (empresa satélite). Após transformação o forjado é enviado à montadora ou à autopeça que o transforma em produto final, distribuindo-o ao cliente. Para que se obtenha a máxima qualidade, submete-se cada etapa dessa cadeia produtiva à melhoria contínua.

2.2. Processo de melhoria contínua

Antes de abordarmos o processo de melhoria contínua, vamos, ainda, discutir os moldes estruturais nos quais se pautam a organização das empresas atualmente. São basicamente dois: o funcional e o multifuncional.

A organização funcional é aquela que obedece a uma hierarquia, ou seja, representa os departamentos da empresa e tem, por isso, a característica “vertical” (vide figura 2a). Ela é também chamada taylorista. Em tal molde, temos várias linhas de processo: marketing, vendas, financeira, engenharia do produto e engenharia do processo (fabricação).

\(^1\) Segundo Aurélio estado é o modo de ser ou estar. Ver Novo dicionário Aurélio (1986).
A organização multifuncional é aquela que canaliza as atividades de vários departamentos da empresa para uma só função (vide figura 2a). Ela é também chamada enxuta ou flexível. Esse molde é caracterizado como “horizontal”, ou seja, funciona como o processo propriamente dito, que se subdivide nos processos de: gerenciamento da qualidade, desenvolvimento do projeto (do produto e do processo), fabricação do produto, aquisição, satisfação do cliente, etc. O modelo de qualidade (MQ) que está proposto neste trabalho leva em consideração que a melhor forma de se estruturar uma forjaria é utilizar a organização multifuncional, sob o efeito do processo de melhoria contínua.

(a) Funcional e multifuncional

(b) Melhoria contínua

![Diagrama de processos de melhoria contínua]

Figura 2 - Processo de melhoria contínua

O processo de melhoria contínua tem como propósito estabelecer novos rumos, simplificando e padronizando as atividades contidas num determinado processo (vide figura 2b). A melhoria contínua opera com os seguintes dados: informações, conhecimento, julgamento e experiência. Durante o processamento de melhoria são utilizadas técnicas similares ao ciclo *Deming*². O resultado final é a correção e a simplificação do processo atual.

² O processo de melhoria contínua foi discutido em *Decision processes international* e apresentado em Equipamentos Clark Ltda (1995: 1-7). O ciclo Deming PDCA é o planejamento (**P = plan**), a execução (**D = do**), a análise (**C = check**) e a ação (**A = act**).
O processo de melhoria contínua pode ser aplicado no processo da satisfação do cliente, que será desenvolvido no modelo de qualidade.

Uma maneira de buscar a satisfação do cliente é a transformação do processo funcional em multifuncional, que está esquematizada na figura 2c. Nessa figura, de um lado, apresenta-se o processo funcional, que é voltado para a organização, ou seja, para dentro, mostrando-se: ineficiente, ineficaz, obsoleto, longo, caro e inflexível. Do outro lado, mostra-se o processo multifuncional que uma vez submetido ao processo de melhoria contínua, direciona-se para fora, ou seja, para o cliente. Essa transformação é auxiliada pela melhoria contínua por meio da técnica de mapeamento do processo.

2.3. Mapeamento de processo

Nesse momento, pergunta-se qual é a técnica para se mapear o processo e alcançar a sua melhoria contínua. A resposta começa ser dada na figura 3. A primeira fase é a seleção dos processos a serem mapeados. Nessa etapa, acontece o envolvimento dos colaboradores e a identificação do líder do processo. Durante a seleção dos processos, define-se a estratégia a ser alcançada, identificam-se os processos chaves ou relevantes, escolhem-se a equipe de trabalho e o seu líder, identificam-se e priorizam-se as oportunidades a serem discutidas em cada processo. Já a segunda fase é o mapeamento do processo. É analisado o processo atual e elaborado um fluxograma com os respectivos desdobramentos. A missão para cada processo é estabelecida, de tal modo que se verifique qual é a necessidade do cliente em cada um deles, encontrando-se nas causas raízes, os seus “pontos fracos” ou distorções. A terceira fase é a melhoria do processo por meio da sua diagnose. É iniciada com a correção, a qual consiste em identificar os problemas, utilizando-se o diagrama “espinha de peixe”, de Taguchi, buscando-se as suas causas e efeitos. Segue-se com a simplificação ou a padronização, que procura descrever o novo processo com base em metas bem definidas, analisando-se a necessidade da manutenção de determinadas atividades e da proposição de novas alternativas.

2 O fluxograma também é conhecido como brownpaper, no qual se pode “colar” todos os documentos e definições envolvidos no processo, procurando-se interligá-los, identificando-se as informações de entrada e de saída. Também poderá ser utilizado a sistemografia da teoria do sistema geral. Ver Bresciani (1995: 1-5).
Figura 3 - Mapeamento de processos

Em seguida, na quarta fase, tem-se o remapeamento do processo, no qual se procura criar, inovar e consolidar o plano de ação para se processar nova melhoria, porém limitando-se ao escopo do processo. Dessa forma, nesse novo processo, propõem-se conceitos revolucionários, procurando-se, então, detalhar novamente as atividades, destacando-se nelas os novos problemas, as suas causas raízes e sugerindo-se ações preventivas e interinas. Aqui, nasce um novo processo. Deve-se, então, na quinta e última fase, escolher uma área “piloto” ou um departamento da empresa para implantação desse novo processo, testando-o, aprendendo e interagindo com ele. É a focalização que consolida o novo processo. Procura-se envolver toda a organização, formulando-se uma estratégia de transição para ele. As propostas desenvolvidas são implementadas e, por meio da monitoração dos parâmetros, verificam-se e comparam-se os resultados com a estratégia estabelecida na primeira fase. Uma vez mapeado o processo, procura-se gerenciá-lo por meio de estratégias e de negócios.
2.4. Gerenciamento de negócios

O gerenciamento de negócios do processo industrial está apresentado na figura 4. Esse gerenciamento é composto por: gestão (A), concepção (B), industrialização (C), comercialização (D) e apoio (E).

Figura 4 - Gerenciamento de estratégias e negócios

O processo de gestão consolida, na figura 4, o resultado financeiro e gerencia a qualidade. O processo de concepção define as estratégias, desenvolve os negócios e desenvolve o produto. Por outro lado, o processo de industrialização é a fabricação do produto. Nele, estão definidas a implantação do produto, que é o roteiro do processo, e a fabricação do componente unitário, do componente seriado e do conjunto. Segue-se com o processo de comercialização que envolve a abertura do mercado, atendimento ao cliente e o gerenciamento da venda. O último processo é o de apoio, que assessoria os negócios, planeja a educação e o treinamento, elabora a aquisição, gerencia os recursos humanos e administra os

serviços de terceiros. A concepção (B) e a industrialização (C) podem ser representadas pelo processo de desenvolvimento e de fabricação do produto.

2.5. Desenvolvimento e fabricação do produto

O processo de desenvolvimento e de fabricação do produto encontra-se na figura 5. Ele compreende as seguintes etapas: desenvolver negócios, implantar produto, gerenciar venda e fabricar produto. O processo de desenvolver negócios recebe informações do mercado e de consulta do cliente. Após análise, envia os resultados aos demais subprocessos. O primeiro resultado é o contrato com o cliente, que é enviado ao processo de implantar produto e ao processo de gerenciar venda. Como segundo resultado temos as listas de materiais e de engenharia, e a liberação de manufatura, que são enviadas ao processo de implantar produto, ao processo de gerenciar venda e ao processo de fabricar produto. O processo de implantar produto, após receber os dados necessários, elabora o roteiro de fabricação, que é enviado ao processo de fabricação do produto. O processo de gerenciar a venda recebe: as informações do mercado, o planejamento financeiro e o programa do cliente. Após processamento, envia o cadastro atualizado e o preço do produto para a contabilidade e para a fabricação. O processo de gerenciar a venda também envia o programa de venda ao processo de fabricação do produto. O processo de fabricar produto recebe as informações dos processadores de: desenvolver negócios, implantar produto e gerenciar venda. Também recebe informações do programa do cliente, das restrições dos fornecedores e da estratégia de manufatura. Após a fabricação do produto, os principais resultados são: o produto fabricado, o seu nível de qualidade e a emissão de nota de faturamento do produto. Os processos de desenvolvimento e de fabricação do produto na empresa “convencional” e na empresa “unidade de negócios” podem ser vistos respectivamente nas figuras 6 e 7.

\[\text{6 Dependendo da empresa a implantação do produto (roteiro de fabricação) poderá estar na concepção (processo B, da figura 4) ou na industrialização (processo C, da figura 4) ou ainda, independente desses processos.}\]
Figura 5 – Processo de desenvolvimento e fabricação do produto

O processo de desenvolvimento do produto na empresa “convencional” (vide figura 6) inicia-se no departamento de marketing, no qual se elabora a pesquisa de mercado, analisando-se a viabilidade de se fabricar o produto. O departamento de marketing, então, envia ao departamento de vendas as características do produto e do respectivo mercado. Esse setor solicia, então, a cotação de preços e acompanha toda a negociação durante o início desse novo negócio. A engenharia do produto coordena a cotação com as engenharias de processo de fabricação e de qualidade, verificando também a similaridade do novo produto com as atuais linhas de fabricação. Por sua vez, a engenharia de processo elabora a cotação, definindo o pré-roteiro de fabricação, calcula a carga de máquinas e define a necessidade de novos investimentos. Já o departamento de finanças doa todo o suporte para a viabilidade do negócio. O departamento de recursos humanos dá sustentação a todos os departamentos. Vendas negocia o contrato com o cliente, consolidando esse novo negócio e autorizando a fabricação do produto.
O processo de fabricação do produto na empresa “convencional” pode ser visto também na figura 6. Nesse processo, o departamento de vendas recebe uma previsão do cliente que é o pedido em carteira (PC). Após análise do PC e da pesquisa do mercado, é estabelecido o programa de venda (PV). A engenharia do produto define a lista de materiais, os desenhos do produto e providencia a liberação de engenharia. O planejamento, em função dos recursos humanos, das máquinas, dos materiais e de posse da lista de materiais, estabelece o programa de produção (PP), definindo a mínima necessidade de inventário estratégico. Suprimentos emite ordens de fabricação para os fornecedores de matéria-prima e dos materiais indiretos. De posse do desenho do produto, a engenharia de processo define o roteiro de fabricação, estabelecendo os centros de custos, as indicações das máquinas, a escolha dos ferramentais, dos dispositivos e dos instrumentos de medição. A produção, de posse do roteiro, fabrica o produto, levando em consideração o plano de controle da qualidade. Já recursos humanos, finanças, facilidades e sistemas de informações dão todo o suporte ao ciclo de fabricação do produto.

Figura 6 - Desenvolvimento do produto na empresa “convencional”

O processo de desenvolvimento e de fabricação do produto na empresa “unidade de negócios” pode ser visto na figura 7. Nesse modelo de empresa⁷, os departamentos de recursos

⁷ A empresa “convencional” é também chamada rígida e contém processos funcionais.
humanos, finanças, facilidades e sistemas de informações funcionam como uma *holding*, enquanto as atividades de engenharia estão centralizadas em um único departamento, administrando o produto, o processo e a qualidade. Por outro lado, o “chão-de-fábrica” engloba: a produção, a manutenção, o planejamento e a qualidade em processo. Ainda, as atividades dos negócios, tais como: *marketing*, vendas e suprimentos também estão agrupadas.

![Diagrama de fluxo]

Figura 7 - Desenvolvimento do produto na empresa “unidade de negócios”

Pode-se notar que nesse tipo de empresa os processos são mais integrados. Dessa forma, o desenvolvimento do produto e de seu processo de fabricação quando integrado, resulta em melhores níveis de qualidade. Essa questão será desenvolvida no capítulo 5, na apresentação do modelo de qualidade. O desenvolvimento do produto e a sua fabricação serão apresentados no processo de negócios da empresa, que, por sua vez, apresenta o processo de negócios da forjaria, que se desdobra no processo de forjamento a quente. Para que se possa entender tais processos com os seus respectivos desdobramentos, apresenta-se a teoria do sistema geral.
2.6. Visão sistêmica: teoria do sistema geral

Os sistemas de qualidade (SQs) observados, pesquisados e desenvolvidos neste trabalho foram interpretados com base na teoria do sistema geral (TSG). Essa teoria é o paradigma da modelagem sistemática da complexidade, na qual o comportamento de um grupo não poderá ser conhecido por meio do comportamento individual.9 Tal visão, embora se detenha na análise individual das partes, permite-nos observar como elas interagem e consequentemente o resultado dessa interação como um todo, que não é a simples somatória de cada individualidade. Dessa forma, propomos analisar a forjaria como um sistema geral.

A teoria do sistema geral consiste na construção de modelos e na sua aplicação. A teoria sistêmica é a ciência da modelagem desses sistemas. Ao se modelar, deve-se alterar o enfoque do método analítico e orgânico, que usualmente pergunta: “Do que isto é feito?” para o método sistêmico e funcional, cuja pergunta é: “O que isto faz?”, ou ao que ele se submete e, portanto, no que ele se tornará no seu contexto ou meio ambiente.

“O que isto faz” é a modelagem que é uma idéia nova, que postula, não apenas a pluralidade de modelos para um mesmo fenômeno, mas a pluralidade de métodos de modelagem.10 Dessa forma, propomos um modelo de qualidade da forjaria no conceito de organização e não de estrutura, ou seja, a organização é a capacidade de um sistema de produzir e se reproduzir, comunicar e se autocomunicar, transformar e se autotransformar.

A modelagem do objeto tal como fenômeno ou sistema é essencialmente uma forma de representação chamada sistemografia, que permite resolver todas as observações feitas e também prever o comportamento do objeto considerado no contexto observado.

Na figura 8, podem ser observados o sistemógrafo e seus processadores. O sistemógrafo é um modelo do fenômeno representado por um conjunto finito de processadores interligados entre si, recebendo dados (entrada) e fornecendo resultados (saída). O contexto relativo ao sistemógrafo estabelece o meio externo como tudo o que fica fora da fronteira do sistemógrafo, como meio interno o que está dentro e, como interface, a fronteira entre o

externo e o interno. O sistemógrafo pode ser classificado como de fluxo ou de campo. O de fluxo representa o objeto em processamento, tal como na ciência físico-matemática, na qual os fluxos podem ser de matéria (materiais, objetos tangíveis), de energia e de informação (sinais de comando de ação). O de campo representa o objeto exercendo interação no processamento, tal como na ciência social ou humana. Nessa ciência, a interação do objeto social com o meio ambiente pode se constituir de fluxo estrutural com indivíduos ou de fluxo de atividades com materiais, produtos e serviços. Tais sistemógrafos também podem ser classificados como operacionais, informacionais e decisionais. Já a sua categoria pode ser de: espaço, tempo e forma. Como exemplo, na forjaria, o processo de forjamento a quente (PFQ) é um processador operacional, cujas categorias são: espaço (transporte), tempo (depósito) e forma (fábricação).

Figura 8 - Sistemógrafo e seus processadores

O processador ou modificador é um componente do sistemógrafo. Ele está representado na figura 8 por um “triângulo” que recebe dados na sua entrada (importação), processa-os por meio de atividades e na sua saída (exportação) informa o resultado.

As conexões entre os processadores de um sistemógrafo podem ser decodificadas por meio da matriz estrutural do sistema geral. Ela contém as conexões arborescentes e as conexões de retroalimentação ou de laço, que podem ser vistas na figura 9. Na matriz estrutural, encontram-se as entradas e as saídas do processador P. Esse processador contém as atividades de A até G. Na entrada do processador P, têm-se as informações E1 e E2 e na sua saída S1 e S2. Durante o processamento, a atividade A recebe informações de E1 e E2 e, após,
envia o resultado para as atividades B, C e D. Por sua vez, a atividade D, após processamento, envia dados para a atividade F. A atividade C, que recebeu dados de A, processa-los e envia-os para F e é retroalimentado por F. A atividade B, que recebeu dados de A, alimenta E e G. A atividade E, que recebeu dados de B, também o retroalimenta e envia dados para a atividade G que, após processamento, envia dados para S2. A atividade F que recebeu dados de C e D, após processamento, envia dados para G e S1. O processador P pode ser aplicado no gerenciamento de projeto por meio do Pert-cpm (método do caminho crítico) ou para o organograma de uma empresa (hierarquia).

Figura 9 – Matriz estrutural do sistema geral

Ainda, na matriz estrutural, na figura 9, as linhas são as entradas e as colunas são as saídas. Na primeira linha, estão as relações arborescentes: B/A (entrada em B, saída de A), C/A (entrada em C, saída de A) e D/A (entrada em D, saída de A). Na quinta linha está a relação retroalimentada: B/E (entrada em B, retroalimentada por E) e a arborescente: G/E (entrada em G, saída de E). Dessa forma, na matriz estrutural, da diagonal para a parte superior, encontram-se as relações arborescentes, da diagonal para a parte inferior, encontram-se as relações de retroalimentação. As conexões podem ser classificadas quanto ao tipo e quanto à complexidade.

As conexões quanto ao tipo são: simples e elaboradas (vide figura 10). As simples, conforme o próprio nome diz, são aquelas cujo processador tem uma única informação de
entrada e de saída. As elaboradas são conexões que apresentam uma entrada que ao se conectar com dois processadores pode atingir até 18 inter-relações.

![Diagrama de conexões simples e elaboradas]

Figura 10 - Conexões simples e elaboradas

As conexões quanto à complexidade são: “complicadas” e complexas. As “complicadas” são aquelas constituídas unicamente por relações arborescentes, isto é, a rede de conexão é pouco integrada. As complexas não são obrigatoriamente numerosas, mas são conectadas por relações de retromitâncias, são integradas.

O sistema geral é um objeto que, imerso em um ambiente, é dotado de finalidades, exerce uma atividade e tem sua estrutura evoluindo no tempo, sem perder sua identidade. Dessa forma, na figura 11, apresentam-se os níveis\(^{11}\) do processador denominados objeto: passivo, ativo, regulado, informado, com decisão, com memória, com pilotagem, com inovação e com autofinalização.

O processador de primeiro nível é objeto passivo e pode ser uma pedra, uma galáxia, um pensamento ou o Sol. Esse objeto é inerte a qualquer interferência. A sua representação gráfica é simples. O processador de segundo nível é o objeto ativo. Ele pode ser uma “máquina preta” que processa, realiza, exterioriza o comportamento estável ao longo do tempo e mantém a sua identidade. A representação gráfica, nesse caso, é uma “caixa preta”. Já o processador de terceiro nível é o objeto regulado. Ele pode ser o “ladrão” de uma caixa reservatório de água. Esse objeto tem uma atividade regular obtida por uma relação fechada que recicla parte da saída na entrada, reduzindo ou aumentando a sensibilidade a determinados eventos. Sua representação gráfica é de laço (retromitância).

\(^{11}\) Ver Moigne (1994: 126-149).
Figura 11 – Níveis do processador
Dando sequência à classificação do nível do processador, apresenta-se o processador de quarto nível, que é o objeto informado. Ele pode ser o processamento de sinais, de regulagem ou de informações. A sua representação gráfica é de laço informacional, ou seja, tipicamente de feed-back, como na cibernética. O feed-back é usado para designar uma relação fechada que conecta um processador codificador de informação de comando a um processador decodificador e que transforma o comando em ação. O processador de quinto nível é o objeto com decisão que pode ser o termostato de um motor, na teleologia (goal-seeking), ou seja, o objeto dotado de um projeto que permite ultrapassar a interpretação causalista-determinista, sem a inibição da ausência de entes matemáticos e decisionais (decision-making). Na sua representação gráfica, detém o projeto do objeto, conhece a finalidade desse objeto e é um processador operacional com conexão informacional de laço. O processador de sexto nível é o objeto com memória que toma decisão e se apoia num processo de memorização. A sua representação gráfica é a do processador decisional, de memorização e operacional. Possui um algoritmo no interior do comando. O processador de sétimo nível é o objeto com pilotagem que pode representar o ser humano com capacidade relacional. Esse objeto é decisional, informacional, operacional, tem pilotagem (coordenação) hierarquizada e tem tratamento de informações, que é a capacidade cognitiva. A sua representação gráfica é complexa e possui sistema de decisão, sistema de informação e sistema de operação. O processador de oitavo nível é o objeto com inovação que pode representar o ser humano com capacidade criativa. Esse objeto tem capacidade para inovar, imaginar, selecionar, conceber, criar e inventar. Pode também gerar informação simbólica, autoorganizar-se e aprender. A sua representação gráfica é complexa e possui sistema de decisão com imaginação-concepção e de decisão com seleção, sistema de informação e sistema de operação. O processador de nono nível é o objeto com autofinalização que pode representar o ser humano com capacidade de gerar os próprios objetivos ou a empresa de negócios — “fabricante classe mundial”. Ainda, esse objeto tem a consciência de sua existência e de sua identidade. A representação gráfica desse processador é muito complexa e possui sistema de decisão com finalização, de decisão com inteligência-concepção, de decisão com seleção e de decisão com pilotagem (diagnóstico), sistema de inteligência e sistema de operação (manutenção).

12 Teleologia é o estudo da finalidade. Doutrina que considera o mundo com um sistema de relação entre os meios e fins
2.7. Processo de negócios da empresa

O processo de negócios da empresa (PNE) está analisado de acordo com a teoria do sistema geral. Ele tem como meio ambiente o mercado mundial. O PNE desdobra-se em: desenvolvimento do negócio, desenvolvimento do projeto, implantação do produto, fabricação do produto (por encomenda, seriado e por conjunto) e gerenciamento da venda. Esse desdobramento foi discutido no gerenciamento de negócios (vide item 2.4). Durante o desenvolvimento do PNE foram consideradas as condições de contorno ou premissas para o desenvolvimento de um negócio.

A condição de contorno que integra, no PNE, o desenvolvimento do negócio, o desenvolvimento do projeto e a implantação do produto considera que a gestão de documentação possa ser realizada por meio da ISO 9000. Outra premissa estabelece que no desenvolvimento do negócio é extremamente importante uma base de dados inteligente, como, por exemplo: falhas de campo e capacidade de máquina. De posse desses dados é possível elaborar o FMEA (failure mode effects analysis) ao se desenvolver o produto e o processo. Outro fator considerado é a integração no processo de fabricação por meio da lista de ferramentas, relação das máquinas, relação de centros de trabalho e croquis da operação, utilizando-se o CAD/CAM, o plano de controle e o fluxo do processo. Além disso, é necessário que a fabricação do produto no PNE entenda o planejamento e a programação da produção como convergência do atendimento ao cliente, sendo que para tal se procura a simulação do programa de produção com capacidade finita\(^\text{12}\). O planejamento dos materiais indiretos deve visar a demanda futura. O gerenciamento da venda também considera a premissa de que todos os dados relativos ao custo, aos preços, ao mercado e à condição de venda devam ser informatizados. O custo deve refletir a realidade do produto, no que diz respeito ao volume, prazos, sazonalidade, alinhando-se com o planejamento financeiro. Os processos de cotação devem ser ágeis. O faturamento deve ser acompanhado diariamente. A comunicação com os clientes e fornecedores deve ser por meio de sistemas on line. No quadro 1, encontra-se a descrição e o desdobramento do PNE. Na figura 12 está o seu sistemógrafo.

\(^{12}\) A maioria dos sistemas de planejamento da produção considera a capacidade como infinita. Esse tipo de planejamento cria uma entropia na produção, ocasionando atraso na entrega do produto.
Quadro 1
Descrição do processador de negócios da empresa

PNE I (Desenvolvimento do negócio) Definir premissas, conceituar, orçar e vender o produto, reavaluar o negócio, assegurar informações de mercado e estabelecer uma política de comercialização. **PNE II** (Desenvolvimento do projeto) Detalhar e desenvolver o produto, testá-lo, estabelecer premissas para alterá-lo, conceituar a alteração, orçar e vender o produto alterado, abrir e coordenar cotação e detalhar e testar o produto alterado. **PNE III** (Implantação do produto) Detalhar o processo de fabricação, disponibilizar os recursos e homologar o processo. **PNE IV.a** (Fabricação sob encomenda) Orçar e negociar, planejar a fabricação, programar a montagem, programar a fabricação, suprir materiais e componentes, fabricar componentes, montar os conjuntos sob encomenda e expedir o produto. **PNE IV.b** (Fabricação seriada do componente) Planejar a produção, calcular a necessidade de material, suprir o material, produzir o componente e expedir o produto. **PNE IV.c** (Fabricação seriada do conjunto) Preparar o programa de venda, planejar a produção, calcular a necessidade de material, programar a produção, suprir o material, fabricar os componentes, definir a prioridade de montagem e montar o conjunto. **PNE V** (Gerenciamento da venda) Obter dados no mercado e, com o cliente, avaliar o custo de reposição, levantar o preço, avaliar as condições de venda, negociar a lista de preço, cadastrar dados, administrar as divergências e atender o pedido no campo.

Figura 12 – Sistemógrafo do processo de negócios da empresa

Sistemógrafo PNE
Na figura 12, o PNE I, ou processador I, recebe informações do mercado e do cliente e, após processá-las, conecta-se com o II, informando-o da definição do produto a ser fabricado e qual é o volume anual. Já o II detalha e desenvolve o produto e informa ao III que a manufatura está liberada. Por outro lado, o II é retomitante com o I, isto é, também informa sobre o estágio do desenvolvimento do produto. O III dá feed-back ao I, informando-o sobre o processo de fabricação nos aspectos que possam influenciar o negócio, dá feed-back ao II sobre a necessidade de se alterar o produto e envia o processo de fabricação ao IV.a a c. Após processamento, eles enviam o produto ao V e, quando necessário, pode haver uma retomitância solicitando ao III alteração no roteiro de fabricação. O V envia solicitação ao I quando ocorre o desenvolvimento do novo negócio e também informa ao IV.a a c e o III sobre o atendimento no campo e sobre o programa de venda. O V envia, então, o produto final ao cliente.

O sistemógrafo PNE está mostrado na figura 12. Acima, no quadro 1, encontram-se a descrição do PNE, bem como a descrição das entradas, das saídas e das retomitâncias desse processador. A seguir, será descrita a classificação do PNE.
O PNE é de oitavo nível14. Possui conexões elaboradas e está em processamento de fluxo. Sua representação gráfica é complexa. Os processadores PNE I a III e V são de oitavo nível porque são objetos com inovação. Eles se autoorganizam, possuem inteligência ou finalização. São alimentados, alimentam e retroalimentam os demais processadores e a si mesmos. As representações gráficas desses processadores são complexas. Os processadores de fabricação PNE IV, a e c são de sétimo nível, pois possuem coordenação, execução, concepção e finalização, tendo-se capacidade relacional, mas não criativa total. Por terem características fortes de fabricação, são operacionais de forma. Suas representações gráficas são complexas. Após essa apresentação genérica de processo de negócios, vamos analisar como isso funciona especificamente na forjaria, considerando suas particularidades.

2.8. Processo de negócios da forjaria

O processo de negócios da forjaria (PNF) foi desenvolvido a partir do processo de negócios da empresa (PNE). O processo de negócios da forjaria (PNF) deu-se a partir do PNE que também está no meio ambiente: mercado mundial. No desdobramento do PNF têm-se: desenvolvimento do negócio, desenvolvimento do projeto, implantação do forjado, fabricação de forjado e gerenciamento da venda. As premissas consideradas no PNE também são aplicadas ao PNF.

No quadro 2, encontra-se a descrição e o desdobramento do PNF. Na figura 13 está o seu sistemógrafo. O PNF I comercializa o produto forjado. O PNF II desenvolve o forjado a partir do usinado15, acrescentando o sobremetal e especificando as tolerâncias dimensionais, tolerâncias geométricas e características metalúrgicas. Já o PNF III detalha o processo de fabricação e define o tipo de forjamento: quente, morno ou frio. Escolhe a máquina: prensa, recalcedora ou martelo. Na sequência, o PNF IV dimensiona os recursos materiais: matéria-prima (aço), ferramental (matriz) e bobinas para os fornos de indução. Considera também, a carga e a capacidade das máquinas, o planejamento da manutenção preventiva e os recursos humanos necessários. Processa, ainda, a entrega do forjado. O PNF V trabalha com o pedido em carteira (PC), transformando-o em pedido de venda (PV), que por sua vez é transformado

14 Uma vez que o PNE é da oitava nível, vê-se que existe a oportunidade de se introduzir melhorias.

15 O produto usinado é aquele que passa por processos tais como: torneamento, furação, fresamento, tratamento térmico e retificação.
pelo PNF IV no programa de produção (PP), que atende a entrega semanal. Estabelece-se, também, o preço e o prazo de entrega mínimos e a qualidade máxima. No atendimento do campo, por meio do PNF V procura-se ouvir a "voz do cliente", buscando-se a sua satisfação. A classificação do PNF é a mesma do processador de negócios da empresa (PNE) (apresentada no item 2.7).

Quadro 2
Descricão do processador de negócios da forjaría

PNF I (Desenvolvimento do negócio) Definir, conceituar, orçar e vender o forjado, reavaliar o negócio, assegurar informações do mercado e estabelecer a política de comercialização. PNF II (Desenvolvimento do forjado) Detalhar, desenvolver e testar o forjado, estabelecer premissas para alterá-lo, conceituar a alteração, orçar e vender o forjado alterado, abrir e coordenar cotação, reavaliar o negócio em função da necessidade do cliente e detalhar o forjado alterado. PNF III (Implantação do forjado) Detalhar o processo de fabricação, disponibilizar os recursos e homologar o processo. PNF IV (Fabricação de forjado) Planejar a produção, calcular a necessidade de aço, suprir o material, produzir e expedir o forjado. PNF V (Gerenciamento da venda) Obter dados no mercado e, com o cliente, avaliar o custo de reposição, levantar o preço, avaliar as condições de venda, negociar a lista de preço, cadastrar dados, administrar as divergências, obter os dados de campo, avaliar, relatar e corrigir a falta de campo, assegurar a campanha de campo, dar garantia e entregar o forjado.

Figura 13 - Sistemógrafo do processo de negócios da forjaría

Sistemógrafo PNF

Pode-se ver, na figura 13, a sequência de trabalho na forjaría desde o desenvolvimento do negócio (PNF I), passando pelo desenvolvimento do forjado (PNF II), pela implantação do forjado (PNF III) até chegar ao gerenciamento da venda (PNF V). Aqui, o PNF I, ou processador I, recebe informações do mercado e do cliente e, após processá-las, concerta-se com o II, informando-o da definição do forjado a ser fabricado e qual é o volume anual. Mas também recebe feed-back do II sobre o atendimento às especificações do cliente, recebe feed-back do III sobre novos recursos necessários ao desenvolvimento do processo de fabricação e recebe feed-back do V sobre dados do mercado e da satisfação do cliente. O II envia ao III informação do produto forjado: especificação, custo e volume anual. Então, o III envia ao IV informação do processo de fabricação do forjado especificando o roteiro de fabricação, com os seus respectivos equipamentos e o planejamento da homologação do forjado. Daí o IV envia ao V a informação de que os forjados já estão disponíveis para expedição e dá feed-back ao III sobre modificações necessárias no roteiro de fabricação. O V dá feed-back ao IV sobre os problemas encontrados.
no contato com o cliente e sobre o programa de vendas. Também o V informa o cliente sobre a disponibilidade dos forjados, elaborando a sua expedição e a sua entrega.

O sistemógrafo PNF encontra-se na figura 13. Acima, encontram-se a descrição de cada processador (vide quadro 2) e, também, a descrição das entradas, das saídas e das retromitâncias desse sistemógrafo. A seguir, será apresentado o desenvolvimento de negócio da forjaria.

2.8.1. Desenvolvimento de negócio da forjaria

O processo de desenvolvimento do negócio da forjaria (PNF I) encontra-se descrito e desdobrado no quadro 3. Na figura 14 está o seu sistemógrafo.

Quadro 3
Descrição do processador de desenvolvimento de negócio
PNF 1.1 (Definição do forjado) Estabelecer as definições do forjado, definir panoramas e tendências, desenvolver oportunidades, analisar atratividades, avaliar impacto do mercado, avaliar capacitação e avaliar recursos. PNF 1.2 (Conceituação do forjado) Estabelecer conceitos do forjado, assegurar o banco de dados (material, dimensões, sobremetal, peso, outros) e aplicar o desdobramento da função qualidade, planejar as atividades, levantar requisitos do mercado e do cliente, desenhar o esboço do forjado, estimar custos e elaborar pré-cálculos e pré-especificações. PNF 1.3 (Orçamento do forjado) Estabelecer pré-roteiro de fabricação, solicitar, acompanhar e elaborar a cotação e pré-avaliar o negócio. PNF 1.4 (Venda do forjado) Estabelecer liberação do forjado para manufatura e garantir a carta de intenção de compra, reavaliar o negócio, apresentar o forjado, viabilizar e fechar o negócio, antecipar itens críticos, confeccionar o cronograma geral e liberar o forjado. PNF 1.5 (Reavaliação do negócio) Estabelecer prazos, investimentos e preço, calcular retorno sobre o investimento, validar cotação e estratégias. PNF A (Informações de mercado) Assegurar informações de mercado e estabelecer demandas dos próximos anos. PNF B (Política de comercialização) Estabelecer a política de comercialização.

![Diagrama de Desenvolvimento de Negócios da Forjaria](image)

Figura 14 – Sistemógrafo de desenvolvimento de negócios da forjaria

Sistemógrafo PNF I
Na figura 14 encontra-se o sistemógrafo PNF I. Acima, apresentam-se a descrição de cada processador (vide quadro 3) e, também, a descrição das entradas, das saídas e das retromitâncias desse sistemógrafo. Na sequência, será apresentado o desenvolvimento do projeto do forjado.

2.8.2. Desenvolvimento do projeto do forjado

O processo de desenvolvimento do projeto do forjado (PNF II) é descrito e desdobrado no quadro 4. Na figura 15 está o seu sistemógrafo.

Quadro 4

Descrição do processador de desenvolvimento do projeto do forjado

PNF II.1 (Desenvolvimento do produto) Estabelecer o projeto do forjado, planejar as atividades necessárias, projetar o forjado, realizar o FMEA do forjado, otimizar e homologar o forjado. PNF II.2 (Alteração do produto) Estabelecer a alteração do forjado, classificar e conceituar essa alteração, detalhar, orçar, preparar a venda e homologar o forjado alterado. PNF C (Necessidade do cliente) Atender as especificações do cliente.

Sistemógrafo PNF II

Na figura 15, o PNF II.1, ou processador II.1, recebe informações do C sobre as necessidades do cliente e, após processamento, envia o projeto e homologação do forjado ao II.2 e ao processador de implantação do forjado (PNF III). O II.2, quando for necessário, altera o projeto do forjado e envia a alteração como feed-back ao II.1 e também informa ao PNF III (implantação do forjado).

O sistemógrafo PNF II pode ser visto na figura 15. Acima, mostram-se a descrição de cada processador (vide quadro 4), bem como a descrição das entradas, das saídas e das retromitâncias desse sistemógrafo. A seguir, apresenta-se a implantação do forjado.

2.8.3. Implantação do forjado

O desdobramento da implantação do forjado (PNF III) pode ser visto no quadro 5. Na figura 16 está o seu sistemógrafo.
Quadro 5
Descrição do processador de implantação do forjado

PNF III.1 (Processo de fabricação) Estabelecer o processo de produção, rever a procedência do forjado, desenvolver o processo de fabricação, realizar FMEA do processo e confeccionar o plano de controle. PNF III.2 (Disponibilidade de recursos) Estabelecer os recursos para manufatura, disponibilizar os equipamentos, os ferramentais, a matéria-prima, instalar as facilidades, providenciar os recursos humanos, implantar o layout, aprovar o try-out das máquinas e ferramentas. PNF III.3 (Homologação do processo) Estabelecer a homologação do roteiro de fabricação e fabricar o primeiro lote, avaliar cp e cpk dos itens críticos, avaliar os instrumentos de medição, verificar as ações do FMEA do processo, elaborar relatório de inspeção de amostra inicial e emitir homologação.

Figura 16 - Sistemógrafo da implantação do forjado

Sistemógrafo PNF III
Na figura 16, o PNF III.1, ou processador III.1, envia o processo de fabricação ao III.2. Já o III.2 informa quais são as disponibilidades dos recursos da manufatura ao III.3 e também dá feed-back ao III.1 sobre quais são os equipamentos “gargalos”. O III.3 programa a avaliação do primeiro lote de forjados, emitindo, após o relatório da amostra inicial, a homologação do forjado. Essa informação é enviada como feed-back ao III.1 e 2, e enviada ao processador de fabricação de forjado (PNF IV).

Na figura 16 encontra-se o sistemógrafo PNF III. Acima, encontram-se a descrição de cada processador (vide quadro 5) e, também, a descrição das entradas, das saídas e das retromitaências desse sistemógrafo. A seguir, será apresentada a fabricação de forjado.

2.8.4. Fabricação de forjado

Apresenta-se, no quadro 6, a descrição e o desdobramento do processador da fabricação de forjado (PNF IV). Na figura 17 está o seu sistemógrafo.

Quadro 6
Descrição do processador de fabricação de forjado

PNF IV.1 (Planejamento da produção) Estabelecer o plano de produção (PP) em função do programa de venda (PV), analisar a capacidade do fornecedor, definir o plano mestre e verificar a capacidade de produção. PNF IV.2 (Cálculo dos recursos) Estabelecer o cálculo dos recursos, calcular a necessidade de material, dimensionar o recurso humano e analisar as restrições utilizando-se o MRP II (manufacturing resource planning). PNF IV.3 (Suprimentos) Estabelecer a condição de suprimentos, definir o fornecedor, suprir matéria-prima, ferramenta, material de manutenção e serviços. PNF IV.4 (Produção de forjado) Estabelecer a produção do forjado, preparar ferramental (set-up), manter máquinas, produzir e controlar a qualidade do forjado. PNF IV.5 (Melhoria da fabricação de forjado) Estabelecer a melhoria da fabricação de forjado, alterar o processo de fabricação, disponibilizar os recursos e homologar o processo. PNF D (Programação do cliente/venda) Estabelecer com o cliente a quantidade e a data de entrega do forjado. PNF E (Disponibilidade do fornecedor) Verificar a capacidade de suprimento do fornecedor.
Sistemógrafo PNF IV

Pode-se ver, na figura 17, o PNF D, ou processador D, emite o pedido em carteira (PC) e vendas informa a quantidade de forjados e a data desejada ao IV.1 por meio do pedido de vendas (PV). O IV.1 envia o programa de produção (PP) ao processador IV.2 e 5 e dá feed-back ao D sobre a necessidade de estabelecer com o cliente as mudanças no programa. Então o IV.2 envia o resultado do cálculo dos recursos da manufatura ao IV.3 e dá retomitância ao IV.1 sobre essa mesma informação. O IV.3, após receber o cálculo do IV.2 e informações do E sobre a disponibilidade do fornecedor, processa os dados e coloca o pedido de acordo com o programa de produção (PP). O IV.3 informa ao IV.4 que o aviso de entrega já está com o fornecedor e faz retomitância com o IV.1 informando-o sobre a escolha do fornecedor. O E informa sobre a disponibilidade do fornecedor ao IV.1, 3 e 4 e recebe feed-back do IV.1 sobre a necessidade de produção. Já o IV.4 recebe informações do IV.1, 3 e E, para que se possa iniciar a produção de forjados, e este por sua vez, quando necessário, solicita alteração no processo de fabricação ao IV.5. Então o IV.5 envia informação do processo de fabricação com melhoria ao IV.1 e 4. O processador PNF IV.4 envia o forjado ao cliente, informando ao processador de gerenciamento da venda (PNF V).

O sistemógrafo PNF IV encontra-se na figura 17. Acima, mostram-se a descrição de cada processador (vide quadro 6) e, também, a descrição das entradas, das saídas e das retomitâncias desse sistemógrafo. Seguidamente, será apresentado o gerenciamento da venda.

2.8.5. Gerenciamento da venda

Mostra-se, no quadro 7, a descrição e o desdobramento do processador gerenciamento da venda (PNF V). Na figura 18 está o seu sistemógrafo.

Quadro 7

Descrição do processador de gerenciamento da venda

PNF V.1 (Avaliação do custo da reposição do forjado) Estabelecer o custo de reposição, avaliar o custo do centro de trabalho, selecionar o custo da matéria-prima e avaliar as variações do custo da reposição. PNF V.2 (Avaliação das condições de venda) Estabelecer o índice de reajuste da venda e calcular o lucro bruto, avaliar a influência da lucratividade na receita e consolidar o índice de reajuste da venda. PNF V.3 (Negociação do valor da venda) Estabelecer o valor da venda do forjado, solicitar reajuste, definir custo objetivo e definir o preço do forjado com o cliente. PNF V.4 (Falha de campo) Relatar a falha de campo do forjado em aplicação. PNF V.5 (Avaliação da falha de campo) Estabelecer a responsabilidade da garantia, rastrear o forjado, recuperar informações das condições de serviço e/ou aplicação, avaliar material e as características do forjado. PNF V.6 (Relato da falha de campo) Estabelecer um relatório técnico sobre a falha e detalhar as circunstâncias e a incidência da falha. PNF V.7 (Correção da falha de campo) Estabelecer as informações da falha para o cliente, definir a solução para correção da falha e liberar a alteração do produto/processo. PNF V.8 (Campanha de campo) Estabelecer o plano de campanha, definir a série do forjado, o plano e o prazo para se efetuar a campanha de campo. PNF
V.9 (Negociação da garantia) Estabelecer o custo de garantia para o cliente, informando-o sobre a improcedência da garantia, quando for o caso. PNF V.10 (Entrega do componente) Estabelecer a negociação final da garantia com o cliente, programar a produção, negociar os prazos de entrega e expedir o forjado. PNF F (Informações econômicas) Pesquisar no mercado a taxa de variação anual dos seguintes índices: inflação, câmbio, material e preço. Definir internamente o custo interno. PNF G (Preço objetivo) Definir, em comum acordo com o cliente, o preço objetivo para o forjado. PNF H (Reivindicação do cliente) Assegurar para que o cliente seja sempre prontamente atendido, de tal modo que todas as providências solicitadas por ele possam ser tomadas.

Figura 18 – Sistemógrafo do gerenciamento da venda em uma forjaria

Sistemógrafo PNF V
Na figura 18, o PNF V.1, ou processador V.1, envia ao V.2 informação sobre o custo atualizado do forjado e recebe desse processador feed-back da consolidação do preço. O V.2 envia ao V.3 informação sobre as condições de venda e recebe feed-back sobre o valor acordado com o cliente. O V.3 também recebe dados econômicos de F e é informado pelo G sobre o preço objetivo. Ainda o V.3 retorna informações ao V.1 e também as envia ao V.4 sobre as negociações do valor da venda. O V.4 também recebe informação sobre a discordância do cliente por meio do H. O V.4 envia ao V.5 informações sobre defeitos ocorridos no forjado. Já o V.5 envia ao V.6 e 9 a avaliação da falha de campo. O V.6 dá feed-back sobre o relato da falha de campo ao V.5 e também envia esse relato ao V.7, que por sua vez solicita as correções necessárias às falhas de campo ao V.8. Este, por sua vez, dá retorno ao V.7 sobre o plano de campanha de campo. O V.10 recebe do V.9 informações da garantia do forjado e do V.8 informações sobre a campanha de campo. Daí, o V.10 informa sobre a entrega ao V.4 e 8 em feed-back. Ainda, o V.10 entrega o forjado ao cliente.

O sistemógrafo PNF V está na figura 18. Acima, apresentam-se a descrição de cada processador (vide quadro 7), bem como a descrição das entradas, das saídas e das retomitâncias desse sistemógrafo. No processo de gerenciamento da venda (PNF V), procurou-se ressaltar a importância da qualidade. Visualizando a integração entre o desenvolvimento do negócio e a implantação do produto forjado. A seguir, será mostrado o processador de desenvolvimento do produto.
2.9. Desenvolvimento do produto forjado

O processador de desenvolvimento do forjado integra o desenvolvimento do negócio com a implantação de produto forjado e pode ser visto na figura 19. Ele recebe informações sobre o desenvolvimento de negócios da forjaria, processando-as e enviando o resultado ao processo de implantação do produto forjado. Esse processador é desdobrado\(^\text{16}\) em: atendimento ao cliente da forjaria (1.0) e desenvolvimento do forjado (2.0).

2.9.1. Atendimento ao cliente da forjaria

O atendimento ao cliente da forjaria (1.0) especifica as necessidades e expectativas do cliente (vide figura 19). Ele determina que o forjado e seu serviço deve superar a concorrência. O processo de planejamento de qualidade do forjado é idealizado nesse processador, para assegurar que a satisfação do cliente seja claramente compreendida. Na entrada E1.0 encontram-se: “voz do cliente”, benchmarking e premissas. Na saída\(^\text{17}\) S1.0 têm-se: objetivo, plano de garantia e suporte.

A “voz do cliente”, sendo um elemento de entrada, engloba: reclamações, recomendações, dados e informações provenientes do cliente. A forma de ouvir o cliente é consultar a pesquisa de mercado e o estudo sobre a qualidade do forjado quando comparado à concorrência. A respeito do estudo sobre o histórico das informações sobre a qualidade, deve-se observar: os relatórios de garantia e os índices de capacidade e análise do forjado que retorna do campo. E ainda, considera-se a experiência da equipe, o desdobramento da função qualidade\(^\text{18}\) (QFD – quality function deployment), comentários da mídia, cartas de sugestões dos clientes, dos distribuidores, dos frotistas, requisitos e normas governamentais e revisão do contrato.

\(^{17}\) A entrada E2.0 é igual à saída S1.0, pois a saída do processador 1.0 é a entrada do processador 2.0.

\(^{18}\) No desdobramento da função qualidade, os departamentos de planejamento de qualidade e de marketing procuram “ouvir a voz do cliente”.
Figura 19 - Sistemôgrafo de desenvolvimento do produto

O *benchmarking* do desempenho do produto e do processo de entrada é o resultado da comparação com o seu melhor competidor. Inicialmente, deve-se compreender a razão da diferença entre a situação da forjarria, em estudo, e a do seu concorrente. Daí, elabora-se o plano estratégico para diminuir essa diferença. No início, procura-se equiparar, no futuro, exceder. As premissas para o forjado estão na conceituação de projeto ou de processo, na busca de novas técnicas e de novos materiais.

Como resultado ou saída do atendimento ao cliente (1.0) apresentam-se o objetivo, que é a satisfação do cliente e o plano de garantia, que é a “tradução da voz do cliente”. Dessa forma, quando o cliente, por exemplo, observa que o forjado deve ter boas condições de usinabilidade, deve-se transformar essa informação na especificação de boas condições de tratamento térmico (normalização, recozimento) durante o processo de fabricação do forjado.

2.9.2. Desenvolvimento do forjado

O desenvolvimento do forjado (2.0), na figura 19, é o estabelecimento das características de projeto que são desenvolvidas aproximadamente na sua fase final. Procura-se fabricar o forjado tipo amostra para verificar se ele atinge os objetivos da “voz do cliente”. O projeto viável deve permitir atingir volumes e a programação da produção deve ser compatível com a habilidade de atingir os requisitos da engenharia juntamente com os objetivos da qualidade, custo do investimento, custo por unidade e prazos. Na saída S2.0 têm-se: FMEA do forjado, DFM (*design for manufacturing*), análise crítica, especificação e requisitos.
A análise de modo e efeito da falha do forjado (FMEA) é uma técnica analítica disciplinada que avalia a probabilidade de falhas, bem como o efeito de tal falha ocorrer no forjado. O DFM ou projeto para manufaturabilidade é o processo de engenharia simultânea idealizado para atingir a relação entre a função do projeto e a manufatura – “chão-de-fábrica”. Deve-se analisar e discutir, inicialmente os seguintes pontos: projeto, conceito, função e sensibilidade de variação da manufatura (tolerâncias dimensionais, tolerâncias geométricas e requisitos de desempenho do forjado). A análise crítica do projeto faz-se por meio de reuniões regulares lideradas pela engenharia do projeto da forjaria. Nessa análise, utiliza-se o método efetivo para que se evite problemas e interpretações inadequadas, monitorando-se o progresso do projeto, relatando-o à gerência. As especificações de desempenho e de material devem ser analisadas criticamente quanto às características especiais relacionadas a requisitos de propriedades físicas, desempenho, meio ambiente, manuseio e estocagem.

Todos os requisitos acima mencionados devem ser analisados pela equipe de planejamento do produto. No caso de se necessitar novos equipamentos, novo ferramental e nova instalação, deve-se assegurar que eles são capazes e entregues no prazo. O planejamento do produto deve avaliar a viabilidade do projeto proposto. Mesmo o projeto sendo propriedade do cliente, fator importante no caso de forjados, a forjaria tem a obrigação de avaliar a sua viabilidade. O planejamento deve assegurar que o projeto proposto pode ser manufaturado, testado, embalado e entregue em quantidade suficiente, a um custo aceitável pelo cliente e dentro do prazo, com condição de atendimento no campo. Essas observações devem ser impostas ao modelo de qualidade da forjaria no processo de forjamento a quente.

2.10. Processo de forjamento a quente

O processo de forjamento a quente\(^9\) (PFQ) deu-se a partir da fabricação de forjado PNF IV (vide item 2.8.5). O desdobramento do PFQ nos ajudará a entender melhor como funciona uma forjaria e assim poderemos propor um modelo com maior integração e melhoria contínua na fabricação de forjados. O PFQ encontra-se no meio ambiente: a manufatura da forjaria e seu desdobramento são a sequência do forjamento a quente, descrita a seguir: receber matéria-prima (aço); cortar (barra de aço); aquecer (1.250 °C para o aço); forjar; rebarbar e furar;

\(^9\) Ver Silva (1984: 39-58) seminário apresentado em P. Alegre/UFRGS.
normalizar; esmerilhar; decapar mecanicamente; inspecionar, olear e expedir. No quadro 8, encontra-se o processador forjamento a quente (PFQ) desdobrado e descrito. Na figura 20 está o seu sistemógrafo.

Quadro 8
Descrição do processador de forjamento a quente
PFQ I (Recebimento da matéria-prima) Receber, descarregar e estocar a matéria-prima. Identificar a matéria-prima. PFQ II (Corte da barra) Transportar a matéria-prima para a guilhotina ou serra, preparar a guilhotina e cortar a barra. PFQ III (Aquecimento) Transportar o tarugo para o forno de aquecimento, aguardar o estabelecimento do nível da temperatura do forno, preparar o forno de aquecimento e alimentar o tarugo no forno. PFQ IV (Fornimento) Descarregar o tarugo aquecido do forno, aguardar o comando para alimentar a prensa de forjar, preparar, alimentar a prensa com o tarugo aquecido, forjar o produto, descarregar o forjado da prensa e colocá-lo na esteira entre a prensa de forjar e a prensa de rebarbar/furar. PFQ V (Rebarbação e furação) Aguardar o comando para alimentar a prensa de rebarbar/furar, preparar a prensa de rebarbar/furar, alimentar o forjado na prensa de rebarbar/furar, descarregar o forjado da prensa de rebarbar/furar, aguardar a emplhadeira e transportar o forjado para o pátio externo. PFQ VI (Normalização) Aguardar o comando para normalização, preparar o forno de normalização, transportar o forjado para o forno de normalização, alimentar o forjado no forno de normalização, normalizar o forjado, descarregá-lo do forno de normalização, medir a dureza do forjado e transportar o forjado normalizado para o estoque. PFQ VII (Esmerilhamento) Transportar o forjado normalizado para o esmerilhamento, aguardar o comando para esmerilhar, preparar o esmerilhamento, esmerilhar o forjado e transportá-lo para a decapagem. PFQ VIII (Decapagem mecânica) Aguardar o comando para decapar, preparar a máquina de decapar, transportar o carinho com os forjados, decapar mecanicamente o forjado e transportar o forjado para a expedição. PFQ IX (Expedição) Estocar o forjado, confirmar a quantidade de peças forjadas, emitir a etiqueta de transferência e de faturamento de forjados para o cliente, olear o forjado e expedi-lo para o cliente. PFQ A (Engenharia da forjaria) Desenvolver o projeto do produto forjado a partir do produto usinado e das necessidades do cliente, projetar as matrizes, acompanhar o primeiro forjamento e desenvolver melhorias nos processos de forjamento. Homologar produto/processo. PFQ B (Matrizaria) Confeccionar as matrizes para o forjamento, acompanhar a vida das matrizes e preparar o ferramental necessário ao forjamento. PFQ C (Aciaria) Elaborar o processo de fabricação do aço, manter a sua qualidade assegurada, confeccionar e entregar o aço.

Figura 20 – Sistemógrafo de processo de forjamento a quente

Sistemógrafo PFQ
Na figura 20, o PFQ C, ou processador C, envia o relatório da corrida de aço ao A. Embora a qualidade do aço seja assegurada, o A retorna com a informação ao C sobre quaisquer divergências nas barrais de aço. Também o C entrega ao I a barra de aço com o seu código de corrida (heat code). O I retorna com informação ao C confirmando a quantidade de barrais
e a identificação do material ou informando qualquer divergência, caso ocorra. O A envia\(^{20}\) o desenho do produto e o processo de fabricação ao IV e envia ao I a especificação do tarugo (diâmetro, comprimento, peso, tipo de aço). O A envia o projeto e o seu detalhamento (matriz inferior e superior, calços, núcleos e fixadores) ao B para a construção do ferramental.

O B envia os ferramentais ao II, IV e V e dá feed-back ao A sobre alteração nos projetos. Na sequência, o I envia ao II a especificação do tipo de aço com os dados da sua corrida. O II envia ao III a caixa de tarugo com a etiqueta de fluxo e dá retorno sobre a qualidade da barra ao I. O III entrega ao IV o tarugo aquecido. O IV envia o forjado ao V, e também dados do forjamento: corida, data e quantidade ao IX. Ainda, o IV envia feed-back sobre solicitação de alteração da folha do roteiro de fabricação ao A, sobre divergências no ferramental e matriz ao B, sobre problemas de qualidade da matéria-prima\(^{21}\) ao C (o contato da aliciaria é apoiado pela engenharia da forjaria), sobre informação da temperatura do tarugo ao III e sobre a qualidade do corte\(^{22}\) ao II. O V envia o forjado rebarbado/ furado, com a respectiva etiqueta de fluxo ao VI. Ainda, o V retorna informação sobre o visual do forjado e a presença de defeitos ao IV e sobre problemas com o ferramental ao A e B. O VI envia a caixa de forjado normalizado ao VII. Também envia dados sobre o ciclo da normalização e identificação da bandeja do tratamento térmico ao IX. Ainda, o VI retorna a informação de rebarbação excessiva e rebarbado inadequado ao IV. O VII envia a caixa de forjado normalizado esmerilhado ao VIII. Também o VII retorna informações sobre a presença excessiva de rebarba ao IV e II. O VIII envia a caixa de forjado normalizado rebarbado decapado ao IX, que por sua vez confirma os dados da etiqueta de fluxo ao I. Também faz a expedição e a entrega do forjado ao cliente.

Estamos desdobrando e descrevendo o processador PFQ e, ainda, descrevendo cada sistemógrafo porque no próximo capítulo estaremos apresentando os sistemas de qualidade. Para que possamos estudar todas as influências no nível de qualidade, precisamos desdobrá-las até a segunda ordem. Dessa forma, o PFQ (processo de forjamento a quente) será desdobrado, iniciando-se pelo recebimento da matéria-prima.

2.10.1. Recebimento da matéria-prima

Pode-se ver, no quadro 9, a descrição e o desdobramento do processador recebimento da matéria-prima (PFQ I). Na figura 21 está o seu sistemógrafo.

Quadro 9
Descrição do processador de recebimento da matéria-prima
PFQ L1 (Recebimento/descarga) Receber e descarregar a matéria-prima. PFQ L2 (Estoque) Estocar a matéria-prima.

![Diagrama de recebimento da matéria-prima](Figura 21 - Sistemógrafo de recebimento da matéria-prima)

Sistemógrafo PFQ I
Pode-se ver, na figura 21, o PFQ C, ou processador C (acliaria), envia a barra de aço ao I.1, que por sua vez dá feed-back ao C confirmando sobre a qualidade e a quantidade de barras de aço. O I.1 informa ao I.2 sobre a quantidade recebida de barras

\(^{20}\) O PFQ A (processador engenharia da forjaria) envia o roteiro de fabricação para todos os processadores: do PFQ I ao IX. No sistemógrafo da figura 20 não constam essas conexões para que ele não fique "poluído".

\(^{21}\) Os defeitos provenientes da fabricação do aço podem ser: inclusões, segregação e trincas superficiais nas barras.

\(^{22}\) A chave para o sucesso do forjado está intimamente ligada à qualidade do corte da barra de aço na obtenção do tarugo.

Pode-se ver, na figura 21, o sistemógrafo PFQ I. Acima, mostram-se a descrição de cada processador (vide quadro 9) e, também, a descrição das entradas, das saídas e das retromitâncias desse sistemógrafo. A seguir, será apresentado o corte da barra.

2.10.2. Corte da barra

Estão no quadro 10 a descrição e o desdobramento do processador corte da barra (PFQ II). Na figura 22 está o seu sistemógrafo.

Quadro 10
Descrição do processador de corte da barra
PFQ II.1 (Transporte) Transportar a matéria-prima para a operação de corte da barra de aço. PFQ II.2 (Preparação) Preparar a guilhotina para a operação de cortar. PFQ II.3 (Corte da barra) Cortar a barra de aço, transformando-a em tarugos.

![Figura 22 - Sistemógrafo do corte da barra](image)

Sistemógrafo PFQ II

Na figura 22, o PFQ I, ou processador I, informa ao II.1 e 2 que as barras estão estocadas no pátio de aço. O II.1 informa ao II.3 que a barra de aço já foi transportada para a guilhotina. O II.2 informa ao II.3 que a guilhotina já está preparada. O II.3 dá feedback ao II.2 sobre a folga existente entre as lâminas de corte e sobre o ajuste do curso da guilhotina e ao II.1 sobre a necessidade de maior quantidade de barras. Por fim, o PFQ II.3 envia a caixa com tarugos ao processador aquecimento do tarugo (PFQ III).

Na figura 22 mostra-se o sistemógrafo PFQ II. Acima, encontram-se a descrição de cada processador (vide quadro 10) e, também, a descrição das entradas, das saídas e das retromitâncias desse sistemógrafo. A seguir, será apresentado o aquecimento do tarugo.
2.10.3. Aquecimento do tarugo

O desdobramento do processador aquecimento do tarugo\(^{24}\) (PFQ III) é descrito no quadro 11. Na figura 23 está o seu sistemógrafo.

Quadro 11
Descrição do processador de aquecimento do tarugo

PFQ III.1 (Transporte) Transportar o tarugo da estação da guilhotina para a célula de forjamento (forno de aquecimento/prensa de forjar/prensa de reharbar). PFQ III.2 (Tempo de fila ou set-up) Supervisionar o tarugo enquanto aguarda a preparação do forno ou a escolha do próximo item a ser forjado (no momento adequado o forno de aquecimento dará o comando para o início da operação). PFQ III.3 (Preparação) Preparar o forno para o aquecimento do tarugo a ser aquecido, trocar as bobinas quando for necessário e adequar os parâmetros: ciclo e temperatura. PFQ III.4 (Alimentação) Alimentar o tarugo no forno de aquecimento. PFQ III.5 (Aquecimento) Aquecer o tarugo no forno de aquecimento.

![Diagrama de sistema PFQ III](image)

Figura 23 - Sistemógrafo de aquecimento do tarugo

Sistemógrafo PFQ III
Podemos ver na figura 23, o PFQ III.1, ou processador III.1, informa ao III.2 que o tarugo está disponível. O III.2 envia informação sobre a fila no forno de aquecimento ao III.4, que por sua vez prepara e informa ao III.5 sobre a alimentação do tarugo no forno de aquecimento. O III.5 também recebe do III.3 informação de que o forno já está preparado e dá feed-back ao III.3 sobre a necessidade de regulagem da temperatura do forno. Ainda, o III.5 dá feed-back sobre o fluxo do forno ao III.1, 2 e 4. Também o III.5 informa ao processador forjamento (PFQ IV) sobre o valor da temperatura, na saída do forno, do tarugo aquecido.

Está na figura 23 o sistemógrafo PFQ III. Acima, apresentamos a descrição de cada processador (vide quadro 11), bem como a descrição das entradas, das saídas e das retromitências desse sistemógrafo. A seguir, apresenta-se o forjamento.

2.10.4. Forjamento

Apresenta-se, no quadro 12, a descrição e o desdobramento do processador forjamento\(^{25}\) (PFQ IV). Na figura 24 está o seu sistemógrafo.

\(^{24}\) A operação de corte da barra de aço pode ser realizada por serra ou guilhotina. A guilhotina é de maior produção horária. Para forjados near net shape indica-se guilhotina de maior precisão.

\(^{25}\) A operação de aquecimento é realizada no forno a óleo ou de indução, que é recomendado para forjado near net shape.

\(^{26}\) O forjamento a quente para o forjado tipo anel normalmente é realizado em prensas verticais mecânicas excêntricas. Já o forjamento de eixos é feito em prensas horizontais chamadas recalificadoras ou laminadoras (cross rolling). Os forjados de
Quadro 12
Descrição do processador de forjamento
PFQ IV.1 (Descarga) Descarregar o tarugo aquecido do forno. PFQ IV.2 (Tempo de filia) Aguardar o comando da prensa de forjar. PFQ IV.3 (Tempo de preparação) Preparar a prensa de forjar. PFQ IV.4 (Alimentação) Alimentar o tarugo aquecido na prensa de forjar. PFQ IV.5 (Forjamento) Obter o forjado na prensa de forjamento. PFQ IV.6 (Descarga) Descarregar o forjado da prensa de forjar. PFQ IV.7 (Alimentação) Alimentar o forjado na esteira que leva à prensa de rebarbar/furar.

Figura 24 – Sistemosgrafo de forjamento

Sistemógrafo PFQ IV
Na figura 24, o PFQ IV.1, ou processador IV.1, descarrega o tarugo aquecido do forno de aquecimento e informa sua disponibilidade ao IV.2, que, por sua vez, informa ao IV.4 sobre a disponibilidade do tarugo aquecido, para que ele possa ser alimentado na prensa de forjar. O IV.4 dá um feed-back ao IV.1, informando-o que o tarugo já foi alimentado na prensa de forjar. Também o IV.1 informa o comando da prensa e ao IV.5, que o tarugo aquecido está na primeira estação de trabalho. O IV.5 também recebe informação sobre a liberação do set-up do IV.3. Ainda, o IV.5 envia ao IV.6 informando que o tarugo já está forjado e também dá feed-back ao IV.1, 2 e 4 sobre o forjamento do primeiro tarugo. O IV.6 informa ao IV.7 que o forjado já está descarregado da prensa e dá feed-back ao IV.5 sobre essa mesma informação. O IV.7 dá feed-back ao IV.1, 5 e 6 que o forjado está na esteira que o levará à operação de rebarbar. Essa mesma informação é enviada ao processador rebarbação/furação (PFQ V).

Na figura 24 vê-se o sistemógrafo PFQ IV. Acima, apresentam-se a descrição de cada processador (vide quadro 12) e, também, a descrição das entradas, das saídas e das retromitâncias desse sistemógrafo. A seguir, estão mostradas a rebarbação e a furação.

não-revolução, por sua vez, são produzidos em martelos. A tecnologia de forjamento existe na China há mais de 3 mil anos. “Segundo estudos efetuados em artefatos bélicos encontrados nas escavações da dinastia Shang, na província de Hebei, as facas usadas pelos guerreiros há cerca de 3.061 anos atrás tinham suas bordas feitas com liga obtida através de processo de forjamento; no mesmo local foram encontrados fios de ouro produzido através de trelição. Também pertencente à China a mais antiga folha de ouro forjada a frio que se tem notícia”. Ver Meschnark (2000: 1).
2.10.5. Rebarbação e furação

O desdobramento do processador da rebarbação e da furação\(^\text{26}\) (PFQ V) está descrito no quadro 13. Na figura 25 está o seu sistemógrafo.

Quadro 13
Descricão do processador da rebarbação e da furação
PFQ V.1 (Tempo de fila) Aguardar o comando da prensa de rebarbar/furar. PFQ V.2 (Tempo de preparação) Preparar a prensa de rebarbar/furar. PFQ V.3 (Alimentação) Alimentar o forjado na prensa de rebarbar/furar. PFQ V.4 (Rebarbação/furado) Rebarbar/ Furar o forjado na prensa de rebarbação/furado. PFQ V.5 (Descarga) Descargar o forjado rebarbado/furado da prensa de rebarbar/furar. PFQ V.6 (Tempo de fila) Aguardar a chegada da empilhadeira para transporte do forjado rebarbado. PFQ V.7 (Transporte) Transportar o forjado aquecido e rebarbado para o pátio externo.

Figura 25 – Sistemógrafo da rebarbação e da furação

Sistemógrafo PFQ V
Pode-se ver, na figura 25, o PFQ V.1, ou processador V.1, informa ao V.3 que o forjado já está disponível para ser rebarbado. O V.3 informa ao V.4 e dá feed-back ao V.1, informando que o forjado já está alimentado na prensa de rebarbar e furar. Já o V.4 “pergunta” ao V.2 se o set-up já está liberado. Esse, por sua vez, confirma a preparação do ferramental na prensa de rebarbar/furar. Ainda, o V.4 informa ao V.5 e dá feed-back ao V.1 e 3 informando que o forjado já está rebarbado. O V.5 dá feed-back ao V.4 e informa ao V.6 que o forjado rebarbado foi descarrégado da prensa. O V.6 dá feed-back ao V.4 e informa ao V.7 que o forjado rebarbado está aguardando o transporte. O V.7 informa ao processador normalização (PFQ V1) que o forjado rebarbado/furado está no estoque. Também dá esse feed-back aos processadores PFQ V.1 e 4.

Na figura 25 encontra-se o sistemógrafo PFQ V. Acima, apresentam-se a descrição de cada processador (vide quadro 13) e, também, a descrição das conexões e das retromitâncias desse sistemógrafo. A seguir, apresenta-se a normalização.

\(^\text{26}\) A rebarbação é utilizada para eliminar as rebarbas na direção radial do diâmetro externo do forjado tipo anel ou direção radial e axial do forjado do tipo eixo. No caso de tipo anel flashless não é necessária essa operação. Nesse caso, é utilizado o piercing que apenas faz a “furação” do forjado, destacando-se um pequeno “disco”, também chamado “espelho”.

51
2.10.6. Normalização

Encontra-se no quadro 14 a descrição e o desdobramento do processador de normalização\(^{27}\) (PFQ VI). Na figura 26 está o seu sistemógrafo.

Quadro 14

Descricão do processador de normalização

PFQ VI.1 (Tempo de fila) Aguardar o comando para normalizar o forjado. PFQ VI.2 (Tempo de preparação) Preparar o forno de normalização. PFQ VI.3 (Transporte) Transportar o forjado para o forno de normalização. PFQ VI.4 (Alimentação) Alimentar o forjado no forno de normalização. PFQ VI.5 (Normalização) Normalizar o forjado de acordo com o ciclo indicado no roteiro. PFQ VI.6 (Descarga) Descarregar o forjado normalizado do forno de normalização. PFQ VI.7 (Transporte) Transportar o forjado normalizado para a medição de dureza e para o estoque.

![Sistemógrafo PFQ VI](image)

Figura 26 - Sistemógrafo de normalização

Na figura 26, o PFQ VI.1, ou processador VI.1, informa ao VI.3 sobre a disponibilidade do forjado para início da operação. O VI.3 informa ao VI.4 que o forjado está sendo transportado para o forno de normalização. O VI.4 relata ao VI.5 que o forjado está sendo alimentado no forno. O VI.5 “pergunta” ao VI.2 se o set-up já foi realizado. Este, por sua vez, informa se tudo já está preparado para início da operação. Ainda, o VI.5 dá feed-back ao VI.1, 3 e 4 avisando que o forno já está preparado. Também o VI.5 informa ao VI.6 que o forjado já está normalizado e o VI.6, por sua vez, dá retorno ao VI.5 e informa ao VI.7 que o forjado normalizado já está descarregado do forno. O VI.7 informa ao VI.1, dá feed-back ao VI.5 e informa ao processador de esmerilhamento (PFQ VII) que o forjado normalizado foi transferido para o estoque.

Pode-se ver na figura 26 o sistemógrafo PFQ VI. Acima, apresentam-se a descrição de cada processador (vide quadro 14) e, também, a descrição das entradas, das saídas e das retromitâncias desse sistemógrafo. A seguir, será mostrado o esmerilhamento.

2.10.7. Esmerilhamento

Encontra-se no quadro 15 a descrição do desdobramento do processador esmerilhamento\(^{28}\) (PFQ VII). Na figura 27 está o seu sistemógrafo.

\(^{27}\) A normalização é um dos processos de tratamento térmico mais utilizado para produtos forjados. Ela é aplicada para que se possa melhorar a usinagem do forjado. Portanto, pode haver a necessidade de efetuar outros tratamentos, tais como: recozimento, beneficiamento, etc. A definição do tipo de tratamento depende do tipo de material ou da aplicação do produto.
Quadro 15
Descrição do processador de esmerilhamento
PFQ VII.1 (Transporte) Transportar o forjado normalizado do estoque para o esmeril. PFQ VII.2 (Tempo de fila) Aguardar o comando do esmeril. PFQ VII.3 (Tempo de preparação) Preparar o esmeril PFQ VII.4 (Esmerilhamento) Esmerilhar e acabar o produto forjado. PFQ VII.5 (Transporte) Transportar o forjado esmerilhado para a a decapagem.

Figura 27 – Sistemógrafo de esmerilhamento

Sistemógrafo PFQ VII
Pode-se ver, na figura 27, o PFQ VII.1, ou processador VII.1, informa ao VII.2 que o forjado já foi transportado à estação de esmerilhamento. O VII.2 informa ao VII.4 que o forjado está aguardando o início da operação. O VII.4 confirma com o VII.3 se a operação já está preparada. O VII.3 recebe informação da programação da produção para preparar máquina e ferramenta, também confirma ao VII.4 que essa preparação está liberada e o VII.4 repassa essa informação ao VII.1 e 2. O VII.4 informa ao VII.5 que o forjado normalizado já está esmerilhado. O VII.5 informa ao VII.1 que o forjado esmerilhado foi transportado na operação de decapagem. Também envia essa informação ao processador de decapagem (PFQ VIII).

Na figura 27 mostra-se o sistemógrafo PFQ VII. Acima, estão a descrição de cada processador (vide quadro 15) e, também, a descrição das entradas, das saídas e das retromitâncias desse sistemógrafo. A seguir, mostra-se a decapagem mecânica.

2.10.8. Decapagem mecânica

No quadro 16, estão a descrição e o desdobramento do processador decapagem mecânica (PFQ VIII). Na figura 28 está o seu sistemógrafo.

Quadro 16
Descrição do processador de decapagem mecânica
PFQ VIII.1 (Tempo de fila) Aguardar o comando da decapagem mecânica. PFQ VIII.2 (Tempo de preparação) Preparar a decapadora mecânica. PFQ VIII.3 (Transporte) Transportar o forjado para a máquina decapadora. PFQ VIII.4 (Decapagem

28 O esmerilhamento é normalmente aplicado em forjado tipo eixo ou de não-revolução. Para forjado do tipo anel flashless não se aplica essa operação.

29 A decapagem mecânica é um processo de limpeza do forjado. Essa operação (wheelabrator) tem a função de retirar fragmentos de descarbonetização que estão impregnados no forjado. Ela se processa por intermédio do jateamento de pequenas esferas de aço.
mecânica) Decapar mecanicamente o forjado (acabamento do forjado). **PFQ VIII.5** (Transporte) Transportar o forjado acabado para a expedição.

![Diagrama de Sistemógrafo de Decapagem Mecânica](image)

Figura 28 – Sistemógrafo de decapagem mecânica

Sistemógrafo PFQ VIII

Na figura 28, o PFQ VIII.1, ou processador VIII.1, informa ao VIII.3 que o forjado está disponível para a decapagem mecânica. O VIII.3 informa ao VIII.4 que o forjado já está em frente da estação de decapagem. Já o VIII.4 solicita ao VIII.2 a confirmação da preparação da máquina de decapagem mecânica. O VIII.2 confirma a preparação. Ainda o VIII.4 dá feedback ao VIII.1 e 3 que o forjado já está decapado mecanicamente. Também envia essa informação ao VIII.5, que por sua vez, retorna ao VIII.1 e 4 a informação sobre o forjado acabado que já foi transportado para o estoque. Também envia essa informação ao processador de expedição do forjado (PFQ IX).

Na figura 28 encontra-se o sistemógrafo PFQ VIII. Acima, mostram-se a descrição de cada processador (vide quadro 16), bem como a descrição das entradas, das saídas e das retomítancias desse sistemógrafo. A seguir, apresenta-se a expedição do forjado.

2.10.9. Expedição do forjado

O desdobramento do processador de expedição do forjado (PFQ IX) é descrito no quadro 17. Na figura 29 está o seu sistemógrafo.

Quadro 17

Descrição do processador de expedição do forjado

- **PFQ IX.1** (Estoque) Estocar o produto forjado. **PFQ IX.2** (Contagem) Confirmar a quantidade de forjados no lote. **PFQ IX.3** (Emissão da etiqueta) Emitir a etiqueta de transferência do produto forjado para o cliente. **PFQ IX.4** (Oleamento) Olear o forjado para sua proteção. **PFQ IX.5** (Expedição) Identificar no forjado: o seu número, o código de rastreamento, a corrida do aço, o seu peso, a sua quantidade e outras características necessárias (dá-se também, grande atenção à embalagem e à forma de transporte). Expedir o produto forjado para o cliente, após a sua inspeção.

30 O oleamento é aplicação do produto protetivo para garantir a não oxidação do forjado. Essa operação, se necessária, deverá ser negociada com o cliente.

31 Quanto à inspeção, cabe aqui ressaltar que em forjaria “classe mundial”, ela não é realizada na operação final, mas sim durante todo o processo.
Sistemógrafo PFQ IX

Na figura 29, o PFQ IX.1, ou processador IX.1, informa ao IX.2 que o forjado está disponível no estoque. O IX.2 dá feedback ao IX.1 e informa ao IX.3 sobre a quantidade de forjado estocada. Já o IX.3 informa ao IX.4 que as etiquetas de transferência e do faturamento já foram emitidas. Essa mesma informação também é enviada ao IX.2 como feedback. O IX.4 informa ao IX.5 que o forjado está oleado. O IX.5 retorna a informação ao IX.1 de que o forjado está expedido e ainda, informa ao cliente que o forjado já está faturado.

O sistemógrafo PFQ IX pode ser visto na figura 29. Acima, mostram-se a descrição de cada processador (vide quadro 17) e, também, a descrição das conexões e feedback desse sistemógrafo. Após o desdobramento do PFQ, será apresentada a sua classificação.

2.10.10. Classificação dos processadores

O PFQ (processo de forjamento a quente) é um processador de sétimo nível\(^\text{12}\). O seu sistemógrafo possui relações arborescentes e retromitantes. Suas conexões são elaboradas e estão em processo de fluxo. O PFQ A (engenharia da forjaria) é um processador elementar de nono nível, pois é um objeto com autofinalização, tem capacidade de gerar os próprios objetivos, tem consciência da sua existência e capacidade. Esse processador coordena, executa, concebe e finaliza. Ele caracteriza-se como operacional de forma porque projeta, desenvolve e acompanha a produção. É informacional de tempo quando duplica informações. Sua representação gráfica é muito complexa. Já o PFQ B (matrizaria) é um processador elementar de sétimo nível, pois é um objeto com pilotagem decisional, informacional e operacional. Sua característica forte é a de construção do ferramental, sendo classificado como operacional de forma, com representação gráfica complexa. O PFQ C (aciaria) é um processador de nono nível, pois é uma aciaria “classe mundial”, com aço de qualidade assegurada, sendo então, um objeto com autofinalização. É um processador operacional de forma, informacional de tempo e decisional de espaço. Sua representação gráfica é muito complexa.

\(^{12}\text{O PFQ, após introdução de melhoria contínua, poderia se transformar em nono nível.}\)
O PFQ I é um processador de segundo nível porque recebe, descarrega e estoca a matéria-prima. É também um objeto ativo do tipo “caixa-preta”. Ainda, esse processador, por exercer uma atividade de estoque, é classificado como operacional de tempo. Sua representação gráfica é uma “máquina-preta”. Os processadores PFQ II a VI são de quarto nível, pois processam informações ou sinais. Os processadores PFQ II a IV são retro-alimentados, enquanto os processadores PFQ V e VI são arborescentes. Por terem características de fabricação, são operacionais de forma. Suas representações gráficas são de laço informacional. Já os processadores PFQ VII e VIII são de terceiro nível, pois os objetos são de atividades regulares, de relações fechadas e reciclam parte da saída na entrada. Esses processadores são arborescentes, com características de fabricação, daí serem operacionais de forma, com representações gráficas de laço. Então, o PFQ IX é um processador de quarto nível pois é um objeto informado. Esse processador é retro-alimentado e é operacional de tempo e de espaço; de tempo pela razão de o forjado estar em estoque e submetido à inspeção final e de espaço porque a entrega ao cliente é por meio de transporte. Sua representação é de laço informacional.

Tal processo de negócios da forjaria e o processo de forjamento a quente e seus desdobramentos auxiliarão na construção do modelo de qualidade com melhoria contínua. Além disso, eles também darão apoio à descrição dos sistemas de qualidade que serão apresentados no próximo capítulo. Esses sistemas de qualidade desdobram-se, de acordo com os processos de negócios, em: gerenciamento da qualidade (planejamento e administração), desenvolvimento do projeto (projeto do produto e do processo), fabricação do produto (implantação do produto e roteiro do processo) e satisfação do cliente (gerenciamento da venda, garantia do produto e atendimento ao cliente no pós-venda).
Capítulo 3

Sistema de qualidade

O sistema de qualidade (SQ)¹ é o conjunto de procedimentos que gerenciam a qualidade nos processos de negócios, conduzindo-os à excelência. Neste capítulo serão abordados: o sistema de qualidade ISO 9001 (SQI), o sistema de qualidade da empresa (SQE), o sistema de qualidade da forjaria (SQF) e o sistema de qualidade do forjamento a quente (SQFQ). Tal abordagem será feita por meio dos dados obtidos na pesquisa realizada em uma empresa específica, de forjados, na qual aplicamos com sucesso o modelo proposto neste trabalho. Porém, antes, será descrita de forma breve a norma ISO 9000, que apoia esses sistemas.

3.1. Norma ISO 9000

A norma ISO 9000 é o caminho para a competitividade. Os atuais tratados de livre comércio, bem como a integração dos blockos comerciais, induzem as empresas, cada vez mais, a multiplicar os seus esforços na busca da qualidade. Na atualidade, a tendência internacional é fazer circularem, por todo o mundo, os produtos fabricados em diferentes países. Nesse contexto, surge a necessidade de se encontrar um mecanismo para avaliar a conformidade com normas técnicas, que dê ao consumidor uma prova de que os produtos têm os requisitos mínimos de seguridade e aptidão da sua função.

Além disso, não só se deve demonstrar que a qualidade do produto é adequada às expectativas do consumidor, mas também confirmar a confiança na capacidade de se administrar o sistema de qualidade em todas as áreas da empresa.

¹ "O sistema de qualidade (SQ) é definido como o conjunto de procedimentos técnicos e administrativos necessários à produção de um produto de padrão de qualidade especificado. O sistema de qualidade pode-se dividir em subsistema, ou seja: avaliação da qualidade na fase de pré-produção; planejamento, controle e avaliação de qualidade do material fornecido; controle e avaliação da qualidade do produto e do processo; realimentação da informação sobre qualidade; estabelecimento de equipamento da qualidade; treinamento de recursos humanos; serviços de qualidade após produção e gerenciamento da função de controle de qualidade". Ver Conceitos básicos do sistema de qualidade industrial em Bresciani (1980: 1-25).
A série ISO 9000 é, em poucas palavras, um conjunto de normas que indica as linhas gerais para que tais objetivos sejam alcançados. Tem o formato de um guia, que permite que as empresas possam implantar, desenvolver e manter um sistema de administração de qualidade dentro da sua organização. A administração desse sistema, numa organização, viabiliza as relações comerciais, quer seja no mercado interno quer seja no externo, e a sobrevivência da empresa no âmbito da competitividade. Para isso, fazem-se necessários a qualidade máxima, o preço e o tempo mínimos e a excelência nos serviços. Tomando essa direção, pode-se dar garantia ao cliente.

3.1.1. Garantia ao cliente

A adoção da ISO 9000 pode contribuir com a possibilidade de o fornecedor manter a boa imagem. Ainda, reduz o risco de o cliente ficar insatisfeito com o produto e da indisponibilidade do bem ou serviço. Assim sendo, podemos constatar que a adoção da ISO 9000 dá maior garantia à relação entre fornecedor e cliente e, não só na redução do risco, mas também na redução do custo.

O fornecedor pode comprovar essa redução por meio da diminuição do retrabalho, com a eliminação das inspeções redundantes e com menor índice de refugo. Por outro lado, o cliente tem ganhos com a redução da devolução de produtos, com o recebimento dentro do prazo combinado, com o aumento da confiança nos produtos do fornecedor e com a melhoria da sua própria imagem. Esse caminho é proposto não só pela ISO 9000, mas também pelo sistema TQC (total quality control). Embora tenham algumas discordâncias, ambos convergem para a qualidade total.

Assim, de um lado, o TQC coloca grande ênfase na melhoria contínua do produto, na redução de custos e defeitos, bem como no envolvimento de pessoas. De outro lado, as

2 Ver Altamirando (1990: 3-10).
3 A ISO possibilita tal atuação das empresas no mercado porque, além de organizar o sistema de qualidade (SQ), também cuida da qualidade total, que abrange um leque mais amplo de fatores, como a mudança cultural, isto é, a exigência de que cada participante do processo industrial seja um crítico e um reconstrutor. Essa norma sugere que todos os procedimentos devem ser revistos pelos funcionários, com a participação da chefia. As pessoas da organização que executam a mesma tarefa precisam discutir os seus procedimentos em conjunto e chegar ao consenso. O cumprimento da norma é garantido por meio de auditoria interna e análise crítica da alta direção. Essas providências são essenciais, já que durante a implantação de um sistema ou modelo, a resistência é muito grande, o que leva as pessoas a achar que não precisam formalizar nada e a não se
normas ISO 9000 apoiam-se na visão sistêmica, focalizada nos requisitos dos clientes, requerendo um sistema de gerenciamento para que se possa controlar todos os aspectos que possam afetar a qualidade. Qualquer que seja o sistema analisado, no entanto, existe um ponto comum: o papel fundamental desempenhado pelos funcionários, de todos os níveis da organização, no sistema da qualidade. Ante tal observação, ressaltamos, neste momento, que o sucesso de qualquer programa de qualidade, além dos aspectos técnicos e gerenciais, depende fundamentalmente dos recursos humanos da organização.

Optamos, neste trabalho, pelo uso das normas da ISO 9000, já que elas vêm de encontro à visão sistêmica na qual se baseia nosso modelo, permitindo um maior aprofundamento na questão do gerenciamento que, como já vimos, é o nosso alvo de reflexão.

3.1.2. ISO série 9000

A norma ISO é a organização internacional para normalização, fundada em 1947, com sede na Suíça. O Brasil participa da ISO por meio da ABNT. O sistema de garantia da qualidade ISO série 9000 é composto por normas internacionais que representam o consenso dos diferentes países do mundo. É a normalização do produto, da produção, da instalação e dos testes, visando a obter a garantia do produto e do serviço. Essa garantia engloba o sistema que acompanha toda a operação, desde a compra da matéria-prima que é, por sua vez, transformada em produto (ou serviço), até o seu envio ao cliente. O que destaca a ISO 9000 é que ela é a ferramenta que possibilita a satisfação do cliente, que auxilia na transferência de tecnologia e na solução de problemas crônicos, definindo características mínimas de qualidade para adaptar as empresas em geral no processo de globalização. O campo de aplicação da ISO 9000 é estendido à empresa fornecedora, quer seja parcialmente ou totalmente, não só internamente, no seu país, mas também em nível internacional. A qualidade do produto e do serviço é decorrente do sistema de qualidade (SQ). A ISO 9000 é formada por um conjunto de cinco normas relacionadas com a gestão e a garantia da qualidade, que são: ISO 9001 a 9004, elaboradas pelo ISO Technical Committee (ISO TC...

<table>
<thead>
<tr>
<th>Gestão interna</th>
<th>Orientativa</th>
<th>Orientações e recomendações para seleção e uso</th>
<th>ISO 9000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contratos e certificações</td>
<td>Contratuais</td>
<td>Modelos para garantia da qualidade</td>
<td>ISO 9001</td>
</tr>
<tr>
<td>Projeto</td>
<td>Desenvolvimento</td>
<td>Produção</td>
<td>Instalação</td>
</tr>
<tr>
<td>Produção</td>
<td>Instalação</td>
<td>Inspeção</td>
<td>Ensaios finais</td>
</tr>
<tr>
<td>Gestão interna</td>
<td>Orientativa</td>
<td>Gestão da qualidade</td>
<td>ISO 9004</td>
</tr>
</tbody>
</table>

Figura 30 - Aplicação da norma ISO 9000

A aplicação das normas ISO 9000, acima na figura 30, está dividida em orientação e em cláusulas de contrato. A norma ISO série 9000 estabelece orientação, recomendação e diretrizes voltadas à seleção e uso. Já a norma ISO 9001 é recomendada quando a conformidade para com os requisitos especificados tiver de ser garantida pelo fornecedor durante vários estágios, os quais podem incluir as seguintes fases: projeto, desenvolvimento, produção, instalação e assistência técnica. A norma ISO 9002⁸ é indicada quando a conformidade com os requisitos especificados tiver de ser garantida pelo fornecedor durante a

⁶ ABNT (Associação brasileira de normas técnicas) é uma sociedade sem fins lucrativos, que tem como associados pessoas físicas e jurídicas e é reconhecida pelo governo brasileiro.

⁸ Uma forjaria autônoma, pertencente a uma empresa, cuja operação esteja em uma planta independente utilizando a ISO 9002. Nesse caso, já está se prevendo que a norma ISO 9002 passará a examinar a prestação de serviços de assistência técnica que a empresa oferece a seus clientes. Uma segunda importante mudança proporcionada pela utilização dessa norma estará no enfoque maior à melhoria contínua da qualidade, na importância dada aos esquemas participativos de gestão de qualidade e não somente à certificação em si. Haverá também um controle mais rigoroso das ações corretivas, visando à eliminação das não-conformidades em todos os pontos do processo de gestão. Nesses mudanças também serão incorporados itens que examinarão o programa de treinamento dos funcionários, além de se enfatizar cada vez mais a qualidade de vida dos envolvidos com a empresa. Ver Rebouçãs (1994: 50).
produção e a instalação, enquanto a norma ISO 9003 é utilizada quando a conformidade com os requisitos especificados tiver de ser garantida pelo fornecedor somente em inspeção e ensaios finais. A norma ISO 9004, finalmente, é de orientação e descreve um conjunto básico de elementos, por intermédio dos quais são gerados os sistemas de gestão de qualidade. Uma das aplicações da ISO 9000 é o gerenciamento da qualidade adotado em uma empresa.

![Diagrama do gerenciamento do sistema ISO 9000](image)

Figura 31 - Gerenciamento do sistema ISO 9000

Esse modelo de gerenciamento da qualidade, no conceito ISO 9000, irá ajudar-nos no desenvolvimento do modelo de qualidade da forjaria. Ele pode ser visto acima na figura 31 e é regido por meio da administração, da revisão da qualidade e das auditorias realizadas no sistema de qualidade. O processo de qualidade, nessa mesma figura, é iniciado com o requerimento do cliente, que foi especificado durante o desenvolvimento do produto. Após o projeto do produto, desenvolve-se o projeto do processo, que considera as pessoas, os recursos, os métodos da organização e as características do produto. Na saída do processo de fabricação, é obtido o produto propriamente dito, que é submetido à inspeção final. Ao se encontrar alguma não-conformidade, ela é registrada e é tomada uma ação corretiva. Porém, melhor seria a aplicação da uma ação preventiva com o apoio da melhoria contínua. O resultado desse gerenciamento é o produto ou serviço com garantia da qualidade, que pode ser obtida com o uso da ISO 9000 e de seus elementos apresentados a seguir.
<table>
<thead>
<tr>
<th>ELEMENTO</th>
<th>DESCRIÇÃO</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Responsabilidade da administração</td>
</tr>
<tr>
<td>4.2</td>
<td>Sistema de qualidade</td>
</tr>
<tr>
<td>4.3</td>
<td>Análise crítica de contrato</td>
</tr>
<tr>
<td>4.4</td>
<td>Controle de projeto</td>
</tr>
<tr>
<td>4.5</td>
<td>Controle de documentos e de dados</td>
</tr>
<tr>
<td>4.6</td>
<td>Aquisição</td>
</tr>
<tr>
<td>4.7</td>
<td>Controle de produto fornecido pelo cliente</td>
</tr>
<tr>
<td>4.8</td>
<td>Identificação e rastreamento de produtos</td>
</tr>
<tr>
<td>4.9</td>
<td>Controle de processo</td>
</tr>
<tr>
<td>4.10</td>
<td>Inspeção e ensaios</td>
</tr>
<tr>
<td>4.11</td>
<td>Controle de equipamentos de inspeção, medição e ensaios</td>
</tr>
<tr>
<td>4.12</td>
<td>Situação da inspeção e ensaios</td>
</tr>
<tr>
<td>4.13</td>
<td>Controle de produtos não-conformes</td>
</tr>
<tr>
<td>4.14</td>
<td>Ação corretiva e ação preventiva</td>
</tr>
<tr>
<td>4.15</td>
<td>Manuseio, armazenamento, embalagem, preservação e entrega</td>
</tr>
<tr>
<td>4.16</td>
<td>Controle de registro da qualidade</td>
</tr>
<tr>
<td>4.17</td>
<td>Auditorias internas da qualidade</td>
</tr>
<tr>
<td>4.18</td>
<td>Treinamento</td>
</tr>
<tr>
<td>4.19</td>
<td>Serviços associados (assistência técnica)</td>
</tr>
<tr>
<td>4.20</td>
<td>Técnicas estatísticas</td>
</tr>
</tbody>
</table>

Elemento\(^9\) é o nome dado a cada um dos eventos ou atividades críticas para a qualidade. Na norma 9001, a quantidade de elementos necessária é 20, enquanto na norma 9002 essa quantidade é 18 e nas normas 9003 e 9004 essa quantidade é 12 e 20, respectivamente. Na tabela 1 acima, encontram-se os 20 elementos da ISO 9001, versão 1994\(^10\). Esses elementos abordam: a responsabilidade da administração (política de qualidade), o sistema de qualidade (manual da qualidade), a análise crítica do contrato, o controle de produtos não-conformes, as ações corretiva e preventiva, o treinamento, etc. A implementação desses elementos é realizada por meio da certificação.

3.1.3. Certificação

A certificação\(^11\) pela ISO 9000 é regida por órgãos credenciados que são reconhecidos pela comunidade internacional. Os órgãos credenciadores estão distribuídos por diversos

\(^9\) Para que se possa entender melhor a aplicação dos elementos, pode-se ver que quando na ISO 9001 aparecer a expressão: a) deve/devem significar que é mandatório; b) a palavra registro é "sinônimo" de sugestão; c) fornecedor é a empresa em questão; d) subcontratado é o fornecedor dessa empresa e e) a análise crítica da administração pode ser formalizada com uma reunião e a emissão posterior da sua ata.

\(^11\) Ferreira aponta as formas de evitar erros que têm reprovado muitas empresas na auditoria para a certificação: a) limitar a consultoria: trabalhar com uma equipe própria que conheça bem a cultura da empresa, tendo o consultor apenas como um suporte; b) documentar para controlar: é necessário o controle da emissão, distribuição e atualização dos documentos; c) regularizar sem burocracia: algumas empresas definem regras para tudo, outras são vítimas da informalidade. O importante é a empresa escrever o que faz e a ISO 9001 verificará se ela faz o que diz; d) calibrar os instrumentos: as empresas precisam investir em laboratório ou comprar serviço; e) acompanhar fornecedores: a matéria-prima deve ter qualidade assegurada ou
países e são os seguintes: NACCB (National accreditation of council for certified bodies/Inglaterra), RAB (Registar accreditation board/EUA), Inmetro (Instituto nacional de metrologia, normalização e qualidade/Brasil). Os órgãos certificadores são: BVQI (Bureau veritas quality international), BSI (British standard institute), ABS (American bureau of shipping), DNV (Det norske veritas), IBQN (Instituto brasileiro de qualidade nuclear), FCAV (Fundação Carlos Alberto Vanzolini), LR (Lloyd’s register), CI (College international) e SGS (Société générale de surveillance). O órgão NACCB (Inglaterra) foi o primeiro a credenciar um órgão de auditoria para certificação de sistemas de qualidade pela ISO 9000, sendo, portanto, o mais renomado atualmente. No Brasil, o Inmetro já atuou como organismo de auditoria no passado e, atualmente, está buscando reconhecimento internacional como órgão credenciador. Dessa forma, os órgãos certificadores, por meio de auditorias, submetem as empresas candidatas à certificação que, após aprovação, são recomendadas a serem registradas nos cadastros dos órgãos credenciadores. A seguir será descrito o sistema de qualidade ISO 9001, que será o suporte do sistema de qualidade da empresa que pesquisamos e do desenvolvimento do modelo de qualidade (MQ) da sua forjaria.

3.2. Sistema de qualidade ISO 9001

O sistema de qualidade ISO 9001 (SQI) foi por nós desdobrado de acordo com os subsistemas do processo de negócios da empresa (PNE) apresentado no capítulo anterior (item 2.7). Por meio desse desdobramento, obtemos o gerenciamento da qualidade, desenvolvimento do projeto, fabricação, fornecedor e satisfação do cliente. O SQI nos ajudará não só na avaliação dos sistemas de qualidade (SQs), como também na proposição do modelo de qualidade da forjaria. A descrição e o desdobramento do SQI são mostrados no quadro 18. Seu sistemógrafo está na figura 32.
Quadro 18
Descrição do processador sistema de qualidade ISO14

Figura 32 – Sistemógrafo do sistema de qualidade ISO

Sistemógrafo SQI

Na figura 32, o SQI I, ou processador I, informa a todos os processadores sobre a organização de qualidade, a política de qualidade e o sistema de qualidade (SQI). O II libera para III o processo de fabricação e o desenho do produto para que se possa manufaturá-lo e solicita ao IV o envolvimento do fornecedor além de dar feedback ao I sobre o estágio em que se encontra o desenvolvimento do projeto. O III envia o produto ao V, dá feedback ao IV sobre a qualidade assegurada dos

14 A ISO 9001 poderá ser complementada com a QS 9001. As principais diferenças entre a ISO 9001 e a QS 9001 estarão descritas a seguir: a) o plano de negócios é melhor elaborado, incorporando-se nele a satisfação do cliente; b) o plano de controle é utilizado na concepção do protótipo; c) o produto acabado do produto durante a produção e procura-se introduzir de forma normativa os gráficos X barra e amplitude R; c) deve-se arquivar os dados de implementação quando da alteração de engenharia do produto; d) obediência às leis governamentais de segurança e meio-ambiente; e) introduzir obrigatoriamente a manutenção preventiva e preditiva; f) acompanha o retrabalho com os produtos; g) examinar o nível de inventário; h) monitorar o sistema de entrega da produção e aquisição; i) notificar o cliente, quando do faturamento, quais foram os produtos expedidos; j) trabalhar com o subsistema PPAP (Production part approval process - Processo de aprovação de peças da produção), utilizando-se: plano de controle, estudo de capacidade de processo, análise do sistema de medição (repetibilidade e reprodutibilidade), amostra inicial, FMEA e diagrama do fluxo de processo; k) introduzir a melhoria contínua; l) gerenciar o ferramental envolvido com a produção. Ver Rotandaro (1995: 10-11). Um exemplo da QS 9001 aplicado numa forjaria pode ser visto na Krupp Presta. Ver Hänsel, Meidert e Geiger (1999: 741-748).
items fornecidos, dá feed-back ao I sobre o rastreamento, o manuseio, o transporte, a manutenção e a necessidade de treinamento e, ainda, dá feed-back ao II sobre as especificações do produto e do roteiro de fabricação. Já o IV informa ao I e II qual foi o fornecedor escolhido, também entrega ao III e ao V o componente pronto para uso e abastece o III com matéria-prima. O V dá feed-back ao I a IV sobre a garantia da qualidade e entrega do produto com essa garantia ao cliente.

O sistemógrafo SQI encontra-se na figura 32. Acima estão a descrição de cada processador (vide quadro 18), bem como a descrição das entradas, das saídas e das retromítâncias desse sistemógrafo. O desdobramento e a descrição do SQI iniciam-se com o gerenciamento de qualidade.

3.2.1. Gerenciamento de qualidade

No quadro 19 estão a descrição e o desdobramento do processador gerenciamento de qualidade (SQI I). Seu sistemógrafo está na figura 33.

Quadro 19
Descrição do processador gerenciamento de qualidade

SQI 1.1 (Responsabilidade da administração # 4.1/ISO 9001) Requer que a política da qualidade seja bem definida, documentada e comunicada para toda a organização, que a responsabilidade pela qualidade seja claramente definida, que seja determinado um responsável para garantir que os requisitos do sistema de qualidade estejam sendo atingidos e que um representante da administração conduza uma revisão administrativa periódica para garantir a contínua adequação e eficácia do sistema de qualidade (SQ). SQI 1.2 (Sistema de qualidade # 4.2/ISO 9001) Estabelecer um sistema de qualidade (SQ) que satisfaça os critérios da norma ISO 9000, preparar o manual de qualidade para assegurar que o produto esteja em conformidade com os requisitos especificados e identificar meios de produção para atingir a qualidade requerida. SQI 1.3 (Análise crítica de contrato # 4.3/ISO 9001) Estabelecer/manter procedimentos documentados para análise crítica de contrato, assegurar a coordenação da análise crítica. Requer a revisão dos contratos para se garantir a adequação dos requisitos. SQI 1.4 (Controle de documentos e dados # 4.5/ISO 9001) Estabelecer/manter procedimentos de controle de todos os documentos e de dados para aprovação, emissão, alteração e modificação do produto e ou do processo. SQI 1.5 (Controle de registros da qualidade # 4.16/ISO 9001) Estabelecer/manter procedimentos documentados para identificar, coletar, indexar, acessar, arquivar, armazenar e colocar à disposição de todos os registros da qualidade. SQI 1.6 (Ação corretiva e preventiva # 4.14/ISO 9001) Estabelecer/manter procedimentos para investigação das causas das não-conformidades, ações para corrigi-las e criação de controles, buscando-se a prevenção de prováveis ocorrências. SQI 1.7 (Auditoria interna da qualidade # 4.17/ISO 9001) Estabelecer/manter o sistema interno de auditoria da qualidade, de tal modo que se possa verificar se as atividades da qualidade estão conformes com os requisitos, bem como determinar a efetividade do sistema de qualidade. SQI 1.8 (Treinamento # 4.18/ISO 9001) Estabelecer/manter procedimentos para planejamento e programação das necessidades de treinamento de todos na organização que executem atividades que influem na qualidade. SQI 1.9 (Técnicas estatísticas # 4.20/ISO 9001) Estabelecer procedimentos que identifiquem a utilização das técnicas estatísticas para o controle e verificação da capacidade do processo, bem como das características do produto.
Sistemógrafo SQI I

Na figura 33, o SQI I.1, ou processador I.1, informa ao I.2 a 7 sobre a política de qualidade. Já o I.2 entrega ao I.3 a 7 o manual de qualidade e dá feedback ao I.1 sobre a política de qualidade. O I.3 informa ao I.4 e 7 sobre o resultado da análise crítica de contrato e dá feedback ao I.1 e 2 sobre o atendimento às especificações do produto. O I.4 informa ao I.5 sobre o controle de documentos e também dá feedback ao I.1 a 3 sobre melhorias para a disposição dos documentos. O I.5 informa ao I.6 e 7 sobre a identificação e arquivo dos registros da qualidade e também dá feedback ao I.2 sobre sugestões para o manual da qualidade. O I.6 informa ao I.7 sobre não-conformidades e ações tomadas. Pode-se ver na figura 33 que o I.7 conecta-se com todos os processadores do sistemógrafo SQI I. Essas conexões revelam que o resultado das auditorias deve ser conhecido, para que se possa executar as ações cabíveis e em tempo hábil. O I.8 recebe do I.7 o resultado das auditorias internas e, após processá-lo, envia ao I.6, 7 e 9 o planejamento e programação de treinamento. Já o I.9 dá feedback sobre a programação ao I.6 e 8 e recomenda a utilização das técnicas estatísticas, visando ao estabelecimento e ao acompanhamento da estabilidade e capacidade do processo, ao processador fabricação (SQI III) e desenvolvimento do projeto (SQI II).

O sistemógrafo SQI I pode ser visto na figura 33. Acima encontram-se a descrição de cada processador (vide quadro 19) e também, a descrição das entradas, das saídas e das retromitâncias desse sistemógrafo. A seguir, apresenta-se o processador desenvolvimento do projeto, dando sequência ao desdobramento do SQI.

15 Esse sistemógrafo pode também ser representado pelo ciclo Deming (PDCA): a) plan (planejamento) é representado pelos elementos da ISO 9001: 4.2.2 e 4.2.3; b) do (execução) pelo 4.2.2; c) check (análise) é representado pelo 4.17 (entre do e check encontra-se o 4.1.3); d) act (ação) pelo 4.14. Esses elementos são: 4.1.3 (análise crítica pela administração), 4.2.2 (procedimentos do sistema de qualidade), 4.2.3 (planejamento da qualidade), 4.14 (ação corretiva e preventiva) e 4.17 (auditoria interna).
3.2.2. Desenvolvimento do projeto

No quadro 20 encontram-se a descrição e o desdobramento do processador desenvolvimento do projeto (SQI II). Seu sistemógrafo está na figura 34.

Quadro 20
Descrição do processador desenvolvimento do projeto
SQI II.1 (Controle de projeto de produto # 4.4/ISO 9001) Estabelecer/mantêrem procedimentos documentados para controlar e verificar o projeto do produto, para que se garanta os requisitos especificados. Identificar a responsabilidade para cada atividade de projeto e atribuir-a a pessoal qualificado. Planejar e desenvolver o projeto e controlar suas alterações. SQI II.2 (Controle de projeto de processo # 4.9/ISO 9001) Identificar e planejar os processos de produção, instalação e serviços associados que influem diretamente na qualidade. Utilizar instruções de trabalho documentadas, para que definam o processo. Monitorar e controlar o processo durante a produção e instalação. Estabelecer a manutenção adequada de equipamentos para assegurar a capacidade do processo.

Figura 34 - Sistemógrafo de desenvolvimento de projeto

Sistemógrafo SQI II
Pode-se ver, na figura 34, o SQI II.1, ou processador II.1, informa ao II.2 se o projeto contempla os requisitos especificados. O II.2 dá feed-back ao II.1 sobre a viabilidade de se manufaturar esse produto ou até mesmo discutir a possibilidade de se alterar alguma característica específica deste, enviando também o roteiro de transformação ao processador fabricação (SQI III).

O sistemógrafo SQI II é apresentado na figura 34. Acima estão a descrição de cada processador (vide quadro 20), bem como a descrição das entradas, das saídas e das retromitâncias desse sistemógrafo. Abaixo se apresenta o processador fabricação, para que possamos continuar o desdobramento do SQI.

3.2.3. Fabricação de produto

O processador fabricação de produto (SQI III) é desdobrado e descrito no quadro 21. Seu sistemógrafo está na figura 35.
ensaios. SQI III.7 (Controle de produto fornecido pelo cliente # 4.7/ISO 9001) Estabelecer e manter procedimentos para verificação, armazenagem e manutenção de produto fornecido pelo cliente.

Figura 35 - Sistemógrafo da fabricação

Sistemógrafo SQI III
Na figura 35, o SQI III.1, ou processador III.1, informa para todos os subprocessadores de fabricação que o produto em processo está identificado e rastreado. Já o III.2 informa ao III.3, 4 e 7 sobre quais são os produtos não-conformes e também dá feedback ao III.1 se o produto está identificado com o código de corrida. O III.3 informa ao III.4 e 7 que o produto está sob controle durante o seu transporte e manuseio, dá feedback ao III.1 e 2 sobre o estado do transporte e manuseio. O III.4 informa sobre o controle das inspeções ao III.5 e 6 e também envia ao III.1 e 2 essa mesma informação. O III.5 informa ao III.6 sobre o programa de manutenção dos equipamentos de medição, inspeção e ensaios e dá feedback ao III.4 informando que os equipamentos estão liberados para as inspeções. Já o III.6 retorna ao III.4 e 5 informações sobre a situação das inspeções e ensaios e também informa ao III.7 que o produto está identificado com o resultado da sua inspeção. O III.7 dá feedback ao III.1 a 4 sobre o acompanhamento do armazenamento de produto fornecido pelo cliente e também envia essa informação ao processador satisfação do cliente (SQI V), porém aguarda informação do processador fornecedor (SQI IV).

O sistemógrafo SQI III encontra-se na figura 35. Acima estão a descrição de cada processador (vide quadro 21) e, também, a descrição das entradas, das saídas e das retromitâncias desse sistemógrafo. A seguir, será apresentado o processador fornecedor que é o quarto subsistema do SQI.

3.2.4. Fornecedor

O processador fornecedor (SQI IV) é desdobrado e descrito no quadro 22. Seu sistemógrafo está na figura 36.

Quadro 22
Descrição do processador fornecedor
Sistemógrafo SQI IV

Na figura 36, o SQI IV.1 recebe informações dos fornecedores, processa-as e envia-as aos processadores desenvolvimento do projeto (SQI II), fabricação (SQI III) e satisfação do cliente (SQI V).

O sistemógrafo SQI IV encontra-se na figura 36. Acima, apresentam-se a descrição de cada processador (vide quadro 22), bem como a descrição das entradas, das saídas e das retromitâncias desse sistemógrafo. Dando-se continuidade ao desdobramento do SQI, a seguir está o processador satisfação do cliente.

3.2.5. Satisfação do cliente

Encontram-se, no quadro 23, o desdobramento e a descrição do processador satisfação do cliente (SQI V). Seu sistemógrafo está na figura 37.

Quadro 23
Descrição do processador satisfação do cliente

SQI V.1 (Serviços associados # 4.19/ISO 9001) Estabelece/manter procedimentos para execução, verificação e relato tal que os serviços associados atendam aos requisitos especificados no contrato.

Sistemógrafo SQI V

Na figura 37, o SQI V.1 recebe informações do SQI III e IV sobre a disponibilidade do produto fabricado e do componente pronto para uso, respectivamente. Após processamento dessas informações, envia o produto acabado ao cliente. Dessa forma, o sistema de qualidade ISO 9001 (SQI) estará suportando o sistema de qualidade de uma empresa.

O sistemógrafo SQI V está na figura 37. Acima, mostram-se a descrição de cada processador (vide quadro 23) e, também, a descrição das entradas, das saídas e das retromitâncias desse sistemógrafo. A seguir, apresenta-se o sistema de qualidade da empresa na qual nos detemos para que possamos, depois, desdobrá-lo no sistema de qualidade da forjaria que pertence a essa empresa.
3.3. Sistema de qualidade da empresa

O sistema de qualidade da empresa (SQE) é um sistema já existente em uma empresa metalo-mecânica. A sua descrição e desdobramento foram por nós desenvolvidos por meio de entrevistas com os gerentes dessa empresa.

O modelamento SQE, além de estar baseado na proposta Feigenbaum16, também está apoiado pelo PNE e pelo sistema SQI. O PNE possui os subprocessos de desenvolvimento do negócio, desenvolvimento do produto, implantação desse produto por meio do projeto do processo, fabricação do produto por encomenda ou em série e o gerenciamento da venda. O SQI é o sistema de qualidade ISO 9001 que abrange os 20 elementos, tais como: responsabilidade da administração, política de qualidade e manual de qualidade. E a proposta Feigenbaum descreve oito estágios do ciclo industrial, que são: marketing, engenharia do produto, suprimentos, engenharia de processo, gerenciamento do "chão-de-fábrica", inspeção/teste, expedição e instalação. O marketing avalia o nível de qualidade desejado pelo cliente e o quanto ele está disposto a pagar. A engenharia do produto "traduz" a avaliação do marketing na especificação do produto, enquanto o suprimentos classifica e seleciona os fornecedores de matéria prima e acabados. Já a engenharia de processo projeta o roteiro de fabricação que, por meio do gerenciamento do "chão-de-fábrica", realiza a produção do produto. A inspeção e os testes são realizados de acordo com as especificações. Então, a expedição envia o produto ao cliente, responsabilizando-se pela embalagem e transporte. A instalação suporta toda a operação da fábrica de acordo com as instruções de serviço. A seguir será apresentada a composição do SQE, pois ela será a base do modelo MQ da forjaria.

16 Feigenbaum propõe oito estágios para o ciclo industrial no seu livro \textit{Total quality control} (1991: 7-12).
Tabela 2 - Desenvolvimento do sistema de qualidade da empresa

<table>
<thead>
<tr>
<th>SQE</th>
<th>Feigenbaum</th>
<th>PNE</th>
<th>ISO 9001</th>
<th>SQE Desdobrado</th>
<th>SQ e</th>
</tr>
</thead>
<tbody>
<tr>
<td>S Q E</td>
<td>Gerenciamento</td>
<td>"Marketing"</td>
<td>Desenvolvimento do negócio</td>
<td>4.1.1 - Política de qualidade</td>
<td>☐</td>
</tr>
<tr>
<td></td>
<td>da qualidade</td>
<td></td>
<td></td>
<td>4.1.2 - Administração da qualidade</td>
<td>☐</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.2 - Sistema de qualidade</td>
<td>☐</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.2.3 - Planejamento da qualidade</td>
<td>☐</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.17 - Auditoria do sistema</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.18 - Treinamento</td>
<td>☒</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.20 - Técnicas estatísticas</td>
<td>-</td>
</tr>
<tr>
<td>S Q E</td>
<td>Engenharia Produto</td>
<td>Desenvolvimento do produto</td>
<td>4.4.2 - Coordenador do projeto</td>
<td>☐</td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>Engenharia Manufatura</td>
<td></td>
<td>4.4.2 - Cronograma do projeto</td>
<td>☐</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Manufatura (Processo)</td>
<td></td>
<td>4.4.3 - Revisão periódica</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Desenvolvimento do projeto</td>
<td>Implantação do produto (Processo)</td>
<td>4.4.7 - Avaliar o projeto do produto</td>
<td>☐</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fabricação</td>
<td></td>
<td>4.4.8 - Testar projeto do produto</td>
<td>☒</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gerenciamento do "chão-de-fábrica"</td>
<td></td>
<td>4.4.9 - Alteração de projeto</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>Serviço de instalação</td>
<td></td>
<td>4.5.2 - Aprovar e emitir documentos</td>
<td>☐</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Inspeção e teste</td>
<td></td>
<td>4.5.3 - Alteração em documentos</td>
<td>☒</td>
<td></td>
</tr>
<tr>
<td>S Q E</td>
<td>Suprimentos</td>
<td>Fabricação</td>
<td>4.9 - Capacidade da manufatura</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td>Inspeção e teste</td>
<td></td>
<td>4.9 - Controlar projeto do processo</td>
<td>☐</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fornecedor</td>
<td></td>
<td>4.9 - Roteiro de fabricação</td>
<td>☐</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Inspeção e teste</td>
<td></td>
<td>4.10.3 - Inspeção e ensaios durante o processo</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expedição</td>
<td>Gerenciamento da venda</td>
<td>4.12 - Controle de produto não-conforme</td>
<td>☐</td>
<td></td>
</tr>
<tr>
<td>S Q E</td>
<td>Satisfação do cliente</td>
<td></td>
<td>4.13.2 - Segregação</td>
<td>☐</td>
<td></td>
</tr>
<tr>
<td>V</td>
<td></td>
<td></td>
<td>4.12 - Segregação</td>
<td>☐</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4.13.2 - Controle de produto não-conforme</td>
<td>☐</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4.14.2 - Ações corretivas</td>
<td>☒</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4.15 - Transporte e armazenagem</td>
<td>☒</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4.17 - Auditoria de qualidade</td>
<td>☐</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4.19 - Satisfação do cliente</td>
<td>☒</td>
<td></td>
</tr>
</tbody>
</table>

Legenda:
- ☒ faz totalmente
- ☐ faz parcialmente
- - não faz

Na tabela 2 acima, apresenta-se a composição do SQE, que é formado de cinco subsistemas: gerenciamento da qualidade (SQE I), desenvolvimento do projeto (SQE II), fabricação do produto (SQE III), fornecedor (SQE IV) e satisfação do cliente (SQE V). O SQE está baseado na teoria de Feigenbaum, que apresenta oito estágios: o *marketing* apoia o

17 A tabela 2 apresenta o desenvolvimento do SQE e do SQE. Nesse parágrafo será descrito as colunas referentes ao SQE. Três páginas adiante, essa tabela será novamente retomada apresentando a diferença entre o SQE e o SQE (última coluna da tabela 2).

SQE I; a engenharia do produto e da manufatura apoiam o SQE II; o gerenciamento do "chão-de-fábrica", o serviço de instalação e a inspeção/testes apoiam o SQE III, suprimentos e inspeção/testes apoiam o SQE IV e, por fim, a expedição, que apoia o SQE V. O SQE também está baseado no PNE, que apresenta cinco estágios: o desenvolvimento do negócio (PNE I), que apoia o SQE I; o desenvolvimento do produto (PNE II) e a implantação do produto (PNE III) que apoiam o SQE II; a fabricação (PNE IV) que apoia o SQE III; a fabricação por terceiros (PNE IV) que apoia o SQE IV e o gerenciamento da venda (PNE V) que apoia o SQE V. Finalmente, o SQE é apoiado nos 20 elementos da ISO 9001 e nos cinco subsistemas do SQI. No quadro 24, encontram-se a descrição e o desdobramento do sistema de qualidade da empresa (SQE). Seu sistemógrafo está na figura 38.

Quadro 24
Descrição do processador sistema de qualidade da empresa

SQE I (Gerenciamento de qualidade) Emitir e revisar a política de qualidade, estabelecer a administração da qualidade, desenvolver, planejar e implementar o sistema de qualidade (SQ), coordenar as alterações do sistema de qualidade (SQ), estabelecer o plano de qualidade por meio de indicadores de desempenho, auditar o sistema de qualidade (SQ), identificar as necessidades de treinamento em qualidade, desenvolver e implementar o programa de treinamento para todos os colaboradores e introduzir a utilização de técnicas estatísticas. SQE II (Desenvolvimento do projeto) Estabelecer o coordenador do projeto, assegurar o cronograma de acompanhamento do projeto, revisar o projeto periodicamente, avaliar e testar o produto, assegurar que as alterações de produto sejam identificadas, aprovar, emitir documentos e elaborar suas alterações. SQE III (Fabricação) Assegurar a capacidade do processo na manufatura, controlar o projeto do processo, elaborar o roteiro de fabricação, planejar as inspeções e ensaios durante o processo e, no seu final, identificar o material durante os estágios de fabricação, identificar e segregar os materiais não-conformes, controlar e manter os equipamentos de produção, assegurar o plano para ações corretivas, auditar a qualidade do produto e do processo, assegurar proteção contra avarias no transporte e na armazenagem dos produtos. SQE IV (Fornecedor) Assegurar a avaliação e seleção do fornecedor, especificar o pedido de compra de acordo com as especificações, planejar a inspeção de recebimento, homologar a amostra no fornecedor, estabelecer ação corretiva e auditar continuamente o fornecedor. SQE V (Satisfação do cliente) Assegurar treinamento ao cliente e revendedor, estabelecer o retorno das informações sobre a falha de campo, fornecer condições de garantia da qualidade ao cliente e planejar a sua satisfação.
Sistemógrafo SQE
Na figura 38, o SQE I, ou processador I, informa para todos os processadores do SQE que a empresa está organizada, envia a política de qualidade e a programação do treinamento. O II informa ao III e IV quais são as características do produto, libera ao III o roteiro de fabricação e dá feed-back ao I sobre a competitividade do produto. O III libera ao V a peça fabricada, dá feed-back ao I sobre os custos, indicadores da qualidade e a necessidade de treinamento, dá feed-back ao II sobre modificações do roteiro de fabricação e dá feed-back sobre a qualidade das peças adquiridas ao IV, que, por sua vez, informa ao II, III e V sobre o resultado da avaliação e seleção do fornecedor e ainda envia ao III o componente adquirido com qualidade assegurada, no prazo estabelecido. Também o IV recebe do fornecedor um plano de ações corretivas. Finalmente, o V entrega ao cliente as peças de reposição, dá feed-back ao I e III sobre a satisfação do cliente, dá feed-back ao I sobre a necessidade de treinamento, dá feed-back ao II sobre a necessidade de se alterar o projeto e sobre o relatório de qualidade das peças fornecidas.

O sistemógrafo SQE pode ser visto na figura 38. Acima, encontram-se a descrição de cada processador (vide quadro 24) e, também, a descrição das entradas, das saídas e das retromitências desse sistemógrafo. Paralelamente ao sistemógrafo SQE, também será apresentado o sistemógrafo SQe para que possamos compará-los.

O sistema “real” de qualidade da empresa (SQe) é a distorção do SQE, que foi encontrada ao se auditar o sistema de qualidade da empresa no “chão-de-fábrica”, nas engenharias e escritórios, bem como no acompanhamento da política de qualidade. A descrição e o desdobramento do processador SQe são mostrados no quadro 25. Seu sistemógrafo está na figura 39.

Quadro 25
Descrição do processador sistema “real” de qualidade da empresa
SQe I (Gerenciamento de qualidade) Emitir e revisar a política de qualidade, estabelecer a administração da qualidade, desenvolver, planejar e implementar o sistema de qualidade (SQ), coordenar as alterações do sistema de qualidade (SQ),
estabelecer o plano de qualidade por meio de indicadores de desempenho, identificar as necessidades de treinamento em
qualidade. SQe II (Desenvolvimento do projeto) Estabelecer o coordenador do projeto, assegurar o cronograma de
acompanhamento do projeto, avaliar e testar o produto, aprovar, emitir documentos e elaborar suas alterações. SQe III
(Fabricação) Controlar o projeto do processo, elaborar o roteiro de fabricação, planejar as inspeções e ensaios finais,
identificar o material durante os estágios de fabricação, identificar e segregar os materiais não-conformes, controlar e manter
os equipamentos de produção, assegurar o plano para ações corretivas, auditar a qualidade do produto e do processo,
assegurar proteção contra avarias no transporte e na armazenagem dos produtos. SQe IV (Fornecedor) Assegurar a avaliação
e seleção do fornecedor, especificar o pedido de compra de acordo com as especificações, planejar a inspeção de
recebimento, estabelecer ação corretiva e auditar continuamente o fornecedor. SQe V (Satisfação do cliente) Assegurar
treinamento ao cliente e ao revendedor, estabelecer o retorno das informações sobre a falha de campo, fornecer condições de
garantia da qualidade ao cliente e planejar a sua satisfação.

Figura 39 – Sistemógrafo do sistema “real” de qualidade da empresa

Sistemógrafo SQe
Esse sistemógrafo, na figura 39, possui praticamente as mesmas conexões e retomadas do sistemógrafo SQE, com a
exceção de que o SQe V dá feed-back sobre a satisfação do cliente somente para o SQe I. Também o SQe II não dá feed-back
ao SQe IV sobre as características do produto.

O sistemógrafo SQe encontra-se na figura 39. Acima é dada a descrição de cada
processador (vide quadro 25) e, também, é definida a diferença entre os sistemógrafos SQE e
SQe. Procurou-se também avaliar a diferença entre os sistemas SQE e SQe, tendo-se como
parâmetros: a proposta de Feigenbaum e os elementos da ISO 9001 (vide tabela 2).

Na tabela 2, na sua última coluna, apresentamos a avaliação do sistema "real" de
qualidade da empresa pela comparação do SQE com o SQe. Essa comparação também é o
resultado da superposição do sistemógrafo da figura 38 sobre o da figura 39 e da comparação
do quadro 24 com o quadro 25.
Na função gerenciamento de qualidade, o SQe I não audita internamente o sistema de qualidade e não aplica técnicas estatísticas. O SQe I identifica a necessidade de educação e treinamento, porém não os desenvolve e nem os implementa numa programação adequada às funções associadas à qualidade. Na comparação SQE II com SQe II, comprovou-se que este último não avalia o grau de risco da qualidade e nem define o responsável pela classificação das alterações e, ainda, não avalia os equipamentos e os ferramentais do processo do produto e nem garante a utilização das folhas de roteiro de fabricação durante a produção. Embora teste o produto, não o valida sob condições de criticidade. Na fabricação, quando se compara o SQE III com o SQe III, vê-se que o último não assegura a capacidade da manufatura, não planeja as inspeções e ensaios durante o processo. Também não assegura a manutenção adequada dos equipamentos de produção nem a proteção contra avarias no manuseio e na armazenagem dos produtos. Toma, ainda, ciência da necessidade das ações corretivas, porém não as gerencia. Da comparação do sistema de aquisição pode-se dizer que o SQe IV faz a inspeção de recebimento, porém não executa o seu planejamento e não homologa a amostra inicial e, ao auditar os fornecedores, não o faz de forma contínua. Na função satisfação do cliente, observou-se que o SQe V estabelece um plano de expedição, mas deixa a desejar quanto à garantia da qualidade de peças de reposição. Embora disponibilize as peças de reposição de acordo com a necessidade do cliente, não se adapta ao interesse da empresa fornecedora e não assiste os distribuidores a fim de lhes assegurar um nível desejado de serviço para o cliente. Após análise do sistema de qualidade da empresa (SQE), procuramos estudar e analisar o sistema de qualidade da forjaria (SQF), pois por seu intermédio desenvolveremos o modelo MQ da forjaria.

3.4. Sistema de qualidade da forjaria

O sistema de qualidade da forjaria (SQF) foi desenvolvido com base no sistema de qualidade da empresa (SQE), em outras palavras, a forjaria do SQF pertence à empresa do SQE e tem sua produção voltada para supri-la. A descrição do SQF foi conseguida graças a entrevistas feitas com gerentes de setor dessa forjaria, enquanto o sistema “real” de qualidade da forjaria (SQf) foi obtido por meio de auditorias no “chão-de-fábrica”.
O modelamento SQF apoia-se totalmente no SQE e no processo de negócios da forjaria (PNF). Porém, a forjaria tem a estratégia de futuramente lançar seus forjados diretamente no mercado sendo que, para isso, necessita melhorar o nível de sua qualidade, revendo o seu sistema (SQF). A melhoria de qualidade do SQF foi conseguida por meio do modelo de integração do produto e do processo com melhoria contínua de qualidade, desenvolvido neste trabalho. No quadro 26 encontram-se a descrição e o desdobramento do sistema de qualidade da forjaria (SQF). Seu sistemógrafo está na figura 40.

Quadro 26

Descrição do processador sistema de qualidade da forjaria

SQF I (Gerenciamento de qualidade) Estabelecer a responsabilidade da administração, definir a política de qualidade, estabelecer o sistema de qualidade (SQ), manter a informação da qualidade, controlar os documentos, auditar a qualidade, propor ações corretivas e análises críticas da qualidade, estabelecer o planejamento geral da qualidade, atender ao cliente, cuidar do treinamento, manter técnicas da qualidade e estabelecer indicadores de planejamento da qualidade. **SQF II (Desenvolvimento do projeto)** Estabelecer o projeto e as alterações de produto/processo, conceituar, administrar, revisar e homologar o projeto do produto/processo e estabelecer indicadores da qualidade do projeto. **SQF III (Fabricação)** Estabelecer a qualidade assegurada na manufatura, controlar os equipamentos de produção e medição, utilizar os planos de controle e as instruções de produção, cuidar do manuseio, da estocagem e do rastreamento do produto. **SQF IV (Fornecedor)** Estabelecer a qualidade assegurada no fornecedor, avaliar e selecionar o fornecedor. **SQF V (Satisfação do cliente)** Estabelecer a qualidade assegurada na pós-venda, manter a satisfação do cliente e atender ao serviço de campo com garantia.

![Diagrama SQF](image)

Figura 40 — Sistemógrafo do sistema de qualidade da forjaria

Sistemógrafo SQF

O sistemógrafo SQF (vide figura 40), possui as mesmas conexões e retromitâncias do sistemógrafo SQE (vide figura 38) com exceção de que o SQF V não dá feed-back ao SQF II a IV.

Na figura 40 mostra-se o sistemógrafo SQF. Acima se encontram a descrição de cada processador (vide quadro 26) e, também, a comparação do sistemógrafo SQF com o SQE. A
seguir será apresentado o sistema “real” de qualidade da forjaria para que possamos compará-lo com o SQF.

O sistema “real” de qualidade da forjaria (SQf) é o “desvio” da qualidade do SQF causado pela inconstância apresentada no “chão-de-fábrica”, na engenharia e na área de escritório dessa forjaria. No quadro 27, encontram-se a descrição e o desdobramento do sistema “real” de qualidade da forjaria (SQf). Seu sistemógrafo está na figura 41.

Quadro 27
Descrição do processador sistema “real” da qualidade da forjaria

SQf I (Gerenciamento de qualidade) Estabelecer a responsabilidade da administração, definir a política de qualidade, estabelecer o sistema de qualidade (SQ), manter a informação da qualidade, propor ações corretivas, estabelecer o planejamento geral e cuidar do treinamento. SQf II (Desenvolvimento do projeto) Estabelecer, conceituar e administrar o projeto e suas alterações. SQf III (Fabricação) Estabelecer a qualidade assegurada na manufatura, utilizar os planos de controle e as instruções de produção, cuidar do manuseio e da estocagem do produto. SQf IV (Fornecedor) Avaliar e selecionar o fornecedor. SQf V (Satisfação do cliente) Estabelecer a qualidade assegurada na pós-venda e atender ao serviço de campo com garantia.

Figura 41 – Sistemógrafo do sistema “real” de qualidade da forjaria

Sistemógrafo SQf
O sistemógrafo SQf, na figura 41, é similar ao sistemógrafo SQF, na figura 40, porém, o SQf II não recebe informação do SQf IV sobre a avaliação e a escolha da açoaria. O SQf IV por sua vez, não recebe informação do SQf I sobre a política de qualidade, não recebe dados do SQf II sobre as características do forjado nem feed-back do SQf III sobre a qualidade do aço.

Na figura 41, encontra-se o sistemógrafo SQf. Acima são mostradas a descrição de cada processador (vide quadro 27) e, também, a comparação do sistemógrafo SQf com o SQF. A
seguir serão apresentados o desdobramento e a descrição do SQF e do SQf, que se inicia com o gerenciamento de qualidade. Esse desdobramento propiciará a análise comparativa entre os sistemas: SQF I versus SQf I e SQI I versus SQf I.

3.4.1. Gerenciamento de qualidade

No quadro 28, encontram-se o desdobramento e a descrição do processador gerenciamento de qualidade da forjaria (SQF I). Seu sistemógrafo está na figura 42.

Quadro 28

Descrição do processador gerenciamento de qualidade

SQF 1.1 (Responsabilidade da administração) Estabelecer a organização da qualidade. SQF 1.2 (Política de qualidade) Emitir a política de qualidade. SQF 1.3 (Sistema de qualidade) Projetar e implementar o sistema de qualidade (SQ). SQF 1.4 (Informação) Administrar o sistema de informações da qualidade. SQF 1.5 (Controle de documentos) Administrar o sistema de documentação. SQF 1.6 (Auditoria) Auditoria do produto e as atividades da qualidade. SQF 1.7 (Ação) Implementar as ações corretivas. SQF 1.8 (Análise crítica) Analisar periodicamente o sistema de qualidade (SQ). SQF 1.9 (Planejamento) Desenvolver e integrar o planejamento da qualidade. SQF 1.10 (Necessidade do cliente) Analisar o mercado considerando-se as necessidades do cliente e obediência às leis. SQF 1.11 (Melhoria) Desenvolver e implementar programas para a melhoria da qualidade. SQF 1.12 (Treinamento) Treinar todas as funções ligadas à qualidade do produto. SQF 1.13 (Técnicas) Selecionar e adaptar técnicas para aperfeiçoar a qualidade. SQF 1.14 (Indicador) Estabelecer e analisar os indicadores de qualidade.

Figura 42 - Sistemógrafo do gerenciamento de qualidade

Sistemógrafo SQF I

Na figura 42, o SQF I.1, ou processador I.1, informa sobre a estrutura da organização de qualidade ao I.2, que por sua vez envia ao I.3 e 4 a política de qualidade. O I.3 libera o manual da qualidade ao I.4 a 8 e dá feedback ao I.1 e 2 sobre o impacto causado na organização, quando da divulgação do manual da qualidade. O I.4 apresenta ao I.5, 6 e 8 o manual da qualidade. O I.5 informa sobre o controle de documentos ao I.6, que por sua vez relata ao I.7 e dá feedback ao I.4 o resultado da auditoria realizada na forjaria. O I.7 informa ao I.8 como estão o estágio atual da qualidade e o andamento das ações corretivas. O I.8, por sua vez, envia na forma de feedback sugestões sobre a qualidade ao I.1 e comunica ao I.9 os pontos críticos a serem melhorados. O I.9 envia ao I.10 o planejamento da qualidade, enquanto o I.10, após análise do mercado, envia o relatório dessa matéria ao I.11, que sugere ao I.12 a melhoria de qualidade e dá feedback ao I.6 e 7 sobre as sugestões para a qualidade. Então, o I.12 envia ao I.6, 7, 11 e 13 a programação anual de treinamento e a relação dos respectivos participantes. Ainda o I.13 dá feedback ao I.6, 7 e 11 sobre o estado de conhecimento de cada colaborador a respeito do sistema de qualidade e também envia ao I.14 essa mesma informação. Por fim, I.14 dá feedback ao I.1 e 9 sobre o índice de qualidade e informa o resultado da avaliação do sistema de qualidade por intermédio de indicadores ao processador desenvolvimento do projeto (SQF II).
O sistemógrafo SQF I é mostrado na figura 42. Acima, encontram-se a descrição de cada processador (vide quadro 28) e, também, a descrição das entradas, das saídas e das retromitâncias desse sistemógrafo. A seguir serão apresentados a descrição e o desdobramento do SQF I (vide figura 43).

![Diagrama do Sistemógrafo SQF I](image)

Figura 43 – Sistemógrafo do gerenciamento "real" de qualidade

Sistemógrafo SQF I

No sistemógrafo, na figura 43, gerenciamento "real" da qualidade da forjaria (SQF I), quando comparado com o sistemógrafo SQF I, podem-se ver somente os processadores: SQF I.1 a 4, 7, 9, 11 e 12 (vide sistemógrafo na figura 43). Acima é mostrada a descrição de cada processador, que é a mesma do quadro 28. Ao sobrepormos os dois sistemógrafos, o "ideal" e o "real", constatamos a aderência do SQF I no gerenciamento da qualidade, isto é, o SQF I não controla os documentos, deixa de estabelecer os indicadores da qualidade, não realiza auditorias internas, bem como deixa de lado a análise crítica da qualidade. Esse sistemógrafo do "chão-de-fábrica" também não analisa o mercado tendo em vista as necessidades do cliente e não aplica técnicas de solução de problemas da qualidade.

Acima, foi avaliada a performance do sistema SQF I, por meio da comparação com o SQF I, a fim de detectar em que pontos do SQF houve deterioração do SQF. Após essa avaliação, será analisado o SQF I com base na ISO 9001.

O SQF I foi analisado pela ISO, por meio da superposição do sistemógrafo SQI (vide figura 33) ao sistemógrafo SQF I (vide figura 42). Em primeiro lugar, foi analisada a responsabilidade da administração (4.1/ISO 9001) pela comparação do SQI I.1 com o SQF I.1 e constatamos a existência da política de qualidade documentada e aprovada pelo gerente geral da forjaria. Essa política era confirmada anualmente e nela eram estabelecidos os objetivos da qualidade. Ainda, no que se diz respeito à responsabilidade da administração, quanto ao seu representante, foi percebido que não havia nenhum gerente designado para a
administração da qualidade, o que comprometeu a organização desta. Na análise do SQ (4.2/ISO 9001) também foram comparados o SQI I.2 com o SQF I.3 e confirmada a existência do manual da qualidade. Na comparação do SQI I.3 com o SQF I vimos que a análise crítica da qualidade (4.3/ISO 9001) no quesito contrato é realizada, porém sem a participação dos diversos departamentos da forjaria. Ao analisarmos a comparação do SQI I.4 com o SQF I.5 verificamos a existência do plano de controle (4.5/ISO 9001), porém, foi constatado que o procedimento se encontrava desatualizado e muitas vezes não disponível no local de uso. Na análise da comparação do SQI I.5 com o SQF I.5 observou-se que não existe um procedimento de controle de registro (4.16/ISO 9001) que estabeleça e sistematize os critérios de arquivamento, tais como: tempo, local, responsável, disposição após arquivamento e preservação. Na análise da comparação do SQI I.6 com o SQF I.8, verificamos a existência do procedimento de ação corretiva (4.14/ISO 9001), porém, foram encontradas várias ações em andamento com datas superiores ao prazo estabelecido para solução. Percebemos também na comparação do SQI I.7 com o SQF I.7, a existência de documentos que contemplam o planejamento e a execução de auditorias internas (4.17/ISO 9001) da qualidade, porém não estavam sendo realizadas auditorias no produto forjado no final do roteiro de fabricação. Na comparação do SQI I.8 com o SQF I.13 constatamos a realização de treinamento (4.18/ISO 9001) no posto de trabalho, porém isso não é registrado no prontuário de cada colaborador. Na comparação do SQI I.9 com o SQF I.14, notamos que as técnicas estatísticas (4.20/ISO 9001) são utilizadas para controle do processo, porém numa frequência baixa. Após avaliação do SQF I e do SQF I, daremos sequência ao desdobramento do SQF, apresentando o desenvolvimento do projeto para que possamos verificar se ele está de acordo com a ISO 9001.

3.4.2. Desenvolvimento do projeto

O processador desenvolvimento do projeto da forjaria (SQF II) é desdobrado e descrito no quadro 29. Seu sistemógrafo está na figura 44.

<table>
<thead>
<tr>
<th>Quadro 29</th>
</tr>
</thead>
<tbody>
<tr>
<td>Descrição do processador desenvolvimento do projeto</td>
</tr>
<tr>
<td>SQF II.1 (Conceito do projeto) Definir as características do produto a partir das especificações dadas pelo cliente. SQF II.2 (Atratividade) Viabilizar o projeto considerando: investimentos, estratégia e recursos para atender as exigências do cliente. SQF II.3 (Gerenciamento do projeto) Administrar o desenvolvimento e a implementação do projeto. SQF II.4 (Roteiro de fabricação) Estabelecer o método do projeto do processo de acordo com os requisitos do produto. SQF II.5 (Revisão) Revisar continuamente o projeto do produto/processo. SQF II.6 (Homologação do produto/processo) Avaliar o produto por</td>
</tr>
</tbody>
</table>
meio de testes, estudos de engenharia e confiabilidade. Avaliar os processos de forma global, considerando a manufatura interna e a dos fornecedores. **SQF II.7 (Análise crítica do contrato)** Analisar comercialmente o contrato com os clientes, verificando se todos os requisitos estão definidos, documentados e acordados e assegurar-se da capacidade para atendê-los. **SQF II.8 (Classificação de risco)** Identificar e avaliar os riscos para a qualidade do projeto. **SQF II.9 (Alteração)** Assegurar que as alterações do projeto de produto/processo estejam de acordo com o estabelecido. **SQF II.10 (Indicador)** Identificar e analisar os indicadores de desempenho do projeto.

Figura 44 – Sistemógrafo de desenvolvimento de projeto

Sistemógrafo SQF II

Na figura 44, o SQF II.1, ou processador II.1, informa sobre as características do produto ao II.2 que, por sua vez, informa ao II.3 sobre a viabilidade de se prosseguir com o projeto em questão, também essa informação é enviada ao II.1 como *feedback*. Já o II.3 autoriza o II.4 a dar início ao desenvolvimento do projeto. O II.4 informa ao II.5 sobre o roteiro de processo de fabricação, para que possa atender às especificações do produto e também retorna ao II.3 essa informação. O II.5 libera ao II.6 às revisões das características do produto e do roteiro de fabricação e dá *feedback* ao II.4 sobre as revisões do projeto. O II.6 envia ao II.7 o forjado e o processo de fabricação já homologados. E o II.7 informa ao II.8 que o requisitos estão atendidos. O II.8 informa sobre a classificação de risco para a qualidade o II.9, que por sua vez envia informação ao II.4 e 10 sobre o estágio e desenvolvimento das alterações. O II.10 dá *feedback* sobre o índice de qualidade ao II.1, 4 e 9 e transmite dados sobre o índice de qualidade ao processador fabricação de forjado (SQF III).

O sistemógrafo SQF II encontra-se na figura 44. Acima são dadas a descrição de cada processador (vide quadro 29) e, também, a descrição das entradas, das saídas e das retromitâncias desse sistemógrafo. A seguir, apresentam-se a descrição e o desdobramento do processador SQF II (vide figura 45) para que se possa compará-lo com o SQF II.

Figura 45 – Sistemógrafo do desenvolvimento "real" de projeto

Sistemógrafo SQF II

Pode-se ver, na figura 45, o desenvolvimento "real" do projeto de forjaria (SQF II) contém, quando comparado com o sistemógrafo SQF II, somente os processadores: SQF II.1 a 4, 8 e 9. Acima, mostra-se a descrição de cada processador, que é a mesma do quadro 29. Pode-se comprovar na comparação do sistemógrafo SQF II, na figura 44, com o sistemógrafo SQF II, na figura 45, que o SQF II deixa de revisar e homologar o projeto do produto/processo, não analisa criticamente o contrato, verificando se todos os requisitos estão definidos, e deixa de estabelecer os indicadores de qualidade do desempenho do projeto.
Acima, foi avaliada a performance do sistema SQF II comparando-o com o SQF II. Essa comparação será aplicada no modelo de qualidade (MQ) proposto neste trabalho. Após essa descrição dos processadores do desenvolvimento do projeto, será avaliado o processador SQF II por meio da ISO 9001, representada pelo processador SQI II, cujos resultados também serão considerados no modelo MQ.

Na auditoria da ISO do desenvolvimento do projeto, foi superposto o sistemógrafo SQI II (vide figura 34) sobre o sistemógrafo SQF II (vide figura 44). Nessa auditoria, foi avaliado se o processador estava aplicando a recomendação ISO 9001. Tal avaliação deu-se inicialmente por meio da comparação do controle do produto do SQI II.1 (4.4/ISO 9001) com o SQF II, no qual se observou que, nessa atividade, os procedimentos existentes estavam de acordo com a documentação exigida pela ISO 9001. Na análise do controle do processo (4.9/ISO 9001), observou-se, na comparação do SQI II.2 com o SQF II, a existência do roteiro de fabricação, do plano de controle que define as características do produto a serem verificadas durante o seu processamento e a existência do plano de set-ups, porém não foi encontrado registro em alguns casos. Após análise essa aderência do SQF II e SQF II, daremos sequência ao desdobramento do SQF apresentando a fabricação do forjado para que possamos verificar a sua adesão à ISO 9001.

3.4.3. Fabricação de forjado

O processador fabricação de forjado (SQF III) está desdobrado e descrito no quadro 30. Seu sistemógrafo está na figura 46.

<table>
<thead>
<tr>
<th>Quadro 30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Descrição do processador fabricação de forjado</td>
</tr>
<tr>
<td>SQF III.1 (Introdução) Introduzir de forma planejada o projeto ou a alteração de produto/processo. Definir responsabilidade e verificar a conclusão dessa alteração. SQF III.2 (Manutenção) Assegurar a capabilidade dos equipamentos de produção de acordo com as especificações. SQF III.3 (Capacitação do equipamento) Controlar periodicamente os equipamentos de medição, inspeção e ensaio. SQF III.4 (Instrução de produção) Assegurar a utilização da documentação necessária para a manufatura do produto. SQF III.5 (Identificação) Garantir, em cada etapa, a identificação dos materiais em processamento. SQF III.6 (Rastreamento) Garantir o rastreamento na produção. SQF III.7 (Materiais não-conformes) Identificar, separar e dar a disposição para os materiais não-conformes. SQF III.8 (Transporte e estoque) Assegurar a proteção contra avaria do produto quando manuseado ou estocado. SQF III.9 (Indicador) Estabelecer e analisar os indicadores de desempenho durante a fabricação do forjado.</td>
</tr>
</tbody>
</table>
Sistemógrafo SQF III

Pode-se ver, na figura 46, o SQF III.1, ou processador III.1, transmite dados ao III.2 sobre a importância do projeto e de suas alterações. O III.2 informa sobre o estado do parque industrial ao III.3, que por sua vez informa ao III.4 sobre a repetibilidade e a reprodutibilidade dos equipamentos de medição. O III.4 informa ao III.5 sobre a garantia da utilização do processo de fabricação e também dá feedback ao III.2 sobre essa utilização. Já o III.5 informa ao III.6 sobre a identificação do produto em cada etapa do processo de fabricação. O III.6 informa ao III.7 sobre os dados da corrida e do tipo de aço recebido. E o III.7 informa ao III.8 sobre materiais não-conformes e também dá feedback ao III.5 sobre a não-conformidade. O III.8 informa ao III.9 sobre o controle e proteção contra avaria do produto, quando manuseado. O III.9 dá feedback ao III.1 sobre o índice da qualidade na manufatura e também informa sobre esse índice ao processador satisfação do cliente (SQF V).

O sistemógrafo SQF III é mostrado na figura 46. Acima, encontram-se a descrição de cada processador (vide quadro 30) e, também, a descrição das entradas, das saídas e das retromitências desse sistemógrafo. Após a apresentação do SQF III, será descrito e desdobrado o processador SQf III a fim de que possamos detectar em que pontos o SQf III (vide figura 47) diverge do SQF III.

Sistemógrafo SQf III

Na figura 47, o processador "real" de fabricação da forjaria (SQF III) contém, quando comparado com o sistemógrafo SQF III, somente os processadores: SQf III.1, 4, 7 a 9. Acima, mostra-se a descrição de cada processador que é a mesma do quadro 30. Pode-se constatar na comparação do sistemógrafo SQF III, na figura 46, com o sistemógrafo SQf III, na figura 47, que o SQF III não controla a capacidade dos equipamentos da produção, nem os equipamentos de medição e, ainda, não identifica os materiais em processamento e não garante o seu rastreamento.

Acima, foi avaliada a performance do sistema SQf III por meio da comparação com o SQF III. Esse resultado será considerado no desenvolvimento do modelo MQ da forjaria. Após descrição dos processadores, o subsistema de fabricação de forjado (SQF III) foi
auditado por meio do processador SQI III. O resultado dessa auditoria será aplicado ao modelo de qualidade (MQ) da forjarria.

A auditoria ISO no SQF III foi realizada por meio da superposição do sistemógrafo SQI III (vide figura 35) com o sistemógrafo SQF III (vide figura 46). Na comparação do SQI III.1 (4.13/ISO 9001) com o SQF III.6, verificou-se a existência do documento que identifica o produto durante o seu processo, porém não existe o sistema de rastreamento. Na comparação do SQI III.2 com o SQF III.7 foi observada a existência do controle de produto não-conforme (4.13/ISO 9001), porém, em alguns casos, os forjados não estavam segregados. Na comparação do SQI III.3 com o SQF III.8, constatou-se que não existe o manual de manuseio (4.15/ISO 9001) e de proteção de forjados. Comparando-se o SQI III.4 (4.10/ISO 9001) com o SQF III, identificou-se a existência da rotina de recebimento e inspeção de matéria-prima, comprovou-se que as inspeções durante o processo são realizadas nos planos de controle, sendo que as especificações se encontram nas folhas de roteiro de fabricação. Na análise da comparação do SQI III.5 com o SQF III, observou-se que existem critérios para verificar se a capacidade de medição do instrumento (4.11/ISO 9001) é compatível com a tolerância de medida avaliada, porém, embora haja procedimento para calibração e ajuste dos equipamentos, estes encontravam-se desatualizados. Na análise da comparação do SQI III.6 com o SQF III, observou-se a existência do procedimento que indica o estado da inspeção e ensaio (4.12/ISO 9001), porém, alguns forjados em processo não estavam identificados. Após avaliação do SQF III e SQF III, apresentaremos o processador fornecedor e sua avaliação sob os aspectos da ISO 9001.

3.4.4. Fornecedor

A seguir, no quadro 31, temos o desdobramento e a descrição do fornecedor da forjarria (SQF IV). Seu sistemógrafo está na figura 48.

Quadro 31
Descrição do processador fornecedor

SQF IV.1 (Avaliação) Avaliar o fornecedor quanto à qualidade de seu sistema. SQF IV.2 (Seleção) Compor um banco de dados de fornecedores, destacando-se: qualidade, preço, atendimento e entrega. SQF IV.3 (Especificação do pedido) Enviar ao fornecedor todas as especificações e requisitos do pedido. SQF IV.4 (Homologação) Certificar-se de que os processos de itens comprados sejam homologados. SQF IV.5 (Acompanhamento) Monitorar a qualidade dos itens comprados. SQF IV.6 (Restauro) Fazer com que o fornecedor assuma os gastos decorrentes de não-conformidades. SQF IV.7 (Indicador) Estabelecer e analisar os indicadores de desempenho do fornecedor.
Sistemógrafo SQF IV

Na figura 48, o SQF IV.1, ou processador IV.1, envia relatório sobre os candidatos a fornecedor ao IV.2 que, por sua vez, escolhe o fornecedor e dá ao IV.3 essa informação. Já o IV.3 informa ao IV.4 sobre os dados constantes da especificação do pedido de compras e também dá feedback ao IV.1 a respeito desse pedido. O IV.4 informa ao IV.5 sobre a homologação dos processos nos fornecedores. O IV.5 informa o resultado da monitoração da qualidade ao IV.6, que por sua vez dá feedback ao IV.5 sobre o ressarcimento dos gastos decorrentes das não-conformidades e, também, envia ao IV.7 essa informação. E o IV.7 dá feedback ao IV.1, 4 e 5 sobre os índices da qualidade dos produtos fornecidos e também informa o processador sobre a satisfação do cliente (SQF V).

O sistemógrafo SQF IV está na figura 48. Acima, encontram-se a descrição de cada processador (vide quadro 31) e, também, a descrição das entradas, das saídas e das retromitâncias desse sistemógrafo. A seguir faremos a descrição e o desdobramento do processador SQf IV (vide figura 49) para que possamos compará-lo com SQF IV.

Sistemógrafo SQf IV

O fornecedor “real” (SQF IV), na figura 49, quando comparado com o sistemógrafo SQF IV, contém somente os seguintes processadores: SQf IV.1 a 3. Acima, mostra-se a descrição de cada processador (vide quadro 31). Pode-se constatar na comparação do sistemógrafo SQF IV, na figura 48, com o sistemógrafo SQf IV, na figura 49, que o SQf IV não efetua a homologação de processo no fornecedor, não monitora a qualidade dos itens comprados, deixa de recuperar custos com o fornecedor, decorrentes de problemas causados à forjaria e, ainda, não estabelece os indicadores de qualidade para os materiais comprados.

Acima, foi avaliada a performance do sistema SQf IV por meio da comparação com o SQF IV. Essa avaliação será considerada no desenvolvimento do modelo MQ. Após essa apresentação dos processadores, procuramos auditar o SQF IV quanto a obediência à ISO 9001. O resultado dessa auditoria será considerado no modelo de qualidade proposto neste trabalho.

3.4.5. Satisfação do cliente

No quadro 32, encontram-se o despobramento e a descrição do processador satisfação do cliente (SQF V). Seu sistemógrafo está na figura 50.

<table>
<thead>
<tr>
<th>Quadro 32</th>
</tr>
</thead>
<tbody>
<tr>
<td>Descrição do processador satisfação do cliente</td>
</tr>
<tr>
<td>SQF V.1 (Reposição) Garantir a qualidade do forjado de reposição desde que saída até a chegada no estoque do cliente.</td>
</tr>
<tr>
<td>SQF V.2 (Satisfação do cliente) Assegurar adequada orientação e assistência ao cliente.</td>
</tr>
<tr>
<td>SQF V.3 (Disponibilidade) Garantir o atendimento efetivo de forjados ao cliente.</td>
</tr>
<tr>
<td>SQF V.4 (Transporte e estoque) Garantir a preservação do transporte e manuseio.</td>
</tr>
<tr>
<td>SQF V.5 (Serviço de campo) Assegurar atendimento ao cliente quanto ao serviço de campo.</td>
</tr>
<tr>
<td>SQF V.6 (Garantia) Assegurar a garantia da qualidade do forjado.</td>
</tr>
<tr>
<td>SQF V.7 (Indicador) Estabelecer e analisar os indicadores de desempenho da satisfação do cliente.</td>
</tr>
</tbody>
</table>

Figura 50 – Sistemógrafo da satisfação do cliente

Sistemógrafo SQF V

Na figura 50, o SQF V.1, ou processador V.1, informa sobre a garantia da reposição de forjados ao V.2, que por sua vez assegura a satisfação do cliente e informa ao V.3 sobre esse atendimento. O V.3 informa ao V.4 sobre a disponibilidade de forjados. Já o V.4 envia ao V.5 os forjados acondicionados em embalagens apropriadas. Por fim, o V.5 transmite ao V.6 as reclamações do cliente, que por sua vez informa ao V.7 sobre a garantia do forjado e também dá feedback ao V.2 sobre essa garantia. Então, o V.7 dá feedback ao V.1 sobre os indicadores de qualidade e também informa sobre esses índices ao processador gerenciamento da qualidade da forjaria (SQF I).

O sistemógrafo SQF V é mostrado na figura 50. Acima, encontram-se a descrição de cada processador (vide quadro 32) e, também, a descrição das entradas, das saídas e das retomítâncias do sistemógrafo. Após essa descrição do processador SQF V, será
apresentada a do SQF V a fim de detectar em que pontos do SQF V (vide figura 51) houve deterioração do SQF V.

Figura 51 - Sistemógrafo da satisfação "real" do cliente

Sistemógrafo SQF V
Na figura 51, a descrição e o desdobramento do processador “real” de satisfação da qualidade (SQF V), quando comparado com o sistemógrafo SQF V, contém somente os processadores: SQF V.1, 3 a 6. Acima mostra-se a descrição de cada processador (vide quadro 32). Pode-se constatar na comparação do sistemógrafo SQF V, na figura 50, com o sistemógrafo SQF V, na figura 51, que o SQF V não assegura orientação e assistência ao cliente e também não estabelece os indicadores de qualidade para a satisfação deste.

A comparação do sistema SQF V com o SQF V foi feita acima. Essa comparação será aplicada no desenvolvimento do modelo MQ. Após análise do processador satisfação do cliente, procurou-se auditar o processador SQF V por meio da ISO 9001. O resultado dessa auditoria será também considerado no modelo MQ.

O subsistema satisfação do cliente foi auditado pela ISO, por meio da superposição do sistemógrafo SQI V (vide figura 37) sobre o sistemógrafo SQF V (vide figura 50). Na comparação do SQI V.1 com o SQF V, constatou-se que os serviços (4.19/ISO 9001) associados no pós-vendas são exigidos no manual da qualidade e verificou-se que as reclamações dos clientes são registradas, porém, não são acompanhadas. Após avaliação dos sistemas de qualidade da forjaria (SQF e SQI), serão apresentadas as suas classificações a fim de que possamos no final deste trabalho compararmos a classificação entre os processadores do sistema de qualidade.

3.4.6. Classificação dos processadores

Os processadores SQF I a III são do sétimo nível, pois são objetos com pilotagem, enquanto os processadores SQF IV e V são do sexto nível, pois são objetos com memória. Sendo do sétimo nível, o SQF possui conexões elaboradas (sendo retro-alimentado), está num
fluxo operacional, é um objeto com pilotagem e tem representação gráfica complexa. Para que possamos analisar o sistema de qualidade da forjaria, apresentaremos também a classificação do SQF.

Os processadores SQF I a III são do sexto nível, pois são objetos com memória, enquanto os processadores SQF IV e V são do quinto nível, pois são objetos com decisão. Dessa forma, o SQF, sendo do sexto nível, possui conexões elaboradas. (sendo retroalimentado), está num fluxo operacional, é um objeto com memória e tem representação gráfica de memorização.

Até aqui foram apresentados os sistemas de qualidade da empresa e da forjaria. Como o nosso enfoque está principalmente nos sistemas de qualidade desta última, procuraremos desdobrá-los ainda mais, analisando o sistema de qualidade do principal processo, ou seja, o sistema de qualidade do forjamento a quente.

3.5. Sistema de qualidade do forjamento a quente

A descrição e análise do sistema de qualidade do forjamento a quente (SQFQ) foram por nós realizadas por meio do acompanhamento do processo de forjamento a quente, da forjaria, representada pelo SQF, pertencente à empresa metalo-mecânica, representada pelo SQE e já apresentada. Essa observação durou um período de dois anos ininterruptos e muito contribuirá ao desenvolvimento do modelo de qualidade da forjaria que será proposto neste trabalho.

O modelamento do SQFQ está baseado no processo de forjamento a quente" (PFQ) e no sistema de qualidade da forjaria (SQF). Os estágios do SQFQ abordam a qualidade da manufatura do processo de forjamento a quente. Na figura 52, observa-se o fluxo do processo de forjamento a quente em uma forjaria. Ele inicia no recebimento da matéria-prima (barra de aço) e é encerrado com a obtenção do produto forjado. O mesmo fluxo já desdobrado é iniciado após a chegada da barra de aço, com a identificação e a inspeção. Na sequência, na operação do corte, aplica-se o CEP, o controle de peso e o rastreamento do tarugo. Depois, durante a operação do forjamento, controlam-se as tolerâncias do forjado e a temperatura do
tarugo antes do primeiro estágio de conformação. Já na normalização, controlam-se o ciclo do forno e a dureza do forjado normalizado; na limpeza do forjado, controla-se a presença de carepas e, ainda, na inspeção final/expedição do forjado, controla-se o seu rastreamento. Dessa forma, podem-se identificar quais são os controles necessários ao processo de forjamento a quente.

O primeiro controle no processo de forjamento a quente está no recebimento de matéria prima (barra de aço), no qual os controles necessários são a inspeção e identificação. A inspeção é iniciada com a análise do certificado de qualidade da acharia fornecedora, na qual se destaca a análise da composição química, o número da corrida e o ensaio Jominy. Já a identificação da matéria-prima é realizada por meio de uma plaqueta metálica, na qual consta a especificação do tipo de material, o código da corrida (heat code) e a dimensão da bitola. O controle de qualidade na operação de corte verifica as especificações da matéria-prima, o controle estatístico de processo no controle do peso do tarugo e o seu rastreamento. O controle do peso é um dos principais “segredos” do forjamento sem rebarba (flashless forging). O tarugo, no roteiro de fabricação, é controlado pela identificação do número do forjado, do tipo de material (ABNT/SAE), da sua bitola e do seu comprimento. Também na operação de corte, não se pode deixar de destacar o rastreamento do tarugo. Na sequência, procuraremos descrever o controle da operação de forjamento que é o “coração” do processo de se forjar a quente. Nesse controle destacaremos os principais pontos de qualidade do SQFQ.

O controle das características do forjado, durante o forjamento, é feito considerando-se as suas tolerâncias dimensionais e geométricas, o controle da temperatura de aquecimento do tarugo e o seu rastreamento. Na inspeção da operação de forjamento são controladas as principais cotas da peça forjada. Quando se faz necessário, além do controle da tolerância dimensional, verifica-se também, a tolerância geométrica. Analisa-se, ainda, a presença de defeitos, tais como: formação de “casca”, dobras, rebarbas e empenamento. Esse controle é realizado no set-up e em rotinas. Outro acompanhamento que se destaca é o plano de controle, o qual indica uma série de parâmetros, tais como: local de trabalho, fluxo de processo, característica controlada, método de verificação, frequência da amostra, registro ou método de controle e a tomada de ações, em casos de divergências. Após o controle do forjamento é

10 Escolhemos o processo de forjamento a quente dessa forjaria por representar 90% dos itens forjados, enquanto o
muito importante controlar as operações metalúrgicas, ou seja, o controle do tratamento térmico a fim de que possamos caracterizar a qualidade metalúrgica do forjado.

Figura 52 - Controle de qualidade no processo de forjamento a quente

No controle da operação de tratamento térmico é destacada a necessidade de se medir a dureza e acompanhar o tempo (ciclo) do forno e a temperatura das zonas de normalização. O ciclo e a temperatura são verificados durante o processo de tratamento térmico, enquanto a dureza é acompanhada após o tratamento e é medida em um ponto específico do forjado. No controle de carga da operação de tratamento, podem-se ter as informações do número da bandeja, do número do forjado, da quantidade de forjados por bandeja, do ciclo (em minutos), do horário do tratamento e da identificação do operador. Ainda, nessa operação, amostralmente, controlam-se também outros aspectos metalúrgicos por meio de ensaios metalográficos. No acabamento, controlam-se a limpeza e a expedição. Após a operação de

forjamento morno e frio representam 5% cada um.
limpeza, verifica-se a presença de carepa. Esse controle é visual e objetiva avaliar a presença de rebarbas, carepas, falhas (variação do sobremetal) e dobra. A etiqueta de transferência é utilizada para se enviar o produto forjado aos clientes. Assim sendo, nessa etiqueta, são informados o destino da peça, a quantidade, a data e o número da peça. Quando o forjado apresentar alguma imperfeição, mas for possível a sua utilização pelo cliente, desde que negociada previamente, envia-se o lote de forjados com uma ficha de acompanhamento, identificando-se a causa, bem como sugerindo uma provável ação. Nesse caso, a forjaria deve acompanhar o forjado durante a usinagem no cliente.

Veremos agora, no quadro 33, a descrição e o desdobramento do processador do sistema de qualidade do processo de forjamento a quente (SQFQ). O seu sistemógrafo está na figura 53. Essa descrição será apresentada no formato sistêmico, como já vinhamos fazendo com todos os sistemas anteriores. Essa descrição também nos permitirá analisar a adesão desse processo à ISO 9001.

Quadro 33

Descrição do processador sistema de qualidade do forjamento a quente

SQFQ I (Controle do recebimento) Analisar o certificado de qualidade da aacieria, identificar a matéria-prima, controlar o relatório de recebimento e o estoque de matéria-prima. *SQFQ II* (Controle do corte da barra) Controlar o peso, o rastreamento do tarugo e a preparação da guilhotina. *SQFQ III* (Controle do aquecimento) Controlar a temperatura do tarugo aquecido e a preparação do forno. *SQFQ IV* (Controle do forjamento) Controlar a temperatura do forjamento, as dimensões do forjado, as suas tolerâncias dimensionais e geométricas, analisar a presença de dobras, formação de “casca” na superfície do forjado, acompanhar o plano de controle e a preparação da prensa de forjar. *SQFQ V* (Controle de rebarba/furação) Controlar as dimensões e as tolerâncias dimensionais do furo do forjado (no caso de forjamento tipo anel), a preparação da prensa de rebarbar/furar, a descarga do forjado da prensa, o manuseio e o transporte do forjado, a identificação e o rastreamento do forjado rebarbado/furado. *SQFQ VI* (Controle da normalização) Controlar a preparação do forno de normalização, o manuseio e o transporte do forjado na operação de normalizar, a carga e descarga do forjado, o ciclo de normalização e o rastreamento do forjado. *SQFQ VII* (Controle do esmerilhamento) Controlar o acabamento e o esmerilhamento da rebarba do forjado, controlar o manuseio, o transporte e o armazenamento do forjado na operação de esmerilhar, controlar a preparação do esmeril e o rastreamento do forjado esmerilhado. *SQFQ VIII* (Controle da decapagem mecânica) Controlar o acabamento do forjado, a preparação da decapadora mecânica, o manuseio, o rastreamento, o transporte, o armazenamento e rastreamento do forjado acabado. *SQFQ IX* (Controle da expedição) Controlar a entrega do forjado, o manuseio, o armazenamento e o rastreamento do forjado.
Figura 53 – Sistemógrafo do sistema de qualidade do forjamento a quente

Sistemógrafo SQFQ

Na figura 53, o SQFQ I, ou processador I, recebe da aciaria a matéria-prima e o certificado de qualidade das barras de aço. Após identificação e inspeção, libera para o II a matéria-prima (barras de aço). O II, por sua vez, libera o tarugo a ser forjado para o III e também dá feed-back ao I sobre não-conformidade encontrada na barra de aço. Já o III, após confirmar a temperatura de aquecimento do tarugo, libera-o para o IV, que entrega o forjado com rebarba ao V, dá feed-back ao III quando a temperatura do tarugo se encontra fora do especificado e também retoma ao II informação sobre a variação do peso do tarugo, qualidade de corte e eventual defeitos metalúrgicos provenientes da aciaria (segregação, inclusões, trincas superficiais). O V retoma ao IV informação sobre a presença de descarbonetação (“cascas”) e falhas no forjado, também libera o forjado rebarbado/furado (piercing) para o VI, que por sua vez libera o forjado normalizado para o VII. Este, por sua vez, libera o forjado normalizado esmerilhado para o VIII, que libera para o IX e forjado decapado. O IX dá feed-back ao I sobre qualquer divergência metalúrgica encontrada no produto acabado e também informa em retromidância ao II e ao IV sobre a presença de dobras, trincas, falha, “casca” ou empenamento encontrado no forjado acabado. Então, o IX libera o forjado para o cliente.

O sistemógrafo do SQFQ pode ser visto na figura 53. Acima, encontram-se a descrição de cada processador (vide quadro 33) e, também, a descrição das entradas, das saídas e das retromitências desse sistemógrafo. Após apresentação do sistemógrafo SQFQ, será descrito o SQFQ para que possamos compará-los.

O sistema “real” de qualidade no forjamento a quente (SQFQ) é a alteração da qualidade ocorrida no SQFQ. A designação “real” é para representar a mutação da qualidade. A descrição do SQFQ é a mesma do SQFQ, porém, as conexões são diferentes e, no seu desdobramento, ocorrem perdas na função qualidade como veremos abaixo (vide figura 54).

20 A qualidade do corte é o perpendicularismo entre a face e as linhas geratrizes do diâmetro do tarugo avaliada pelo bending na ponta do tarugo, bem como o controle da variação de peso do tarugo.

21 Os processadores SQFQ III a V executam seus processos independentemente na fase de preparação, porém, operam simultaneamente na fase de produção. A otimização desse processo, por exemplo, é integrar e automatizar os processadores SQFQ II a VI, ou seja, constituir uma “célula” de forjamento a quente iniciando-se no corte do tarugo, passando pelo aquecimento, forjamento, furação e normalização. Dessa forma, do tarugo se pode obter, em uma única fase, o forjado normalizado.
Sistemógrafo SQFq

O sistemógrafo do SQFq, na figura 54, é praticamente o mesmo do SQFO (vide figura 54), a exceção está no fato de que o SQFq IX não dá feedback ao SQFq II sobre divergências da qualidade metalúrgica encontrada no forjado. Acima, mostra-se a descrição de cada processador que é a mesma do quadro 33.

O desdobramento do processador SQFQ inicia-se com o processador controle do recebimento da matéria-prima para que possamos analisar mais detalhadamente as diferenças entre o SQFQ e o SQFq.

3.5.1. Controle do recebimento da matéria-prima

O processador controle do recebimento da matéria-prima do processo de forjamento a quente (SQFQ I) é desdobrado e descrito no quadro 34. Seu sistemógrafo está na figura 55.

Quadro 34
Descrição do processador controle de recebimento da matéria-prima
SQFQ I.1 (Identificação) Identificar a matéria-prima proveniente da acaria. SQFQ I.2 (Inspeção) Inspecionar a matéria-prima de acordo com os requisitos necessários. SQFQ I.3 (Estoque) Controlar a embalagem e a preservação da matéria-prima no pátio de aço.
Sistemógrafo SQFQ I

O sistemógrafo SQFQ I encontra-se na figura 55. Acima, encontram-se a descrição de cada processador (vide quadro 34) e, também, a descrição das entradas, das saídas e das retromitâncias desse sistemógrafo. Após apresentação do sistemógrafo SQFQ I, será descrito o sistemógrafo SQFq I a fim de que possamos detectar em que pontos o SQFq I (vide figura 56) diverge do SQFQ I.

Figura 56 – Sistemógrafo do controle "real" do recebimento da matéria-prima

Sistemógrafo SQFq I

A descrição e o desdobramento, na figura 56, do processador controle "real" do recebimento da matéria-prima do processo de forjamento da forjaria (SQFq I), quando comparado com o sistemógrafo SQFQ I, contém somente os processadores: SQFq 1.1 e 2. Acima, mostra-se a descrição de cada processador, que é a mesma do quadro 34. Na comparação do sistemógrafo SQFQ I, na figura 55, com o sistemógrafo SQFq I, na figura 56, pode-se constatar que o SQFq I não controla a embalagem e a preservação das barras laminadas no pátio de aço.

A comparação do sistema SQFq I com o SQFQ I foi demonstrada acima e seu resultado será aplicado no modelo de qualidade (MQ) da forjaria. A seguir será avaliado o SQFQ I por meio da ISO 9001, a fim de que possamos realçar quais são os seus pontos fracos e não repeti-los no desenvolvimento do modelo MQ da forjaria.

A avaliação da ISO 9001 sobre o SQFQ I foi realizada por meio da superposição do SQI IV.1 (4.6/ISO 9001) sobre o SQFQ I, e constatou-se que os fornecedores de matéria-prima (aciarias) são avaliados previamente e que são submetidos à aprovação de amostras iniciais. Outro ponto importante encontrado foi a proposta de evolução das aciarias para a qualidade assegurada do aço. Estaremos dando sequência ao desdobramento do SQFQ apresentando o processador que controla o corte da barra.
3.5.2. Controle do corte da barra

O processador controle do corte da barra do processo de forjamento a quente (SQFQ II) é desdobrado e descrito no quadro 35. Seu sistemógrafo está na figura 57.

Quadro 35

Descrição do processador controle do corte da barra

SQFQ II.1 (Transporte) Controlar o manuseio e a preservação no transporte de matéria-prima, desde o pórtico de aço até a estação de corte (guilhotina/serra). SQFQ II.2 (Set-up do ferramental) Controlar a preparação do ferramental da guilhotina/serra. SQFQ II.3 (Set-up do primeiro tarugo) Aprovar o primeiro tarugo obtido na preparação da máquina de corte. SQFQ II.4 (Set-up da máquina) Controlar e aprovar a preparação da guilhotina. SQFQ II.5 (Peso) Controlar o peso do tarugo na operação de corte da barra de aço. SQFQ II.6 (Corte) Controlar a transformação da barra em tarugos. SQFQ II.7 (Rastreamento) Assegurar o rastreamento do tarugo.

![Diagrama do Sistema SQFQ II](image)

Figura 57 – Sistemógrafo do controle do corte da barra de aço

Sistemógrafo SQFQ II

Na figura 57, o SQFQ II.1, ou processador II.1, recebe informação do SQFQ I.3 sobre a disponibilidade da matéria-prima, informa ao II.5 que a barra de aço já está sendo transportada para a estação de corte (guilhotina/serra) e envia essa mesma informação ao II.2 que, por sua vez, também recebe informação do SQFQ I.3 sobre a disponibilidade da barra de aço. Essa mesma informação também é enviada ao II.3 e 4. O II.2 informa ao II.3 a 5 que o ferramental (lâminas de corte) já está preparado e liberado. O II.3 informa ao II.5 que o primeiro tarugo está aprovado, a seguir, essa mesma informação é retransmitida ao II.4 e enviada como feedback ao II.2. Já o II.4 informa ao II.5 que a máquina já está liberada para o início da operação e também passa ao II.2 e 3 essa informação como feedback. O II.5 informa ao II.6 que o tarugo já está com o peso especificado nas folhas de roteiro, também dá feedback ao II.2 a 4 sobre o desgaste das lâminas de corte. O II.6 informa ao II.7 que a barra já foi transformada em tarugo. O II.7 libera o tarugo com o respectivo código de corrente e especificação do material ao processador controle do aquecimento do tarugo (SQFQ III).

O sistemógrafo SQFQ II é mostrado na figura 57. Acima, encontram-se a descrição de cada processador (vide quadro 35) e, também, a descrição das entradas, das saídas e das retomitações desse sistemógrafo. Após apresentação do sistemógrafo SQFQ II, será introduzida a descrição do SQfq II (vide figura 58) para que possamos compará-lo com o SQFQ II.
A descrição e o desdobramento, na figura 58, do processador controle “real” do corte da barra de aço do processo de forjamento a quente da forjaria (SQfq II), quando comparados com o sistemógrafo SQFQ II, contêm somente os processadores: SQfq II.3 a 6. Acima, mostra-se a descrição de cada processador (vide quadro 35). Constata-se, nessa comparação do sistemógrafo SQFQ II, na figura 57, com o sistemógrafo SQfq II, na figura 58, que o SQfq II não controla o manuseio e a preservação no transporte das barras laminadas, nem a preparação do ferramental da guilhotina e não faz o rastreamento do tarugo.

Acima, apresentamos a comparação do sistema SQfq II com o SQFQ II cujo resultado será considerado no desenvolvimento do modelo de qualidade (MQ) da forjaria. A seguir, estaremos dando sequência ao desdobramento do SQFQ, apresentando o processador que controla o aquecimento do tarugo.

3.5.3. Controle do aquecimento do tarugo

Encontram-se, a seguir, no quadro 36, o desdobramento e a descrição do processador SQFQ III, controle do aquecimento do tarugo do processo de forjamento a quente da forjaria. Seu sistemógrafo está na figura 59.

Quadro 36

Descrição do processador controle do aquecimento do tarugo

SQFQ III.1 (Transporte) Controlar o manuseio e a preservação do tarugo no seu transporte da guilhotina ao forno. SQFQ III.2 (Estoque) Controlar o armazenamento, a embalagem e a preservação do tarugo antes da alimentação no forno. SQFQ III.3 (Bobina) Controlar a montagem das bobinas no forno de aquecimento. SQFQ III.4 (Set-up do primeiro tarugo) Aprovar o primeiro tarugo aquecido no forno. SQFQ III.5 (Set-up do forno) Controlar a preparação do forno de aquecimento. SQFQ III.6 (Carregamento) Controlar o manuseio e a preservação da alimentação do tarugo no forno de aquecimento. SQFQ III.7 (Temperatura) Controlar a temperatura de saída do tarugo no forno de aquecimento.
Sistemógrafo SQFQ III

Na figura 59, o SQFQ III.1, ou processador III.1, recebe informação do SQFQ II.7 sobre a disponibilidade do tarugo, também informa ao III.2 que o tarugo já foi transportado e está disponível. O III.2 informa aos processadores III.3 e 6 que o tarugo já está disponível para ser alimentado no forno de aquecimento. O III.6 informa ao III.7 que já está iniciando o carregamento do tarugo no forno de aquecimento. O III.7 envia ao III. 3 a 5 informação sobre a disponibilidade do tarugo. Já o III.3 informa ao III.4 que as bobinas de indução já estão montadas e liberadas para a produção e também envia ao III.5 e 7 essa mesma informação. O III.4 informa ao III.5 e 7 que o primeiro tarugo já está aprovado e ainda dá feedback ao III.3 sobre essa mesma informação. O III.5 avisa ao III.7 que o forno já está regulado e dá feedback ao III.3 e 4 sobre essa regulagem. Já o III.7 informa ao III.3 a 5 sobre a temperatura do tarugo e informa ao processador controle do forjamento que o forno já está regulado e preparado para o início do forjamento.

O sistemógrafo SQFQ III apresenta-se na figura 59. Acima, encontram-se a descrição de cada processador (vide quadro 36) e a descrição das entradas, das saídas e das retomitâncias desse sistemógrafo. Apresenta-se, também, a seguir, a descrição do processador SQfq III a fim de detectar em que pontos do SQfq III (vide figura 60), houve deterioração do SQFQ III.

Sistemógrafo SQfq III

A descrição e o desdobramento, na figura 60, do processador controle "real" do aquecimento do tarugo do processo de forjamento a quente da forjaria (SQFQ III), quando comparados com o sistemógrafo SQFQ III, contêm somente os processadores: SQFq III.3, 5 e 6. Acima, mostra-se a descrição de cada processador (vide quadro 36). Pode-se constatar, na comparação do sistemógrafo SQFQ III, na figura 59, com o sistemógrafo SQfq III, na figura 60, que o SQFq III não controla o manuseio do tarugo e a sua preservação, não aprova o primeiro tarugo aquecido e nem controla a temperatura de saída do tarugo do forno de aquecimento.

A comparação do sistema SQfq III com o SQFQ III será avaliada adiante e seu resultado será aplicado no modelo MQ proposto neste trabalho. Na sequência do desdobramento do SQFQ estamos apresentando o controle do forjamento.
3.5.4. Controle do forjamento

No quadro 37 encontram-se o desdobramento e a descrição do processador controle do forjamento do processo de se forjar a quente (SQFQ IV). Seu sistemógrafo está na figura 61.

Quadro 37

Descrição do processador controle do forjamento

SQFQ IV.1 (Descarregamento) Controlar o manuseio e a descrição do descarregamento do tarugo do forno. **SQFQ IV.2** (Estoque) Controlar o tempo de permanência do tarugo ao sair do forno de aquecimento, enquanto aguarda o momento de transferência ao primeiro estágio de forjamento. **SQFQ IV.3** (Set-up do ferramental) Controlar a preparação das matrizes de forjamento. **SQFQ IV.4** (Set-up do primeiro forjado) Estar preparado para aprovar a primeira peça forjada. **SQFQ IV.5** (Set-up da prensa) Controlar e aprovar a preparação da prensa de forjamento. **SQFQ IV.6** (Alimentação) Controlar o manuseio e a preservação do tarugo aquecido quando de sua alimentação no primeiro estágio da prensa de forjamento. **SQFQ IV.7** (Controle dimensional e metálico) Controlar: a capacidade do forjamento, a estabilidade, as tolerâncias dimensionais e geométricas, as dobras e trincas. **SQFQ IV.8** (Set-up do primeiro forjado) Aprovar a primeira peça forjada. **SQFQ IV.9** (Descarregamento) Controlar o manuseio e a preservação do descarregamento do forjado na prensa de forjar.

![Diagrama](attachment:figura61.png)

Figura 61 - Sistemógrafo do controle do forjamento

Sistemógrafo SQFQ IV

Na figura 61, o SQFQ IV.1, ou processador IV.1, recebe informação do SQFQ III.7 de que o tarugo já está aquecido e se encontra na faixa de temperatura especificada e também informa ao IV.2 que o tarugo está descarregado do forno de aquecimento. O IV.2, por sua vez, informa ao IV.3 e 6 que o tarugo está disponível para ser alimentado no primeiro estágio de forjamento (recallque ou "embrulhamento" do tarugo). As atividades do IV.3 a 5 procedem as demais atividades, ou seja, são atividades de preparação que devem ser realizadas anteriormente às atividades do IV.1, 2, 6, 7 e 9 que são de produção. O SQFQII.7 informa ao IV.3 a 5 que o tarugo está disponível, na estação de corte. O IV.3 informa ao IV.4, 5 e 7 que as matrizes estão preparadas e liberadas para o início de forjamento. Já o IV.4 informa ao IV.5 e 7 que as atividades preparatórias para aprovação da primeira peça estão disponíveis e, ainda, essa informação é enviada ao IV.3 como feed-back. Então o IV.5 informa ao IV.7 que a prensa mecânica está disponível para início do forjamento e também dá feed-back ao IV.3 e 4 que a prensa já está preparada. O IV.7 dá feed-back ao IV.3 a 5 que está forjada a primeira peça e também envia essa informação ao IV.8 que, por sua vez, dá feed-back ao IV.7 informando que o primeiro forjado foi aprovado. Então o IV.7 informa ao IV.9 que a primeira peça está forjada e aprovada, dando-se início à produção (forjamento). O IV.9 libera o forjado para o processador de controle da rebarbação/furação (SQFQ V).

O sistemógrafo SQFQ IV é mostrado na figura 61. Acima, encontram-se a descrição de cada processador (vide quadro 37) e, também, a descrição das entradas, das saídas e das retomitâtâncias desse sistemógrafo. Após descrição do sistemógrafo SQFQ IV, apresentam-se, abaixo, a descrição e o desdobramento do processador SQFq IV a fim de que possamos compará-los (vide figura 62).
Sistemógrafo SQfq IV

A descrição e o desdobramento, na figura 62, do processador controle "real" do processo de forjamento a quente da forjaria (SQfq IV), quando comparados com o sistemógrafo SQFQ IV, contém somente os processadores: SQfq IV.2, 4, 5, 6 e 8. Anteriormente, vimos a descrição de cada processador que é a mesma do quadro 37. Constata-se, na comparação do sistemógrafo SQFQ IV, na figura 61, com o sistemógrafo SQfq IV, na figura 62, que este último não controla o descarregamento do tarugo no forno de aquecimento, a preparação das matrizes de forjamento e nem a capacidade e a estabilidade do forjamento. Também não administra o manuseio e a preservação do forjado descarregado da prensa de forjar.

Comparam-se, acima, o sistemógrafo SQfq IV e o SQFQ IV. O resultado desse confronto será utilizado no modelo de qualidade (MQ) da forjaria. Após descrição dos processadores, será avaliado, por intermédio da ISO 9001, o SQFQ IV (controle do forjamento).

A avaliação da ISO por meio do SQI III.4 (4.10/ISO 9001) sobre o plano de controle englobou a abrangência das áreas, peças e operações e também a utilização do plano de controle no local do trabalho bem como a frequência das amostras. Dessa análise, pode-se verificar que o plano de controle, em algumas operações, estava em fase de implantação e o treinamento do pessoal nesse plano estava sendo encaminhado. Ainda foi observado que, em alguns casos, o plano de controle não estava no posto de trabalho e, quanto à frequência de inspeção por amostra, observou-se que era maior que o necessário. Por meio do SQI III.1 (4.8/ISO 9001) se analisou a identificação de peças quanto a: identificação de peças em cada estágio do processo, existência de uma área de segregação ("quarentena"), de embalagem adequada para refugos e de pendências das rejeições temporárias. Observou se os novos produtos forjados ou até mesmo forjados com desvios são liberados com identificação. Verificou também se existe o controle de forjados retrabalhados e se as identificações permitem o rastreamento. Após análise, evidenciou-se que o sistema não garante o rastreamento até o cliente e que não há identificação do forjado nas operações. Encontraram-se, ainda, lotes de barras sem plaqueta de identificação. Por outro lado, vê-se que a
embalagem dos forjados refugados é aberta e acessível. Foram encontrados forjados segregados, porém, estavam ao relento.

Na sequência da avaliação ISO 9001 observou-se, por meio do SQI II.2 (4.9/ISO 9001), se a máquina operatriz de conformação é liberada somente após aprovação do set-up, se todas as características especificadas são controladas, se existe controle sistemático durante o período de estabilização da máquina e se o operador utiliza a folha de processo. Como resultado dessa avaliação, pôde-se constatar que as folhas de processo não permanecem nos postos de trabalho. Além disso, foi encontrado um desenho de produto forjado desatualizado e não há controle da temperatura de aquecimento, nem antes e nem durante o forjamento. O plano de manutenção foi avaliado com base no SQI II.2 (4.9/ISO 9001) e verificou-se a existência do plano de manutenção preventiva, porém, muitas vezes, esse plano não era executado por causa da não liberação da máquina pela área de produção. Na análise da ação corretiva por meio do SQI I.6 (4.14/ISO 9001) avaliou-se se tal medida estava sendo realizada, se os prazos eram cumpridos, se existia feed-back, se existia aplicação das técnicas de resoluções de problemas, se existia formação de grupos e, ainda, se as não conformidades eram divulgadas. Constatou-se que não são utilizadas as técnicas de resolução de problemas e que as ações corretivas não eram documentadas. Verificou-se, então, que as ações corretivas eram informais e prevaleciam as ações interinas. A análise quanto ao manuseio de forjados foi realizada tendo como parâmetro o SQI III.3 (4.15/ISO 9001) e verificou-se que o sistema de forjamento permitia, muitas vezes, que um forjado caísse sobre o outro, provocando uma deformação. Tal deformação pode comprometer o sobremetal para usinagem. Essas avaliações serão aplicadas no desenvolvimento do modelo de qualidade (MQ) da forjaria. Na sequência ao desdobramento do SQFQ estamos apresentando o controle da rebarbação e da furação.

3.5.5. Controle da rebarbação e da furação

Encontram-se, a seguir, no quadro 38, a descrição e o desdobramento do processador controle da rebarbação e da furação do processo de forjamento a quente (SQFQ V). Seu sistemógrafo está na figura 63.

22 O controle de temperatura, eventualmente, era feito por um pirômetro manual ou pelo acompanhamento da cor do tarugo na saída do forno, relacionando-a com a temperatura.
Quadro 38
Descrição do processador controle da rebarbação e da furação
SQFQ V.1 (Estoque) Controlar a preservação do armazenamento do forjado antes da operação de rebarbar/furar. SQFQ V.2 (Set-up do ferramental) Controlar a preparação do ferramental da prensa de rebarbar/furar. SQFQ V.3 (Set-up da primeira peça) Estar preparado para aprovar a primeira peça forjada rebarbarada/furada. SQFQ V.4 (Set-up da prensa) Controlar e aprovar a preparação da prensa de rebarbação/furação. SQFQ V.5 (Alimentação) Controlar o manuseio e a preservação do forjado quando alimentado na prensa. SQFQ V.6 (Controle da rebarbação/furação) Controlar as tolerâncias dimensionais e geométricas do furo e diâmetro externo do forjado; dobras e “carepas” na operação de rebarbar/furar. SQFQ V.7 (Set-up da primeira peça) Aprovar a primeira peça forjada rebarbarada/furada. SQFQ V.8 (Descarregamento) Controlar o manuseio e a preservação do descarregamento do forjado na prensa. SQFQ V.9 (Estoque) Controlar o armazenamento do forjado rebarbado/furado. SQFQ V.10 (Rastreamento) Assegurar o rastreamento do forjado rebarbado e furado. SQFQ V.11 (Transporte) Controlar o transporte do forjado rebarbado da estação da prensa de rebarbar até a normalização.

Figura 63 - Sistemógrafo do controle de rebarbação/furação

Sistemógrafo SQFQ V
Na figura 63, o SQFQ V.1, ou processador V.1, recebe do SQFQ IV.9 a informação de que o forjado está disponível para o início da operação de rebarbar/furar. Já o SQFQ IV.8 informa ao V.2 a 4 que o primeiro forjado está aprovado. O V.1 informa ao V.5 que a peça forjada está disponível para o início da rebarbação/furação e o V.5 também informa ao V.6 que o forjado está pronto para ser alimentado na prensa de rebarbar/furar. O V.2 informa ao V.3, 4 e 6 que o ferramental a ser utilizado está disponível. Então o V.3 informa ao V.4 e 6 que os preparativos para se controlar o primeiro forjado rebarbado estão à disposição, também dá feed-back ao V.2 com essa informação. O V.4 informa ao V.6 que a prensa para rebarbar está liberada para o início da operação, também retorna essa informação ao V.2 e 3. Na sequência do fluxo do sistemógrafo, o V.6 informa ao V.7 que já está pronta a primeira peça produzida, também dá feed-back ao V.2 a 4 que já foi forjada a primeira peça. O V.7 dá feed-back ao V.6 que o primeiro forjado rebarbado está inspeccionado e liberado para início de produção. O V.6 informa ao V.8 que a produção está iniciada. Já o V.8 informa ao V.9 que o forjado rebarbado foi descarregado. Então, o V.9, por sua vez, informa ao V.10 que o produto em processo está sendo estocado. O V.10 informa ao V.11 que o forjado rebarbado está rastreado e disponível para o transporte. O V.11 informa ao processador controle da normalização (SQFQ VI) que o forjado rebarbado já foi transportado para a estação de normalização.

O sistemógrafo SQFQ V apresenta-se na figura 63. Acima, encontram-se a descrição de cada processador (vide quadro 38) e, também, a descrição das entradas, das saídas e das retromitâncias desse sistemógrafo. A seguir será apresentado o SQFQ V (vide figura 64) para que possamos compará-lo com o SQFQ V.

Figura 64 - Sistemógrafo do controle "real" da rebarbação/furação
Sistemógrafo SQfQV

A descrição e o desdobramento, na figura 64, do controle "real" da rebarbação e da furação do processo de forjamento a quente da forjaria (SQfQ V), quando comparados com o sistemógrafo SQFQ V, contém somente os processadores: SQfQ V.2, 3, 5 e 9. Acima, está a descrição de cada processador que é a mesma do quadro 38. Na comparação do sistemógrafo SQFQ V, na figura 63, com o sistemógrafo SQfQ V, na figura 64, pode-se constatar que o SQfQ V não controla o armazenamento e a preservação do forjado antes da rebarbação e da furação. Também não controla a aprovação da primeira peça já rebarbada e furada nem as características do produto e de processo nessa operação. Ainda não acompanha o transporte do forjado para o pátio de forjado nem o rastreamento do forjado rebarbado fundido.

Acima, apresenta-se a comparação do sistemógrafo SQfQ V com o SQFQ V cujo resultado será aplicado no modelo de qualidade (MQ) da forjaria. A seguir, estamos apresentando o processador controle da normalização que é um subsistema do SQFQ.

3.5.6. Controle da normalização

O processador controle da normalização do processo de forjamento a quente (SQFQ VI) é desdobrado e descrito no quadro 39. Seu sistemógrafo está na figura 65.

Quadro 39
Descrição do processo de controle da normalização
SQFQ VI.1 (Estoque) Controlar a preservação do armazenamento do forjado enquanto aguarda a normalização. SQFQ VI.2 (Set-up do ferramental) Controlar a preparação das bandejas do forno de normalização (somente na troca). SQFQ VI.3 (Set-up da primeira peça) Estar preparado para aprovar a primeira peça normalizada. SQFQ VI.4 (Set-up do forno) Aprovar o ciclo de normalização. SQFQ VI.5 (Transporte) Controlar o manuseio e a preservação do transporte do pátio para a estação de normalização. SQFQ VI.6 (Alimentação) Controlar o carregamento do forjado quando alimentado no forno de normalizar. SQFQ VI.7 (Metalúrgico) Controlar o ciclo de tratamento térmico. SQFQ VI.8 (Set-up da primeira peça) Aprovar a primeira peça normalizada. SQFQ VI.9 (Descarregamento) Controlar o manuseio e a preservação do descarregamento do forjado no forno. SQFQ VI.10 (Transporte) Controlar o transporte do forjado desde o forno de normalização até a máquina de medir dureza. SQFQ VI.11 (Controle metalúrgico) Controle da medição da dureza e análise metalográfica. SQFQ VI.12 (Rastreamento) Assegurar o rastreamento do forjado normalizado. SQFQ VI.13 (Transporte) Controlar o transporte do forjado normalizado até o estoque. Preservar o forjado no estoque.

102
Sistemógrafo SQFQ VI

Na figura 65, o SQFQ VI.1, ou processador VI.1, recebe do SQFQ V.11 a informação sobre a disponibilidade do forjado rebarbado. O SQFQ V.7 informa ao VI.2 a 4 que o primeiro forjado rebarbado já está aprovado. O VI.1 informa ao VI.5 que o forjado rebarbado está disponível para a próxima operação. O VI.5, por sua vez, informa ao VI.6 que o forjado rebarbado foi transportado para a estação de normalização. Já o VI.6 informa ao VI.7 que o forjado rebarbado já está carregado na bandeja de transporte de peças no forno. O VI.2 informa ao VI.3, 4 e 7 que o ferramental já está preparado. O VI.3 informa ao VI.2, 4 e 7 que a preparação para se aprovar a primeira peça está encerrada. O VI.4 informa ao VI.7 que o forno de normalização já está preparado, ainda dá feed-back aos processadores VI.2 e 3 sobre essa mesma informação. Então o VI.7 informa ao VI.8 que o primeiro forjado normalizado está pronto. Então, o VI.8 dá feed-back ao VI.7 que o primeiro forjado normalizado está dentro das especificações metalúrgicas. Ainda, na fluxo desse sistemógrafo, o VI.7 informa ao VI.9 e 13 que se deu início ao ciclo de tratamento térmico (normalização), também dá esse feed-back ao VI.2 a 4. Já o VI.9 informa ao VI.10 que o forjado normalizado foi descarregado do forno de normalização. O VI.10 informa ao VI.11 que a peça em processo já foi transportada para o local de inspeção de dureza e análise metalográfica. O VI.11 informa ao VI.12 que a medição da dureza e análise metalográfica do forjado normalizado está aprovada. Já o VI.12 informa ao VI.13 que o produto normalizado está disponível para ser transportado para o estoque. O VI.13 informa ao processador de controle de esmerilhamento (SQFQ VII) que o forjado normalizado já está no estoque aguardando a próxima operação.

O sistemógrafo SQFQ VI encontra-se na figura 65. Acima, estão a descrição de cada processador (vide quadro 39) e, também, a descrição das entradas, das saídas e das retromitâncias desse sistemógrafo. A descrição do SQfq VI (vide figura 66) é apresentada a seguir para que possamos detectar em que pontos diverge do SQFQ VI.
Sistemógrafo SQFq VI

A descrição e o desdobramento, na figura 66, do controle “real” da normalização do processo de forjamento a quente da forjaria (SQFq VI), quando comparados com o sistemógrafo SQFQ VI, contêm somente os processadores: SQFq VI.6, 7, 10, 11 e 13. Acima, está a descrição de cada processador que é a mesma do quadro 39. Consta-se nessa comparação do sistemógrafo SQFQ VI, na figura 66, com o sistemógrafo SQFq VI, na figura 66, que este último não controla o armazenamento do forjado enquanto aguarda a operação de normalizar. Também não controla a preparação do ferramental e a aprovação da primeira peça normalizada. Deixando, ainda, de verificar o desempenho do ciclo de normalização, o forjado para essa operação e o rastreamento do forjado normalizado.

Compara-se, acima, o sistemógrafo SQFq VI com o SQFQ VI e o resultado disso será aplicado no modelo de qualidade (MQ) da forjaria. Após apresentação da descrição dos processadores do controle da normalização será auditado o SQFQ VI por meio da ISO 9001 a fim de que possamos, no modelo MQ, realçar os pontos positivos.

A ISO com base no SQI III.5 (4.11/ISO 9001), avaliou a instrumentação e constatou que o aparelho de ultra-som e as balanças são aferidos somente em caso de dúvida e que a máquina de medição de dureza é aferida mensalmente, porém, não há registros de suas aferições. Na análise do rastreamento por meio do SQI III.1 (4.8/ISO 9001) foram encontrados, numa mesma caixa, forjados com diferentes geometrias e sem identificação. Também foram encontradas caixas com forjados rejeitados, sem a identificação e outras com tarugos também não identificados. A seguir, apresentamos mais um subsistema do SQFQ.

3.5.7. Controle do esmerilhamento

O processador controle de esmerilhamento do processo de forjamento a quente (SQFQ VII) está desdobrado e descrito no quadro 40. Seu sistemógrafo está na figura 67.

Quadro 40

Descrição do processador controle de esmerilhamento

SQFQ VII.1 (Transporte) Controlar a preservação do transporte do forjado normalizado para a estação de esmeril. SQFQ VII.2 (Armazenamento) Controlar o armazenamento/preservação da embalagem do forjado antes do esmerilhamento. SQFQ VII.3 (Set-up do ferramental) Controlar a preparação do ferramental do esmeril. SQFQ VII.4 (Set-up da primeira peça) Estar preparado para aprovar a primeira peça esmerilhada. SQFQ VII.5 (Set-up do esmeril) Controlar e aprovar a preparação do esmeril. SQFQ VII.6 (Acabamento) Assegurar a eliminação de rebarba no forjado. SQFQ VII.7 (Set-up da primeira peça) Aprovar a primeira peça esmerilhada. SQFQ VII.8 (Rastreamento) Assegurar o rastreamento do forjado esmerilhado. SQFQ VII.9 (Transporte) Controlar o manuseio e a preservação do transporte, da estação de esmerilhar até a decapagem.
Figura 67 – Sistemógrafo do controle do esmerilhamento

Sistemógrafo SQFQ VII
Na figura 67, o SQFQ VII informa ao VII.3 a 5 que o primeiro forjado normalizado já está aprovado. O VII.1 recebe informação do SQFQ VI.13 que o forjado normalizado está disponível para o esmerilhamento. Então, o VII.1 informa ao VII.2 que o forjado normalizado já foi transportado para a operação de esmerilhar. O VII.2 informa ao VII.6 que o forjado normalizado aguarda a próxima operação de esmerilhar. O VII.3 informa ao VII.4 a 6 que o rebolo já está preparado e liberado. O VII.4 informa ao VII.5 e 6 que a preparação para se aprovar a primeira peça está encerrada, dá feed-back ao VII.3 com essa informação. Então o VII.5 informa ao VII.6 que a estação de esmeril já está preparada para o início da operação e dá feed-back ao VII.3 e 4 sobre essa mesma operação. O VII.6 informa ao VII.7 que já se obteve a primeira peça esmerilhada. Então, o VII.7 dá feed-back ao VII.6 que a primeira peça esmerilhada está aprovada e liberada. A seguir, o VII.6 informa ao VII.8 que se iniciou a operação de esmerilhamento em produção normal, também dá ao VII.3 a 5 esse feed-back. O VII.8 informa ao VII.9 que o forjado esmerilhado está disponível para o transporte da estação de esmeril para a decapagem mecânica. O VII.9 informa ao processador de controle de decapagem (SQFQ VIII) que a peça esmerilhada está disponível para início da próxima operação.

O sistemógrafo SQFQ VII é mostrado na figura 67. Acima, encontram-se a descrição de cada processador (vide quadro 40), bem como a descrição das entradas, das saídas e das retomitâncias desse sistemógrafo. A seguir, apresenta-se a descrição do processador SQFq VII (figura 68) para que possamos compará-lo com o SQFQ VII.

Figura 68 – Sistemógrafo do controle “real” do esmerilhamento

Sistemógrafo SQFq VII
A descrição e o desdobramento, na figura 68, do sistemógrafo SQFq VII controle “real” do esmerilhamento do processo de forjamento a quente da forjaria (SQFq VII), quando comparados com o sistemógrafo SQFQ VII, contém somente os processadores: SQFq VII.1, 2, 5, 6 e 9. Acima, encontra-se a descrição de cada processador (vide quadro 40). Pode-se constatar na comparação do sistemógrafo SQFq VII, na figura 67, com o sistemógrafo SQFq VII, na figura 68, que o SQFq VII não controla o set-up da primeira peça esmerilhada, não controla a preparação do esmeril e, ainda, não controla o rastreamento do forjado esmerilhado.

A comparação do sistemógrafo SQFq VII com o SQFQ VII é apresentada acima. Essa comparação será aplicada no modelo (MQ) da forjaria. Na sequência do desdobramento do SQFQ apresentamos o processador de controle da decapagem mecânica.
3.5.8. Controle da decapagem mecânica

Encontram-se a seguir, no quadro 41, o desdobramento e a descrição do processador controle da decapagem mecânica do processo de forjamento a quente (SQFQ VIII). Seu sistemógrafo está na figura 69.

Quadro 41

Descrição do processador controle da decapagem mecânica

SQFQ VIII.1 (Armazenamento) Controlar o armazenamento e a preservação da embalagem do forjado esmerilhado. **SQFQ VIII.2 (Set-up da primeira peça)** Estar preparado para aprovar a primeira peça decapada. **SQFQ VIII.3 (Set-up da máquina)** Controlar e aprovar a preparação da decapadora mecânica. **SQFQ VIII.4 (Transporte)** Controlar o manuseio e a preservação do transporte no posto de trabalho. **SQFQ VIII.5 (Acabamento)** Controlar as variáveis do processo eliminando-se a “carepa”. **SQFQ VIII.6 (Set-up da primeira peça)** Aprovar a primeira peça decapada mecanicamente. **SQFQ VIII.7 (Rastreamento)** Assegurar o rastreamento do forjado ou decapado. **SQFQ VIII.8 (Transporte)** Controlar o manuseio e a preservação do transporte, da estação de decapagem até o pátio de forjado acabado.

![Diagrama de processamento](image)

Figura 69 - Sistemógrafo do controle da decapagem mecânica

Sistemógrafo SQFQ VIII

Na figura 69, o SQFQ VIII.1, ou processador VIII.1, recebe informação do SQFQ VII.9 que o forjado esmerilhado está disponível. O SQFQ VII.7 informa ao VIII.2 e 3 que o forjado esmerilhado já está provado. O VIII.1 informa ao VIII.4 que o forjado esmerilhado está disponível para início da operação de decapagem. O VIII.4 informa ao VIII.5 que o forjado normalizado esmerilhado está ao lado da estação de decapagem. Então o VIII.2 informa ao VIII.3 e 5 que já está preparado para se aprovar a primeira peça decapada. O VIII.3 informa ao VIII.5 que o equipamento de decapagem mecânica está preparado e liberado para produção e ainda dá *feedback* ao VIII.2 sobre essa informação. Então o VIII.5 informa ao VIII.6 que o primeiro forjado já está decapado mecanicamente. O VIII.6 dá *feedback* ao VIII.5 de que a primeira peça foi aprovada. O VIII.5 informa ao VIII.7 que está iniciada a produção nessa estação, também dá ao VIII.2 e 3 esse *feedback*. Já o VIII.7 informa ao VIII.8 que o forjado está disponível para ser transportado. O VIII.8 informa ao processador de controle de expedição que o forjado acabado já se encontra no estoque final.

O sistemógrafo SQFQ VIII é mostrado na figura 69. Acima, encontram-se a descrição de cada processador (vide quadro 41) e, também, a descrição das entradas, das saídas e das retomitâncias desse sistemógrafo. A descrição do SQFQ VIII apresenta-se a seguir a fim de que possamos detectar em que pontos houve divergências com o SQFQ VIII (vide figura 70).

![Diagrama de processamento](image)

Figura 70 - Sistemógrafo do controle "real" da decapagem mecânica

106
Sistemógrafo SQfq VIII

A descrição e o desdobramento, na figura 70, do controle "real" da decapagem do processo de forjamento à quente da forjaria (SQfq VIII), quando comparados com o sistemógrafo SQFQ VIII, contêm somente os processadores: SQfq VIII:1, 4 e 8. Acima, mostra-se a descrição de cada processador (vide quadro 41). A comparação do sistemógrafo SQFQ VIII, na figura 69, com o sistemógrafo SQfq VIII, na figura 70, permitiu constatar que o SQfq VIII não controla a aprovação da primeira peça descapada mecanicamente nem o transporte do forjado decapado até o pátio de forjado nem tampouco o rastreamento do forjado nesse estágio.

Acima, apresenta-se a comparação do sistemógrafo SQfq VIII com o SQFQ VIII, cujo resultado será aplicado no modelo de qualidade (MQ) da forjaria. A seguir, será apresentado o último subsistema do SQFQ.

3.5.9. Controle da expedição

No quadro 42 encontram-se o desdobramento e a descrição do processador controle da expedição do forjado no processo de forjamento à quente (SQFQ IX). Seu sistemógrafo está na figura 71.

Quadro 42
Descrição do processador controle da expedição

SQFQ IX.1 (Estoque) Controlar o manuseio, a embalagem e a preservação do forjado acabado. SQFQ IX.2 (Rastreamento) Assegurar o controle do rastreamento do forjado acabado. SQFQ IX.3 (Expedição) Assegurar o controle da entrega de forjados aos clientes.

Figura 71 - Sistemógrafo do controle da expedição do forjado

O sistemógrafo SQFQ IX encontra-se na figura 71. Acima, mostram-se a descrição de cada processador (vide quadro 42), bem como a descrição das entradas, das saídas e das retromitências desse sistemógrafo. A descrição e o desdobramento do processador SQfq IX (vide figura 72) serão desenvolvidos a seguir para que possamos compará-lo com o SQFQ IX.

Figura 72 - Sistemógrafo do controle "real" da expedição do forjado
Sistemógrafo SQfq IX

O controle “real” da expedição do forjado do processo de forjamento a quente da forjararia (SQfq IX), na figura 72, quando comparado com o sistemógrafo SQFQ IX, contém somente o SQfq IX.3. Acima, mostra-se a descrição de cada processador (vide quadro 42). O sistemógrafo SQFQ IX, na figura 71, comparado com o sistemógrafo SQfq IX, na figura 72, permitiu observar que o SQfq IX não controla o manuseio, a embalagem, a preservação do forjado acabado no estoque nem o rastreamento do forjado nesse estado.

A comparação do sistemógrafo SQfq IX com o SQFQ IX está apresentada acima e seu resultado será aplicado no modelo de qualidade (MQ) da forjararia. Após apresentação da descrição dos processadores, procurou-se realizar uma auditoria no SQFQ IX por meio da ISO 9001 a fim de que possamos, no modelo MQ, realçar os pontos positivos.

A auditoria ISO avaliou: a situação da embalagem, a adequação da identificação, a aparência do forjado, a existência de controle da permanência do forjado no estoque (tempo e níveis de estoque) e a existência de rastreamento. Essa análise, feita por meio do SQI III.3 (4.15/ISO 9001), possibilitou a constatação da existência de estoque de forjados na operação de limpeza aguardando liberação para o cliente, ou seja, fora do local apropriado. Também se viu que a identificação do lote é feita por meio de uma etiqueta com o número do forjado. Observou-se que há risco de se inverter as operações do fluxo, bem como de deixar de executar uma operação do roteiro de fabricação. Outro ponto crítico é que poderia ser encontrado um forjado de inspeção de rotina sem a operação de normalização em uma caixa do estoque final.

Os SQs: SQE – SQe (SQEe), SQF – SQf (SQFf), SQFQ – SQfq (SQFQfq) aqui descritos em muito contribuíram para o desenvolvimento do modelo de qualidade (MQ) da forjararia. Outro ponto fundamental é que, por meio da comparação entre os sistemas “ideal” e o “real”, muito pudemos aprender. Além disso, o resultado dessas observações nos levará ao modelo MQ. Finalizando, pudemos entender os principais aspectos dos sistemas de qualidade quando os comparamos com o sistema de qualidade SQI que nada mais é do que se não a própria ISO 9001 sob o formato de um sistema com seus subsistemas adequados aos processos da empresa e da forjararia. No próximo capítulo apresentaremos os processos de melhoria contínua que impulsionaram o modelo inicial de qualidade (MIQ), transformando-o no modelo de qualidade (MQ), já no nível de forjaria “classe mundial”.

108
Capítulo 4

Melhoria contínua e integração

O sistema de melhoria contínua e integração (Smci) contribui muito com o modelo de qualidade proposto neste trabalho, propiciando uma maior aproximação entre os sistemógrafos “real” e “ideal” da qualidade do forjado. Ele foi subdividido em: gerenciamento de processo integrado (GPI), integração e automação (IA), gerenciamento humano (GH) e planejamento estratégico da qualidade (PEQ). Cada um desses subsistemas enfatiza um aspecto importante da manufatura com qualidade e, juntos, ampliam as suas possibilidades de abrangência.

O gerenciamento de processo integrado (GPI) é um sistema de melhoria contínua e integração que foi desenvolvido por Slater¹. O GPI auxilia na implantação de processos padronizados, audita sistemas de qualidade, envolve a organização, incentiva trabalhos em grupo e busca a satisfação do cliente. Ele foi proposto por Slater no momento em que a aciaria LTV Steel realizava uma reorganização para encontrar maior competitividade. Na época, essa aciaria enfrentava problemas com a padronização de processos e a lucratividade. Então, Slater, por meio de técnicas benchmarking e da revisão de todos os processos daquela organização, desenvolveu o GPI, cujo foco está no processo e produto. Para alcançar seu objetivo, ele aplicou ferramentas tais como: CCQ (círculos de controle de qualidade), melhorias contínuas (kaizen) e gerenciamento da qualidade total (TQM – total quality management).

O sistema de integração e automação² (IA), por sua vez, é constituído pela manufatura integrada por computador (CIM – computer integrated manufacturing), pelo TQM (total quality management) e pelo JIT (just-in-time).

¹ Slater da empresa LTV Steel, Cleveland, Ohio, USA desenvolveu o IPM – integrated process management (1991: 107-109), designado por nós, no Brasil, como GPI.
No CIM, a integração dá-se com o CAD/CAM3, que é uma ferramenta de grande poder nas soluções de problemas da manufatura integrada. Nesse tipo de manufatura, os chamados CAD/CAM são acessados em computadores de quarta geração. O processador CAD (\textit{computer aided design}), ou o desenho auxiliado por computador, e o CAM (\textit{computer aided manufacturing}), ou a fabricação auxiliada por computador, formam o termo CAD/CAM que é pronunciado em conjunto, sendo, portanto, um sistema \textit{integrado}. Então o CIM é a manufatura integrada por computador que interliga os sistemas CAD/CAM com as demais áreas da organização4. Outro sistema de integração pertencente ao IA é a qualidade total TQM.

A qualidade total, TQM, prevê que cada executor seja responsável pela qualidade que produz, fazendo “certo na primeira vez”, ou seja, a inspeção deve ser \textit{on job}, durante cada fase do processo, e não apenas no final. Na busca da “perda-zero” deve-se: conseguir o aperfeiçoamento constante, implementar o autocontrole, utilizar o \textit{poka-yoke}5, utilizar o CEP e introduzir auditoria de qualidade. O TQM é um programa no qual a qualidade é enfocada no âmbito da empresa como método6. Esse programa visa à satisfação do cliente, mas também busca o desempenho funcional do produto acima da expectativa, ou seja, passa pela qualidade do relacionamento da empresa com os clientes e os funcionários, gerando qualidade de vida no trabalho e na relação com a sociedade. O terceiro subsistema do IA é o JIT.

A integração no IA pode ser conduzida pelo JIT7, também chamado de fabricação no mínimo8 tempo com baixo custo e alta qualidade. Essa condução tem como princípio que a superioridade de uma empresa não é somente uma questão monetária, mas também de flexibilidade na fabricação. Para o JIT, bem como para os demais processos de melhoria contínua e integração, é de suma importância o gerenciamento humano.

3 Ver Sabroff, Douglas e Altan (1982: 141-144).

4 Ver Bayley (1981: 1-8).

5 \textit{Poka-yoke} é um sistema à prova de erros.

6 A partir dos 14 pontos do Dr. Deming, Fernandes e Costa Neto, procuram explorar o significado do TQM conforme os seus elementos principais, ou seja, foco no cliente, foco no processo, comprometimento de todos, orientação para resultados, aprendizagem e liderança. Ver Fernandes e Costa Neto (1996: 173-187).

7 O \textit{just-in-time} ou qualidade total, é bom, mas não basta. As empresas devem criar habilidades estratégicas para ter uma verdadeira vantagem. Em razão da concorrência neste mercado sujeito a turbulências, necessitamos ter uma estratégia flexível. A produtividade, hoje, é o sistema de produção exuto que está fechando o ciclo iniciado por Taylor. Dessa forma, a melhoria contínua é uma questão de saber escolher os programas e em qual orden pó-los em prática. Ver Hayes e Pisano (1994: 78-81).

8 A minimização do tempo é o encurtamento no processo de fabricação, reduzindo-se o tempo de espera, de preparação, de inspeção e de transporte. Isso é um dos pontos que torna o fluxo de fabricação flexível. Esse é o conceito JIT – \textit{just in time}.
O gerenciamento humano (GH), como sistema de melhoria contínua e integração, foi por nós desenvolvido por meio da observação, pelo período de alguns anos, entre a relação do meio ambiente intra e inter-empresa. O GH é a chave para o sucesso da organização. Modernizar sistemas e máquinas, qualificar a mão-de-obra, criar mecanismos de controle, conseguir envolvimento\(^9\) dos fornecedores e colaboradores tornaram-se medidas prioritárias e fundamentais às indústrias para otimizar seus padrões de qualidade. Buscam-se, hoje, empresas cada vez mais flexíveis e cuja mão-de-obra tenha capacidade de absorção de novas tecnologias, bem como possa adaptar-se aos modernos sistemas de gestão da qualidade. As pessoas são a chave do sucesso das novas empresas porque, por maior que seja o grau de automação de uma indústria, é sempre ao elemento humano que cabem as decisões, as ações e a qualidade destas. Daí a importância de se elaborar um bom plano de treinamento para os recursos humanos. Além disso, deve-se encontrar uma forma de envolver as pessoas de uma organização, buscando-se o comprometimento delas. É esse comprometimento que garantirá um empenho na busca do aperfeiçoamento da produção. Para obter esse resultado, o GH e o I&A podem ser integrados por meio do planejamento estratégico de qualidade.

O planejamento estratégico de qualidade (PEQ) é um outro sistema de melhoria contínua e integração e é constituído pela estratégia de negócios\(^10\) e pela estratégia de manufatura. A estratégia de negócios tem a visão voltada para os fatores externos à forjaria: mercado, ciência e sociedade política; enquanto a estratégia de manufatura tem a visão voltada para os fatores internos à forjaria: capacidade produtiva, recursos humanos, custos e nível de qualidade. A dificuldade maior está nos fatores externos, pois fogem ao domínio da forjaria.

O desenvolvimento do PEQ está fortemente ligado à visão-missão da empresa e aos objetivos a serem atingidos. A visão-missão contém valores fundamentais da empresa, procura a busca da satisfação do cliente, do colaborador, da sociedade e dos acionistas. A competitividade é definida por meio da inovação, do grau de especialização e do benchmarking. De posse desses dados, projetam-se os objetivos para as estratégias. Então, estabelecem-se as estratégias suportes à qualidade por intermédio do “chão-de-fábrica”,

\(^10\) Segundo Drucker, quatro conceitos mostrarão como deverá ser gerenciada a fábrica do século XXI, ágil, flexível e integrada como “uma flotilha de navios”. A utilização do CEP para controlar qualidade e produtividade. A nova contabilidade fabril que nos permite tomar decisões na produção como negócio. A “flotilha”, ou módulo, organizacional do processo de produção combinando flexibilidade com padronização. Finalmente, a abordagem sistêmica que nos ajuda a
vendas, marketing, serviços, desenvolvimento do produto e processo, treinamento/educação, finanças, outros.

Na sequência do desenvolvimento dos sistemas de melhoria contínua e integração vamos desdobrar inicialmente o gerenciamento de processo integrado.

4.1. Gerenciamento de processo integrado

Durante a década 70, comentava-se, na América, que os japoneses estavam no apogeu da produtividade. Para compreender a razão de tal progresso, grupos e mais grupos de ocidentais visitaram a “terra do sol nascente” para indagar sobre os seus segredos. Alguns acreditavam que a fórmula do sucesso estava nos equipamentos tipo “estado-da-arte”; já outros observavam que os entusiásticos trabalhadores faziam ginástica e cantavam no início da jornada de trabalho; muitos, ainda, diziam que a diferença estava na cultura. Porém o segredo estava na focalização do processo, utilizando-se um modelo especialmente desenvolvido para o gerenciamento da sua qualidade. Slater, ao analisar o modelo japonês, constatou que existe, nessa estrutura, um árduo trabalho de planejamento da concepção dos sistemas e de controle de processos, que se opõe ao sistema ocidental de enfatizar a solução de problemas, deixando, às vezes, de fazer o planejamento.

O ponto forte do GPI é a padronização de processo desenvolvida de forma expressiva na indústria japonesa, e que constitui uma das diferenças entre o sistema de produção oriental e o ocidental. No oriente, trabalha-se de forma coletiva e padronizada, enquanto no ocidente os trabalhadores são “individualistas”, fazem seu próprio “processo”, ou seja, elaboram resultados semelhantes em diferentes caminhos, os chamados processos personalizados. Pode-se dizer que os trabalhadores orientais sabem exatamente o que fazer, como fazer, por que fazer e seguem o mesmo caminho todas as vezes que trabalham em um processo e, ainda, que o gerente oriental também conhece o processo. Tal característica gera resultados muito positivos no que diz respeito à produtividade e à qualidade. No entanto, não se pode dizer que

12 Um exemplo de padronização de processo e de produto como o proposto no GPI pode ser encontrado na produção do Big Mac, um sanduíche do Mc Donalds. Ele tem o mesmo sabor, padrão e preço quer seja em Tóquio, Nova Iorque, São Paulo ou Campinas.
o “individualismo” do trabalhador ocidental não tenha as suas vantagens, pois permite que haja uma maior adaptabilidade da produção a diferentes circunstâncias.

A melhoria contínua, nesse caso, é conseguida por meio da utilização da criatividade desse trabalhador, da padronização do processo a cada mudança e da inserção dessa modificação na revisão do processo.

Por isso, o GPI destaca a questão da administração dos recursos humanos, recomendando, para os dias atuais, um modelo participativo que, na comparação com moldes mais autoritários, se mostrou mais eficaz.

Além dessas comparações, Slater, na elaboração do GPI, desenvolveu uma enorme pesquisa, que será apresentada a seguir, em razão da sua importância para a criação do nosso modelo de melhoria contínua.

O desenvolvimento do GPI, na sua primeira consideração, ponderou o resultado da pesquisa em mais de 300 clientes e fornecedores, que seguiam, cada um, seu próprio modelo de gerenciamento de qualidade, utilizando-se das seguintes ferramentas: carta de controle (Deming), trabalho em grupo (Juran) e análise de custo (Crosby)\(^4\). A segunda consideração destacou que, na fabricação do produto, o seu controle é direcionado somente às suas características, enquanto o processo flui por si só. Segundo Slater, esse é o ponto crucial que diferencia o GPI das outras formas de gerenciamento, já que se preocupa não somente com o controle do produto, mas também com o controle do processo. O terceiro “segredo” revelado pelo GPI diz respeito a integração das ferramentas e planos de ações das empresas. Na maioria dos casos é feito um gerenciamento desses elementos como entidades separadas, sem que se busque uma integração entre eles. Integrar planos e ferramentas no gerenciamento estratégico, acompanhá-los por intermédio de indicadores e apoiá-los com disciplina e envolvimento é também função do GPI. É a focalização! Esse método tem uma árdua missão que exige um intenso trabalho de desdobramento das atividades, descomplicando-as e, depois, padronizando-as. Dessa padronização emerge o gerenciamento de rotina claramente definido e uma estrutura disciplinada com a participação de pessoas comprometidas.

\(^4\) Ver Slater (1991: 5).
A descrição do GPI de Slater foi desdobrada em seis passos15 e nós os descreveremos por meio da teoria do sistema geral. No quadro 43, encontram-se a descrição e o desdobramento do gerenciamento de processo integrado (GPI). Seu sistemógrafo está na figura 73.

Quadro 43

Descrição do gerenciamento de processo integrado

GPI I (Envolvimento) Envolver toda a organização, estabelecer mudanças, assegurar plano de sugestões, treinar técnicas estatísticas, apoiar grupos de trabalho estabelecer um comitê de qualidade e definir responsabilidades. **GPI II** (Variáveis) Identificar as variáveis de entrada e de saída do projeto do produto e do processo, reanalisar e acompanhar as variáveis. **GPI III** (Padronização) Descrever, padronizar, revisar, controlar, parametrizar e auditar os processos. Definir, manter e inspecionar os equipamentos, utilizar técnicas de autocontrole, implementar as ações corretivas, arquivar as auditorias, as sugestões e as soluções dos problemas. **GPI IV** (Manual) Elaborar, revisar e informatizar o manual dos processos; treinar e reforçar a organização nos procedimentos do manual, assegurar a manutenção, atualização e utilização dos processos e dos planos de controle, assegurar os sistemas de comunicação. **GPI V** (Monitoramento) Controlar estatisticamente os processos, assegurar a comunicação visual, elaborar controles automatizados, propiciar e incentivar as reuniões de grupo. **GPI VI** (Diagnose e melhoria) Diagnostificar o controle do processo, reauditar os processos, reconhecer e recompensar as atividades dos trabalhadores em grupo e simplificar o custo da qualidade.

![Figura 73 - Sistemógrafo do gerenciamento de processo integrado](image)

Sistemógrafo GPI

Na figura 73, o GPI I, ou processador I, recebe informação sobre a disponibilidade de recursos materiais e humanos. Após processálos por meio do envolvimento de pessoas, envia ao II a confirmação do comprometimento de toda a organização e a criação do comitê de qualidade. Após a identificação das variáveis de entradas e saídas, o II informa ao III que elas estão estabelecidas e correlacionadas. O III informa ao IV que os processos já estão descritos, padronizados e revisados. Então, o IV informa ao V que o manual com todas as descrições de processos já está disseminado por toda a organização. Então o V informa ao VI que os processos estão sob controle. A seguir, no fluxo do sistemógrafo GPI, apresentam-se as suas retrofits. Uma retrofits do sistemógrafo GPI (vide figura 73) é destacada com o retorno da informação do V para o IV para que se possa revisar os manuais de processos e, se necessário, também dar feed-back ao I sobre a necessidade de reconhecer e recompensar os grupos de trabalho da organização. O VI dá feed-back ao II, informando sobre novas variáveis chaves, encontradas durante a implantação do manual de processos, que podem afetar a qualidade final do produto e, ainda, dá feed-back ao III para que se introduzam ações corretivas em processos que possuem potencial de deterioração e ao V sobre a estabilidade e capacidade dos processos. Finalmente, o VI informa ao cliente que o produto e o serviço estão disponíveis.

15 Ver Slater (1991: 199-232). Os seis passos são: o envolvimento, a identificação das variáveis de entrada e de saída, a padronização, o manual de processos, o monitoramento e a diagnose.
O sistemógrafo GPI encontra-se na figura 73. Acima estão a descrição de cada processador (vide quadro 43), bem como a descrição das entradas, das saídas e das retromitâncias desse sistemógrafo. Após descrevermos as conexões arborescentes e retromitantes do sistemógrafo GPI, será apresentado o primeiro passo desdobrado, que é o envolvimento.

4.1.1. Envolvimento

O envolvimento de toda a organização no sistema de qualidade (SQ) é fundamental para o seu sucesso. Para alcançar esse objetivo, a empresa deve estabelecer a sua missão e os seus valores. A missão deve ser amplamente divulgada a todos na organização e, após divulgação, espera-se uma visível mudança no ambiente de trabalho, que vai desde o “chão-de-fábrica” até a alta direção. No envolvimento, devem-se definir quais serão os multiplicadores dos processos, que serão treinados intensivamente nas disciplinas do GPI, objetivando movimentar toda a organização, conduzindo-a ao comprometimento, ao formar grupos de trabalho e, ainda, preparar seus colaboradores para entender e aplicar todos os processos. Paralelamente, um comitê deliberativo deve ser formado pelo primeiro nível administrativo da empresa e, por meio de reuniões regulares, procurar focalizar a política de qualidade, a avaliação das melhorias contínuas e os indicadores da qualidade. Também, cada membro do grupo de primeiro nível pode tornar-se coordenador de um comitê executivo formado pelo segundo nível administrativo da empresa para tratar de assuntos mais específicos. Encontram-se no quadro 44 a descrição e o desdobramento do processador envolvimento\(^\text{16}\) (GPI I). Seu sistemógrafo está na figura 74.

\begin{table}[h]
\centering
\begin{tabular}{|l|}
\hline
GPI I.1 (Envolvimento) Assegurar o envolvimento de todos na organização. GPI I.2 (Mudança) Acompanhar as mudanças culturais e técnicas em toda a organização. GPI I.3 (Facilitador) Pesquisar, identificar e incentivar colaboradores da organização que possam liderar a qualidade. GPI I.4 (Treinamento) Dar treinamento em técnicas estatísticas a todos os envolvidos com a qualidade. GPI I.5 (Grupo de trabalho) Assegurar a criação de grupos de trabalho visando a melhorias contínuas. GPI I.6 (Comitê) Criar o comitê deliberativo (primeiro nível) e executivo (segundo nível). GPI I.7 (Responsabilidade) Estabelecer, delegar e distribuir responsabilidade de qualidade a todos na organização. GPI I.8 (Visão) Assegurar a criação, a manutenção e a evolução dos valores e crenças da empresa, divulgá-la a todos. GPI I.9 (Missão) Estabelecer a missão da empresa, divulgá-la aos envolvidos: sociedade, sindicatos e colaboradores. GPI I.10 (Integração) Estabelecer a integração entre a empresa e seus colaboradores. GPI I.11 (Integridade) Manter a imparcialidade dos colaboradores. \\
\hline
\end{tabular}
\end{table}

\(^{16}\) Ver Slater (1991: 115-139).
Sistemógrafo GPI I

Pode-se ver, na figura 74, o GPI I.1, ou processador I.1, recebe informação da disponibilidade de recursos humanos e materiais e, após processá-la, envia o resultado ao I.2 relatando sobre o envolvimento da organização. Durante o processo de mudança o I.2 recebe do A e B informação sobre a visão-missão da empresa e, após processamento dessas informações, visão, missão e envolvimento, informa ao I.3 que as mudanças estão em processo dinâmico. Já o I.3 informa ao I.4 que os facilitadores já estão identificados e motivados. O I.4 dá feedback ao I.2 informando que todos na organização foram treinados em técnicas estatísticas, enviando também essa informação ao I.5, que por sua vez recebe informação do C e D sobre a integridade dos colaboradores e o estado de integração dos departamentos da companhia. Dessa forma, o I.5 de posse destes dados, integração e treinamento, informa ao I.6 sobre a composição dos grupos de trabalho dedicados a melhorias contínuas. O I.6 informa ao I.7 que os comitês já estão estabelecidos. O I.7 estabelece a responsabilidade de qualidade na organização e da feedback ao I.1 informando se todos já possuem atribuição nas atividades de qualidade e também envia essa informação ao processador variáveis (GPI II).

O sistemógrafo GPI I encontra-se na figura 74. Acima estão a descrição de cada processador (vide quadro 44) e, também, a descrição das entradas, das saídas e das retomitâncias desse sistemógrafo. A seguir, apresentam-se as variáveis do produto e do processo, pois por intermédio deles poderemos correlacionar as necessidades do cliente, determinadas no produto com o seu processo de obtenção.

4.1.2. Variáveis do produto e do processo

As variáveis identificam quais são as entradas do projeto do produto que mais impactam nas saídas do projeto do processo, por intermédio do diagrama causa-e-efeito de Ishikawa, que analisa o sistema e identifica as fontes de variações. As variáveis de entrada são a “marca do produto”, portanto, são permanentes e representam as necessidades do cliente, tais como: dimensões, aparência, propriedades, performance, prazo de entrega e serviço.

Na definição das variáveis chaves de entrada deve-se tomar cuidado com as solicitações do cliente, pois cada desejo tem um custo. Esse processo, na organização, deve ser executado por especialistas em desdobramento da função qualidade (QFD – quality function deployment). Nessa técnica, o marketing e a qualidade, como departamentos, vão
ouvir a “voz do consumidor”. Essas informações são levadas à engenharia que as “traduz” para a linguagem de produto.

As variáveis de saída são a “marca do processo”, logo, são transientes e representam: temperatura, pressão, velocidade, preparação, sequência do processo, instruções de trabalho e outras. As variáveis do processo podem deixar de ser controladas rotineiramente, desde que se tornem estáveis e capazes. No entanto, devem-se auditá-las numa frequência pré-estabelecida. A seguir, no quadro 45, procuramos fazer a descrição e o desdobramento do processador variáveis^{17} (GPI II). Seu sistemógrafo está na figura 75.

Quadro 45
Descrição do processador variáveis

GPI II.1 (Variável de entrada) Identificar as variáveis chaves de entrada relacionadas ao produto. **GPI II.2** (Variável de saída) Identificar as variáveis de saída relacionadas ao processo. **GPI II.3** (Reanálise) Reanalisar todo o processo por meio da técnica de Ishikawa (diagrama causa-e-efeito). **GPI II.4** (Acompanhamento) Acompanhar todos os procedimentos durante o roteiro de fabricação do produto, assegurar a aplicação do processo na engenharia e nas áreas suportes. **GPI II.5** (Auditoria) Auditor todos os procedimentos durante o ciclo de fabricação.

Figura 75 – Sistemógrafo das variáveis

Sistemógrafo GPI II
Na figura 75, o GPI II.1, ou processador II.1, informa ao II.2 sobre as necessidades do cliente. Já o II.2 dá feed-back ao II.1 informando-o sobre a identificação das variáveis que são controladas durante o processamento do produto e também envia essa informação ao II.3 que, por sua vez, após reanalisá-la, informa ao II.4 sobre as causas e os efeitos encontrados no processamento. O II.4 informa ao II.5 sobre a capacidade e estabilidade do processo. Já o II.5, de posse da informação sobre o acompanhamento do processo, dá feed-back ao II.1 sobre prováveis distorções durante o processamento do produto e também envia essa informação ao processador padronização (GPI III).

O sistemógrafo GPI II está na figura 75. Acima, mostram-se a descrição de cada processador (vide quadro 45), bem como a descrição das entradas, das saídas e das retomitâncias desse processador. Após a descrição das variáveis do produto e do processo, apresenta-se a padronização.
4.1.3. Padronização de processos

A padronização de processos é conseguida por meio da sua revisão, ouvindo-se as sugestões dos colaboradores, de tal modo que se possa simplificar os processos, porém sem que se altere a sua identidade. A descrição e o desdobramento do processador padronização (GPI III) encontram-se no quadro 46. Seu sistemógrafo está na figura 76.

Quadro 46
Descrição do processador padronização
GPI III.1 (Descrição) Assegurar a descrição dos processos. GPI III.2 (Padronização) Assegurar a padronização dos procedimentos e atividades dos processos. GPI III.3 (Revisão) Estabelecer e assegurar as melhorias contínuas nos processos. GPI III.4 (Controle) Controlar todos os procedimentos dos processos. GPI III.5 (Parametrização) Estabelecer parâmetros dos processos. GPI III.6 (Manutenção) Assegurar a escolha de todos os equipamentos de fabricação/inspeção, bem como sua manutenção. GPI III.7 (Inspeção) Assegurar a capacidade, a repetibilidade e a reproducibilidade dos equipamentos. GPI III.8 (Ação corretiva) Assegurar a implementação das técnicas de autocontrole ("perda-zero") e poka-yoke. GPI III.9 (Ação corretiva) Assegurar o estabelecimento das ações corretivas. GPI III.10 (Auditoria) Elaborar auditorias nos processos. GPI III.11 (Arquivo) Assegurar as informações sobre as auditorias. GPI III.12 (Sugestão) Assegurar as informações sobre as sugestões, bem como sobre as respectivas soluções.

Figura 76 - Sistemógrafo de padronização

Sistemógrafo GPI III
Na figura 76, o GPI III.1, ou processador III.1, informa ao III.2 que os processos já foram descritos. O III.2 relata ao III.3 que os processos e procedimentos já estão padronizados, dá feed-back ao III.1 sobre a padronização. O III.3 informa ao III.4 que os processos passaram pela análise de melhoria contínuas e também retorna essa informação ao III.2 para possível alteração da padronização. Já o III.4 relata ao III.5 se todos os processos estão sob controle. O III.5 informa ao III.6 se os processos já estão parametrizados e também retorna essa informação ao III.2. Então o III.6 dá feed-back e informa ao III.2, 3, 5 e 7 sobre a definição e a escolha dos equipamentos planejados na manutenção. O III.7 relata ao III.8 que estão asseguradas a capacidade, reproduzibilidade e repetibilidade dos equipamentos. O III.8 informa ao III.9 que está implementando as técnicas de autocontrole e também retorna essa informação ao III.7. Já o III.9 informa ao III.10 que as ações corretivas foram encaminhadas e estão sendo acompanhadas. O III.10 relata ao III.11 que as auditorias já foram realizadas e também transmite essa informação na forma de feed-back ao III.8. Ainda, o III.11 informa ao III.12 que estão arquivadas todas as auditorias realizadas nos processos. E o III.12 dá feed-back ao III.1 e 11 sobre as sugestões e soluções encaminhadas para que se possa alterar e arquivar as descrições dos processos e, ainda, envia essa informação ao processador manual (GPI IV).

19 Repetibilidade é a variação entre sucessivas medições feitas pelo mesmo operador em peças de mesma característica. Reproduzibilidade é a diferença entre a média medida por vários operadores que se utilizem da mesma amostra para coletar as medidas.
O sistemógrafo GPI III é mostrado na figura 76. Acima, apresentam-se a descrição de cada processador (vide quadro 46) e, também, a descrição das entradas, das saídas e das retromitâncias desse sistemógrafo. A seguir, apresenta-se o quarto estágio do GPI denominado manual de processos.

4.1.4. Manual de processos

O manual de processos contém a descrição de todos os procedimentos, desde o desenvolvimento do produto até a sua elaboração por meio do roteiro de fabricação. Esse manual deve sofrer constante revisão, incluindo-se as sugestões provenientes de todos os níveis, de tal forma que se possa manter e atualizar todos os processos e planos de controle. O treinamento com a participação de todos, desde o “chão-de-fábrica”, passando-se pelos escritórios, até chegar na alta administração, é outro ponto de contribuição ao desenvolvimento do manual. Na atualidade, por meio da informática em rede, o manual pode ser atualizado a todo momento e acessado on-line, em cada posto de trabalho. Encontram-se no quadro 47 a descrição e o desdobramento do processador manual\(^\text{20}\) (GPI IV). Seu sistemógrafo está na figura 77.

Quadro 47
Descricão do processador manual

Sistemógrafo GPI IV

Na figura 77, o GPI IV.1, ou processador IV.1, informa ao IV.2 que o manual está elaborado. O IV.2 informa ao IV.3 que o manual de processos já está liberado, revisado e disponível para treinamento e também dá *feedback* ao IV.1 sobre pontos a serem melhorados. Já o IV.3 informa ao IV.4 que toda organização já foi treinada no manual de processos. O IV.4 informa ao IV.5 sobre a necessidade de enfatizar alguns pontos na utilização dos processos e planos de controle e também dá *feedback* ao IV.3 sobre atualizações efetuadas nos processos, de tal modo que provoque um novo treinamento dos envolvidos. O IV.5 informa ao IV.6 que todos estão devidamente treinados. Essa mesma informação é retornada ao IV.3. Então o IV.6 informa ao IV.7 que todos os meios de comunicação disponíveis estão ativados e, ainda, dá *feedback* ao IV.3 sobre essa mesma informação. O IV.7 dá *feedback* ao IV.1, informando que o manual de processos já está digitalizado por meio de um software de gerenciamento de qualidade e também envia essa informação ao processador monitoramento (GPI V).

O sistemógrafo GPI IV encontra-se na figura 77. Acima, mostram-se a descrição de cada processador (vide quadro 47), bem como a descrição das entradas, das saídas e das retromitâncias desse sistemógrafo. Após essa breve apresentação do manual, descreveremos o monitoramento dos processos que visa a controlar todos os parâmetros envolvidos na fabricação do produto.

4.1.5. Monitoramento dos processos

O monitoramento dos processos utiliza um sistema de controle “inteligente” que mantém todas as pessoas da organização informadas e atualizadas. Esse controle trabalha com as seguintes ferramentas: avisos, controles automatizados de processos, dispositivos óticos e sonoros, controladores lógicos programáveis, audiovisuais, vídeos, palestras, rádio e televisão, *poka-yoke* e gestão à vista. O sistema gestão à vista é uma forma de comunicação que se utiliza de quadros alocados nos centros de trabalhos, nos quais diariamente, ou em uma frequência estabelecida, um novo comunicado é trocado simultaneamente em todos os
quadros da companhia. A descrição e o desdobramento do processador monitoramento21 (GPI V) encontram-se no quadro 48. Seu sistemógrafo está na figura 78.

Quadro 48

Descrição do processador monitoramento

GPI V.1 (Monitoramento) Assegurar o monitoramento do processo por meio de controle estatístico. GPI V.2 (Gerenciamento à vista) Assegurar a comunicação por meio de um sistema visual. GPI V.3 (Controle automatizado) Assegurar o controle automático dos processos por meio de poka-yoke. GPI V.4 (Reuniões de grupo) Apoiar as reuniões de grupo utilizando-se técnicas de envolvimento.

![Diagrama do Sistemógrafo de Monitoramento](image)

Figura 78 - Sistemógrafo de monitoramento

Sistemógrafo GPI V

Pode-se ver, na figura 78, o GPI V.1, ou processador V.1, informa ao V.2 que cada fase do processo está monitorada estatisticamente por meio do cp e cpk. O V.2 informa ao V.3 que a comunicação visual por intermédio da gestão à vista está implementada. Já o V.3 informa ao V.4 que estão instalados, em operação, chaves do processo produtivo, os sistemas poka-yokes e, também, retorna ao V.1 essa mesma informação. O V.4 dá feedback ao V.1 e 2 informando que as reuniões de grupo já estão programadas e também envia essa informação ao processador diagnose (GPI VI).

O sistemógrafo GPI V encontra-se na figura 78. Acima estão a descrição de cada processador (vide quadro 48) e, também, a descrição das entradas, das saídas e das retromitâncias desse sistemógrafo. O sexto e último passo do GPI é a diagnose e melhoria.

4.1.6. Diagnose e melhoria

A diagnose e melhoria do processo podem ser realizadas por meio de auditorias internas e externas ou planos de sugestões oriundos dos times de trabalho. A descrição e o desdobramento do processador diagnose22 (GPI VI) encontra-se no quadro 49. Seu sistemógrafo está na figura 79.

Quadro 49

Descrição do processador diagnose e melhoria

GPI VI.1 (Diagnose) Assegurar a diagnose dos controles dos processos. GPI VI.2 (Auditoria) Assegurar continuidade das auditorias nos processos. GPI VI.3 (Melhoria) Assegurar continuidade e apoiar os grupos de trabalho voltados para melhoria. GPI VI.4 (Custo) Garantir a contínuo simplificação e otimização do custo de qualidade. GPI VI.5 (Premiação) Estabelecer critérios para recompensar e reconhecer os trabalhos em grupo.

21 Ver Slater (1991: 175-197).

22 Ver Slater (1991: 199-232).
Figura 79 – Sistemógrafo de diagnóstico

Sistemógrafo GPI VI

Na figura 79, o GPI VI.1, ou processador VI.1, informa ao VI.2 que os controles dos processos já estão diagnosticados. O VI.2 informa ao VI.3 que os processos foram auditados e, também, dá *feedback* ao VI.1 sobre problemas encontrados nos processos. Já o VI.3 informa ao VI.4 sobre trabalhos desenvolvidos, visando a otimizar a qualidade. O VI.4 informa ao VI.5 sobre a simplificação e otimização do custo da qualidade promovidas pelos trabalhos das atividades em grupos. Por sua vez, o VI.5 dá *feedback* ao VI.1 sobre os principais trabalhos desenvolvidos em grupos e também dá *feedback* ao VI.3 sobre os grupos que já foram reconhecidos. Então, envia essas informações: principais trabalhos e os respectivos grupos reconhecidos, ao processador de envolvimento (GPI I).

O sistemógrafo GPI VI encontra-se na figura 79. Acima, mostram-se a descrição de cada processador (vide quadro 49), bem como a descrição das entradas, das saídas e das retromitâncias desse sistemógrafo. Como pode ser visto, o GPI é um importante meio de integração do produto e do processo. Veremos, a seguir, como o sistema de integração e automação completa esse gerenciamento em busca da qualidade.

4.2. Integração e automação

A crescente necessidade de se produzir bens de melhor qualidade com menores custos tem feito com que as empresas caminhem para a integração e automação industrial. Essa corrida é a chamada "fábrica do futuro", um conceito mundialmente conhecido como CIM. A automação vem invadindo áreas tais como: comercial, bancária, escritório, educacional, agrícola e industrial. Porém, a execução dessa busca está em um sistema planejado e organizado. Pois sistema exige criatividade num primeiro momento e, posteriormente,

23 O CIM é o instrumento da nova concepção do *lay-out* da engenharia produtiva, segundo características da integração e flexibilidade. O computador integra as diversas partes do processo de produção, aproximando o fluxo de manufatura e um ritmo contínuo em que os custos de transporte e estoque interopercional sejam reduzidos, ao mesmo tempo que, flexibilizando as operações, numa mesma linha fábrica vários produtos e minima os investimentos. Da mesma forma que o TQM abandona a concepção de qualidade avaliando-a de conformidade e passa a abranger todas as atividades organizacionais. Qualidade está em tudo, representando a característica de flexibilização do conceito, que passa da referência restrita ao produto para ligar-se a todas as atividades, e é feita por todos, refletindo a integração. Ver Torres (1991: 712-775).

investimentos, tornando-se necessário que ele seja ordenado e sustentado por uma metodologia e plano de ações. O CIM26 deve se apoiar na estratégia de negócios que, por sua vez, estuda o comportamento do mercado e como a empresa deve comercializar o produto. No entanto, não só de estratégias se constitui essa metodologia, ela depende também do fator humano, no que concerne à realização dos objetivos por meio de estruturas organizacionais. Além da manufatura integrada por computador, a integração e automação também estão apoiadas pela qualidade total27 (TQM).

Antes de abordarmos o TQM, vamos apresentar o TQC que é a sua forma inicial. A qualidade total (TQC) é um sistema de qualidade aplicado em marketing, engenharia, produção e serviços visando a atender ao cliente. O TQC é uma nova abordagem da melhoria contínua em todos os aspectos da empresa, destacando-se a sobrevivência. Quando aplicado, além dos recursos materiais e dos processos técnicos e gerenciais, utiliza-se do mais importante dos recursos: o humano. Na qualidade orientada para o cliente por meio do TQC, cada funcionário da organização, desde o mais alto executivo até o operador no “chão-de-fábrica”, é envolvido. Quando o gerenciamento e o controle do ciclo de vida do produto e serviço são acompanhados desde a concepção, passando pela produção até o atendimento ao cliente dizemos que foi aplicado o TQM28 (total quality management). Para entendermos a evolução do controle de qualidade no TQM vamos descrevê-lo em seis estágios29.

O primeiro estágio no desenvolvimento do campo da qualidade foi o chamado controle de qualidade com responsabilidade do operador, ocorrido no final do século XIX. No início do século XX, tivemos um segundo estágio que se caracterizou pelo controle de qualidade exercido pelo contramestre, em razão da complexidade atingida pelo sistema de manufatura.

Durante a Primeira Guerra Mundial, um grande número de trabalhadores recorria ao contramestre, o que fez surgir a necessidade de se criar o cargo de inspetor em tempo integral, dando início a um terceiro estágio do desenvolvimento da qualidade. Após esse período, com a Segunda Guerra Mundial, houve novas necessidades de gerar produtos e colocá-los no

26 Ver Gunn, Freund e Pinheiro (1985: 20-22).
28 Como conceito, conhecemos a qualidade há milênios, mas só recentemente é que ela surgiu como função de gerência formal. Em sua forma original era relativa e voltada para a inspeção; hoje, essas atividades evoluíram para o planejamento estratégico. Vide Garvin (1992: 3).
29 Ver Wolf e Chandron (1996: 1-37) sobre visão sistêmica e TQM.

123
mercado, fazendo surgir a chamada produção em massa em cujo sistema o controle de qualidade é estatístico, caracterizando, assim, um quarto estágio.

Num momento posterior, com o aprimoramento das estruturas do processo de produção, a função qualidade voltou-se para o “chão-de-fábrica”, no qual o operador é responsável pelo produto manufaturado, enquanto o planejamento da qualidade tornou-se corporativo. Esse é o quinto estágio.

No sexto estágio, temos a qualidade gerenciada pelo TQC. O TQC tornou-se uma importante ferramenta na prática de gerenciamento da qualidade na virada da década 70 para 80. Na travessia da década de oitenta rumo à de noventa, o TQC começa a se transformar no TQM, no qual a qualidade é a principal estratégia dos novos negócios. O TQM é a orientação para resultados, o foco dos processos, o comprometimento de todos, a responsabilidade do dirigente máximo da organização, e, sobretudo, a busca da satisfação do cliente.

A satisfação do cliente é o mínimo que uma empresa competitiva pode oferecer, sendo necessário prever e até mesmo exceder essa meta na busca da qualidade. Para prosperar a médio ou longo prazo, a empresa precisa se orientar para resultados. Uma das formas de obtê-los é estabelecer uma relação entre o preço e a qualidade, um critério ganhador de pedidos. Outro meio é a focalização nos processos, devendo-se aperfeiçoá-los sistematicamente, analisar os resultados e suas causas e desencadear ações corretivas para estabilizá-los. Somando-se aos critérios anteriores, apresenta-se o comprometimento, que é a grande chave, talvez uma das principais alavancas de uma organização, porque os processos são realizados por pessoas, que os transformam em produto e serviços, encontrando a satisfação do cliente. Para se obter o comprometimento, recomenda-se a técnica do empowerment, que é a gestão de recursos humanos e de comunicação entre a administração e colaboradores. Essa técnica deve ser conduzida na forjaria pelo gerente geral.

30 A história do pensamento da qualidade iniciou-se nos anos 20: a ordem era simplificar e padronizar o trabalho. Foram exemplos deste movimento a administração científica de F. Taylor e as linhas de montagem de H. Ford; nos anos 30: a qualidade do produto industrial era controlada e os defeitos, eliminados com a ajuda da estatística, destacou-se nesta fase W. Shewart do laboratório Bell; nos anos 50: o controle de qualidade norte-americano era imitado pelos japoneses, os especialistas dos EUA que influenciavam a indústria do Japão são W.E. Deming e J.M. Juran; nos anos 60: os japoneses impuseram um controle de qualidade mais radical, com o controle de qualidade total de G. Taguchi e os círculos de qualidade de K. Ishikawa; nos anos 70: surgiu a administração por objetivos nos EUA, segundo a qual todos os níveis de uma organização deveriam trabalhar para atingir objetivos específicos, mas ainda a sensação era de estagnação; nos anos 80: os EUA passaram a imitar os japoneses nos métodos de qualidade de produção, criando a gestão da qualidade total (TQM). Motorola e Xerox foram algumas das empresas líderes do TQM; no anos 90: começaram a surgir as idéias de foco no cliente.
O gerente geral tem um papel fundamental por liderar a introdução, implementação e evolução da qualidade total. O envolvimento e o comprometimento são representados por atitudes e ações claras e visíveis no estabelecimento e comunicação da visão-missão da organização e na divulgação e envolvimento dos objetivos por toda organização.

O gerente geral deve liderar pelo exemplo, realizar contatos periódicos com o "chão-de-fábrica", ouvir as pessoas de todos os níveis, trabalhar em equipe, trabalhar educando a média gerência, fornecer os meios necessários para que os colaboradores possam desenvolver seus objetivos, fomentar o orgulho pelo trabalho nos colaboradores, agradecer a todos os resultados bem sucedidos e acompanhar pessoalmente a evolução da qualidade. Além do CIM e TQM, a integração e automação (IA) conta com a fabricação no mínimo tempo – JIT.

O JIT, ou seja, a fabricação de uma peça no momento exatamente certo para a operação seguinte foi uma inovação que, nas empresas ocidentais, se iniciou no departamento de materiais e não no departamento de produção. Ressalta-se que o JIT está intimamente ligado à produção, incluindo-se o controle de qualidade e a manutenção. O sucesso dessa técnica é alcançado quando ela é dirigida pela produção. Para a sua aplicação, faz-se necessário que a produção seja puxada, que os processos sejam flexíveis, que a qualidade seja "zero-defeito", que os equipamentos trabalhem no conceito TPM (total productive maintenance), chamado manutenção produtiva total e, o mais importante, que as pessoas possam ser consideradas e valorizadas\(^{31}\). A manufatura JIT incorpora a idéia de fluxo contínuo, que é o tipo de manufatura na qual a idéia é reduzir o tempo de set-up, a variabilidade, o inventário e o lead-time da fabricação\(^{32}\), conseguindo-se uma alta qualidade do produto, flexibilidade\(^{33}\), velocidade e baixo custo. A redução do tempo e o inventário entre as estações de trabalho na fábrica criam a necessidade de um sistema de produção integrado tal que as estações de processamento anteriores e posteriores se comuniquem da melhor forma possível, buscando-se uma relação entre cliente e fornecedor. Dessa forma, o CIM, o TQM e nos serviços, nas quais, ao mesmo tempo, há uma fusão com os planos de qualidade total na área produtiva. Ver Albrecht (1995: 1-5).

\(^{32}\) Ver Silva (1991) em Inventário minimizado e a sua correlação com o lead-time na implantação de células.

\(^{33}\) Uma das maneiras de se tornar flexível é vencer a corrida contra o relógio. Para tal, recomendamos desistir de se ter economia de escala como principal prioridade, devemos reestruturar o quadro de funcionários estabelecendo equipes multifuncionais que busquem rapidez e flexibilidade acima de tudo, devemos dividir essas equipes por produtos, processos,
o JIT formam o processador integração e automação \(^{34}\) (IA), descrito e desdobrado no quadro 50. Seu sistemógrafo está na figura 80.

Quadro 50

Descrição do processador integração e automação

IA I (CIM)

Computer (C): Utilizar o computador para planejar, organizar e simplificar todas as decisões em todos os níveis de uma organização. *Integrated (I):* Conectar todos os computadores e sistemas dentro de um plano global de comunicação e integração. *Manufacturing (M):* Estabelecer uma organização de manufatura na sua forma ampla, ou seja, tal como uma unidade estratégica de negócios: "chão-de-fábrica", engenharia, negócios e suporte. **IA II (TQM):** Estabelecer uma ferramenta gerencial para o comprometimento de todos visando ao sucesso do negócio, buscando a satisfação do cliente por meio de melhoramento contínuo. Assegurar a qualidade nos produtos e serviços, processos, sistemas e manter o bom clima organizacional. **IA III (JIT):** No sistema *just-in-time*, o processo deve ser flexível. Estabelecer a organização em unidades de negócios em um ambiente celular, com a produção puxada, *kan-ban*, ambiente qualidade total, manutenção produtiva total e envolvimento de pessoas \(^{35}\).

Figura 80 - Sistemógrafo da integração e automação

Sistemógrafo IA

Na figura 80, o IA I, ou processador I, recebe da alta administração informação sobre os recursos disponíveis e *feed-back* do cliente sobre a sua satisfação. Após processamento, o I informa ao II e III sobre a integração dos processos no "chão-de-fábrica", nos negócios, nas áreas suportes e na engenharia. Já o II, após receber dados do I, processa-os e retorna com a informação sobre o nível de qualidade e, ainda, informa ao III sobre o estado de envolvimento das pessoas da organização. Então, o III, processa os resultados informados pelo II e I e dá *feed-back* sobre a flexibilidade alcançada na organização e, ainda, envia esses mesmos dados ao sistema de qualidade da forjaria.

O sistemógrafo IA é mostrado na figura 80. Acima, encontram-se a descrição de cada processador (vide quadro 50) e, também, a descrição das entradas, das saídas e das retromitâncias desse processador. A seguir serão apresentados os processadores CIM, TQM e JIT que são o desdobramento do IA.

A manufatura integrada por computador (CIM) está na figura 81. Nela, pode-se ver quatro subsistemas que são: projeto do produto e do processo (IA 1.1), planejamento e controle da manufatura (IA 1.2), sistemas flexíveis de manufatura (IA 1.3) e tecnologia de informação (IA 1.4). O segundo desdobramento do IA é o TQM.

Figura 81 – Processadores da manufatura integrada por computador

O gerenciamento da qualidade total (TQM) está na figura 82. Nessa figura, pode-se ver também quatro subsistemas que são: projeto do produto e do processo (IA II.1), fornecedor e manufatura (IA II.2), envolvimento (IA II.3) e cliente (IA II.4). O terceiro desdobramento do IA é o JIT.

38 Vide nota de rodapé anterior.
O just- in- time39 (JIT) está na figura 83. Nela, vê-se quatro subsistemas, tais como: o projeto do produto e do processo (IA III.1), o planejamento e controle da manufatura (IA III.2), integração (IA III.3) e melhoria contínua (IA III.4). As principais ferramentas do CIM, do TQM e do JIT serão discutidas a seguir, iniciando-se com a integração e a automação do projeto.

39 Ver Gunn (1988: 21-61).
4.2.1. Integração e automação do projeto

Ao se definir o planejamento do projeto do produto e processo (vide figura 81) busca-se preceder às funções de engenharia que norteiam o incremento na direção da automação. Sob vários aspectos, a automação da engenharia é muito similar à automação da fábrica, porque ambas aumentam a produtividade. No crescimento da adaptabilidade, a engenharia do produto utiliza o CAD para o desenvolvimento de novos produtos. A principal aplicação do CAD dá-se no desenho do produto, ou seja, no chamado sistema gráfico. Pode também ser aplicado na modelagem de sólidos, de tal modo que a representação do produto seja mais completa. Os benefícios do CAD são muitos e pode-se enumerá-los: alta produtividade, desenho de melhor qualidade, otimização na construção dos protótipos, análise dinâmica, banco de dados, integração com a engenharia de processos, otimização do planejamento do

processo, redução de custos na introdução de novos produtos, maior velocidade nas alterações de produto e encurtamento do tempo de projeto, que também pode ser auxiliado pelo CAE.

A engenharia assistida pelo computador (CAE – *computer aided engineering*) é um aplicativo de análise de engenharia tal como o método dos elementos finitos (FEM – *finites elements method*). Esse método pode reduzir drasticamente o tempo gasto em desenvolvimento e testes na engenharia dos protótipos, durante o período de desenvolvimento, quer seja do produto, quer seja do ferramental (processos). Outra ferramenta é a GT (*group technology*), chamada tecnologia de grupo, que é uma técnica para agrupar produtos em famílias, buscando-se a padronização. O desenho computadorizado e o seu processo de fabricação é integrado por meio da automação da fabricação.

4.2.2. Integração e automação do processo de fabricação

Um exemplo de integração e automação do processo de fabricação na forjaria é o desenvolvimento do forjado e das matrizes utilizadas no forjamento. Iniciamos com o produto do cliente, chamando-o na tela de uma *work-station* pelo CAD, colocamos o sobremetal necessário e, por meio de parâmetros do cliente, tais como localização e fixação da primeira operação da usinagem, estabelecemos o desenho do forjado. A partir do forjado, desenvolvemos o processo de fabricação por meio do CAPP e o projeto da matriz de forjamento por intermédio do CAD. De posse do desenho das matrizes, por meio do CAM, estabelecemos a fabricação das matrizes. Uma vez estabelecido o CAD/CAM (desenho do forjado/desenho das matrizes/programa de fabricação das matrizes), o próximo passo é enviarmos os dados necessários à fabricação das matrizes, via DNC. Enquanto as matrizes estão sendo construídas na matrizaria em tornos CNC, o roteiro de fabricação de forjados é confirmado no sistema CAPP. Todos esses sistemas são integrados no *oracle*, via CIM. Essa técnica pode ser coordenada, na forjaria, pela engenharia de processos.

A engenharia de processos ou projeto do processo (vide figura 81), buscando maior adaptabilidade, planeja tecnicamente o processo de fabricação ou o conjunto de operações para que um produto possa ser manufaturado, e desempenhar o papel de elemento integrador entre a engenharia de produto e o “chão-de-fábrica”. Dessa forma, a engenharia de processo é a “ponte” entre a engenharia do produto e a produção. Essa função é realizada por meio do
CAPP (computer aided process planning), ou planejamento do processo auxiliado pelo computador, que integra os dados gerados pela aplicação CAD que, pelo desenho do produto e especificações, gera as informações utilizadas no processamento do produto. Nessa integração, quando o “chão-de-fábrica” operar as máquinas de controle numérico44 (CNC), os programas para reger essas máquinas podem ser gerados por meio do CAM (computer aided manufacturing) ou manufatura auxiliada por computador. Como apoio a essas técnicas, recomenda-se aplicar a tecnologia de grupo.

Na engenharia de processo, utiliza-se a tecnologia de grupo45 (GT) para a formação de famílias de peças, visando-se a simplificação do processo produtivo. A tecnologia de grupo ou produção por família é uma ferramenta administrativa/técnica, um princípio organizacional, cujo objetivo é analisar e arranjar as peças de uma gama de produtos com seus respectivos processos produtivos. Dessa forma, elaboram-se famílias e células que podem ser utilizadas na racionalização da manufatura. Nas células, recomenda-se substituir algumas máquinas convencionais por CNC.

A máquina-ferramenta de controle numérico computadorizado (CNC – computer numerically controlled) tem um pequeno computador dedicado a ela no qual um programa é gerado e armazenado na memória. Algumas máquinas CNC possuem um sistema automatizado de carga-descarga da peça-obra (gantry) e troca de ferramentas. Enquanto a máquina está executando um bloco do programa, simultaneamente, o comando está acessando os blocos seguintes. As máquinas CNC trabalham em tempo real e possuem programa que permite aos operadores implementar, rapidamente, alterações de engenharia. Por outro lado, o sistema de distribuição do controle numérico46 (DNC – distributed numerically controlled) consiste em diversas máquinas CNC ligadas a um computador central que carrega e distribui os programas CNC para cada máquina. Esse sistema é indicado para a integração de manufatura com o planejamento e controle da produção. Na forjaria esse sistema CNC/DNC é utilizado na fabricação de matrizes cujo suporte é o CAM e pós-processador47.

44 As máquinas CNC e a rápida evolução da indústria e da automação do país podem ser vistas em Mangels (1986: 44-45).
O CAM abrange a máquina-ferramenta convencional com CLP (controlador lógico programável), a máquina com comando numérico, os sistemas CNC/DNC, os sistemas flexíveis de manufatura⁴⁸ (FMS – *flexible manufacturing system*), processos de controle, inspeção e teste assistido pelo computador, *set-up* por robô e carga-descarga automática por robô. O sistema de programação de máquinas-ferramentas CLP⁴⁹, CNC, robôs e medição de coordenadas acessa dados do produto e processo, que são editados, depurados e simulados graficamente, resultando, por meio de um pós-processador, no programa propriamente dito e esse programa é veiculado, via DNC, às máquinas do parque fabril. A estrutura FMS é um sistema gerenciador definido como um grupo de máquinas CNC pertencentes a uma célula flexível (FMC – *flexible manufacturing cell*), que se conectam com uma estação de trabalho, um sistema de transporte ou movimentação de materiais e peças. No FMS⁵⁰ a peça-obra é colocada em um palete codificado, tornando-se possível o reconhecimento do produto em processo, permitindo-se acessar o programa-obra. A tecnologia FMS propõe-se obter a flexibilidade do sistema *job-shop*, porém como se estivesse operando na velocidade de um sistema *transfer-line*. De fato, o FMS é um sistema de manufatura intermediário entre esses dois extremos, que procura encontrar a vantagem de ambos. Os chamados robôs⁵¹ vão desde os manipuladores até os inteligentes (*smart*) – estado da arte. Os robôs inteligentes possuem “visão”, sensibilidade, *feedback* na manipulação e certa capacidade para decisão. São utilizados em áreas insalubres com trabalho repetitivo⁵². A forjaria, no forjamento a quente, é um ambiente de processo “agressivo” onde está presente a manipulação de carga-descarga de peças em processo com excesso de peso e também com a presença de calor e ruído. Ainda na integração⁵³ do CAD/CAM com o CAPP/FMS está o planejamento e controle da manufatura.

4.2.3. Planejamento e controle da manufatura

O planejamento e controle da manufatura (vide figura 81) tem por função elaborar o programa de produção (PP), a partir do programa de vendas (PV) que é elaborado por *marketing* apoiado no pedido em carteira (PC), requisitado pelo cliente. O clássico MRP I (*material requirement planning*), ou planejamento das necessidades de materiais, desenvolve o planejamento da produção relacionando as necessidades de vendas por meio da lista de

materiais e tempos de produção, na explosão dos pedidos dos clientes e da demanda estimada, comparando-se com o inventário existente. Já o sistema MRP II (manufacturing resources planning) ou planejamento dos recursos da manufatura, segunda geração54 do MRP, é um sistema de planejamento que se apoia na lógica do MRP I, mas também inclui módulos para o controle do “chão-de-fábrica”, pesquisando-se as necessidades de planejamento, projeções da demanda, suprimentos, ordem de produção, avaliação do custo, programa da manutenção preventiva, roteiro de fabricação do CAPP e necessidade de mão-de-obra55. O planejamento MRP deve também considerar a integração da manutenção.

4.2.4. Integração da manutenção

A manutenção56 pode ser corretiva – aleatória e em alguns casos preventiva – programada, evoluindo para a preditiva – sensorial e a produtiva total57 (MPT) (vide figura 81). O ciclo da vida e os custos de manutenção de um equipamento são estudados pela terotecnologia. Inicia-se pela especificação e concepção do projeto, passa-se pelo processo, instalação, ensaios, acompanha-se a vida útil e disponibilidade, até atingir a fase de análise da substituição do equipamento pelo desgaste e uso. Essa metodologia considera a manutenção corretiva e preventiva.

A manutenção corretiva é realizada quando o equipamento está parado e já apresentou falha. Ela é chamada de emergência quando é realizada imediatamente e é chamada programada no caso de a parada não causar transtorno ao processo produtivo, como em instalação stand-by. A manutenção corretiva visa a eliminar as causas de um defeito ou falha existente. Esse defeito pode ser motivado pela quebra de um componente da própria máquina, causando a sua parada e conseqüentemente a paralisação do processo produtivo. Já a manutenção preventiva é a realizada quando o equipamento estiver em operação ou até mesmo parado, se for assim programado. Ela pode ser chamada de rotina ou sistemática, quando a intervenção planejada independe do estado da máquina e também pode ser chamada de inspeção ou programada, quando objetiva eliminar as causas de defeitos potenciais. Na evolução desse tipo de manutenção surgiu a manutenção preditiva.

55 A ferramenta moop pode integrar o MRP II e o JIT. Ver Berc lain (1996: 1-15).
56 A manutenção deve ser considerada como uma função estratégica para a competitividade empresarial. O seu bom gerenciamento é um fator de sucesso para a lucratividade e qualidade da empresa. Vide Abraman (1998: 1-10).
A manutenção preditiva decorre de defeitos encontrados durante o monitoramento de um determinado parâmetro de uma máquina e de solicitação de melhorias e modificações. Por meio do acompanhamento da evolução desse parâmetro pode-se indicar o momento de intervenção. A preditiva pode ser o monitoramento da qualidade do óleo lubrificante de uma máquina por meio da ferrografia, o monitoramento do estado de um painel elétrico por intermédio da termovisão e o monitoramento do estado de um mancal de rolemento usando-se análise de vibrações. O acompanhamento da capacidade da instalação do parque de máquinas pode acontecer por meio da manutenção ou da sua integração com a automação da qualidade.

4.2.5. Automação da qualidade

O CEP – controle estatístico de processos\(^{58}\) é uma ferramenta que dá suporte à análise e à interpretação de dados para que se possa controlar a qualidade de um produto e de um processo\(^{59}\) (vide figura 81 e 82). O CEP pode avaliar, com a ajuda da automação, o desempenho do processo de fabricação por meio das cartas de controle da média e da amplitude (X barra, R) dos dados do processo de fabricação e verificar a capacidade e estabilidade desse processo. A informatização do CEP pode ser obtida por meio do CAQ.

O CAQ (computer aided quality), ou sistema de controle de qualidade auxiliado por computador\(^{60}\) (vide figura 81), torna possível a manutenção ou modificação da estabilidade e capacidade do processo\(^{61}\). Esse sistema permite acessar dados em tempo real, bem como armazenar dados estatísticos. Uma das maneiras de se automatizar o processo é com a automação da inspeção.

A automação da inspeção da manufatura, ou inspeção em processo, é adaptada à estação de trabalho do tipo sistema de visão ou sensores eletrônicos sensitivos. O trabalho de inspeção tem a tendência de causar fadiga no inspetor e consequentemente pode ocasionar erros, efeito esse agravado na manufatura seriada. Por isso, recomendar-se a automação da inspeção, nesse caso. Um exemplo de automação da inspeção na forjaria é a medição, em

\(^{59}\) O controle de processos por meio de sistemas digitais pode ser visto em Primazzi (1985: 20-24).
\(^{60}\) Vide Feigenbaum (1991: 316-319).

134
processo, da temperatura por meio de pirômetro e o controle do ciclo de tratamento térmico62. Na sequência, outra maneira de se obter a melhoria contínua e integração: a automação da movimentação do produto em processo.

4.2.6. Automação da movimentação e estocagem

A integração e a automação também podem ser aplicadas na movimentação63 e estocagem de materiais ou ferramentas. Entende-se por movimentação de materiais os sistemas que vão desde manuais até os automatizados, peças que passam de mão em mão em uma célula de manufatura ou utilizam esteiras deslizantes, carrinhos, empilhadeiras ou AGV (autonomous guided vehicles ou veículos auto-guiados64, vide figura 81). Uma aplicação complementar à movimentação é o armazenamento “inteligente” auxiliado por código de barra65.

O armazenamento do produto ou ferramenta, o controle de saldo em estoque, o sistema Fifo (first in-first out), ou primeiro que entra – primeiro que sai, pode ser controlado no sistema palette/warehouse66. Esses sistemas podem controlar o inventário, reduzir espaço de armazenamento, aumentar a produtividade, dar maior segurança ao produto, integrar e reduzir o tempo de espera. Prosseguindo-se com a integração, outro importante integrador é o desdobramento da função qualidade.

4.2.7. Desdobramento da função qualidade

A integração entre o cliente, o projeto do produto e o projeto do processo pode ser auxiliada pelo QFD (quality function deployment), ou o desdobramento da função qualidade67, (vide figura 82) que é uma técnica utilizada para transmitir as necessidades do cliente à engenharia do produto, objetivando-se agilizar o planejamento da engenharia e manufatura. Esse desdobramento identifica causas, define tarefas e sugere métodos para se encontrar o produto “desenhado” pelo cliente. O QFD é um conceito similar ao DFM (design for

63 Exemplo de movimentação de materiais controlada por CLP e inteiramente robotizada pode ser visto nas instalações da Eaton Valinhos descrita em Nara (1983: 56-57).

64 Ver Moura (1985: 24-27).

65 O sistema código de barras pode ser visto em Ferie (1986: 24-30).

66 Os sistemas de carga/descarga e paletização podem ser vistos em Jansen (1985: 35-40).

67 Ver Souza (1991: 1-17).
manufacturing) porque também busca a integração da comunicação entre a engenharia do produto, da qualidade, do marketing e o cliente. Ainda, o QFD impulsiona os projetistas do produto a confrontarem um leque de informações técnicas e de negócios para que possam escolher, em conjunto com marketing, quais se adaptam à necessidade do cliente. Essa técnica QFD permite reduzir o tempo total de projeto, assim como o DFM.

O DFM, também conhecido como engenharia simultânea\(^68\) (SE – simultaneous engineering, vide figura 83), é o desenvolvimento concomitante das funções projeto do produto e do processo, que visa a reduzir custo e tempo de lançamento do produto no mercado. O resultado de aplicação dessa técnica é a obtenção do produto factível com qualidade que pode ser introduzido com maior produtividade e manufaturabilidade, desde que se leve em consideração todo o sistema de produção durante o desenvolvimento desse projeto.

No DFM ocorre cada vez mais a aproximação entre os engenheiros de produto e de processos com o pessoal do “chão-de-fábrica”, encontrando-se maior comunicação, integração e cooperação. Em muitas organizações, tradicionalmente, ainda a engenharia do produto primeiramente encerra o projeto, desenhos, cálculos e protótipos e, só depois, libera todos os desenhos para a engenharia do processo, que uma vez estando de posse dos desenhos de produtos, elabora o roteiro de fabricação, especificando as máquinas, os ferramentais e escolhendo as estações de trabalho. Durante essa fase, ocorre a análise de custo e viabilidade, gerando-se muitas vezes a necessidade de solicitar mudanças no produto, porém, nesse ponto, a análise dessas mudanças torna-se complicada e às vezes inviável, ocasionando um sobrecusto ao produto, um aumento no tempo de fabricação e necessidade de determinadas operações no processo que poderiam ter sido evitadas.

Em razão disso, a engenharia simultânea propõe-se a desenvolver o projeto do produto/processo evitando todas as ocorrências acima mencionadas. Dessa forma, o QFD e o DFM promovem uma integração entre engenharia, marketing e manufatura – “chão-de-fábrica” reduzindo o tempo total do ciclo de desenvolvimento de um produto, além de implementar a qualidade do produto, em conformidade total com o cliente. Falando-se em conformidade total, outro sistema que pode auxiliá-la é o chamado “oito dimensões”.

Os atributos chamados “oito dimensões”\(^{69}\) (vide figura 82) são: 1) desempenho, características básicas, como, por exemplo, aceleração de um carro; 2) características secundárias, que complementam as anteriores; 3) confiabilidade\(^{70}\), probabilidade de o produto falhar dentro de um período; 4) conformidade, grau em que o projeto e demais características estão conforme os padrões pré-estabelecidos; 5) durabilidade, medida da vida útil, com dimensões econômicas e técnicas, como por exemplo a lâmpada; 6) assistência técnica, atendimento, facilidade de reparo; 7) estética, aparência, cheiro, outros e 8) qualidade percebida, impressão global e subjetiva. Na sequência, apresentamos outra técnica de integração que é o potencial de análise de falha.

4.2.8. Potencial de análise de falha

A análise de modo e efeito da falha potencial\(^{71}\) (FMEA, vide figura 82) pode ser descrita como um grupo de atividade sistêmica com o objetivo de reconhecer e avaliar a falha potencial de um produto/processo e seus efeitos, identificar ações que possam eliminar ou reduzir a oportunidade da falha vir a ocorrer e documentar o processo de análise. A análise FMEA é complementar ao processo de desenvolvimento de projeto e faz com que ele contenha os requisitos de satisfação plena das necessidades do cliente. Enfim, FMEA é uma técnica preventiva que visa a avaliar os potenciais de falha e seus efeitos, a fim de reduzir os riscos dessas falhas por meio de ações corretivas e preventivas. Encerrando a explanação sobre as técnicas de integração, a seguir será descrito o kaizen.

4.2.9. Kaizen

Kaizen – melhoria contínua, em japonês, segundo Masaaki Imai\(^{72}\), significa melhoramento gradual, incremental e interminável, isto é, fazer cada vez melhor, alcançar padrões cada vez mais altos – desde a alta administração até o operário. *Kaizen* também quer dizer melhoramento contínuo\(^{73}\), quando a implantação for a um custo baixo.

\(^{72}\) Ver Imai (1988: 1).
\(^{73}\) *Kaizen*, em japonês, significa: melhoria contínua. Os grupos *Kaizen* são uma versão moderna dos CCQs cujos resultados atuais propiciam menor custo e maior qualidade. Na indústria Semer foi mostrado, em Freitas, que a qualidade total é a união do JIT, programas de qualidade, gerenciamento e o projeto renascer. O JIT foi subdivido em *set-up*, multi-operador, manufatura celular, autocontrole, TPM e Kanban. A qualidade foi subdividida em *Kaizen*, SOL (segurança, ordem e limpeza) e programas de qualidade. No gerenciamento foi colocado: FMEA, agrava valor, administração participativa, técnicas de
Essa ferramenta suporta outras técnicas, tais como: TQC, CCQ, JIT, MPT, outras. No *kaizen* ocidental, desejam-se saltos quânticos, que por sua vez necessitam de avanço tecnológico com alto investimento. Já no *kaizen* oriental as etapas são pequenas em alta quantidade, porém são simultâneas, necessitando de conhecimento convencional, muita perseverança e baixo investimento.

Como pode se ver, a integração e automação, o CAD/CAM/CAPP integrados no CIM, o CEP/CAQ/CCQ por intermédio do TQM e o DFM/SE/TPM/Kaizen por meio do JIT, propiciam o processo de melhoria contínua, apoiando-se no gerenciamento humano.

4.3. Gerenciamento humano

O gerenciamento de pessoas é a chave para o sucesso do desenvolvimento do modelo de qualidade da forjaria. No quadro 51, encontram-se a descrição e o desdobramento do processador gerenciamento humano\(^74\) (GH). Seu sistemógrafo está na figura 84.

Quadro 51

Descrição do processador gerenciamento humano

GH I (Recrutamento) Assegurar maior criatividade no processo de recrutamento, descrevendo-se um perfil de recursos humanos voltado à manufatura “classe mundial”. Considerar as dificuldades de implementação de novas tecnologias. Estabelecer um plano de treinamento e educação visando as mudanças. GH II (Educação) Estabelecer uma educação mínima aos colaboradores (segundo grau). Assegurar inicialmente, dependendo do perfil da organização, que 20% dos trabalhadores tenham primeiro grau, 50% tenham segundo grau e 30% sejam universitários. Desenvolver habilidades básicas educacionais oferecendo cursos internos de matemática, leitura e interpretação de desenho e comunicação interpessoal. A empresa também pode oferecer um complemento do segundo grau. GH III (Treinamento) Assegurar a necessidade de maior nível educacional e maior habilidade aos operadores. Estabelecer treinamento contínuo buscando maior crescimento vertical na hierarquia e crescimento horizontal nos processos\(^75\). GH IV (Comprometimento) Estabelecer o envolvimento\(^76\) dos funcionários, buscando a motivação. Assegurar a prática dos fatores\(^77\) motivadores.

\(^75\) A relação entre o treinamento e gestão de qualidade pode ser vista em Rabelo, Bresciani e Oliveira (1995: 13-19).

\(^76\) Ver Hall (1988: 137-160).

\(^77\) Esses fatores podem ser descritos por meio da visão e missão, motivação, comunicação, participação, trabalhos em grupo, reconhecimento, recompensa, benefícios e disciplina.
Figura 84 – Sistemógrafo do gerenciamento humano

Sistemógrafo GH

Na figura 84, o GH I, ou processador I, recebe informação do mercado e da direção da forjaria, após processá-la, envia ao II e IV o resultado informando quais foram as pessoas recrutadas sob novas condições. O II recebe informação sobre o novo perfil da mão-de-obra contratada, após processá-la, envia ao III e IV informação do nível de educação do colaborador tanto do novo, como do antigo contrato. Então, o III informa ao IV sobre o programa de treinamento e as novas habilitades adquiridas pelo trabalhador. Então, o IV envia feedback ao I sobre a necessidade de se adaptar, a todo momento, o novo perfil da mão-de-obra, também dá feedback ao II sobre o mínimo nível de escolaridade para assumir diferentes tipos de funções e acompanhar o desenvolvimento tecnológico e, ainda, retoma a informação ao III sobre as necessidades de treinamento. Enfim, o GH IV informa a direção da forjaria a respeito do programa reconhecimento e recompensa dirigido aos trabalhos em grupo e do estado de motivação dos funcionários.

O sistemógrafo GH encontra-se na figura 84. Acima, apresenta-se a descrição de cada processador (vide quadro 51) e, também, a descrição das entradas, das saídas e das retromitâncias desse sistemógrafo. A seguir será apresentado o processador comprometimento. Esse processador foi por nós desenvolvido, neste trabalho, para que se possa dar suporte ao modelo de qualidade (MQ) da forjaria.

O comprometimento é fundamental para sobrevivência de um sistema de qualidade. Para tentar entendê-lo procuramos acompanhar, na forjaria, durante alguns anos, o comportamento das pessoas durante o processo de fabricação de um forjado. Como resultado dessa observação estamos propondo um processador denominado comprometimento.

Paralelamente ao acompanhamento dos indicadores da qualidade, acompanhamos durante dois anos, seguidamente, os indicadores da segurança do trabalho na forjaria e por meio de técnicas recomendadas por Verálucia Brito Lima, psicóloga e
O processador comprometimento (GH IV), mostrado na figura 85, é muito importante para a relação qualidade e pessoa79. Ele busca elevar o nível de qualidade por meio das pessoas comprometidas e envolvidas.

Na figura 85, o processador GH IV.1 (visão e missão) estabelece a visão e missão da forjaria. É muito importante a conceituação do conjunto desses valores (visão – missão). Esses valores direcionam o caminho e iluminam a consciência dos colaboradores. O processador GH IV.2 (motivação80) assegura a motivação. Ela está presente no dia a dia da empresa e na relação funcionário/forjaria. Essa motivação pode ser passada aos funcionários, mostrando-se a capacidade de empreendimento da forjaria e da sua necessidade de sobreviver às adversidades, ocasionadas pela globalização. O processador GH IV.3 (comunicação) garante a comunicação no estabelecimento de metas a serem alcançadas. Essa comunicação pode ter diversos caminhos. Um deles é o método gestão à vista, em que se instalaram quadros em locais estratégicos, levando-se informações sobre a forjaria, negócios, resultado trimestral, indicadores dos programas de qualidade e produtividade e outros81. O processador GH IV.4 (participação) estabelece o gerenciamento participativo. Sugerimos a participação dos funcionários em alguns processos de decisão82; procura-se o envolvimento dos colaboradores, por meio de trabalhos em grupo, para que possam dar sugestões de melhorias contínuas83.

Ainda, na forjaria o processador GH IV.5 (grupo de trabalho) organiza grupos de trabalho84. Esse sistema, além de gerar inovação, apresenta o mecanismo de motivação e confiança. A formação desses grupos pode iniciar-se na proposta CCQ (ciclo de controle de qualidade)85 ou sofrer adaptações em função da cultura da empresa86. Nessa atividade, as pessoas podem ser organizadas em grupos, preferencialmente da mesma área de trabalho e,
em equipe e num ambiente participativo, identificam os problemas, analisam as causas e sugerem soluções. Cada empresa deve achar a maneira mais adequada para implantar as atividades de trabalho em grupo; muitas empresas que aplicam esse método experimentam o sucesso por um curto período, em virtude do fato de que o gerente atua como comandante e não como orientador. O processador GH IV.6 (recompensa) ativa o mecanismo da recompensa\(^{87}\). Esse mecanismo é realizado por intermédio de programas que destacam a participação nos lucros e resultados (PLR) e definição de “bonus” em função da lucratividade (distribuição de moeda) e do atingimento dos objetivos anuais. O processador GH IV.7 (reconhecimento) estabelece o reconhecimento. O plano de reconhecimento depende de cada colaborador, de sua performance e potencial, é o chamado plano de carreira, no qual cada indivíduo pode ser promovido\(^{88}\). O processador GH IV.8 (benefícios) assegura benefícios. Esse plano estabelece uma “cesta”, na qual o profissional pode escolher o salário propriamente dito ou uma combinação de salário e benefícios. Eles podem ser destacados como auxílio à doença (assistência médica, odontológica, outras), cesta básica de alimentos, transporte, auxílio à compra de medicamentos, cesta de materiais escolares e outros. O processador GH IV.9 (disciplina) estabelece a disciplina. A disciplina é o que se deve exigir de um funcionário para que obedeça às condições de segurança no trabalho e aos fundamentos de cada processo. A disciplina é um dos principais pontos na obtenção da qualidade durante o processo de um produto, pois uma vez discutido e definido um processo, deve-se segui-lo rigorosamente.

cultura organizacional é o conjunto estruturado de pressupostos básicos que um grupo inventou, descobriu ou desenvolveu ao aprender lidar com os problemas de adaptação externa e de integração interna”. Ver Malik (1992: 32-41).

\(^{87}\) A simples participação não é suficiente. Os funcionários têm que ser reconhecidos e recompensados. Ver Felteio (1991: 10).

A figura 85 não foi apresentada na forma de sistemógrafo, uma vez que é grande a dificuldade de se analisar as relações do comprometimento. Dessa forma, o modelo de qualidade desenvolvido neste trabalho utiliza-se das recomendações do GH IV, sem porém entrar no mérito de discussões mais profundas. Esse tema pode ser melhor entendido em Katz & Kahn. No próximo item será apresentada a estratégia que busca integrar os processadores IA e GH por meio do planejamento estratégico de qualidade (PEQ).

4.4. Planejamento estratégico de qualidade

O meio ambiente do processador planejamento estratégico de qualidade (PEQ) em uma forjaria é o mercado mundial. Esse processador é desdobrado no processador estratégia de negócios (PEQ I) e no processador estratégia de manufatura (PEQ II). No quadro 52 temos a descrição e o desdobramento do processador PEQ. Seu sistemógrafo está na figura 86.

Quadro 52
Descrição do processador planejamento estratégico de qualidade
PEQ I (Estratégia de negócios) Estabelecer uma estratégia de negócios para a forjaria. Nessa estratégia, considerar a forjaria e a sua relação com a comunidade, governo, concorrentes, meio ambiente e acionistas. Essa estratégia de negócios é estabelecida pelo gerente geral. PEQ II (Estratégia de manufatura) Estabelecer uma estratégia de manufatura voltada para a forjaria. Nessa estratégia são também estabelecidos os planos e ferramentas para essa estratégia. A coordenação dessa estratégia é de responsabilidade do gerente geral da forjaria.

99 Ver Katz & Kahn no seu livro de Psicologia social das organizações (1987).
Sistemógrafo PEQ

Na figura 86, o PEQ I, ou processador I, recebe informação do mercado e, após processá-la, envia-as ao II. Nessas informações processadas, relatam-se a presença dos concorrentes, do meio ambiente, da comunidade e do governo. Já o II dá feed-back ao I sobre os indicadores de qualidade e produtividade, bem como sobre o preço dos forjados e, ainda, envia ao cliente informações do produto, da qualidade, do preço, das condições de entrega e atendimento.

O sistemógrafo PEQ encontra-se na figura 86. Acima estão a descrição de cada processador (vide quadro 52) e, também, a descrição das entradas, das saídas e das retromitâncias desse sistemógrafo. A seguir, encontram-se, no quadro 53, a descrição e o desdobramento do processador estratégia da manufatura (PEQ II). Seu sistemógrafo está na figura 87.

Quadro 53
Descrição do processador estratégia de manufatura

91 Nessas ferramentas, pode-se aplicar: TQC (total quality control), técnicas de just-in time (JIT), desenho, manufatura e processo assistido por computador (CAD, CAM e CAPP) e manufatura integrada por computador (CIM). Ver também Amato (1996: 64).
Figura 87 - Sistemógrafo de estratégia da manufatura.

Sistemógrafo PEQ II

Pode-se ver, na figura 87, o PEQ II.1, ou processador II.1, envia ao II.2 informação sobre as estratégias para se reduzir tempo, atender o cliente, reduzir inventário, aumentar a produtividade, lucratividade e otimizar a qualidade. Já o II.2 envia ao II.3 informação sobre quais são os planos para se atingir as estratégias internas. Esses planos abordam a adequação dos recursos humanos, contingência dos equipamentos, pesquisa e desenvolvimento, atendimento às necessidades do cliente, redução do tempo de fabricação, preparação, dentre outras. Ainda, o II.2 dá feedback ao II.1 sobre a classificação dos planos para que se possa atender às estratégias internas. E o II.3 retorna informação ao II.2 sobre quais são as ferramentas que atendem aos planos. Essas ferramentas são: CAD/CAM, CAPP, CIM, Smed, JIT, TQC, outras e, também, envia informação ao coordenador da estratégia de qualidade da forjaria.

O sistemógrafo PEQ II encontra-se na figura 87. Acima mostram-se a descrição de cada processador (vide quadro 53), bem como a descrição das entradas, das saídas e das retormitâncias desse sistemógrafo. Após a descrição do PEQ, será apresentada a correlação com a estratégia de negócios (PEQ I) e a estratégia de manufatura (PEQ II) por intermédio da estratégia de qualidade.

A estratégia de qualidade pode ser visualizada por meio do planejamento da qualidade que está apresentado na figura 88. Essa estratégia é formada pelo elo negócios e manufatura que está dividido em três etapas. A primeira é a criação da estratégia de negócios e de manufatura; a segunda caracteriza-se pela ligação da estratégia de negócios com o plano de ação da empresa e a terceira consiste na implementação da estratégia de manufatura interna. A criação da estratégia de qualidade (etapa I), na figura 88, engloba o panorama mercadológico descrito no PEQ I.

<table>
<thead>
<tr>
<th>Estratégia da qualidade, negócios e manufatura</th>
<th>PEQ</th>
</tr>
</thead>
<tbody>
<tr>
<td>I - Criação da estratégia de negócio e manufatura (PEQ I)</td>
<td></td>
</tr>
<tr>
<td>1. Análise do panorama estratégico (PEQ I)</td>
<td></td>
</tr>
<tr>
<td>2. Time de planejamento</td>
<td></td>
</tr>
<tr>
<td>3. Benchmarking</td>
<td></td>
</tr>
<tr>
<td>4. Estabelecimento da estratégia de manufatura (PEQ II)</td>
<td></td>
</tr>
<tr>
<td>5. Estabelecimento das estratégias internas (PEQII.1)</td>
<td></td>
</tr>
<tr>
<td>6. Desenvolvimento dos planos (PEQII.2)</td>
<td></td>
</tr>
<tr>
<td>7. Desenvolvimento das ferramentas (PEQII.3)</td>
<td></td>
</tr>
<tr>
<td>II - Ligação da estratégia de negócio com a ação na empresa</td>
<td></td>
</tr>
<tr>
<td>1. Comprometimento por meio de conscientização (GH)</td>
<td></td>
</tr>
<tr>
<td>2. Revisão do planejamento estratégico (PEQ)</td>
<td></td>
</tr>
<tr>
<td>3. Determinação de prioridades</td>
<td></td>
</tr>
<tr>
<td>4. Justificativas para custos</td>
<td></td>
</tr>
<tr>
<td>III - Implementação da estratégia de manufatura (PEQ II)</td>
<td></td>
</tr>
<tr>
<td>1. Organização e implementação</td>
<td></td>
</tr>
<tr>
<td>2. Gerenciamento do projeto</td>
<td></td>
</tr>
<tr>
<td>3. Time de implantação</td>
<td></td>
</tr>
<tr>
<td>4. Atualização e nova revisão do planejamento</td>
<td></td>
</tr>
</tbody>
</table>

Figura 88 - Planejamento estratégico da qualidade

Na análise do mercado, é criado um time de trabalho cujo primeiro objetivo é, por meio de benchmarking\(^9\), obter informações sobre os competidores. Uma vez de posse desses dados, projeta-se a estratégia de manufatura por meio do PEQ II. Essa estratégia é desdobrada na estratégia interna, PEQ II.1, que por sua vez é sustentada pelos planos PEQ II.2. Os planos são desenvolvidos pelas ferramentas PEQ II.3. A ligação (etapa II, vide figura 88) entre estratégia de negócios e a estratégia de manufatura é realizada por meio de um plano de ação. Nesse plano, a ligação é iniciada com o comprometimento dos envolvidos por meio de um processo de conscientização que é apresentado aos colaboradores: o efeito da globalização, a necessidade de sobrevivência e o pronto atendimento ao cliente.

Ainda nessa ligação, elabora-se a revisão do planejamento estratégico, determinando-se as prioridades por meio de critérios de atratividade, encerrando-se com a justificativa de custos e análise de retorno94. Parte-se, então, para a implementação da estratégia de qualidade propriamente dita (etapa III), na figura 88, ou seja, é a estratégia de manufatura. A implantação dessa estratégia é organizada por meio de um time. Se necessário, essa estratégia pode ser alterada, normalmente na discussão trimestral entre a gerência geral e o time de implantação. O destaque dessa estratégia é que, ao se atingir o sucesso após um ano de implantação, pode-se ainda continuamente revisar os resultados, porém, por intermédio da organização formal. Como exemplo, na tabela 3, apresenta-se um plano para reduzir o custo de qualidade.

Na tabela 3, encontra-se a estratégia para reduzir o custo de qualidade de 12\% das vendas atuais para 5\% das vendas dos próximos dezoito meses e para 1,5\% das vendas, nos próximos cinco anos.

Na tabela 3, vê-se também, na primeira coluna, a estratégia interna de redução de custo de qualidade; na segunda os planos: controle estatístico, capabilidade dos equipamentos e otimização do projeto do produto e processo e, na terceira coluna, as ferramentas. No atendimento ao primeiro plano são apresentadas as seguintes ferramentas: aferição dos equipamentos de medição e calibração, treinamento em controle estatístico, acompanhamento de todos os pontos críticos do processo e estabelecimento de ações para todos os pontos fora de controle, antes de se dar continuidade ao processamento do produto. Já as ferramentas para o segundo plano são: aumento de máquinas de controle numérico, estabelecimento de um programa de manutenção preventiva ou preditiva, padronização do ferramental, trabalho com o sistema de pré-montagem e adequação às condições de operacionalidade das máquinas. As ferramentas para atender o terceiro plano apoiam-se no método Taguchi95, no desenvolvimento da engenharia simultânea e na padronização do produto/processo por meio de tecnologia de grupo.

Tabela 3 - Estratégia para redução de custos de qualidade

<table>
<thead>
<tr>
<th>Estratégia Interna</th>
<th>Plano</th>
<th>Ferramenta</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objetivo da estratégia interna</td>
<td>Como conseguir cada objetivo</td>
<td>Ferramentas para se conseguir cada objetivo</td>
</tr>
</tbody>
</table>
| Reduzir os custos de qualidade de: 12% das vendas (hoje) | 1. Implementar programa de controle estatístico de qualidade na manufatura (produção) | • Afiar equipamentos de medição de calibradores
• Educação e treinamento em CEP
• Controlar todos os pontos críticos do processo
• Estabelecer ações para cada ponto fora de controle antes de se dar sequência na operação. |
| | 2. Otimização da capacidade dos equipamentos | • Aumentar a quantidade de máquinas CNC
• Programa de manutenção preventiva
• Padronização do ferramental
• Trabalhar com ferramental
• Adequar as máquinas às velocidades de operacionalidade
• Retrofitting das máquinas |
| | 3. Otimização do projeto do produto/processo | • Método Taguchi
• Engenharia simultânea (SE/DFMA)
• GT
 • Padronização do produto
 • Padronização do processo
• FMEA
• PPAP |

Dessa forma, a estratégia de qualidade é uma alavanca aos processos de melhoria contínua. Esses processos GPI, IA, GH e PEQ muito contribuirão ao desenvolvimento do modelo de qualidade da forjaria, uma vez que são processadores de melhoria contínua e de integração. A seguir, no quinto capítulo, será apresentado o modelo inicial de qualidade (MIQ) da forjaria e nesse modelo serão aplicados todos os conceitos desenvolvidos neste capítulo. Dessa forma, o MIQ passará por uma transformação, modificando-o para um sistema integrado de produto e processo com melhoria contínua de qualidade, o qual denominaremos modelo de qualidade (MQ) da forjaria. O desenvolvimento do MQ é uma técnica de modelagem de processos, na qual utilizamos a teoria do sistema geral.
Capítulo 5

Modelo de qualidade

5.1. Desenvolvendo o modelo

O desenvolvimento do nosso modelo de qualidade, MQ, foi apoiado em medidas decorrentes das avaliações da ISO 9001, por meio do SQI\(^1\), nos sistemas: SQE, SQE, SQF, SQf, SQFQ e SQfq. Também contribuíram com o modelo MQ as comparações do sistema de qualidade da empresa (SQE versus SQE), do sistema de qualidade da forjaria (SQF versus SQf) e do sistema de qualidade do processo de forjamento a quente (SQFQ versus SQfq). Outra contribuição foi dada pelas auditorias realizadas nos sistemas SQu, SQu e SQQf\(^2\). Também ouvimos as recomendações de duas consultorias especializadas em qualidade\(^3\). Para facilitar a concepção do modelo MQ, procuramos dividir as medidas nos subsistemas: gerenciamento de qualidade (administração e planejamento), desenvolvimento do projeto (do produto e do processo), fabricação de forjado, fornecedor e satisfação do cliente. Vamos iniciar a descrição dessas medidas com o gerenciamento de qualidade.

5.1.1. Gerenciamento de qualidade: administração e planejamento

A primeira medida adotada, com base no SQI (ISO 9001), como gerenciamento da qualidade, é a responsabilidade da administração (4.1/ISO 9001)\(^4\) quanto à política e objetivos de qualidade, que devem ser aprovados pelo gerente geral da forjaria. Na elaboração dessa política, a ISO recomenda considerar as necessidades do cliente, a obediência às leis, a relação com a sociedade, bem como a relação com colaboradores e acionistas. Na concepção do plano estratégico de qualidade, a ISO recomenda que as metas e as ações devem suportar e mensurar todas as diretrizes definidas nessa política. Portanto, deve-se, também, estabelecer

\(^1\) O SQI (sistema de qualidade ISO 9001) foi apresentado no capítulo 3. Esse sistema representa a ISO 9001 e foi aplicado nos sistemas (SQs) existentes na forjaria de forma “personalizada” por um grupo de pessoas da própria empresa a qual a forjaria pertence.
\(^2\) Ver Capítulo 3.
\(^3\) Ouvimos a BVQI (Bureau veritas quality international) e a SGS (Société générale de surveillance).
mecanismos que permitam avaliar a efetividade da implementação da política de qualidade, em todos os níveis da organização. A ISO também recomenda elaborar uma revisão nos procedimentos que definem as responsabilidades, autoridades e interfaces das pessoas na organização.

Nessa revisão, devem-se considerar as ações que possam prevenir, identificar e registrar não-conformidade no produto, no processo, no sistema de qualidade e verificar se as ações foram implementadas. Para tanto, faz-se necessário que o gerente geral possa nomear um representante da administração para cuidar de assuntos da qualidade. A definição da periodicidade das revisões da política de qualidade também é fator importante neste modelo.

O gerente geral deve verificar todas essas revisões, porém, é melhor que se constituia um comitê de qualidade, cuja função primordial seja coordenar todas as atividades de qualidade na forjaria. Tal comitê deve analisar criticamente os resultados das auditorias internas, os resultados das ações corretivas e preventivas e as análises das reclamações dos clientes. Por outro lado, recomenda-se a criação de um grupo de trabalho, coordenado pelo representante da administração, que possa planejar e coordenar a revisão e a adequação do atual sistema de qualidade (SQ). Esse grupo trabalhará paralelamente ao comitê de qualidade.

A ISO, por meio do SQI I.2, recomenda ao sistema de qualidade (4.2/ISO 9001) que o manual de qualidade seja revisto, levando-se em consideração os seguintes aspectos: verificar se todos os requisitos normativos da ISO 9001 estão abordados nesse documento; referenciar os documentos (procedimentos, instruções, guias ou especificações) relacionados aos requisitos da ISO 9001, de tal modo que se objetive diminuir o número de páginas (“volume”) desse manual, sem no entanto perder o seu conteúdo, ou seja, sem deixar de atender as exigências dos clientes. A ISO também recomenda que os procedimentos devam ser elaborados da forma mais simples possível: contemplar todos os processos tecnológicos da empresa, orientar todos os colaboradores na realização das tarefas e dar treinamento a todos na organização. Ainda, a ISO (SQI I.3) recomenda acompanhar a sua norma quanto à análise crítica de contrato (4.3/ISO 9001), devendo-se elaborar um procedimento que descreva e assegure que todos os requisitos da qualidade do produto estejam bem definidos e

Quando aparecer o elemento (4.x/ISO 9001) vide tabela 1, no capítulo 3, em que 0<x<21.
documentados, que quaisquer divergências na proposta do cliente sejam discutidas e que a forjaria tenha capacidade para atender aos requisitos contratuais.

Outra recomendação da ISO, por meio do SQI I.4, é para que seja revisado o plano de controle de documentos (4.5/ISO 9001), de tal forma que se possa incluir todos os documentos que influenciam diretamente na qualidade do produto e do processo. Podemos relacionar, aqui, toda a documentação prevista na ISO 9001: os desenhos de forjados, de processos de forjamento a quente, os desenhos das ferramentas; os esquemas de montagem e as normas técnicas. A ISO (SQI I.5) recomenda que no controle de registro da qualidade (4.16/ISO 9001) há uma orientação no sentido de elaborar um procedimento específico que contemple as discordâncias encontradas nas comparações entre os sistemas de qualidade SQI e SQF. Esse procedimento deve contemplar, também, os registros armazenados em computador: disquetes, fitas magnéticas, banco de dados ou winchester, de acordo com a ISO/DIS 9000-1.

Nas ações corretivas e preventivas (4.14/ISO 9001), a ISO, por meio do SQI I.6, aconselha revisar o procedimento da ação corretiva e preventiva enfatizando-se as reclamações dos clientes, os relatórios de não-conformidade e os resultados de auditorias internas de qualidade. Nessas auditorias (4.17/ISO 9001), é importante a criação de um "time" de auditores internos devidamente qualificados (vide SQI I.7). A ISO também enfatiza que o planejamento, a programação e a condução das auditorias devem ser relatados ao departamento auditado, informando quais foram as não-conformidades encontradas e obrigatoriamente acompanhar as ações corretivas.

A consultoria sugere, ainda, a criação de um grupo subordinado ao comitê de qualidade para acompanhamento das ações corretivas e elaboração de um plano para as ações preventivas. Nesse grupo, deve haver a participação dos gerentes da engenharia, da manufatura e dos responsáveis diretos pela qualidade da área.

5 Entendem-se como registros da qualidade os formulários, atas de reunião, relatórios que comprovam a implementação das diversas atividades no sistema da qualidade da forjaria, bem como o "diário de bordo" utilizado na manufatura do produto. Recomenda-se também que esse tipo de controle faça parte do plano de treinamento e que se tenha um controle da avaliação e do registro desse treinamento nos cadastros dos funcionários.

6Essa consultoria foi realizada pela BVQI (Bureau veritas quality international).
A ISO (SQI I.9) recomenda aplicar o controle estatístico do processo (4.20/ISO 9001) no auxílio ao estabelecimento do controle e verificação da estabilidade e da capacidade do processo. Ainda, recomenda que tais ferramentas estatísticas devam ser utilizadas no estabelecimento das características do forjado. Sugere-se, também, utilizar as técnicas de solução de problemas.

Para se complementar as medidas indicadas a esse subsistema por meio da comparação do sistema de qualidade da empresa (SQE I com SQe I) a consultoria sugere: o desenvolvimento e implementação da melhoria da qualidade e, ainda, identificação, desenvolvimento e implementação do treinamento. Ainda, na comparação do sistema de qualidade da forjaria (SQF I com SQF I) foi proposto ao gerenciamento de qualidade: estabelecer indicadores de qualidade, realizar auditorias internas e analisar o mercado. Na sequência de medidas, vamos passar ao segundo subsistema de qualidade desse modelo, também chamado desenvolvimento do projeto.

5.1.2. Desenvolvimento do projeto do produto e do processo

Para o desenvolvimento do projeto do produto e do processo no modelo de qualidade a ISO, por meio do SQI II.1, destaca as seguintes recomendações: a primeira delas, que diz respeito ao controle do projeto do produto (4.4/ISO 9001), sugere avaliar o grau de risco da qualidade e nomear um responsável para classificá-lo, além de avaliar a atratividade do negócio e revisar e homologar o projeto do produto. A análise crítica do contrato também é indicada com o estabelecimento de indicadores de qualidade do desenvolvimento do projeto. A consultoria destaca, também, que o item controle de projetos já existente na forjaria não está incluso no escopo da certificação da ISO 9001, porém recomenda que esse quesito possa ser considerado no modelo de qualidade da forjaria.

A segunda recomendação da ISO (SQI II.2) é dirigida ao controle do projeto do processo (4.9/ISO 9001) e sugere revisar os documentos utilizados, verificar a sua atualização no que se refere às operações descritas e ao controle de documentos. Os planos de controle devem enfatizar as características do produto. Propõe, ainda, a avaliação frequente dos
equipamentos e dos ferramentais, a fim de garantir a sua utilização nas folhas do roteiro de fabricação.

Já a comparação realizada, por uma consultoria\(^7\), no sistema de qualidade da empresa (SQE II com SQe II), resultou nas seguintes recomendações para o desenvolvimento do projeto: o grau de risco da qualidade deve ser melhor avaliado, a atratividade do negócio deve ser melhor analisada e os equipamentos e os ferramentais devem ser melhor acompanhados. Também, a comparação do sistema de qualidade da forjaria (SQF II com SQf II) originou esta importante sugestão: as folhas do roteiro do processo devem ser obrigatoriamente utilizadas.

Outras recomendações fundamentais foram resultado da análise de uma auditoria externa\(^8\) no sistema: aprovar as amostras iniciais, elaborar os relatórios de engenharia, descrevendo os pontos mais importantes do desenvolvimento do projeto e da homologação dos forjados. Dando continuidade às recomendações, vamos ao terceiro subsistema que é a fabricação do forjado.

5.1.3. Fabricação de produto

A fabricação de produto (forjado) recebeu algumas recomendações da ISO, por meio do SQI, as quais são provenientes da comparação ISO 9001 com os sistemas: SQF e SQFQ. A primeira medida sugere que a forjaria deve verificar se o rastreamento (4.8/ISO 9001) de seus forjados atende as exigências do cliente (vide SQI III.1), se eles estão documentados e, se for uma exigência contratual, faz-se necessária a elaboração de um procedimento específico. A ISO (SQI III.2) recomenda que, ao revisar o procedimento de controle de produto não-conforme (4.13/ISO 9001), procure-se destacar a: identificação, documentação, avaliação, segregação, disposição e notificação às áreas envolvidas.

Nas inspeções e ensaios (4.10/ISO 9001) a ISO, por meio do SQI III.4, sugere a revisão do procedimento da inspeção de recebimento do aço, de tal forma que se garanta a documentação de todas as fases importantes do processo. Recomenda, também, verificar as especificações relativas às folhas de processo, principalmente no que se refere aos padrões

\(^7\)Essa consultoria foi realizada pela SGS (Société générale de surveillance).
visuais. Também sugere que todas as inspeções finais tenham critérios de aceitação claramente definidos. Para o controle de equipamentos de medição e de ensaios (4.11/ISO 9001) a ISO (Sqi III.5) recomenda revisar toda a documentação existente no que se diz respeito aos equipamentos de inspeção, medição e ensaio, de tal modo que se possa garantir que a precisão dos equipamentos seja compatível com o uso, que se estabeleça uma frequência de calibração e que se garanta o manuseio, a preservação e o armazenamento dos equipamentos. Essas medidas permitem que a precisão e a exatidão deles sejam preservadas. Na situação de inspeção e de ensaio (4.12/ISO 9001), a ISO (Sqi III.6) sugere revisar a documentação dos equipamentos, verificando-se a sua adequação à norma. Propõe elaborar um novo manual (vide SQI III.3) que englobe: o manuseio, o armazenamento, a embalagem, a preservação e a entrega (4.15/ISO 9001). Ressaltamos que, nesse procedimento, se deve destacar o limite da responsabilidade da forjaria.

Outra sugestão dada por uma consultoria, formulada por meio da comparação do sistema de qualidade da empresa (SQE III com SQe III), tem como enfoque a fabricação de forjados, destacando os seguintes procedimentos: assegurar a capacidade do processo, planejar as inspeções e testes, separar os materiais não-conformes, adequar o plano de manutenção das máquinas e equipamentos e planejar a movimentação. A comparação do sistema de qualidade da forjaria (SQF III com SQf III) como proposta à fabricação de forjado sugeriu: assegurar a capacidade das prensas de produção, identificar, separar e rastrear o forjado no processo.

Uma outra importante medida, originada de uma auditoria externa no sistema de qualidade do forjamento a quente (SQFQ), destaca: o planejamento, as instalações, a qualificação do pessoal, o controle do processo e as melhorias contínuas. O planejamento da fabricação enfatizou o controle do set-up e a auditoria no processo; enquanto, nas instalações, houve ênfase na manutenção preventiva e preditiva das prensas e dos fornos, nas folhas do roteiro de fabricação, na disponibilidade das prensas, na situação da aferição dos equipamentos de controle e na organização dos forjados quando fabricados, bem como na organização de suas respectivas matrizes de forjamento. Quanto à qualificação do pessoal, destacou o treinamento e a aplicação das técnicas estatísticas. Também, no controle do

1Essa auditoria foi realizada por uma montadora de origem européia.
processo da manufatura, salientou o plano de controle, o plano de \textit{set-up} e o controle estatístico do processo (CEP). E ainda, sugeriu a criação de grupos para trabalhar em melhorias contínuas.

Paralelamente à auditoria externa exposta acima, também foi realizada uma auditoria interna no SQFQ, que recomendou a utilização efetiva do plano de controle, o acompanhamento do \textit{set-up} forjado a forjado, lote a lote, operação por operação, o cuidado com o manuseio de forjados, o planejamento e a programação da manutenção e a implementação das ações corretivas e preventivas. Propôs também a criação de um sistema para identificação do forjado, registro de documentos e rastreamento do forjado durante o seu processo de fabricação.

Uma segunda e nova auditoria9 externa no SQFQ sugeriu cadastrar e aferir os instrumentos, principalmente no que se diz respeito aos pirômetros que controlam a temperatura de aquecimento dos tarugos. O controle dessa temperatura é fundamental na qualidade do forjado, principalmente no da temperatura máxima. Quanto à área de segregação, é de suma importância definir um local fixo, chamado de “área de quarentena”. Deve-se também controlar rigorosamente os produtos não-conformes. Já o rastreamento é muito importante no controle da corrida e da identificação do forjado no processo. Outro ponto importante destacado por essa auditoria é que, na forjaria, é importante que se controle o ciclo de tratamento térmico (normalização) como garantia dos parâmetros da usinagem dos metais. A seguir, serão apresentadas as sugestões para esse subsistema, elaboradas por nós com a ajuda de um especialista em ISO 9001.

A fabricação do forjado é o ponto chave da qualidade desse produto, pois além de se acompanhar o processo de fabricação ponto a ponto, ele é o integrador do produto com o processo, dando oportunidade de aplicação de processos de melhoria contínua. Dessa forma, embora já tivéssemos informação suficiente para o desenvolvimento do modelo de qualidade, resolvemos analisar criticamente o sistema SQF. Após análise desse sistema, pudemos observar que os pontos falhos que mais se destacaram foram: aplicação inadequada do programa de ações corretivas, não cumprimento do plano de manutenção preventiva, não
identificação dos forjados, não acompanhamento dos indicadores de qualidade, manuseio e transporte inadequados, não utilização do plano de controle e de set-up. Também observamos que, nas ações corretivas, faltava agilidade nas respostas e os prazos assumidos não eram cumpridos. Descobrimos também que os forjadores e inspetores não dominavam a técnica de resolução de problemas, o que torna indispensável a formalização de um treinamento específico nessa técnica e a definição de um coordenador para as ações corretivas e discussão das ações preventivas em um grupo estabelecido para tal. Analisamos, também, o plano de desenvolvimento de recursos humanos e percebemos que não existia um plano de treinamento e que os funcionários não eram avaliados quanto ao seu desempenho. Recomendamos, então, que o comitê de qualidade pudesse coordenar essa atividade por intermédio do gerente de recursos humanos.

Quanto à identificação dos forjados, na qual se destacava que não estavam identificados, fato que não permitia o seu rastreamento, recomendamos criar um sistema de identificação visual por meio de etiquetas metálicas e o rastreamento poderia utilizar códigos de barras. No que diz respeito aos indicadores de qualidade, recomendamos adequá-los ao acompanhamento dos objetivos e da política de qualidade, recomendamos, ainda, total envolvimento de todos na organização. O manuseio de forjados apresentava contentores muitas vezes inadequados, cujas taras não estavam confirmadas. Forjados em excesso eram armazenados em locais não identificados como carga e descarga e não era indicado em que operações se encontravam. O controle de set-up, que é a preparação das matrizes nas prensas e das bobinas nos fornos, muitas vezes estava incompatível com as folhas de roteiro de processo. Em face desses problemas, recomendamos que se atualizasse a documentação do processo e que se aplicasse as técnicas do Smed (single minute exchanging die), que controla os tempos externos e internos. Nos planos de controles, havia dificuldade de interpretação. Os forjadores não os cumpriam e muitas vezes não estavam disponíveis no local de trabalho, recomendando-se, então, que se preparasse um procedimento específico e, em paralelo, um programa de treinamento em metrologia e de entendimento do plano de controle. A seguir, vamos explicar as recomendações das avaliações e comparações, ao quarto subsistema, o fornecedor, para que possamos completar as medidas do modelo de qualidade.

1Essa auditoria foi realizada pelas unidades estratégicas de negócios – UENs (transmissões para: caminhões, pick-ups,
5.1.4. Fornecedor

Para o subsistema fornecedor, apresentam-se as recomendações da ISO, por meio do SQI IV, as quais são resultantes da avaliação do sistema de qualidade da forjaría (SQF). Na aquisição (4.6/ISO 9001) foi recomendado verificar se todos os documentos inclusos no sistema de qualidade (SQ) de material comprado estão de acordo com a ISO 9001 (SQI IV.1). A consultoria também enfatizou e destacou que as interfaces do relacionamento entre fornecedor e suprimentos devem ser mais integradas. Sugeriu, ainda, que as áreas envolvidas no processo de compras e recebimento devem consolidar um procedimento que gerencie o processo de aquisição. Também é aconselhado reavaliar o critério de permanência de um fornecedor, a fim de garantir que se ele não estiver com a performance adequada, tenha o dever de solucionar os problemas ou possa até mesmo ser descredenciado. Sugere também homologar os processos no fornecedor e estabelecer indicadores de qualidade para os materiais comprados. Na sequência, foram estabelecidas as recomendações das comparações entre sistemas de qualidade já existentes na empresa e na forjaría dessa empresa.

A comparação de uma consultoria no sistema de qualidade da empresa (SQE IV com SQe IV), como proposta para subsistema fornecedor, ressaltou os seguintes pontos: planejar e executar a inspeção do recebimento se necessária, monitorar o fornecimento do material comprado, acompanhar o fornecedor as alterações do projeto e realizar auditorias no fornecedor. Na comparação do sistema de qualidade da forjaría (SQF IV com SQf IV), como proposta para subsistema fornecedor, sugere: homologar os processos no fornecedor, recuperar os custos para materiais não-conformes e estabelecer a qualidade assegurada para as asiarias fornecedoras.

Por outro lado, a auditoria externa realizada no SQF sugeriu adequar o cadastro de qualificação dos fornecedores, efetuando-se, neles, um número maior de auditorias; elaborar reavaliação do fornecedor por meio do acompanhamento das ações corretivas; estabelecer critérios adequados para a verificação das amostras iniciais dos fornecedores, confirmar a capacidade do processo para todas as características decisivas do aço adquirido. Desenvolver com asiarias programas de melhorias contínuas, evidenciando-se: a qualidade, a redução de
custo, o sistema de planejamento, a programação e a entrega. Instalar e manter, na administração do estoque, o sistema de giro dos forjados, no qual o primeiro que entra no estoque deve ser o primeiro que sai (Fifo – *first in-first out*). A seguir, serão apresentadas as sugestões ao subsistema satisfação do cliente, obtidas por meio da recomendação da ISO 9001 e do resultado da comparação entre os sistemas de qualidade da empresa e da forjaria dessa empresa.

5.1.5. Satisfação do cliente

As sugestões da ISO, por meio do SQI V para o subsistema satisfação do cliente para modelo de qualidade são: os serviços associados (4.19/ISO 9001/assistência técnica) da pós-venda devem constituir um requisito contratual entre o cliente e a forjaria, e que se implemente o conceito de pós-venda em vez de pós-produção. Sugere, ainda, estabelecer um plano adequado de expedição, com o intuito de garantir a satisfação do cliente (vide SQI V.1).

Outra indicação de uma consultoria foi obtida por meio da comparação do SQE V com o SQe V, e consiste em: garantir a qualidade e a disponibilidade dos forjados da reposição e dedicar-se à satisfação do cliente. Já a comparação do SQF V com o SQf V como medida, ao subsistema satisfação do cliente, destaca a necessidade de encontrar a satisfação do cliente e estabelecer indicadores de qualidade na pós-venda.

5.2. Descrição do modelo

O modelo de qualidade inicialmente foi desenvolvido a partir do sistema de qualidade da forjaria (SQF) (vide figura 89). Também contribuíram para esse desenvolvimento a proposta de auditoria do sistema de garantia da qualidade ISO 9001 (SQI) nos processadores SQF e SQFQ, as comparações dos sistemas de qualidade da empresa (SQE com SQe), dos sistemas de qualidade da forjaria (SQF com SQf) e dos sistemas de qualidade do forjamento a quente (SQFQ com SQfq); além das propostas das auditorias interna e externa realizadas na forjaria (ressaltamos que na descrição do modelo de qualidade proposto também estão inseridos os processos de auditoria).
Figura 89 - Modelo inicial de qualidade da forjaria

O modelo de qualidade desenvolvido neste trabalho como primeira proposta foi o MIQ (modelo inicial de qualidade), que foi implantado e acompanhado. Observamos que o indicador de qualidade apresentou uma elevação, porém não estava ainda adequado às forjarias “classe mundial”. Dessa forma, por meio do processo de melhoria contínua e integração, desenvolvemos um segundo modelo denominado modelo de qualidade (MQ). O MQ apresentou uma grande evolução quando comparado ao sistemas de qualidade da forjaria: SQF e SQf. Na sequência, serão apresentados os subsistemas\(^\text{10}\) do modelo de qualidade. O modelo inicial de qualidade (MIQ) está desdobrado nos seguintes subsistemas: gerenciamento de qualidade (MIQ I), desenvolvimento do projeto (MIQ II), fabricação de forjados (MIQ III), fornecedor (MIQ IV) e satisfação do cliente (MIQ V). Após avaliação do MIQ, entendemos

que ele poderia ser aperfeiçoado, transformando-se no modelo de qualidade (MQ) da forjaria, que pode ser visto na figura 90.

![Diagrama de modelo de qualidade da forjaria](image)

Figura 90 – Modelo de qualidade da forjaria

Esse modelo foi por nós desenvolvido a partir do modelo inicial de qualidade (MIQ) sob influência de campo dos processadores de melhoria contínua e integração: GPI (gerenciamento de processo integrado), IA (integração e automação), GH (gerenciamento humano) e PEQ (planejamento estratégico de qualidade). Dessa forma, o MQ pode ser decomposto nos seguintes subsistemas: gerenciamento da qualidade (MQ I), desenvolvimento de projeto (MQ II), fabricação de forjados (MQ III), fornecedor (MQ IV), satisfação do cliente (MQ V) e melhoria contínua (MQ VI). Dessa forma, a grande diferença entre o modelo MIQ e o modelo MQ é a melhoria contínua que está aplicada em todos os subsistemas: do I ao VI.

No quadro 55, simultaneamente, são apresentados o modelo MIQ e o modelo MQ. A descrição do modelo MIQ inicia-se pela palavra “chave” MIQ, enquanto a descrição do modelo MQ contém a anterior e adiciona a ela o símbolo @. **Essa descrição**\(^1\) @ é exatamente a melhoria promovida por: GPI, IA, GH e PEQ.

Quadro 55

Descrição do processador modelo de qualidade

MQ I (Gerenciamento da qualidade) (MIQ I) Estabelecer uma organização, na forjaria, voltada para a qualidade, emitir e revisar a política da qualidade, projetar o sistema de qualidade (SQ), administrar as informações da qualidade, assegurar o controle dos documentos da qualidade, estabelecer indicadores para análise do sistema de qualidade (SQ), auditar internamente a qualidade na forjaria, implementar ações corretivas e preventivas, relatar e analisar as falhas do produto, analisar periodicamente o sistema e a administração da qualidade, monitorar o custo de qualidade, desenvolver e integrar o planejamento da qualidade dentro dos negócios, analisar o mercado, repor expectativas e necessidades do cliente, acompanhar as leis governamentais, desenvolver e implementar programas para a melhoria da qualidade, identificar, desenvolver e implementar a educação e o treinamento com todos os envolvidos com a qualidade, selecionar e adaptar técnicas para o aperfeiçoamento da qualidade, utilizar as técnicas de soluções de problemas\(^2\)

1. **O complemento @ está em itálico** (ver na descrição do processador).
2. **As técnicas de resoluções de problemas são:** brain-storming, diagrama de Ishikawa, lista de verificação, diagrama de Pareto, coleta de dados, histograma, carta de controle, estudo de capacidade, fluxograma, ciclo PEVA (planejar, executar,
estabelecer/analisar indicadores de desempenho da qualidade nos negócios. @ Planejar estrategicamente a qualidade considerando-se a técnica de benchmarking na análise dos competidores, estabelecer a técnica de comprometimento e envolvimento, assegurar uma forma adequada de comunicação, enfatizar a motivação, estabelecer a integração empresa-collaborador, contratar novos funcionários com escolaridade a partir do segundo grau, utilizar técnicas de flexibilidade: CIM®, TQM e JIT®.

MQ II (Desenvolvimento do projeto)(6) (MIQ II) Definir conceitos do produto a partir de requisitos dos clientes, analisar o projeto sob uma perspectiva de negócio, considerando-se a sua viabilidade e competitividade, enviar ao cliente os relatórios de engenharia e os de amostra inicial, administrar o projeto na sua totalidade, estabelecer o coordenador do projeto, controlar os projetos do produto e do processo, existentes e novos, revisar continuamente o projeto, definir o projeto do produto de acordo com os requisitos mercadológicos, estabelecer o projeto do processo a partir dos requisitos do produto, garantir a utilização das folhas do roteiro do processo, liberar o ferramental e o equipamento do projeto do processo, homologar o produto, por meio de testes, e o processo, considerando-se a manufatura interna e fornecedores, analisar criticamente os contratos, assegurando a capacidade de satisfazer os itens acordados, identificar e avaliar os riscos de qualidade, assegurar a administração das alterações do produto e do processo, avaliar frequentemente os equipamentos e os ferramentais e estabelecer/analisar indicadores no projeto do produto/processo. @ Estabelecer, planejar e implementar uma estratégia de negócios para o desenvolvimento do projeto, assegurar a parametrização e a padronização do produto e do processo, acompanhar a disciplina para que atenda as características do produto, aplicar técnicas de projeto: CAD/CAM, CAPP, QFD, DFM e FMEA.

MQ III (Fabricação de forjados) (MIQ III) Introduzir de forma planejada o projeto ou a alteração de produto e processo, incluindo-se as revisões e verificação da conclusão da atividade, assegurar que os equipamentos de produção mantenham as suas capacidades e disponibilidades, por meio da manutenção corretiva, preventiva e preditiva, planejar inspeções e teste, controlar os equipamentos de medição, garantindo-se a periodicidade e o conhecimento das incertezas das medições, assegurar a capacidade do processo, assegurar que a documentação necessária para a manufatura do produto seja utilizada adequadamente, garantir a organização e a ordem dos ferramentais, garantir que haja identificação dos materiais em cada etapa do processo, garantir a utilização do plano de controle, garantir que o rastreamento seja mantido durante o processamento do produto, identificar e separar os materiais não-conformes, garantindo, assim, que não sejam utilizados, assegurar a proteção do produto durante o manuseio e a estocagem em todo o processo, criar um sistema de apoio ao desenvolvimento da qualidade e estabelecer/analisar indicadores de desempenho de qualidade. @ Assegurar as reuniões em grupo, utilizar técnica de participação: CCQ, apoiar facilitadores, estabelecer o controle automatizado do processo, aplicar novos processos: forjamento a quente sem rebordo (flashless), forjamento a morno e net shape.

MQ IV (Fornecedor) (MIQ IV) Avaliar os fornecedores quanto à qualidade de seus sistemas, planejar e executar a inspeção de recebimento (quando necessária), selecionar os fornecedores, enviar aos fornecedores todas as especificações necessárias sobre o produto, homologar os processos dos fornecedores, garantir que a qualidade dos itens comprados seja mantida durante o fornecimento, fazer com que o fornecedor, se responsabilize pelos gastos com não-conformidades, acompanhar as alterações, estabelecer ação corretiva com o fornecedor, auditar periodicamente o fornecedor e

12 A estratégia pode ser obtida por meio da mudança de paradigma, redesenhando-se os processos de negócios e aplicando-se o processo de melhoria contínua por meio da organização. O segredo de uma companhia está na competitividade de qualidade, tempo de lançamento de novos produtos e orientação voltada aos processos; então, ganha quem hoje acelerar a taxa de melhoria contínua. Ver Maia (1994: 1-5).

estabelecer/analisar os indicadores de desempenho do sistema de material comprado. @ Incentivar o fornecedor a utilizar controle de processos: CEP, estender ao fornecedor todos os processos que apresentaram bom resultado na forjaria.

MQ V (Satisfação do cliente) (**MIQ V**) Garantir a qualidade da peça de reposição desde a origem até o recebimento no cliente, assegurar adequada orientação e assistência ao cliente por meio de plano de contatos periódicos, garantir atendimentos de peça ao cliente de acordo com a relação fornecedor/cliente, acordar as reprogramações de componentes, assegurar atualização da política de garantia, assegurar plano de atendimento, divulgando os dados de falha e retorno de informações aos clientes, administrar o inventário (primeiro que entra, primeiro que sai), estabelecer/analisar os indicadores de desempenho da qualidade na pós-venda e buscar a satisfação do cliente. @ Introduzir o conceito “oito elementos” na garantia do produto, garantir a entrega.

MQ VI (Melhoria contínua) @ Garantir o acompanhamento das mudanças culturais e técnicas que ocorrem na organização, assegurar o novo perfil dos recursos humanos, assegurar o comprometimento e envolvimento, assegurar a criação de grupos de trabalho, utilizar técnicas de autocontrole: “perda-zero” e de disciplina, assegurar a simplificação do custo da qualidade: falhas internas, externas, prevenção e avaliação, assegurar a melhoria contínua na revisão do projeto do produto, na engenharia e processo, no “chão-de-fábrica”, melhorar continuamente os indicadores de qualidade. Estabelecer o sucesso através de pessoas (**SAP**) e a introdução do processo de melhoria contínua.

![Figura 91 - Sistemógrafo do modelo inicial de qualidade da forjaria](image-url)

18 O sucesso através de pessoas é uma forma de assegurar o envolvimento, desenvolver líderes dos processos nas células de trabalho, apoiar trabalho desenvolvido em grupo, assegurar a inovação, garantir a confiança, reduzir níveis hierárquicos, gerenciar os planos de ações em qualidade.
Sistemógrafo MIQ
Na figura 91, o MIQ I, ou processador I, informa ao II se a estrutura da qualidade da forjaria está definida e também quais são as necessidades do cliente. O I também informa ao II à V se a política e o sistema de qualidade estão estabelecidos. Ainda, o I informa ao III à V sobre os indicadores de qualidade nos negócios. Já o II libera ao III as folhas de roteiro do processo e os respectivos planos de controle, envia informações ao IV sobre a necessidade de componentes adquiridos e os respectivos indicadores de qualidade. Então, o II dá feed-back ao I sobre a análise crítica do contrato. Também o II envia ao cliente os relatórios de engenharia e os de amostra inicial. O III informa ao V que o produto manufaturado está disponível. Também dá feed-back ao IV sobre a conformidade e entrega do aço. Ainda dá feed-back ao II sobre a necessidade de melhorias no projeto do processo. O III dá feed-back ao I sobre o nível dos indicadores de qualidade, das necessidades de treinamento, sugestões para o manual de qualidade e o andamento das ações corretivas. O IV informa ao II, III e V sobre o fornecedor selecionado e entrega o aço para o III. O V, por sua vez, dá feed-back ao I sobre o andamento da política de qualidade e as necessidades do cliente, ao II sobre as necessidades de alterações, em função da garantia da qualidade e ao III e IV sobre a garantia da qualidade. O V, por fim, envia ao cliente o forjado com garantia de qualidade.

O sistemógrafo MIQ encontra-se na figura 91. Acima, estão a descrição de cada processador (vide quadro 55) e, também, a descrição das entradas, das saídas e das remotimitações desse sistemógrafo. A seguir será apresentado o sistemógrafo MQ.

![Diagrama do sistemógrafo MQ](image)

Figura 92 - Sistemógrafo do modelo de qualidade da forjaria

Sistemógrafo MQ
Na figura 92, os processadores MQ I a V são resultantes do MIQ, modelo inicial de qualidade, sob influência dos processadores: GPI, gerenciamento do processo integrado; IA, integração e automação; GH, gerenciamento humano e PEQ, planejamento estratégico de qualidade. O MQ VI, melhoria contínua, também sofre influência do: GPI, IA, GH e PEQ. Dessa forma, o modelo de qualidade, MQ, é uma composição do MIQ sob influência de campo do GPI, IA, GH e PEQ. No sistemógrafo, os processadores MQ I a V enviavam informações do sistema de qualidade ao MQ VI. Essas informações tem as mesmas atividades do sistemógrafo (vide figura 91) descritas no MQI. O MQ VI dá feed-back aos MQ I a V sobre as revisões do projeto do produto e do processo, sobre o acompanhamento das mudanças na organização, sobre trabalhos realizados por meio de grupos, sobre o estágio em que se encontram a liderança, informação, planejamento estratégico e registros.

19 Na figura 92 estão mostrados: 1) a política de qualidade (conjunto das intenções e diretrizes globais da forjaria, o qual contempla a relação entre o cliente, o colaborador, o acionista, o fornecedor, o meio ambiente e o competidor); 2) manual de qualidade (enuncia a política de qualidade e descreve o sistema de qualidade); 3) procedimentos (descreve as atividades e eventos, bem como a forma de executá-los); 4) instruções e especificações (fornece os meios de como devem ser executados as atividades e eventos) e 5) registros (informa e demonstra a efetiva operação do sistema de qualidade).
desenvolvimento de recursos humanos e as consequentes simplificações do custo de qualidade. O MQ VI também informa ao cliente se o forjado está disponível com a adequada qualidade, preço competitivo e disponibilidade para atendimento.

O sistemógrafo MQ está na figura 92. Acima, apresentam-se a descrição de cada processador (vide quadro 55), bem como a descrição das entradas, das saídas e das retransmitências desse sistemógrafo. A seguir será descrito o primeiro subsistema desdobrado dos modelos MIQ e MQ denominado gerenciamento de qualidade.

5.3. Gerenciamento de qualidade

No quadro 56, encontram-se a descrição e o desdobramento do processador MIQ I e MQ I (gerenciamento de qualidade\(^{20}\)). A diferença entre eles está no símbolo @ que indica melhoria contínua e integração\(^{21}\), que são válidas somente para o modelo MQ I.

Quadro 56

Descrição do processador gerenciamento de qualidade

MQ I.1 (Responsabilidade da administração\(^{22}\) (MIQ I.1) Estabelecer a organização da qualidade. Estabelecer a responsabilidade, a autoridade e a inter-relação do pessoal que gerencia as atividades da qualidade. A administração executiva da forjaria deve designar um gerente para assegurar que o sistema de qualidade (SQ) esteja sendo utilizado, de acordo com a norma ISO 9001, bem como relatar o desempenho desse sistema, a fim de que se possa elaborar uma análise crítica do sistema da qualidade (SQ), visando à sua melhoria. O gerente geral da forjaria deve estabelecer a estrutura organizacional (de acordo com as figuras 7 e 104). O comitê de qualidade deve deliberar sobre as atividades de projeto, manutenção e desenvolvimento da qualidade assegurada. @ Asseguar a comunicação de forma total (GH IV.3).

MQ I.2 (Política de qualidade\(^{23}\) (MIQ I.2) Estabelecer a política de qualidade. (Essa política deve ser divulgada a todos os funcionários, pois considera que as diretrizes são correlacionadas com as metas organizacionais da forjaria). Atender as expectativas e necessidades do cliente. O gerente geral da forjaria deve aprovar a política de qualidade. @ Asseguar a estratégia de negócios na definição da política de qualidade (PEQ I), garantir a divulgação da política de qualidade por meio do comprometimento (GH IV).

\(^{20}\) Um exemplo de gerenciamento de qualidade com aplicação de técnicas japonesas pode ser visto na Marcopolo, fabricante de carros. Ela considera que a qualidade é um princípio fundamental de empresa. A qualidade se refere a um número menor de defeitos, mais eficiência e manutenção, e é garantida por meio de um sistema de gestão que inclui a participação de todos os funcionários.

\(^{21}\) A melhoria contínua e integração são principais para a qualidade e eficiência de uma empresa.

\(^{22}\) A responsabilidade da administração é fundamental para a qualidade e segurança do produto.

\(^{23}\) A política de qualidade é uma diretriz que guia a empresa em sua busca por excelência e qualidade.

Ver MQ I.1 foi desenvolvido com base no MIQ I.1 ao qual se adicionou o processador de melhoria contínua e integração GP IV.3 (comunicação). O MQ I.1 tem como função principal desenvolver a organização da forjaria sob forte influência do mecanismo do comportamento auxiliado pela comunicação. Simbolicamente, podemos representar a descrição anterior por meio da "equação": MQ I.1 = MIQ I.1 @ GH IV.3.

O MQ I.2 tem a mesma função do MIQ I.2 com a adição do PEQ I (estratégia de negócios) e o GH IV (comprometimento). Estabelece e divulga a política de qualidade por meio da estratégia de negócios e ao divulgar-a aos colaboradores, aplica as técnicas de comprometimento: MQ I.2 = MIQ I.2 @ PEQ I @ GH IV.
MQ 1.3 (Sistema de qualidade) (MIQ 1.3) O sistema de qualidade (SQ) deve ser projetado e implementado como meio de assegurar que o produto esteja em conformidade com os requisitos especificados. A forjaria deve estabelecer, documentar e manter o sistema de qualidade (SQ). Deve-se preparar o manual da qualidade, que abrange todos os requisitos da ISO 9001. O comitê de qualidade deve administrar o projeto, a implementação e o desenvolvimento do sistema de qualidade (SQ). @ Assegurar a revisão contínua (GPI IV.2) e a informatização (GPI IV.7) do sistema de qualidade.

MQ 1.4 (Informação) (MIQ 1.4) A informação da qualidade deve ser estabelecida por meio de um boletim. Esse boletim deve estabelecer a informação em qualquer atividade e/ou evento crítico do sistema de qualidade (SQ) que exigir ação imediata de grande abrangência. O gerente da engenharia da qualidade deve abrir o boletim da qualidade e definir o coordenador. @ Assegurar o envolvimento do colaborador por meio do TQM (IA II.3), assegurar a comunicação da informação da qualidade por meio do comprometimento (GH IV.3).

MQ 1.5 (Controle de documentos) (MIQ 1.5) Assegurar que o controle de documentos e de dados possa, por meio de um plano, tomar as seguintes providências: liberar, distribuir, arquivar, alterar e desativar. O gerente da engenharia deve coordenar o controle de documentos do sistema de qualidade (SQ).

MQ 1.6 (Auditoria) (MIQ 1.6) Estabelecer procedimentos para planejamento e implementação de auditorias internas que verifiquem se as atividades da qualidade estão em conformidade com a forma especificada no sistema de qualidade (SQ). O comitê de qualidade da forjaria deve analisar criticamente o resultado das auditorias internas. @ Assegurar a auditoria no sistema de qualidade (GPI III.10), garantir aos colaboradores a informação sobre o negócio forjaria (GPI III.11) e assegurar o acompanhamento das auditorias (GPI IV.2).

MQ 1.7 (Ação) (MIQ 1.7) Estabelecer/manter procedimento de ação corretiva/preventiva para evitar não-conformidade em produto, processo e sistema. Nas ações corretivas, procura-se eliminar as causas de uma não-conformidade que seja de um defeito ou até mesmo de um sistema. A ação corretiva é a eliminação das causas, após investigação de uma não-conformidade. A ação preventiva procura eliminar as causas de uma provável não-conformidade. O gerente da engenharia deve monitorar o sistema de ação corretiva e preventiva. @ Garantir a monitoração das ações corretivas (GPI III.9), assegurar o encaminhamento das ações preventivas por meio do comprometimento dos grupos de trabalho (GH IV.3).

MQ 1.8 (Falhas do produto) (MIQ 1.8) Garantir o relato e a análise das prováveis falhas do produto. Estabelecer os meios e critérios para validar o projeto por meio de testes, estudos de engenharia e de confiabilidade. Planejar a fabricação de forjados protótipos e a homologação do projeto do forjado. Atender a análise crítica do produto (o FMEA não deve indicar risco de qualidade maior que o permitido) e, ainda, atender aos requisitos do projeto. O gerente da engenharia do produto deve assegurar o relato e a análise das prováveis falhas do forjado. @ Garantir a aplicação do método de análise de falhas no projeto do produto (IA II.1).

26O MQ 1.3 agrupa o MIQ 1.3, o GPI IV.2 (revisão do manual da qualidade) e o GPI IV.7 (informatização do manual). Projeta e implementa o sistema de qualidade que, por meio do manual da qualidade, pode fazer com que seus processos possam ser revisados continuamente e, pela informatização, distribuí-los on line: MQ 1.3 = MIQ 1.3 @ GPI IV.2 @ GPI IV.7.

28O MQ 1.4 engloba o MIQ 1.4, o IA II.3 (envolvimento, TQM) e o GH IV.3 (comunicação). A informação de qualidade é normalmente emitida por um boletim e o seu processamento é auxiliado pelo envolvimento do colaborador e pelo mecanismo de comunicação com técnicas de comprometimento: MQ 1.4 = MIQ 1.4 @ IA II.3 @ GH IV.3.

29 Ainda hoje os japoneses estão envolvidos com TQM. “As empresas japoneses têm importado muitas técnicas americanas e europeias de organização e execução do trabalho e em pouco tempo adaptaram ao sistema japonês. O exemplo mais comum desse processo foi a importação do CEPF que se desenvolveu nos CCQs”. Ver Masiero (1994: 12-19). “Pelo simples fato de ser criativa, solidária e compartilhada, os empregados assumem a responsabilidade pela Qualidade, os consumidores reconhecem esta Qualidade e a prestigiam; a comunidade, sensibiliza-se pela imagem positiva da empresa”. Ver Bonilha (1997: 61-64).

20O MQ 1.6 abrange o MIQ 1.6, o GPI III.10 (auditoria), o GPI III.11 (incompatibilidade) e o GPI VI.2 (acompanhar auditorias). O MQ 1.6 tem o papel de estabelecer um método que verifique, por meio de auditorias internas, se as atividades da qualidade estão de acordo com o sistema de qualidade. No MQ 1.6, os responsáveis por essas auditorias devem informar sobre seus resultados: MQ 1.6 = MIQ 1.6 @ GPI III.10 @ GPI III.11 @ GPI VI.2.

21O MQ 1.7 tem funções idênticas ao MIQ 1.7, GPI III.9 (monitoramento das ações) e GH IV.5 (comprimento de grupos de trabalhos). As ações corretivas e preventivas são estabelecidas por intermédio de um procedimento que busca evitar a não-conformidade em produtos, processos e sistemas. As ações corretivas devem ser monitoradas, enquanto procura-se envolver os funcionários em atividades de grupos de trabalho, a fim de que possam se comprometer e agir preventivamente no sistema de qualidade: MQ 1.7 = MIQ 1.7 @ GPI III.9 @ GH IV.5.

22O relato e análise de falhas do produto representado pelo MQ 1.8 condensa o trabalho do MIQ 1.8, do IA II.1 (análise de falhas) e do IA III.1 (engenharia simultânea/DFM). Dessa forma, o MQ 1.8 deve encontrar meios para validar o projeto do produto, sendo que, para isso, a técnica FMEA é uma das indicadas. Outro meio preventivo de análise de falhas do produto é a integração por meio da engenharia simultânea: MQ 1.8 = MIQ 1.8 @ IA II.1 @ IA III.1.
aplicar preventivamente a técnica de engenharia simultânea e o projeto de produto voltado para processos (IA III.1).

MQ I.9 (Análise crítica) (MIQ I.9) Assegurar que a análise crítica de qualidade avalie o sistema e o gerenciamento de qualidade. Nessa análise, procura-se avaliar os objetivos globais da qualidade e os pontos que mais se destacam nas auditorias de qualidade e nas ações corretivas/preventivas. O gerente geral da forjaria deve acompanhar trimestralmente essas análises.

MQ I.10 (Custo de qualidade) (MIQ I.10) Estabelecer um procedimento para monitorar os custos operacionais da qualidade. O gerente financeiro deve monitorar o custo de qualidade.

MQ I.11 (Planejamento) (MIQ I.11) Estabelecer orientação quanto ao desenvolvimento e a integração do planejamento da qualidade da forjaria. Nesse planejamento são considerados os objetivos globais da qualidade, as avaliações da qualidade pelo cliente e as metas para o custo da qualidade. O comité da qualidade deve coordenar o planejamento da qualidade. @ Assegurar os valores da forjaria por meio da visão no planejamento da qualidade (GPI A), estabelecer e divulgar a missão da forjaria (GPI B), considerar no planejamento da qualidade a estratégia de negócios (PEQ I), aplicar o comprometimento da qualidade, divulgando a visão-missão (GH IV.1).

MQ I.12 (Necessidade do cliente) (MIQ I.12) Estabelecer orientação para o acompanhamento das alterações das expectativas do cliente. Em geral, os gerentes de vendas devem acompanhar e evoluir o mercado. @ Analisar o mercado e avaliar a satisfação do cliente por meio do planejamento estratégico de qualidade (PEQ I).

MQ I.13 (Leis) (MIQ I.13) Estabelecer orientação para o atendimento às leis relativas à qualidade, segurança, confiabilidade, serviço, meio ambiente e características de utilização do produto. O gerente administrativo acompanha o atendimento às leis.

MQ I.14 (Educação/treinamento) (MIQ I.14) Devem-se estabelecer procedimentos, identificando as necessidades de treinamento. Procurar identificar, planejar e implementar um plano de educação e treinamento.

33 Consideram-se como custos da qualidade: prevenção, verificação, falhas internas e externas. No custo de prevenção, levam-se em conta a administração da qualidade, a engenharia da qualidade e o treinamento. Já no custo da verificação tem-se em mente a inspeção de materiais comprados, em processo e a final. No custo da falha interna, abordam-se o rejeito, as perdas de materiais comprados e a recuperação de materiais comprados não-conformes. Ainda, considera-se como custo da falha externa o atendimento ao cliente, as medições em peças falhadas e a garantia.

34 O processador MQ I.11 reúne em si o MQ I.11, o GPI A (visão), o GPI B (missão), o PEQ I (estratégia de negócios) e o GH IV.1 (comprometimento por meio da visão/missão). Então o MQ I.11 planeja a qualidade quanto ao planejamento da orientação que desenvolve e integra o negócio. É de suma importância estabelecer a visão e a missão da forjaria, bem como divulgá-las. Também o planejamento da qualidade deve ser elaborado estratégicamente com visão no mercado. Esse planejamento deve ainda considerar o comprometimento dos funcionários por meio de amplo debate sobre a visão/missão: MQ I.11 = MIQ I.11 @ GPI A @ GPI B @ PEQ I @ GH IV.1.

36 A análise do mercado e satisfação do cliente, ambas representadas pelo MQ I.12, que tem as mesmas funções do MQ I.12 e PEQ I (estratégia de negócios). O MQ I.12 orienta o acompanhamento das alterações das expectativas e necessidades do cliente. Essa análise pode ser desenvolvida por meio das estratégias de negócios que focalizam o mercado e os competidores. Simbolicamente, podemos representar a descrição acima por meio da “equação”: MQ I.12 = MIQ I.12 @ PEQ I.

38 O planejamento estratégico da forjaria deve ser iniciado, transformando-a em uma verdadeira UEN (unidade estratégica de negócios) com maior grau de autonomia, sem no entanto perder a identidade sociocultural da empresa que pertence. A forjaria administrará em tempos de competição, ou seja, com visão no futuro por meio da criatividade, gestão participativa, satisfação do cliente, marketing proativo, lançamento de novos forjados (net shape), melhoria contínua e investimentos em recursos humanos. Então, essa forjaria vai se transformar naquela capaz de produzir novas lideranças, trabalhar em grupo, coordenar diferentes negócios, desenvolver sistemas de informação para tomada de decisões e enfrentar as “tempestades” macroeconômicas. Ver Angelo (1991: 98).

39 A responsabilidade empresarial quanto ao meio ambiente deixou de ter apenas característica compulsória para transformar-se em atitude voluntária, superando as expectativas da sociedade. A compreensão desta mudança de paradigma é importante para o setor produtivo brasileiro com um todo, e essencial para uma expressiva parcela voltada à exportação. Situar-se acima das exigências legais, mediante sistema de gestão ambiental (SGA), deixa de ser apenas uma estratégia preventiva para constituir-se mesmo em vantagem competitiva e diferencial de mercado” (encarte da Gazeta Mercantil – 20/03/96). Ver Avila (1996: 38-40).

40 O MQ I.14 abraca o MQ I.14, o GPI IV.3 (treinamento do manual de qualidade), o GH II (escolaridade do funcionário) e o GH III (treinamento contínuo). A educação e o treinamento são estabelecidos e mantidos por meio do planejamento que identifica previamente as necessidades dos programas de qualidade e do nível de escolaridade requerido na forjaria. Um ponto primordial é o treinamento do manual de qualidade para toda organização. No MQ I.14 também consideramos que o nível de escolaridade exigido é cada vez mais elevado. Dessa forma, o colaborador, estando num processo contínuo de educação e treinamento, está preparado para identificar melhorias nos processos e ter condições de estar sempre atualizado e conseguir emprego em qualquer lugar: MQ I.14 = MIQ I.14 @ GPI IV.3 @ GH II @ GH III.
para todos os colaboradores. O gerente de recursos humanos deve avaliar e coordenar as políticas que possam
 capacitar e desenvolver os recursos humanos envolvidos na qualidade. @ Asssegurar o treinamento do manual
de qualidade a toda organização (GPI IV.3), assegurar maior nível de escolaridade dos colaboradores (GH II),
garantir o treinamento contínuo em toda organização60 (GH III).
MQ L15 (Técnicas39) (MIQ L15) A forjaria deve identificar a necessidade de aplicação42 de técnicas estatísticas
requeridas para o estabelecimento, controle e verificação da capacidade do processo e das características do
produto. Pode-se utilizar também o estudo da capacidade do processo, cartas de controle, estudo de
repetibilidade, reproduzibilidade de instrumentos de medição, FMEA e técnicas de resolução de problemas. O
gerente da engenharia é o responsável pela utilização dessas técnicas. @ Garantir o treinamento em técnicas
estatísticas (GPI I.4), avaliar a estabilidade e capacidade do processo (IA I.3), indicar grupos de trabalhos
para participar na resolução de problemas (GH IV.4).
MQ L16 (Indicador) (MIQ L16) Estabelecer os indicadores de qualidade, visando-se à análise crítica do sistema
da qualidade, bem como à comparação da avaliação de qualidade pelo cliente com a autoavaliação. Esses
indicadores são elaborados por meio de objetivos globais diretamente associados às diretrizes, que estão
presentes na política de qualidade. Anualmente revisam-se e estabelecem-se esses objetivos, que por sua vez são
determinados pelo plano de qualidade. O comitê da qualidade da forjaria deve acompanhar mensalmente esses
indicadores e, ainda, encomendar uma pesquisa de mercado para acompanhamento dos indicadores “classe
mundial” (benchmarking).
MQ L17 (Integração58) @ Estabelecer a integração60 e comunicação entre a forjaria e colaboradores (GPI C),
integrar por meio do CIM os departamentos da forjaria, fornecedores e clientes (IA I), integrar por intermédio
da motivação (GH IV.2) e da comunicação (GH IV.3). O gerente geral deve assegurar a integração.
MQ L18 (Premiação42) @ Estabelecer critérios para recompensar trabalhos apresentados em grupo60 (GPI VI.5
e GH IV.6). Assegurar um adequado plano de carreira (GH IV.7). O gerente de recursos humanos deve garantir
a premiação.

40 “A competitividade atinge empresas e trabalhadores. A saída para as primeiras é assegurar a qualidade de seus produtos e
torná-los melhores que os da concorrência. Para o trabalhador é o aperfeiçoamento de suas habilidades só assim ele assegura
41 O processador MQ I.15 tem as mesmas funções do MIQ I.15, GPI I.4 (treinamento em estatística), IA I.3 (CEF) e GH IV.4
(comprometimento com grupos de trabalho). O MQ L.15 aplica técnicas estatísticas para que se possa controlar e verificar a
capacidade do processo e das características do produto. Pode ser utilizado também nas ações corretivas, sob a forma de
técnicas de solução de problemas. A aplicação do CEP é importante no controle da estabilidade e capacidade do processo. O
MQ I.15, ainda, prevê o trabalho com grupos que, por meio da participação, pode direcionar esforços nas soluções de
problemas. Simbolicamente, podemos representar a descrição acima por meio da “equação”: MQ I.15 = MIQ L15 @ CEF I.4
@ IA I.3 @ GH IV.4.
42 A aplicação de controles é recomendada em understanding variation. Ver Nolan e Provost (1990: 70-78).
43 O MQ I.17 tem as funções do GPI C (integração e comunicação), IA I (CIM), GH IV.2 (motivação) e GH IV.3
(comunicação). O MQ I.17 deve buscar a integração da forjaria com seus colaboradores. Para atingir esse objetivo
recomendamos utilizar as técnicas de manufatura integrada por computador, que integram: o produto e o processo por meio
do projeto, materiais, processos e manufatura por meio do planejamento da manufatura, sistemas flexíveis, controle de
processos e movimentação de materiais por meio do sistema flexível de manufatura (FMS); hardware, software e rede por
meio da tecnologia da informação. Outra ferramenta de integração é a motivação dos colaboradores. Essa motivação pode ser
conseguida pela proposta de planos de carreira, novas oportunidades, planos de investimento, explanação sobre os novos
negócios e necessidade de sobrevivência da forjaria. No MQ I.17 consideramos o plano de comunicação, que procura
apresentar uma proposta para se alcançar as metas planejadas nos indicadores: MQ L18 = GPI C @ IA I @ GH IV.2 @ GH
IV.3.
44 A tecnologia japonesa de fabricação baseia-se na integração de alta qualidade e baixo custo dentro do horizonte de tempo,
ou seja, o sucesso de uma empresa não depende somente de resultados econômicos, mas também do planejamento e
execução em curto espaço de tempo. Ver Yamashina (1989: 1-37). Exemplos de integração por meio do CAD/CAM,
GT/CAPP, MRP II e outras ferramentas podem ser vistos em Black & Decker, Twin Disc, Cincinnati Milacron, IBM, GE,
modelo de integração da qualidade total com reengenharia e melhoria continua pode ser visto na Revista Qualidade
Produutividade (1995: 12). O projeto do produto e processo, o planejamento, o controle e o processo de produção podem ser
integrados pela informação, cultura e satisfação do cliente.
45O MQ L18 tem funções originadas no GPI VI.5 (critérios de premiação), GH IV.6 (recompensa) e GH IV.7
(reconhecimento). O MQ L18 busca mecanismos de motivação e estabelece critérios e procedimentos para premiar os
trabalhos em grupo. Outra atividade do MQ L18 é recomendar um plano de carreira para reconhecimento por meio de
avaliação individual da performance e potencial, seja técnica ou administrativa, propiciando oportunidades de crescimento
do funcionário, na empresa. Simbolicamente, podemos representar a descrição acima por meio da “equação”: MQ L18 = GPI
IV.5 @ GH IV.6 @ GH IV.7.
Sistemógrafo MIQ I

Pode-se ver, na figura 93, o MIQ 1.1, ou processador 1.1, informa ao 1.2 sobre a estrutura da organização da forjaria (distribuição e níveis hierárquicos). O I.2 informa ao I.3 e 4 sobre a política de qualidade. Já o 1.3 libera ao 1.4 a 8 o manual de qualidade. O 1.3 dá feedback ao 1.1 sobre a influência da estrutura da forjaria no sistema de qualidade, também dá feedback ao 1.2 sobre a integração do manual de qualidade e a política de qualidade. O 1.4 divulga ao 1.5 e 6 o manual de qualidade. Então o 1.5 informa ao 1.6 sobre a reposição dos documentos e dados. O 1.6 informa ao 1.7 e 9 sobre os problemas encontrados nas auditorias, também dá feedback ao 1.3 e 4 sobre o resultado encontrado nas auditorias internas realizadas. O 1.7 informa ao 1.8 sobre o andamento das resoluções de problemas. Já o 1.8 relata ao 1.9 o resultado da análise das falhas ocorridas no forjado. O 1.9 informa ao 1.10 o resultado da análise do sistema de qualidade. O 1.10 dá feedback ao 1.1 sobre o despendido com as falhas de forjados, também informa sobre o custo de qualidade ao 1.11, esse por sua vez informa ao 1.12, 14 e 16 todo o desenvolvimento estabelecido no planejamento de qualidade. O 1.12 envia informação ao 1.13 sobre a análise do mercado e a relação com os clientes. O 1.13 informa ao 1.14 sobre os requisitados da obediência às leis, quer sejam econômicas, quer sejam ecológicas. O 1.14 dá feedback ao 1.6, 7 e 11 enviando o programa de treinamento, também informa ao 1.15 sobre o programa de treinamento. O 1.15 dá feedback ao 1.6 e 7 sobre o acompanhamento do controle estatístico de processo durante o fluxo produtivo e também envia essa mesma informação ao 1.16", que por sua vez dá feedback ao 1.1 e 11 sobre os indicadores e também informa ao cliente sobre o nível da qualidade.

Na figura 93, encontra-se o sistemógrafo MIQ I. Acima, apresentam-se a descrição de cada processador (vide quadro 56) e, também, a descrição das entradas, das saídas e das retromitências desse sistemógrafo. O sistemógrafo MQ I é mostrado a seguir.

47 O processador 1.16 deve buscar no mercado informações sobre qualidade e exerce o papel de ombudsman.
Sistemógrafo MQ I

Na figura 94, as interligações do MQ I.1 a I.16 são as mesmas dos processadores MIQ I.1 a 16, porém estão sob o efeito do GPI, IA, GH e PEQ. Os processadores MQ I.1 a 16 enviavam informações ao MQ I.17 sobre o conteúdo do planejamento da qualidade, análise do mercado, necessidades para atender a satisfação do cliente, planejamento da educação e treinamento, utilização das técnicas estatísticas e dados atuais dos indicadores de desempenho dos negócios. Então o MQ I.17 enviava ao MQ I.18 dados sobre o nível de integração dos colaboradores; também enviava esta informação como feedback ao MQ I.1 a 16. Então, o MQ I.18 recebeu informações sobre o andamento dos trabalhos de grupos provenientes do MQ I.1 a 16, após processá-las, envia novas informações sobre o que foi feito melhor e sobre os critérios para recompensar ou repreender trabalhos desenvolvidos por meio de grupos; essa informação é enviada como feedback ao MQ I.1 a 16 e ao processador MQ II, desenvolvimento do projeto.

Na figura 94 está o sistemógrafo MQ I. Acima, apresentam-se a descrição de cada processador (vide quadro 56) e, também, a descrição das conexões e das remessas desse sistemógrafo. Na sequência de apresentação do modelo de qualidade, será apresentado o subsistema desenvolvimento do projeto.

5.4. Desenvolvimento do projeto

A seguir, no quadro 57, encontram-se a descrição e o desdobramento do processador MIQ II e MQ II (desenvolvimento do projeto). A diferença entre eles está na descrição (destaque à melhoria contínua e integração) que é válida somente para o modelo MQ II.

Quadro 57
Descrição do processador de desenvolvimento de projeto

MQ II.1 (Voz do consumidor) (MIQ II.12) Assegurar o entendimento dos requisitos dos clientes e do mercado. Orientar na seleção dos requisitos a serem considerados na fase de coleta de dados e informações oriundas das expectativas dos clientes e dos fatores mercadológicos. Estabelecer com o cliente os requisitos

O MQ II.1 tem as mesmas funções do MIQ II.1 e IA I.1 (QFD), verifica os requisitos do cliente e do mercado. A voz do consumidor pode ser ouvida por meio da técnica QFD, na qual o departamento de marketing e qualidade trabalham em parceria: MQ II.1 = MIQ II.1 @ IA I.1.
funcionais: desempenho, ergonomia, segurança (presença de dobras, trincas e defeitos internos) e proteção ambiental (fosfatização, lubrificantes e ruído). Estabelecer com o cliente os requisitos operacionais: durabilidade (vida), confiabilidade (previsão do número de falhas durante a vida) e aplicação do forjado. Estabelecer as condições mercadológicas tais como: qualidade máxima (desejada pelo mercado), preço mínimo (definido pelo mercado) e atendimento ao cliente (tempo mínimo, serviços). O gerente da engenharia do produto deve ouvir a voz do consumidor e o gerente de vendas deve acompanhar as necessidades do cliente utilizando-se os conceitos aplicados no desenvolvimento do forjado (vide figura 19). **@ Aplicar técnicas QFD para ouvir a voz do consumidor (IA II.1).**

MQ II.2 (Atratividade) (MQ II.2) Estabelecer a análise do projeto do produto sob uma perspectiva de negócio, considerando a estratégia da empresa, a competitividade do produto, o retorno econômico, bem como os recursos necessários para atender os requisitos dos clientes. O gerente de vendas deve conduzir a execução do orçamento e da análise de investimento quanto à viabilidade e competitividade. **@ Estabelecer a análise de viabilidade e competitividade por meio do planejamento estratégico de qualidade (PEQ).**

MQ II.3 (Relatório de engenharia) (MQ II.3) Avaliar se os processos tem potencial para produzir forjados fornecidos aos clientes que atendam os requisitos durante um lote efetivo de produção. Garantir a aplicação desse procedimento nos forjados novos, nas alterações de risco e quando da mudança de subfornecedor. Avaliar a dimensão, o desempenho e os materiais. Assegurar a avaliação da linha de fluxo, bem como a presença de defeitos internos no forjado. O gerente da engenharia do produto deve coordenar essas avaliações.

MQ II.4 (Gerenciamento do projeto) (MQ II.4) Assegurar a administração do planejamento e da implementação do projeto, incluindo-se a definição: do coordenador do projeto, do cronograma, das áreas participantes das atividades, do monitoramento dos pontos de controle, do registro e da administração dos problemas, das interfaces técnicas e organizacionais. O gerente da engenharia deve administrar o projeto.

MQ II.5 (Controle do projeto) (MQ II.5) Assegurar a orientação da elaboração do planejamento, dos controles de processos e produtos. O planejamento do controle dos processos e produtos aplica-se em produtos fabricados internamente e comprados. O gerente da engenharia é o responsável pelo controle do projeto do produto/processo. **@ Assegurar o controle de todos os processos de desenvolvimento do projeto (GPI III.4), integrar o projeto do produto/processo (IA II.1/CIM), gerenciar a qualidade do projeto do produto/processo** (IA II.1/TQM), **planejar a manufatura na visão do projeto do produto/processo (III.1/JIT).**

MQ II.6 (Revisão) (MQ II.6) Todas as revisões do projeto devem ser identificadas, documentadas, analisadas criticamente e aprovadas pelos administradores da qualidade antes de sua implantação. Assegurar a revisão de novos materiais para o forjado. O gerente da engenharia do produto coordena as revisões do projeto. **@ Revisar o projeto do produto e processo por meio de Ishikawa (GPI II.3).**

MQ II.7 (Roteiro de fabricação) (MQ II.7) Estabelecer o método para realizar o projeto do processo a partir dos requisitos do produto. No processo deve constar: o roteiro das operações, o ferramental necessário, o plano de controle e demais informações tecnológicas. O gerente da engenharia de processos de fabricação estabelece o

49 A viabilidade e competitividade representada pelo MQ II.2 é derivada do MQ II.2 e PEQ (planejamento estratégico de qualidade). O MQ II.2 analisa o projeto do produto sob a perspectiva de realizar-se um negócio; essa análise considera a estratégia de negócios e de manufatura na oficina: MQ II.2 = MQ II.2 @ PEQ.

51 O controle do projeto está representado pelo MQ II.5 que tem as mesmas funções do MIQ II.5, GPI II.4 (controle dos processos), IA I.1 (desenvolvimento do projeto/CIM), IA II.1 (desenvolvimento do projeto/TQM) e IA III.1 (desenvolvimento do projeto/JIT). Então o MQ II.5 planeja o controle do projeto do produto e processo durante a fase de sua elaboração e apos o seu processamento. Recomenda-se controlar as aplicações de todos os procedimentos dos processos, bem como controlar as variáveis chaves deles por meio da carta Shehart-Deming. Ainda, o desenvolvimento do projeto pode ser realizado por intermédio dos conceitos de integração e automação (CIM, TQM e JIT): MQ II.5 = MQ II.5 @ GPI III.4 @ IA I.1 @ IA II.1 @ IA III.1.

53 O MQ II.6, que sofre influência de melhoria contínua e integração, abrange o MQ II.6 e o GPI II.3 (Ishikawa). O MQ II.6 revisa o projeto por meio da análise crítica do projeto, identificando as falhas e documentando-as; outra técnica de se revisar o projeto é por meio de Ishikawa - diagrama de causa e efeito. A equação do MQ II.6 é MQ II.6 = MQ II.6 @ GPI II.3.

54 O MQ II.7 é derivado do MIQ II.7, GPI III.1 (descrição dos processos), GPI III.2 (padronização dos processos), GPI III.5 (padronização dos processos), IA I.1 (tecnologia do produto) e IA II.1 (padronização/TQM). Ele estabelece o método para realizar o projeto do processo com base nos requisitos do produto. Nessa função, podemos incorporar a descrição dos processos, a padronização dos procedimentos e atividades e ainda parametrizar os processos. Uma técnica de padronização e parametrização é a chamada tecnologia de grupo. Simbolicamente, podemos representar a descrição acima por meio da "equação": MQ II.7 = MQ II.7 @ GPI III.1 @ GPI III.2 @ GPI III.5 @ IA I.1 @ IA II.1.
processo. @ Padronizar e parametrizar os procedimentos para atender ao produto (GPI II.1, 2 e 5), padronizar as células aplicando tecnologia de grupo55 (IA I.1), padronizar por meio da qualidade total (IA II.1).

MQ II.8 (Utilização do processo56) (MIQ II.8) Estabelecer uma auditoria para se verificar a utilização do processo após a liberação de engenharia e da manufatura. O gerente da engenharia deve auditar a utilização do processo na manufatura do produto. @ Garantir a atualização e a utilização dos processos (GPI IV.4), garantir a utilização do processo por meio da disciplina (GH IV.9).

MQ II.9 (Homologação do produto/processo) (MIQ II.9) Estabelecer os meios e critérios para validar o projeto por meio de testes, estudos de engenharia e de confiabilidade. Estabelecer também os meios e critérios para avaliação dos processos, considerando-se os métodos e recursos de manufatura, tais como: ferramental, equipamentos de produção e medição. O gerente da engenharia homologa o produto e o processo.

MQ II.10 (Análise crítica de contrato) (MIQ II.10) Estabelecer a análise crítica do contrato asseverando-se que todos os requisitos comerciais, técnicos e de qualidade estejam adequadamente definidos e documentados antes da apresentação de uma oferta ou da aceitação de um contrato ou pedido do cliente e que tais requisitos tenham sido previamente acordados e que serão cumpridos. O gerente de vendas elabora a análise crítica do contrato.

MQ II.11 (Alteração) (MIQ II.11) Assegurar uma metodologia para identificar e avaliar os riscos de qualidade quando houver necessidade de se alterar o produto ou processo. Assegurar que a administração das alterações de produtos/processos esteja de acordo com o risco da qualidade. O gerente da engenharia da qualidade avalia os riscos da qualidade e acompanha as alterações críticas.

MQ II.12 (Indicador) (MIQ II.12) Estabelecer objetivos e analisar o desempenho do subsistema de projeto e alterações do produto/processo. O comitê de qualidade estabelece os objetivos que possam avaliar o desempenho do projeto do produto/processo.

MQ II.13 (Variável de entrada57) @ Identificar as variáveis chaves de entrada relacionadas ao produto (GPI II.1), assegurar por meio de Taguchi a identificação das variáveis chaves que influenciam o projeto do produto (IA II.2).

56 O MQ II.8 reúne o MQ II.8, o GPI IV.4 (atualizar e utilizar processos) e o GH IV.9 (disciplina). A garantia da utilização do processo deve ser acompanhada após a liberação das folhas de roteiro para a produção. Por outro lado, recomendamos auditar a atualização e utilização das folhas de roteiro e plano de controle. Uma das chaves para se garantir a utilização desses procedimentos é a disciplina, pois uma vez discutido e definido um processo deve-se segui-lo rigorosamente: MQ II.8 = MQ II.8 @ GPI IV.4 @ GH IV.9.

57 O MQ II.13 é resultado da união do GPI II.1 (variáveis chaves de entrada) com o IA II.1 (Taguchi). O MQ II.13 identifica as variáveis chaves de entrada, as quais representam as necessidades do cliente. A técnica de identificação dessas variáveis que influenciam o desenvolvimento do projeto do produto pode ser por meio de Taguchi. Simbolicamente, representamos o MQ II.13 como: MQ II.13 = GPI II.1 @ IA II.1.
por sua vez informa ao II.9 que o produto foi manufaturado. O II.9 informa ao II.10 que o produto e processo estão homologados. Já o II.10 informa ao II.11 sobre dados da análise realizada no contrato do desenvolvimento do projeto. Essa mesma informação é enviada ao II.1 e 4 na forma de feed-back. O II.11 alerta sobre as alterações do produto e processo ao II.12 e também envia ao II.4 e 5 essa informação na forma de feed-back. E o II.12 dá feed-back ao II.1, 4, 5 e 12 sobre o índice da qualidade e o desempenho do projeto do produto e do processo. Também essa mesma informação é enviada ao processador MIQ III, qualidade assegurada na manufatura.

Na figura 95, pode-se ver o sistemógrafo MIQ II. Acima, encontram-se a descrição de cada processador (vide quadro 57) e, também, a descrição das entradas, das saídas e das retromitâncias desse sistemógrafo. A seguir será apresentado o sistemógrafo MQ II.

Figura 96 – Sistemógrafo do desenvolvimento do projeto

Sistemógrafo MQ II
Na figura 96, os processadores MIQ II.1 a 12 recebem influência do GPI, IA, GH e PEQ e transformam-se nos MQ II.1 a 12. Já o MQ II.13 recebe informações do GPI e IA. As interligações do MQ II.1 a 12 são as mesmas do MIQ II.1 a 12; elas podem ser vistas na figura 96. Esses processadores enviam informações ao MQ II.13 sobre as necessidades do consumidor e do mercado, a definição da viabilidade do projeto do produto e do processo, a análise de riscos de qualidade e indicadores do desempenho. O MQ II.13 também recebe do GPI dados sobre as variáveis chaves de entrada e do IA sobre as técnicas de Taguchi na busca da satisfação do cliente e controle de características importantes do produto. Também o MQ II.13 dá feed-back ao MQ II.1 a 12 sobre os principais parâmetros e características do produto para que se possa aprimorar as variáveis chaves de entrada; informa ainda, ao MQ III, fabricação de forjado, sobre quais são as variáveis chaves do produto para que se possa controlá-las durante o processo.

O sistemógrafo MQ II pode ser visto na figura 96. Acima, apresentam-se a descrição de cada processador (vide quadro 57), bem como a descrição das conexões e feed-back desse sistemógrafo. A seguir apresentaremos o terceiro subsistema do modelo de qualidade denominado fabricação de forjado.
5.5. Fabricação de forjado

Encontram-se, no quadro 58, a descrição e o desdobramento do processador MIQ III e MQ III (fabricação\(^{48}\)). A diferença entre eles está na descrição @ melhoria contínua e integração que é válida somente para o modelo MQ III.

Quadro 58

Descrição do processador de fabricação

MQ III.1 (Introdução do projeto) (MIQ III.1) Assegurar que a introdução do projeto ou a alteração de produto e processo incluam a revisão das funções afetadas e a verificação da conclusão da atividade. O gerente da manufatura deve programar e acompanhar a introdução do primeiro lote de produtos novos e alterados.

MQ III.2 (Capacitação do equipamento\(^{49}\)) (MIQ III.2) Assegurar que os equipamentos de produção continuem capazes de produzir produtos de acordo com as especificações. O gerente da manufatura assegura o controle de equipamentos de produção. @ Avaliar a capacitação dos equipamentos por meio do CEP\(^{50}\) analisando a capacidade e estabilidade (processador IA II.2).

MQ III.3 (Manutenção\(^{51}\)) (MIQ III.3) Estabelecer uma orientação voltada à execução de manutenção preventiva, preditiva e produtiva (MPT) nas máquinas utilizadas nos processos da forjaria. A manutenção preventiva deve assegurar a disponibilidade dos equipamentos. O gerente de manufatura coordena a execução da manutenção. @ Garantir a escolha dos equipamentos em preventiva (GPI III.6), estabelecer por meio do CIM a integração do máximo (gerenciamento da manutenção) com oracal\(^{52}\) (informação da forjaria) (IA I.2.), integrar o “chão-de-fábrica”, produção e manutenção produtiva total (MPT) (IA III.3).

MQ III.4 (Inspeções e testes\(^{53}\)) (MIQ III.4) Estabelecer uma metodologia para assegurar que os equipamentos de produção continuem capazes de produzir. Fornecer orientação para o controle dos equipamentos de medição, garantindo-se a periodicidade de calibração. Estabelecer uma metodologia para preparação e aprovação de montagem de máquinas e equipamentos. Estabelecer as condições e critérios para o acompanhamento dos objetivos e análise da necessidade de ações corretivas em produtos, quanto as rejeições nas inspeções de auditoria na expedição do forjado. O gerente da manufatura deve assegurar a aplicação desse procedimento no “chão-da-fábrica”. @ Acompanhar a capacidade, repetibilidade e reproduzibilidade dos equipamentos de medições (GPI III.7).

MQ III.5 (Capacidade do processo) (MIQ III.5) Assegurar a capacidade do processo por meio do controle da manutenção preventiva e preditiva, do controle dos equipamentos de medição e da aplicabilidade do controle estatístico de processo verificando o cpk\(^{54}\) do sistema. O gerente da manufatura deve garantir a aplicação do controle do asseguramento da capacidade do processo.

\(^{48}\) Uma aplicação de um modelo de sucesso foi o TQM aplicado na forjaria Rockwell. O sucesso de sua implantação deve-se a um plano muito bem elaborado: foi avaliado o principal problema encontrado num ambiente de trabalho, que é a cultura de nossos operários, e cobre aos dirigentes a possibilidade da realização de treinamento graduado e contínuo. Essa metodologia foi introduzida nos ELA e após, no Brasil. Ver Molina (1993: 1-17).

\(^{49}\) O MQ III.2 tem as mesmas funções do MIQ III.2 e IA I.2 (CEP). Ele mantém a capacitação dos equipamentos de produção e inspeção, garantindo as especificações do produto, aplicando-se o CEP para assegurar a estabilidade e capacidade do sistema de manufatura. Esse fato pode ser simbolizado por meio da “equação”: MQ III.2 = MIQ III.2 @ IA I.2.

\(^{50}\) Ver Palm (1990: 694-699).

\(^{51}\) O MQ III.3, tem funções derivadas do MIQ III.3, GIII.6 (priorizar equipamentos para manutenção), IA I.2 (maximo) e IA III.3 (MPT/JIT). Garante a manutenção sistemática por meio da manutenção preventiva, preditiva e produtiva. Encaminha a escolha e a definição dos equipamentos de produção e inspeção que estão sujeitos ao plano de manutenção. Na manufatura integrada por computador, estabelece-se o planejamento da manutenção por meio da ferramenta maximo. Essa ferramenta é integrada em um software de gerenciamento da manufatura (oracle) e da técnica MPT/JIT no “chão-de-fábrica”: MQ III.3 = MIQ III.3 @ GIII.6 @ IA I.2 @ IA III.3.

\(^{53}\) O MQ III.4 agrega o MIQ III.4 e o GIII.7 (capacidade dos equipamentos). O MQ III.4 estabelece uma metodologia que garanta a capacidade dos equipamentos para a produção e também controla a periodicidade de calibração dos equipamentos de medição: MQ III.4 = MIQ III.4 @ GIII.7.

\(^{54}\) A capacidade do processo apresenta a necessidade de se aplicar CEP. O índice da capacidade Ppk é definido como a relação entre a tolerância especificada e a variação do processo para a característica em análise, quando o processo está em estado de controle estatístico. Já o índice de desempenho Ppk é uma medida simultânea da variação do processo e do posicionamento de sua média, em relação à especificação da característica em análise, quando o processo está em estado de controle
MQ III.6 (Instrução de produção) (MIQ III.6) Garantir a utilização das folhas de roteiro de fabricação em todos os postos de trabalho. As folhas do roteiro de fabricação devem estar expostas em cada posto. O gerente da manufatura deve garantir a utilização das folhas do roteiro do processo. Acompanhar todos os procedimentos em todas as estações de trabalho, durante o processamento, enfatizando as folhas de processo (GPI II.4), garantir o uso das folhas de processo por meio da disciplina (GH IV.9).

MQ III.7 (Plano de controle) (MIQ III.7) Garantir a utilização do plano de controle em todos os processos/roteiro de fabricação no processamento de um forjado. O gerente da manufatura deve garantir a utilização do plano de controle. Auditor todos os procedimentos do ciclo de fabricação para garantir o uso do plano de controle (GPI II.5).

MQ III.8 (Organização e ordem) (MIQ III.8) Estabelecer a organização e a ordem em todo o “chão-de-fábrica”. Garantir, principalmente a organização e a ordem do ferramental. Estabelecer um procedimento para avaliar, armazenar, manusear e recondicionar os ferramentais usados na manufatura. Assegurar um perfeito controle de custos do ferramental, bem como do controle da sua vida, ocasionando mudanças do projeto, do material e do tratamento térmico de seus componentes, quando for necessário. O gerente da manufatura deve responsabilizar-se pela organização e ordem do “chão-de-fábrica”. Garantir a organização e ordem por meio do housekeeping do sistema JIT (IA III.3), assegurar a organização e ordem por intermédio da participação dos grupos de trabalhos (GH IV.4).

MQ III.9 (Identificação) (MIQ III.9) Estabelecer critérios para que se garanta que durante o processamento do forjado haja uma identificação visível quanto ao estágio em que estão, bem como a sua condição de conformidade. O gerente da manufatura é o responsável pela identificação dos materiais durante o seu processamento. Garantir a identificação do forjado em processo por meio da disciplina dos funcionários (GH IV.9).

MQ III.10 (Rastreamento) (MIQ III.10) Estabelecer uma metodologia para que se possa garantir o rastreamento do forjado durante e após o processamento. O gerente da manufatura deve garantir o rastreamento do forjado.

MQ III.12 (Transporte e estoque) (MIQ III.12) Assegurar uma adequada movimentação e proteção contra avaria ou deterioração do forjado quando manuseado, armazenado, embalado, preservado e entregue. O gerente da manufatura deve adequar o transporte e a estocagem do forjado em processo. Estabelecer a movimentação, quando possível, por meio de AGV, a carga/descarga por robô e gantry (IA I.3), assegurar a padronização do contentor de armazenamento e de transporte (IA III.3).

Estatístico. Quanto aos índices de capacidade CP e Cpk são definidos e calculados do mesmo modo que o Pp e o Ppk, porém num período de tempo suficiente para detectar as diversas fontes de variação.

6O MQ III.6 tem as mesmas funções do MIQ III.6, GPI II.4 (acompanhar todos os procedimentos) e GH IV.9 (disciplina). No acompanhamento do processo, deve-se garantir a utilização das folhas de roteiro de fabricação por meio do processador MQ III.6. É também de suma importância acompanhar todos os procedimentos durante o processamento do produto. A garantia de que cumprir todos os procedimentos está diretamente ligada à disciplina dos colaboradores do processo organizacional. Simbolicamente, podemos representar a descrição acima por meio da "equação": MQ III.6 = MIQ III.6 @ GPI II.4 @ GH IV.9.

6O MQ III.7 é idêntico ao MIQ III.7 e GPI II.5 (auditoria dos procedimentos). O MQ III.7 elabora a auditoria da utilização do plano de controle durante o processo e auditá a utilização de todos os procedimentos durante o ciclo de fabricação: MQ III.7 = MIQ III.7 @ GPI II.5.

6O MQ III.8 tem as mesmas funções do MIQ III.8, IA III.3 (housekeeping) e GH IV.4 (trabalhos em grupo). O MQ III.8 organiza e ordena todo o ferramental utilizado no processo de forjamento. No sistema JIT integrado com a manufatura, a organização e a ordem são realizadas por meio do housekeeping/SS. Outra forma de garantir a organização e a ordem é por meio da participação dos funcionários em grupo de trabalho: MQ III.8 = MIQ III.8 @ IA III.3 @ GH IV.4.

6O MQ III.9 é derivado do MIQ III.9 e do GH IV.9 (disciplina). O MQ III.9 garante, durante o forjamento, a identificação dos materiais quanto ao estágio e condição de conformidade em que se encontram. A garantia de que realmente estão se identificando os materiais é conseguida por meio do engajamento dos funcionários nessa responsabilidade, na qual a disciplina é fundamental: MQ III.9 = MIQ III.9 @ GH IV.9.

6O MQ III.12 é a fusão do MIQ III.12, do IA I.3 (warehouse/AGV) e do IA III.3 (padronização do contentor). O MQ III.12 garante adequada movimentação dos materiais em processo, na manufatura integrada por computador. Nos sistemas flexíveis de manufatura, recomenda-se a aplicação do armazenamento inteligente (warehouse), transporte por AGV, carga e descarga por robôs e movimentação/carga/descarga por meio de gantry. Outro fator importante é a padronização do contentor para armazenamento e movimentação de materiais: MQ III.12 = MIQ III.12 @ IA I.3 @ IA III.3.

6O robô para carga/descarga pode ser configurado de acordo com o processo. Ver Camanho e Mendes (1985: 30-32).
MQ III.13 (Facilitadores) (MIQ III.13) Estabelecer um sistema de apoio por meio dos operadores multifuncionais, chamados facilitadores da manufatura durante o fluxo do forjado no processo. Os facilitadores devem colaborar na qualidade, trabalhando com cartas de controle, poka-yokes, conscientização na montagem da operação (set-up), na gestão do ferramental, na análise e acompanhamento do programa de produção e na execução da manutenção produtiva total. O gerente da manufatura deve assegurar a colaboração do facilitador.

MQ III.14 (Indicador) (MIQ III.14) Estabelecer objetivos e analisar o desempenho do sistema da qualidade assegurada na manufatura, cujos objetivos devem ser determinados pelo comitê de qualidade.

MQ III.15 (Variável de saída) @ Assegurar o controle do processo por meio de variáveis (GPI II.2), identificar no processamento do forjado as variáveis-chaves de saída por meio da padronização e análise de falhas (FMEA, IA II.1). O gerente da engenharia deve definir as variáveis de saída.

MQ III.16 (Controle automatizado) @ Estabelecer controlo automatizados (GPI V.3), que devem ser assegurados pelo gerente de manufatura.

MQ III.17 (Planejamento da produção) @ Assegurar uma manufatura integrada por meio do planejamento e controle da manufatura (IA I.2), estabelecer o planejamento da manutenção (IA I.2) e planejamento da manufatura JIT (IA III). O gerente da manufatura deve planejar a produção.

MQ III.18 (Novos processos) @ Estabelecer a aplicação de novos processos de conformação plástica dos metais no campo do forjamento morno ou frio. O gerente de engenharia deve assegurar os novos processos.

MQ III.19 (Autenção) @ Assegurar o forjamento em células automatizadas. O gerente da engenharia deve planejar a automação da manufatura.

10 O MQ III.13, traz em si o MIQ III.13, o GPI I.3 (identificar e incentivar facilitadores) e o GPI V.4 (envolvimento). Os facilitadores, operadores multifuncionais e colaboradores do “chão-de-fábrica” trabalham com o plano de controle, preparação da máquina (set-up), gestão de ferramental e MPT. Dentro da organização, forjaria procura-se identificar e incentivar os colaboradores a se tornarem facilitadores, para que se possa buscar a qualidade. Um dos processos de incentivo são as reuniões de grupo de trabalho, em que são utilizadas técnicas de envolvimento: MQ III.13 = MIQ III.13 @ GPI I.3 @ GPI V.4.

15 O MQ III.15, no quadro 58, tem uma função derivada do GPI II.2 (identificar variáveis de saída) e IA I.1 (padronização do processo). O MQ III.15 identifica as variáveis-chaves de saída que representam o controle do processo. Outra técnica para se identificar essas variáveis é, durante o projeto do processo, utilizar-se da padronização e da análise FMEA. Simbolicamente, podemos representar a descrição acima por meio da “equação”: MQ III.15 = GPI II.2 @ IA I.1.

17 O MQ III.17 abrange o IA I.2 (MRP II/moopi) e o IA I.3.2 (JIT/kan-ban). Na técnica CIM, o planejamento e o controle da manufatura são realizados por meio do planejamento de materiais e manutenção. No planejamento da produção, recomenda-se a técnica MRP II em conjunto com o software moopi e, para a manutenção, o software maxi. A integração do moopi e maxi é feita por um software chamado oracle. Na manufatura JIT, o planejamento e o controle da produção são programados pelo kan-ban com envolvimento dos colaboradores: MQ III.17 = IA I.2 @ IA I.3.2.

174
Figura 97 - Sistemógrafo da fabricação de forjado

Sistemógrafo MIQ III

Pode-se ver, na figura 97, o MIQ III.1, ou processador III.1, envia ao III.2 e 6 dados sobre a introdução do projeto e do processo. O III.2 informa sobre o estado de cada equipamento ao III.3, que por sua vez informa sobre a disponibilidade dos equipamentos ao III.4 e também dá essa informação ao III.2 como feed-back. Já o III.4 envia o resultado das inspeções e testes realizados ao III.5, que por sua vez informa o cp e cpk ao III.6. Este, então, relata sobre a utilização do processo ao III.7 e também envia ao III.2 essa informação como feed-back. Então o III.7 informa a utilização do plano de controle ao III.8 e dá ao III.6 esse feed-back. O III.8 relata ao III.9 e 13 que o ferramental está organizado. O III.9 informa ao III.10 sobre a identificação do produto durante o processamento. Também o III.10 informa ao III.11 sobre o número da corrida da matéria-prima, a especificação do material e as ocorrências chaves durante o processamento do forjado. O III.11 informa sobre as peças segregadas ao III.12 e dá feed-back ao III.9 sobre essa informação. O III.12 informa sobre a adequação do transporte, embalagem e estoque ao III.13, que por sua vez informa ao III.14 sobre o sistema de apoio realizado por meio dos facilitadores, também dá feed-back ao III.8 e 11 sobre essa mesma informação. Então, o III.14 dá feed-back sobre o índice de qualidade na manufatura ao III.1 e também envia essa informação ao MIQ V, satisfação do cliente.

Na figura 97, mostra-se o sistemógrafo MIQ III. Acima, encontram-se a descrição de cada processador (vide quadro 58) e, também, a descrição das entradas, das saídas e das retromitâncias desse sistemógrafo. A seguir será apresentado o sistemógrafo MQ III.
Figura 98 – Sistémografo de fabricação de forjado

Sistémografo MQ III

Na figura 98, o MQ III, satisfação do cliente do modelo inicial de qualidade após ser influenciado pelo GPI, IA e GH, transformando-se no MQ III.1 a 14 em conjunto com o MQ III.15 a 19. As interligações do MQ III.1 a 14 podem ser vistas na figura 97. Esses processadores enviam informações ao MQ III.15 sobre dados para a introdução do projeto do produto e processo, capacitação dos equipamentos, planejamento da manutenção preventiva, predictiva e produtiva, necessidade de organização e ordem, identificação dos materiais, rastreamento, segregação dos materiais não-conformes, indicadores do desempenho e nomes dos facilitadores. O MQ III.15, de posse dessas informações adicionadas às do GPI sobre características do processo e IA sobre dados de padronização do processo e análise de falhas, processa tudo isso e envia o resultado ao MQ III.16 que, por sua vez, também recebe informação do GPI V.3 e, após processamento, envia ao MQ III.17 informação sobre o controle automatizado dos processos. Então o MQ III.17, que também recebe informação do IA I.2 e IA III.2, após processamento, envia o planejamento da produção ao MQ III.18. Esse processador envia ao MQ III.19 informação sobre os novos processos de conformação que estão na ativa. Então, o MQ III.19 dá feedback ao MQ III.1 a 14 sobre a necessidade de reorganizar a manufatura em função da automação no processo de forjar e, também, envia essa informação ao MQ V, satisfação do cliente.

O sistémografo MQ III é apresentado na figura 98. Acima, apresentam-se a descrição de cada processador (vide quadro 58), bem como a descrição das entradas, das saídas e das retromítancias desse sistémografo. Na sequência, será apresentado o subsistema fornecedor do modelo de qualidade.

5.6. Fornecedor

A descrição e o desdobramento do processador MIQ IV e MQ IV (fornecedor28) encontram-se no quadro 59. A diferença entre eles está na descrição @, que é válida somente para o modelo MQ IV, nesse processador a diferença está somente no MQ IV.6.

28O fornecedor pode ser considerado um fabricante externo, ou seja, o modelo MQ poderá ser implementado no mesmo.
Quadro 59

Descrição do processador de fornecedor

MQ IV.1 (Avaliação) (MIQ IV.1) Assegurar critérios que possibilitem à forjaria compor uma gama de fornecedores que se destaquem em parâmetros tais como: qualidade, atendimento, prazo de entrega e preço. Assegurar o desenvolvimento de novos fornecedores. O gerente de suprimentos deve emitir uma listagem dos fornecedores avaliados.

MQ IV.2 (Selecção) (MIQ IV.2) Estabelecer métodos e critérios para a seleção de um fornecedor. O parâmetro em destaque é a parceria. O gerente de suprimentos é o responsável pela seleção final do fornecedor.

MQ IV.3 (Inspeção de recebimento) (MIQ IV.3) Estabelecer objetivos e analisar o desempenho do subsistema da qualidade assegurada de material comprado. Contribuir para a definição da necessidade de inspeção de recebimento ou desenvolver fornecedor qualidade assegurada. O gerente de suprimentos deve estabelecer e analisar a qualidade assegurada.

MQ IV.4 (Especificação do pedido) (MIQ IV.4) Estabelecer o procedimento para enviar aos fornecedores todas as especificações e requisitos necessários para a manufatura e fornecimento do produto ou matéria-prima. O gerente de suprimentos deve confirmar a especificação do pedido de compras.

MQ IV.5 (Homologação) (MIQ IV.5) Assegurar que a certificação dos processos de itens comprados sejam homologados, considerando os métodos e recursos de manufatura do fornecedor. O gerente de suprimentos deve informar ao fornecedor as alterações do produto para peças ou matéria-prima compradas. O gerente de engenharia da qualidade coordena as ações corretivas/preventivas de homologação de itens comprados.

MQ IV.6 (Acompanhamento) (MIQ IV.6) Estabelecer o acompanhamento do fornecimento, assegurando a qualidade dos itens comprados por meio da monitoração dos dados de qualidade e das ações que se fizerem necessárias. O gerente de suprimentos é o responsável pelo acompanhamento do fornecedor. @ Implantar controle de processos do fornecedor (CEP) (IA II.2).

MQ IV.7 (Ressarcimento) (MIQ IV.7) Assegurar o ressarcimento dos gastos decorrentes de não-conformidades com itens comprados. O gerente de suprimentos deve solicitar ao fornecedor o ressarcimento desses gastos.

MQ IV.8 (Ação corretiva) (MIQ IV.8) Definir o método de acompanhamento do fornecimento para garantir que a qualidade dos itens comprados seja mantida durante todo o período por meio da monitoração dos dados de qualidade e das ações que se fizerem necessárias. O gerente da engenharia de qualidade deve analisar e inspecionar os itens comprados e ainda acompanhar as ações corretivas no subfornecedor.

MQ IV.9 (Auditoria) (MIQ IV.9) Estabelecer o método de acompanhamento do fornecimento para garantir que a qualidade dos itens comprados seja mantida por meio de auditoria periódica no sistema de qualidade (SQ) do fornecedor. O gerente da engenharia da qualidade deve auditar o fornecedor quanto ao fornecimento dos itens comprados.

MQ IV.10 (Indicador) (MIQ IV.10) Estabelecer objetivos que avaliem o sistema de qualidade do material comprado. Deve-se estabelecer um número mínimo de fornecedores com qualidade assegurada. O comitê da qualidade deve determinar os objetivos a serem alcançados quanto à avaliação do desempenho do fornecedor.

9 O MQ IV.6, sob influência das melhorias contínuas e da integração, assume o papel do MIQ IV.6 e do IA II.2 (CEP). Ele acompanha o fornecimento dos itens comprados por meio da monitoração dos indicadores de qualidade e das ações que se fizerem necessárias. Para acompanhamento na manufatura do fornecedor, recomendamos a aplicação do CEP. Simbolicamente, temos: MQ IV.6 = MIQ IV.6 @ IA II.2.

Figura 99 - Sistémografo do fornecedor

Sistémografo MIQ IV
Pode-se ver, na figura 99, o MIQ IV.1, ou processador IV.1, relata ao IV.2 o resultado da avaliação do fornecedor. De posse da avaliação o IV.2 informa ao IV.3 quem é o fornecedor selecionado. Uma vez avaliado e selecionado o fornecedor, o IV.3 informa ao IV.4 sobre o resultado da inspeção de recebimento. De posse da avaliação da inspeção de recebimento o IV.4, após processamento, informa ao IV.5 sobre os requisitos necessários ao fornecimento do produto e também dá esse feed-back ao IV.1. Por meio da especificação do pedido, o IV.5 processa e informa ao IV.6 sobre a homologação do processo no fornecedor. Agora o processo no fornecedor já está homologado; dessa forma, o IV.6 informa ao IV.7 sobre a evolução do fornecedor. Uma vez elaborada a reavaliação no fornecedor, o IV.7 relata ao IV.8 que esse fornecedor está ressarcindo a empresa por toda não-conformidade. Esse ressarcimento é também informado como feed-back ao IV.1 e 6. Quando ocorre a não-conformidade o IV.8 descreve a situação de cada ação corretiva ao IV.9. Essa informação é enviada na forma de feed-back ao IV.1. Desde que o fornecedor possa dar andamento às ações corretivas o IV.9 informa ao IV.10 o resultado da auditoria realizada no fornecedor. Após auditoria, o IV.10 relata o desempenho do fornecedor ao IV.5 e 6. Então, o índice de qualidade processado no IV.10 também é informado ao MIQ III, fabricação de forjado e ao MIQ V, satisfação do cliente.

Na figura 99, vê-se o sistemógrafo MIQ IV. Acima, apresentam-se a descrição de cada processador (vide quadro 59) e, também, a descrição das entradas, das saídas e das retromitâncias desse sistemógrafo. O sistemógrafo MQ IV será mostrado a seguir.

Figura 100 - Sistémografo do fornecedor

Sistémografo MQ IV
Na figura 100, o processador MIQ IV, sob influência do IA II.2.1, CEP no fornecedor, transforma-se no MQ IV. As interligações dos processadores MQ IV.1 a 10 são as mesmas do MIQ IV.
O sistemógrafo MQ IV encontra-se na figura 100. Acima, apresentam-se a descrição de cada processador (vide quadro 59) e, também, a descrição das conexões e das retromitâncias desse sistemógrafo. O quinto subsistema do modelo de qualidade, que será apresentado a seguir, é a satisfação do cliente.

5.7. Satisfação do cliente

No quadro 60, encontram-se a descrição e o desdobramento do processador MIQ V e MQ V (satisfação do cliente\(^{11}\)). A diferença entre eles está na descrição @ que é válida somente para o modelo MQ V. Nesse processador a diferença está somente no MQ V.2 e 9.

Quadro 60

Descrição do processador de satisfação do cliente

MQ V.1 (Reposição) (MIQ V.1) Assegurar a garantia da qualidade da peça de reposição desde o seu ponto de origem até a entrada na inspeção do cliente, considerando-se: a inspeção, o rastreamento, a embalagem, o armazenamento, o manuseio e a devolução de peças pelo cliente. O gerente de venda deve administrar a qualidade dos componentes de reposição.

MQ V.2 (Satisfação do cliente\(^{12}\)) (MIQ V.2) Assegurar a total satisfação do cliente orientada por meio de pesquisa previamente estabelecida. Na avaliação deve-se planejá-la de tal modo se consideram os atributos de qualidade tais como: embalagem, aparência, segurança, assistência técnica, atendimento de pedidos, qualidade propriamente dita, prazo e preço. Ainda nessa avaliação, deve-se considerar as expectativas quanto ao futuro, avaliação do fornecedor e os competidores. O gerente de vendas deve coordenar a busca da satisfação. @ Assegurar a satisfação do cliente com técnicas TQM (IA II.4).

MQ V.3 (Disponibilidade) (MIQ V.3) Estabelecer um atendimento efetivo de peças, preservando o interesse da forjaria de acordo com a programação do cliente. O planejamento e programação da produção devem considerar: níveis de estoque adequados numa política de atendimento a componentes fora de linha, controle de componentes obsoletos, controle de atendimento e tempo de resposta ao pedido. O gerente de vendas elabora um programa de vendas (PV) e o gerente de manufatura elabora um programa de produção (PP).

MQ V.4 (Administração do inventário) (MIQ V.4) Estabelecer um nível de estoque adequado a fim de que seja possível atender o cliente. Definir um giro de estoque em nível de fornecedor classe mundial. Considerar, na administração do inventário, o sistema FIFO (first in-first out). O gerente da manufatura é o responsável pela administração do inventário.

MQ V.5 (Transporte e estoque) (MIQ V.5) Garantir a qualidade da peça de reposição por meio de boas condições da embalagem, preservação, estoque e manuseio. Considerar o mesmo procedimento quando da devolução de peças pelo cliente. O gerente da manufatura é o responsável pela garantia do transporte e estoque.

MQ V.6 (Serviço de campo) (MIQ V.6) Assegurar aos clientes o atendimento no campo e/ou na fábrica. Analisar e relatar as falhas de campo, bem como providenciar retorno ao cliente. O gerente de vendas é o responsável pelo atendimento do serviço de campo.

\(^{12}\) O MQ V.2, sob influência das melhorias contínuas e integração, tem as mesmas funções do MIQ V.2 e IA II.4 (oito elementos). O MQ V.2 assegura a total satisfação do cliente, orientada por intermédio de pesquisa previamente estabelecida. A satisfação do cliente pode ser gerenciada por meio do TQM com a técnica "oito elementos". Simbolicamente, podemos representar a descrição acima por meio da "equação": MQ V.2 = MIQ V.2 @ IA II.4.
MQ V.7 (Garantia) (MIQ V.7) Assegurar um procedimento que atualiza a política da garantia aplicada aos clientes, considerando as estratégias de negócio da forjaria. O gerente de vendas deve avaliar a política de garantia.

MQ V.8 (Indicador) (MIQ V.8) Estabelecer objetivos e analisar o desempenho do sistema de qualidade da satisfação do cliente. Deve-se calcular o total acumulado de falhas de campo ocorridas nos últimos doze meses. O comitê da qualidade organiza e determina esses objetivos.

MQ V.9 (Entrega) @ Garantir a entrega ao cliente dentro do prazo estipulado, na qualidade requerida com garantia de qualidade. O gerente da manufatura é o responsável pela entrega.

Figura 101 – Sistemógrafo da satisfação do cliente

Sistemógrafo MIQ V

Na figura 101, o MIQ V.1, ou processador V.1, informa ao V.2 sobre o nível de qualidade do produto, o cuidado no manuseio e a garantia da entrega. Então, os componentes da reposição passam pelo V.2, que define e informa ao V.3 e 7 acerca das necessidades de atendimento solicitadas pelo cliente. Em seguida, o V.3, após processar a disponibilidade, informa ao V.4 sobre o potencial de atendimento ao cliente no quesito entrega. Essa informação retorna ao V.2 que cuida da satisfação do cliente. De posse do potencial de atendimento o V.4 administra o inventário, gerenciando o valor estocado e observando se o primeiro forjado que entra é o primeiro forjado que sai e envia essa informação ao V.5. Baseado nessa informação, o V.5 transporta o produto seguindo os procedimentos e informa ao V.6 que o forjado já foi transportado e armazenado. Então o V.6 sinaliza o recebimento da informação e, após processá-la, informa ao V.7 as falhas encontradas no campo. Dessa forma, por meio do relatório de falhas de campo, o V.7 confirma ao cliente a validade da garantia total; dá esse feedback ao V.6 e envia essa confirmação ao V.8. E, também, envia ao V.2 a informação sobre a garantia total. Já o V.8 informa por feedback sobre o índice de qualidade ao V.1. Essa informação também é enviada ao processador MIQ I, gerenciamento de qualidade.

Na figura 101 pode-se ver o sistemógrafo MIQ V. Acima, encontram-se a descrição de cada processador (vide quadro 60) e, também, a descrição das entradas, das saídas e das retromitências desse sistemógrafo. A seguir será apresentado o sistemógrafo MQ V.
Sistemógrafo MQ V

Na figura 102, o processador MQ V sob influência do IA II.4, satisfação do cliente no TQM, transforma-se no MQ V. As interligações do MQ V.1 a 8 são as mesmas do MQ V, conforme podemos ver na figura 101. Já o MQ V.9 tem uma grande influência no MQ V como um todo, pois nele se controla diariamente a entrega acordada anteriormente com o cliente.

Na figura 102, mostra-se o sistemógrafo MQ V. Acima, apresentam-se a descrição de cada processador (vide quadro 60), bem como a descrição das conexões e feedback desse sistemógrafo. A seguir, será apresentado o subsistema melhoria contínua, que é um processador “chave” do modelo de qualidade proposto neste trabalho.

5.8. Melhoria contínua

No quadro 61, encontram-se a descrição e o desdobramento do processador melhoria contínua\(^3\) (MQ VI). O MQ VI foi desenvolvido totalmente apoiado pelo sistema de melhorias contínuas e integração (Smci).

Quadro 61
Descrição do processador de melhoria contínua

MQ VI.1 (Mudança) @ Assegurar as mudanças culturais e técnicas na organização (GPI I.2), estabelecer a adequação do perfil da mão-de-obra frente ao constante processo de mudança (GH). Estabelecer continuamente a técnica de implantação de qualquer mudança na organização (vide figura 105). O gerente de recursos humanos é o responsável pelo controle da mudança.

MQ VI.2 (Grupo de trabalho) @ Estabelecer melhorias contínuas (GPI I.5), incentivar a formação de facilitadores na produção (GPI I.3), assegurar as reuniões de grupo com técnicas de envolvimento (GPI V.4), garantir as atividades em grupos CCOs (IA II.3), formar grupos de trabalho (GH IV.5). O gerente da manufatura se responsabiliza pela manutenção dos grupos de trabalho.

MQ VI.3 (Revisão do projeto) @ Assegurar melhorias contínuas por meio da revisão do projeto do processo (GPI I.3) e do projeto do produto, do processo de melhoria contínua (vide figura 2) e da técnica seis sigma. Estabelecer por meio de planejamento e técnicas supply chain para a decisão do make or buy. O gerente de engenharia é o responsável pela revisão do projeto.

MQ VI.4 (Autocontrole) @ Aplicar técnicas "perda-zero" no autocontrole (GPI III.8), assegurar a disciplina no acompanhamento do processo (GH IV.9). O gerente de qualidade acompanha o autocontrole.

84O MQ VI.1, sob influência das melhorias contínuas e integração, tem funções similares ao GPI I.2 (mudanças culturais e técnicas) e GH (gerenciamento humano). Atualmente, requer-se o acompanhamento das mudanças culturais e técnicas que estão ocorrendo na organização, provenientes de um processo industrial globalizado. Para o processo de mudança, faz-se necessário adequar o perfil das pessoas na organização. Tal medida inicia-se com um recrutamento e exige nível mais elevado de educação dos colaboradores, além de maior potencial para treinamento, a fim de se obter maior comprometimento: MQ VI.1 = GPI I.2 @ GH.

85Como lidar com a resistência às mudanças pode ser visto em Lawerence (1973: 1-9).

87O novo perfil de mão-de-obra está relacionado às novas tendências: gerenciamento participativo, redeseio do trabalho, sistema sociotecnológico, envolvimento e qualidade de vida. As organizações evoluíram do feudalismo para a divisão do trabalho (pago por tarefa), após hierárquico e hoje, tende para human network que trabalha com processos integrados, com diálogo, humanização e times de trabalho. Ver Savage (1990: 147-188).

88O MQ VI.2 assemelha-se ao GPI I.3 (facilitadores), GPI I.5 (CCO), GPI V.4 (envolvimento), IA II.3 (atividades de pequenos grupos) e GP IV.5 (times de trabalho). O grupo de trabalho, visando a melhorias contínuas, pode ser criado por meio do CCO ou por meio dos facilitadores de células de forjamento. Uma técnica para dar continuidade ao esse processo é a do envolvimento elaborado em reuniões de grupos. E, ainda, os times podem gerar idéias e inovações, desde que estejam motivados e que possam depositar confiança na organização: MQ VI.2 = GPI I.3 @ GPI I.5 @ GPI V.4 @ IA II.3 @ GH IV.5.

89Uma das técnicas de envolvimento é a motivação para se trabalhar em grupos. Essa idéia foi desencadear na EAU com a teoria Y de administração, porém foi no Japão que essa prática se tornou uma maneira natural de se trabalhar, descrita na teoria Z. Hoje em dia, teoria X, nem pensar! Ver Equipamentos Clark Ltda. (1989: 49-140).

90O MQ VI.3 é similar ao GPI III.3 (revisão dos processos). As revisões do projeto do processo podem propiciar um processo de melhoria contínua, desde que, quando se faça necessário, se possa reavaliar também o projeto do produto: MQ VI.3 = GPI III.3 @ seis sigma.

91A técnica seis sigma busca a satisfação do cliente por meio da redução de defeitos introduzindo melhorias que possam alterar paradigmas. O seis sigma é um catalisador de líderes que possam: a) desafiar o processo; b) inspirar-se numa visão compartilhada; c) deixar os outros agirem; d) modelar o caminho; e) encorajar o sentimento. A metodologia de melhoria consta seis sigma consta em: 1) definição do escopo, dos defeitos, do grupo de trabalho, da liderança; 2) medição do processo: mapear e identificar entradas/saidas, encontrar causa-efeito (similar ao QFD, com técnicas da teoria do sistema geral); 3) análise do processo: aplicar FMEA, identificar as entradas críticas; 4) melhoria do processo: verificar as entradas críticas e otimizar as saídas críticas; 5) controle do processo: implantar plano de controle, verificar capacidade de longo prazo e melhorar continuamente o processo (vide apresentação da General Eletric e Motorola nos EAU). Essa técnica é uma evolução do mapeamento de processos apresentado no capítulo dois (item 2.3). Ver também Campos (2000: 1-3).

92Essa forjaria optou por manter os forjados de revolução, transferindo para terceiros o negócio do processo de forjamento em máquinas chamada marcelo (aplicada normalmente em peças de não-revolução).

93O MQ VI.4 tem funções similares ao GPI III.8 ("perda-zero") e GH IV.9 (disciplina). O autocontrole é uma técnica importantíssima na condução do processamento de um produto. Nesse processo, uma das ferramentas que se pode aplicar é a "perda-zero", porém o fator primordial para se autocontrolar é a disciplina. Simbolicamente, podemos representar a descrição acima por meio da "equação": MQ VI.4 = GPI III.8 @ GH IV.9.

MQ VI.5 (Sugestão) @ Assegurar a informação sobre o plano de sugestão, bem como implementar soluções (GPI III.12). O gerente de recursos humanos controla o plano de sugestão.

MQ VI.6 (Simplificação do custo) @ Garantir continua simplificação do custo de qualidade (GPI VI.4). O gerente de finanças acompanha a simplificação do custo.

MQ VI.7 (Sucesso) @ Estabelecer o sucesso através de pessoas (SAP, vide item 5.9) e aplicar os fundamentos da gestão sistêmica. O gerente geral responsabiliza-se pelo estabelecimento do sucesso.

![Sistemógrafo MQ VI]

Figura 103 - Sistemógrafo da melhoria contínua

Sistemógrafo MQ VI

Na figura 103, o processador MQ VI.1 recebe informação do GPI I.2, mudança cultural, sobre necessidades da organização e do GH, no qual a disciplina e o comprometimento são fundamentais. Após processamento dos dados envia a informação sobre a mudança na organização enfocando o processo contínuo e dinâmico. Já o MQ VI.2 informa ao MQ VI.3 e VI.7 sobre os grupos criados por meio de CCQ e esse processador também recebe informações do GPI, IA e GH. Então, o MQ VI.3 informa ao MQ VI.4 sobre as revisões já procedentes no projeto de produto e processo e também recebe influência do GPI III.3. Por sua vez, o MQ VI.4 recebe informações do GPI III.8 e do GH IV.9 e informa ao MQ V.5 sobre as operações em que já se instalou o autocontrole. Então o MQ VI.5 recebe influência do GPI III.12 e envia a relação de sugestões e soluções ao MQ VI.6. Esse processador, em que a influência do GPI VI.4, que destaca quais ações devem ser enuncinadas para se controlar e reduzir o custo de qualidade. O sucesso desse processo é realizado por intermediário de pessoas (vide item 5.9). Essa atividade é processada no MQ VI.7.

Na figura 103, mostra-se o sistemógrafo MQ VI. Acima, encontram-se a descrição de cada processador (vide quadro 61) e, também, a descrição das entradas, das saídas e das retromitâncias desse sistemógrafo.

*O MQ VI.5 é similar ao GPI III.12 (informação sobre sugestões e soluções). No processo de gerenciamento das sugestões indicadas pelos colaboradores é importante acompanhar não só as sugestões, mas também as soluções, a fim de que se possa analisá-las, implantá-las e recompensá-las: MQ VI.5 = GPI III.12.

Até este ponto, apresentamos as atividades dos processadores de gerenciamento, de desenvolvimento, da fabricação, do fornecedor, da satisfação do cliente e da melhoria contínua pertinentes ao modelo de qualidade proposto para a forjaria. Como complemento ao sistema de melhoria contínua será apresentado o sucesso através de pessoas, que é um dos subsistemas do processador melhoria contínua.

5.9. Sucesso através de pessoas

O sucesso através de pessoas (SAP) está embasado no gerenciamento da forjaria⁸ por meio de um modelo que está desdobrado no envolvimento, na comunicação, na confiança, no avanço tecnológico e na liderança⁹. Para o bom desempenho dessa forjaria optamos por trabalhar com um organograma de envolvimento. Esse organograma é apoiado numa administração “em círculo”, ou seja, o gerente geral e os gerentes de primeiro nível colocam-se à disposição dos times para focalizar o cliente. Os times de trabalho, na forjaria, podem ser formados por representantes de todos os departamentos ou formados por representantes do “chão-de-fábrica” com capacidade para solucionar efetivamente um dado problema por meio de ações corretivas ou preventivas. Esse processo apoia-se na visão e missão.

A visão escolhida para essa forjaria tem como princípio a busca do atendimento ao cliente, acionista, colaborador e comunidade. Já a missão é tornar-se líder mundial no desenvolvimento e na manufatura de forjados, utilizando o sucesso através de pessoas e encontrando o envolvimento dos colaboradores, dos times de trabalho e a melhoria contínua. O sucesso através de pessoas ou time de trabalho procura enfocar o envolvimento, comunicação e confiança. Esse “sucesso”, que focaliza o global, é uma evolução da busca de

⁸ Os fundamentos da gestão sistémica podem ser classificados em: a) qualidade centrada no cliente; b) foco nos resultados; c) comprometimento da alta direção; d) visão de futuro de longo alcance; e) valorização das pessoas; f) responsabilidade social; g) gestão apoiada em processos; h) ação pró-ativa e i) aprendizado contínuo. Ver Motta (2000: 2).

⁹ Esse modelo de gerenciamento foi obtido por meio de um estágio que fizemos em uma forjaria americana, na cidade de South Bend, Indiana. Essa forjaria possui uma metodologia de envolvimento e já foi premiada diversas vezes: Certified supplier (Caterpillar), Preferred quality supplier (Cummins Engine), Qualitas award (Ford-New Holland), Human resource “best practice” award (Forging Industry Association), Leaders in excellence (State of Indiana) e Finalist for “best plant in America” (Industry week).

⁸ Esse processador está apoiado no sistema de avaliação do PNQ (Prêmio nacional de qualidade) que analisa sete categorias: 1) Liderança – examina a liderança e o envolvimento pessoal dos executivos da empresa; 2) Planejamento estratégico – verifica como a organização define suas direções estratégicas; 3) Focalização e satisfação dos clientes – analisa como a empresa determina os requisitos e expectativas dos clientes e mercados; 4) Informação e análises – examina o gerenciamento e a eficiência do uso de informação e dados; 5) Desenvolvimento e gerência de recursos humanos – avalia como os funcionários são desenvolvidos a fim de utilizar seu pleno potencial, alinhando com os objetivos da empresa; 6) gerência de
excelência na qual se focalizava somente a empresa e o cliente. A nossa força-tarefa compromete-se pelo envolvimento, organizando-se em times de trabalho. Esses times são dirigidos por meio dos processos existentes na organização, das técnicas de soluções de problemas (8D, Ishikawa) e dos grupos de excelência contínua. Nesse caso, o processo de envolvimento resulta em desenvolvimento de tecnologias não somente na operação básica dos processos, mas também em processos de inovação. Para ajudar o envolvimento, utiliza-se a comunicação.

Na comunicação, é aplicado o programa “porta-aberta”, para todos os níveis, ou seja, qualquer colaborador pode conversar abertamente com o gerente geral ou outros níveis da organização. Outra forma de comunicação é informar como andam os negócios da forjaria a todos os colaboradores, indistintamente. Isso é confiança! Outro caminho para se aumentar a comunicação é encontrado com a redução do número de níveis hierárquicos, passando-se de cinco para três. Em especial, os operadores recebem a comunicação na célula de forjamento e são nela integrados.

Os operadores do “chão-de-fábrica” estão organizados em células de forjamento e em times de trabalho. Esses times são responsáveis pelo forjamento, planos de controles e cumprimento dos procedimentos de qualidade, inspeção em processo e aprovação do set-up. Eles também acompanham os indicadores de refugo, número de acidentes do trabalho e o atendimento ao plano de produção. Além disso, os operadores são fixos em suas células de trabalho, ou seja, numa célula que contém um forno de aquecimento, uma prensa de forjar e uma prensa de rebarbar ou furar. Dessa maneira é escolhido, num sistema de rotação, um líder da célula por um período quinzenal. Esse líder é um facilitador dos programas de atendimento à qualidade, de organização, de ordem, de limpeza e de segurança. Em um sistema cliente/fornecedor, o líder da célula de forjamento contata o seu fornecedor na célula de corte para confirmar, por exemplo, se os tarugos a serem forjados já estão disponíveis para o próximo forjado. Também contata o seu cliente, na célula de tratamento térmico (normalização) para verificar se tudo está em perfeita condição com o lote já forjado que está

processos – examina todos os processos organizacionais e 7) resultados de negócios – analisa o desempenho e melhoramento das áreas comerciais e de outras.

100 A integração na empresa é resultante de um processo fornecedor de cultura, crenças, valores, princípios, que são as fontes para um permanente e enriquecedor entendimento ao longo da existência. Ver Matos (1997: 27-29).
aguardando a normalização. Ainda, contata o time de pré-montagem, confirmando se o ferramental necessário ao próximo forjamento já está preparado e conferido.

O desenvolvimento de novas tecnologias\footnote{Ver Silva e Bresciani (1992: 1-18). Ver Silva (1986: 41-46).} foi incrementado, quer seja buscando-se \textit{know-how e know-why} externamente, quer seja como o apoio dos times de trabalho\footnote{"Quando se falava em criatividade nas empresas, queria se dizer iniciativa, e iniciativa em fazer o que o chefe mandava ou o que o manual do cargo especificava. Ou seja, as pessoas não tinham autoridade sobre o processo e isso as aborrecia demais". Constatou-se que não adianta as empresas promoverem um indivíduo, concedendo-lhe aumentos salariais, mas sim propiciando-lhe uma forma de contribuir ao processo, remunerando-o por sucesso alcançado. Ver Gaino (1993: 5-10). A GMC e Toyota formaram nos EUA a Nummi, cuja pedra fundamental são as equipes. Ver Update (1994: 10-11). Na Cummins Brasil foi aplicado o CPS (Cummins produção sincronizada) coordenado por 57 "times". Ver Leonel (1992: 9).} . Dessa forma, introduziu-se a tecnologia do processo de forjamento sem rebarba (\textit{flashless}), que nasceu da necessidade do cliente de otimizar o produto e reduzir operações na usinagem do forjado. Outro programa desenvolvido foi o forjamento morno ou semi-quente, no qual se trabalha com a temperatura de 800°C ou 1.000°C (no caso do aço) em vez de 1.250°C, que é a temperatura do forjamento a quente. O forjamento morno ou semi-quente permite a redução de energia, melhor acabamento superficial e tolerâncias mais estreitas no forjado. Também na tecnologia, houve o desenvolvimento da automação, que introduziu os sistemas de carregamento automático do tarugo no forno de aquecimento e na primeira estação da prensa de forjamento, permitindo a redução de dois postos de trabalho, em cinco existentes (redução de 40%), por célula de forjamento. Essa automação foi de suma importância uma vez que esses postos são considerados insalubres, ou seja, expostos ao calor, ruído, fatores ergonômicos inadequados e operações repetitivas. Além dessas considerações, deve-se focalizar o cliente, a fim de que se possa satisfazê-lo.

Pela liderança, procura-se desenvolver o atendimento das necessidades do cliente. A forjaria busca tornar-se uma fornecedora "classe mundial", prover alta qualidade de seus forjados, entregar \textit{just-in-time} a preços competitivos e implementar melhorias contínuas em todos os níveis da organização\footnote{A qualidade começa no processo de produção. Para melhor organizá-lo, Paladini, em seu livro \textit{Gestão da qualidade no processo}, sugere três etapas: a eliminação de perdas; a eliminação das causas das perdas e a otimização do processo. Na primeira etapa estão a eliminação dos defeitos, refugios e retrabalhos. Na segunda, diz Paladini, o trabalho em atividades...}. Para tal realização, as informações e planos de ações devem propiciar todas as funções chaves. Eles são selecionados e determinados por meio de objetivos anuais a serem alcançados. Então, o colaborador pertencente a um time de trabalho define quais dados são necessários para que se possa alcançar o seu objetivo. Esses dados são
provenientes das necessidades do cliente, das finanças, da qualidade, do crescimento, da saúde, da segurança, outros. O importante é acompanhar104 mensalmente esses objetivos por canais de comunicação, nos quais os resultados obtidos são comparados às metas e são afixados em salas de reuniões, quadros em locais de trabalho e no “chão-de-fábrica”. Outra forma de acompanhamento é feita pelos times de trabalho que são responsáveis pela própria performance e escolha dos objetivos da qualidade, ao apresentarem um breve relato do andamento de suas atividades durante o encontro mensal dos times. Essa é uma forma de gerenciamento dos times, que reforça os valores e expectativas na organização. Paralelamente aos dados iniciais, adicionam-se informações dos competidores, por meio de \textit{benchmarking} e, após avaliação das informações, podem-se redirecionar alguns dos objetivos durante o ano em curso. Os gerentes têm a função de dar suporte aos times, incentivando a participação de todos. O processo de decisão e ação (\textit{decision-making}) é compartilhado pelos times de trabalho. O encorajamento para que a tomada de decisão possa fluir de baixo para cima é aconselhável, sempre que possível. Essa proposta105 é apoiada na busca do sucesso enfocando-se o envolvimento, a comunicação e a confiança, todos os dias.

5.10. Classificação dos processadores

Os processadores MIQ I a III são do oitavo nível, pois são objetos com inovação, enquanto os processadores MIQ IV e V são do sétimo nível, pois são objetos com pilotagem. Dessa forma, o MIQ é do oitavo nível, possui conexões elaboradas, sendo retroalimentado, está num fluxo operacional, é um objeto com inovação e tem representação gráfica complexa.

Os processadores MQ I a III são do nono nível, pois são objetos com autofinalização, enquanto os processadores MQ IV e V são do sétimo nível, pois são objetos com pilotagem. O processador MQ VI é do nono nível, pois é um objeto com autofinalização. O MQ é do nono nível, possui conexões elaboradas, sendo retroalimentado, está num fluxo operacional, é um objeto com autofinalização, tem consciência de sua existência, é um modelo de garantia de

104 O acompanhamento dos objetivos pode ser estabelecido por diversas técnicas. Uma delas está descrita em \textit{How to know when a job is completed}, de McAlister. Ele descreve os seguintes passos: a) faça o trabalho de forma correta; b) defina o problema; c) identifique os fatos relevantes; d) assuma responsabilidades; e) estabeleça critérios claros; f) liste todas as alternativas; g) recomend e a melhor ação; h) analise as partes envolvidas; i) não deixe nada para fora; j) visualize surpresas e k) pergunte a si mesmo se a solução estabelecida é a melhor. Aí o trabalho estará completo. Ver McAlister (1984: 97-99).
qualidade que processa, coordena, executa, concebe e finaliza. Tem capacidade de gerar seus próprios objetivos e tem a representação gráfica super complexa.

5.11. Método de implantação

O método de implantação foi desenvolvido, inicialmente, definindo-se as atribuições das responsabilidades para cada elemento da ISO 9001, correlacionados com o modelo MQ. Em seguida será explicada a condução para se implantar o MQ por meio de “donos” dos subsistemas. Paralelamente à atribuição de responsabilidades e da condução por “donos”, foi desenvolvido um processador de implantação propriamente dito.

As atribuições de responsabilidade foram definidas na descrição de cada processador (vide quadros de 56 a 61, respectivamente itens 5.3 a 5.8). Porém, para que se tenha um visão da responsabilidade nos quesitos da ISO 9001, na tabela 4, encontra-se a atribuição de responsabilidade do MQ. Nessa tabela estão representados os 20 elementos da ISO 9001 e as principais funções da forjaria que são correlacionadas primária e secundariamente. As funções da gerência geral, de engenharia, de manufatura, etc podem ser vistas no organograma da forjaria apresentado na figura 104. O comitê de qualidade é formado por um representante de cada gerência: produção, vendas, recursos humanos e engenharia da qualidade (coordenador). A estratégia geral de implantação foi estabelecida em etapas: 1) reunião inicial com a gerência do departamento; 2) reunião com a gerência do departamento e do setor; 3) definição do time responsável pela implantação; 4) escolha dos colaboradores chaves para implantação; 5) palestra inicial da gerência para todos os colaboradores; 6) treinamento para liderança dos gerentes; 7) envolvimento das áreas de apoio; 8) estabelecimento dos objetivos, metas e planos; 9) estabelecimento do cronograma; 10) escolha dos multiplicadores; 11) acompanhamento diário (gerente de setor), semanal (gerente de departamento) e mensal (gerente geral).

A implantação do modelo de qualidade da forjaria foi feita por intermédio de "donos" dos subsistemas de gerenciamento de qualidade, desenvolvimento do projeto, fabricação do forjado, fornecedor, satisfação do cliente e melhoria, respectivamente coordenados pelo comitê, gerente da engenharia, gerente da manufatura, gerente de compras, gerente de vendas e comitê. No gerenciamento de qualidade, sugere-se criar mecanismos para avaliar a efetividade da política de qualidade. Essa coordenação, por meio do comitê, designa o gerente da engenharia da qualidade como representante da empresa para acompanhar o envolvimento da política de qualidade. No desenvolvimento do projeto, o gerente da engenharia procura elaborar a análise crítica do contrato. Na fabricação de forjados, o gerente de manufatura deve verificar in loco a implantação do controle do set-up, a auditoria no

processo e o plano de controle. Também, na qualidade do fornecedor, indica-se implantar um programa de melhoria contínua, coordenada pelo gerente de compras. A satisfação do cliente, coordenada pelo gerente de vendas, deve implantar um programa de entrevistas com o cliente. Finalmente, o programa de melhoria contínua, recomendado no MQ VI deve ser coordenado pelo comitê.

![Diagrama de Organograma da fábrica](image)

Figura 104 – Organograma da fábrica

Na figura 105, apresenta-se um processador de implantação do modelo de qualidade. Esse processador foi desenvolvido pelo MQ VI.1 (vide quadro 61, item 5.8). A implantação de um modelo de sistema de qualidade deve assegurar que todas as funções relevantes referentes às ações e decisões sobre a qualidade, bem como as relações entre elas, quer seja intra-empresa ou externamente com fornecedores e clientes, como também junto ao governo, sindicato, colaboradores e sociedade, estejam perfeitamente entendidas. Na figura 105, a parte central é um “triângulo” que interliga as quatro fases [(1) um]: a primeira é a orientação, seguida do empowerment, passando-se pelo gerenciamento até chegar na integração. As quatro fases são conectadas com as três políticas. Como política [(2) dois] entende-se: envolvimento, satisfação social e o melhoramento contínuo. Por sua vez, as três políticas são interligadas com as dez ferramentas. Já nas ferramentas [(3) três], apresentam-se: visão/missão, objetivos da qualidade, educação/treinamento, team, ferramenta de qualidade, planejamento estratégico, gerência de processos, desdobramento da qualidade, satisfação do cliente e benchmarking. A ligação dos três passos: fase→política→ferramentas pode ser seguida pelas conexões internas ao “triângulo”, ou seja, a primeira fase que é a orientação, associa o envolvimento (política), que por sua vez associa a visão/missão e os objetivos da
qualidade (ferramentas). Dessa forma, nesse primeiro passo, destaca-se o envolvimento desde a alta gerência até o operador do “chão-de-fábrica” nos objetivos da qualidade.

Na segunda fase, empowerment, tem-se a conexão na satisfação social (política) que objetiva o progresso do colaborador por meio da educação/training, tornando-o atualizado e ainda, prepará-lo para atingir metas mais arrejadas dentro da organização. Uma outra conexão, da segunda fase, é o conceito de team, que compreende grupos multifuncionais em atividades de pequenos grupos, trabalhando em planos de sugestões, chamado grupo homogêneo ou equipes de projeto com tarefa definida, coordenada por um líder, chamado grupo heterogêneo. Em ambos os casos utilizam-se as ferramentas de qualidade, tais como: CEP, FMEA, QFD, técnicas de resoluções de problemas e outras.

Figura 105 – Processador da implementação do modelo de qualidade

Na terceira fase, apresenta-se o gerenciamento, que se conecta com a melhoria contínua conduzida pelo team, buscando apoio no gerenciamento de processos, no desdobramento da qualidade e objetivando a satisfação do cliente.

A quarta fase é a integração, que atinge o ápice da implementação, buscando a satisfação social, política, quer seja do cliente, do colaborador, da empresa, do sindicato ou da
sociedade como um todo. Para atingir esse fim, utilizamos as técnicas de *benchmarking*, que norteiam a focalização para se otimizar a qualidade, atendendo à satisfação do cliente. Para que possamos entender melhor a seqüência de implantação do modelo de qualidade (MQ), apresentaremos o seu fluxo.

Inicialmente verificamos se a alta administração está realmente compromissada com a implantação do modelo proposto⁴⁷⁴; portanto, somente deve-se seguir adiante se essa fase estiver consolidada e confirmada. Todo o sucesso do modelo proposto depende desse envolvimento inicial. Uma vez confirmado o envolvimento da alta administração, recomendamos envolver os demais colaboradores da forjaria. Outro ponto de destaque é a diagnose, que deve ser elaborada por meio de auditorias, ou seja, recomendamos contratar uma empresa especializada em consultoria e auditoria de sistemas de qualidade (SQs) e/ou solicitar, quando possível, uma entrevista com o cliente, ou até mesmo negociar uma auditoria do cliente na forjaria. Também recomendamos elaborar o treinamento específico do modelo de qualidade (MQ) proposto que abranja todos os níveis da forjaria, desde a gerência geral, gerência de departamento, gerência de setor até o pessoal do “chão-de-fábrica”, procurando sensibilizar a todos nessa forjaria. Na sensibilização, utilizar de recursos de comunicação tais como: palestras, filmes, reuniões, treinamento em sala e no local do trabalho. Avaliar se a arquitetura do modelo proposto está consolidada; verificar, então, se todos já compreenderam os fundamentos do modelo nos aspectos básicos. Caso contrário, retomar o programa de treinamento desse modelo. Se positivo, ou seja, se os aspectos básicos estão sedimentados, recomendamos seguir o processo de implantação.

Verifica-se, a seguir, o nível de envolvimento, realizando-se visitas aos locais de trabalho. Nessas visitas, pode-se perguntar sobre o conhecimento da política de qualidade, verificar a utilização das folhas de processos, plano de controle e organização/ordem dos ferramentais e forjados em processos. Nesse ponto, implanta-se o modelo propriamente dito, ou seja, libera-se o manual de qualidade para todos departamentos chaves. Durante um período inicial, intensificam-se as auditorias internas e as “visitas” não programadas, para que

⁴⁷⁴ Os fatores críticos de sucesso na implantação de um sistema de qualidade podem ser: 1) o compromisso da alta direção com a qualidade; 2) a eficácia do diagnóstico inicial; 3) a estrutura organizacional para o programa; 4) o estabelecimento de objetivos e metas; 5) a integração; 6) a avaliação contínua e o planejamento adequado para a qualidade; 7) o processo de envolvimento; 8) a estratégia adequada para a implantação e 9) a capacitação metodológica da empresa. Ver Price Waterhouse (1994: 23)
se possa, fase a fase, em todos os processos da organização, confirmar a adesão aos subsistemas do modelo de qualidade (MQ). Pelos resultados encontrados nas auditorias, procura-se revisar os pontos falhos na descrição dos processos do modelo proposto, otimizando-o.

O cronograma de implantação do modelo de qualidade da forja é mostrado na tabela 5. O cronograma é dividido em temas para os quais são designados os responsáveis pelo acompanhamento e execução108. A revisão e a aprovação do sistema de qualidade é atribuída ao comitê. Tais atividades estão planejadas para o primeiro e segundo mês do cronograma. A emissão de procedimentos é também de responsabilidade do comitê com a duração prevista para três meses, porém é possível ter essa atividade em paralelo às duas primeiras (revisão e aprovação do sistema de qualidade) e executá-la do segundo ao quarto mês. O plano de treinamento é desenvolvido pelo gerente de recursos humanos, está programado para desenvolver-se em quatro meses, do terceiro ao sexto mês. Desenvolvem-se ainda: os temas e fases da aprovação da política de qualidade, cuja responsabilidade está com o comitê. Já as palestras de envolvimento ficam a cargo do gerente de recursos humanos e o treinamento nos processadores fica com o gerente da engenharia, até que se possa atingir a implantação propriamente dita e a liberação do modelo proposto, cuja responsabilidade é do comitê, planejado para os últimos três meses, completando-se uma extensão de dez meses consecutivos.

Posteriormente à implantação, no comitê de qualidade, revisa-se o planejamento estratégico de qualidade, analisando-se criticamente os objetivos de qualidade e a política de qualidade, estabelecendo-se todos os indicadores para que se possa controlar o processo de qualidade. Na sequência, avalia-se o mercado, no qual se deve rever a satisfação do cliente e quais são os recursos humanos disponíveis para reimplantação do novo sistema de qualidade (SQ), após introdução de melhorias contínuas. Analisa-se, ainda, a tecnologia disponível para o controle do processo da qualidade, bem como estabelece-se uma análise dos competidores por meio de técnicas de benchmarking. Essa fase pode ser considerada como

108 A coordenação geral deve ser do comitê de qualidade. Nessa coordenação o comitê assessoria a alta direção na divulgação da política de qualidade, estabelece a estratégia de implantação do modelo, coordena o processo de conscientização dos colaboradores, identifica os multiplicadores, conduz o processo de definição de objetivos; indicadores e metas, implementa o sistema de comunicação para a qualidade, conduz o processo de envolvimento de todo o corpo funcional, serve de elemento
comprometimento. Também deve-se avaliar se a alta administração continua envolvida com o novo modelo proposto. Avalia-se também o planejamento e, a programação do treinamento. Além disso, o comitê de qualidade deve averiguar a capacitação dos colaboradores envolvidos. Dá-se sequência com a fase do envolvimento, analisando-se a política de crescimento de recursos humanos. O envolvimento é conquistado e mantido com a sensibilização de todos os níveis da organização quanto a necessidade da qualidade do produto e do processo. Solicita-se ao gerente de cada departamento avaliar se o colaborador está envolvido. Essa avaliação pode ser feita por meio de um programa de explanação sobre as necessidades de satisfazer o cliente e a necessidade da empresa enfrentar a globalização para que permaneça sobrevivendo. Na política de recursos humanos, o gerente desse departamento deve avaliar se a carreira está plenamente definida, se o sistema de reconhecimento e a recompensa estão efetivamente funcionando e dar apoio às atividades de grupos, que devem ser realizadas no primeiro mês da reimplantação.

Na próxima fase, destacam-se as primeiras auditorias, procurando-se realizá-las interna e ou externamente. Nas auditorias internas podem-se avaliar os pontos chaves, tais como: existência da política de qualidade e do plano estratégico, aplicação do plano de controle e do set-up, avaliação das folhas do processo versus a situação no físico, avaliação do plano de manutenção e movimentação de materiais. Essa auditoria pode ser chamada "fotografia" do processo e ela deve reproduzir o MQ, modelo de qualidade. Tal atividade é de responsabilidade do gerente da engenharia de qualidade. Procura-se destacar os pontos importantes do MQ: essa atividade é do comitê de qualidade e não deve ultrapassar o terceiro mês da reimplantação. Avalia-se, então, se todos já estão treinados e sensibilizados, verifica-se se o sistema de qualidade (SQ) já sofreu uma nova revisão, atribui-se-lhe responsabilidades e busca-se a nova implantação dos pontos otimizados nesse sistema. Tal atividade de qualidade não deve ultrapassar o quarto mês da reimplantação. Verifica-se, ainda, na reimplantação, se o produto e o processo já estão homologados. A próxima fase é da melhoria contínua com responsabilidade de cada gerente de departamento, cujos prazos são atribuídos pelo comitê de qualidade. A melhoria dos processos deve ser apoiada no MQ VI. Depois, deve-se avaliar a satisfação do cliente quanto a qualidade, preço, serviço e tempo de atendimento. Essa atividade é de responsabilidade do comitê de qualidade; recomenda-se
desenvolvê-la até o quarto mês da reimplantação. Ainda na segunda implantação, o gerente da engenharia da qualidade avalia a consistência dos indicadores do desempenho da qualidade comparada com o plano. O comitê avalia se a ISO 9000 está mantida; já o gerente geral deve avaliar a adequação do sistema de qualidade vigente, propondo-se a alterá-la e melhorá-la, caso seja necessário.

Tabela 5 - Cronograma de implantação do modelo MQ

<table>
<thead>
<tr>
<th>T e m a</th>
<th>Resp</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>Obs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Revisão do sistema da qualidade</td>
<td>Comitê</td>
<td></td>
</tr>
<tr>
<td>Aprovação do sistema da qualidade</td>
<td>Comitê</td>
<td></td>
</tr>
<tr>
<td>Emissão dos procedimentos</td>
<td>Comitê</td>
<td></td>
</tr>
<tr>
<td>Plano de treinamento</td>
<td>Ger. Adm. Rh.</td>
<td></td>
</tr>
<tr>
<td>Aprovação da política da qualidade</td>
<td>Comitê</td>
<td></td>
</tr>
<tr>
<td>Palestras de envolvimento</td>
<td>Ger. Adm. Rh.</td>
<td></td>
</tr>
<tr>
<td>Treinamento nos pequenadores</td>
<td>Ger. Enga.</td>
<td></td>
</tr>
<tr>
<td>Elaboração de benchmarking para implantação</td>
<td>Comitê</td>
<td></td>
</tr>
<tr>
<td>Revisão nos produtos e processos</td>
<td>Ger. Enga.</td>
<td></td>
</tr>
<tr>
<td>Atualização das instruções</td>
<td>Ger. Enga. Cual</td>
<td></td>
</tr>
<tr>
<td>Revisão dos arquivos (desenho e processos e instrução de controle)</td>
<td>Ger. Enga</td>
<td></td>
</tr>
<tr>
<td>Envolvimento dos fornecedores</td>
<td>Ger. Suprim.</td>
<td></td>
</tr>
<tr>
<td>Formação de auditores internos</td>
<td>Comitê</td>
<td></td>
</tr>
<tr>
<td>Realização de auditorias internas</td>
<td>Ger. Enga. Cual</td>
<td></td>
</tr>
<tr>
<td>Execução das ações corretivas</td>
<td>Ger. Geral</td>
<td></td>
</tr>
<tr>
<td>Implantação/criação do sistema de qualidade</td>
<td>Comitê</td>
<td></td>
</tr>
</tbody>
</table>

Neste capítulo foi apresentado o modelo de qualidade da forjaria, bem como o método de sua implantação. Durante a implantação foram confirmadas as atribuições de responsabilidade para cada subsistema, foi aplicada uma metodologia para garantir a introdução do modelo de qualidade e, ainda, foi estabelecido um cronograma dessa implantação. Esse modelo de qualidade integrada com melhoria contínua em muito elevou o nível de qualidade da forjaria. Para que se confirme tal afirmação, serão apresentados no próximo capítulo os resultados da qualidade e suas análises.

109 Esses resultados podem ser chamados de definição de medidas de desempenho ou balance scorecard.
Capítulo 6

Apresentação e análise dos resultados

Para a realização deste trabalho, o tempo de permanência na forjaria em questão para análise dos sistemas de qualidade existentes foi de quatro anos (1993-1996), enquanto a implantação e análise dos resultados do modelo de qualidade exigiram mais dois anos (1997-1998), totalizando um período de seis anos de pesquisa¹.

O objetivo do trabalho de campo foi avaliar a relação entre o sistema “ideal” de qualidade da forjaria (SQF), comparando-o com o sistema “real” de qualidade da forjaria (SQF) e, ainda, submetendo ambos ao crivo da ISO 9001 (sistema de qualidade ISO – SQI). Depois, esses dados foram comparados com o modelo inicial de qualidade (MIQ) da forjaria e, também, com o modelo de qualidade (MQ) da forjaria.

Muitos fatores podem afetar os sistemas ou modelos de qualidade, como já discorremos anteriormente, mas o que desejamos enfocar é a auditoria nos elementos da ISO 9001; a auditoria externa no sistema de qualidade; a integração e automação; os indicadores de qualidade, tais como: refugo ppm (parte por milhão) e o custo da qualidade; satisfação do cliente e avaliação do modelo por meio da teoria do sistema geral, enfatizando-se: a avaliação do desdobramento dos processadores, suas conexões e o nível alcançado pelos processadores.

Teríamos a situação ideal, se pudéssemos implantar nosso modelo em outras forjas ou empresas metalo-mecânicas. Tal possibilidade é, entretanto, extremamente remota, uma vez que estaríamos interferindo no sistema vigente de cada empresa e que o tempo dispensado na implantação para que pudéssemos tirar novas conclusões seria longo.

¹ O ano de 1999 foi utilizado para redação final deste trabalho. Contudo, podemos afirmar que o desenvolvimento de um modelo de qualidade em uma empresa qualquer, bem como a sua implantação, dispenderia cerca de dois anos, em tempo integral, com uma equipe de quatro pessoas.

6.1. Sistema de qualidade

6.1.1. Auditoria nos elementos ISO 9001

Agora vamos analisar os resultados da auditoria que procurou avaliar o sistema de qualidade (SQ) por meio dos elementos da ISO 9001\(^2\) (vide tabela 6). Essa auditoria foi realizada no sistema de qualidade da farjaria (SQF), no sistema “real” de qualidade da farjaria (SQf), no modelo inicial de qualidade (MIQ) e no modelo de qualidade (MQ). A responsabilidade da auditoria foi planejada de tal forma que um departamento auditasse os elementos de responsabilidade do outro, porém, a distribuição e coordenação das auditorias foi realizada pelo comitê de qualidade, que também contratou uma consultoria para a auditoria\(^3\) no sistema de qualidade “real” da farjaria (SQf), uma vez que, naquele momento, o nível de qualidade estava inadequado.

No critério de avaliação para cada elemento da ISO 9001 foram atribuídos pesos e notas\(^4\), desde a responsabilidade da administração (4.1) até as técnicas estatísticas (4.20). Na tabela 6, o peso (A) foi atribuído pelo gerente de engenharia da qualidade, o peso (B) pelo gerente de manufatura, o peso (C) pelo gerente geral da farjaria e o peso (M) foi estabelecido pelo comitê de qualidade dessa farjaria e é o peso final utilizado nessa avaliação. Ao elemento

\(^2\) Essa auditoria foi realizada pela BVQI (Bureau veritas quality international) no ano 1995.
\(^3\) As notas foram atribuídas por um grupo de representantes. Cada grupo era formado por pessoas (cinco ou seis) das áreas de produção, qualidade, engenharia, manutenção, etc. Os grupos reuniam-se em diferentes datas e cada componente atribui uma nota. No caso de surgir alguma discrepância, ou seja, uma nota muito acima ou abaixo em relação às outras notas atribuídas, o componente responsável por ela explicava ao grupo quais foram as suas considerações. Então, todos os componentes atribuíam novamente as suas notas e o coordenador dessa reunião fazia o cálculo estatístico.
4.1 da ISO 9001 foi atribuído o peso cinco, assim sucessivamente, e ao elemento 4.20 da ISO 9001 foi atribuído o peso três. Quanto às notas, foram definidas como sendo: zero (0) que tem o significado da inexistência do elemento da ISO 9001, dois e meio (2,5) que representa que o elemento da ISO 9001 está em fase inicial de implantação, cinco (5) indicador de que o elemento da ISO 9001 está na fase final de implantação, sete e meio (7,5) atribuída para a existência do elemento, ou seja, pode-se considerar que o elemento está totalmente implantado no sistema de qualidade e nota dez (10) que significa que o elemento, além de estar implantado, apresenta resultados visíveis, como, por exemplo, o conhecimento da política de qualidade por todos os funcionários da forjaria, independentemente do cargo ou do departamento. Dessa forma, cada sistema ou modelo apresentou uma nota final que é a média ponderada obtida por intermédio da somatória de cada nota atribuída ao elemento da ISO 9001, multiplicada pelo peso equivalente dividido pela somatória dos pesos atribuídos.

No quesito responsabilidade da administração, item 4.1 da ISO 9001, o SQf está com a nota sete e meio, enquanto os demais sistemas estão com a nota dez. Dessa forma, a melhoria de qualidade do modelo MQ foi de 33%\(^5\) \([(10-7,5)/7,5]\). Quanto ao quesito sistema da qualidade, item 4.2 da ISO 9001, o SQf apresenta uma queda maior ao ser avaliado e comparado com os demais modelos. Nesse caso, a melhoria no nível de qualidade ao se comparar o SQf com o MQ foi de 100% \([(10-5)/5]\).

Já no item 4.3 da ISO 9001, análise crítica de contrato, tanto o SQF, como o MIQ e o MQ não atingiram a nota máxima, ficando com a nota sete e meio, enquanto o SQf está com nota zero, ou seja, a análise crítica de contrato não é realizada nesse sistema. Nesse quesito, o nível de qualidade melhorou “infinitamente”\(^6\) em razão da não existência da atividade de análise crítica de contrato no SQf. Para o controle do projeto, item 4.4 da ISO 9001, o SQf está com a nota cinco, o SQF com sete e meio, o MIQ e o MQ estão com a nota dez. Nesse quesito, a melhoria do nível de qualidade foi de 100% \([(10-5)/5]\). No entanto, ao controle de

\(^5\) Devemos ressaltar que essa porcentagem (%) é proveniente de uma razão aproximada, ou seja, esse cálculo está relacionado às notas atribuídas aos quesitos em cada sistema ou modelo. Essas notas representam estágios em cada fase da evolução dos modelos, ou seja, a fase inicial da implantação (vide tabela 6) tem a nota dois e meio (2,5) e a fase final é excelente, tem a nota dez (10). Portem, isso não quer dizer que o último estágio é quatro vezes (4x2,5=10) melhor que o anterior (fase inicial), pois as notas foram distribuídas em cinco valores representando quatro degraus, porém, o “tamanho” de cada degrau é diferenciado, ou seja, os últimos degraus são mais difíceis de serem atingidos. Matematicamente a equação das notas não é linear.

\(^6\) Embora o nível de qualidade no elemento 4.3 da ISO 9001 tenha melhorado “infinitamente”, muito ainda pode ser feito no modelo MQ.
documentos, item 4.5 da ISO 9001, foi atribuído cinco como nota ao SQf e SQF, ou seja, o controle da documentação está em fase final de implantação nesses sistemas. Já o MIQ tem a nota sete e meio, pois apresenta o controle de documentos implantado. Quanto ao modelo MQ, foi-lhe atribuída a nota dez, pois o controle de documentos está adequadamente implantado. Dessa forma, a melhoria no nível de qualidade foi de 100% \([(10-5)/5]\).

Todavia, no elemento 4.6 da ISO 9001, aquisição, foi atribuído sete e meio aos sistemas SQF, MIQ e MQ. Isso significa que a aquisição e seus processos foram implantados. Ao SQf a nota atribuída foi cinco, ou seja, esse quesito regrediu do estado implantado para o de final de implantação. Nesse caso, a melhoria no nível de qualidade foi de 50% \([(7,5-5)/5]\) ao se comparar o SQf com o MQ. O controle de produto fornecido pelo comprador, elemento 4.7 da ISO 9001, tem nota cinco em SQf e SQF, nos quais o elemento estava em fase final de implantação, enquanto em MIQ e MQ a nota foi sete e meio, ou seja, já controlavam o forjado fornecido pelo comprador para que se aplicuem nele as operações de normalização e limpeza. Dessa forma, a melhoria de qualidade foi de 50% \([(7,5-5)/5]\). Na análise do item 4.8 da ISO 9001, identificação e rastreamento de produtos, as notas atribuídas são crescentes, ou seja, zero para o SQf, elemento inexistente, cinco para o SQF, elemento em fase final de implantação, sete e meio para o MIQ, elemento já implantado e dez para o MQ, elemento adequado e implantado. Nesse caso, a melhoria do nível de qualidade é “infinita”.

O item 4.9 da ISO 9001 é o controle de processo. Nesse quesito, atribui-se nota cinco ao SQf, nota sete e meio ao SQF e MIQ e nota dez ao MQ. Dessa forma, a melhoria do nível de qualidade foi de 100% \([(10-5)/5]\). Para o controle de inspeções e ensaios, itens 4.10 e 4.11 da ISO 9001, o SQf obteve nota cinco e os demais nota sete e meio. Podemos observar que, mesmo no MQ, esses elementos, 4.10 e 11, têm possibilidade de evolução. Apesar de tal possibilidade, o nível de qualidade apresentou um aumento de 50% \([(7,5-5)/5]\). A influência do peso foi destacada na nota final.

Dando sequência à avaliação dos elementos da ISO 9001, vamos relatar o item 4.12, situação da inspeção e ensaios, no qual a nota atribuída ao SQf foi dois e meio, em virtude de esse elemento estar em fase inicial de implantação. Aos sistemas SQF e MIQ foi atribuído cinco, enquanto ao MQ foi sete e meio. Nesse quesito, o modelo de qualidade proporcionou
uma elevação de 200% \((7,5-2,5)/2,5\) no nível de qualidade. Já no controle de produtos não-conformes, item 4.13 da ISO 9001, a nota atribuída ao SQf foi zero, aos sistemas SQF e MIQ a nota foi cinco e ao MQ foi dez. Observamos, que mesmo no MIQ, esse quesito estava em fase final de implantação quando foi auditado. Dessa forma, o MQ apresenta um aumento “infinito” do nível da qualidade. A menor nota atribuída\(^7\) no item 4.14 da ISO 9001, ações corretivas e preventivas, foi para o SQf: nota cinco, aos sistemas SQF e MIQ a nota foi sete e meio e ao MQ foi dez. Nesse caso, o nível de qualidade obtém o aumento de 100% \((10-5)/5\).

No manuseio, armazenamento, embalagem, preservação e expedição, item 4.15 da ISO 9001, atribui-se nota cinco ao SQf e aos demais nota sete e meio. Houve então uma evolução de 50% \((7,5-5)/5\) na melhoria da qualidade. O item 4.16 da ISO 9001, controle de registros da qualidade, atribuiu ao SQf a nota zero, aos sistemas SQF e MIQ a nota cinco e ao MQ a nota dez. Dessa forma, houve uma evolução “infinita” se compararmos a nota do SQf com a nota do MQ. No item 4.17 da ISO 9001, a avaliação do SQf não encontrou registros de auditorias internas realizadas nesse sistema, dessa forma, atribuiu a nota zero, enquanto no SQF, observou algumas auditorias aplicadas, atribuindo a ele a nota dois e meio. Já no MIQ as auditorias internas eram em maior número, o que fez com que a nota subisse para cinco. No MQ, percebeu-se a total existência das auditorias, porém o sistema ainda pode evoluir, atribuindo-se então a nota sete e meio. Nesse quesito, apresenta-se uma evolução “infinita” do nível da qualidade. O treinamento, item 4.18 da ISO 9001, é um elemento em fase final de implantação nos sistemas SQf, SQF e MIQ ao qual foi atribuída a nota cinco, enquanto no MQ, já é um quesito implantado, logo, a nota foi sete e meio. Embora a evolução do nível de qualidade seja 50% \((7,5-5)/5\), esse quesito deve passar por uma contínua adequação, pois é um dos fatores chaves do sistema de qualidade de uma organização. Na assistência técnica – serviços associados, item 4.19 da ISO 9001, atribuíram nota cinco aos sistemas SQf e SQF e nota sete e meio e dez aos modelos MIQ e MQ, respectivamente. Dessa forma, a melhoria do nível de qualidade é de 100% \((10-5)/5\). Em técnicas estatísticas, item 4.20 da ISO 9001, a nota atribuída ao SQf foi cinco, aos sistemas SQF e MIQ foi sete e meio, já para o MQ a nota foi dez. Nesse caso, houve uma evolução de 100% \((10-5)/5\) no nível de qualidade.

\(^7\) Uma avaliação das ações corretivas por meio da análise dos processos, similar à teoria do sistema geral, pode ser vista em Process corrective action. Ver Bice (1990: 80-85).
<table>
<thead>
<tr>
<th>E M E N T O D A I S O 9 0 0 1</th>
<th>P E S O</th>
<th>SQF</th>
<th>MQ</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 Responsabilidade da administração</td>
<td>5 5 5 5 10 50</td>
<td>7,5 37,5 10 50 10 50</td>
<td></td>
</tr>
<tr>
<td>4.2 Sistema de qualidade</td>
<td>4 5 5 10 50</td>
<td>5 25 10 50 10 50</td>
<td></td>
</tr>
<tr>
<td>4.3 Análise crítica de contrato</td>
<td>4 4 3 4 3 30</td>
<td>0 7,5 30 7,5 30</td>
<td></td>
</tr>
<tr>
<td>4.4 Controle de projeto</td>
<td>3 4 4 4 7,5 30</td>
<td>0 7,5 30 7,5 30</td>
<td></td>
</tr>
<tr>
<td>4.5 Controle de documentos</td>
<td>0 0 0 0 0 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.6 Aquisição</td>
<td>4 4 4 4 7,5 20</td>
<td>5 0 7,5 30 10 40</td>
<td></td>
</tr>
<tr>
<td>4.7 Controle de produto fornecido pelo comprador</td>
<td>3 2 2 2 5 10</td>
<td>5 10 7,5 15 7,5 15</td>
<td></td>
</tr>
<tr>
<td>4.8 Identificação e rastreamento de produtos</td>
<td>3 3 3 3 5 15</td>
<td>0 7,5 22,5 10 30</td>
<td></td>
</tr>
<tr>
<td>4.9 Controle de processo</td>
<td>4 5 4 4 7,5 30</td>
<td>5 7,5 30 7,5 10 40</td>
<td></td>
</tr>
<tr>
<td>4.10 Inspeção e ensaios</td>
<td>4 5 4 4 7,5 30</td>
<td>5 7,5 22,5 7,5 22,5</td>
<td></td>
</tr>
<tr>
<td>4.11 Controle de equip. de inspeção, medição e ensaios</td>
<td>5 4 3 4 7,5 30</td>
<td>5 7,5 30 7,5 30</td>
<td></td>
</tr>
<tr>
<td>4.12 Situação da inspeção e ensaios</td>
<td>5 3 3 3 5 15</td>
<td>2,5 7,5 5 15 7,5 22,5</td>
<td></td>
</tr>
<tr>
<td>4.13 Controle de produtos não conformes</td>
<td>3 3 3 3 5 15</td>
<td>0 7,5 15 10 30</td>
<td></td>
</tr>
<tr>
<td>4.14 Ação corretiva e ação preventiva</td>
<td>3 4 4 4 7,5 30</td>
<td>5 7,5 30 7,5 10 40</td>
<td></td>
</tr>
<tr>
<td>4.15 Manuseio, armazenamento, embalagem, preservação e expedição</td>
<td>3 3 3 3 7,5 30</td>
<td>5 7,5 30 7,5 22,5</td>
<td></td>
</tr>
<tr>
<td>4.16 Controle de registro da qualidade</td>
<td>4 3 3 3 5 15</td>
<td>0 7,5 22,5</td>
<td></td>
</tr>
<tr>
<td>4.17 Auditorias internas da qualidade</td>
<td>5 5 4 4 5 2,5</td>
<td>12,5 0 5 7,5 37,5</td>
<td></td>
</tr>
<tr>
<td>4.18 Treinamento</td>
<td>3 4 3 3 5 15</td>
<td>5 7,5 15 7,5 22,5</td>
<td></td>
</tr>
<tr>
<td>4.19 Serviços associados (assistência técnica)</td>
<td>3 2 3 3 5 15</td>
<td>5 7,5 22,5 10 30</td>
<td></td>
</tr>
<tr>
<td>4.20 Técnicas estatísticas</td>
<td>3 2 3 3 7,5 22,5</td>
<td>5 7,5 30 7,5 22,5</td>
<td></td>
</tr>
</tbody>
</table>

A (Engenheiros Qualidade); B (Manufature); C (Forjaria)

Mediana: 6,5; 3,8; 7,4; 8,8

Notas:
10: Excelente
7,5: Implementado
5: Fase final de implementação
2,5: Fase inicial de implantação
0: Inexistente

A média final atribuída aos processadores na tabela 6 foi três vírgulas oito ao SQF, seis e meio ao SQF, sete vírgulas quatro ao MIQ e oito vírgula oito ao MQ, modelo de qualidade modificado – melhorado – implantado da forjaria. Assim sendo, mostra-se que o SQF sofreu uma "degeneração" do seu nível de qualidade em 71% [(6,5-3,8)/3,8] quando comparado ao sistema SQF. O MQ apresentou uma melhoria do nível de qualidade de 19% [(8,8-7,4)/7,4] quando comparado ao MIQ e de 132% [(8,8-3,8)/3,8] quando comparado ao SQF. A seguir, serão analisados os resultados da auditoria externa.

6.1.2. Auditoria do cliente

O critério de avaliação8 dos sistemas de qualidade (SOQs) na função fornecedor foi por nós apresentado na tabela 7. A presente auditoria foi realizada pelo cliente, no sistema "real" de qualidade (SQF) e no modelo de qualidade (MQ) da forjaria como fornecedora. Esse tipo de avaliação é recomendada para uma organização que se propõe a tornar-se uma fornecedora.

Tal procedimento também pode ser de rotina ou até mesmo para quando for necessária uma ação corretiva. A avaliação foi aplicada nos subsistemas: gerenciamento de qualidade, desenvolvimento de projeto, fabricação de forjados, fornecedor e satisfação do cliente. Ressaltamos que não foi comparado o subsistema melhoria contínua, uma vez que esse subsistema não estava presente no SQf.

No gerenciamento de qualidade, foram avaliados a estrutura da organização de qualidade, a política de qualidade, o manual de qualidade, a existência de indicadores de qualidade e o controle de documentos. Já no desenvolvimento de projeto, foram avaliados o projeto do produto e do processo e a existência do controle da amostra inicial e do lote piloto. Na fabricação de forjados (manufatura), avaliaram o plano de produção, a existência e utilização da folha de processo, o estudo de capacidade do processo, o plano de controle, o controle da aprovação do set-up, a identificação do produto durante o processamento, o manuseio e a estocagem, a manutenção preventiva, a não-conformidade dos materiais, a auditoria no produto final e as ações corretivas. No subsistema fornecedor, observaram a existência da seleção do fornecedor, da especificação do pedido de compra, da inspeção de recebimento, quando necessária, da auditoria no fornecedor e a presença das ações corretivas, em caso de necessidade. Também na satisfação do cliente avaliaram a garantia, a análise e a solução de falhas externas.

O significado das notas atribuídas é: nota um, quando o item analisado apresentar alto risco, podendo comprometer totalmente o nível de qualidade; nota dois, quando o item analisado apresentar risco de comprometimento da qualidade; nota três, quando se recomenda introduzir melhorias no sistema de qualidade; nota quatro, quando o procedimento não está sendo totalmente cumprido e a nota cinco, no caso de o item atender plenamente ao sistema de qualidade (SQ).

Na tabela 7 apresentamos as notas da auditoria do cliente que foram atribuídas ao sistema de qualidade SQf e MQ. No subsistema gerenciamento de qualidade, o SQf recebeu a nota dois com a recomendação de introduzir melhorias no sistema de qualidade, uma vez que a política de qualidade não era conhecida por muitos dos funcionários e também não havia o
comprometimento com os indicadores da qualidade. O modelo MQ recebeu a nota cinco já que o controle de documentos estava implantado, embora não estivesse sendo totalmente cumprido. Dessa forma, o MQ, em relação ao SQf, apresentou uma melhoria no nível de qualidade de 150% [(5-2)/2]. No subsistema desenvolvimento de projeto, o SQf recebeu a nota três. O modelo MQ recebeu a nota cinco, apesar de, às vezes, não enviar ao cliente o relatório de amostra inicial. A melhoria do nível de qualidade foi de 67% [(5-3)/3]. Na fabricação de forjados, o SQf recebeu a nota dois, enquanto o MQ recebeu a nota cinco. A primeira grande diferença na atribuição das notas estava no quesito rastreamento, no qual o SQf recebeu a nota um, pois estava comprometendo o sistema de qualidade; nesse mesmo quesito o MQ recebeu a nota máxima⁹. Dessa forma, no subsistema fabricação de forjados, o nível de qualidade melhorou em 150% [(5-2)/2].

No subsistema fornecedor, o SQf recebeu a nota dois e o MQ a nota quatro, o que representa uma diferença não tão acentuada na evolução do nível de qualidade, 100% [(4-2)/2], uma vez que as aciarias no Brasil possuem elevado nível de qualidade e muitas delas fornecem com qualidade assegurada. Essa foi a nota mais baixa que o modelo MQ recebeu nesse subsistema. Na satisfação do cliente, foram avaliados a garantia, a análise e solução de problemas, às quais foram atribuídas nota três ao SQf e cinco ao MQ. A grande diferença está no encaminhamento das soluções de falhas. O nível de qualidade foi elevado em 67% [(5-3)/3].

No cômputo geral, para o SQf foi dada a nota dois e ao MQ a nota cinco. Assim sendo, o nível total de qualidade do modelo MQ, quando comparado ao SQf, foi elevado em 150% [(5-2)/2]. Se compararmos esse resultado ao melhoramento apresentado na avaliação de auditoria interna (item 6.1.1), a melhoria alcançada foi de 132%, estando então dentro do esperado. A seguir apresentaremos a avaliação dos sistemógrafos.

(1990: 3-51).

⁹ A nota máxima no quesito rastreamento foi dada pelos clientes da forjaria. O controle do rastreamento inicia-se desde a chegada do aço (barras laminadas) identificando-se o heat-code. Em cada fase do processo é identificada a operação em que o forjado está. Ao transferir o forjado para o cliente, é fundamental que esse controle continue para que se possa identificar
Tabela 7 - Auditoria do cliente no sistema de qualidade

<table>
<thead>
<tr>
<th>Descrição</th>
<th>SQF</th>
<th>MQ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gerenciamento de Qualidade</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estrutura de qualidade</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>Política de qualidade</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>Manual de qualidade</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>Indicador</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>Controle de documentos</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>Desenvolvimento de projeto</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Projeto do produto</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>Projeto do processo</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>Amostra inicial</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>Fabricação de forjados</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plano de produção</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>Roteiro de fabricação</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Capabilidade</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Plano de controle</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>Plano de set-up</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>Rastreamento</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Movimentação</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Manutenção preventiva</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Materiais não-conforme</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>Auditoria</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Ação corretiva</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>Total</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>Fornecedor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seleção de fornecedor</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>Especificação do pedido</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Inspeção de recebimento</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Auditoria</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Ação corretiva</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Satisfação do cliente</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Garantia</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>Análise e solução de falhas</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>Total</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>Total Geral</td>
<td>2</td>
<td>5</td>
</tr>
</tbody>
</table>

6.2. Avaliação dos sistemógrafos

6.2.1. Desdobramento e conexões

A avaliação do desdobramento dos processadores e de suas conexões, pertencentes aos sistemógrafos do sistema de qualidade da forjaria (SQF), sistema "real" de qualidade da forjaria (SQf), modelo inicial de qualidade (MIQ) e modelo de qualidade (MQ) é apresentada na tabela 8\(^8\). O desdobramento foi dividido nos subsistemas: gerenciamento de qualidade (I), desenvolvimento de projeto (II), fabricação de forjados (III), fornecedor (IV), satisfação do cliente (V) e melhoria contínua (VI).

\(^8\) Uma metodologia, com aplicação matemática, para um decision making system foi aplicada em uma indústria mecânica no Japão. Ver Furukawa, Mikayama, Kubota e Mizuno (1977: 539-550).
O processador I.1 (responsabilidade da administração) do subsistema gerenciamento de qualidade apresenta no SQF I.1 quatro entradas (E=4), uma saída (S=1) e três retromitâncias (R=3); no SQf I.1, três entradas, uma saída e duas retromitâncias e no MIQ I.1, quatro entradas, uma saída e três retromitâncias. O processador MIQ I.1 (vide quadro 56) possui descrição melhor elaborada quando comparado com os processadores SQF I.1 e SQf I.1 (vide quadro 28; na tabela 8 esse efeito está representado pelo símbolo # ao lado do número do processador, ou seja, #1). Da mesma forma, o processador MQ I.1 (vide quadro 56) comparado ao processador MIQ I.1 (vide quadro 56) apresenta uma evolução sob influência do processador de melhoria e integração (GH IV.3/assegurar a comunicação de forma total; na tabela 8 esse efeito está simbolicamente representado pelo @ ao lado do número do processador). O processador MQ I.1 (responsabilidade da administração), por sua vez, é simbolicamente representado na tabela 8 na forma: MQ 1 @ # 1, ou seja, apresenta uma melhoria além daquela apresentada pelo modelo MIQ (melhoria @11) e também sobre os sistemas SQF e SQf (melhoria #12).

O processador I.2 (política de qualidade) do subsistema do gerenciamento de qualidade possui no SQF I.2 duas entradas, duas saídas e uma retromitância; no SQf, duas entradas, uma saída e uma retromitância. Dessa forma, o SQf perdeu efetivamente uma saída após o processamento da política de qualidade, ou seja, deixou de informar algo relevante sobre a política de qualidade. O processador MIQ I.2 (vide quadro 56) possui uma descrição melhor elaborada quando comparado com o processador SQF I.2 (vide quadro 28; na tabela 8 esse efeito está representado pelo símbolo: MIQ I.2 # 2). Da mesma forma, o processador MQ I.2 sob influência dos processadores de melhoria e integração: PEQ 1 (assegurar a estratégia de negócios na definição da política de qualidade e GH IV (garantir a divulgação da política de qualidade por meio do comprometimento; vide quadro 56 no item 5.3) apresenta uma descrição melhor formulada e implementada (esse efeito é representado na tabela 8 pelo do símbolo MQ I.2 @ # 2).

O processador I.3 (sistema de qualidade – SQ) do subsistema do gerenciamento de qualidade apresenta no SQF I.3 uma entrada, duas saídas e nenhuma retromitância; no SQf I.3, uma entrada, duas saídas e nenhuma retromitância e no MIQ I.3, três entradas, uma saída

11 Melhoria @ é a representação da evolução do modelo MIQ para o MQ.
e uma retromitância. Pode-se observar que no MIQ I.3 há duas entradas e uma retromitância (feed-back) a mais que nos sistemas SQF e SQf. O processador MQ I.3 @ # 3 está melhor elaborado em razão dos processadores de melhoria contínua: GPI IV.2 (assegurar a revisão contínua) e do GPI IV.7 (assegurar a informatização do sistema de qualidade; vide quadro 56 no item 5.3).

Ainda no subsistema I, gerenciamento de qualidade, observa-se na tabela 8 que os processadores 8, 10 e 13, apresentados no MIQ e MQ, não possuem correspondentes no SQF e SQf. Esse fato evidencia que o modelo de qualidade (MQ) está melhor formulado. Além disso, os processadores 17 e 18 estão presentes somente no processador MQ, o que significa um avanço em razão dos processos de melhoria contínua e integração: GH IV.3 (estabelecer melhor integração e comunicação) e GH IV.7 (estabelecer critérios de recompensa aos trabalhos apresentados pelos grupos; vide quadro 56). O modelo MIQ I apresenta 36 entradas, 18 saídas, 12 retromítancias e 16 processadores (vide figura 93), enquanto o sistema SQf I apresenta 15 entradas, 11 saídas, 6 retromítancias e 8 processadores (vide figura 43) e o modelo de qualidade MQ I (vide figura 94) possui 18 processadores com mais entradas, saídas e retromítancias que o MIQ I. Assim sendo, um volume maior de informações não quer dizer necessariamente melhoria, porque, se compararmos o MIQ I com o SQF I, vê-se que o SQF I tem cinco saídas e três retromítancias a mais, porém o MIQ I possui dois processadores a mais e, embora tenha menor número de saídas, pode-se ver no seu sistemógrafo (vide figura 93) que uma saída pode ter três ou mais conexões. Por outro lado, no caso do modelo de qualidade, pode-se comprovar nas tabelas 6 e 7 substancial incremento no nível de qualidade da forjaria.

Da mesma maneira que foi analisado o subsistema I, comparando-se a descrição dos processadores e o número de entradas, saídas e retromitâncias dos sistemógrafos, vamos analisar os demais subsistemas dessa mesma forma. No subsistema II, desenvolvimento de projeto, foram comparados os sistemas SQF II e SQf II (vide quadro 29 e figuras 44 e 45) com os modelos MIQ II e MQ II (vide quadro 57 e figuras 95 e 96). Também foi analisado o subsistema III, fabricação, comparando-se o quadro 30 e figuras 46 e 47 (SQF III, SQf III) com o quadro 58 e figuras 97 e 98 (MIQ III, MQ III); ainda vamos analisar o subsistema IV,

12 Melhoria # é a representação da evolução do sistema SQF para o modelo MIQ.
fornecedor, comparando o quadro 31 e figuras 48 e 49 (SQF IV, SQf IV) com o quadro 59 e figuras 99 e 100 (MIQ IV, MQ IV) e também vamos analisar o subsistema V, satisfação do cliente, comparando o quadro 32 e figuras 50 e 51 (SQF V, SQf V) com o quadro 60 e figuras 101 e 102 (MIQ V, MQ V).

No subsistema II, desenvolvimento do projeto, o MIQ II, quando comparado com o SQF II e SQf II, tem o maior número de processadores e tem o maior número de feed-back. Porém, ao se comparar o número de saídas, o MIQ II tem treze, enquanto o SQF II também tem treze, no entanto efetivamente as saídas após processamento no MIQ II foram sintetizadas, ou seja, ele conseguiu “expressar-se” com um maior número de derivação procedente dessas saídas (vide sistemógrafo SQF II na figura 44, comparado com o sistemógrafo MIQ II na figura 95).

Na comparação final, o MIQ tem 60 processadores contra 47 e 27 do SQF e SQf, respectivamente. O MIQ tem 113 entradas, 65 saídas e 42 retromitâncias contra 86 entradas, 63 saídas e 33 retromitâncias do SQF e 41 entradas, 35 saídas e 13 retromitâncias do SQf. Podemos observar que o SQf tem o menor número de processadores e informação, mostrando a sua queda na qualidade; enquanto o MIQ possui maior número de informação no cômputo geral. Mas não paramos ai, desenvolvemos o modelo MQ sob influência da melhoria contínua e integração em todos os subsistemas, mas em especial no subsistema VI, chamado melhoria contínua.
O processador MQ VI, melhoria contínua (vide quadro 61 e figura 103) é um processador que foi desenvolvido somente no modelo de qualidade (MQ) sob influência direta dos processadores: GPI, IA e GH.

Outro ponto de destaque é o símbolo @ que tem o significado de influência do processo de melhoria contínua, buscando maior integração, podendo-se notar que a maior

Tabela 8 - Desdobramento e conexões dos processadores

<table>
<thead>
<tr>
<th>SOF</th>
<th>SOF</th>
<th>MIQ</th>
<th>MQ</th>
<th>SOF</th>
<th>SOF</th>
<th>MIQ</th>
<th>MQ</th>
</tr>
</thead>
<tbody>
<tr>
<td>PES</td>
<td>PES</td>
<td>PES</td>
<td>ESP</td>
<td>PES</td>
<td>PES</td>
<td>ESP</td>
<td>ESP</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>#1</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>#2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>#3</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>#4</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>#5</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>#6</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>1</td>
<td>7</td>
<td>3</td>
<td>2</td>
<td>#7</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>#8</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>9</td>
<td>2</td>
<td>#9</td>
<td>3</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>#10</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

Legenda

- P: Processador
- E: Número de entradas
- S: Número de saídas
- R: Número de retomância (feed-back)
- ESR(10): Conexão simples
- 01: Entrada
- 01: Saída
- 00: Nenhum feed-back
- # Melhoria no SOF
- @ Melhoria no SOF e no MIQ
- @ Melhoria no MIQ

Aplicação do @ foi no gerenciamento de qualidade, no desenvolvimento de projeto, na fabricação de forjados e exclusivamente no processador MQ VI (melhoria contínua). A seguir vamos analisar a diferença entre os níveis dos processadores.
6.2.2. Níveis dos processadores

A diferença entre os níveis dos processadores (vide tabela 9) que representam os sistemas SQF e SQf e os modelos MIQ e MQ desdobrados nos subsistemas: I (gerenciamento de qualidade), II (desenvolvimento de projeto), III (fabricação de forjado), IV (fornecedor), V (satisfação do cliente) e VI (melhoria contínua). A análise dos níveis está apoiada na classificação dos níveis dos processadores, apresentada na figura 11 (capítulo 2), nas suas descrições após apresentação dos sistemógrafos (vide capítulo 3 e 5) e na tabela 8 (capítulo 6).

O gerenciamento da qualidade, o desenvolvimento de projeto e a fabricação de forjado foram classificados como sétimo, sexto, oitavo e nono nível, respectivamente, para SQF, SQf, MIQ e MQ. Já os subsistemas fornecedor e satisfação do cliente foram classificados em sexto nível (SQF), quinto nível (SQf) e sétimo nível (MIQ e MQ). Nesse último caso, embora o modelo MQ tenha uma evolução dos subsistemas IV e V, quando comparado com o MIQ, não consideramos que essa evolução tenha propiciado um adicional ao valor do nível. Na avaliação do subsistema VI, melhoria contínua, só foi apresentado e desenvolvido no modelo MQ, apresentando o nono nível.

Tabela 9 - Nível dos processadores

<table>
<thead>
<tr>
<th>Subsistema</th>
<th>Processador</th>
<th>SQF</th>
<th>SQf</th>
<th>MIQ</th>
<th>MQ</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Nível</td>
<td>Objeto</td>
<td>Nível</td>
<td>Objeto</td>
<td>Nível</td>
</tr>
<tr>
<td>I: Gerenciamento de qualidade</td>
<td>7o.</td>
<td>com pilotagem</td>
<td>6o.</td>
<td>com memória</td>
<td>8o.</td>
</tr>
<tr>
<td>II: Desenvolvimento do projeto</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>III: Fabricação de forjados</td>
<td>6o.</td>
<td>com memória</td>
<td>5o.</td>
<td>com decisão</td>
<td>7o.</td>
</tr>
<tr>
<td>IV: Fornecedor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V: Satisfação do cliente</td>
<td>5o.</td>
<td>com memória</td>
<td></td>
<td></td>
<td>7o.</td>
</tr>
<tr>
<td>VI: Melhoria contínua</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nível</th>
<th>Objeto</th>
<th>Conexões</th>
<th>Representação gráfica</th>
</tr>
</thead>
<tbody>
<tr>
<td>7o.</td>
<td>com pilotagem</td>
<td>elaboradas e retro-alimentadas</td>
<td>complexa</td>
</tr>
<tr>
<td>6o.</td>
<td>com memória</td>
<td></td>
<td>memorização</td>
</tr>
<tr>
<td>8o.</td>
<td>com inovação</td>
<td></td>
<td>complexa</td>
</tr>
<tr>
<td>9o.</td>
<td>com auto-finalização</td>
<td></td>
<td>super complexa</td>
</tr>
</tbody>
</table>

Na avaliação final, constatou-se que o SQF tem o menor nível, o sexto, que o SQF apresentou uma evolução, sétimo nível; enquanto o modelo MIQ foi classificado como de oitavo nível e o modelo MQ como de nono nível, sendo então um objeto com autofinalização,
possuindo conexões elaboradas e retroalimentadas. Então, podemos dizer que o MQ é um modelo "classe mundial" com capacidade de gerar os próprios objetivos, tendo consciência da sua existência.

6.3. Integração e automação

A aplicação da integração e automação13 foi analisada no sistema de qualidade da forjaria (SQF), no modelo inicial de qualidade (MIQ) e no modelo de qualidade (MQ). Estamos apresentando os resultados na tabela 10. A ferramenta CAD estava presente em todos os sistemas, porém o CAD/CAM, integração do desenho e da manufatura, estava aplicado somente nos modelos MIQ e MQ. As ferramentas CAPP e CAE estavam aplicadas somente no MQ. A técnica CNC estava aplicada em todos os sistemas, porém, a sua integração com a máquina por meio do DNC, na construção de matrizes, estava aplicada somente no MQ. Dessa forma, a manufatura integrada por computador (CIM) por intermédio do software oracle era usada somente no modelo de qualidade. O controle estatístico de processo (CEP) era utilizado em todos os sistemas, porém as ferramentas do gerenciamento da qualidade total (TQM): DFM, QFD e FMEA eram empregadas somente no modelo de qualidade (MQ). No sistema just-in-time (JIT) a ferramenta MRP I era aplicada em todos os sistemas, a ferramenta MRP II era usada nos modelos MIQ e MQ e as demais ferramentas: moopi e maximo eram utilizadas somente no MQ. Podemos concluir, então, que o modelo MQ está muito mais integrado que o modelo MIQ, que por sua vez possui maior integração quando comparado com o sistema SQF. Vamos analisar a seguir os indicadores da qualidade, que são o reflexo do implemento da integração.

<table>
<thead>
<tr>
<th>Técnica</th>
<th>SQF</th>
<th>MIQ</th>
<th>MQ</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAD</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>CAD/CAM</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>CAPF</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>CAE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CNC</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>DNC</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CLP</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>CIM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ORACLE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DFM</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FMEA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>QFD</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>CEP</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>TQM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MRPI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MRPII</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MOQPI</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>MAXIMO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SMED</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JIT</td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

6.4. Indicadores de qualidade

6.4.1. Refugo ppm

O refugo total encontrado na tabela 11, medido no SQF, é de 7.000 ppm, enquanto essa mesma medição no SQF é de 8.000 ppm no ano dois e de 11.000 ppm no ano três. Já no MQI é de 6.500 ppm e no MQ é de 5.000 ppm. Observamos, assim, que no SQF, quando

\(^4\) Uma aplicação do indicador qualidade de produção: rejeição por milhão (ppm) foi pesquisada pela Ernst & Young. Ver Nicholson (1990: 4-7). É importante ressaltar que os valores apresentados na tabela 11 não foram calculados apenas para um lote representativo. Eles foram calculados dia a dia, ou seja, no primeiro dia do mês foi calculado o ppm, no segundo dia foi calculado o seu respectivo valor e o acumulado (primeiro e segundo dia), e assim por diante, até calcularmos o trigésimo dia e o acumulado mensal, encerrando-se o primeiro mês. Successivamente, calcula-se o segundo mês, terceiro, até o décimo segundo mês, encontrando-se o resultado acumulado anual. Dessa forma, o SQF foi medido no ano um (1994), o SQF no ano dois e três (1995 e 1996), o MIQ no ano cinco (1998) e o MQ no ano seis (1999).
comparado com o SQF, o refugo é superior em 1.000 ppm (superior em 14%) no ano dois e 4.000 ppm (superior em 57%) no ano três, mostrando que o nível de qualidade foi degenerado no decorrer do tempo. Com a implantação do modelo inicial (MIQ) conseguimos uma redução de 4.500 ppm (redução de 41%) em relação ao SQF. Posteriormente, no ano seguinte, foi desenvolvido e introduzido o modelo de qualidade (MQ), que conseguiu uma redução de 1.500 ppm (redução de 23%) em relação ao MIQ ou 6.000 ppm (redução de 55%) em relação ao SQF. Vamos apresentar agora o resultado do refugo interno da forjaria.

O refugo interno na forjaria é a diferença entre o total e o do cliente. Na tabela 11, encontramos no SQF o valor 7.000 ppm (total) e o valor 3.000 ppm (cliente). Então, o refugo interno no SQF resultará em 4.000 ppm (7.000-3.000). Da mesma forma, encontraremos o valor 4.500 ppm (8.000-3.500) para o SQf, no ano dois e 7.000 ppm (11.000-4.000) para o SQf, no ano três. Para o modelo MIQ, encontraremos o valor 5.500 ppm (6.500-1.000) e para o modelo MQ, o valor 4.500 ppm (5.000-500). Dessa forma, se compararmos o MQ (4.500 ppm) com o SQf, no ano três (7.000 ppm) temos uma redução significativa (50%); porém se compararmos o MQ (4.500 ppm) com o SQF (4.000 ppm), o modelo MQ aparentemente não apresentou grande evolução. Devemos ressaltar que o refugo interno também foi reduzido substancialmente, porém, a forjaria deixou de retrabalhar forjados não-conformes por meio do reaquecimento e reforjamento. O MQ somente permite retrabalhar forjados nas operações de desempenamento e esmerilhamento. Vamos agora apresentar o resultado mais importante que é o refugo no cliente.

O refugo no cliente medido no SQF é de 3.000 ppm, enquanto no SQf é de 3.500 ppm no ano dois e de 4.000 ppm no ano três. Já no modelo inicial de qualidade, é de 1.000 ppm e no modelo de qualidade é de 500 ppm. Dessa forma, observa-se que no SQf, quando comparado com o SQF, o refugo é superior em 500 ppm (superior em 17%) no ano dois e superior 1.000 ppm (superior em 33%) no ano três. A implantação do modelo inicial de qualidade conseguiu, em dois anos, uma redução de 3.000 (4.000-3.000) ppm (redução de 75%) em relação ao SQF e com a introdução do modelo de qualidade (MQ). Essa redução foi de 3.500 (4.000-500) ppm (redução de 88%).
Se compararmos o modelo MIQ com o sistema SQF, poderemos ver que o valor do ppm no total (forjaria mais cliente, ou seja, interno e externo) é praticamente o mesmo (7.000 ppm e 6.500 ppm, respectivamente, SQF e MIQ). No entanto o valor do ppm no cliente ao compararmos o MQ (500 ppm) com o MIQ (1.000 ppm) é o dobro e ao compararmos o MIQ (1.000 ppm) com o SQF (3.000 ppm) é o triplo, ou seja, o SQF (3.000 ppm) é seis vezes maior do que o MQ (500 ppm). E, ainda, no cliente, o SQF (4.000 ppm) quando comparado com o MQ (500 ppm) é oito vezes maior. Podemos, então, ressaltar que além do ganho com o aumento da qualidade, temos um valor incomensurável com a imagem que construímos diante do cliente.

Tabela 11 - Indicador ppm

<table>
<thead>
<tr>
<th>Indicador</th>
<th>Processador</th>
<th>SQF</th>
<th>SQF</th>
<th>MIQ</th>
<th>MQ</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>ANO 1</td>
<td>ANO 2</td>
<td>ANO 3</td>
<td>ANO 5</td>
</tr>
<tr>
<td>Refugo</td>
<td>%</td>
<td>0,70</td>
<td>0,80</td>
<td>1,10</td>
<td>0,85</td>
</tr>
<tr>
<td>Total</td>
<td>ppm</td>
<td>7000</td>
<td>8000</td>
<td>11000</td>
<td>6500</td>
</tr>
<tr>
<td>Refugo</td>
<td>%</td>
<td>0,30</td>
<td>0,35</td>
<td>0,40</td>
<td>0,10</td>
</tr>
<tr>
<td>Cliente</td>
<td>ppm</td>
<td>3000</td>
<td>3500</td>
<td>4000</td>
<td>1000</td>
</tr>
<tr>
<td>ISO 9001</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>x</td>
</tr>
<tr>
<td>QS 9000</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Prêmio Interno PNQ</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Finalista 1999</td>
</tr>
<tr>
<td>Prêmio PNQ</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Prêmio Banas</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

1 - estes certificados estão correlacionados aos modelos desenvolvidos, ou seja, a norma ISO 9001 foi implementada nos modelos MIQ e MQ, enquanto a QS 9000 foi aplicada somente no modelo MQ.

2 - o prêmio interno e o prêmio Banas foram concedidos somente ao modelo MQ. Outro destaque é que a forjaria, como organização pertencente a essa empresa metais-mecânica, foi finalista do prêmio PNQ, no ano 1999.

A valorização desse indicador poderia ser calculada considerando-se a redução do custo horário. Se nessa forjaria a média mensal de horas produzidas estivesse na faixa de 10.000 horas por mês e se a economia horária da qualidade fosse de aproximadamente três reais por hora (R$ 2,00/hora), isso resultaria em uma economia de R$ 20.000,00 por mês. Dessa forma, teríamos no espaço de quatro anos uma economia da ordem de um milhão de reais.
6.4.2. Custo de qualidade

Nesse critério, procura-se medir o custo da qualidade como porcentagem da venda líquida\(^\text{15}\) (vide tabela 12). Para o custo da qualidade, vamos considerar as parcelas: prevenção, avaliação, falha interna e falha externa\(^\text{16}\). A prevenção é constituída pelo custo da administração, engenharia e treinamento da qualidade. Já a avaliação é uma soma da inspeção de materiais comprados, em processo e final. Quanto à falha interna, é um custo que reflete o refugo, o material comprado com defeito e o ressarcimento desse material em qualquer estágio do processo em que se identifique o defeito ("crédito"). A falha externa é a soma da assistência a essa falha e da garantia.

Na prevenção consideramos: o custo da administração da qualidade, que abrange o envolvimento primário em atividades preventivas da qualidade; o custo da engenharia da qualidade, que assume todos os colaboradores que estão diretamente envolvidos com o planejamento da qualidade e o treinamento, que é o investimento em recursos humanos e inclui cursos, viagens, material didático, livros, softwares e outros.

Na avaliação consideramos: a inspeção de materiais comprados, que considera custos relacionados à inspeção desse material (aço); a inspeção em processo, que revela os custos para controle dos materiais em processos e a inspeção final, que considera os custos alocados a um plano de contenção na medição da conformidade do forjado no final do processo.

Na falha interna consideramos: o refugo (\textit{scrap}), que envolve os custos de materiais refugados exclusivamente à não-conformidade; o material comprado, que abrange custos devidos à perda proveniente de material comprado (aço), quer seja refugado, quer seja devolvido ao fornecedor (acaria), quando não-conforme; o ressarcimento do material comprado, que é o reembolso em consequência de danos provocados por materiais dos fornecedores, após negociação\(^\text{17}\).

\(^{15}\) A venda líquida é o resultado da venda bruta (faturamento) descontados os impostos (industrialização – IPI, circulação de mercadoria e serviços – ICM).

Na falha externa consideramos: o atendimento ao cliente, que é o custo alocado quando é feito o acompanhamento em produtos falhos e também a garantia, que é o custo para os forjados que se apresentam defeituosos durante seu uso no campo.

O custo de qualidade na administração, no modelo inicial de qualidade (MIQ), apresenta o valor 0,4% da venda líquida e, no modelo de qualidade (MQ), o valor 0,3%. Embora os valores medidos sejam bastante próximos, o que diferencia os modelos é que, na nova organização da qualidade do modelo MQ, os níveis hierárquicos estão mais enxutos. O resultado encontrado na engenharia de qualidade foi 1,1% da venda líquida no modelo MIQ e 0,6% no modelo MQ. Essa diferença é proveniente de uma redução da mão-de-obra qualificada, após a introdução de melhorias no sistema de qualidade. No quesito treinamento em qualidade, como prevenção, destinou-se um valor mínimo de 0,1% da venda líquida quando introduzido o modelo MQ.

O treinamento estava presente nos sistemas anteriores, porém, era em menor proporção e não era registrado. Dessa forma, no custo de qualidade, na função prevenção, o modelo MIQ apresentou 1,5% do valor da venda líquida, enquanto o modelo MQ obteve 1% da venda líquida, ocasionando uma queda do custo de qualidade com a atividade prevenção de 33% \([(1,5-1)/1,5]\).

No quesito avaliação, o custo de qualidade, no item inspeção em materiais comprados, foi encontrado um valor de 0,2% da venda líquida no modelo MIQ e de 0,05% no modelo MQ. Essa redução foi possível com o aumento do número de acariás com qualidade assegurada. No item inspeção em processo, o custo de qualidade foi alterado de 0,9% para 0,6% da venda líquida. Essa queda do custo de qualidade é uma conseqüência da automação da inspeção em processo: poké-yoke e medição em processo\(^{18}\). Na inspeção final, a porcentagem do custo de qualidade foi alterada de 0,1% para 0,05% da venda líquida, pois o modelo MQ está mais voltado para a inspeção em processo. Dessa forma, o custo de qualidade foi otimizado no quesito avaliação em 42% \([(1,2-0,7)/1,2]\).

\(^{17}\) Podemos considerar também, quando for conveniente o seu acompanhamento, o retrabalho em forjados não-conformes.

\(^{18}\) Um exemplo de medição em processo é o controle da temperatura do tarugo a ser forjado.
Na falha interna, no item refugo, houve uma queda no custo de qualidade de 0,6% da venda líquida quando se compara o MIQ com o MQ. Essa redução de custo é de 55% \((1,1-0,5)/1,1\) e foi provocada pela introdução de um novo sistema de qualidade (SQ). No material comprado, como falha interna, ocorre uma redução de 0,35% da venda líquida no custo de qualidade, ou seja, 70% \((0,5-0,15)/0,5\) na redução de custo. A redução de 70% é bastante significativa, pois está se comparando o MIQ com o MQ, mostrando-se a grande influência dos processos de melhoria contínua, tais como: GPI, IA, GH e PEQ. Quanto ao ressarcimento do material comprado, houve uma queda no reembolso do custo de qualidade de 0,55% da venda líquida, o que significa que ele foi reduzido em 92% \((0,6-0,05)/0,6\). Essa queda demonstra que este modelo proposto estimula uma evolução dos fornecedores para a qualidade assegurada. No quesito retrabalho, não houve a sua medição, portanto não se pode avaliar a sua influência no modelo MQ. A falha interna como custo de qualidade sofreu uma queda de 40% \((1,0-0,6)/1,0\).

<table>
<thead>
<tr>
<th>Tabela 12 - Custo da qualidade</th>
<th>% Venda Líquida</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MIQ</td>
</tr>
<tr>
<td>Prevenção</td>
<td></td>
</tr>
<tr>
<td>Administração da qualidade</td>
<td>0,4</td>
</tr>
<tr>
<td>Engenharia da qualidade</td>
<td>1,1</td>
</tr>
<tr>
<td>Treinamento em qualidade</td>
<td>-</td>
</tr>
<tr>
<td>Subtotal</td>
<td>1,5</td>
</tr>
<tr>
<td>Avaliação</td>
<td></td>
</tr>
<tr>
<td>Inspeção em materiais comprados</td>
<td>0,2</td>
</tr>
<tr>
<td>Inspeção em processos</td>
<td>0,9</td>
</tr>
<tr>
<td>Inspeção final</td>
<td>0,1</td>
</tr>
<tr>
<td>Subtotal</td>
<td>1,2</td>
</tr>
<tr>
<td>Falha Interna</td>
<td></td>
</tr>
<tr>
<td>Refugo</td>
<td>1,1</td>
</tr>
<tr>
<td>Material comprado</td>
<td>0,5</td>
</tr>
<tr>
<td>Ressarcimento devido a material comprado</td>
<td>(0,6)</td>
</tr>
<tr>
<td>Retrabalho</td>
<td>-</td>
</tr>
<tr>
<td>Subtotal</td>
<td>1,0</td>
</tr>
<tr>
<td>Falha Externa</td>
<td></td>
</tr>
<tr>
<td>Assistência a falha externa</td>
<td>0,4</td>
</tr>
<tr>
<td>Garantia</td>
<td>0,4</td>
</tr>
<tr>
<td>Subtotal</td>
<td>0,8</td>
</tr>
<tr>
<td>Total</td>
<td>4,8</td>
</tr>
</tbody>
</table>

A assistência à falha externa sofreu uma queda de 0,1% da venda líquida, o que resulta em uma evolução de 25% \((0,4-0,3)/0,4\), decorrente da melhoria do modelo de qualidade. No quesito garantia, houve uma redução de 0,2% da venda líquida, ou seja, 50% \((0,4-0,2)/0,4\) com o aprimoramento do modelo inicial, que se transformou em modelo modificado por melhorias contínuas. Dessa forma, a otimização do custo de qualidade na falha externa foi de 38% \((0,8-0,5)/0,8\).
Na análise global do ganho com o custo de qualidade, foi encontrado o valor de 4,5% da venda líquida para o MIQ e 2,8% para o MQ, o que resultou num ganho de 1,7% da venda líquida, ou seja, 38% \((4,5-2,8)/4,5\) de otimização e, se ainda considerássemos o custo de qualidade nos sistemas SQF e SQf, o ganho seria maior\(^9\).

Se considerarmos uma forjaria que opera com 1.800 toneladas por mês, que o custo do material é aproximadamente igual ao custo do salário e despesa, que a margem líquida é de 25% e que a tonelada do aço é da ordem R$ 800,00, podemos dizer que essa forjaria possui um faturamento duas vezes e meio \([1 \text{ (aço)} + 1 \text{ (salário e despesa)} + 0.5 \text{ (margem)} = 2.5]\) o valor da matéria-prima (aço). Então o ganho de 1,7% da venda líquida é superior a setecentos mil reais por ano, ou seja, em três anos temos um valor acumulado superior a dois milhões de reais.

6.5. Satisfação do cliente

No encerramento da análise de resultados, vamos avaliar a satisfação do cliente\(^20\). Essa avaliação foi realizada somente no MQ por meio de entrevistas com dois ou mais representantes de cada área do cliente\(^21\). Durante essas entrevistas, o representante da forjaria só pode ouvir e anotar, jamais poderá contra-argumentar. Essa metodologia deverá ser aplicada anualmente e, logo após a obtenção dos resultados, a forjaria deverá elaborar um plano de ação para os quesitos que apresentaram uma nota baixa. Esse plano deverá ser levado ao conhecimento do cliente e, se possível, à própria área à qual havia dado a nota. Vamos então apresentar os fatores que integram essa avaliação.

\(^9\) Não foi calculada a diferença do custo de qualidade com o sistema SQF comparado com o modelo de qualidade (MQ) por não termos registrado esse custo nos sistemas SQF e SQf.

\(^{21}\) Essa metodologia foi aplicada em quatro unidades de negócio: transmissões para caminhão, transmissões para pick-up, transmissões para trator e componentes para automóvel e em unidades corporativas desses negócios: suprimentos, vendas, marketing, engenharia do produto e finanças. Em cada unidade do cliente, negócio ou suporte foram entrevistados dois ou mais integrantes. Deve-se ainda considerar que cada unidade de negócio contém células que recebem forjados. A quantidade de células nos negócios que recebem forjados é aproximadamente 100. Dessa forma, foram geradas 30 entrevistas que representaram todos os clientes e as notas atribuídas foram classificadas (vide tabela 13) em: comercial (suprimentos, vendas, marketing e finanças); engenharia (produto e pesquisa e desenvolvimento) e manufatura (unidades de negócio).

218
Na tabela 13, apresentamos a avaliação da satisfação do cliente. O objetivo foi atribuirmos uma nota de um a cinco a cada fator. A nota um foi atribuída quando o fator estava péssimo, nota dois para ruim, nota três para regular, nota quatro para bom e a nota cinco quando o fator em análise estava ótimo. Os atribuídos de nota foram os clientes, por meio de seus departamentos, tais como: comercial (vendas, marketing e suprimentos), engenharia e manufatura. As notas foram atribuídas tanto à forjaria como aos seus competidores. Também a própria forjaria atribuiu nota como auto-avaliação. Os fatores considerados nessa avaliação foram: entrega, negociação, qualidade do produto, atendimento, competitividade, desenvolvimento do produto, flexibilidade, confiabilidade, receptividade, contato, disponibilidade, inovação, garantia, informação, parceria, compromisso, preço, embalagem e know-how.

Embora a média final, atribuída à forjaria, tenha sido quatro vírgula zero cinco (4,05); a auto-avaliação tenha sido quatro vírgula onze (4,11) e a nota dada ao competidor (forjarias: brasileiras, americanas, japonesas e européias, que fornecem à empresa do grupo) tenha ficado três vírgula oitenta e nove (3,89), ou seja, a forjaria foi avaliada em 4% melhor \{[(4,05-3,89)/4,05]=4\}%, quando comparada com o competidor, sabemos que ainda podemos melhorar.

Tabela 12 - Avaliação da satisfação do cliente

<table>
<thead>
<tr>
<th>Fatores</th>
<th>Cliente</th>
<th>Auto-avaliação</th>
<th>Competidor</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Comercial</td>
<td>Engenharia</td>
<td>Manufatura</td>
</tr>
<tr>
<td>Entrega</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Negociação</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Qualidade do produto</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Atendimento</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Competitividade</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Desenvolvimento produto</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Flexibilidade</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Confiança</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Receptividade</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Frequentação de contato</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Disponibilidade</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Inovação</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Garantia</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Informação</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Parceria</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Compromisso</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Preço</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Embalagem</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Know-how</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>32</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>48</td>
<td>15</td>
</tr>
<tr>
<td>Media</td>
<td>5,21</td>
<td>5,00</td>
<td>5,34</td>
</tr>
</tbody>
</table>

5 (Ótimo) 4 (Bom) 3 (Regular) 2 (Ruim) 1 (Pessimo)

Uma vez avaliados os resultados decorrentes da implantação do modelo de qualidade (MQ) da forjaria, poderemos descrever, a seguir, quais foram os pontos que mais se destacaram durante o desenvolvimento e conclusão deste trabalho.
Capítulo 7

Conclusões

As conclusões extraídas do presente trabalho, *Modelo de sistema integrado de produto e processo com melhoria contínua da qualidade*, são as seguintes:

1ª) Um grande número de empresas deseja desenvolver e implantar um modelo de qualidade para encontrar maior competitividade;

2ª) O modelo de qualidade (MQ) foi desenvolvido por meio do processo de melhoria contínua aplicado no modelo inicial de qualidade (MIQ). Este, por sua vez, foi desenvolvido com base nos sistemas de qualidade. Já esses sistemas foram desenvolvidos e suportados pelos processos de negócios (PNE, PNF);

3ª) O sucesso através das pessoas (SAP, MQ VI.7) é um processador de destaque no envolvimento dos recursos humanos;

4ª) A auditoria nos elementos da ISO 9001, realizada pela forjaria, coordenada pelo seu comitê de qualidade e suportada por uma empresa especialista em qualidade, apresentou uma evolução de 132% do modelo de qualidade (MQ) em relação ao sistema “real” de qualidade da forjaria (SQf);

5ª) A auditoria no sistema de qualidade realizada pelo cliente mostrou uma melhoria de 150%, quando comparou o modelo MQ com o sistema “real” de qualidade da forjaria (SQf);

6ª) O treinamento oferecido aos colaboradores permitiu que eles absorvessem novas tecnologias e implementassem o processo de melhoria contínua, propiciando seu progresso pessoal;
7ª) O sistemógrafo que representa o modelo MQ tem maior número de processadores, entradas, saídas e retromitâncias quando comparado com o SQf. Essa comparação foi realizada por meio da teoria do sistema geral (TSG), que comprovou a concordância do MQ com a ISO 9001;

8ª) A TSG também demonstrou que o modelo MQ é mais integrado. Essa comprovação foi conseguida por meio das conexões retromitantes;

9ª) A TSG classificou o modelo MQ como: de nono nível, um objeto com autofinalização e capaz de traçar seus próprios objetivos. Então, o MQ é um modelo que elevou a qualidade da forjaria ao nível de um fabricante “classe mundial”;

10ª) O processador melhoria contínua IA (integração e automação) comprovou que o modelo MQ tem um alto grau de integração e automação. No sistema CIM, têm sido aplicados o CAD/CAM e o CAPP, no sistema TQM, o DFM e os trabalhos apresentados por grupos e ainda, no sistema JIT há as células automatizadas e o planejamento MRP II;

11ª) A transformação de processo funcional para multifuncional, na forjaria, e a passagem de forjaria convencional para forjaria unidade de negócios propiciaram maior integração do projeto do produto com o projeto do processo (de fabricação);

12ª) No indicador ppm total o modelo MQ apresentou uma melhoria de 55%, quando comparado com o SQf. Já no indicador ppm no cliente, o modelo MQ apresentou uma melhoria ampliada em oito vezes;

13ª) O custo de qualidade do MQ (modelo de qualidade) melhorou 38% quando comparado com o MIQ (modelo inicial de qualidade);

14ª) Na satisfação do cliente, que engloba quesitos tais como: entrega, negociação, competitividade e outros, o modelo MQ atingiu o nível de fabricante “classe mundial”.

222
Cada um desses pontos exige uma reflexão mais aprofundada, que desenvolveremos a seguir.

Na primeira conclusão dissemos que um grande número de empresas deseja desenvolver e implantar um modelo de qualidade para encontrar maior competitividade. Acreditamos que essa seja a primeira contribuição que este trabalho pode dar. Procuramos, durante o seu desenvolvimento, propor uma forma de modelamento da forjaria, a qual poderia ser aplicada em qualquer empresa. Então, a forjaria seria a empresa, o forjado teria o nome de produto, as matrizes de forjar seriam as ferramentas, o aço seria a matéria-prima e, nessa correlação, poderíamos, em vez de sugerir o modelo somente para a forjaria, indicá-lo para ser aplicado em qualquer empresa.

No presente modelo, propusemos à forjaria que iniciasse descrevendo os processos de negócios, que representam os principais sistemas de organização. Tais processos deveriam transformar-se em processos multifuncionais, incorporando um maior número de atividades, buscando maior autonomia e integração. Eles deixariam de ser: desenvolver um forjado, um roteiro de fabricação, fabricar o forjado, dar manutenção, controlar a qualidade, vender e entregar um forjado. Passariam a ser: vender, atendendo as necessidades do cliente, desenvolver o projeto do forjado integrado com o processo, fabricar e entregar um forjado com qualidade.

Tendo definido seus processos de negócios, a forjaria deveria desdobrá-los na forma da ISO 9001 e, então, desenvolver ou aprimorar o seu próprio sistema de qualidade (SQ). Esse sistema seria auditado, se já existisse ou implantado e auditado, se fosse concebido. Dessa forma, a forjaria teria desenvolvido o seu próprio modelo de qualidade.

Uma segunda contribuição do modelo de qualidade desenvolvido neste trabalho é a apresentação das técnicas de melhoria contínua aliadas à integração. Apresentamos um modelo inicial de qualidade (MIQ) e, após submetê-lo à melhoria contínua e integração, pudemos transformá-lo no modelo de qualidade (MQ). Essa modificação somente foi possível graças à melhoria contínua, na qual se destacou o sucesso através das pessoas (SAP, vide MQ VI.7, no item 5.8).
O envolvimento com as pessoas da forjaria foi a propulsão dos sistemas de qualidade. Nesse aspecto, a comunicação exerce um papel preponderante na integração e principalmente na confiança, que conduziu ao processo de decisão e ação, o qual foi compartilhado entre os grupos de trabalho e os gerentes. Vamos analisar os resultados dessa interação nos itens 7.1 a 7.5 desenvolvidos a seguir.

7.1. Sistema de qualidade

Procuramos analisar o modelo MQ quanto à sua performance por meio da auditoria nos elementos da ISO 9001 e da auditoria do cliente no sistema de qualidade (SQ).

O resultado mostrado pela auditoria (vide tabela 6, no capítulo 6), nos elementos da ISO 9001, realizada pelos departamentos da forjaria e coordenada pelo comitê de qualidade da forjaria e, ainda, suportada por uma empresa especialista, foi a nota oito vírgula oito, atribuída ao modelo MQ. Essa nota representou uma evolução de 19%, na comparação com o modelo MIQ e de 132%, em relação ao sistema SQf existente na forjaria.

Por outro lado, o resultado apresentado pela auditoria do cliente no sistema de qualidade da forjaria (vide tabela 7, no capítulo 6), realizada por intermédio do cliente, mostrou uma melhoria de 150%, quando se comparou o modelo MQ com o sistema “real” de qualidade da forjaria (SQf). Podemos destacar que o ponto forte do MQ, nessa avaliação, foi o gerenciamento da qualidade na definição do estabelecimento da política de qualidade e no estabelecimento do manual de qualidade. Nesse modelo, o projeto do produto e processo foi desenvolvido pela integração e sistemas e pelo planejamento estratégico de negócios.

Por meio do treinamento, procuramos qualificar os colaboradores para que acompanhassem o constante processo de mudança organizacional, absorvessem novas tecnologias e pudessem implementar o processo de melhoria contínua. Tal medida permitiu o sucesso do desenvolvimento do projeto do produto e do processo com base na sua integração e, ainda, a fabricação do produto no estabelecimento do roteiro de fabricação, no sistema de rastreamento, no estabelecimento do plano de controle e do set-up e da manutenção preventiva, já
que os colaboradores puderam, cada um em seu setor, aprofundar seus conhecimentos e aplicá-los. Vejamos como isso se reflete na avaliação dos sistemógrafos.

7.2. Avaliação dos sistemógrafos

Os sistemógrafos, baseados na teoria do sistema geral (TSG), foram a tônica deste trabalho. A visão sistêmica do modelo MQ focaliza os requisitos do cliente, orientando o gerenciamento em todos os aspectos que possam afetar a qualidade do produto e do serviço. Todos os processos de negócios, sistemas de qualidade ISO 9001, sistemas de qualidade, processos de melhoria e integração e o modelo de qualidade foram modelados e analisados por meio dessa teoria.

A primeira avaliação nos sistemógrafos foi a do desdobramento e das conexões dos processadores modelados e desenvolvidos neste trabalho (vide tabela 8). Nessa avaliação, procuramos apoiar-nos na matriz estrutural do sistema geral (vide figura 9). Pudemos concluir que o modelo MIQ tem um maior número de processadores, entradas, saídas e retomitâncias quando comparado ao sistema SQf. Porém, ter um maior número de processadores e de dados não quer dizer, necessariamente, evolução de um sistema. Nesse caso, o modelo MIQ possui um número suficiente de processadores que atendem aos elementos e subelementos da ISO 9001 e, ainda, o número de entradas, saídas e retomitâncias foi avaliado durante a implantação do modelo, buscando-se uma adesão ao sistema ISO 9001 e atendendo à integração dos subsistemas, aliada a um processo de melhoria contínua. Essa última aplicação transformou o modelo MIQ no modelo MQ.

A segunda avaliação dos sistemógrafos foi a comparação do nível dos processadores (vide tabela 9) e apoiou-se na definição dos níveis destes (vide figura 11). O modelo MQ tem o maior nível definido na teoria do sistema geral, que é o nono nível, sendo um objeto com autofinalização e com conexões elaboradas e retroalimentadas.

O sistema SQf atingiu o menor nível, em razão da sua autodegeneração. O sistema SQF ficou um nível abaixo, quando comparado com o modelo MIQ, por causa da falta de adesão à
ISO 9001. Já o modelo MIQ ficou um nível abaixo quando comparado com o modelo MQ, que ficou com nível máximo, o que se deve à integração e automação, demonstradas a seguir.

7.3. Integração e automação

Procuramos avaliar as técnicas de integração e de automação desenvolvidas neste trabalho (vide tabela 10). Pode-se observar que o modelo MQ apresentou um alto grau de integração e automação. O sistema CIM apresentou o CAD/CAM totalmente estabelecido, pois, ao desenvolver o forjado, a integração de sistema de produto e processo com melhoria contínua de qualidade é uma alavanca para a competitividade.

No sistema TQM, o modelo MQ utilizou técnicas DFM, sendo o desenvolvimento do projeto do forjado em conjunto com o projeto do processo. Além disso, o forjado foi projetado com base na entrevista sobre a necessidade do cliente, utilizando-se a técnica QFD. Por outro lado, também a inovação dos métodos e processos sugerida pelos grupos de trabalho muito contribuiu com gerenciamento nessa forjaria. Esse método já é aplicado nas empresas de ponta em todo o mundo.

No sistema JIT, o modelo MQ utilizou o moopi que é um software de planejamento e programação da produção de forjados. O forjamento foi produzido em células de fabricação automatizadas com robôs para alimentação do tarugo no forno de aquecimento e alimentação na prensa de forjar. Também, o sistema de preparação e troca de ferramentas utilizou técnicas de Smed, auxiliadas por um equipamento chamado hydraulic wedge que permitiu regulagem da posição da mesa porta-ferramenta e regulagem da altura do produto forjado.

7.4. Indicadores de qualidade

Os indicadores de qualidade foram avaliados na tabela 11 (ppm) e na tabela 12 (custo de qualidade). Nesses indicadores, a competitividade é o fator essencial para a sobrevivência da forjaria, o que implica obrigatoriamente na obtenção de qualidade e baixo custo. Como indicador de qualidade, avaliamos o resultado do refugo total.
O modelo MQ apresentou o melhor resultado na análise do refugo total quando comparado ao sistema SQf. Essa melhoria foi de 55%. Já no refugo encontrado no cliente, ao compararmos o modelo MQ com o sistema SQf, o MQ apresentou uma melhoria ampliada em oito vezes. Vamos agora apresentar a conclusão sobre o custo de qualidade influenciado pelo modelo MQ.

O custo de qualidade no modelo MQ melhorou em 38%, quando comparado com o modelo MIQ. Como consequência disso, tivemos um aumento no grau de satisfação do cliente, item que veremos a seguir.

7.5. Satisfação do cliente

A avaliação da satisfação do cliente foi apresentada na tabela 13. Por intermédio desse quesito podemos concluir qualitativamente que a forjaria em estudo atingiu o nível “classe mundial”, mas muito há que se fazer. Ainda que não tenha sido possível uma quantificação da correlação entre a melhoria do nível da qualidade e os fatores apresentados na tabela 13, tais como: entrega, negociação, competitividade e outros, podemos quantificar o índice de qualidade, que inclui: refugo total, refugo no cliente e custo de qualidade, que melhoraram significativamente.

7.6. Sugestões para trabalhos futuros

Outros trabalhos ainda poderão ser desenvolvidos com base neste, tais como: analisar o gerenciamento humano (GH) como um processador de campo sob influência das organizações; avaliar o efeito de novos processos de conformação plástica dos metais na melhoria do nível de qualidade; revisar os processos de negócios da forjaria sob influência da globalização, da manufatura enxuta e da manufatura ágil; revisar o processo de melhoria contínua, objetivando-se maior efetividade nas organizações; desenvolver um modelo estratégico que considera novos desenvolvimentos; desenvolver um modelo ecológico que englobe competitividade em forjarias com ISO 14000; remodelar os processos desenvolvidos neste trabalho, transformando-os de operacionais para informacionais ou decisionais.
7.7. Conclusões finais

A impossibilidade de prever sistemas de desenvolvimento de projeto e de fabricação do forjado exige uma disciplina e um comprometimento com o modelo de qualidade que não se obtém sem a colaboração das pessoas. Essa é a chave para que se possa sustentar um sistema de qualidade. Por exemplo, na engenharia, o desenvolvimento do projeto do produto e do processo tem uma integração também propiciada, de forma relativa, pelo nível da engenharia e do seu pessoal. Mas, por outro lado, no “chão-de-fábrica”, a inteligência operária na fabricação de forjados, após submetida ao modelo MQ, apresentou uma maior efetividade no desempenho das tarefas e desencadeou o processo de melhoria contínua, tendo os próprios trabalhadores como agentes inovadores dos métodos de trabalho. Essas inovações são automaticamente incorporadas aos métodos de trabalho quando os operários têm maior liberdade para participar na definição das atividades. O modelo MQ, suportado pelo gerenciamento humano (GH), pode tirar melhor proveito do comprometimento dos operários e, aliado à disciplina, pode alavancar substancialmente o nível de qualidade dessa forjaria.

Nós, que vivemos no Brasil, ao comparamos os sistemas de qualidade (SQs) na América, na Europa e no Japão, podemos logo perceber que o ocidental não é o oriental, ou, em outras palavras, todo método de gestão japonesa de adesão à qualidade total não pode ser aplicado “ao pé da letra” aqui no Brasil. Durante a implantação desse modelo, muito conversamos com os forjadores e sentíamos neles que, de certa forma, estavam “acostumados” com produtos que não haviam atingido a perfeição. Quando deixavam passar uma dobra, uma trinca, uma dimensão fora do especificado no forjado, os forjadores consideravam o erro como humano. Também pudemos constatar que, quando reduzimos os níveis hierárquicos ou automatizamos uma célula, os forjadores tinham preferência pela forma machiavélica, ou seja, era melhor que fosse feita uma rápida transformação, em vez de uma gradual.

No entanto, durante a aplicação desse modelo de qualidade, contamos com um fator inesperado: o otimismo do forjador, alavancado pelo processador gerenciamento humano (GH).
Modernizar sistema e máquinas, qualificar a mão-de-obra, criar mecanismos de controle, conseguir envolvimento dos fornecedores e colaboradores tornaram-se medidas prioritárias e fundamentais à forjaria para que possa aumentar seus padrões de qualidade. Dessa forma, pudemos concluir que esse modelo de qualidade é um dos caminhos que encontramos para se atingir esse propósito.

Esses possíveis caminhos levam-nos a uma reflexão sobre o papel da melhoria contínua e da integração na chamada revolução tecnocientífica que sucedeu à revolução industrial. Elas são aplicações da ciência e do conhecimento, que abandonaram o taylorismo e o fordismo, que já estariam pertencendo ao passado, evoluindo para o aperfeiçoamento tecnológico e incorporando, cada vez mais, valor ao produto e ao serviço.

* Ao contrário do que se poderia pensar, esse avanço tecnológico mostrou-se, nesta nossa experiência, não uma forma de superação da mão-de-obra humana, mas um caminho para valorizá-la, tirá-la do âmbito da tarefa simplesmente mecânica e elevá-la a um patamar em que possa se expressar como sujeito pensante.

É essa participação que permite que seja dada uma resposta positiva, da forjaria aos seus clientes, mostrando melhores níveis de qualidade, pontualidade da entrega e maior controle do processo. Essa resposta foi apoiada na melhoria contínua da qualidade, na integração do produto com o processo, na redução de custos, na aplicação de novas tecnologias e na confiança depositada pelo cliente.

Essa é a colaboração que gostaríamos de deixar às forjarias bem como às empresas como um todo.
Referências bibliográficas

A

Albrecht, K. *O pensamento gerencial precisa descobrir o cliente e o serviço*. Folha management, agosto de 1995, p.1-5.

Altamiranda, M.G. *Las normas ISO 9000 como elemento de competitividad em los Estados Unidos y Canadá*. Comité consultivo nacional de normalización de sistemas de calidad, México, 1990, p.3-10.

Amato Neto, J. *Há uma nova ordem industrial que fortalece a empresa estendida e a subcontratação*. Máquinas e metais, Agosto de 1996, p.64.

Angelo, E.B. *Um passaporte para o futuro*. Exame, 17 de abril de 1991, p.98.

B

Baldrige O que é o prêmio Baldrige e o que representa para as empresas. Makron books, 1997, p.87-121.

Behne, T. *Computer handles design, inventory, production*. Iami, julho de 1982, p.6-8.

Bonilha, J. A. *Qualidade total e autentica*. Makron books 1997, p.61-64.

230

Burbidge, J.L. *The introduction of group technology*. Heinemann, Londres, 1975, p.36-54.

C

Carlson, J. *Aproveite a crise para melhorar o seu negócio*. Folha management, São Paulo, Agosto de 1995, p. 3

Carvalho, W.M. *A introdução do CIM na indústria nacional*. Mundo mecânico, Setembro de 1989, p. 29-34.

D

Durand, J.P. A tecnologia da informação e o legado do taylorismo na França. Revista de administração de empresas, Janeiro/Fevereiro de 1994, p. 82-89.

E

F

G

Gaino, L.S. As ilusões perdidas. Treinamento e desenvolvimento, Dezembro de 1993, p. 5-10.

General Motors EUA Purchased input concept optimization with suppliers – PICOS. Pontiac, USA, 1997, p. 25-35.

Gerstein, M.S. The technology connection, strategy and change in the information age. Addison-Wesley publishing Co, Massachusetts, 1987, p. 92-99.

Gonçalves, L. Qualidade e flexibilidade. controle de qualidade, Junho de 1991, p. 11.

H

Hänsel, M., Meidert, M., Geiger, R. QS 9000 – A challenge with new opportunities for net shape cold forging technology. 6th International conference on technology of plasticity, Nuremberg, Alemanha, Setembro de 1999, p. 741-748.

Heil, G. Estimular a diversidadade de idéias e a melhor estratégia. Folha management, Outubro de 1995.

I

Iami *How FMS can make your plant more profitable*. Fevereiro de 1984, p. 53-60.

J

K

L

M

Maestrelli, N.C., Batocchio, A. **Avaliação das células de manufatura em funcionamento.** Máquinas e Metais, SP. Janeiro 2000, p. 82-89.

Malik, A.M. **Desenvolvimento de recursos humanos, gerência de qualidade e cultura das organizações de saúde.** Revista de administração de empresas, São Paulo, Setembro/Outubro de 1992, p. 32-41.

Mangels, M. **A indústria investe em qualidade e automação.** CIM College, Qualidade total, Janeiro de 1996, p. 18.

Matos, F.G. **A negociação e a democracia no trabalho.** Makron books, 1997, p. 27-29.

Mauro, M.L.F. **Dinâmica de grupo e motivação.** Curso Fundamentos dos sistemas de qualidade, UNICAMP, 2000, p.2-27.

McAlister, J. **How to know when a job is completed.** Machine design, Agosto de 1984, p. 97-99.

Mckenna, R. **A revolução da informação fortalece os consumidores.** Folha management, Agosto de 1995.

Menezes, L.C.M. **Um plano diretor para a automatização industrial.** Máquinas e metais, Novembro de 1987, p. 54-62.

Monden, Y. **Sistema Toyota de produção.** IMAM, São Paulo, 1984, p. 1-6.

Motta, R. **Avaliação de empresas PNQ.** Seminário apresentado na Eaton, Valinhos-SP, Março de 2000, p. 2.

N
Noyes, R.J. *Quality measurement system*. ASQC Technical conference transaction, Houston, USA, 1979, p. 434-437.

O

P
PNQ Prêmio nacional de qualidade *Indicadores de desempenho*. Capítulo um, 1994, p. 3-8.

Q

R
Rados, G.J.V. *Tecnologia de grupo uma filosofia de trabalho*. Máquinas e metais, Junho de 1986, p. 36-43.

Runkle, D.L. *Can the U.S. create the next paradigm shift?*. ASM news, EUA, Março 1993, p. 4-5.

S

Saito, A.Y. *O controle de processos por computador*. Máquinas e metais, Outubro 1985, p. 40-44.

Savage, C.M. *Fifth generation management integrating enterprises through human networking*. Digital press, USA, 1990, p. 147-188.

Schreffler, R. *Nissan's Zama plant: a place where the robot is king*. IAMJ, Junho de 1985, p. 9-16.

Schulz, H. *Um estudo abrangendo 150 empresas autopeças alemãs conclui que a qualidade compensa*. Máquinas e metais, Agosto de 1996, p.30-37.

Sebrae *Avalie o desempenho de sua empresa*. Folha de São Paulo, 08 de Agosto de 1993, p. 15.

Silva, I.B. *A integração e automação – proposta de um modelo para simulação de alterações estruturais nos sistemas de manufatura*. Unicamp, Seminário de pós-graduação, 1992, p. 5-16.

Silva, I.B. *Relação entre adaptabilidade, flexibilidade e produtividade dos sistemas de manufatura em condições CIM.* apresentado em Manufatura integrada por computador, Unicamp, Dezembro de 1990.

Toledo, J.C. *O que realmente significa qualidade do produto?.* UFSCar, São Carlos, São Paulo, 1994, p. 26-34.

Whiteley, R. *Ouvir o cliente é o melhor caminho para o sucesso.* Folha management, Setembro de 1995.

