PROPOSTA DE UM NOVO MODELO DE CÁLCULO DO CUSTO
POR PEÇA EM CENTROS DE CUSTOS DEPARTAMENTAIS
Tese de Mestrado

Título da Tese: Proposta de um Novo Modelo de Cálculo de Custo por Peça em Centros de Custos Departamentais.

Autor: Paulo Augusto Cauchick Miguel
Orientador: Professor Doutor Nivaldo Lemos Cupini

Aprovado por:

Prof. Dr. Nivaldo Lemos Cupini Presidente

Prof. Dr. Antônio Baticchio

Prof. Dr. Henrique Rozenfeld

Campinas, 03 de setembro de 1992.
Este pequeno trabalho é dedicado à memória do meu Pai, à força e luta de minha Mãe e à minha companheira Mima, pelo amor, carinho e dedicação ao longo desses anos.
AGRADECIMENTOS

- Ao Professor Dr. Nivaldo Lemos Cupini, muito mais do que o orientador deste trabalho, um amigo.

- Ao CNPq, e, novamente, ao Professor Dr. Nivaldo Lemos Cupini pela concessão da bolsa de estudos que me permitiu retornar ao meio acadêmico, e também a UNIMEP pela concessão da bolsa de capacitação nesses últimos seis meses.

- Ao Professor Antônio Carlos dos Santos Rodrigues pelas discussões e sugestões úteis para a realização do trabalho.

- A Equipamentos Clark, especialmente na pessoa do Eng. Amaury Cesar Rossi, chefe da área de custos, pela disposição e apoio nas discussões iniciais.

- Aos Prof. Doutores Anselmo Eduardo Diniz e Antônio Batocchio pela amizade e participação na banca de qualificação.

- Aos Professores do DEF, Prof. Maria Helena, Prof. Roseana, Prof. Agostinho, pela amizade ao longo desse tempo.

- Um agradecimento especial a memória do grande amigo Professor Ronaldo de Castro Vilela.

- A todos Professores do Centro de Tecnologia da UNIMEP, especialmente para o Prof. Nelson Maestrelli, Diretor do CT e Prof. Antônio Godoy, Chefe do Depto. de Engenharia de Métodos e Processos, pelo atendimento às minhas solicitações, e também ao Prof. Rodolfo Libardi, ex-chefe do Depto. de Eng. Mecânica, que me proporcionou a oportunidade de exercer o magistério.

- Ao Técnico e Desenhista Aristides Magri pela auxílio na confecção da maioria das figuras do trabalho, assim como o Prof. Paulo Lima.

- Aos Engenheiros Felipe Calarge e Niederauer Mastelari pela contribuição no procedimento experimental, e, a todos os funcionários do DEF, Cristina, Luciene, Marília, Claudomiro, Emilton, e todos os colegas estudantes pela colaboração direta ou indireta para o desenvolvimento do trabalho e amizade durante todos esses anos de UNICAMP.

- Mas, principalmente, à DEUS pela oportunidade da vida e, consequentemente, a execução deste pequeno trabalho.

Sinceros Agradecimentos

RESUMO

O objetivo desse trabalho é apresentar a determinação do custo de fabricação de um produto de forma mais precisa. Esse trabalho visa fornecer subsídios importantes para a indústria metal mecânica, uma vez que a composição dos custos nos sistemas de manufatura para uma peça produzida é um processo complexo que demanda muito planejamento, cálculo e controle. Esse trabalho apresenta dois modelos de formação do custo por peça, cujos resultados serão comparados com o modelo proposto por essa pesquisa.

O primeiro modelo calcula o custo por operação, é bastante detalhista por considerar a máquina-ferramenta individualmente, e também considera aspectos da usinagem da peça. O segundo modelo, tradicionalmente utilizado na indústria metal-mecânica, baseia-se no custo horário de um Centro de Custo, que, por definição, pode ser um departamento, secção ou grupo de máquinas.

O trabalho propôs um terceiro modelo, baseado na estrutura de Centro de Custo, mas que se diferencia do segundo modelo por introduzir um "fator de contribuição" da máquina considerando alguns custos específicos e capacidade produtiva da mesma. Esse fator de contribuição pretende auxiliar o cálculo dos custos, resultando em maior precisão e confiabilidade em relação ao modelo tradicional.

Para a realização de uma análise comparativa, é executada uma simulação em um Centro de Custo hipotético, mas que mantém as características de uma situação real. Nessa fase, todos os custos envolvidos na fabricação de uma peça escolhida são coletados, os cálculos são feitos, e os resultados alcançados são discutidos.

Os resultados obtidos permitem constatar que, fazendo uma ponderação entre as máquinas utilizadas, é possível determinar o quanto elas contribuem na formação do custo por peça no Centro de Custo. Essa constatação conduz a um aprimoramento na formação do custo por peça.
ABSTRACT

The main objective of this work is to determine cost per part more precisely. The cost composition of engineering products is a very complex process in manufacturing systems. It requires much effort in planning, calculating and controlling to determine the cost per manufactured part. This research presents three methods to determine cost per piece.

The first method is very detailed. It considers each machine tool and machining conditions. The second one is the traditional method used in most metallurgical companies nowadays and is based on cost per hour for each department, sector, or group of machines. This division of the factory is called Cost Centres.

This work proposes a third method as an improvement for the latter. It introduces a "contribution factor" based on specific costs of the machine and its productivity. This contribution factor results in more precision and reliability if compared to the Cost Centre traditional method.

This methodology is performed under hypothetical Cost Centres conditions. All the necessary costs to calculating cost per part are collected and a comparison among the three methods is made. Finally, the research work concludes that the proposed method is able to discriminate one machine tool among others in a given Cost Centre.
SIMBOLOGIA E SIGLAS UTILIZADAS

Símbologia Utilizada [unidades]

ap - Profundidade de corte [mm]

C_{axi} - Custo atualizado dos acessórios da máquina i [$]

C_{eq} - Custo do controle de qualidade (inspeção) [$]

C_{ee} - Custo de energia elétrica [$/kwatt-hora]

C_{eo} - Custo do espaço ocupado [$/m^3-ano] ou [$/m^2-ano]

C_{f} - Custo da ferramenta [$]

C_{fx} - Custo da ferramenta por vida [$]

C_{hoo} - Custo horário para o Centro de custo proposto [$/h]

C_{h} - Custo horário de cada Centro de Custo [$/h]

C_{i} - Custo do inserto intercambiável [$]

C_{ix} - Custos indiretos de fabricação [$]

C_{maq} - Custo máquina [$]

C_{mc} - Custo de conservação (manutenção) da máquina [$/ano]

C_{mi} - Valor inicial de aquisição da máquina [$]

C_{mk} - Valor atual do bem [$]

C_{M2} - Custo calculado percentual relativo à máquina i [%]

C_{mno} - Custo da mão-de-obra [%]

C_{mod} - Custo da mão-de-obra direta [%]

C_{modi} - Custo da mão-de-obra indireta [%]

C_{mpd} - Custo da matéria-prima direta [%]

C_{mpd} - Custo da matéria-prima indireta [%]

C_{mpie} - Custo da matéria-prima indireta específica a outras operações [%]

C_{mpit} - Custo total da matéria-prima indireta [$/mês]

C_{mr} - Valor residual do bem no final da vida útil [$]
C_P - Custo total de fabricação [$/peça]
C_{P_{r}} - Custo de aquisição do porta-ferramenta [$]
C_{t_{m_{i}}} - Custo total relativo à máquina i [$]
C_{v} - Custo proporcional às variações de custo das operações anteriores e posteriores [$]
d - Diâmetro da peça [mm]
D - Quota periódica de depreciação [$/ano] ou [$/mês]
E_m - Espaço físico ocupado pela máquina [m^3] ou [m^2]
f - Avanço da ferramenta [mm/volta]
f_{o} - Flexibilidade de curto prazo
F_{C_{i}} - Fator de contribuição da máquina i
H - Número de horas de trabalho [h/ano]
H_{f_{i}} - Horas de fabricação em cada Centro de Custo
i_m - Idade da máquina [anos]
I - Corrente da rede [amper]
J - Taxa de juros ao ano
K - Coeficiente da equação de vida da ferramenta
K - Período de depreciação [anos]
l_{r} - Percurso de avanço [mm]
m_{a_{i}} - Número de arestas de corte do inserto
m_{p} - Número de preparações da máquina
m_{t} - Número de trocas da ferramenta
P_{i} - Potência da máquina i [kwatts]
P_{T} - Potência total das máquinas do Centro de Custo [kwatts]
P - Potência da rede [watts]
P_{1} - Produtividade da máquina i
S_{m} - Salário mais sobre-taxas [$/h]
S_{m} - Salário máquina [$/h]
ta - Tempo de aproximação e afastamento da ferramenta [min]
tc - Tempo de corte [min]
td - Capacidade instalada do Centro de Custo ou máquina [h]
ttr - Tempo de troca da ferramenta [min]
ti - Tempos Improdutivos [horas]
trp - Tempo de preparação de máquinas [min] ou [horas]
tp+i - Tempo padrão total da máquina i [horas]
tc - Tempos secundários [min]
tte - Tempo total de execução da peça [min]
tte - Tempo total trabalhado no Centro de Custo [horas]
T - Vida da ferramenta [min]
U - Tensão da rede [volts]
v0 - Velocidade de corte [m/min]
vU - Vida útil da máquina ou bem [anos]
vpr - Vida média do porta-ferramenta [número de arestas]
x - Coeficiente da equação de vida da ferramenta
y - Coeficiente da equação de vida da ferramenta
z - Coeficiente da equação de vida da ferramenta
Z - Número de peças do lote
ZT - Número de peças usinadas por vida da ferramenta
Siglas Utilizadas

ABC - Activity-based Costing
AMT - Advanced Manufacturing Technology
CAM-I - Computer Aided Manufacturing- International
CIF - Custos Indiretos de Fabricação
CIM - Computer Integrated Manufacturing
CMS - Cost Management Systems
JIT - Just in Time
RELAÇÃO DE FIGURAS

Capítulo I

<table>
<thead>
<tr>
<th>Figura</th>
<th>Título</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figura 1.1</td>
<td>Comparação da Distribuição dos Custos nos Sistemas Produtivos Tradicionais e nos Sistemas com Tecnologias Avançadas de Manufatura</td>
<td>5</td>
</tr>
<tr>
<td>Figura 1.2</td>
<td>Mudanças de Comportamento dos Custos em Função das Alterações nos Sistemas de Manufatura</td>
<td>6</td>
</tr>
</tbody>
</table>

Capítulo II

<table>
<thead>
<tr>
<th>Figura</th>
<th>Título</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figura 2.1</td>
<td>Organograma de Análise das Funções Financeiras</td>
<td>14</td>
</tr>
<tr>
<td>Figura 2.2</td>
<td>Saldos anuais para a Depreciação Linear</td>
<td>21</td>
</tr>
<tr>
<td>Figura 2.3</td>
<td>Depreciação Linear Acumulada</td>
<td>21</td>
</tr>
<tr>
<td>Figura 2.4</td>
<td>Custo Fixo</td>
<td>30</td>
</tr>
<tr>
<td>Figura 2.5</td>
<td>Custo Variável</td>
<td>30</td>
</tr>
<tr>
<td>Figura 2.6</td>
<td>Custo Semi-variável</td>
<td>31</td>
</tr>
<tr>
<td>Figura 2.7</td>
<td>Custo Total e Volume</td>
<td>31</td>
</tr>
<tr>
<td>Figura 2.8</td>
<td>Classificação dos Custos por Função</td>
<td>32</td>
</tr>
<tr>
<td>Figura 2.9</td>
<td>Estrutura de Custos</td>
<td>35</td>
</tr>
<tr>
<td>Figura 2.10</td>
<td>O Ciclo Econômico</td>
<td>36</td>
</tr>
</tbody>
</table>

Capítulo III

<table>
<thead>
<tr>
<th>Figura</th>
<th>Título</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figura 3.1</td>
<td>Ciclo de Trabalho</td>
<td>40</td>
</tr>
<tr>
<td>Figura 3.2</td>
<td>Elementos que compõem o Tempo de Corte no Torneamento Cilíndrico de uma Peça</td>
<td>42</td>
</tr>
<tr>
<td>Figura 3.3</td>
<td>Representação em Escalas Logarítmicas da Curva de Vida da Ferramenta</td>
<td>44</td>
</tr>
<tr>
<td>Figura 3.4</td>
<td>Curvas Típicas Velocidade de Corte x Vida da Ferramenta</td>
<td>45</td>
</tr>
</tbody>
</table>
Capítulo IV

Figura 4.1 - Classificação das Máquinas-ferramenta de acordo com a Norma DIN 69651 62

Figura 4.2 - Considerações Fundamentais para Construção das Máquinas-ferramenta 65

Capítulo V

Figura 5.1 - Planta e Arranjo Físico do Centro de Custo ... 84

Figura 5.2 - Características Dimensionais da Peça ... 98

Figura 5.3 - Roteiro Resumido de Fabricação da Peça .. 98

Capítulo VI

Figura 6.1 - Relação entre o Custo do Sistema e Custo por Peça para os Modelos Apresentados ... 116
Capítulo II

Tabela 2.1 - Exemplos de Vida útil de Máquinas e Equipamentos para Períodos de Depreciação ... 19

Tabela 2.2 - Relação dos Custos Primários e "Overhead" com os Custos Diretos e Indiretos 27

Capítulo III

Tabela 3.1 - Classificação do Ferramental quanto a Vida ... 55

Capítulo IV

Tabela 4.1 - Valores de Precisão de Usinagem Máquinas e Sistemas de Medição, conforme a Classificação do Processo até os Anos 80 70

Tabela 4.2 - Classificação e Precisão dos Processos ... 71

Tabela 4.3 - Índices de Produtividade para Máquinas-ferramenta ... 72

Tabela 4.4 - Os Dez Níveis de Automação da Amber & Amber .. 75

Tabela 4.5 - Níveis de Automação nas Operações de Manuseio e Fixação 77

Capítulo V

Tabela 5.1 - Especificações Gerais das Máquinas e Equipamentos do Centro de Custo 87

Tabela 5.2 - Valores e Data de Aquisição, Valor Atual, e Depreciação para as Máquinas do Centro de Custo ... 88

Tabela 5.3 - Salários da Mão-de-obra Direta, Indireta de Produção e Indireta Administrativa 90

Tabela 5.4 - Adequação dos Salários da Mão-de-obra Utilizada para a Formação dos Custos 92
Tabela 5.5 - Tipo, Consumo e Custo dos Materiais Indiretos 93
Tabela 5.6 - Potência Instalada e Consumida, Gasto com Energia Elétrica do Centro de Custo 94
Tabela 5.7 - Custos de Manutenção 95
Tabela 5.8 - Custo por Area e Custo da Area Construída do Centro de Custo ... 96
Tabela 5.9 - Dados da Matérias-prima e do Blanque da Peça 97

Capítulo VI
Tabela 6.1 - Tempos de Fabricação para cada Operação no Centro de Custo para a Peça Analisada 101
Tabela 6.2 - Número de Trocas de Ferramenta, Número de Peças Usinadas por Vida e Tempo Total de Fabricação 101
Tabela 6.3 - Custos das Ferramentas nas Operações 101
Tabela 6.4 - Custos de Mão-de-obra e Custo Máquina no Cálculo do Custo Total de Fabricação por Peça 102
Tabela 6.5 - Resultados do Custo por Peça por Operação para o Modelo Detalhado 106
Tabela 6.6 - Formação do Custo Departamental 107
Tabela 6.7 - Resultados do Custo por Peça para cada Operação com Base no Modelo de Centros de Custo 108
Tabela 6.8 - Custos Relativos à Máquina e Custo Total das Máquinas no Centro de Custo 109
Tabela 6.9 - Programa de Produção e Tempos de Preparação das Peças no Centro de Custo 111
Tabela 6.10 - Programa de Produção e Tempos Padrão das Peças do Centro de Custo 111
Tabela 6.11 - Produtividade das Máquinas 112

Tabela 6.12 - Resultados do Fator de Contribuição para as Máquinas Analisadas no Centro de Custo 112

Tabela 6.13 - Custo Horário para cada Máquina do Centro de Custo Baseado no Fator de Contribuição .. 113

Tabela 6.14 - Resultados do Custo por Peça por Operação para o Modelo com o Fator de Contribuição .. 113

Tabela 6.15 - Custo por Peça Resultante da Aplicação dos Modelos de Custos .. 114

Tabela 6.16 - Comparação do Custo Horário no Modelo Tradicional e no Modelo com o Uso do Fator de Contribuição 116
INDICE

<table>
<thead>
<tr>
<th>Capítulo</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dedicatória</td>
<td>1</td>
</tr>
<tr>
<td>Agradecimentos</td>
<td>ii</td>
</tr>
<tr>
<td>Resumo</td>
<td>iii</td>
</tr>
<tr>
<td>Abstract</td>
<td>iv</td>
</tr>
<tr>
<td>Simbologia e Siglas Utilizadas</td>
<td>v</td>
</tr>
<tr>
<td>Relação de Figuras</td>
<td>ix</td>
</tr>
<tr>
<td>Relação de Tabelas</td>
<td>x1</td>
</tr>
<tr>
<td>Indice</td>
<td>xiv</td>
</tr>
</tbody>
</table>

CAPÍTULO I

1. Introdução 2

1.1. Os Sistemas de Custos e os Aspectos Mercadológicos 2

1.2. Objetivo do Trabalho 7

1.3. Conteúdo do Trabalho 9

CAPÍTULO II

2. Os Custos na Manufatura 11

2.1. Histórico 12

2.2. O Sistema de Custos e Conceitos Relacionados à Custos 13

2.2.1. Contabilidade de Custos 15

2.2.2. Gastos, Custos e Despesas 16

2.2.1.1. Gastos 16

2.2.1.2. Custos 16

2.2.1.3. Despesas 17

2.2.3. Depreciação 18
2.3. Importância e Objetivos dos Custos 22
2.4. Classificação dos Custos 24
 2.4.1. Classificação em Relação ao Tipo de Despesas 24
 2.4.2. Classificação em Relação ao Produto 25
 2.4.2.1. Custos Diretos 25
 2.4.2.1. Custos Indiretos 26
 2.4.3. Classificação em Relação ao Volume de Produção 28
 2.4.3.1. Custos Fixos 28
 2.4.3.2. Custos Variáveis 28
 2.4.3.3. Custos Semi-fixos e Semi-variáveis 29
 2.4.4. Classificação em Relação à Função 32
 2.4.5. Recentes Classificação dos Custos 32
 2.4.6. Outros Tipos de Classificação 34
2.5. Estrutura dos Custos .. 35

CAPITULO III .. 37
3. Modelos de Formação do Custo de Peças 38
 3.1. Introdução .. 38
 3.2. Modelo de Cálculo do Custo por Peça baseado na Operação de Usinagem .. 38
 3.2.1. Ciclo de Usinagem 39
 3.2.2. Tempos na Fabricação 40
 3.2.2.1. Tempo de Corte 41
 3.2.2.2. Tempos Secundários 42
 3.2.2.3. Tempo de Preparação 42
 3.2.2.4. Tempo de Troca de Ferramenta 43
 3.2.3. Vida da Ferramenta 43
3.2.3.1. O Tempo Total de Fabricação Considerando a Vida da Ferramenta 46

3.2.4. Custos de Produção Considerando-se as Condições de Usinagem 47
 3.2.4.1. Custo da Matéria-prima Direta e Indireta ... 47
 3.2.4.2. Custo da Mão-de-obra ... 48
 3.2.4.3. Custo Máquina .. 48
 3.2.4.4. Custo Ferramenta ... 49
 3.2.4.5. Outros Custos .. 50

3.3. Modelo de Cálculo do Custo por Peça baseado em Centros de Custo 50
 3.3.1. Centros de Custo .. 50
 3.3.1.1. Definição .. 50
 3.3.1.2. Tipos de Centros de Custo .. 51
 3.3.2. Determinação do Custo por Peça .. 53
 3.3.3. Formação do Custo Horário do Centro de Custo ... 53

3.4. Discussão sobre os Modelos Apresentados .. 56

CAPÍTULO IV .. 59

4. Proposta do Fator de Contribuição de Máquinas-ferramenta em Centros de Custo 60
 4.1. Máquinas-ferramenta - Definições e Tipos .. 60
 4.1.1. Classificação das Máquinas-ferramenta ... 61
 4.1.2. Requisitos Gerais no Projeto de Máquinas-ferramenta 64
 4.1.3. Requisitos Específicos para a Escolha da Máquina-ferramenta 65
4.2. Fator de Contribuição Baseado em Custos da Máquina-ferramenta .. 67

4.2.1. Características que influenciam nos Custos das Máquinas-ferramenta 67
 4.2.1.1. Nível de Precisão ... 68
 4.2.1.2. Índices de Produtividade 71
 4.2.1.3. Índice de Flexibilidade 72
 4.2.1.4. Potência e Rigidez 74
 4.2.1.5. Nível de Automação 74

4.2.2. Definição do Fator de Contribuição 77
 4.2.2.1. Custo Calculado Percentual no Centro de Custo 78
 4.2.2.2. Produtividade ... 80
 4.2.2.3. Ponderação do Fator de Contribuição no Custo Horário do Centro de Custo 80

CAPÍTULO V ... 82

5. Procedimento Experimental .. 83
 5.1. Objetivos ... 83

5.2. Definição da Estrutura do Centro de Custo Experimental .. 84
 5.2.1. Jornada de Trabalho .. 85
 5.2.2. Máquinas, Equipamentos e Instrumentação 86
 5.2.3. Depreciações .. 87
 5.2.4. Mão-de-obra e Salários 88
 5.2.4.1. Mão-de-obra Direta 89
 5.2.4.2. Mão-de-obra Indireta de Produção 89
 5.2.4.3. Mão-de-obra Indireta Administrativa 90
5.2.4.4. Adequação do Montante de
Salários da Mão-de-obra 91
5.2.5. Material Indireto 92
5.2.6. Energia Elétrica 93
5.2.7. Manutenção das Máquinas 95
5.2.8. Área e Custo do Espaço Físico 96
5.3. Peça Escolhida para Análise 96

CAPITULO VI .. 99
6. Resultados e Discussões 100
6.1. Cálculo do Custo por Peça Baseado no Modelo
Detalhado ... 100
 6.1.1. Cálculo do Tempo Total de
 Confecção por Peça 101
 6.1.2. Cálculo do Custo por Peça por
 Operação 106
 6.1.3. Resultado Obtido 106
6.2. Cálculo do Custo por Peça Baseado no Modelo
 de Centros de Custo Produtivos 106
 6.2.1. Formação do Custo Horário do Centro
 de Custo 106
 6.2.2. Cálculo do Custo por Peça Baseado no
 Modelo de Centros de Custo 108
 6.2.3. Resultado Obtido 108
6.3. Cálculo dos Custos Baseado na Aplicação do
 Fator de Contribuição da Máquina-ferramenta 109
 6.3.1. Cálculo do Custo Percentual da
 Máquina 109
 6.3.2. Cálculo da Produtividade 110
 6.3.3. Cálculo do Fator de Contribuição 112
6.3.4. Cálculo do Custo Horário do Centro de Custo para cada Máquina-ferramenta, Baseado no Fator de Contribuição .. 112

6.3.5. Resultado Obtido ... 113

6.4. Discussão dos Resultados .. 114

CAPÍTULO VII ... 118

7. Conclusão ... 120

SUGESTÕES PARA TRABALHOS FUTUROS 122

REFERÊNCIA BIBLIOGRÁFICA E BIBLIOGRAFIA ADICIONAL CONSULTADA ... 123

Referências Bibliográficas .. 123

Bibliografia Adicional Consultada .. 128

ANEXOS ... 129

1) Exemplo de Formulário para Preenchimento de Informações Referentes aos Centros de Custo ... 130

2) Especificações das Máquinas-ferramenta do Centro de Custo Experimental ... 132

3) Folha de Operação da Peça Analisada 139

4) Tabela de Tempos de Preparação de Tornos 146

5) Memorial de Cálculos ... 150
Capítulo I
1. INTRODUÇÃO

1.1. Os Sistemas de Custos e os Aspectos Mercadológicos

Atualmente, é visível o alto nível de competitividade existente entre as empresas no mercado consumidor. Aspectos relacionados a custos tornam-se, cada vez mais, fatores decisivos na administração dos empreendimentos industriais. No entanto, essa necessidade da determinação acurada dos custos não é recente. Desde a implantação das indústrias artesanais, existe a preocupação com a determinação dos custos dos produtos. Os primeiros registros indicam o surgimento dessa preocupação no século XIII. A Revolução Industrial contribuiu de forma decisiva para o desenvolvimento da indústria do século XX, principalmente no que se refere aos aspectos de custos. Frederick Winslow Taylor [1] considerava como uma das vantagens principais da aplicação dos princípios da administração científica por ele elaborados, a redução dos custos de produção provocada em função do aumento do rendimento no chão de fábrica. O trabalho de TAYLOR fornece, assim, base para o desenvolvimento da contabilidade na engenharia, e, consequentemente, melhoria nos fatores de custos ligados à produção dos produtos.

Nos últimos 20 anos, os empreendimentos industriais têm sofrido grandes alterações. Essas mudanças no aspecto fabril ocorrem devido a fatores externos como: necessidade de mercado; competição entre fornecedores; ação da sociedade e exigência dos clientes. Desse modo, esses fatores provocam ações dentro da estrutura produtiva, de tal maneira que os produtos fabricados satisfazam essas necessidades mercadológicas [2,3].
Uma das tendências mais óbvias nesse contexto é a redução do ciclo de fabricação ou "lead-time" dos produtos. Mais além, existe uma crescente exigência dos consumidores quanto a qualidade e custos dos produtos. As indústrias de manufatura reagem através do uso de novos métodos e novos sistemas em projeto, planejamento e fabricação dos produtos [4]. Com isso, as indústrias têm gasto grande quantidade de dinheiro e tempo no planejamento das atividades, resultando em [5]:

- Custos de produção mais baixos;
- Menor tempo de projeto para a manufatura;
- Maior qualidade e flexibilidade.

A atual fase de intensa competitividade tem conduzido as empresas na busca da excelência em manufatura, excelência esta refletida através da preocupação com a qualidade dos produtos e processos, nível de inventários e outras estratégias de manufatura. Existe, entretanto, um grande obstáculo nessa revolução a essas transformações organizacionais e tecnológicas: o sistema de contabilidade de custos e controles administrativos que visam a formação dos custos dos produtos e/ou serviços [6].

Problemas associados com o método de contabilidade de custos utilizado nos dias de hoje e desenvolvido há 100 anos atrás, têm sido levantados devido às mudanças nos sistemas de produção das fábricas. O sistema de administração de custos utilizado hoje em dia pelas empresas foi desenvolvido em um ambiente drasticamente diverso do que se observa na atualidade. Ele já não estão mais proporcionando informações precisas e oportunas, necessárias para a gestão e mensuração dos custos de atividades em um ambiente de tecnologias avançadas de produção [6.7.8].
SON [8] citando GERWIN; CURTIN; EDWARDS e HEARD; MARTIN; PLOSSL; e, em particular GOLDRATT; assim como, outros autores [7, 9, 10, 11, 12, 13], consideram necessária uma revisão nos atualis métodos de apuração dos custos, a fim de adequá-los aos novos processos de produção. OSTWALD [14], por exemplo, sugere um novo método de estimativa de cálculo de custos relacionado com as tolerâncias dimensionais da peça.

As despesas indiretas de fabricação são aloçadas tradicionalmente aos produtos de maneira proporcional às horas trabalhadas pela mão-de-obra direta ou às horas de operação das máquinas, em um dado período. Entretanto, face às recentes alterações nos sistemas de manufatura, como por exemplo em processos produtivos com alto grau de automação, esse critério pode acarretar distorções significativas nos custos, e, consequentemente, no preço de venda dos produtos. Isso pode ocorrer devido à existência, nesses processos, de uma menor utilização de mão-de-obra direta na produção e maior participação das despesas indiretas nos custos dos produtos [15].

SON [8], por exemplo, destaca que o sistema convencional de custos existentes hoje em dia nos sistemas de manufatura, com base na mão-de-obra direta, não fornece dados confiáveis para análises de decisões de investimentos em tecnologias avançadas de manufatura (AMT). As empresas alegam que diante desse sistema de custos, elas são incapazes de justificar economicamente seus investimentos nessas tecnologias. As tecnologias avançadas de manufatura também tem provocado alterações nos padrões de comportamento dos custos. Ao mesmo tempo que a incidência nos custos com materiais e mão-de-obra direta vem decrescendo, os custos indiretos de fabricação (CIF), como a depreciação, gastos com engenharias, e processamento de dados têm aumentado sensivelmente, como mostra a Figura 1.1 [7].
Figura 1.1 – Comparação da Distribuição dos Custos nos Sistemas Produtivos Tradicionais e nos Sistemas com Tecnologias Avançadas de Manufatura [7].

O comportamento dos custos vem se alterando consideravelmente. Ocorrem reduções no componente da mão-de-obra direta para valores da ordem de 8% a 12% do total dos custos de manufatura, e raramente excedem 12%. Na indústria eletrônica, por exemplo, o custo de mão-de-obra direta é somente de 3% a 5% do total dos custos de produção [5,8,16]. Espera-se que esses valores citados decrescam
ainda mais, diante das atuais tendências de aumento nos níveis de automação dos sistemas [5]. Por outro lado, tem havido um crescimento nos componentes de custos referentes a dois fatores: a) equipamentos; e b) sistemas de informação na composição dos custos de manufatura. Essa alteração de comportamento pode ser vista na Figura 1.2, através de um gráfico de variação entre o custo dos produtos e o tipo do sistema de manufatura [5].

![Graph showing cost changes in production systems](image)

Figura 1.2 - Mudança no Comportamento dos Custos em Função das Alterações nos Sistemas de Manufatura [5]

É necessário lembrar que, resumidamente, são três os componentes do custo de produção em uma empresa: 1) matéria-prima; 2) mão-de-obra direta (salários e encargos sociais relativos aos funcionários que trabalham diretamente na produção) e 3) despesas indiretas de fabricação (salários e encargos sociais dos funcionários administrativos; consumo de energia elétrica; aluguel; depreciação das instalações, máquinas e ferramental, etc). No entanto, o modelo de formação do custo dos produtos utilizado na maior parte das indústrias brasileiras do ramo metal-mecânico, considera como base para cálculo o custo horário de áreas, denominadas Centros de Custo. As despesas indiretas, mencionadas
anteriormente, são consideradas a partir de um sistema de rateio que tem como base as horas trabalhadas da mão-de-obra direta. Essas despesas são inseridas no cálculo dos custos horários dos Centros de Custo.

Dentro desse contexto, é necessário que os empreendimentos industriais estejam preparados para participar de um mercado cada vez mais competitivo e exigente, principalmente com relação ao preço de seus produtos e à capacidade de atendimento aos clientes.

1.2. Objetivo do Trabalho

Tendo-se constatado que os sistemas de custos tradicionais já não mais atendem adequadamente às necessidades atuais de administração e controle de custos, alguns estudos realizados nas instituições de HARVARD, STANFORD e OXFORD, por exemplo, e empresas líderes em diversos segmentos, agências governamentais, empresas de consultoria, e outros, visam uma alteração radical no sistema de composição dos custos, através de discussões nesse forum internacional. Esses estudos consideram uma nova fase nos projetos em "Computer Aided Manufacturing-International", denominado CAM-I [17], organização internacional em pesquisa e desenvolvimento, onde os projetos de pesquisa denominados "Cost Management Systems" (CMS) sugerem que a produção não é a única área que está sendo afetada em decorrência da revolução da alta tecnologia [5,7,8].

No entanto, os estágios de transformação de toda a estrutura industrial devem ocorrer gradativamente e de forma harmônica [18]. A corporação do CAM-I relata que: "... existem diversas barreiras tornando a transição dos sistemas produtivos em direção a processos automatizados muito difícil. Uma das mais importantes, e menos abordada
dentre as demais, é o sistema de administração de custos utilizada nos dias de hoje... " [8]. Um outro sistema de custos que vem sendo difundido é o ABC ("Activity-Based Cost") [7, 8, 10, 12, 16, 19], onde agregam-se valores aos produtos, baseados nos recursos que eles consomem nas atividades de todas as áreas funcionais da manufatura utilizadas por esses produtos.

Dessa forma, este trabalho pretende contribuir para tornar a determinação dos custos dos produtos mais próxima da realidade existente, buscando-se algo entre o sistema atual das indústrias e um sistema de administração de custos completamente novo. Com isso, espera-se estabelecer um estágio de transformação menos radical diante das novas exigências.

Como consequência do exposto, o objetivo principal desse trabalho é:

* Apresentar, discutir e testar um modelo para o cálculo do custo de fabricação do produto, que permita ponderar as diferenças existentes em função dos diferentes históricos de fabricação. O modelo deverá ter como base a formação dos custos tradicional, mas deverá introduzir um "fator de contribuição", baseado em custos identificáveis específicos de cada máquina, de maneira a ponderá-la no Centro de Custo. Tal objetivo prevê introduzir maior precisão na determinação do custo de fabricação, sem entretanto exigir mudanças radicais no sistema de coleta e tratamento dos dados hoje praticado na grande maioria das indústrias do ramo metal-mecânico.
1.3. Conteúdo do Trabalho

O trabalho foi dividido da seguinte forma:

CAPÍTULO I: Introdução

CAPÍTULO II: Os Custos na Manufatura – é apresentado um histórico dos custos na manufatura, conceitos relacionados a custos e os sistemas de classificação dos custos existentes, a estrutura de custos, bem como algumas inovações de sistemas de administração de custos nessa área.

CAPÍTULO III: Modelos de Formação do Custo de Peças – são apresentados dois modelos de cálculo do custo por peça no sistema de manufatura. Um modelo, específico para usinagem, baseado nas soluções clássicas de EISELEY, citado por FERRARESI [201], bastante detalhista sob o ponto de vista das informações necessárias para a formação do custo em cada operação; e um outro modelo, muito utilizado na indústria, baseado em Centros de Custo. No final do capítulo discute-se a respeito desses modelos, com relação às vantagens e limitações de cada um deles.

CAPÍTULO IV: Proposta do Fator de Contribuição de Máquinas-ferramenta em Centros de Custo – é definido um fator de contribuição baseado na análise dos custos relativos à máquina-ferramenta, principalmente seu custo atualizado e sua produtividade.

CAPÍTULO V: Procedimento Experimental – é comparado o modelo utilizado atualmente na indústria, o modelo com maior nível de detalhamento, com o modelo proposto. Realiza-se o procedimento para um fluxo operacional de determinada peça de revolução, em um Centro de Custo idealizado.
CAPÍTULO VI: Resultados e Discussões - são apresentados os resultados dos cálculos nos três modelos e realizada uma discussão através de uma análise comparativa entre os modelos.

CAPÍTULO VII: Conclusão - é elaborada a conclusão do trabalho baseada nas aplicações realizadas, enfocando-se as vantagens e restrições de cada modelo apresentado.

Também fazem parte do trabalho:

- Sugestões para Trabalhos Futuros.
- Referências Bibliográficas e Bibliografia Adicional Consultada,

e, cinco anexos, a saber:

ANEXO 1: Exemplo de formulário para preenchimento de informações referentes aos Centros de Custo.

ANEXO 2: Especificações das Máquinas-ferramenta do Centro de Custo Experimental.

ANEXO 3: Folha de Operação da Peça Analisada.

ANEXO 4: Tabela de Tempos de Preparação de Tornos.

ANEXO 5: Memorial de Cálculos
Capítulo II
2. CUSTOS NA MANUFATURA

2.1. Histórico

As técnicas da Contabilidade de Custos não são recentes. O seu desenvolvimento é um conjunto de esforços que demandaram muitos anos, ou mesmo séculos. Os registros de cálculos dos custos de produtos remontam ao século XIII, e um longo caminho foi percorrido até a época atual. No entanto, o maior impulso se deu à medida que houve uma demanda de melhores técnicas gerenciais, demanda essa provocada pela revolução industrial \[21,22\].

As bases da contabilidade industrial moderna surgiram no período que vai do século XIII até fins do século XIV, época em que apareceram as pequenas oficinas, cidades e comunidades industriais. Como decorrência disso, os primeiros registros de custos dos produtos, na maior parte primárias, surgiram no século XVI. Com o advento da revolução industrial, desenvolveram-se as técnicas já esboçadas desde o surgimento da contabilidade moderna. Nesse período, século XVIII, surgiram as exigências de controle dos custos dos produtos. Após a contribuição de VILLA, BAGGGE, METCALFE, GARKE, FELLS e outros \[21\], no final do século XIX, ocorreu o maior desenvolvimento da contabilidade de custos, onde a estrutura básica desse ramo da contabilidade foi formulada, bem como, os mecanismos para integrar os registros de custos às contas gerais foram idealizados.

Com os princípios da administração científica, de grande influência no desenvolvimento da contabilidade de custos, incluem-se ao desenvolvimento de então os métodos e procedimentos para obter-se maior eficiência na produção: os engenheiros se unem aos contadores com o objetivo de
Determinar e controlar os custos. A contabilidade de custos tornou-se uma ferramenta para a administração industrial medir a eficiência das organizações, exigindo conhecimento dos custos antes deles ocorrerem.

Após a II Grande Guerra Mundial, a contabilidade de custos já era utilizada como instrumento da administração, controlando os próprios custos e as operações de produção. Com o auxílio de outras ciências, como a Estatística, estendeu-se a análise e interpretação dos dados quantitativos, utilizando-os como fonte de informação mais precisa.

No período atual do século XX, a Pesquisa Operacional e a Computação ampliaram o campo de atuação da contabilidade de custos, juntamente com a intensificação do uso das técnicas estatísticas e matemáticas.

2.2. O Sistema de Custos e Conceitos Relacionados à Custos

A maioria dos Sistemas de Manufatura possuem um sistema contábil, isto é, um meio de coletar, resumir, analisar e relatar, em termos monetários, as informações sobre a empresa. A utilização de forma eficiente do capital de toda empresa é uma das funções principais da administração, envolvendo todo o ativo produtivo tais como máquinas e equipamentos, instalações fabris, ferramental e etc.

Dentro da Administração Financeira da empresa está localizada a Contabilidade Financeira e a Contabilidade Administrativa. A contabilidade financeira tem como objetivo fundamental fornecer informações financeiras a entidades externas à empresa, tais como acionistas, banqueiros, credores diversos e agências governamentais. Por outro lado, a contabilidade administrativa refere-se a toda a informação contábil útil para a administração, ou seja, o termo "útil"
denota um propósito para o qual os dados serão utilizados. A contabilidade financeira focaliza a empresa como um todo, enquanto a contabilidade administrativa está mais interessada em determinados setores [23]. A Figura 2.1 apresenta um organograma geral das atividades da Administrativa Financeira nas empresas, onde pode-se notar uma divisão básica em funções da Contabilidade Financeira e da Contabilidade Administrativa [24].

![Organograma da Administração Financeira](image)

Figura 2.1 - Organograma da Administração Financeira [24].
2.2.1. Contabilidade de Custos

A contabilidade de custos é uma técnica ramificada da contabilidade administrativa, especializada na compilação de dados e determinação dos custos, com a finalidade de gerar informações que auxiliem no planejamento e controle da administração. É um instrumento que proporciona à administração o custeio dos produtos, avaliação de inventários, comparação de dados reais com previstos, além de informações essenciais para decisão a curto e longo prazo, tais como política de vendas, métodos de produção, estruturas de capital, planos financeiros e etc.

A contabilidade de custos é definida como a aplicação do princípio da contabilidade, métodos e técnicas de custos para determinação da lucratividade [22]. A isso estão incluídos os propósitos de gerenciamento de decisões e implicitamente a transformação dos dados de entrada do sistema produtivo em termos monetários.

A partir dessa definição, a contabilidade de custos tem duas funções relevantes: no auxílio ao controle administrativo e apoio à tomada de decisões. No que diz respeito ao controle, sua missão mais importante é fornecer dados para o estabelecimento de padrões, orçamentos e outras formas de previsão e, num estágio imediatamente seguinte, acompanhar o efetivamente ocorrido, para comparar com os valores anteriormente definidos. Com relação à decisão, seu papel consiste em fornecer à administração registro detalhado, análise e interpretação dos gastos efetuados em conexão com a operação da empresa, e buscar soluções de diversos tipos de problemas tais como: análise de gastos com imobilizações, expansão das instalações devido ao aumento de produção, tomada de decisões em compras e determinação dos custos dos produtos.
2.2.2. Gastos, Custos e Despesas

Encontram-se divergências de terminologia em todas as áreas de estudo, diversos nomes para um único conceito e também conceitos diferentes para uma única palavra. Esse tópico pretende fornecer a conceituação de alguns dos termos utilizados durante o decorrer do trabalho, sem a pretensão de estabelecer uma terminologia comum de custos, mas utilizar uma nomenclatura relacionada aos conceitos descritos, sob o ponto de vista essencialmente técnico.

2.2.2.1. Gastos

O termo gasto é um conceito muito amplo. Segundo MARTINS [22], é o sacrifício financeiro arcedo pela entidade para a obtenção de um produto ou serviço qualquer, sacrifício este representado pela entrega ou pela promessa de entrega de ativos, normalmente dinheiro. Os gastos existem no momento da passagem do bem ou serviço para a propriedade da empresa, ou seja, no momento em que existe o reconhecimento contábil da divida assumida ou da redução do ativo dado em pagamento. Exemplos de gastos são os gastos com matéria-prima, gastos com mão-de-obra, gastos com honorários de diretoria ou gastos na compra de um bem imobilizado. Ambos, Despesas e Custos, descritos a seguir, podem ser considerados como gastos realizados por determinada atividade.

2.2.2.2. Custos

A contabilidade de custos utiliza os dados e informações da manufatura para calcular o custo de fabricação dos produtos. Dessa forma, a administração necessita de registros de custos que possibilitem alcançar tais objetivos. A medida em que um produto passa pelos
diversos estágios do processo de fabricação, acumulam-se custos a esse produto [23]. Esse custo acumulado é a base para a venda do produto. Segundo MARTINS [22], o custo é todo gasto relativo a um bem ou serviço utilizado na produção de outros bens ou serviços. Ou ainda, pode ser definido como o consumo de valores para determinados fins [26].

O custo também pode ser conceituado como qualquer despesa que pode ser atribuída a um item particular ou uma atividade, podendo estar relacionado a eventos ocorridos ou atividades previstas [27]. Como citado anteriormente, o custo também é um gasto, só que é reconhecido como tal no momento da utilização dos fatores de produção (bens e serviços) para a fabricação de um produto ou realização de um serviço. Por exemplo, a matéria-prima é um gasto no momento da sua aquisição. Mas, durante o tempo em que fica estocada, não incurre nem um custo a ela. No entanto, ela torna-se um custo na medida em que é parte integrante do bem elaborado no momento da sua utilização.

2.2.2.3. Despesas

A despesa é um bem ou serviço consumido direta ou indiretamente para a obtenção de receitas [22]. As despesas também podem significar consumo de valores para a realização de determinado fim, sem que, necessariamente, sejam associadas a produção de um bem ou serviço. Caso sejam associadas a finalidade da produção, o termo despesa e custo equivalem à mesma coisa. Os dividendos ou juros recebidos, um lucro ou prejuízo realizados na venda, por exemplo, não são resultados da produção industrial, sendo classificados então somente como receitas ou despesas.

As despesas também são denominadas “overhead” e podem estar presentes nos diversos níveis da estrutura de formação
contábil do produto. É possível, portanto, existirem despesas gerais relacionadas com a fabricação do produto, ou, como citado anteriormente, despesas provenientes de outros tipos de gastos, como um setor de Engenharia de Desenvolvimento, por exemplo. Mais adiante, no tópico de Estruturação de Custos, o modelo do ciclo econômico ilustra melhor essas diferenças entre custos e despesas.

2.2.2.4. Depreciação

Qualquer bem, seja ele um equipamento ou algum tipo de instalação tem seu valor diminuído, devido ao uso e desgaste, ou pelo fato de tornar-se obsoleto. Então, com o tempo, o valor desse bem vai decrescendo, e, para tornar possível sua reposição, é necessário acumular-se uma reserva que permitirá, no final de certo período a reposição desse bem. A perda do valor de máquinas, equipamentos, prédios e instalações é chamado depreciação [28,29], ou seja, a depreciação é o decréscimo de valor de uma propriedade com a passagem do tempo [30].

Verifica-se então, que o processo de depreciação é periódico, e deverá ocorrer até o momento em que o bem deve ser substituído por outro. Quando isso ocorre, a empresa deverá ter acumulado recursos suficientes para a reposição de um novo bem nas mesmas condições, reconstituindo, assim, a parte do ativo desintegralizado pela perda de valor. No caso de uma máquina-ferramenta, por exemplo, é necessário que esteja incorporado no custo das peças fabricadas por ela uma parcela do custo dessa máquina [29,30]. Assim, a legislação tributária permite deduzir uma parcela correspondente à utilização da máquina [31].

A vida útil de uma máquina, por exemplo, é o tempo para a reposição desse bem, ou o período de utilidade a que se destina o bem, e, geralmente, expresso em anos. Como
exemplos de vida útil extraído da literatura \(^{28} \), as máquinas e equipamentos podem ser classificadas conforme mostra a Tabela 2.1. No Brasil, o próprio governo encarrega-se de publicar uma listagem padronizando a vida média de acordo com o tipo do bem a ser depreciado \(^{31} \).

Tabela 2.1 - Exemplos de Vida Útil de Máquinas e Equipamentos para Períodos de Depreciação \(^{28} \).

<table>
<thead>
<tr>
<th>VIDA ÚTIL</th>
<th>MAQUINAS/EQUIPAMENTOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 ANOS</td>
<td>máquinas operatrizes universais não automatizadas e usadas fora das linhas principais de produção (fresadoras, furadeiras, tornos, etc)</td>
</tr>
<tr>
<td></td>
<td>máquinas e equipamentos de uso geral (móveis, elevadores para carga, pontas-rolante, etc)</td>
</tr>
<tr>
<td></td>
<td>máquinas e equipamentos de fundição (estufas e secadores de areia, fornos elétricos, etc)</td>
</tr>
<tr>
<td></td>
<td>instrumentos de laboratório (ensaio de tração, equipamentos fotográficos, microscópicos, etc)</td>
</tr>
<tr>
<td>05 ANOS</td>
<td>máquinas semi-automatizadas especiais usadas nas linhas de produção (fresadoras, tornos, etc)</td>
</tr>
<tr>
<td></td>
<td>equipamentos de uso específico (fornos e acessórios p/trat. térmico, máq.p/ensaios, etc)</td>
</tr>
<tr>
<td></td>
<td>equipamentos de fundição para trabalhos pesados (desmoldeiras, estufas para secagem, etc)</td>
</tr>
<tr>
<td>02 ANOS</td>
<td>máquinas de uso especial (furadeiras, mandradores, rosqueadeiras, retificadores, etc)</td>
</tr>
<tr>
<td></td>
<td>equipamentos de grande desgaste (galvanoplastia, máq.portáteis, solda, jeto de areia, etc)</td>
</tr>
<tr>
<td></td>
<td>veículos de transporte (automóveis, caminhões, onibus, empilhadeiras, guinchos, tratores, etc)</td>
</tr>
<tr>
<td>01 ANO</td>
<td>ferramentas, dispositivos, calibradores, garbaritos, matrizes de forjamento, modelos de fundição, matrizes de estampagem, moldes, etc</td>
</tr>
</tbody>
</table>
Em função do bem decrescer em valor com o tempo, é necessário considerar esse efeito através da depreciação, que pode ser resumida em duas razões principais [30]:

- Para fornecer a recuperação do capital investido no bem.
- Para tornar possível que a depreciação seja considerada no custo dos produtos resultantes do uso desses bens.

Existem diversos métodos para cálculo da depreciação, tais como a depreciação linear, depreciação exponencial, método da soma dos dígitos e outros [28, 29, 30, 31]. No Brasil, adota-se o método de depreciação linear [31]. A depreciação linear é o método mais simples e mais comum. Consiste em um valor para a depreciação constante em toda a vida útil, obtido pela divisão do valor do equipamento pela sua vida útil, valor esse idêntico ano a ano. Em consequência da inflação, tanto o valor do equipamento quanto os valores acumulados da reserva, constituintes do fundo de depreciação devem ser reavaliados por índices fornecidos pelo governo. É usual a utilização desse método, tomando-se como valor do equipamento um valor de reposição estimado e deduzindo-se de um valor residual que o equipamento terá no final de sua vida útil. Essa relação pode ser expressa por [28]:

\[
D = \frac{C_{m1} - C_{mr}}{v_m} \quad (2.1)
\]

Onde:

\(C_{m1}\) = Valor inicial de aquisição de um bem novo ou valor de reposição atual de um bem já usado [\(\$\)]
\(C_{mr}\) = Valor residual no fim da vida útil [\(\$\)]
(usualmente de 10 a 20% do valor do equipamento novo)
\(v_m\) = Vida útil ou duração do equipamento ou máquina [anos]
O valor D representa a quota periódica de depreciação. Para exemplificar, suponha-se uma furadeira de bancada adquirida por Cr$ 11.000,00; com vida útil de 10 anos, ela um valor residual de Cr$ 1.000,00 após esse período. A depreciação anual de Cr$ 1.000,00 ao ano. O gráfico da Figura 2.2 indica os saldos anuais com o valor residual V_f, e o gráfico da Figura 2.3 mostra a depreciação acumulada ao longo dos 10 anos de vida útil da furadeira (2^{ma}).

Figura 2.2 – Saldos Anuais para a Depreciação Linear (2^{ma}).

Figura 2.3 – Depreciação Linear Acumulada (2^{ma}).
Após a decorrência de \(K \) períodos, o valor do bem em questão terá sofrido \(K \) reduções iguais a \(D \). Então, o valor atual do bem \(C_{mk} \), depois desses \(K \) períodos, deverá ser:

\[
C_{mk} = C_{m1} - \frac{K(D)}{V_m}
\]

(2.2)

2.3. Importância e Objetivos dos Custos

A principal importância dos custos nos sistemas produtivos está diretamente relacionada às funções da contabilidade de custos, citadas anteriormente: auxiliar no controle administrativo e possibilitar a tomada de decisões. Essas duas importantes funções podem ser desmembradas em três objetivos principais dos custos. As técnicas e processos de custo têm os seguintes propósitos \([22] \):

1) Determinar o custo dos produtos e/ou processos
2) Controlar os custos de quaisquer tipos
3) Orientar na política administrativa

O primeiro desses objetivos é conhecido como "custos históricos" e envolve o acúmulo de informações para determinar-se quanto tem sido gasto nos diversos elementos que compõem custo, tais como: mão-de-obra, material, e outros, possibilitando assim, o cálculo do custo dos produtos ou processos. Esse cálculo é realizado após a ocorrência dos custos.

O controle de custos considera, além dos custos ocorridos, as estimativas de custos. Essas estimativas permitem a pré-determinação dos custos, possibilitando sua previsão. Os custos reais podem então ser comparados com os objetivos estimados e as razões de quaisquer discrepâncias
pode ser encontradas visando a tomada de ação corretiva. Esse controle de custos é o propósito da técnica conhecida como custo "standard" ou custo-padrão.

O terceiro objetivo proporciona a orientação na política administrativa através da técnica conhecida como custo marginal. Essa técnica tem valor significativo na tomada de decisões sobre o que tem que ser fabricado internamente ou comprado de terceiros, fornecendo base segura para a comparação de métodos e alternativas de fabricação.

Esses três objetivos de custos, realizados através das técnicas descritas como custos históricos, custo-padrão e custo marginal, não são incompatíveis. Também não é necessário para uma empresa tê-los de forma separada. As três técnicas podem ser incorporadas em somente uma e podem ser administradas em conjunto.

Outras finalidades da Contabilidade de Custos são (26):
- Determinação do Preço de Venda
- Controle da Produção
- Apuração dos Resultados
- Apuração dos Valores de Estoque,
e ainda outras finalidades secundárias como (28):
- Determinação do Preço Mínimo
- Comparação de Custos para averiguar processos mais econômicos.
- Comparação periódica dos custos parciais ou totais
2.4. Classificação dos Custos

Uma vez que os custos envolvem processos de análise e interpretação de informações, há necessidade de classifica-

dos. A classificação dos custos pode realizar-se de diversas

maneiras. O critério de classificação vai depender do uso a

ser dado às informações. Busca-se então, no desenvolvimento
desse tópico, apresentar os principais critérios de

classificação dos custos, de acordo com alguns autores

consultados [22,28,27,32], bem como apresentar exemplos de

maneira a possibilitar um melhor entendimento desse

assunto.

Segundo WOOD [32], existem quatro maneiras principais

de classificar os custos, a saber:

1a) Por tipo de despesas – Material; Mão-de-obra; Despesas

Gerais.

2a) Por alocação ao produto – Custos Diretos e Custos

Indiretos.

3a) Com relação ao volume de produção – Custos Fixos e

Custos Variáveis.

4a) Por função – Produção; Administração; Vendas; etc.

2.4.1. Classificação dos Custos em Relação ao Tipo de

Despesas

Essa classificação apresenta uma estreita relação com

os elementos de um produto; ou seja, de acordo com os

fatores sobre os quais as despesas incorrem. Esses três

elementos são [27]:

- Materiais
- Mão-de-obra
- Despesas Gerais
A classificação mais comumente usada, separa esses elementos em dois grupos principais: Custos Primários e "Overhead" ou Despesas.

Os custos denominados primários estão diretamente relacionados com a produção, como a mão-de-obra direta e os materiais diretos. Já os custos denominados "overhead" estão relacionados com o processamento dos materiais, como o custo de energia elétrica, por exemplo.

Frequentemente, essa nomenclatura é também atribuída aos custos classificados em relação ao produto, custos diretos e custos indiretos, onde os custos primários e custos de "overhead" são os custos diretos e indiretos, respectivamente. A conceituação desses custos é apresentada a seguir.

2.4.2. Classificação dos Custos em Relação ao Produto

A classificação em relação à alocação ao produto parte da identificação dos custos em um determinado produto. Estes podem ser classificados como custos diretos e custos indiretos.

2.4.2.1. Custos Diretos

Os custos diretos são aqueles que podem ser identificados com o resultado final de uma empresa, podendo ser um produto ou um serviço. Essa identificação pode traduzir-se através de uma determinada medida, ou seja, em termos de horas de mão-de-obra; quilogramas de material; horas-máquina utilizada na fabricação do produto e outras (22, 22).

Como foi conceituado no tópico anterior, todos os custos podem ser classificados como material, mão-de-obra e
despesas, mas ainda é possível outra sub-classificação dos custos diretos: em custo de material direto, e custo de mão-de-obra direta e despesas diretas.

Os custos de material direto são os custos relativos a materiais, peças e componentes que fazem parte do produto ou serviço ao consumidor, como, por exemplo, os parafusos de fixação usados no produto. O custo de mão-de-obra direta é o custo relacionado aos salários dos indivíduos que trabalham diretamente na fabricação do produto ou serviço ao consumidor, como, por exemplo, os operadores de máquinas. As despesas diretas incluem outros serviços comprados, mas que são específicos para o produto ou serviço fornecido ao cliente. Esses custos englobam contratos de mão-de-obra, taxas de projeto, etc.

A somatória desses custos acima descritos compõe os custos diretos possíveis de serem cobrados ou alocados à venda do produto final ao consumidor.

2.4.2.2. Custos Indiretos

Os custos indiretos são aqueles que não podem ser identificados com o produto, ou seja, eles são exatamente o oposto aos custos diretos. A determinação e a alocação desses custos devem primeiro passar por processos intermediários, como sistemas de rateio ou estimativas, por exemplo. Cada vez que torna-se necessária a utilização de qualquer fator de rateio para a apropriação ou utilização de estimativas, e não de medição direta, o custo é então estabelecido como indireto [22:32].

Assim como no caso dos custos diretos, pode ser feita ainda uma outra classificação dos custos indiretos em: custos indiretos de mão-de-obra, e custos indiretos de materiais e despesas indiretas.
O custo da mão-de-obra indireta é o custo relativo ao pessoal de chefia, supervisão, manutenção, ou ainda atividades que, apesar de vinculadas à produção, nada tem de aplicação direta sobre o produto. O custo dos materiais indiretos são aqueles relacionados aos materiais de limpeza, peças de manutenção e outros. Eles podem até ser relativamente insignificantes no valor total, mas também devem ser considerados. Dentre os custos de materiais indiretos existem os menos indiretos, como materiais de consumo, ferramentas, por exemplo, e os mais indiretos como materiais de escritório, por exemplo. No entanto, essa classificação não é formal e serve apenas para ilustrar pequenas diferenças na categoria de custos dos materiais indiretos, com o mesmo tratamento em termos de cálculo ou rateio. As despesas indiretas incluem energia, seguro, depreciação, aluguel, taxas, ou quaisquer outras despesas gerais que não sejam material ou mão-de-obra. Conforme citado anteriormente, os custos diretos e os indiretos podem ser relacionados com os custos primários e os de “overhead”, onde o total de todos os custos indiretos é referido como “overhead”, enquanto o total de todos os custos diretos como custos primários [27.32]. Essa afirmação pode ser vista de forma resumida na Tabela 2.2, na formação do custo total.

Tabela 2.2 - Relação dos Custos Primários e “Overhead” com os Custos Diretos e Indiretos

<table>
<thead>
<tr>
<th>CUSTO TOTAL</th>
<th>Custos Primários (Custos Diretos)</th>
<th>Mão-de-obra Direta</th>
<th>Material Direto</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>"Overhead"</td>
<td>Despesas Diretas</td>
<td>Mão-de-obra Indireta</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Material Indireto</td>
<td>Despesas Indiretas</td>
</tr>
</tbody>
</table>
2.4.3. Classificação dos Custos Quanto ao Volume de Produção

Uma outra classificação bastante comum nos sistemas produtivos é a que leva em consideração a relação entre os custos e o volume de atividades em uma unidade de tempo. MARTINS [22] considera essa classificação como sendo a mais importante dentre as demais.

Os custos podem então ser classificados em duas categorias, a saber [22, 32]:

- Custos Fixos
- Custos Variáveis

Esse método de classificação em custos fixos e variáveis é de vital importância para fornecer informações para decisões de fabricação e formar base de custos marginais [32].

2.4.3.1. Custos Fixos

Os custos fixos são aqueles que geralmente não variam mesmo que ocorram oscilações no volume de produção, ou seja, são aqueles que num determinado período tem seu montante fixado. Um exemplo desse tipo de custos são os de aluguel, impostos, depreciação e etc. [22, 32].

2.4.3.2. Custos Variáveis

Os custos variáveis são os custos que variam em proporção direta com o volume de produção dentro de um certo período de tempo, ou seja, eles tem seu valor determinado em função das oscilações das atividades. O valor global do consumo dos materiais diretos por mês, por exemplo, depende diretamente do volume de produção. Quanto maior a quantidade fabricada, maior o seu consumo. Portanto, dentro de uma
unidade de tempo (mes, nesse exemplo), o valor do custo com tais materiais varia com o volume produzido; logo, os materiais diretos são custos variáveis [22.23.32].

2.4.3.3. Custos Semi-fixos e Semi-variáveis

No entanto, alguns custos tem componentes dos dois tipos citados anteriormente, uma parcela fixa e outra variável. A energia elétrica é um exemplo, pois possui uma parcela fixa estabelecida através de contrato com a empresa fornecedora de energia, e há a possibilidade da existência de outra variável, ou seja, um custo dependente do consumo de determinada quantidade de quilowatts-hora, acima do valor contratado. Esse tipo de custo, contendo os dois componentes, é conhecido como custos semi-variáveis. Eles variam com o volume de produção, mas não de forma proporcional [22.23.32]. Ainda existem custos fixos que podem ser estabelecidos dentro de níveis de produção mais altos ou mais baixos. Ocorre que, se um volume de produção extra é requerido, pode existir a necessidade de utilização de mão-de-obra suplementar e/ou equipamento adicional. Assim, esse tipo de custo pode ser classificado como semi-fixo.

As Figuras 2.4, 2.5 e 2.6 [23], a seguir, apresentam os gráficos de custo-volume para a classificação em custos fixos, variáveis e semi-variáveis, respectivamente. Em todos os gráficos é mostrada a relação custo e volume. Como os diversos elementos do custo comportam-se de acordo com os três padrões acima descritos, custo total, que é a soma desses elementos em separado, deve apresentar uma variação de custo total e volume de acordo com a Figura 2.7 [22].
Figura 2.4 - Custo Fixo [23].

Figura 2.5 - Custo Variável [23].
Figura 2.6 - Custo Semi-variável [23]

Figura 2.7 - Custo Total e Volume [23]
2.4.4. Classificação dos Custos por Função

Uma outra maneira de classificação dos custos é analisá-los de acordo com sua função específica [32]. A maior utilização desse tipo de classificação é para propósitos de identificação dos custos e localização quanto à responsabilidade gerencial. Um exemplo desse tipo de classificação é ter três grupos onde os custos possam ser alocados: produção, administração e vendas.

No entanto, esse método de classificação tem uma utilização limitada, se usado isoladamente, mas pode ser combinado com outros métodos de classificação, fornecendo uma análise muito útil. Por exemplo, pode ser combinado com o método de classificação em custos diretos e indiretos. Uma ilustração desse tipo de combinação é mostrado na Figura 2.8 [32], com exemplos de custos em cada categoria.

<table>
<thead>
<tr>
<th>FUNÇÃO</th>
<th>CUSTOS DIRETOS</th>
<th>CUSTOS INDIRETOS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MATERIAIS</td>
<td>SALÁRIOS</td>
</tr>
<tr>
<td></td>
<td>mat.-prima</td>
<td>salários da fábrica</td>
</tr>
<tr>
<td>PRODUÇÃO</td>
<td>(aco)</td>
<td>depreciacao</td>
</tr>
<tr>
<td></td>
<td></td>
<td>aluguel</td>
</tr>
<tr>
<td></td>
<td></td>
<td>salários</td>
</tr>
<tr>
<td>ADMINISTRAÇÃO</td>
<td>formulários</td>
<td>salários</td>
</tr>
<tr>
<td></td>
<td>algume sal.</td>
<td>de gerência</td>
</tr>
<tr>
<td></td>
<td>mat. escrit.</td>
<td>telefone</td>
</tr>
<tr>
<td>VENDAS</td>
<td>catálogos</td>
<td>gastos c/</td>
</tr>
<tr>
<td></td>
<td>comissões de</td>
<td>vendas</td>
</tr>
<tr>
<td></td>
<td>manuais</td>
<td>propaganda</td>
</tr>
</tbody>
</table>

Figura 2.8 - Classificação dos Custos por Função [32]

2.4.5. Recentemente Classificação dos Custos

Conforme mencionado anteriormente no capítulo I, devido às alterações estruturais nos sistemas de manufatura,
basicamente provocado pelo uso das recentes tecnologias avançadas de manufatura, surge a necessidade de novos desenvolvimentos dos sistemas de custos.

Quase todas as atividades das companhias existem para dar suporte à produção, sendo que devem ser consideradas como custos inerentes aos produtos. Desde que todos os custos produtivos e de suporte organizacional podem ser divisíveis ou separáveis, eles podem ser identificados individualmente nos produtos ou nos grupos de produtos. Esses custos incluem [13]:

- Logística
- Produção
- Marketing e Vendas
- Distribuição e Serviços
- Tecnologia
- Sistema de Informações
- Administração Financeira e Administração Geral

Um forum internacional entre empresas líderes de diversas áreas industriais, universidades de renome, agências governamentais, organizações profissionais das áreas de consultoria e contabilidade e outros, organizado pela CAM-I (Computer Aided Manufacturing - International), desenvolvem um projeto de pesquisa denominado Cost Manufacturing Systems (CMS) [7,17].

Com o reconhecimento de que os sistemas tradicionais de custo já não atendem satisfatoriamente à administração das empresas que utilizam as tecnologias avançadas de produção (AMT), surge o sistema de custos conhecido como ABC ou "Activity-based Costing", às vezes também referido como "Transaction-based costing", ou seja, o custeio baseado em atividades, considerado sendo como a espinha dorsal do CMS. No sistema ABC cada atividade, que também pode ser o uso de
uma fonte de recursos, que gera custos indiretos pode ser identificada; exemplos de atividades que incorrem custos pode ser a preparação ("set up") de máquinas, depreciação uso de computadores na administração e controle, etc. A principal diferença entre esse sistema comparado com o sistema tradicional é que este possui muitas bases nas quais os custos podem ser alocados [7, 10, 17, 18].

Dentro desse contexto o CMS pode ser definido como sendo um sistema de planejamento e controle com os seguintes objetivos [7, 17]:

- Identificar os custos dos recursos consumidos para desempenhar atividades relevantes da empresa;
- Determinar a eficiência e eficácia das atividades desempenhadas;
- Identificar e avaliar as novas atividades que possam contribuir para melhoria do desempenho da empresa no futuro;
- Cumprir os três objetivos acima citados em um ambiente caracterizado por mudanças tecnológicas.

Segundo NAKAGAWA [7], o CMS propõe auxiliar os gestores de todas as áreas funcionais a melhorarem as formas de se apropriarem custos às atividades e destas para os produtos, e, além de outros fatores, dar o suporte necessário para os vários níveis de automação e para as diversas filosofias de manufatura.

2.4.6. Outros Tipos de Classificação

Existem ainda outros tipos de classificação [21, 22, 27] menos importantes com relação às citadas anteriormente. Podem existir os custos classificados em Controláveis e Não Controláveis [28]: Custos técnicos e Custos
Administrativos [23]; Custos com Relação ao Período [21]; Custos com relação à Tomada de Decisões [23]; Custos Primários e de Transformação [21,23] e outros.

2.5. Estrutura de Custos

Como um dos propósitos da formação dos custos é a determinação do lucro ou do preço de venda [27], é possível, num estágio mais adiante em relação à classificação dos custos, apresentar a estrutura de custos e relação com o lucro visando a determinação do preço final de venda. A Figura 2.9 [27] apresenta uma estrutura simples de custos, considerando-se a relação entre a classificação dos custos em diretos e indiretos, e, custos primários e "overhead", relação esta apresentada no tópico 2.4.2, na composição do custo total. Esse custo total somado ao lucro resulta no preço de venda do produto.

CUSTOS DIRETOS

| Mat.-prima | CUSTOS | CUSTO TOTAL |
| Mão-de-obra | PRIMÁRIOS | |
| Despesas |

CUSTOS INDIRETOS

| Produção |
| Administração |
| Vendas e Dist. |

"OVERHEADS" |

LUERO | LUCRO |

Figura 2.9 - Estrutura de Custos [27]
Qualquer empresa industrial executa processos de transformação com um objetivo mercadológico estabelecido. Tomando-se como base todos os componentes envolvidos na estrutura industrial, tem-se como resultado o processo dinâmico do ciclo econômico, apresentado em fases, como mostra a Figura 2.10 [26].

Figura 2.10 - O Ciclo Econômico [26]

Nesse esquema, observa-se que as atividades propriamente industriais realizam-se entre as fases 4 e 8, esfera de ação da Contabilidade de Custos. Portanto, até a fase 3, tem-se apenas despesas, que podem ser identificadas como custos, caso sejam alocadas na produção, ou permaneçam somente como despesas ou gastos, caso não sejam alocados à fase de transformação.
Capítulo III
3. MODELOS DE FORMAÇÃO DO CUSTO DE PEÇAS EM SISTEMAS DE MANUFATURA

3.1. Introdução

A partir de dois enfoques diferentes, considerando-se a usinagem da peça na determinação do custo, pode-se separar a formação do custo nos sistemas produtivos em dois modelos distintos. O primeiro modelo considera um nível de detalhamento muito grande, a partir das variáveis de usinagem, podendo ser classificado como um modelo micro. O segundo modelo, utilizado na maioria das indústrias, trata a usinagem de forma passiva, somente como um item incorporado aos tempos de fabricação das peças para o cálculo dos custos. Esse modelo apresenta-se, portanto, como um modelo macro.

Nesse capítulo serão descritos esses dois modelos com a finalidade de apresentá-los, destacando-se as diferenças entre eles, principalmente com relação a maneira pelo qual são levados em consideração os custos de fabricação das peças, sob o ponto de vista da usinagem, em cada um dos dois modelos.

3.2. Modelo de Cálculo do Custos por Peça Baseado na Operação de Usinagem

Esse modelo de cálculo do custo por peça é apresentado por algumas autores (20, 23), com algumas diferenciações entre eles, como base para o cálculo das condições econômicas de usinagem, ou seja, quais as condições de usinagem que possibilitem o mínimo custo de fabricação, baseado no fato de que com o aumento das condições de usinagem, isto é, velocidade de corte e avanço, o tempo máquina diminui, e, consequentemente, a parcela do custo relativo à máquina.
Entretanto, tal fato diminue simultaneamente a vida da ferramenta, ocasionando um aumento da parcela de custo referente à ferramenta.

Dessa maneira, devem existir condições de usinagem nas quais o custo total de fabricação seja mínimo. Porém, mesmo obtendo-se tal suposição, é necessário ainda verificar se essas condições favoráveis de custo são facilmente obtidas nas máquinas operatrizes utilizadas, ferramentas e materiais normalmente empregados pela empresa. Por exemplo, em situações onde o custo da ferramenta é muito alto, o mais adequado é fazer uma avaliação individual da situação. Essa solução numérica está associada a uma série de dados, nem sempre fáceis de serem obtidos na empresa [20,33]. O trabalho de PALLEROSI [34] apresenta um método geral para a obtenção das condições econômicas para qualquer tipo de ferramenta de corte e em operações de usinagem.

3.2.1. Ciclo de Usinagem

O ciclo de usinagem, ou ciclo de trabalho de uma peça em operações de usinagem, é constituído pelos seguintes elementos [20,33]:

a) Carga e fixação da peça em bruto ou em processo na máquina-ferramenta.

b) Aproximação ou posicionamento da ferramenta para o início do corte.

c) Usinagem ou corte da peça

d) Recuo ou afastamento da ferramenta

e) Inspeção (se necessária) e descarga da peça usinada

Esses elementos, mostrados na Figura 3.1, tomam parte direta no ciclo de usinagem. Considerando-se a fabricação de um lote de Z peças, existe a necessidade da preparação da
máquina para a execução desse lote. Além disso, depois que um certo número de peças é fabricado, a troca da ferramenta é necessária, que inclui a remoção da ferramenta, substituição da aresta de corte, com posterior recolocação da ferramenta pronta para utilização. Esses outros elementos que tomam parte indireta no ciclo de usinagem podem ser divididos da seguinte maneira 20:

f) Preparação da máquina-ferramenta para a execução do lote de 2 peças.

h) Recolocação e ajustagem da ferramenta no seu suporte.

Figura 3.1 - Ciclo de Trabalho 22.

3.2.2. Tempos na Fabricação

Considerando-se os elementos que compõem o ciclo de trabalho de uma peça em operações de usinagem, e, admitindo o caso de uma máquina-ferramenta com uma única ferramenta de corte, o tempo total de confecção por peça correspondente a esse ciclo, para um lote de 2 peças é dado por 20:
\[t_t = t_c + t_s + t_a + \frac{t_p}{Z} + \frac{n_t}{Z}. \] (3.1)

Onde:

- \(t_t \) = tempo total de execução da peça [min]
- \(t_c \) = tempo de corte [min]
- \(t_s \) = tempos secundários de usinagem [min]
- \(t_a \) = tempos de aproximação e afastamento da ferramenta [min]
- \(t_p \) = tempo de preparação da máquina [min]
- \(t_{tr} \) = tempo de troca da ferramenta [min]
- \(Z \) = lote de peças
- \(n_t \) = número de trocas da ferramenta

3.2.2.1. Tempo de Corte

O tempo de corte de uma operação, correspondente ao elemento "c" do ciclo de trabalho de uma peça em operação de usinagem, descrito no item 3.2.1, é a quantidade de tempo em que a(s) ferramenta(s) realiza(m) trabalho em uma peça através da remoção de material. Para o caso do torneamento cilíndrico de uma peça, conforme mostrado na Figura 3.2, o tempo de corte é expresso por [20]:

\[t_c = \frac{l_x \cdot V \cdot d}{1000 \cdot f \cdot v_c}. \] (3.2)

Onde [25]:

- \(t_c \) = tempo de corte [min]
- \(l_x \) = percurso de avanço [mm]
- \(d \) = diâmetro da peça [mm]
- \(f \) = avanço [mm/volta]
- \(v_c \) = velocidade de corte [m/min]
Figura 3.2 - Elementos que compõem o tempo de corte no torneamento cilíndrico de uma peça [20].

3.2.2.2. Tempos Secundários

Os tempos secundários são os tempos correspondentes aos elementos "a" e "e" do ciclo de trabalho de uma peça em operações de usinagem, como descrito no item 3.2.1. Esses tempos estão relacionados com os sistemas de carga/descarga e fixação da peça. Os tempos secundários são analisados através de estudos de tempos e métodos [20].

3.2.2.3. Tempo de Preparação

O tempo de preparação de máquina ou tempo de "set up", pode ser definido como sendo o tempo gasto para colocar essa máquina em condições de produzir determinada peça ou um lote de peças, partindo-se de um determinado estágio inicial. Esse estágio inicial pode constituir-se na máquina preparada para a produção de uma outra peça, ou não preparada para produzir peça alguma [37].
3.2.2.4. Tempo de Troca de Ferramenta

O tempo de troca de ferramenta, ou também chamado por tempo de reposição de uma operação de usinagem, é o tempo efetivamente gasto, por peça, para a troca e ajuste da(s) ferramenta(s) envolvida(s) na operação, que não mais satisfazem as condições de usinagem desejadas. Esse tempo está diretamente relacionado com o número de peças usinadas por vida (Zr), pois esse define a frequência das paradas da máquina para a troca e ajuste da ferramenta (34).

3.2.3. Vida da Ferramenta

A vida de uma ferramenta é o tempo que a mesma trabalha adequadamente até perder sua capacidade de corte, de acordo com um critério previamente estabelecido. Após esse tempo, a ferramenta deve ser reafia da ou substituída.

TAYLOR (33) foi o primeiro pesquisador a apresentar um modelo que relaciona a vida da ferramenta com os parâmetros de usinagem, estabelecendo a conhecida equação de vida de TAYLOR $(20,33,38,40)$:

$$ k = T.v_o^x , $$ \hspace{1cm} (3.3)

ou a sua expandida:

$$ k = T.v_o^x . f_v . a_p^z $$ \hspace{1cm} (3.4)

Onde:

- $T =$ vida da ferramenta [min]
- $v_o =$ velocidade de corte [m/min]
- $f =$ avanço da ferramenta [mm/volta]
- $a_p =$ profundidade de corte [mm]
- $x,y,z,k =$ constantes
As constantes das equações de TAYLOR foram obtidas experimentalmente. Tomando-se a equação de TAYLOR simplificada, o expoente \(x \) é o coeficiente angular da reta \(T = v \) no diagrama dilogarítmico e a constante \(k \) pode ser interpretada como a vida da ferramenta para uma velocidade de corte de 1 m/min. Essas relações podem ser vistas na Figura 3.3 [20].

Figura 3.3 - Representação em escalas logarítmicas da curva de vida da ferramenta [20].

Ensaios realizados com muitos materiais sob condições variadas, demonstram que a vida de uma ferramenta é tanto menor quanto maior for a velocidade de corte [20, 40]. A Figura 3.4 apresenta curvas de vida (em minutos) - velocidade de corte (em pés por minuto) para diferentes materiais de ferramentas, tais como aço rápido, metal duro e cerâmica [40].
Figura 3.4 - Curvas típicas velocidade de corte x vida da ferramenta [40].

A constante k varia em função do material da peça e material da ferramenta, da forma e dimensões angulares e lineares da ferramenta, da área e da forma da secção de corte, e do fluido refrigerante. O expoente x também varia em função das mesmas grandezas, porém para uma dada combinação de material da ferramenta e material da peça, x tem um valor que não se modifica muito com a variação dos demais fatores [20, 40].

Como a vida da ferramenta depende do critério de fim de vida estabelecido, a vida T é um conceito relativo, relacionado com cada situação específica. Existem diversos critérios de fim de vida. Os mais utilizados são a destruição da aresta cortante, valores estabelecidos para o desgaste de cratera (KT) ou de flanco (VB); variação das forças de corte, e tolerâncias da peça [33].

A definição do critério de vida é de fundamental importância por influenciar nas constantes experimentais das
equações de vida. A mudança do critério ou a utilização de um critério inadequado para uma situação específica pode alterar significativamente os valores ótimos obtidos por qualquer modelo, determinista ou probabilista [33].

3.2.3.1. O Tempo Total de Fabricação Considerando-se a Vida da Ferramenta

Admitindo-se Z_T o número de peças usinadas durante a vida T de uma ferramenta, e que a preparação da máquina operatriz seja feita com ferramentas novas, tem-se [20]:

$$Z = (nt + 1).Z_T,$$ \hspace{1cm} (3.5)

e, como $Z_T = \frac{T}{t_o}$, \hspace{1cm} (3.6)

então $Z = (nt + 1). \frac{T}{t_o}$ \hspace{1cm} (3.7)

ou

$$nt = Z \cdot \frac{t_o}{T} - 1$$ \hspace{1cm} (3.8)

Substituindo-se na equação do cálculo de t_t, tem-se [20]:

$$t_t = t_t + [t_t + t_A + \frac{t_P}{Z}] + \left(\frac{t_c}{T} \frac{1}{Z} \right) \cdot [t_{te}]$$ \hspace{1cm} (3.9)

Substituindo ainda as equações do tempo de corte:

$$t_c = \frac{1f.W.d}{1000.f.V_c},$$

e da vida da ferramenta:
\[
T = \frac{k}{V_o^x}, \text{ tem-se [20]}:
\]

\[
t_t = \frac{1x.f.d}{1000.f.V_o} + \frac{t_p}{Z} + \frac{1x.f.d.V_o^{x-1}}{1000.f.k} (3.10)
\]

3.2.4. Custos de Produção Considerando-se as Condições de Usinagem

O custo total de fabricação de uma peça, baseado na máquina-ferramenta, pode ser determinado por [20]:

\[
C_p = (C_{mpd} + C_{mpi}) + C_m + C_{maq} + C_x + (C_{aq} + C_{ix} + C_v) (3.11)
\]

Onde:

- \(C_p\) = Custo total de fabricação [\$]
- \(C_{mpd}\) = Custo da matéria-prima direta [\$]
- \(C_{mpi}\) = Custo da matéria-prima indireta [\$]
- \(C_m\) = Custo da mão-de-obra [\$]
- \(C_{maq}\) = Custo da máquina [\$]
- \(C_x\) = Custo da ferramenta [\$]
- \(C_{aq}\) = Custo de controle de qualidade (inspeção) [\$]
- \(C_{ix}\) = Custo indireto de fabricação [\$]
- \(C_v\) = Custo proporcional às variações de custos de operações anteriores e posteriores [\$]

3.2.4.1. Custo da Matéria-prima Direta e Indireta

O custo de matéria-prima direta corresponde aos gastos com o material utilizado no produto, ou seja, que fazem parte da peça, como um determinado tipo de aço especificado em desenho, por exemplo. Os custos de matéria-prima indireta são aqueles que não fazem parte propriamente do produto. Nesses custos enquadram-se o fluido refrigerante da usinagem, óleos lubrificante para a máquina, óleo protetivo para estocagem, combustíveis entre outros.
3.2.4.2. Custo da Mão-de-obra

O custo de mão-de-obra por peça pode ser calculado como [20]:

\[
C_{\text{m\text{o}}} = \frac{S_h}{t_t} \quad [\$] \quad (3.12)
\]

Onde:
- \(t_t\) = tempo total de confecção por peça \([\text{min}]\)
- \(S_h\) = Salário mais sobre-taxas* \([\$/\text{h}]\)

* Essas sobre-taxas incluem os encargos sociais, supervisão, serviços gerais, administração técnica e geral da fábrica.

3.2.4.3. Custo Máquina

O custo da máquina por peça, para o caso de depreciação linear, pode ser calculado por [20]:

\[
C_{\text{maq}} = \frac{t_t}{H.60} \left[\left(\frac{C_{1m} - C_{1i}}{l_m} \right) + \frac{C_{mi}}{v_m} \right] + \frac{C_{\text{m\text{o}}} + E.m.Coa.j}{v_m} \quad (3.13)
\]

ou,

\[
C_{\text{maq}} = \frac{t_t}{60} \quad S_m \quad (3.14)
\]

Onde:
- \(S_m\) = Custo total ou salário máquina \([\$/\text{h}]\)
- \(C_{\text{maq}}\) = Custo máquina por peça \([\$]\)
- \(t_t\) = Tempo total de execução por peça \([\text{min}]\)
- \(C_{mi}\) = Valor inicial de aquisição da máquina \([\$]\)
- \(l_m\) = Idade da máquina \([\text{anos}]\)
- \(v_m\) = Vida útil prevista para a máquina \([\text{anos}]\)
\[j = \text{taxa de juros ao ano} \]
\[C_{mc} = \text{Custo de conservação da máquina [$/ano]} \]
\[E_m = \text{Espaço ocupado pela máquina [m}^3\text{]} \]
\[C_{eo} = \text{Custo do espaço ocupado [$/m}^3\text{.ano]} \]
\[H = \text{Número de horas de trabalho ao ano} \]

3.2.4.4. Custo Ferramenta

O custo da ferramenta por peça pode ser expresso por \([20]\):

\[
C_r = \frac{1}{Z_T} \cdot C_{rT} \quad (3.15)
\]

Onde:

\[C_r = \text{Custo ferramenta [\$]} \]
\[Z_T = \text{Número de peças usinadas durante a vida T da ferramenta} \]
\[C_{rT} = \text{Custo da ferramenta por vida [\$]} \]

Considerando-se o caso de ferramentas com insertos intercambiáveis, de fixação mecânica, o custo da ferramenta por vida pode ser expresso por \([20]\):

\[
C_{rT} = \frac{1}{v_{pf}} \cdot \frac{C_i}{C_{pf} + \frac{C_i}{n_{ai}}} \quad (3.16)
\]

Onde:

\[v_{pf} = \text{vida média do porta-ferramenta [número de arestas]} \]
\[\text{(normalmente em torno de 600 arestas de corte)} \]
\[C_{pf} = \text{Custo de aquisição do porta-ferramenta [\$]} \]
\[C_i = \text{Custo do inserto intercambiável [\$]} \]
\[n_{ai} = \text{Número de arestas de corte do inserto} \]
3.2.4.5. Outros custos

Segundo FERRARESI \[20\] a equação do cálculo do custo por peça preocupa-se somente com os custos que dependem das condições de trabalho ou do tempo de usinagem. Existem, no entanto, outros custos que devem ser definidos.

O primeiro a ser citado é o custo de controle de qualidade \((C_{q})\), isto é o custo de inspeção ou teste da peça, durante ou após a fabricação desta. Segundo JURAN \[41\], o custo de inspeção e teste é considerado como custo estimativo da qualidade \("appraisal cost"\), e pode ser definido como sendo o custo de verificação da conformidade do produto com o especificado, realizado através do controle deste no fluxo da fábrica, incluindo inspeção entre operações, inspeção final, testes de confiabilidade e outros. Ou, ainda conforme BESTERFIELD \[42\], é o custo envolvido na liberação da máquina para fabricação do lote de peças, após a preparação ou "set up" da máquina, e também é classificado como custo direto da qualidade.

Os custos indiretos de fabricação \((C_{ir})\) citados, mas também desprezados por FERRARESI \[20\] devido a pouca ou nenhuma influência na velocidade econômica de corte, são aqueles definidos no capítulo II, resultantes da revisão bibliográfica realizada \[22,27,32\].

3.3. Modelo de Cálculo do Custo por Peça baseado em Centros de Custo

3.3.1. Centros de Custo

3.3.1.1. Definição

O modelo de cálculo do custo por peça utilizado atualmente, baseia-se em estruturas denominadas Centros de Custo. Um Centro de Custo é simplesmente uma localização física na organização, uma parte da fábrica, um departamento
ou secção, um equipamento, ou mesmo um grupo de trabalhadores pelos quais o custo pode ser convenientemente estabelecido [25,27]. Os Centros de Custo são geralmente os departamentos, mas em alguns casos, um departamento pode conter diversos Centros de Custo. Apesar de um departamento de montagem final, por exemplo, ser de responsabilidade de uma única gerência, ele pode conter diversas linhas de montagem, onde cada uma dessas linhas é considerada como um Centro de Custo em separado, com seu próprio assistente da gerência ou supervisor [43].

A divisão das atividades de uma empresa através dos Centros de Custo é muito importante no contexto e determinação dos custos das peças. O grau de subdivisão da fábrica em Centros de Custo varia de acordo com um grande número de fatores, tais como o tipo da indústria, a variedade de máquinas e o tipo de estrutura produtiva [22]. Além disso, o número e tamanho dos Centros de Custo também varia de acordo com as necessidades de informação do controle gerencial [27].

3.3.1.2. Tipos de Centros de Custo

Os Centros de Custo podem corresponder com a área de responsabilidade de algumas gerências em particular. Existem vários Centros de Custo, que podem ser classificados conforme descrito a seguir.

Os Centros de Custo Administrativos são os Centros de Custo que executam as atividades de Vendas, Compras, Contabilidade, Departamento Jurídico, Finanças, Recursos Humanos e etc.

Os Centros de Custo Técnicos compreendem as atividades de Engenharia do Produto, Engenharia de Fabricação,
Engenharia de Qualidade, Planejamento e Controle da Produção e etc.

Os **Centros de Custo Suporte** fornecem diversos produtos e serviços básicos para a fábrica. Essas atividades são realizadas pelas áreas de Manutenção, Ferramentaria e Utilidades (produção de vapor, ar comprimido, fornecimento de água e gases) e etc.

Os **Centros de Custo Produtivos** são os Centros de Custo do "chão de fábrica", ou seja, as atividades relacionadas à produção dos produtos propriamente dita. Podem ser subdivididos de acordo com a estrutura produtiva. Exemplos podem ser setores de Fundição, Forjaria, Tratamento Térmico, Montagem, Pintura, um setor de Tornoamento num arranjo físico funcional, uma Célula de Manufatura numa estrutura celular, ou ainda um departamento de usinagem de peças pequenas, complementos do produto.

Cada uma dessas áreas, dependendo do número de atividades, podem ainda ser subdivididas em mais Centros de Custo para melhor utilização e controle. Outros exemplos típicos de Centros de Custos, são os setores de Almoxarifado, Inspeção de Produção, Expedição, Estoques de matéria-prima e etc.

Os gastos realizados na estrutura produtiva devem ser debitados contra o Centro de Custo gerador dessas despesas, classificando-se então os gastos diretos de produção, provenientes dos Centros de Custo Produtivos e os gastos indiretos, gerados pelos demais Centros de Custo. Os gastos gerados pelos Centros de Custo indiretos são distribuídos periodicamente, geralmente por mês, entre os Centros de Custo Produtivos, assim como outras despesas, tais como os insumos, formando assim o custo do Centro de Custo Produtivo. Esse processo será melhor detalhado a seguir.
3.3.2. Determinação do Custo por Peça

A partir do fluxo operacional de uma determinada peça, é possível saber onde os custos ocorreram, ou seja, através dos Centros de Custo em que a peça sofre transformação, será computado o custo correspondente ao tempo em que a peça permaneceu em operação nesses Centros de Custo.

A determinação do custo de fabricação para determinada peça, pode ser expressa por:

\[C_F = C_{mpd} + \sum_{j=1}^{m} Hf_j \times Ch_j \]

(3.17)

Onde:

- \(C_F \) - Custo por peça
- \(C_{mpd} \) - Custo da matéria-prima direta
- \(Hf_j \) - Horas de fabricação em cada Centro de Custo
- \(Ch_j \) - Custo horário de cada Centro de Custo
- \(j \) - Centro de Custo

3.3.3. Formação do Custo Horário do Centro de Custo

O custo horário é formado pelo custo departamental do Centro de Custo dividido pelo número de horas reais trabalhadas no período. Por sua vez, o custo departamental é formado pelos gastos departamentais lançados mês a mês. Esses gastos departamentais são formados por:

\[\text{Salários diretos de produção + Despesas gerais} \]
Os salários diretos de produção são aqueles pagos à mão-de-obra aplicada diretamente à produção, que corresponde às horas reais trabalhadas. Todos os outros salários não aplicados diretamente na produção do produto são considerados como salários indiretos e lançados em contas para posterior rateio entre os Centros de Custo Produtivos. Existem duas categorias de salários indiretos, os salários indiretos de horistas e os salários indiretos de mensalistas.

Os custos denominados despesas gerais, ou também conhecidos como "overhead", são aqueles que não se associam diretamente com os produtos fabricados, sendo praticamente impossível medir precisamente o quanto das despesas gerais devem ser atribuídas a um determinado produto. Contudo, o custo total de despesas gerais é parte do custo total dos produtos fabricados, e portanto é necessário alocá-las a cada unidade de produto [23].

As despesas gerais são a soma de todos os gastos próprios gerados pelo Centro de Custo, amortizações e rateios de despesas da fábrica em geral. As despesas gerais são compostas por diversos itens, a saber:

1) Despesas Operacionais — despesas diversas tais como telex, telefone, despesas de viagens, despesas com veículos, assistência médica e hospitalar e etc. Exemplos de despesas Operacionais podem ser vistas no Formulário do ANEXO 1.

2) Depreciações — depreciações de todo o ativo fixo como máquinas, prédios, veículos, material de escritório e ferramental vida 2. Os valores típicos de depreciações são:

- Máquinas: depreciação em 5 ou 10 anos
- Prédios: depreciação em 25 anos
- Ferramental vida 2: depreciação em 5 anos
O restante dos itens como móveis, veículos, material de escritório e etc, tem cada um sua depreciação própria. O ferramental é composto por todos os acessórios utilizados nas operações de fabricação de um produto. Exemplos de ferramental são os dispositivos de fixação, dispositivos de inspeção, ferramentas, instrumentos de medição e calibradores. O ferramental, em termos de vida, pode ser classificado conforme mostra a Tabela 3.1.

Tabela 3.1 - Classificação do Ferramental quanto à Vida

<table>
<thead>
<tr>
<th>CLASSIFICAÇÃO</th>
<th>DESCRIÇÃO</th>
<th>EXEMPLOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vida 1</td>
<td>ferramental perecível</td>
<td>insertos de metal duro, dressadores e ferram em geral</td>
</tr>
<tr>
<td></td>
<td>com vida inferior</td>
<td></td>
</tr>
<tr>
<td></td>
<td>a um ano</td>
<td></td>
</tr>
<tr>
<td>Vida 2</td>
<td>ferramental durável</td>
<td>dispositivos calibradores e inst. em geral</td>
</tr>
<tr>
<td></td>
<td>com vida superior</td>
<td></td>
</tr>
<tr>
<td></td>
<td>a um ano</td>
<td></td>
</tr>
</tbody>
</table>

3) Material Indireto — todo material consumido nos processos produtivos, mas que não fazem parte do produto. Esses materiais incluem o ferramental vida 1, combustíveis, fluido refrigerante, lubrificantes e etc.

4) Salários do Grupo Horistas — todos os salários indiretos acrescidos dos encargos sociais do grupo de funcionários horistas.

5) Salários do Grupo Mensalistas — todos os salários indiretos acrescidos dos encargos sociais do grupo de funcionários mensalistas.

6) Seguros — valores pagos pelo seguro de todo o ativo fixo do Centro de Custo, gasto mensalmente. O ativo fixo inclui os prédios, máquinas, móveis e etc.
7) Energia Elétrica - toda a eletricidade consumida pela fábrica rateada nos Centros de Custo Produtivos, de acordo com a potência instalada de cada Centro de Custo.

8) Despesas com Aquisição e Fabricação de Ativo Imobilizado - valores do ferramental vida 2 que não atingem o valor mínimo para capitalização, por esse motivo não sofrem depreciação e tem seu valor lançado integralmente nos gastos do mês.

9) Despesas com Impostos na Aquisição de Ativo Imobilizado - todos os impostos pagos aos bens de ferramental vida 2 e outros bens.

Assim, com a somatória de todos esses itens descritos anteriormente, tem-se o total de despesas próprias do Centro de Custo, que somado aos salários diretos de produção formam o custo departamental.

3.4. Discussão sobre os Modelos Apresentados

Conforme descrito na introdução desse capítulo, tem-se dois modelos distintos de cálculo do custo por peça. O primeiro modelo apresenta-se com um grande nível de detalhamento, além de considerar as condições de usinagem. Na realidade, esse modelo foi desenvolvido para o estabelecimento das condições econômicas de usinagem, principalmente para a determinação da velocidade de mínimo custo [20]. Em função desse modelo ser mais detalhado, pode-se considerá-lo como um modelo mais preciso, sob o ponto de vista do resultado no cálculo do custo unitário da peça. Ele se apresenta como uma análise de cada operação, em cada máquina-ferramenta de cada peça em estudo. No entanto, ele também apresenta algumas "distorções" para a cálculo dos custos. No item 3.3.3.2 do cálculo do custo da mão-de-obra, por exemplo, o salário mais sobre-taxas incluem, além dos
encargos sociais, outros custos mencionados, tais como os de supervisão, serviços gerais, administração técnica e geral da fábrica, custos esses considerados como indiretos. Como tal, devem ser alocados no custo da peça de forma clara, isto é, a citação apresentada na literatura [20] a respeito destes custos é inadequada, pois apenas comenta sobre eles, mas não diz de maneira objetiva como devem ser inseridos nesse cálculo. Concomitantemente, esse modelo é de difícil implantação no sistema de manufatura por duas razões. A primeira é a necessidade da existência de um planejamento e controle das variáveis do processo muito acurado, ou, no mínimo muito complexo. A segunda razão, entendida como a principal, deve-se ao fato desse tipo de coleta e controle das informações necessárias ser quase impraticável para o sistema contábil da empresa.

Quanto ao segundo modelo, baseado em Centros de Custo, apesar de ser utilizado na maior parte dos sistemas produtivos da indústria metal-mecânica da atualidade, ele é menos preciso do que o baseado na máquina-ferramenta. O motivo principal é que ele não faz diferenciação no fluxo operacional de determinada peça dentro do Centro de Custo, remunerando assim máquinas de características diferentes sob o ponto de vista de custos. Uma outra razão, considerada como secundária, deve-se ao fato de que os custos chamados indiretos, ou gastos dos Centros de Custos não-produtivos, são pagos pelos Centros de Custo produtivos, tendo como base um sistema de rateio baseado nas horas da mão-de-obra. Tudo isso provoca um "mascaramento" no custo final do produto.

Para exemplificar essas divergências existentes no sistema de administração de custos tradicional, as indústrias executam análises de decisão para executar ou não determinada peça complexa dentro da empresa, ou comprá-la de terceiros. Em certos casos, as empresas decidem enviar as peças para serem fabricadas por terceiros, pois conseguem
preços muito menores do que se produzissem nas internamente. Existe relatos de que isso ocorre, em nenhum dos casos, devido ao sistema de rateio com base nas horas da mão-de-obra e da não diferenciação do histórico de fabricação da peça. O modelo baseado em Centros de Custo proporciona esse "mascaramento", resultando em um custo, em diversos casos, muito diferentes do real [44].

Dessa forma, decidiu-se estudar um modelo que pudesse, se não resolver totalmente, pelo menos atenuar esse problema na determinação e cálculo dos custos de determinada peça. A ideia é estabelecer um modelo que permita praticar um meio termo entre esses dois tipos de modelos de cálculo dos custos apresentados. Partindo do sistema de rateio já existente e com base na estrutura de Centros de Custo, pois essas condições não provocam alterações radicais no cálculo do custo por peça utilizado nas empresas, a principal proposta do trabalho é a realização de uma avaliação da máquina-ferramenta, ponderando-a a partir de critérios essencialmente relacionados com os custos envolvidos com essa máquina e sua produtividade.

Em resumo, ter-se-á uma contribuição da máquina-ferramenta no Centro de Custo sob o ponto de vista de critérios técnicos, como por exemplo o nível de automação da máquina; e um outro tipo de contribuição, tendo em vista aspectos de custo relacionados à máquina, tais como, seu preço atualizado, custo de manutenção e etc, denominados Fator de Contribuição Técnico e Fator de Contribuição de Custo e Produção, respectivamente, e, descritos a seguir.
Capítulo IV
4. PROPOSTA DE MODELO PARA CALCULO DE CUSTOS COM FATOR DE CONTRIBUIÇÃO DA MAQUINAS-FERRAMENTA EM CENTROS DE CUSTO

4.1. Máquinas-ferramenta - Definições e Tipos

Na indústria Metal-mecânica, as exigências mercadológicas, visando a competitividade, impõem a necessidade de fabricar um certo número de componentes de um determinado produto dentro de faixas de tolerâncias. Com o auxílio do ferramental adequado, aplicado a uma determinada máquina-ferramenta, é possível cumprir tal necessidade. O produto produzido pode ser um motor de combustão interna, uma máquina, um automóvel ou qualquer outro sistema mecânico.

As máquinas-ferramenta têm o objetivo fundamental de transformar fisicamente ou quimicamente um corpo, ou componente, seja em sentido geométrico (forma) ou dimensional. essa transformação física proporciona a esse corpo uma forma diferente da inicial [45].

A transformação total desse componente, até as dimensões finais especificadas, ocorre normalmente em diversas máquinas-ferramenta, segundo uma sequência operacional pré-estabelecida. A peça deve ser transformada gradualmente, através de uma série de operações, até ser obtida sua forma final.

"A máquina-ferramenta é um conjunto de órgãos, capazes de imprimir movimento à ferramenta e à peça a ser trabalhada, de maneira que esta adquira uma forma determinada [46]. Numa definição mais ampla, fornecida pela norma DIN 69651, as máquinas-ferramenta são definidas da seguinte forma [47]":
Máquinas-ferramenta são máquinas providas de uma fonte de potência, com estrutura não portátil, usadas para uma variedade de processos de produção, com o auxílio de processos físicos, químicos ou quaisquer outros tipos. Esses processos de produção, relacionados principalmente com a fabricação de componentes metálicos, incorporam fundição, forjamento, usinagem e processos de montagem (união de componentes), quando necessário com a adição de materiais ou outros elementos. As máquinas-ferramenta provocam a interação de ferramenta e peça simultaneamente, para a partir de movimentos relativos entre eles, definir geometricamente a forma final da peça, como resultado do processo de produção.

4.1.1. Classificação das Máquinas-ferramenta

Uma variação constante da demandeda de mercado tem conduzido o desenvolvimento de diversos tipos de máquinas-ferramenta, que podem ser classificadas de acordo com suas funções. Além disso uma sub-classificação é possível, em relação a critérios de dimensões, precisão, forma de construção, grau de automação e controle [48].

A Figura 4.1, mostra uma divisão tecnológica das máquinas-ferramenta, de acordo com a norma DIN 69851. Os grupos principais são máquinas para fundição e conformação, e máquinas para usinagem.
Figura 4.1: Classificação das máquinas-ferramenta de acordo com a Norma DIN 8651 [47].
Os grupos de máquinas mostrados na Figura 4.1, são descritos como [47]:

a) Máquinas para Fundição - produzem componentes acabados ou parcialmente acabados, através de materiais amorfós (líquidos ou em pó).

b) Máquinas para Conformação - são, em grande parte, usadas para trabalhar com componentes, geralmente acabados, submetidos a uma transformação plástica com a finalidade de obter-se peças com características próprias quanto à forma e dimensões.

c) Máquinas para operações de junção/união - utilizam-se de processos diferentes (soldagem, brazagem, adesão, dobramento e etc) para união de diversos componentes.

d) As Máquinas para Usinagem - podem ainda ser subdivididas em:

 d1) Máquinas de Separação metálica (corte) - produzem produtos parcialmente acabados, formas e contornos específicos através do corte ou cisalhamento, particularmente em chapas metálicas.

 d2) Máquinas-ferramenta para Usinagem de Corte - utilizam uma ferramenta de corte para remoção do material com a finalidade de produzir uma forma requerida.

 d3) Máquinas de Erosão - utilizam processos físicos e químicos para remoção de material.

As máquinas-ferramenta de usinagem (corte), no caso de um enfoque com maior profundidade, podem geralmente trabalhar com elementos que possuem um eixo de rotação ou componentes prismáticos, ou seja, realizar trabalho em
elementos cilíndricos, planos ou combinados. Essas máquinas-ferramenta dividem-se em um grande número de tipos e se distinguem pela função que desempenham [45]. Um mesmo gênero de máquinas pode ser divididas em [45]: horizontal, vertical, semi-automática, automática, para trabalhos externos, para trabalhos internos, etc. Um torno, por exemplo, pode ser classificado como: torno paralelo, torno automático, torno vertical, torno de placa, torno copiador, torno a comando numérico computadorizado ou mesmo como centro de tornearmento e ainda outras denominações. Uma retificadora como: retificadora plana, retificadora externa, retificadora interna, retificadora para engrenagens, retificadora de perfil, etc. Uma furadeira como: furadeira de coluna, furadeira de bancada, furadeira radial, etc.

4.1.2 Requisitos Gerais no Projeto das Máquinas-Ferramenta

É esperado das máquinas-ferramenta que cumpram as necessidades para implementação dos avanços tecnológicos na produção. Isto implica em dizer que, não somente a capacidade funcional deve ser exercida, mas também uma condição econômica de operação [46].

Como pode ser visto na Figura 4.2, as seguintes áreas de problemas surgem para cumprir as necessidades das máquinas-ferramenta [46]:

- a) Precisão (geométrica e cinemática).
- b) Estabilidade.
- c) Automação.
- d) Confiabilidade.
- e) Influências externas (ruído, corrosão, etc).
Figura 4.2 - Considerações fundamentais para Construção das Máquinas-ferramenta [40].

4.1.3. Requisitos Específicos para Escolha da Máquina-ferramenta

Conforme descrito anteriormente, na definição da forma de um componente, podem ser necessárias diversas operações mecânicas em diversas máquinas-ferramenta. A escolha da máquina-ferramenta, sob o ponto de vista da fabricação de um determinado componente, segue o requisito principal de que esta máquina satisfaça as especificações desse produto, de acordo com os seguintes fatores [40,45]:

a) Aspecto e forma da superfície - é necessário cumprir as especificações dimensionais e geométricas em um elemento a ser fabricado, produzindo-se movimentos entre ferramenta e peça. Diante desse fato, a escolha depende das funções características que distingue as máquinas-ferramentas. Por exemplo, a obtenção de um sólido de revolução se origina através da rotação ao redor de um eixo, e, deve ser obtida
por meio de uma máquina provida de movimento rotacional contínuo, como um torno. O torno permite a rotação da peça ao redor de seu eixo, combinando com os movimentos transversal e longitudinal da ferramenta.

b) Dimensões do componente – é necessário também limitar a escolha da máquina com relação à potência que deverá ser absorvida na fabricação. A potência necessária deve ser em função dos parâmetros operacionais do processo (material da peça, condições de usinagem, profundidade de corte, etc).

c) Quantidade de peças a ser produzida – selecciona-se a máquina de acordo com a quantidade e diversificação das peças, escolhendo a mais adequada entre os tipos convencional, semi-automático, automático, CNC, ou especial.

d) Precisão requerida – para trabalhos que requerem maior precisão, emprega-se máquinas-ferramenta com capacidade suficiente para cumprir as especificações de tolerâncias dimensionais, geométricas e de acabamento superficial.

A escolha da máquina-ferramenta, além de seguir os critérios acima descritos, também pode surgir da necessidade de utilização das máquinas disponíveis no parque fabril. Isso só é possível desde que a máquina atenda os requisitos que venham a garantir as especificações. Em ambos os casos, quando se faz uma escolha específica, ou quando deseja-se uma tentativa de aproveitamento de uma máquina existente, as máquinas-ferramenta a serem utilizadas são bastante diferenciadas entre si, devido a grande diversificação dos tipos existentes. É evidente que há um grande número de características a serem analisadas na escolha da máquina, mas justamente essas características exigem uma avaliação das máquinas-ferramenta, de acordo com determinados critérios, de modo a considerar-se essas diferenciações.
4.2. Fator de Contribuição Baseado nos Custos da Máquina-ferramenta

4.2.1. Características que influenciam no Custo da Máquina-ferramenta

As características que têm influência no custo, são fatores próprios e inerentes às máquinas-ferramenta, tais como: Automação, Precisão, Flexibilidade, Produtividade e Potência. O objetivo é demonstrar que essas características são importantes atualmente, e estão, direta ou indiretamente relacionadas com o custo da máquina-ferramenta.

Segundo McKEOWN [42] existem, na atualidade, dois principais campos de investimentos em Engenharia de Manufatura em todo o mundo: automação e a fabricação com alta precisão. A Automação, e em particular a manufatura flexível com integração computacional, utiliza-se de tecnologias importantes, tais como sistemas CADCAM ("Computer Aided Design" e "Computer Aided Manufacturing"), FMS ("Flexible Manufacturing") e o CIM ("Computer Integrated Manufacturing"), que objetivam a redução do "lead-time" e dos custos totais de fabricação, em sistemas de produção por lotes [42]. A fabricação com alta precisão, ainda não é muito difundida, mas seu desenvolvimento tem progredido rapidamente nos últimos anos. Grande parte dos produtos, classificados como de alta tecnologia, dependem muito desse desenvolvimento, realizado através de áreas denominadas de Mecânica ou Engenharia de Precisão, Micro-engenharia ou Nanotecnologia [43].

Além dos anteriores, pode ser citada a importância dos índices de Produtividade e Flexibilidade. A Flexibilidade é um parâmetro importante a ser considerado no contexto da produção moderna, já que as condições ditadas pelo mercado consumidor, através da diversificação e reduzida vida útil

Segundo AGGAEWAL [49], o padrão de vida de uma nação é dependente sobretudo de suas fontes de recursos e da produtividade de seu povo. As alterações de produtividade têm sido reconhecidas como o fenômeno social e econômico mais influente nos níveis de pagamentos; relações custo-preço; necessidades de investimentos de capital; utilização da mão-de-obra e também posição competitiva internacional. Além de outros fatores, a necessidade da medida de produtividade visa conhecer o desempenho relativo entre os departamentos de uma empresa [50]. Não existe uma medida única de produtividade envolvendo diversos aspectos. Mas, através do uso de algumas medições separadas, pode-se obter um resultado na produtividade global da organização [49, 50]. Os complexos industriais têm uma preocupação constante com a produtividade e fazem investimentos em tecnologia buscando formas de melhoria que possam provocar sua otimização [2].

Outra característica importante nas máquinas-ferramenta é a potência nominal da máquina. A evolução da tecnologia das ferramentas de corte, com a consequente melhoria das máquinas-ferramenta, alterou substancialmente o índice de remoção de material por um certo espaço de tempo [50], ou seja a potência da máquina-ferramenta influencia muito a fim de cumprir tal exigência.

4.2.1.1. Nível de Precisão

A ABNT - Associação Brasileira de Normas Técnicas, através do Comitê Brasileiro de Elétrica, define precisão como sendo a extensão pelo qual se distribuem as medições repetitivas de um mesmo elemento [51]. A dispersão dos resultados também é chamada de desvio padrão das medições.
isto significa que quanto menor for essa dispersão, mais preciso é o sistema.

Numa definição mais ampla, muito usada nos meios produtivos, a precisão é a somatória de todos os erros existentes nesse sistema, desde a dispersão citada anteriormente até os erros aleatórios e sistemáticos do sistema, ou seja, é a incerteza total da máquina-ferramenta. O termo precisão a ser utilizado a seguir, estará de acordo com essa definição mais ampla.

TANIGUCHI [52] apresenta um desenvolvimento da precisão de usinagem alcançada nos últimos setenta anos, descrito numa classificação generalizada em:

- Usinagem Convencional: até valores da ordem de 5 um.
- Usinagem de Precisão: valores de 5 um a 0,05 um.
- Usinagem de Ultra Precisão: valores de 0,05 um a 0,005 um.

A partir do gráfico do Desenvolvimento Alcance de pela Precisão de Usinagem [52], tomando-se a ordenada para os anos 80, onde os registros são históricos, pode-se montar a Tabela 4.1, que apresenta os valores numéricos alcançados, as máquinas e sistemas de medição.
Tabela 4.1 - Valores de Precisão de Usinagem, Máquinas e Sistemas de Medicação, conforme a Classificação do Processo até os Anos 80.

<table>
<thead>
<tr>
<th>FAIXA</th>
<th>MAQUINAS-FERRAMENTA</th>
<th>MEIOS DE CONTROLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>acima de</td>
<td>Tornos, Fresadoras</td>
<td>Pequimetros</td>
</tr>
<tr>
<td>0,1 mm</td>
<td>Tornos de Precisão,</td>
<td>Comparadores Mécanicos</td>
</tr>
<tr>
<td></td>
<td>Retificadoras, Lapidadores,</td>
<td>Micrômetros, "Dial</td>
</tr>
<tr>
<td></td>
<td>Erunidoras</td>
<td>indicators"</td>
</tr>
<tr>
<td>0,01 mm</td>
<td>Maq. de Super-acaba/toca</td>
<td>Micrômetros Elétricos ou</td>
</tr>
<tr>
<td>a</td>
<td>Mandriladoras de Prec.</td>
<td>Pneumáticos, Comparadores</td>
</tr>
<tr>
<td>1 um</td>
<td>Retificadoras "Jip"</td>
<td>Ópticos</td>
</tr>
<tr>
<td>1 um</td>
<td>Retificadoras de Prec.</td>
<td>Escalas Opto-magnéticas</td>
</tr>
<tr>
<td></td>
<td>Lapidadoras de Prec.</td>
<td>Comparadores Elétricos</td>
</tr>
<tr>
<td></td>
<td>Tornos Usin. c/Diamante</td>
<td>e Comparadores Elétronicos</td>
</tr>
<tr>
<td>0,1 um</td>
<td>Retific. de Precisão c/Diamante, Retif. de Ultra Precisão</td>
<td>Instrumentos de medição LASER, "Talysurf",</td>
</tr>
<tr>
<td></td>
<td></td>
<td>"Talyround"</td>
</tr>
<tr>
<td>0,01 um</td>
<td>Retif. de Super-alta Prec., Lapidadoras de Super-alta Precisão</td>
<td>LASERs de Alta-precisão</td>
</tr>
<tr>
<td></td>
<td>Inst. de med. "Doopler"</td>
<td>"Talysteps"</td>
</tr>
<tr>
<td>abaixo de</td>
<td>Usinagem Atômica ou</td>
<td>Microscópicos Elétricos</td>
</tr>
<tr>
<td>0,001 um</td>
<td>Deposição Molecular</td>
<td>de Varredura, de Transmissão, "Ion analysers"</td>
</tr>
</tbody>
</table>

A partir da tabela de classificação anterior, estabelece-se uma outra tabela, subdividindo-se os três itens da classificação: Usinagem Convencional, Usinagem de Precisão e Usinagem de Ultra-precisão. Segundo AGOSTINHO [53], na grande maioria das construções mecânicas, são empregadas as classes IT 5 a IT 9, que, para um grupo de dimensões de 1 mm a 120 mm, significa valores de 4 um (menor valor da classe IT 5) até 87 um (maior valor para a classe IT 9). Tomando-se o que é classificado como Usinagem...
Convencional, justificando-se a maior aplicação dessa faixa na atualidade, atribui-se a essa classificação do processo outros três sub níveis. A classificação dos processos é mostrada na Tabela 4.2.

Tabela 4.2 - Classificação e Precisão dos Processos.

<table>
<thead>
<tr>
<th>CLASSIFICAÇÃO DO PROCESSO</th>
<th>FAIXA (um)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Usinagem Convencional</td>
<td>inferior a 100</td>
</tr>
<tr>
<td></td>
<td>de 100 a 10</td>
</tr>
<tr>
<td></td>
<td>de 10 a 5</td>
</tr>
<tr>
<td>Usinagem de Precisão</td>
<td>de 5 a 0,05</td>
</tr>
<tr>
<td>Usinagem de Ultra-precisão</td>
<td>de 0,05 a 0,005</td>
</tr>
</tbody>
</table>

4.2.1.2. Índices de Produtividade

A Produtividade pode ser definida como a relação entre o resultado e o recurso pertinente a cada indústria ou setor da economia [50]. A medida da Produtividade é possível ao estabelecer-se uma relação entre a produção obtida e a quantidade de trabalho realizada.

É importante ter equipamentos de alta produtividade nos setores industriais. Quando se discute a produtividade de máquinas-ferramenta, há quase sempre preocupação em utilizar índices simples. Esses índices específicos são empregados frequentemente por permitirem medidas simples, repetitivas e precisas dos parâmetros chave que afetam os parâmetros de entrada ou saída da produção industrial.

A Tabela 4.3, lista alguns exemplos de índices de produtividade, normalmente usados para máquinas-ferramenta,
extraídos da Tabela 2.2 de Indices de produtividade para Máquinas-ferramenta (20).

Tabela 4.3 - Indices de Produtividade para Máquinas-ferramenta.

<table>
<thead>
<tr>
<th>RELAÇÃO COM</th>
<th>INDICE DE PRODUTIVIDADE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Produção (4.1)</td>
<td>horas de produção reportadas</td>
</tr>
<tr>
<td></td>
<td>horas totais previstas</td>
</tr>
<tr>
<td>Manutenção (4.2)</td>
<td>horas de manutenção reportadas</td>
</tr>
<tr>
<td></td>
<td>horas totais disponíveis</td>
</tr>
<tr>
<td>Rejeição (4.3)</td>
<td>número de peças rejeitadas</td>
</tr>
<tr>
<td></td>
<td>número total de peças produzidas</td>
</tr>
</tbody>
</table>

O índice de produção dos equipamentos define o percentual de tempo realmente trabalhado em função do tempo disponível. O resultado ideal é uma relação igual a 1, ou o valor mais próximo possível. Ou seja, a meta é que as horas de trabalho reportadas sejam iguais às horas totais previstas. O índice de Manutenção busca refletir o percentual de tempo de manutenção da máquina em função do tempo disponível. Pequenos resultados da relação proposta indicam necessidade menor de manutenção da máquina-ferramenta. O valor ideal para o índice de Rejeição é zero, ou o mais próximo possível, pois o objetivo é que a quantidade de peças rejeitadas seja a menor possível em relação às peças produzidas, como indicativo da qualidade conseguida na máquina-ferramenta.

4.2.1.3 Índice de Flexibilidade

A flexibilidade pode ser conceituada como sendo a capacidade do sistema de produção de adaptar-se às mudanças.
Ela pode ser subdividida em dois tipos: flexibilidade de longo prazo e flexibilidade de curto prazo. A flexibilidade de longo prazo é a capacidade do sistema em absorver as mudanças de produtos. A flexibilidade de curto prazo (f_c), por outro lado, é a capacidade do sistema de absorver as mudanças das peças nas estações de trabalho, ou seja, a flexibilidade em montagens de máquinas para novas peças, e pode ser descrita como (50):

$$ f_c = \frac{\sum_{i=1}^{n} t_{pi}.n_{pi}}{t_a} $$ (4.4)

Onde:

- t_a - capacidade instalada da empresa
- t_i - tempos improdutivos que ocorrem durante a operação
- t_{pi} - tempo de montagem correspondente à preparação ("set up") da máquina para se montar a peça i.
- n_{pi} - número de vezes que é preparada a máquina para a fabricação a peça i.

A flexibilidade de curto prazo varia de $1 > f_c > 0$, sendo 1 o melhor valor. Esse índice está relacionado, principalmente, com os tempos improdutivos e tempos de preparação da máquina. Diante disso, a máquina que proporcionar menores tempos improdutivos e necessitar de menor tempo de preparação, tem, consequentemente, maior flexibilidade. Essa característica é incorporada ao seu custo. Como exemplo, pode ser citado o caso de máquinas CNC, que possibilitem a montagem de várias ferramentas no castelo ou magazine.
4.2.1.4 Potência e Rigidez

A potência útil de uma máquina-ferramenta para usinagem, é a potência teórica necessária para remoção de certa quantidade de material [40]. No dimensionamento de uma máquina-ferramenta, para que o nível de potência especificado seja alcançado, sem prejuízo do desempenho desejado, há necessidade que a máquina tenha rigidez o suficiente para cumprir tal objetivo.

O critério de potência e rigidez da máquina-ferramenta está relacionado, principalmente, com a taxa de remoção de material. Geralmente, uma máquina-ferramenta é projetada para resistir às forças correspondentes às operações em plena potência. Assim sendo, a potência necessária para uma determinada operação deve ser uma das principais considerações na escolha da máquina-ferramenta [40].

4.2.1.5. Nível de Automação

A automação é um termo muito discutido atualmente, não somente no aspecto tecnológico, mas também na complexidade e dificuldade de obter-se uma definição comum do seu significado. De acordo com a revisão bibliográfica, realizada por BATOCCHIO [2], existem diversos enfoques nos aspectos da Automação, desde características tecnológicas até características técnico-organizacionais.

Segundo definição encontrada em dicionários, automação é a utilização de máquinas que necessitam de pouco ou nenhum controle humano, ou equipamentos automáticos na indústria [54,55]. KAPLINSKY [56] fornece dez níveis de automação de Amber & Amber em 1964, através da Tabela 4.3.
<table>
<thead>
<tr>
<th>ORDEN DE AUTOMAÇÃO</th>
<th>ATRIBUTO HUMANO</th>
<th>EXEMPLOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Máquinas e ferramentas manuais</td>
<td>nenhum</td>
<td>pé, face, máq. de costura</td>
</tr>
<tr>
<td>2. Máquinas e ferramentas elétricas</td>
<td>energia</td>
<td>furadeira</td>
</tr>
<tr>
<td>3. Máquinas automáticas de ciclo único</td>
<td>destreza</td>
<td>torno, furadeira radial</td>
</tr>
<tr>
<td>4. Máquinas de ciclo repetitivo</td>
<td>diligência</td>
<td>torno, copiador</td>
</tr>
<tr>
<td>5. Máquinas com sistemas de medição auto-ajustáveis com realimentação</td>
<td>julgamento</td>
<td>máquinas com controle adaptativo</td>
</tr>
<tr>
<td>6. Máquinas com Controle Computacional</td>
<td>avaliação via algoritmo programado</td>
<td>robôs para montagem, sist. CAD</td>
</tr>
<tr>
<td>7. Auto programação limitada</td>
<td>aprendizado</td>
<td></td>
</tr>
<tr>
<td>8. Relação causa-efeito</td>
<td>raciocínio lógico</td>
<td>previsão de vendas, tempo</td>
</tr>
<tr>
<td>9. Originalidade</td>
<td>criatividade</td>
<td></td>
</tr>
<tr>
<td>10. Outros comandos</td>
<td>dominância</td>
<td></td>
</tr>
</tbody>
</table>

Entretanto, a automação na máquina-ferramenta não pode ser analisada somente sob os critérios dos mecanismos próprios da máquina, como os graus de liberdade, eixos programáveis, sistemas de acionamento e etc. É necessário analisar também os aspectos que tornam todo o sistema automatizado, ou seja, o manuseio, a carga/descarga e a fixação das peças [57].
Essa análise mais ampla deve-se ao fato de que essas características são incorporadas às máquinas-ferramenta independentemente da peça que está sendo fabricada. Em um torno, por exemplo, uma placa de fixação pneumática ou hidráulica é um dispositivo de fixação da própria máquina, apesar de existir a possibilidade de troca das castanhas de fixação no momento em que a peça de trabalho é mudada. Um outro exemplo similar pode ser descrito para um sistema de carga/descarga de uma retificadora, realizado por um robô. O robô é incorporado à máquina, e no momento em que existe a alteração do tipo de peça, troca-se a garra para manuseio da peça pelo robô.

Os termos fixação e manuseio podem ser definidos como [87]:

Manuseio – todos os processos que são caracterizados com a movimentação, carga/descarga ou com o transporte das peças entre as estações de trabalho, como por exemplo o colocação correta da peça em um sistema de fixação.

Fixação – é o processo relacionado às seguintes operações: posicionamento, localização e fixação das peças. O termo posicionamento descreve as operações que determinam a posição da peça em relação à ferramenta. A localização, os métodos de prevenção de deflexão da peça que pode ocorrer devido às forças da usinagem, forças da gravidade e força de fixação. A fixação significa a utilização de elementos que exercem força na peça e mantêm contato entre eles (elementos de fixação e peça), de modo a anular todos os graus de liberdade da peça, evitando, assim, movimentos da peça na fabricação.

Segundo TUFFENTSAMMER [87], o nível de automação desses aspectos é definido em estágios, de acordo com sua complexidade, desde manual, até totalmente automatizado. Os
Tabela 4.4 - Níveis de Automação nas Operações de Manuseio e Fixação [57].

<table>
<thead>
<tr>
<th>NIVEL DE AUTOMAÇÃO</th>
<th>FIXAÇÃO</th>
<th>COMBINAÇÃO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>pinça, placa carregado</td>
<td>manual</td>
</tr>
<tr>
<td></td>
<td>manual e/ castanhas, manual-</td>
<td>de faceamento</td>
</tr>
<tr>
<td></td>
<td>transporte</td>
<td>mente</td>
</tr>
<tr>
<td>2</td>
<td>sistema mandril com transporte</td>
<td>manual-</td>
</tr>
<tr>
<td></td>
<td>acionamento no transporte</td>
<td>automa-</td>
</tr>
<tr>
<td></td>
<td>transesp. pá ou na mão transporte</td>
<td>tizado</td>
</tr>
<tr>
<td>3</td>
<td>robôs fixação transporte</td>
<td>automática</td>
</tr>
<tr>
<td></td>
<td>transporte</td>
<td>tizado</td>
</tr>
<tr>
<td>4</td>
<td>auto-acionada auto-acionada transporte</td>
<td>adaptando-se</td>
</tr>
<tr>
<td></td>
<td>o/aproximação A peça</td>
<td>automatica</td>
</tr>
<tr>
<td></td>
<td>da peça</td>
<td>(auto-ac.)</td>
</tr>
</tbody>
</table>

4.2.2. Definição do Fator de Contribuição

A definição do Fator de Contribuição surge da necessidade de caracterizar a contribuição de cada máquina-ferramenta pertencente a um determinado Centro de Custo. Essa contribuição visa diferenciar o grau de importância de certa máquina em relação a outras do Centro de Custo. O fator de contribuição proposto considera os custos inerentes a essa máquina, aos quais estão incorporadas as características descritas no tópico anterior, ou seja o custo de uma determinada máquina é consequência das vantagens de cada uma das características mencionadas.
anteriormente. Dessa forma, o fator de contribuição (FCₐ) pode ser calculado como:

\[
FC_1 = \frac{[(CM_1/100) + P_1] \times n}{\sum_{i=1}^{n} [(CM_i/100) + P_i]} \quad (4.5)
\]

Onde:

CMᵢ = Custo calculado percentual da máquina i
Pᵢ = Produtividade calculada para a máquina i
n = número de máquinas do Centro de Custo

4.2.2.1. Custo Calculado Percentual da Máquina no Centro de Custo

O custo calculado percentual da máquina no Centro de Custo pode ser calculado de acordo com a seguinte sequência:

(1°) Somatória do custo total relativo à máquina:

\[C_{tmi} = C_{mk1} + C_{a1} + C_{mci} + (C_{mci}.E_{m1}) \quad ([]) \quad (4.6) \]

Onde:

C_{tmi} = Custo total relativo à máquina i \quad ([])
C_{mk1} = Valor atualizado da máquina i \quad ([])
C_{a1} = Custo atualizado de acessórios da máquina i \quad ([])
C_{mci} = Custo de conservação da máquina i \quad ([])
C_{mci} = Custo atual do espaço físico \quad ([$/m²])
E_{m1} = Espaço físico ocupado pela máquina i \quad ([m²])
O custo atualizado da máquina pode ser calculado de acordo com a equação (2.2), apresentada no capítulo 2, assim como o custo atualizado dos acessórios da máquina. Os acessórios é todo ferramental incorporado à máquina, classificados como ferramental vida 2, mas que não são específicos às peças fabricadas, por exemplo, uma placa de fixação em um torno, um contra-ponto especial ou um "pallet" em um centro de usinagem.

O custo de conservação da máquina é dado pela escatória de todo custo de manutenção realizada na máquina ao longo do tempo. Esse custo pode ser calculado como sendo uma porcentagem anual relativa ao preço da máquina, o valor de contratos de manutenção por um certo período, ou horas de manutenção reportadas multiplicado pelo custo por hora de manutenção. Qualquer que seja a forma de cálculo do custo com manutenção, esse montante deve ser considerado ao longo de toda a vida útil da máquina.

O custo atual do espaço físico é o custo por área na instalação, que multiplicado pelo espaço físico ocupado pela máquina corresponde ao custo do espaço de determinada máquina no Centro de Custo. O custo por área pode ser levantado com base em tabelas da construção civil, para o caso de imóvel próprio, ou em função do preço atual do aluguel do imóvel.

22) Após o cálculo do custo total relativo à máquina para todas as máquinas do Centro de Custo, estabelece-se a de maior valor como sendo correspondente a 100% e o restante das máquinas com valores proporcionais a esta. Sendo assim, tem-se o custo de cada máquina no Centro de Custo, em porcentagem, distribuído de forma decrescente em relação a de maior custo, ou seja, uma máquina que tenha o maior custo envolvido, da ordem de US$ 150,000.00 tem a porcentagem atribuída de 100%, enquanto que uma outra com custos da ordem de US$ 100,000.00 corresponderia a 66,67%.
4.2.2.2. Produtividade

Baseado na definição de produtividade dada por AGOSTINHO [20], a produtividade da máquina pode ser definida como sendo:

\[P_i = \frac{t_{p\text{mat}i}}{t_a} \] \hspace{1cm} (4.7)

Onde:

\(P_i = \) Índice de produtividade da máquina \(i \)
\(t_{p\text{mat}i} = \) Tempo padrão total da máquina \(i \) \hspace{1cm} [\text{horas}]
\(t_a = \) Capacidade instalada \hspace{1cm} [\text{horas}]

Pode-se, portanto, considerar essa produtividade \(P_i \) relativa a cada máquina-ferramenta do Centro de Custo, sendo que o tempo padrão total \(t_{p\text{mat}i} \) é a somatória de todos os tempos padrão das peças que passam por essa máquina e a capacidade instalada \(t_a \) é o tempo disponível para a execução do trabalho.

4.2.2.3. Ponderação do Fator de Contribuição no Custo Horário do Centro de Custo

Esse modelo proposto deve ser utilizado em sistemas produtivos que realizam a formação do custo por peça, conforme descrito no tópico 3.3 do capítulo 3. Assim a equação (3.17) é alterada para:

\[C_P = C_{mP} + \sum_{j=1}^{m} \sum_{i=1}^{n} \ Hf_{j1} \times (C_{hj1} \times FC_{j1}) \] \hspace{1cm} (4.8)
Onde:

\[C_p = \text{Custo por peça} \]
\[C_{mpd} = \text{Custo da matéria-prima direta} \]
\[H_{f1} = \text{Horas de fabricação ou tempo padrão} \]
\[C_{h1} = \text{Custo horário do Centro de Custo} \]
\[F_{ci} = \text{Fator de contribuição da máquina } i \]
\[j = \text{Centro de Custo} \]
\[i = \text{Máquina do Centro de Custo} \]

O resultado no custo horário do Centro de Custo é um novo valor de custo-hora, corrigido com relação à máquina-ferramenta a qual corresponde o fator de contribuição, podendo resultar em um valor maior ou menor do que o custo horário do Centro de Custo anteriormente calculado através do modelo tradicional.

A seguir será descrito o procedimento experimental realizado para o ensaio do fator de contribuição. Esse procedimento experimental incorpora a comparação com os outros modelos apresentados, isto é, o modelo tradicional de cálculo através de Centros de Custo, e o modelo detalhado, sugerido pela literatura \[20\], ambos discutidos no capítulo 3.
Capítulo V
5. PROCEDIMENTO EXPERIMENTAL

5.1. Objetivos

A fim de testar o modelo proposto, optou-se pela estruturação de um Centro de Custo muito próximo do real, que continha todos os dados necessários para a realização do procedimento experimental. O principal objetivo desse capítulo é apresentar todos os custos coletados, os quais são necessários para a formação do custo por peça nos modelos apresentados nos capítulos anteriores, a saber:

- Cálculo de custos baseado no modelo proposto pela literatura [20], que considera aspectos da usinagem.

- Cálculo dos custos baseado no modelo tradicional utilizado pela indústria do ramo metal-mecânico da atualidade.

- Cálculo dos custos baseado na aplicação do fator de contribuição da máquina-ferramenta.

A partir desses cálculos é realizada uma análise comparativa entre os modelos, com posterior discussão das vantagens e limitações encontradas nesse desenvolvimento para a determinação dos custos. Uma consideração inicial importante que deve ser feita é que optou-se por indexar os custos das máquinas, equipamentos, ferramental e todos os insumos levantados em dólares, a fim de manter os resultados do trabalho sempre atualizados. Além disso, tendo em vista a instabilidade econômica vivida pelo Brasil durante as últimas décadas, as taxas anuais de inflação foram desconsideradas, de modo a facilitar o desenvolvimento dos cálculos realizados. O valor para a relação atual cruzeiros/dólar foi de Cr$ 4.204.55/dólar, na cotação do dólar comercial do último dia útil de julho. O restante das
relações Cr$/dólar foram obtidas em tabelas de indicadores econômicos [88].

5.2. Definição da Estrutura do Centro de Custo Experimental

O Centro de Custo escolhido para testar o modelo proposto foi o Laboratório de Usinagem do Departamento de Engenharia de Fabricação da Faculdade de Engenharia Mecânica da UNICAMP, um Centro de Custo para peças de revolução, cuja planta e arranjo físico podem ser vistas na Figura 5.1.

Figura 5.1 – Planta e Arranjo Físico do Centro de Custo.

Esse Centro de Custo possui máquinas, técnicos que operam os equipamentos, supervisão dos serviços realizados, e um Laboratório de Metrologia para a realização do controle de qualidade, que executa, frequentemente, prestação de serviços para a comunidade interna e externa. Ele possui, portanto, infra-estrutura necessária para a realização do procedimento experimental desse trabalho.
A partir disso, foram levantadas tanto as informações referentes às máquinas, aos salários, ao material indireto e insumos, assim como foram aferidos todos os custos. Esse levantamento inicia-se com a tomada dos custos junto aos fornecedores, passa pelo registro dos salários e encargos envolvidos, pela quantificação do consumo dos materiais, e termina com a realização dos cálculos necessários para testar o modelo. Este procedimento é descrito nos tópicos a seguir.

Antes de apresentar as características mais detalhadas desse centro de Custo, cabe ressaltar os motivos principais da estruturação de um Centro de Custo através do departamento citado. Não foi escolhido um Centro de Custo em um ambiente industrial, basicamente por dois motivos:

1o) Dificuldade de obtenção dos dados, principalmente para testar o modelo com base nas condições de usinagem (modelo detalhado).

2o) As informações de custos serem um aspecto sigiloso da empresa, consequentemente, de difícil obtenção, ou até impossíveis de ser obtidas.

5.2.1. Jornada de Trabalho

O tempo total trabalhado para o Centro de Custo proposto é expresso por (5.0):

\[t_{tt} = ta - tr - \sum_{i=1}^{n} t_{p1.p} \] \hspace{1cm} (5.1)

Onde:

\[t_{tt} = \text{Tempo total trabalhado no Centro de Custo [horas/mês]} \]
\[ta = \text{Capacidade instalada [horas/mês]} \]
\[ti = \text{Tempos improdutivos} \quad [\text{horas/m}^2] \]
\[t_{pi} = \text{Tempo de preparação} \quad [\text{horas/m}^2] \]
\[n_{p} = \text{Número de vezes em que é preparada a máquina} \]
\[n = \text{Máquinas do Centro de Custo} \]

O horário de trabalho é das 8:30 horas até às 17:30 horas, ou seja, 01 turno de nove horas por dia com uma hora para almoço. A capacidade instalada da empresa \((t_d) \) é a quantidade de horas do equipamento disponível para o trabalho, que é expresso por \((5.0) \):

\[t_d = (9 - 1) \times 20 \, \text{dias/mês} = 160 \, \text{horas/mês} \]

Adotando-se, para simplificação, que na equação (5.1), o valor de \(ti - \frac{n_{p} t_{pi} n_{p}}{4} \) seja adotado como 25% do valor de \(t_d \), tem-se:

\[ttc = 160 \times 0,75 = 120 \, \text{horas/mês} \]

5.2.2. Máquinas, Equipamentos e Instrumentação

A área de produção do Centro de Custo é composto de cinco máquinas, a saber:

- Um Torno CNC
- Um Torno Universal
- Uma Serra Eletroidrulica
- Uma Afiadora Universal
- Um Esmeril

Além da parte produtiva, o Centro de Custo possui uma sala de metrologia, composta dos seguintes equipamentos:

- Uma Máquina de Medir por Coordenadas
- Um Rugsimetro Portátil
- Um Micro-computador

As informações técnicas e custos referentes às máquinas e equipamentos são apresentados na Tabela 5.1, e a especificação mais detalhada, obtida nos catálogos das máquinas e equipamentos, pode ser encontrada no ANEXO 2.

Tabela 5.1 - Especificações Gerais das Máquinas e Equipamentos do Centro de Custo.

<table>
<thead>
<tr>
<th>Máquina ou Equipamento</th>
<th>Fabricante</th>
<th>Modelo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Torno CNC</td>
<td>ROMI</td>
<td>Cosmos-30</td>
</tr>
<tr>
<td>Torno Universal</td>
<td>ROMI</td>
<td>SR - 20</td>
</tr>
<tr>
<td>Serra</td>
<td>FRANCO</td>
<td>F - 200</td>
</tr>
<tr>
<td>Atiador</td>
<td>MELLO</td>
<td>AM - 7</td>
</tr>
<tr>
<td>Esmeril</td>
<td>SKR</td>
<td>SK - 50</td>
</tr>
<tr>
<td>Máquina de Medir por Coordenadas</td>
<td>BROWN and SHARPE</td>
<td>Microval</td>
</tr>
<tr>
<td>Rugsimetro</td>
<td>MITUTOYO</td>
<td>Surftest</td>
</tr>
<tr>
<td>Micro-computador</td>
<td>ITAUTEK</td>
<td>PCXT/1-7000</td>
</tr>
</tbody>
</table>

5.2.3. Depreciações

Conforme descrito no tópico 2.2.2.4 do capítulo 2, a depreciação é o decréscimo de valor de uma propriedade com a passagem do tempo. A Tabela 5.2 apresenta os valores de aquisição das máquinas e das instalações do Centro de Custo, mês e ano de aquisição, valor atualizado das máquinas e instalações (valores válidos para julho de 1992), vida útil e a parcela de depreciação respectiva a cada bem apresentado. Apesar de ser citado, na Tabela 2.1 do capítulo
2 e no tópico 3.3.3 do capítulo 3, o período de 5 anos como valor típico para vida útil das máquinas, nesse caso específico, pelo fato de que as máquinas pertencem ao laboratório, o que implica menor desgaste, considerou-se de 10 anos a vida útil desses equipamentos. No ensaio realizado, o valor considerado como mínimo para depreciação foi de US$ 500.00 e a taxa de juros ao ano, 12%.

Tabela 5.2 - Valores e Data de Aquisição, Valor Atual, e Depreciação das Máquinas e Instalações.

<table>
<thead>
<tr>
<th>TIPO DO EMB</th>
<th>AQUISIÇÃO</th>
<th>VALOR ATUAL</th>
<th>VIDA UTIL</th>
<th>ESPAÇO</th>
<th>DEPRECIACAO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cx (US$)</td>
<td>Ca (US$)</td>
<td>(Ko) [a^2]</td>
<td>D [US$/a]</td>
<td></td>
</tr>
<tr>
<td>INSTALACOES</td>
<td>33.666.80</td>
<td>31.063.37</td>
<td>25</td>
<td>198.63</td>
<td>29.78</td>
</tr>
<tr>
<td>(INST.Nova)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MICRO-COMP</td>
<td>1.425.67</td>
<td>1.280.96</td>
<td>10</td>
<td>11.96</td>
<td>1.541.40</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11.96</td>
<td>1.541.40</td>
</tr>
<tr>
<td>TURNO CNC</td>
<td>15.211.65</td>
<td>11.215.79</td>
<td>10</td>
<td>1.60</td>
<td>101.45</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.60</td>
<td>101.45</td>
</tr>
<tr>
<td>TURNO UNIV</td>
<td>2.839.54</td>
<td>1.344.05</td>
<td>10</td>
<td>0.66</td>
<td>19.93</td>
</tr>
<tr>
<td>SERRA</td>
<td></td>
<td></td>
<td></td>
<td>0.66</td>
<td>19.93</td>
</tr>
<tr>
<td>AFIADOR</td>
<td>6.885.65</td>
<td>2.787.11</td>
<td>10</td>
<td>0.58</td>
<td>32.28</td>
</tr>
<tr>
<td>DE MEDIR</td>
<td>55.798.06</td>
<td>81.351.15</td>
<td>10</td>
<td>1.12</td>
<td>381.99</td>
</tr>
<tr>
<td>ESCOPO</td>
<td>2.257.19</td>
<td>1.686.29</td>
<td>10</td>
<td>0.14</td>
<td>30.10</td>
</tr>
</tbody>
</table>

5.2.4. Mão-de-obra e Salários

A mão-de-obra com os respectivos salários envolvidos nesse Centro de Custo estão divididos em três categorias:

- Mão-de-obra direta
- Mão-de-obra indireta de produção
- Mão-de-obra indireta administrativa

A mão-de-obra direta corresponde aos salários do pessoal que opera as máquinas do Centro de Custo. Para o proposto, os técnicos do laboratório são considerados como os operadores, uma vez que eles, usualmente, realizam esse tipo de trabalho. A mão-de-obra indireta de produção
corresponde ao salário do engenheiro responsável pelos laboratórios do Departamento de Engenharia de Fabricação. O engenheiro determina, planeja e acompanha os serviços realizados no departamento, por isso é considerado como sendo mão-de-obra de produção, porém indireta. A mão-de-obra indireta administrativa é designada como sendo aquela realizadora do serviço burocrática, no caso, a secretária do departamento; e o indivíduo que realiza a organização geral e tomada de decisões, no caso, o chefe do departamento. O valor dos salários foram baseados nos planos de carreira para funcionários e para professores da UNICAMP, de acordo com a referência do enquadramento funcional de cada um. Os valores apresentados são para o salário de julho de 1992. Os valores nominais dos salários foram acrescidos de 63% para os encargos sociais, valor extraído da literatura [50].

5.2.4.1. Mão-de-obra Direta

Os salários da mão-de-obra direta foram baseados no salário mensal dos técnicos com suas respectivas referências salariais de acordo com o plano de carreira dos funcionários da UNICAMP (referência Grupo Médio TMB 28 para ambos). São dois os operadores de máquina neste Centro de Custo. Porém, apesar de esse tipo de mão-de-obra, na maioria dos casos, ser da categoria de horista, foram considerados como mensalistas por ser essa a forma de seu enquadramento na folha de pagamento da UNICAMP. Os valores nominais, as referências no plano de carreirada UNICAMP e o salário final acrescidos dos encargos podem ser vistos na Tabela 5.3.

5.2.4.2. Mão-de-obra Indireta da Produção

Como descrito anteriormente, o salário da mão-de-obra indireta corresponde aos ganhos recebidos pelo engenheiro responsável pelos laboratórios do departamento, com referência de salário, Grupo Superior TSB 37, determinada
peço plano de carreira dos funcionários da UNICAMP. O salário nominal, a referência e o salário final acrescidos dos encargos são apresentados na Tabela 5.3.

5.2.4.3. Mão-de-obra Indireta Administrativa

A mão-de-obra da secretária tem o salário determinado pelo plano de carreira para funcionários da UNICAMP (referência Grupo Superior, referência TSB 31), e, a chefia de departamento, com o salário determinado pelo plano de carreira de professores da UNICAMP, uma vez que esse cargo somente pode ser ocupado por professores. O enquadramento considerado foi de professor-doutor do nível MS-3, US$ 1,287.56; com a complementação salarial de US$ 172.62 para chefia de departamento, valores para o mês de julho de 1992. Esses salários nominais, e acrescidos dos encargos são mostrados na Tabela 5.3.

Tabela 5.3 - Salários da Mão-de-obra Direta, Indireta de Produção, e Indireta Administrativa.

<table>
<thead>
<tr>
<th>Tipo da Mão-de-obra</th>
<th>Funcão</th>
<th>Salário Nominal [US$]</th>
<th>Salário mais Encargos [US$]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Operador 1</td>
<td>464.31</td>
<td>756.83</td>
</tr>
<tr>
<td></td>
<td>Operador 2</td>
<td>464.31</td>
<td>756.83</td>
</tr>
<tr>
<td>Indireta</td>
<td>Engenheiro</td>
<td>720.30</td>
<td>1,174.09</td>
</tr>
<tr>
<td></td>
<td>Secretária</td>
<td>537.50</td>
<td>876.13</td>
</tr>
<tr>
<td></td>
<td>Chefes Dep.</td>
<td>1,480.18</td>
<td>2,380.09</td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td>3,646.60</td>
<td>5,943.97</td>
</tr>
</tbody>
</table>

5.2.4.4. Adequação do Montante de Salários da Mão-de-obra

Esse item visa demonstrar algumas alterações com relação ao montante de gastos com salários. Após a
realização de um ensaio preliminar, verificou-se que a incidência dos salários na formação do custo estava muito acentuada. Entende-se que, para o tipo de estrutura industrial escolhida, os dados utilizados não estariam refletindo valores compatíveis com uma situação real. Diante desse fato resolveu-se racionalizar a estrutura administrativa, e realizar uma alteração no perfil da mão-de-obra direta de produção. As mudanças feitas foram as seguintes:

- A chefia de departamento assume o papel de supervisão da produção, ocupando assim as atividades realizadas pelo engenheiro, refletindo uma situação muito próxima do real, onde apenas um indivíduo no empreendimento é o executante das funções técnicas de coordenação produtiva e administrativa, neste tipo de estrutura. O salário passa então, a ser uma média entre os dois valores apresentados para os cargos de chefe e engenheiro.

- O salário da secretária sofre uma redução, sendo adequado a uma situação de mercado, diante das atividades inerentes a essa função no tipo de estrutura utilizada para o ensaio.

- A mão-de-obra de produção sofre uma diferenciação, ou seja, passa-se a ter um operador específico para a máquina com comando numérico computadorizado, em função da necessidade dessa mão-de-obra especializada, e outro operador para a realização do trabalho nas outras máquinas do Centro de Custo. A partir disso, haverá valores diferenciados de salários: o operador do CNC, denominado operador A, terá remuneração maior que o operador do restante das máquinas, denominado operador nível B.

Essas alterações salariais e funcionais são apresentadas na Tabela 5.4, com os salários nominais e acrescidos dos encargos, valores em dólar.
<table>
<thead>
<tr>
<th>Tipo da Mão-de-obra</th>
<th>Função</th>
<th>Salário Nominal</th>
<th>Salário c/ En- cargo [US$/mês]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direta</td>
<td>Operador A</td>
<td>464.81</td>
<td>755.83</td>
</tr>
<tr>
<td></td>
<td>Operador B</td>
<td>309.54</td>
<td>504.55</td>
</tr>
<tr>
<td>Indireta (Produção e Administ.)</td>
<td>Secretária</td>
<td>214.05</td>
<td>348.80</td>
</tr>
<tr>
<td></td>
<td>Chefes/Eng.</td>
<td>1,020.24</td>
<td>1,777.09</td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td>2,078.14</td>
<td>5,387.37</td>
</tr>
</tbody>
</table>

5.2.5. Material Indireto

Conforme descrito no capítulo 3, o material indireto é considerado como sendo todo aquele que é consumido, mas que não faz parte do produto. A especificação desses materiais, bem como o consumo mensal e o custo dos materiais indiretos são apresentados na Tabela 5.5, com valores em dólar e válidos para o mês de julho de 1992.
<table>
<thead>
<tr>
<th>Tipo do Material</th>
<th>Fabricante</th>
<th>Consumo</th>
<th>Custo</th>
<th>Custo Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oleo Escóval</td>
<td>COPAR</td>
<td>18</td>
<td>2.38</td>
<td>5.57</td>
</tr>
<tr>
<td>Hidrául.</td>
<td>LUBRAX</td>
<td>6.5</td>
<td>1.36</td>
<td>8.84</td>
</tr>
<tr>
<td>Oleo</td>
<td>CASTROL</td>
<td>1.5</td>
<td>1.86</td>
<td>2.78</td>
</tr>
<tr>
<td>Querosene</td>
<td>PETROBRAS</td>
<td>10</td>
<td>1.86</td>
<td>18.60</td>
</tr>
<tr>
<td>Industrial</td>
<td>SHELL</td>
<td>3.0</td>
<td>1.43</td>
<td>4.29</td>
</tr>
<tr>
<td>Insertos</td>
<td>SANDVIK</td>
<td>0.4</td>
<td>150.00</td>
<td>60.00</td>
</tr>
<tr>
<td>Interc. (diversos)</td>
<td>SANDVIK</td>
<td>0.4</td>
<td>150.00</td>
<td>60.00</td>
</tr>
<tr>
<td>Super. p/insertos</td>
<td>SANDVIK</td>
<td>0.2</td>
<td>10.40</td>
<td>20.80</td>
</tr>
<tr>
<td>Brocas p/centro</td>
<td>TWILL</td>
<td>0.2</td>
<td>41.19</td>
<td>8.24</td>
</tr>
<tr>
<td>Brocas p/</td>
<td>TWILL</td>
<td>0.2</td>
<td>41.19</td>
<td>8.24</td>
</tr>
<tr>
<td>Furacão</td>
<td>Diversos</td>
<td>0.2</td>
<td>10.40</td>
<td>20.80</td>
</tr>
<tr>
<td>Material Escritório</td>
<td>Diversos</td>
<td>0.2</td>
<td>10.40</td>
<td>20.80</td>
</tr>
<tr>
<td>Serra p/máquina</td>
<td>STARRKT</td>
<td>02</td>
<td>10.40</td>
<td>20.80</td>
</tr>
</tbody>
</table>

TOTAL: 598.81

5.2.6. Energia Elétrica

O cálculo do consumo de energia elétrica foi feito com base na potência instalada e demanda estimada no Centro de Custo. O circuito da rede é trifásico com corrente de I = 350 A, que pode ser transformado para potência instalada em watts, através da equação \[eq\]:

...
\[P = U \times I \times \sqrt{3} \] \hfill (5.2)

Onde:

- \(P \) = Potência \quad [\text{watts}]
- \(U \) = Tensão (220) \quad [\text{volts}]
- \(I \) = Corrente \quad [\text{amper}]

A potência consumida, ou o gasto de energia com as máquinas, equipamentos e iluminação, foi levantada com base na potência nominal dos motores, equipamentos eletrônicos e iluminação do Centro de Custo. Entretanto, a demanda foi estimada em 80% da potência nominal, portanto, esse valor deve ser corrigido. Os valores de potência instalada, potência nominal, demanda, potência mensal consumida e o gasto total mensal de energia elétrica são apresentados na Tabela 5.6. O valor do quilowatt-hora utilizado nos cálculos é específico para a categoria do consumidor, classe B (demanda inferior a 75 kwatt), cujo valor, válido para o mês de julho de 1992, é US$ 0.09/kwatt-h (Câ), valor baseado em tabelas fornecidas pela Companhia Paulista de Força e Luz. A potência mensal consumida foi determinada em função de um consumo médio mensal, para iluminação de acordo com as horas de funcionamento no mês, e para as máquinas com base na potência mensal média consumida nas horas padrão produzidas [81, 82].

Tabela 5.6 – Potência Instalada e Consumida e Gasto com Energia Elétrica no Centro de Custo.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>133,37</td>
<td>33,66</td>
<td>28,63</td>
<td>2164,80</td>
<td>194,64</td>
</tr>
</tbody>
</table>
5.2.7. Manutenção das Máquinas

A manutenção das máquinas é calculada individualmente para cada máquina-ferramenta do Centro de Custo tendo como base contratos de manutenção ou uma porcentagem do valor da máquina gasto com manutenção. Como o torno CNC possue um contrato de manutenção com a Indústria ROMI, esse gasto mensal foi baseado nesse contrato. Para o restante das máquinas, esse custo mensal de manutenção foi estabelecido como sendo o valor correspondente a uma parcela anual correspondente a 7% do custo da máquina [63].

Os valores de custos para a manutenção podem ser vistos na Tabela 5.7; e, o custo total mensal de manutenção é a somatória dos custos individuais de cada máquina. Para os equipamentos de metrologia, por serem novos e pela baixa utilização, considera-se a metade do valor considerado para manutenção, ou seja, os cálculos foram feitos com base em 3,5% ao ano em relação ao custo da máquina.

Tabela 5.7 - Custos de Manutenção

<table>
<thead>
<tr>
<th>MAQUINA</th>
<th>Custo total de manutenção [US$/ano]</th>
<th>Custo total de manutenção [US$/mês]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Torno Univ</td>
<td>1.065.51</td>
<td>88.79</td>
</tr>
<tr>
<td>Torno CNC</td>
<td>3.901.05</td>
<td>325.09</td>
</tr>
<tr>
<td>Outras maq</td>
<td>610.97</td>
<td>50.91</td>
</tr>
<tr>
<td>Metrologia</td>
<td>2.136.87</td>
<td>178.08</td>
</tr>
<tr>
<td>TOTAL</td>
<td>7.714.50</td>
<td>642.87</td>
</tr>
</tbody>
</table>
5.2.8. Área e Custo do Espaço Físico

A área total do Centro de Custo é de 186,53 m². O custo da área foi estimado com base em valores de mercado para a construção civil [64]. A Tabela 5.8 apresenta o valor médio, para construções de galpões industriais em abril de 1989 [64] e o valor atual, para julho de 1992 [65], assim como o valor total da área construída do Centro de Custo nessas datas. Para efeito de simplificação dos cálculos para o custo do espaço físico (Ceo) e o espaço físico ocupado pela máquina (Eo), as unidades utilizadas foram de área em m², ao invés de volume, em m³, como definido no capítulo 3.

Tabela 5.8 - Custo por Area e Custo da Área Construída do Centro de Custo.

<table>
<thead>
<tr>
<th>DATA</th>
<th>CUSTO POR AREA [US$/m²]</th>
<th>CUSTO TOTAL CENTRO DE CUSTO [US$]</th>
</tr>
</thead>
<tbody>
<tr>
<td>abr/89</td>
<td>160.49</td>
<td>33.866.60</td>
</tr>
<tr>
<td>jul/92</td>
<td>198.58</td>
<td>37.041.13</td>
</tr>
</tbody>
</table>

5.3. Peça Escolhida para Análise

A peça trata-se de um eixo, denominado "eixo piloto", sem nenhuma aplicação específica. A sugestão para a escolha dessa peça foi obtida da literatura consultada [33,62], pois posuiu-se a maior parte dos dados necessários, principalmente para a análise e cálculo baseado no modelo detalhado sugerido na literatura [20], que considera aspectos da usinagem dos metais.

O material da peça ensaiada foi de aço ABNT 1045. As dimensões, peso do blanque, preço do aço ABNT 1045 (valores de julho de 1992) e custo total do material por peça são apresentados na Tabela 5.9.
As características dimensionais da peça são mostradas na Figura 5.2. Como citado acima, apesar da peça não ter nenhuma aplicação real, algumas especificações dimensionais e geométricas foram acrescentadas de maneira que sua utilização estivesse o mais próximo possível de condições reais.

Tabela 5.9 - Dados da Matéria-prima e do Blanque da Peça

Especificações	Aço ABNT 1045 (C=0,47%; Si=0,26%; Mn=0,73%; P=0,022%; S=0,007%) [66]
Estado de Fornecimento	Barra laminada
Dimensões	Diâmetro de 50,8 mm x 11,0 mm
Peso Blanque	1,80 quilos
Preço do Aço	1,64 US$/kg (valor médio)
Custo-materiais	2,85 US$/peça

O roteiro resumido de fabricação da peça (Rotina de Trabalho - Sumário) pode ser visto na Figura 5.3. O plano de operações ou folha de operação, com as informações detalhadas sobre o processo, tais como condições de usinagem, ferramentas, dispositivos e etc, envolvidos em cada operação podem ser encontradas no ANEXO 3.

Os tempos de preparação e tempos manuais para tornos foram extraídos do Manual de Torneamento ROMI [67], sendo que as tabelas encontram-se no ANEXO 4.
Figura 5.2 – Características Dimensionais da Peça.

Figura 5.3 – Roteiro R-umido de Fabricação da Peça.
Capítulo VI
6. RESULTADOS E DISCUSSÕES

6.1. Cálculo do Custo por Peça Baseado no Modelo Detalhado

A análise foi realizada para as operações 20 e 30, descritas no roteiro resumido do processo, tendo em vista a disponibilidade de diversos parâmetros para o cálculo dos custos. Os cálculos detalhados encontram-se no ANEXO 5.

6.1.1. Cálculo do Tempo Total de Confecção por Peça

Os tempos e outros parâmetros necessários para o cálculo do tempo total de confecção por peça para cada máquina podem ser vistos na Tabela 6.1. O lote de fabricação considerado foi de \(Z = 50 \) (cinquenta) peças. O tempo de corte \(t_c \) foi calculado através da equação (3.2) fornecida no capítulo 3, e o restante dos tempos (tempos secundários, tempos de aproximação e afastamento da ferramenta e tempo de preparação da máquina) determinados através de cronometragem. Todos os tempos estão em minutos.

A vida \(T \) da ferramenta foi calculada pela equação (3.3) de vida de Taylor, apresentada no capítulo 3. O tempo total de fabricação foi calculado através da equação (3.1), apresentada no capítulo 3. O tempo de troca de ferramenta \((t_{tr}) \) e o número de peças usinadas por vida \((Z_T) \) foram extraídos dos ensaios realizados por VILELLA [38], de acordo com o critério de fim de vida estabelecido para as operações 20 e 30, que foi a rugosidade superficial \((2,5 \text{ um de rugosidade média} \text{ Ra para o desbaste e} 2,0 \text{ um de rugosidade média} \text{ Ra para o acabamento}) \).

O número de peças usinadas por vida \((Z_T) \), assim como o tempo total de fabricação por peça para cada operação \((t_r) \), de acordo com a equação (3.1), são apresentados na Tabela 6.2.
Tabela 6.1 - Tempos de Fabricação para cada Operação no Centro de Custo para a Peça Analisada.

<table>
<thead>
<tr>
<th>OPERAÇÃO</th>
<th>tc</th>
<th>te</th>
<th>ta</th>
<th>tp</th>
<th>třt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Torno Univ.</td>
<td>2.43</td>
<td>0.67</td>
<td>1.70</td>
<td>55.44</td>
<td>2.30</td>
</tr>
<tr>
<td>Torno CNC</td>
<td>0.33</td>
<td>0.27</td>
<td>0.23</td>
<td>37.61</td>
<td>1.60</td>
</tr>
</tbody>
</table>

Tabela 6.2 - Número de Trocas de Ferramenta, Número de Peças Usinadas por Vida e Tempo Total de Fabricação

<table>
<thead>
<tr>
<th>OPERAÇÃO</th>
<th>nt</th>
<th>Zt</th>
<th>tt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Torno Univ.</td>
<td>0</td>
<td>59</td>
<td>5.81</td>
</tr>
<tr>
<td>Torno CNC</td>
<td>1</td>
<td>38</td>
<td>1.61</td>
</tr>
</tbody>
</table>

6.1.2. Cálculo do Custo por Peça por Operação

A Tabela 6.3 apresenta o custo da ferramenta por vida (Cfr), o custo de aquisição do porta-ferramenta (Cpf), o custo do inserto (Ci), o número de arestas de corte do inserto (na1) e o custo da ferramenta (Cf) por peça para cada operação analisada.

Tabela 6.3 - Custos das Ferramentas nas Operações

<table>
<thead>
<tr>
<th>OPERAÇÃO</th>
<th>Cfr</th>
<th>Cpf</th>
<th>Ci</th>
<th>na1</th>
<th>Cf [US$]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Torno fer.1</td>
<td>5.47</td>
<td>280.00</td>
<td>9.20</td>
<td>2</td>
<td>0.14</td>
</tr>
<tr>
<td>Univ. fer.2</td>
<td>2.98</td>
<td>85.00</td>
<td>8.60</td>
<td>3</td>
<td>0.10</td>
</tr>
<tr>
<td>Torno CNC</td>
<td>3.89</td>
<td>69.40</td>
<td>7.58</td>
<td>2</td>
<td>0.10</td>
</tr>
</tbody>
</table>

fer.1 - Usinagem do canal
fer.2 - Torneamento externo
A Tabela 6.4 apresenta os valores dos custos de mão-de-obra de usinagem (C_{mao}) e custo máquina (C_{maq}), necessários para o cálculo do custo total de fabricação por peça (C_P), calculado pelas equações (3.12) e (3.13), respectivamente, apresentadas no capítulo 3 para cada operação em cada máquina.

Tabela 6.4 - Custos de mão-de-obra e Custo Máquina Envolvidos no Cálculo do Custo Total de Fabricação por Peça.

| OPERAÇÃO | C_{mao} [US$] | C_{maq} [US$]
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Torno Univ.</td>
<td>2.67</td>
<td>0.67</td>
</tr>
<tr>
<td>Torno CNC</td>
<td>0.81</td>
<td>1.82</td>
</tr>
</tbody>
</table>

 Duas considerações importantes devem ser feitas com relação à elaboração da tabela anterior e realização do cálculo da mão-de-obra ou salário-homem, e custo máquina, a saber:

- O custo da mão-de-obra direta e a indireta, ou seja a mão-de-obra de produção e a administrativa (S_h) deve ser considerado no cálculo do custo de mão-de-obra (C_{mao}) na forma de rateio, ou seja, todo o montante mensal de mão-de-obra dividido pelo tempo total trabalhado (tt_t), expresso pela equação:

\[
S_h = \frac{C_{mao} + C_{ma1}}{tt_t} \quad [US$/hora]
\]

(6.1)

Onde:

- S_h = Salário total da mão-de-obra com encargos [US$/mês]
- C_{mao} = Salário da mão-de-obra direta [US$/mês]
- C_{ma1} = Salário da mão-de-obra indireta [US$/mês]
- tt_t = Tempo total trabalhado [horas/mês]
Entretanto, o salário com a mão-de-obra direta de produção deve ser correspondente a máquina onde está sendo realizado o trabalho, isto é, para o torno CNC, é utilizado o salário do operador A, e, para o restante das máquinas o salário do operador B.

- No custo máquina (C_{maq}), calculado pela equação (3.13), o custo de conservação da máquina (C_{mc}) corresponde ao custo de manutenção das máquinas, obtido na Tabela 5.7 e o restante dos custos na Tabela 5.2 (C_{mi}, v_{m}, E_{m}, l_{m}), na Tabela 6.2 (t_{l}), e no tópico 5.2.6 (C_{mc}).

O cálculo do custo por peça é possível pela equação (3.11):

$$C_p = (C_{mpd} + C_{mp1}) + C_{mc} + C_{maq} + C_{r} + (C_{cq} + C_{cr} + C_{c})$$

Outras considerações para o cálculo dos componentes do custo total por peça (C_p):

Custo da Matéria-prima Direta (C_{mpd})

O custo da matéria prima direta (C_{mpd}) pode ser calculado com os dados da Tabela 5.9, proporcionalmente as operações, isto é, divide-se o custo total da matéria-prima (US$ 2.95) por cada operação da peça (cinco operações), resultando em US$ 0.59.

Custo Ferramenta (C_{r})

O custo da ferramenta (C_{r}) é calculado através dos dados da Tabela 6.3.
Custo da Matéria-prima Indireta (\(C_{MPI}\))

Uma vez que a literatura [20] não demonstra como o custo da matéria-prima indireta \(C_{MPI}\) deve ser calculado, optou-se por tomar o total mensal, mostrado na Tabela 5.5, dividido pelo tempo total trabalhado \(tt_t\) e considerar esse valor proporcionalmente ao tempo trabalhado por operação, ou, conforme a expressão:

\[
C_{MPI} = \frac{C_{MPIe} - C_{MPIe}}{tt_t} \times tt \quad \text{[US$]} \quad (6.2)
\]

Onde:

- \(C_{MPI} =\) Custo total da matéria-prima indireta [US$/mês]
- \(C_{MPIe} =\) Custo da matéria-prima indireta específica a outras operações [US$/mês]
- \(tt_t =\) Tempo total trabalhado [horas/mês]
- \(tt =\) Tempo de confecção por peça por operação [min]

O resultado é US$ 0.47 para a operação 20 no torno universal, e US$ 0.12 para a operação 30 no torno CNC.

Custos Indiretos de Fabricação (\(C_{IF}\))

Entende-se que, nesse caso, os custos indiretos de fabricação são os gastos com energia elétrica, calculado em função do tempo de confecção por peça \(tt\) para cada operação. Porém, não se considera a potência de cada máquina onde está sendo realizado o trabalho, porque, quanto maior a potência da máquina, maior seu consumo de energia. Este cálculo é expresso pela equação:

\[
C_{IF} = \frac{C_{ee. P1}}{pt} \times \frac{tt}{60} \quad \text{[US$]} \quad (6.3)
\]
Onde:

\[C_{ea} = \text{Custo de energia elétrica} \quad [\text{US$/kwatt-hora}] \]

\[p_i = \text{Potência da máquina } i \quad [\text{kwatt}] \]

\[pt = \text{Potência total das máquinas do Centro de Custo} \quad [\text{kwatt}] \]

\[t_t = \text{Tempo de confecção por peça} \quad [\text{min}] \]

O resultado para esse custo é US$ 0.001 para a operação no torno universal (operação 20) e US$ 0.002 para a operação no torno CNC (operação 30).

Custo de Controle de Qualidade ou Inspeção (C_{eq})

O custo do controle de qualidade \((C_{eq})\) foi calculado baseado no tempo de inspeção final que consta no roteiro de fabricação da Figura 5.3, considerando-se a depreciação dos equipamentos de metrologia e manutenção, rateado pelo tempo total trabalhado \((t_{tt})\). Esse cálculo é dado pela equação:

\[C_{eq} = \frac{D + C_{mc}}{t_{tt}} \times t_{papI} \quad [\text{US$}] \quad (6.4) \]

Onde:

\[D = \text{Depreciação dos equipamentos de metrologia} \quad [\text{US$/mês}] \]

\[C_{mc} = \text{Custo de conservação (manutenção)} \quad [\text{US$/mês}] \]

\[t_{tt} = \text{Tempo total trabalhado} \quad [\text{horas/mês}] \]

\[t_{papI} = \text{Tempo padrão para inspeção} \quad [\text{horas}] \]

Como esse resultado é referente à confecção da peça toda, com \(C_{eq} = \text{US$ 0.38} \), dividindo-se o resultado pelas operações da peça, obtem-se US$ 0.08 por operação.
Custo Proporcional às Variações de Custos de Operações Anteriores e Posteriores (Cv)

Não foi encontrado na literatura consultada [20], a que se refere esse custo. Entendeu-se que esse custo se deve a possíveis retrabalhos, sendo assim, desprezado no cálculo do custo da peça por operação, pois tal situação foi considerada não existente.

6.1.3. Resultado Obtido

O resultado do cálculo do custo por peça (Cp) para as operações no modelo detalhado, sugerido na literatura [20], pode ser visto na Tabela 6.5.

Tabela 6.5 - Resultados do Custo por Peça por Operação para o Modelo Detalhado.

<table>
<thead>
<tr>
<th>OPERAÇÃO</th>
<th>Cp (COST)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Torno Univ.</td>
<td>4.42</td>
</tr>
<tr>
<td>Torno CNC</td>
<td>3.52</td>
</tr>
</tbody>
</table>

6.2. Cálculo do Custo por Peça Baseado no Modelo de Centros de Custo Produtivos

6.2.1. Formação do Custo Horário do Centro de Custo

Como descrito no capítulo 3, o custo horário do Centro de Custo (Chi) é expresso pelo custo departamental do Centro de Custo, formado pelos salários diretos de produção mais a somatória das despesas gerais do Centro de Custo, dividido pelas horas trabalhadas no período. A soma dos salários diretos de produção e as despesas gerais podem ser vistas na Tabela 6.6.
Tabela 6.6 - Formação do Custo Departamental

<table>
<thead>
<tr>
<th>TIPO DE GASTOS</th>
<th>CUSTO (US$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salários Diretos</td>
<td>1,261.38</td>
</tr>
<tr>
<td>Despesas Operacionais</td>
<td>854.84</td>
</tr>
<tr>
<td>Depreciações</td>
<td>2,031.89</td>
</tr>
<tr>
<td>Material Indireto</td>
<td>274.04</td>
</tr>
<tr>
<td>Salários Indiretos</td>
<td>2,126.99</td>
</tr>
<tr>
<td>Energia Elétrica</td>
<td>194.84</td>
</tr>
<tr>
<td>CUSTO DEPARTAMENTAL</td>
<td>6,853.88</td>
</tr>
</tbody>
</table>

Os salários diretos correspondem ao montante dos gastos com mão-de-obra diretamente envolvida na transformação do produto. Esses valores são extraídos da Tabela 5.4. Para o caso avaliado são consideradas como despesas operacionais:

- Material de escritório (Tabela 5.5)
- Manutenção de Máquinas (Tabela 5.7)

O custo horário de um Centro de Custo (Ch₁) é dado por:

\[
\text{Ch₁} = \frac{\text{custo departamental}}{\text{t}_{\text{tt}}} \quad \text{[US$/h]} \quad (5.5)
\]

O custo departamental é a soma dos salários diretos mais as despesas gerais, indicado na Tabela 6.6, e as horas trabalhadas correspondem ao tempo efetivamente trabalhado no período considerado, nesse caso um mês, tempo calculado no tópico 5.2.1, perfazendo um total de 120 horas. Consequentemente, o custo horário para o Centro de Custo proposto (Chₙ₀) é:

\[
\text{Chₙ₀} = 57.12 \text{ US$/h}
\]
6.2.2. Cálculo do Custo por Peça Baseado no Modelo de Centro de Custo

O cálculo do custo por peça pode ser feito através da equação (3.17), apresentada no tópico 3.2.2 do capítulo 3. Para o cálculo do custo por peça em cada operação é necessário levar em consideração somente as horas de fabricação respectivas à operação em questão. O custo da matéria-prima direta, é considerado proporcionalmente às operações, isto é, o custo do blanque, extraído da Tabela 5.9 do capítulo 5, dividido pelas operações de transformação, no caso, operações de 10 a 50 do roteiro de fabricação (mesmo cálculo da matéria-prima direta realizado no modelo anterior).

As horas de fabricação (Hf) consideradas, foram as horas indicadas na Figura 5.3 do roteiro de fabricação da peça, para cada operação analisada (operações 20 e 30), com o tempo de preparação por peça.

6.2.3. Resultado Obtido

Como consequência do exposto anteriormente, o custo para cada operação analisada, com base no modelo de Centros de Custo pode ser visto na Tabela 6.7.

Tabela 6.7 - Resultados do Custo por Peça para cada Operação com Base no Modelo de Centros de Custo.

<table>
<thead>
<tr>
<th>OPERAÇÃO</th>
<th>C_f [USD]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Torno Univ.</td>
<td>6.22</td>
</tr>
<tr>
<td>Torno CNC</td>
<td>2.12</td>
</tr>
</tbody>
</table>
6.3. Cálculo do Custo por Peça Baseado na Aplicação do Fator de Contribuição da Máquina-ferramenta

6.3.1. Cálculo do Custo Percentual da Máquina

Conforme definido no capítulo 4, o custo percentual da máquina \((C_m) \) é aquele resultante da somatória de alguns custos específicos da máquina \((C_{m1}) \), calculado individualmente para cada máquina do Centro de Custo. Após essa somatória, é atribuído uma proporção para cada máquina, com a de maior custo envolvido como 100% e as outras proporcionais a essa. A Tabela 6.8 apresenta os custos necessários para o cálculo do custo total relativo à máquina, calculado através da equação 4., apresentada no capítulo 4, assim como o resultado dessa somatória \((C_{m1}) \).

Tabela 6.8 – Custos Relativos à Máquina e Custo Total das Máquinas no Centro de Custo.

<table>
<thead>
<tr>
<th>MAQUINA</th>
<th>Cm1</th>
<th>Cm2</th>
<th>Cm3</th>
<th>Cm4</th>
<th>Cm5</th>
<th>Cm6</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Serra</td>
<td>1.344.98</td>
<td>0</td>
<td>1.308.55</td>
<td>131.08</td>
<td>2.783.66</td>
<td></td>
</tr>
<tr>
<td>(2) Torno</td>
<td>6.900.46</td>
<td>25.21</td>
<td>7.277.43</td>
<td>317.72</td>
<td>14.520.82</td>
<td></td>
</tr>
<tr>
<td>(3) Torno</td>
<td>91.210.79</td>
<td>420.17</td>
<td>26.644.17</td>
<td>2.259.84</td>
<td>120.639.97</td>
<td></td>
</tr>
</tbody>
</table>

Então, de acordo com a Tabela 6.8, o torno CNC é a máquina que tem o maior montante de custo envolvido, ou seja, a maior somatória do custo total relativo à máquina \((C_{m1}) \). Consequentemente, essa máquina passa a ter um valor correspondente ao custo percentual de \(C_m = 100\% \), o torno universal \(C_m = 12.05\% \) e para a serra \(C_m = 2.31\% \), e assim sucessivamente para quaisquer outras máquinas analisadas em um Centro de Custo.
6.3.2 Cálculo da Produtividade

A produtividade para cada máquina-ferramenta é calculada através da equação 4.7, apresentada no capítulo 4. Ela é dada pela relação da somatória do tempo padrão total, ou seja, todos os tempos padrão das operações que passam por essa máquina, dividido pela capacidade instalada da máquina, isto é, o total de seu tempo disponível.

Para o torno universal e para o torno CNC tomou-se os dados da peça utilizada na análise, e registros de outras peças que já foram fabricadas no Centro de Custo (dados do Laboratório de Uminagem da Faculdade de Engenharia Mecânica da UNICAMP). Sendo assim, estabeleceu-se toda a carga de máquina e tempos de preparação baseados nesses dados. Também foi estabelecido o programa de produção para essas peças, além do tamanho e quantidade de peças em cada lote de fabricação. Consequentemente, tem-se os dados necessários para o cálculo do índice de produtividade dos tornos. A Tabela 6.9 mostra as peças utilizadas (com códigos hipotéticos), o programa de produção dessas peças, o tempo de preparação em cada operação, de acordo com a máquina, o número de preparações, em função das necessidades de entrega, assim como o tempo de preparação total. A Tabela 6.10 apresenta, para as mesmas peças, o tempo padrão de cada uma e a somatória dos tempos padrão, baseado no programa de produção.

Diante desses dados é possível calcular a produtividade para ambos os tornos. Para a serra foi estimado um índice de produtividade de $P_1 = 0,75$. Com isso, tem-se todos os índices de produtividade para as máquinas-ferramenta do Centro de Custo. Esses índices de produtividade podem ser vistos na Tabela 6.11.
Tabela 6.9 - Programa de Produção e Tempos de Preparação das Peças do Centro de Custo.

<table>
<thead>
<tr>
<th>CODIGO</th>
<th>DAS</th>
<th>PEÇAS</th>
<th>PREPARAÇÃO DA MAQUINA</th>
<th>PREPARAÇÃO TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Número</td>
<td>Torno</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>de</td>
<td>Univ.</td>
</tr>
<tr>
<td>EP 001.01</td>
<td>04</td>
<td>0.8240</td>
<td>0.6282</td>
<td>3.6850</td>
</tr>
<tr>
<td>EP 001.02</td>
<td>04</td>
<td>0.8240</td>
<td>0.6282</td>
<td>3.6850</td>
</tr>
<tr>
<td>EP 001.03</td>
<td>03</td>
<td>0.8240</td>
<td>0.6282</td>
<td>2.7720</td>
</tr>
<tr>
<td>PD 002.01</td>
<td>03</td>
<td>0.5229</td>
<td>1.2500</td>
<td>1.5587</td>
</tr>
<tr>
<td>PD 002.02</td>
<td>02</td>
<td>0.5229</td>
<td>1.2500</td>
<td>1.5587</td>
</tr>
<tr>
<td>PA 003.01</td>
<td>02</td>
<td>-</td>
<td>1.6500</td>
<td>-</td>
</tr>
<tr>
<td>PA 003.02</td>
<td>02</td>
<td>-</td>
<td>1.7400</td>
<td>-</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabela 6.10 - Programa de Produção e Tempos Padrão das Peças do Centro de Custo.

<table>
<thead>
<tr>
<th>CODIGO</th>
<th>DAS</th>
<th>PEÇAS</th>
<th>TEMPOS PADRÃO</th>
<th>TEMPO PADRÃO TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Torno Univ.</td>
<td>Torno CNC</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>[Horas]</td>
<td>[horas]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>[horas]</td>
<td>[horas]</td>
</tr>
<tr>
<td>EP 001.01</td>
<td>0.0840</td>
<td>0.0143</td>
<td>18.0000</td>
<td>2.8800</td>
</tr>
<tr>
<td>EP 001.02</td>
<td>0.0840</td>
<td>0.0143</td>
<td>32.0000</td>
<td>5.7200</td>
</tr>
<tr>
<td>EP 001.03</td>
<td>0.0840</td>
<td>0.0143</td>
<td>36.0000</td>
<td>6.4350</td>
</tr>
<tr>
<td>PD 002.01</td>
<td>0.0242</td>
<td>0.1128</td>
<td>10.8700</td>
<td>50.7600</td>
</tr>
<tr>
<td>PD 002.02</td>
<td>0.1075</td>
<td>0.1868</td>
<td>15.0500</td>
<td>27.5445</td>
</tr>
<tr>
<td>PA 003.01</td>
<td>-</td>
<td>0.1157</td>
<td>-</td>
<td>23.3400</td>
</tr>
<tr>
<td>PA 003.02</td>
<td>-</td>
<td>0.1342</td>
<td>-</td>
<td>13.4205</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td>109.8200</td>
<td>130.0800</td>
</tr>
</tbody>
</table>
Tabela 6.11 - Produtividade das Máquinas

<table>
<thead>
<tr>
<th>MAQUINA</th>
<th>P1</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Serra</td>
<td>0.750</td>
</tr>
<tr>
<td>(2) Torno Un.</td>
<td>0.687</td>
</tr>
<tr>
<td>(3) Torno CNC</td>
<td>0.613</td>
</tr>
</tbody>
</table>

6.3.3. Cálculo do Fator de Contribuição

O Fator de Contribuição da máquina-ferramenta é calculado através da equação (4.5) apresentada no capítulo 4, utilizando-se dos dados do custo percentual (CM1) e produtividade da máquina, fornecidos nos tópicos anteriores. O resultado para as três máquinas analisadas (serra, torno universal e torno CNC) encontra-se na Tabela 6.12.

Tabela 6.12 - Resultados do Fator de Contribuição para as Máquinas Analisadas no Centro de Custo.

<table>
<thead>
<tr>
<th>MAQUINAS</th>
<th>FC1</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Serra</td>
<td>0.60343</td>
</tr>
<tr>
<td>(2) Torno Un.</td>
<td>0.71384</td>
</tr>
<tr>
<td>(3) Torno CNC</td>
<td>1.60272</td>
</tr>
</tbody>
</table>

6.3.4. Cálculo do Custo Horário do Centro de Custo para cada Máquina-ferramenta Baseado no Fator de Contribuição

Como definido no item 4.2.2.3 do capítulo 4, utilizando-se o custo horário do Centro de Custo, calculado no tópico 6.2.1, deve-se agora multiplicá-lo pelo fator de contribuição da máquina correspondente, e, como consequência, ter-se-á assim o custo horário para cada

Tabela 6.13 – Custo Horário para cada Máquina do Centro de Custo Baseado no Fator de Contribuição.

<table>
<thead>
<tr>
<th>MAQUINA</th>
<th>Custo-horário [US$/hora]</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Serra</td>
<td>39.04</td>
</tr>
<tr>
<td>(2) Torno Un.</td>
<td>40.77</td>
</tr>
<tr>
<td>(3) Torno CNC</td>
<td>81.05</td>
</tr>
</tbody>
</table>

6.3.5. Resultado Obtido

O resultado do custo por peça por operação (C_p), ponderando a contribuição da máquina-ferramenta para o modelo proposto, pode ser visto na Tabela 6.14. Para efeito comparativo com relação aos modelos anteriormente descritos, é apresentado o custo por peça para as operações 20 e 30, ou seja, para o torno universal e para o torno CNC.

Tabela 6.14 – Resultados do Custo por Peça por Operação para o Modelo com o Fator de Contribuição da Máquina.

<table>
<thead>
<tr>
<th>OPERAÇÃO</th>
<th>C_p [US$]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Torno Univ.</td>
<td>4.60</td>
</tr>
<tr>
<td>Torno CNC</td>
<td>3.05</td>
</tr>
</tbody>
</table>
6.4. Discussão dos Resultados

A Tabela 6.15 apresenta os resultados do custo por peça por operação \((C_p)\), obtido através dos cálculos realizados pelos três modelos apresentados.

Tabela 6.15 - Custo por Peça Resultantes da Aplicação dos Modelos de Custos.

<table>
<thead>
<tr>
<th>OPERAÇÃO</th>
<th>CUSTO POR PEÇA</th>
<th>(C_p) [US$]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Torno Univ.</td>
<td>4.42</td>
<td>6.22</td>
</tr>
<tr>
<td>Torno CNC</td>
<td>3.52</td>
<td>2.12</td>
</tr>
</tbody>
</table>

O modelo denominado "detalhado" trata-se do desenvolvimento apresentado por FERRARESI [20], que envolve aspectos da usinagem dos metais, representado pelas condições operacionais e vida da ferramenta utilizada na operação. Denominou-se modelo de Centro de Custos tradicional, aquele utilizado na indústria metal-mecânica, e, o proposto como sendo o modelo de custo tradicional com o custo horário do Centro de Custo ponderado com o Fator de Contribuição da máquina, o que possibilita diferenciar uma máquina-ferramenta de outra em um Centro de Custo.

Através dos resultados do custo por peça nas duas operações analisadas para a peça escolhida, e apresentados na Tabela anterior, observa-se que o resultado do custo por peça para o modelo proposto encontra-se entre os valores de \(C_p\) para os outros dois modelos. Num primeiro momento, verifica-se que o modelo proposto resulta em um custo intermediário entre um primeiro modelo, que pode ser considerado como sendo mais preciso devido ao nível de
detalhamento dos dados nas operações, e um segundo modelo que considera as informações dos custos envolvidos nas operações de forma globalizada.

Esses resultados conduzem a algumas constatações importantes, a saber:

1ª Constatação - A Ponderação e sua Influência no Custo Horário das Máquinas

Demonstrou-se que a ponderação executada não causa alteração no custo horário para o Centro de Custo. A confirmação de que o valor final do custo horário no modelo tradicional, considerando a aplicação do fator de contribuição é o mesmo pode ser vista na Tabela 6.16.

Tabela 6.16 - Comparações do Custo Horário no Modelo Tradicional e no Modelo com Uso do Fator de Contribuição.

<table>
<thead>
<tr>
<th>TIPO DE MODELO</th>
<th>MAQUINA</th>
<th>CUSTO [US$/hora]</th>
<th>SOMATORIA DOS CUSTOS [US$/h]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Serra</td>
<td>57.12</td>
<td></td>
</tr>
<tr>
<td>Tradicional</td>
<td>Torno Univ.</td>
<td>67.12</td>
<td>171.36</td>
</tr>
<tr>
<td></td>
<td>Torno CNC</td>
<td>57.12</td>
<td></td>
</tr>
<tr>
<td>Tradicional com o Fator de Contribuição</td>
<td>Serra</td>
<td>36.04</td>
<td>171.36</td>
</tr>
<tr>
<td></td>
<td>Torno Univ.</td>
<td>40.77</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Torno CNC</td>
<td>91.65</td>
<td></td>
</tr>
</tbody>
</table>

2ª Constatação - O Custo do Sistema e sua Influência no Cálculo do Custo Por Peça nos Modelos

O resultado do novo custo horário para cada máquina analisada, considerando o fator de contribuição, depende se o sistema envolvido na máquina é caro ou barato.
No caso do custo das máquinas consideradas em um Centro de Custo estarem próximas à máquina que pode ser definida como sendo a "máquina padrão", ou seja, aquela que representa o custo médio do montante envolvido para a determinação do custo horário, o custo final por peça estará dentro de valores próximos ao modelo tradicional e ao modelo com a utilização de Centros de Custo. Por outro lado, se existirem máquinas com características de custos muito diferenciados, o custo por peça no modelo tradicional estará distante do modelo proposto. Isso ocorre devido ao fato de que o resultado do custo horário em cada máquina pode ser maior ou menor em relação ao custo horário do Centro de Custo anteriormente calculado, pois depende das máquinas envolvidas no estudo, isto é, da quantidade de máquinas com alto ou baixo custo envolvido. A influência do modelo no cálculo do custo por peça em relação ao sistema (caro ou barato) é representado na Figura 6.1.

\[
\begin{array}{ccc}
\text{SISTEMA CARO} & \text{SISTEMA BARATO} \\
\hline
\Delta & \hline
\text{Cp} & \hline
\text{MODELO} \hline
\text{DETAIADO} \hline
\text{MODELO} \hline
\text{PROPOSTO} \hline
\text{MODELO} \hline
\text{TRADICIONAL} \hline
\text{Cp} \hline
\end{array}
\]

Figura 6.1 - Relação entre o Custo do Sistema e Custo por Peça para os Modelos Apresentados.
Através dos resultados obtidos no procedimento experimental, comprovou-se a existência de tomadas de decisão por parte das empresas, que optam pela execução das peças interna ou externamente, dependendo da complexidade de fabricação da peça. Os resultados indicam que o sistema tradicional de cálculo de custos baseado em Centros de Custo provoca uma redução do custo por peça nas operações que exigem maior complexidade, e, consequentemente, maiores custos envolvidos. Diante desse fato, algumas empresas decidem por enviar peças mais difíceis de serem fabricadas para serem executadas por terceiros, executando-as mais simples internamente, tendo assim, ganhos significativos no produto final onde essas peças fazem parte.

3a Constatação - A Contribuição Específica da Máquina na Determinação do Custo por Peça

No ensaio realizado, o modelo tradicional traz em um custo por peça menor para a máquina que tem os maiores custos envolvidos, no caso o torno CNC. Esse custo é aumentado para o modelo proposto, e atinge o maior valor no modelo detalhado. No caso do torno universal ocorre o inverso, o modelo tradicional resulta em um custo maior, reduzido no modelo proposto, e que atinge o menor valor no modelo detalhado. Esse resultado representa de forma clara que, devido à maneira pelo qual calcula-se o custo horário do Centro de Custo no modelo tradicional, a máquina que contribui com o maior montante de custos acaba sendo beneficiada pela máquina de menores custos envolvidos, tendo seu custo reduzido.

O modelo detalhado apresenta um custo por peça diferente, podendo ser menor ou maior, em relação aos outros modelos, devido à incidência dos custos específicos de cada máquina, isto é, tem-se uma distribuição dos custos mais próxima do real.
Finalmente, constata-se que, com a utilização do modelo proposto, tem-se como resultado um valor final do custo de fabricação por peça que depende do seu roteiro de fabricação, mesmo considerado dentro de um único Centro de Custo.
Capítulo VII
7. CONCLUSÃO

Neste trabalho foi proposto um fator de contribuição (FC) para a máquina-ferramenta, utilizando-se de um modelo tradicional baseado em Centros de Custo, em uso na indústria metal-mecânica, buscando-se determinar o custo por peça com maior precisão e confiabilidade. A partir do histórico de fabricação de uma peça escolhida, procedeu-se ao teste dessa proposta. Também foi testado outro modelo, mais detalhado, que considera as condições de usinagem e vida da ferramenta, além de, ser calculado o custo por peça no modelo tradicional da indústria. Diante desses fatos, conclui-se o seguinte:

- O modelo detalhado considera como sendo o Centro de Custo a própria máquina. Torna-se pouco viável sua utilização, devido à dificuldade operacional em alocar-se os dados específicos de cada máquina. Também é necessário ter-se informações disponíveis acuradas de usinagem e custos, assim como um rigoroso controle no processo produtivo. Apesar de possível, a aplicação prática desse modelo requereria uma estrutura de organização e coleta de dados tal, que seria, provavelmente, incompatível com a estrutura própria da empresa. Esta conclusão explica o porquê da não incidência de utilização deste modelo na indústria.

- O modelo tradicionalmente usado pela indústria não diferencia o tipo de máquina utilizada no roteiro de fabricação da peça, resultando em valores que podem ser distorcidos devido à distribuição por rateio utilizada na composição dos custos dos Centros de Custo. Isso significa que, para uma determinada peça, e dependendo de seu roteiro de fabricação, ou lucro ou o prejuízo não estarão sendo aferidos com base num valor de custo confiável.
- O modelo com o fator de contribuição mostrou-se adequado para executar uma diferenciação entre as máquinas de um Centro de Custo, reduzindo-se a desigualdade na distribuição dos custos.

SUGESTÕES PARA TRABALHOS FUTUROS

- Aplicar a metodologia sugerida em um ambiente industrial, com Centros de Custos de características diversas, com relação aos tipos e custos das máquinas-ferramenta existentes.

- Verificar a influência do leiaute no comportamento do custo de fabricação, verificando-se a possibilidade da utilização do fator de contribuição proposto.

- Estudar a otimização do roteiro de fabricação, com a utilização do fator de contribuição, de acordo com o fluxo operacional das peças.

- Estabelecer um fator de contribuição que considere aspectos inerentes às máquinas-ferramenta, tais como: potência, precisão, automação e flexibilidade, definindo-os de forma numérica.
REFERENCIAS BIBLIOGRAFICAS E BIBLIOGRAFIA ADICIONAL CONSULTADA

Referências Bibliográficas

[2] BATOCCHIO, A. - Um Modelo de Indice de Automação Relacionado
à Flexibilidade e Produtividade dos Sistemas de Manufatura
Tese de Doutorado, UNICAMP, Campinas, 1991

Management in the CIM-Era. Annals of the CIRP, Vol. 35/2,
pp 505-512, 1986

[4] EVERSHEIM, W.; SHAEFER, F.W. - Planning and Utilization of
Production Flexibility. Annals of the CIRP, Vol. 28/1,
pp 361-385, 1979

[5] Accounting for Progress
Production Engineer, February, 1987

[6] KAPLAN, R.S. - Yesterday's Accounting Undermines Production
Harvard Business Review, no. 04, July-August, 1984

[7] NAKAGAWA, M. - Gestão Estratégica de Custos - Conceitos,
Sistemas e Implementação JIT/TQC.

International Journal of Production Research, Vol. 29,
no. 12, pp 2483-2499, 1991

[9] COOPER, R. - You need a New Cost System When ...

for a New Costing Paradigm. CFO, March, 1991

Managing Automation, May, 1986

Practices. Production and Inventory Management Journal,
Fourth Quarter, 1989

[13] COOPER, R.; KAPLAN, R.S. - Measure Costs Right: Make the
Right Decisions. Harvard Business Review, no.05,
September-October, 1988

[29] COOK, N.H. - Manufacturing Analysis
Addison-Wesley Publishing Company, Massachusetts, 1966

Economy

[31] HESS, G. et alii - Engenharia Econômica

[32] WOOD, E.G. - Costing Matters for Managers

[33] VILELLA, R.C. - Metodologia Prática Visando a Otimização
das Condições de Usinagem em Células de Fabricação
Dissertação de Mestrado, UNICAMP, Campinas, 1988

[34] PALLEROSTI, C.A. - Formulação de um Método Geral de Análise
das Condições Econômicas de Usinagem
Tese de Doutorado, UNICAMP, Campinas, 1973

[35] AMSTEAD, B.H. et alii - Manufacturing Processes

[36] Norma Brasileira ABNT NBR 6162/89 - Conceitos da Técnica de
Usinagem, Movimentos e Relações Geométricas-Terminologia

[37] Pires, S.R.I. - Planejamento e Controle da Produção em
Indústrias que Utilizam Tecnologia de Grupo: Um Modelo de
Sequenciamento da Produção Celular Dependente dos Tempos de
Preparação de Máquinas. Dissertação de Mestrado, USP-EESC
São Carlos, 1989

[38] TAYLOR, F.W. - On the Art of Cutting Metals.
Transaction of American Society of Mechanical Engineers,
pp 31-279, 1907

[39] COLDING, B.; KONIG, W. - Validity of the Taylor Equation in
Metal Cutting.

[40] DOYLE, L.E. - Processos de Fabricação e Materiais para
Engenheiros
Editora Édgar Blucher Ltda, São Paulo, 1978

[41] JURAN, J.M. - Quality Control Handbook

[42] BESFORDFIELD, D.H. - Quality Control
Prentice-Hall Inc., United States of America, 1979

[43] HORGREN, C.T. and SANDEN, G.L. - Introduction to
Management Accounting
Prentice-Hall International Editions, 7th, USA, 1987

(48) MCKEOWN, P. - High Precision Manufacturing in an Advanced Industrial Economy CUFE - Cranfield Institute of Technology

(50) AGOSTINHO, O.L. - Estudo da Flexibilidade dos Sistemas Produtivos Tese de Doutoramento, USP, São Carlos, 1985

(51) ABNT - Associação Brasileira de Normas Técnicas Projeto 3:521.2-002 Comitê Brasileiro de Elétrica

(56) KAPLINSKY, R. - Automation: The Technology and Society Longman, 1984

[603] CREA/SP - Jornal da Engenharia, Arquitetura e Agronomia
Conselho Regional de Engenharia e Arquitetura de São Paulo
São Paulo, ano IV, no. 24, abril de 1992

[609] NOVASKI, O. - Custos de Usinagem
Centro de Tecnologia, UNICAMP, Campinas, 1990

[603] NISKIER, J.; MACINTYRE, A.J. - Instalações Elétricas
Editora Guanabara Dois, Rio de Janeiro, 1985

[611] Agência para Aplicação de Energia - Auto-avaliação dos
Pontos de Desperdício de Energia Elétrica na Indústria

[622] Manual Básico de Equipamentos Eletromecânicos e
Eletrodomésticos
CESP, São Paulo, maio/1978

[623] A Situação da Manutenção no País - Documento Nacional

[644] A Construção
Editora Pini, São Paulo, ano XLII, no. 2147, 03/abril/1992

[658] Construção
Editora Pini, São Paulo, ano XLV, no. 2320, 27/junho/1992

[660] DINIZ, A.E. - A Rugosidade Superficial da Peça em Processos
de Torneamento: Critério de Fim de Vida da Ferramenta e
Fatores de Influência
Tese de Doutorado, UNICAMP, Campinas, 1989

[677] Manual de Torneamento
Indústrias ROMI S.A., São Paulo, 1984
Bibliografia Adicional Consultada

[1] Catálogo de Tornos a Comando Numérico
Indústrias ROMI S.A., abril-1984

[2] Catálogo de Tornos Universais
Indústrias ROMI S.A., abril-1984

[3] GRANT, E.; IRESON, W.G.; LEAVENWORTH, R.S. - Principles of
Engineering Economy
John Wiley & Sons, 11th edition, USA, 1982

ABIMAQ/SINDIMAQ, 1986

Anexos
Anexo 1

Exemplo de Formulário para Preenchimento de Informações Referentes aos Centros de Custo
<table>
<thead>
<tr>
<th>CONTAS/DESCRIÇÃO</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>801 Ajuda de custo p/ viagem</td>
<td></td>
<td></td>
</tr>
<tr>
<td>802 Assinatura jornal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>807 Condução a empregados</td>
<td></td>
<td></td>
</tr>
<tr>
<td>808 Contribuição assistencial</td>
<td></td>
<td></td>
</tr>
<tr>
<td>813 Descontos concedidos</td>
<td></td>
<td></td>
</tr>
<tr>
<td>814 Despesas c/ auditoria</td>
<td></td>
<td></td>
</tr>
<tr>
<td>816 Despesas de exportação</td>
<td></td>
<td></td>
</tr>
<tr>
<td>818 Despesas legais</td>
<td></td>
<td></td>
</tr>
<tr>
<td>819 Despesas de viagem</td>
<td></td>
<td></td>
</tr>
<tr>
<td>822 Fretes, carretos</td>
<td></td>
<td></td>
</tr>
<tr>
<td>825 Gratificações</td>
<td></td>
<td></td>
</tr>
<tr>
<td>827 Impostos diversos</td>
<td></td>
<td></td>
</tr>
<tr>
<td>831 Identificação e aviso prévio</td>
<td></td>
<td></td>
</tr>
<tr>
<td>834 Locação de bens imóveis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>836 Locação de bens móveis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>844 Relações públicas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>847 Telex e telefones</td>
<td></td>
<td></td>
</tr>
<tr>
<td>849 Taxas diversas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>850 Ass. médico-hospitalar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>851 Leasing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>854 Despesas com veículos</td>
<td></td>
<td></td>
</tr>
<tr>
<td>862 Despesas diversas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL DESPESAS OPERACIONAIS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Anexo 2

Especificações das Máquinas-ferramenta
do Centro de Custo Experimental
<table>
<thead>
<tr>
<th>MODELO</th>
<th>MOTOR</th>
<th>POTÊNCIA</th>
<th>RPM</th>
<th>VELOCIDADES</th>
<th>PONTAS</th>
<th>VELOCIDADES</th>
<th>CV</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-20</td>
<td>325</td>
<td>8</td>
<td>16</td>
<td>8</td>
<td>16</td>
<td>40 a 1500</td>
<td>3</td>
</tr>
<tr>
<td>5-20A</td>
<td>405</td>
<td>8</td>
<td>16</td>
<td>8</td>
<td>16</td>
<td>40 a 1500</td>
<td>3</td>
</tr>
<tr>
<td>7-20</td>
<td>375</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>40 a 2000</td>
<td>5</td>
</tr>
<tr>
<td>10-20</td>
<td>375</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>40 a 2000</td>
<td>5</td>
</tr>
<tr>
<td>12-20A</td>
<td>405</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>40 a 2000</td>
<td>5</td>
</tr>
<tr>
<td>CHUCKER-5</td>
<td>375</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>40 a 1800</td>
<td>3</td>
</tr>
<tr>
<td>CHUCKER-10</td>
<td>375</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>40 a 2000</td>
<td>5</td>
</tr>
<tr>
<td>MIP-VI</td>
<td>620</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>65 a 1200</td>
<td>3</td>
</tr>
<tr>
<td>MIP-200</td>
<td>620</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>37 a 2100</td>
<td>8</td>
</tr>
<tr>
<td>MIP-300</td>
<td>650</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>32 a 2000</td>
<td>6</td>
</tr>
<tr>
<td>MIP-350</td>
<td>650</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>32 a 2000</td>
<td>6</td>
</tr>
<tr>
<td>MIP-400</td>
<td>650</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>32 a 2000</td>
<td>6</td>
</tr>
<tr>
<td>MIP-500</td>
<td>650</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>32 a 2000</td>
<td>6</td>
</tr>
<tr>
<td>MIP-550</td>
<td>650</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>32 a 2000</td>
<td>6</td>
</tr>
<tr>
<td>MIP-600</td>
<td>650</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>32 a 2000</td>
<td>6</td>
</tr>
<tr>
<td>MIP-650</td>
<td>650</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>32 a 2000</td>
<td>6</td>
</tr>
<tr>
<td>MIP-700</td>
<td>650</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>32 a 2000</td>
<td>6</td>
</tr>
</tbody>
</table>

CARACTERÍSTICAS E ESPECIFICAÇÕES SUJEITAS A ALTERAÇÕES SEM PRÉVIA AVISOS.

* Equipamento standard
* Equipamento opcional
QUADRO DE ESPECIFICAÇÕES

TORNOS PARALELOS A COMANDO NUMÉRICO

<table>
<thead>
<tr>
<th>MODELO</th>
<th>DIÂMETRO MÁXIMO APLICÁVEL (MM)</th>
<th>DIÂMETRO MÁXIMO TORNANTE (MM)</th>
<th>DIÂMETRO DO DISCO DA ÁGUA (MM)</th>
<th>DISTÂNCIA ENTRE PONTAS (MM)</th>
<th>CURSO TRANSVERSAL DO COXO (M)</th>
<th>CURSO LATERAL DO COXO (M)</th>
<th>VELOCIDADES</th>
<th>VELOCIDADES</th>
<th>PONTÊNCIA</th>
<th>LUZURA DO EMBRAGUE</th>
<th>TAMANHO DO EMBRAGUE</th>
<th>PREÇO</th>
<th>AVANÇO RÁPIDO NO EMBRAGUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>COSINUS-30</td>
<td>370</td>
<td>250</td>
<td>65</td>
<td>650 **</td>
<td>200</td>
<td>500</td>
<td>17 a 2500</td>
<td>67 a 3000</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GALAXY</td>
<td>600</td>
<td>470 (*)</td>
<td>51</td>
<td>500 **</td>
<td>235</td>
<td>420</td>
<td>18 a 2000</td>
<td>18 a 2000</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECN-40 11</td>
<td>510</td>
<td>250</td>
<td>65</td>
<td>1000 - 1500</td>
<td>420</td>
<td>1000 - 1500</td>
<td>11,2 a 2360</td>
<td>15/5</td>
<td>380</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CENTUR-30A 11</td>
<td>515</td>
<td>330</td>
<td>78</td>
<td>1500</td>
<td>310</td>
<td>1500</td>
<td>18</td>
<td>30 a 1600</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TORNOS VERTICAIS A COMANDO NUMÉRICO

<table>
<thead>
<tr>
<th>MODELO</th>
<th>DIÂMETRO MÁXIMO (MM)</th>
<th>DIÂMETRO MÁXIMO NO EMBRAGUE (MM)</th>
<th>DIÂMETRO DA PLACA (MM)</th>
<th>DIÂMETRO DO DISCO DA ÁGUA (MM)</th>
<th>ALTURA MÁXIMA SOB O TOPO DO COXO (MM)</th>
<th>ALTURA MÁXIMA SÓ DO TOPO DO COXO (MM)</th>
<th>VELOCIDADES</th>
<th>VELOCIDADES</th>
<th>PONTÊNCIA</th>
<th>GALAXY</th>
<th>PREÇO</th>
<th>AVANÇO RÁPIDO NO EMBRAGUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>VT-60</td>
<td>850</td>
<td>600</td>
<td>550</td>
<td>515</td>
<td>710</td>
<td>515</td>
<td>550</td>
<td>600</td>
<td>14 a 350</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VCN-140M</td>
<td>1700</td>
<td>1600</td>
<td>1400</td>
<td>1200</td>
<td>1150</td>
<td>0</td>
<td>1000</td>
<td>1140</td>
<td>2 a 26</td>
<td>260</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VCN-90</td>
<td>1170</td>
<td>940</td>
<td>920</td>
<td>585</td>
<td>795</td>
<td>245</td>
<td>550</td>
<td>590</td>
<td>4 a 90</td>
<td>90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CENTUR V-50</td>
<td>1170</td>
<td>1120</td>
<td>920</td>
<td>585</td>
<td>790</td>
<td>230</td>
<td>560</td>
<td>640</td>
<td>12</td>
<td>250</td>
<td>30</td>
<td></td>
</tr>
</tbody>
</table>

(*) Diâmetro máximo de tornamente recomendado 200 mm.
(**) Quando equipado com cabeçote nível, fornecido a preço adicional.
V.C. = Variação contínua.
- Equipamento standard.
- Equipamento opcional a preço adicional.

CARACTERÍSTICAS E ESPECIFICAÇÕES SUJEITAS A ALTERAÇÕES SEM PRÉVIO AVISO.
Serras hidráulicas alternativas para metais
Para corte de barras maciças, perfisados e tubos diversos, em qualquer tipo de material. Lâmina da serra desencaixada do material no retrocesso. Movimentos mecânicos acoplados no cabeçote.

Hydraulic reciprocating saws for metals
For cutting bulk bars, shaped bars and several kinds of tubes, in any type of material. Return stroke of saw blade out of contact with material. Mechanical movements coupled in saw head. Axes and main parts hardened and ground. Centralized handling and control. Centrifugal pumps, reservoir, saw blade, motor and electric switch.

Sierras hidráulicas alternativas para metales
Para el corte de barras macizas, perfilados y tubos diversos, en cualquier clase de material. En el retroceso, la lámina de sierra se separa del material que se está cortando. Movimientos mecánicos acoplados al cabezal. Ejes y grupos principales templados y rectificados. Manejo y controles centralizados. Bomba de refrigeración, depósito, láminas de sierra, motor y llave eléctrica.

Modelos
- S 725
- S 325
- S 500
- S 900
- S 2000
- S 2900
- S 3200

<table>
<thead>
<tr>
<th>Modelo</th>
<th>S 725</th>
<th>S 325</th>
<th>S 500</th>
<th>S 900</th>
<th>S 2000</th>
<th>S 2900</th>
<th>S 3200</th>
</tr>
</thead>
<tbody>
<tr>
<td>Puente do motor</td>
<td>600</td>
<td>610</td>
<td>630</td>
<td>640</td>
<td>650</td>
<td>660</td>
<td>670</td>
</tr>
<tr>
<td>Potência do motor</td>
<td>5.5</td>
<td>6.0</td>
<td>6.5</td>
<td>7.0</td>
<td>7.5</td>
<td>8.0</td>
<td>8.5</td>
</tr>
<tr>
<td>Peso da máquina</td>
<td>150</td>
<td>155</td>
<td>160</td>
<td>165</td>
<td>170</td>
<td>175</td>
<td>180</td>
</tr>
<tr>
<td>Velocidade</td>
<td>80</td>
<td>80</td>
<td>80</td>
<td>80</td>
<td>80</td>
<td>80</td>
<td>80</td>
</tr>
<tr>
<td>Distância entre centros da lâmina</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>Distância entre centros da lâmina</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>14</td>
</tr>
</tbody>
</table>

Serra eletrodialática para corte de metais em geral

Eixos e peças principais temperados e rectificados.
Manejo e controlos centralizados.
Bomba de refrigeración, reservatório, lámina de sierra, motor e llave eléctrica.

Electrohydraulic saw for cutting metals in general

<table>
<thead>
<tr>
<th>Modelo</th>
<th>F 320</th>
</tr>
</thead>
<tbody>
<tr>
<td>Puente do motor</td>
<td>7.5</td>
</tr>
<tr>
<td>Potência do motor</td>
<td>7.5</td>
</tr>
<tr>
<td>Peso da máquina</td>
<td>150</td>
</tr>
<tr>
<td>Velocidade</td>
<td>80</td>
</tr>
<tr>
<td>Distância entre centros da lâmina</td>
<td>14</td>
</tr>
</tbody>
</table>

Sierra electrohidráulica para corte de metales en general

<table>
<thead>
<tr>
<th>Modelo</th>
<th>F 320</th>
</tr>
</thead>
<tbody>
<tr>
<td>Puente del motor</td>
<td>7.5</td>
</tr>
<tr>
<td>Potencia del motor</td>
<td>7.5</td>
</tr>
<tr>
<td>Peso de la máquina</td>
<td>150</td>
</tr>
<tr>
<td>Velocidad</td>
<td>80</td>
</tr>
<tr>
<td>Distancia entre centros de la lámina</td>
<td>14</td>
</tr>
</tbody>
</table>

Medidas de funcionamento

<table>
<thead>
<tr>
<th>Medidas de funcionamiento</th>
<th>F 320</th>
</tr>
</thead>
<tbody>
<tr>
<td>220 380 V 60 Hz</td>
<td></td>
</tr>
</tbody>
</table>
Afiladora universal de herramientas modelos AMX-4 e AMY-4

<table>
<thead>
<tr>
<th>Universal tool sharpener Models AMX-4 and AMY-4</th>
<th>Afiladora universal de herramientas modelo AMX-4 e AMY-4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table carried on ball slideways.</td>
<td>Mesa sobre carreras de esferas.</td>
</tr>
<tr>
<td>Manual or hydraulic table drive.</td>
<td>Accionamiento de la mesa manual o hidráulico.</td>
</tr>
<tr>
<td>Horizontal wheelhead (AMX-4)</td>
<td>Arbol porta muelles horizontal (AMX-4)</td>
</tr>
<tr>
<td>or tilting wheelhead (AMY-4).</td>
<td>o inclinável (AMY-4).</td>
</tr>
<tr>
<td>Complete line of regular and special accessories.</td>
<td>Completa linha de acessórios normais e especiais.</td>
</tr>
<tr>
<td>Solves any cutting tool problem.</td>
<td>Soluciona qualquer problema de afiação de ferramentas</td>
</tr>
<tr>
<td></td>
<td>de corte.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Divisão entre pontos</th>
<th>Divisio entre pontos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distance between centers</td>
<td>mm</td>
</tr>
<tr>
<td>Distância entre pontos</td>
<td>mm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Curso transversal do caro</th>
<th>Curso transversal del carro</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transverse table travel</td>
<td>Tablero transversal</td>
</tr>
<tr>
<td>mm</td>
<td>175</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Curso vertical do cabeceiro</th>
<th>Curso vertical de cabeceiro</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertical wheelhead travel</td>
<td>Tablero vertical</td>
</tr>
<tr>
<td>mm</td>
<td>175</td>
</tr>
</tbody>
</table>

Afiladora universal Mello-SIM modelo AMS-9

Mesa sobre guias cilíndricas e buchas de esferas circulantes. Ampla linha de acessórios normais e especiais. Adequada para todas as ferramentas usuais de usinagem.

<table>
<thead>
<tr>
<th>MELLO-SIM Universal tool sharpener Model AMS-9</th>
<th>Afiladora universal de herramienta MELLO-SIM modelo AMS-9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table over linear recirculating ball slideways.</td>
<td>Mesa sobre carreras cilíndricas e buchas de esferas</td>
</tr>
<tr>
<td>Wide range of standard and special attachments</td>
<td>circulantes. Apropiada para todas las herramientas</td>
</tr>
<tr>
<td>suitable for all usual cutting tools.</td>
<td>usuales de uso normal e especiales.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Divisão entre pontos</th>
<th>Divisio entre pontos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distance between centers</td>
<td>mm</td>
</tr>
<tr>
<td>Distância entre pontos</td>
<td>mm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Curso longitudinal da mesa</th>
<th>Curso longitudinal de la mesa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Longitudinal table travel</td>
<td>Tablero longitudinal</td>
</tr>
<tr>
<td>mm</td>
<td>230</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Curso transversal da mesa</th>
<th>Curso transversal de la mesa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transversal table travel</td>
<td>Tablero transversal</td>
</tr>
<tr>
<td>mm</td>
<td>210</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Curso vertical do cabeceiro</th>
<th>Curso vertical de cabeceiro</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertical wheelhead travel</td>
<td>Tablero vertical</td>
</tr>
<tr>
<td>mm</td>
<td>180</td>
</tr>
</tbody>
</table>

Afiladora de herramientas monocortantes e brocas helicoidais AFM-7

Afie com precisão ferramentas de metal duro —— (carboneto) de tornos e planas, e brocas helicoidais. Equipada com mesa deslizante sobre guias de esferas e mesa oscillante sobre guias cromadas de aço-mola.

<table>
<thead>
<tr>
<th>Single point cutting tool and twist drill sharpener AFM-7</th>
<th>Afiladora de herramientas monocortantes e brocas helicoidais AFM-7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precision sharpening of hard metal (carbide) lathe and</td>
<td>Afila con precisión herramientas de metal duro, de torno</td>
</tr>
<tr>
<td>planer tools and twist drills. Equipped with a table</td>
<td>y limadoras, y brocas helicoidales. Equipe con mesa</td>
</tr>
<tr>
<td>running on ball slideways and a swinging table</td>
<td>deslizante sobre guias</td>
</tr>
<tr>
<td>supported on chrome-plated spring steel guides.</td>
<td>cromadas de acero para muebles.</td>
</tr>
</tbody>
</table>

| POTÊNCIA | 35 CV |

<table>
<thead>
<tr>
<th>Diametro dos rebajes</th>
<th>mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grinding wheel diameter</td>
<td>255</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dimensões de mesa deslizante</th>
<th>Dimensões de la mesa deslizante</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimensão de mesa oscillante</td>
<td>Dimensión de la mesa deslizante</td>
</tr>
<tr>
<td>mm</td>
<td>500x175</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dimensões de mesa oscillante</th>
<th>Dimensões de la mesa deslizante</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimensão de mesa cromada</td>
<td>Dimensión de la mesa deslizante</td>
</tr>
<tr>
<td>mm</td>
<td>850x180</td>
</tr>
</tbody>
</table>
The Self-Tutorial satisfies the requirements of novice and expert alike and instills the confidence required for first-day productivity. An overview of the software structure is supported by the step-by-step explanations of the geometric measurement routines as well as by quick references to the interactive CRT displays.

Self-Tutorial Service and Assistance, and specifications.

SPECIFICATIONS

<table>
<thead>
<tr>
<th>Linear Accuracy (B99) (Band Width)</th>
<th>0.0006mm</th>
<th>0.00025"</th>
</tr>
</thead>
<tbody>
<tr>
<td>Repeatability (B99) (Band Width)</td>
<td>0.0014mm</td>
<td>0.0015"</td>
</tr>
<tr>
<td>Resolution</td>
<td>0.0002mm</td>
<td>0.0001"</td>
</tr>
<tr>
<td>Display Range</td>
<td>1 / XXXX.XXX</td>
<td>1 / XXXX.XXX</td>
</tr>
</tbody>
</table>

WEIGHTS

<table>
<thead>
<tr>
<th>Machine Only</th>
<th>149 kg</th>
<th>330 lbs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete System</td>
<td>168 kg</td>
<td>370 lbs</td>
</tr>
<tr>
<td>Shipping</td>
<td>220 kg</td>
<td>485 lbs</td>
</tr>
<tr>
<td>Part Weight Max</td>
<td>68 kg</td>
<td>150 lbs</td>
</tr>
</tbody>
</table>

OPERATION REQUIREMENTS

<table>
<thead>
<tr>
<th>Temperature Range</th>
<th>10 to 40°C</th>
<th>50 to 104°F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air Input Min</td>
<td>70 PSI</td>
<td></td>
</tr>
<tr>
<td>Air Consumption/Regulator Setting</td>
<td>3.5 SCFM/55 PSI</td>
<td></td>
</tr>
<tr>
<td>Power</td>
<td>110/220 VAC 50/60 Hz</td>
<td></td>
</tr>
<tr>
<td>Power Consumption Electronics</td>
<td>60 Watts</td>
<td></td>
</tr>
<tr>
<td>CRT</td>
<td>26 Watts</td>
<td></td>
</tr>
</tbody>
</table>

DIMENSIONS

Measuring Range	X	356mm	14.00"
	Y	406mm	16.00"
	Z	305mm	12.00"
Work Capacity	X	457mm	18.00"
	Y	610mm	24.00"
	Z	561mm	22.00"
Overall Dimensions	L	743mm	29.25"
	W	730mm	28.75"
	H	1340mm	52.75"

STANDARD FEATURES

<table>
<thead>
<tr>
<th>CMM type</th>
<th>Vertical/Bridge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction Materials</td>
<td>Cast Aluminum</td>
</tr>
<tr>
<td>Air Bearings</td>
<td>Aluminum</td>
</tr>
<tr>
<td>Work Surface</td>
<td>Black Granite</td>
</tr>
<tr>
<td>Fixture Inserts</td>
<td>Stainless Steel</td>
</tr>
<tr>
<td>Measuring System</td>
<td>Glass Scales</td>
</tr>
<tr>
<td>Hard Probe Type</td>
<td>Straight Shank</td>
</tr>
<tr>
<td>Probe Counterbalance</td>
<td>Pneumatic (adj)</td>
</tr>
<tr>
<td>Axis Locks</td>
<td>Pneumatic (diala preload bearings)</td>
</tr>
</tbody>
</table>

OPTIONAL FEATURES

<table>
<thead>
<tr>
<th>Electronic Probes</th>
<th>Renishaw TP1 & TP2 Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hard Probes</td>
<td>Full Line</td>
</tr>
<tr>
<td>Computer Assist</td>
<td>Available</td>
</tr>
<tr>
<td>Dot Matrix Printer</td>
<td>Available</td>
</tr>
<tr>
<td>Table Clamps</td>
<td>Available</td>
</tr>
</tbody>
</table>
ESPECIFICAÇÕES TÉCNICAS

1. Parâmetros disponíveis e capacidades - mm (pol)

<table>
<thead>
<tr>
<th>Parâmetros</th>
<th>Capacidade</th>
<th>Cutoff</th>
<th>Comprimento de avaliação (L)*</th>
<th>Percurso do sensor (**)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ra</td>
<td>0,05 - 40 µm</td>
<td>0,25 (0,1)</td>
<td>1,26 (0,09)</td>
<td>2,26 (0,09)</td>
</tr>
<tr>
<td></td>
<td>0,8 - 400 µm</td>
<td>0,8 (0,09)</td>
<td>4 (±1)</td>
<td>3 (±1)</td>
</tr>
<tr>
<td></td>
<td>2,5 (±0,5)</td>
<td>12,5 (±1)</td>
<td>13,5 (±0,54)</td>
<td></td>
</tr>
<tr>
<td>(DIN)</td>
<td>0,3 - 160 µm</td>
<td>0,25 (0,1)</td>
<td>1,26 (0,06)</td>
<td>2,25 (0,09)</td>
</tr>
<tr>
<td>Rz</td>
<td>10 - 6400 µµpol</td>
<td>0,8 (0,09)</td>
<td>4 (±1)</td>
<td>5 (±1)</td>
</tr>
<tr>
<td></td>
<td>2,5 (±0,5)</td>
<td>12,5 (±1)</td>
<td>13,5 (±0,54)</td>
<td></td>
</tr>
<tr>
<td>Rmax</td>
<td>0,3 - 160 µm</td>
<td>0,25 (0,1)</td>
<td>1,26 (0,06)</td>
<td>2,25 (0,09)</td>
</tr>
<tr>
<td>Rmax</td>
<td>10 - 6400 µµpol</td>
<td>0,8 (0,09)</td>
<td>4 (±1)</td>
<td>5 (±1)</td>
</tr>
<tr>
<td></td>
<td>2,5 (±0,5)</td>
<td>12,5 (±1)</td>
<td>13,5 (±0,54)</td>
<td></td>
</tr>
</tbody>
</table>

(*) L: comprimento de avaliação; C: cutoff para perfil de rugosidade
(**) O percurso do sensor inclui trechos a mais para desconectar do início e fim do percurso de medição e para evitar influência negativa da inércia.

2. Configurações e códigos

<table>
<thead>
<tr>
<th>Código do conjunto</th>
<th>Alimentação</th>
<th>Código do adaptador AC</th>
</tr>
</thead>
<tbody>
<tr>
<td>178 335 A</td>
<td>120 V</td>
<td>529650 A</td>
</tr>
<tr>
<td>178 035 D</td>
<td>220 V</td>
<td>529650 D</td>
</tr>
</tbody>
</table>

Composição de cada conjunto:
- 178 135: corpo principal com visor LCD
- 178 235: unidade de análise para massa cêntrica
- 178 371: sensor padrão
- 178 602: perno de rugosidade (mm/pol)

3. Velocidade de percurso

- Medição: 0,5 mm/s
- Retorno: 1,0 mm/s

4. Sensor

- Método de detecção: induzido
- Resposta angular: 360° (circumferencial)
- Força de medição: inferior a 0,4 gf

5. Alimentação

- 6 pilhas recarregáveis de Ni-Cd
- Adaptador AC: 9V DC, 500 mA
- Temperatura de carga: de 5 a 35°C

6. Limites para controle F-NP (superior):

- Para Rz: 0-400 µµpol (0,16 µµpol)
- Para Ra: 0-4000 µµpol (0,16 µµpol)

7. Alarmes no visor

- E: fora da capacidade de medição
- C: carga da bateria insuficiente

8. Sistema auto-desliga

- Desliga automaticamente após 30 segundos sem uso
- Armazenamento de dados

9. Saída para minicomputadores M-SPC

10. Dimensões gerais

- Largo x profundidade x altura: 625 x 183 x 60 mm
- Peso: 6,0 kg

11. Temperatura

- Trabalho: 5 a 40°C
- Armazenamento: -10 a 40°C

Mitutoyo

VENDAS / SALA DE EXPOSIÇÃO / ASSISTÊNCIA TÉCNICA
Av. João Carlos da Silva Borges, 1740
CEP 04726 - São Paulo - SP
Cx. Postal 4255, CEP 01335-905
Fone: (011) 3222-2745 / Fax: (011) 5239-3661

ESCRITÓRIOS REGIONAIS

BIDUARA/PE
Av. Rui Barbosa, 4440 - CEP 57050-000
Fone: (81) 3223-4541

EMV/SP
R. Emílio Pereira, 920 - CEP 01335-905
Fone: (011) 3222-2745

EMV/SP
R. 27 de Setembro, 227 - CEP 01335-905
Fone: (011) 3222-2745

EMV/SP
R. Cachoeira, 102 - CEP 01335-905
Fone: (011) 3222-2745

EMV/SP
R. São Paulo, 12 - CEP 01335-905
Fone: (011) 3222-2745

EMV/SP
R. São Paulo, 12 - CEP 01335-905
Fone: (011) 3222-2745
Anexo 3

Folha de Operação da Peça Analisada
ANÁLISE

REGULAGEM DO PARÂMETRO 1,5

<table>
<thead>
<tr>
<th>ITEM</th>
<th>Nº DA FERRAMENTA</th>
<th>Nº DISPOS. MATIZ</th>
<th>MEIO DE CONTROLE</th>
<th>NÍVEL 1</th>
<th>NÍVEL 2</th>
<th>NÍVEL 3</th>
<th>CONT. OPER.</th>
</tr>
</thead>
<tbody>
<tr>
<td>04</td>
<td>SERRA STAITEETT</td>
<td>MOLDA</td>
<td>PASSIVADO</td>
<td>X</td>
<td></td>
<td></td>
<td>1/20 Rios</td>
</tr>
<tr>
<td>04</td>
<td>1,2X10 - 150X8,0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

![Diagrama da peça com dimensões](image-url)
Rotina de Trabalho

Folha de Operação

Operação: Quebrar - Quebrar Canto Vivo

Código do Material: A 45 P L A M 2 0 40

Máquina: Moto Esmeril HD 1

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Rolo</td>
<td>Manual</td>
<td>Visual</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Quebrar Canto Vivo 0/10 Max.

![Diagrama de processos](image-url)
POS: TANGAL O GVERFOVE A CAZA DUZ ROTE DE 50 PEOES

POS: TANGAL O GVERFOVE A CAZA
TRIANGULAR AMOBA SHARP:
1) MEDIR DIÂMETROS E COMPAIRMENITOS
2) MEDIR CIRCULARIDADE E PLOTR.
3) EMISSÃO RELATÍVOS COMO:

AUGOSÍMETRO MITUTOYO
1) DIÂMETRO: 159.048
2) CUT-OFF: 4.8
3) AUGOSÍMETROS: 20m e 2.54m

* HOMOGENIZE CIRCULARIDADE:

NOE DO ARQUIVO: DEFAULT NOE DO ELEMENTO

Red Aug 26 89:30:13 1992

<table>
<thead>
<tr>
<th>Vértices</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>158.218</td>
<td>158.236</td>
<td>172.091</td>
</tr>
<tr>
<td>Y</td>
<td>55.149</td>
<td>34.611</td>
<td>41.016</td>
</tr>
<tr>
<td>D</td>
<td>0.834</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Brown & Sharpe

CIRCULARIDADE

<table>
<thead>
<tr>
<th>VERTÍCE</th>
<th>VERTÍCE</th>
<th>VERTÍCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>
Anexo 4

Tabela de Tempos de Preparação de Tornos
<table>
<thead>
<tr>
<th>N°</th>
<th>Descrição</th>
<th>Diâmetro admissível sobre o banco, mm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>200</td>
</tr>
<tr>
<td>1</td>
<td>Receber a ficha de serviço e o desenho, estudar o mesmo (uma dimensão), marcar o carimbo com a hora de início, limpar a máquina</td>
<td>4,00</td>
</tr>
<tr>
<td>2</td>
<td>Estudar o desenho para cada dimensão adicional</td>
<td>0,50</td>
</tr>
<tr>
<td>3</td>
<td>Receber uma ferramenta do almoxarifado</td>
<td>3,00</td>
</tr>
<tr>
<td>4</td>
<td>Receber ferramentas, ou calibres adicionais, e sortear em ordem para cada um</td>
<td>1,00</td>
</tr>
<tr>
<td>5</td>
<td>Pegar, colocar e remover os pontos, fixar o cabeçote geral</td>
<td>1,50</td>
</tr>
<tr>
<td>6</td>
<td>Colocar e remover a placa universal, ou a placa de quatro castanhas</td>
<td>1,30</td>
</tr>
<tr>
<td>7</td>
<td>Colocar, fixar e remover, ajustar a medida da laneta fixa</td>
<td>1,00</td>
</tr>
<tr>
<td>8</td>
<td>Colocar, fixar e remover, ajustar a medida da laneta móvel</td>
<td>0,70</td>
</tr>
<tr>
<td>9</td>
<td>Inverter três castanhas na placa universal</td>
<td>2,50</td>
</tr>
<tr>
<td>10</td>
<td>Inverter quatro castanhas na placa universal</td>
<td>2,80</td>
</tr>
<tr>
<td>11</td>
<td>Inverter quatro castanhas na placa independente</td>
<td>3,50</td>
</tr>
<tr>
<td>12</td>
<td>Colocar, fixar e remover as castanhas moles</td>
<td>1,70</td>
</tr>
<tr>
<td>13</td>
<td>Colocar, fixar e remover a ponte da cava</td>
<td>-</td>
</tr>
<tr>
<td>14</td>
<td>Trocar engranhagens para abrir a rosca</td>
<td>2,50</td>
</tr>
<tr>
<td>15</td>
<td>Fixar e ajustar, na medida, a ferramenta para desbaste externo</td>
<td>0,80</td>
</tr>
<tr>
<td>16</td>
<td>Como em 15, mas para desbaste interno</td>
<td>1,00</td>
</tr>
<tr>
<td>17</td>
<td>Fixar e ajustar, na medida, a ferramenta para acabamento externo</td>
<td>1,50</td>
</tr>
<tr>
<td>18</td>
<td>Como em 17, mas para acabamento interno</td>
<td>1,80</td>
</tr>
<tr>
<td>19</td>
<td>Fixar e ajustar a ferramenta para abrir rosca externa</td>
<td>2,80</td>
</tr>
<tr>
<td>20</td>
<td>Como em 19, mas para rosca interna</td>
<td>3,50</td>
</tr>
<tr>
<td>21</td>
<td>Fixar e ajustar o aparelho confinador</td>
<td>-</td>
</tr>
<tr>
<td>22</td>
<td>Colocar, fixar e remover e porta-ferramenta traseiro</td>
<td>2,70</td>
</tr>
<tr>
<td>23</td>
<td>Colocar, fixar e remover a retificadora do torno</td>
<td>-</td>
</tr>
<tr>
<td>24</td>
<td>Remover todas as ferramentas e desvolve-las, limpar a máquina, marcar o termo do serviço</td>
<td>3,00</td>
</tr>
<tr>
<td>Nº</td>
<td>Descrição</td>
<td>Diâmetro</td>
</tr>
<tr>
<td>-----</td>
<td>---</td>
<td>----------</td>
</tr>
<tr>
<td>1</td>
<td>Mudar rotações com alavanca</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Mudar rotações com motor</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Mudar avanço</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Inverter rotações com motor ou alavanca</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Ligar e desligar rotações com alavanca ou motor</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Ligar e desligar avanço</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Avançar, ajustar a medida, retornar a ferramenta externa</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Como em 7, mas a ferramenta interna</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Virar a torre de ferramentas, avançar, ajustar a medida externa, retornar</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Como em 9, mas para medida interna</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Mover o carro com volante a até 150 mm</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Mover o carro com volante a até 500 mm</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Mover o carro com volante a até 1000 mm</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Mover o carro com volante a até 1500 mm</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Mover o carro transversal com o volante a até 100 mm</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Como em 15, mas a até 250 mm</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Colocar ferramenta no mangote de cabeçote móvel e retirar</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Avançar, fixar, soltar e retornar o cabeçote móvel</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nr</td>
<td>Descrição</td>
<td>Peso da peça em kg até</td>
</tr>
<tr>
<td>----</td>
<td>---</td>
<td>------------------------</td>
</tr>
<tr>
<td>1</td>
<td>Colocar e remover a peça entre pontos (sem grampo de arrasto)</td>
<td>0,25 1,00 2,50 5,00 10,0 25,0 40,0</td>
</tr>
<tr>
<td>2</td>
<td>Como em 1, mas com grampo de arrasto</td>
<td>0,25 1,00 2,50 5,00 10,0 25,0 40,0</td>
</tr>
<tr>
<td>3</td>
<td>Como em 1, mas usando dois grampos de arrasto</td>
<td>0,10 0,15 0,25 0,35 0,50 1,00 1,50</td>
</tr>
<tr>
<td>4</td>
<td>Inverter a peça entre pontos usando grampo de arrasto</td>
<td>0,20 0,30 0,40 0,60 1,00 1,50</td>
</tr>
<tr>
<td>5</td>
<td>Inverter a peça entre pontos (usando dois grampos de arrasto)</td>
<td>0,10 0,15 0,25 0,35 0,50 1,00 1,50</td>
</tr>
<tr>
<td>6</td>
<td>Colocar e remover eixo entre pontos</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Colocar e remover o mandril com a peça entre pontos usando pressa (peso com mandril)</td>
<td>0,50 0,60 1,20 1,70 2,50 3,70</td>
</tr>
<tr>
<td>8</td>
<td>Colocar e remover o mandril expansível com a peça entre pontos (peso com mandril)</td>
<td>0,40 0,55 0,60 0,80 1,20</td>
</tr>
<tr>
<td>9</td>
<td>Colocar e remover a peça sobre o mandril fixado no ávore</td>
<td>0,25 0,35 0,40 0,60 1,00</td>
</tr>
<tr>
<td>10</td>
<td>Colocar e remover a peça na plataforma universal (aperto na superfície bruta)</td>
<td>0,35 0,50 0,70 1,00 1,60 2,30 3,00</td>
</tr>
<tr>
<td>11</td>
<td>Como em 10, mas aperto nas superfícies usinadas</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Colocar e remover a peça na plataforma independente (sem centrags)</td>
<td>0,20 0,30 0,60 0,85 1,35 1,70 2,10</td>
</tr>
<tr>
<td>13</td>
<td>Como em 12, mas com centrags</td>
<td>- 0,80 1,40 2,00 2,80 3,50 4,50</td>
</tr>
<tr>
<td>14</td>
<td>Colocar e remover a peça - um lado na plataforma universal, outro na cabeçote movel</td>
<td>- 1,50 2,10 2,80 3,50 4,80 7,00</td>
</tr>
<tr>
<td>15</td>
<td>Virar a peça na plataforma universal</td>
<td>0,20 0,30 0,60 0,85 1,35 1,70 2,10</td>
</tr>
<tr>
<td>16</td>
<td>Virar peça na plataforma independente</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Limpador com sopor do ar o dispositivo, colocar e remover a peça</td>
<td>0,20 0,24 0,32 0,40 0,55 0,80 1,10</td>
</tr>
<tr>
<td>18</td>
<td>Apretar e soldar com chave o parafuso - para cada uma</td>
<td>0,16 0,20 0,22 0,23 0,25 0,28 0,32</td>
</tr>
<tr>
<td>19</td>
<td>Apretar e soldar com chave a porca - para cada uma</td>
<td>0,12 0,16 0,18 0,19 0,20 0,22 0,25</td>
</tr>
<tr>
<td>20</td>
<td>Mover, apertar, soldar e mover a lado um grampo</td>
<td>0,20 0,22 0,26 0,30 0,33 0,35 0,38</td>
</tr>
<tr>
<td>21</td>
<td>Colocar o grampo, apertar, soldar e remover</td>
<td>0,30 0,40 0,44 0,50 0,55 0,65 0,70</td>
</tr>
<tr>
<td>22</td>
<td>Colocar e remover um pin de locação</td>
<td>0,10 0,12 0,13 0,15 0,18 0,20 0,22</td>
</tr>
</tbody>
</table>

Observação: Os tempos para peças de 25 até 40 kg são válidos com ajuda de outra pessoa. Usando-se talha e preciso aumentar o tempo em 35-50%, conforme o tipo da talha.
Anexo 5

Memorial de Cálculos
ANEXO 5 – Memorial de Cálculos

* Tempo de Corte \(t_c \)

Operação 20

Pertinaço 1 \(\rightarrow t_c = \frac{25 \cdot 1.423}{50 \cdot 0.055} = 0.67 \times 2 \text{ min} = 1.34 \text{ min} \)

Pertinaço 2 \(\rightarrow t_c = \frac{45 \cdot 1.423}{60 \cdot 0.035} = 0.44 \times 2 \text{ min} = 0.88 \text{ min} \)

Canhão \(\rightarrow t_c = \frac{6 \cdot 1.423}{50 \cdot 0.035} = 1.24 \times 1.5 \text{ min} = 1.86 \text{ min} \)

* Tempo de manutenção no final do canhão

Preevarão \(\rightarrow t_c = \frac{25 \cdot 1.423}{50 \cdot 0.055} = 0.74 \times 2 \text{ min} = 1.48 \text{ min} \)

\[t_{c,20} = 2.43 \text{ min} \]

Operação 30

Pertinaço \(\rightarrow t_c = \frac{50 \cdot 1.423}{50 \cdot 0.035} = 0.42 \times 2 \text{ min} = 0.84 \text{ min} \)

**Preevarão (01 poste) \(\rightarrow t_c = \frac{25 \cdot 1.423}{50 \cdot 0.035} = 0.07 \text{ min} \)

\[t_{c,30} = 0.23 \text{ min} \]
ANEXO 5 - Memorial de Cálculos

- Tempo, Estimado

- Tempo de Aturada
 Opção 20 → t_e = 4,07 min
 Opção 30 → t_e = 0,27 min

- Tempo de Aparasamento e Algodurado de Ferrações
 Opção 20 → t_a = 4,70 min
 Opção 30 → t_a = 0,23 min

- Tempo de Polir
 Opção 20 → t_p = 5,44 min
 Opção 30 → t_p = 0,51 min

- Tempo de Trava de Ferrações
 Opção 20 → t_t = 22,0 min
 Opção 30 → t_t = 1,50 min

- Tempo Total de Execução por Peça

 Opção 20
 \[t = 2,42 + 0,67 + 1,70 + \frac{55,44}{50} + \frac{9}{50} \times (2,20) \]
 \[t = 5,91 \text{ min} \]

 Opção 30
 \[t = 5,23 + 0,27 + 0,23 + \frac{27,51}{50} + \frac{1}{50} \times (1,60) \]
 \[t = 6,61 \text{ min} \]
Ciclo-ferreiro

Operação 20
ferr. ferreiro \[C_f = \frac{4}{52} \left[\frac{L}{600} \cdot 0.5 + \frac{8.6}{3} \right] = \text{USD} \ 0.05 \]
ferr. torneio \[C_f = \frac{4}{52} \left[\frac{L}{600} \cdot 260 + \frac{8.2}{2} \right] = \text{USD} \ 0.08 \]
\[C_{f_{20}} = \text{USD} \ 0.13 \]

Operação 30
\[C_f = \frac{4}{52} \left[\frac{4}{600} \cdot 6840 + \frac{7.56}{2} \right] \]
\[C_{f_{30}} = \text{USD} \ 0.10 \]

Ciclo de Mão-de-obra

Operação 20
\[Sh = \frac{504.56 + 2.650.54}{120} \Rightarrow 26.13 \text{ USD/h} \]
\[C_m = \frac{5.81}{60} \cdot 26.13 = \text{USD} \ 2.57 \]

Operação 30
\[Sh = \frac{725.38 + 2.995.92}{120} \Rightarrow 30.33 \text{ USD/h} \]
\[C_m = \frac{1.51}{60} \cdot 30.33 = \text{USD} \ 0.81 \]
ANEXO B - Memorial de Cálculos

- Custo - máquina

Operação 20

\[
C\text{m}q = \frac{1,31}{149.46} \left[(15214,64 - 15221,64, 6,54) + 1255,51 + (6,185,52 \times 1,0) \right]
\]

\[C\text{m}q = \text{US$} 0,27\]

Operação 21

\[
C\text{m}q = \frac{1,31}{149.46} \left[(2014,52 - 20260,58, 6,52) + 1255,51 + 2.801,15 + (4,38, 113,40 \times 1,0) \right]
\]

\[C\text{m}q = \text{US$} 1,52\]

- Custo de Materiais - arma direta

\[
C\text{ma} = \frac{\text{custo bloque}}{12 \text{ operações}} = \frac{2.585}{5} \Rightarrow \text{US$} 0,52/\text{operação}.
\]

- Custo de Materiais - prima indireta

Operação 20

\[
C\text{m}p = \frac{552.51 - (5,84 + 10,80)}{120} \times 5,31 \Rightarrow C\text{m}p_{20} = \text{US$} 0,47
\]

Operação 30

\[
C\text{m}p = \frac{552.51 - (17,75 + 20,25)}{120} \times 4,64 \Rightarrow C\text{m}p_{30} = \text{US$} 0,12
\]
ANEXO B - Memoria de Cálculos

- Custo Indireto de Fabricação

Operação 20

\[\frac{CIF_i \times 2.52 \times 1.09}{2842} = 5.34 \Rightarrow CIF_{20} = UE 0.001 \]

Operação 30

\[\frac{CIF_i \times 2.52 \times 1.09}{2842} = 6.4 \Rightarrow CIF_{30} = UE 0.002 \]

- Custo de Imprensa

\[C_{CI} = \frac{(501.88 + 20.10) + 178.28}{120} = 0.075 \Rightarrow C_{CI} = UE 0.08 \]

P/ operação \(C_{CI} = \frac{0.28}{5} = UE 0.08 \)

- Cálculo do Custo por Peça por Operação - Modelo FERRARESI

Operações 20

\[C_{P_{20}} = 0.49 + 0.47 + 2.57 + 0.57 + 0.44 + 0.95 + 0.001 + 0 \]

\[C_{P_{20}} = UE 4.42 \]

Operações 30

\[C_{P_{30}} = 0.53 + 0.12 + 0.54 + 1.82 + 0.10 + 0.08 + 0.002 + 0 \]

\[C_{P_{30}} = UE 5.52 \]
ANEXO 6 - Memorial de Cálculos

- Custo Horário do Centro de Custo

\[
CHC \times 6.852,88 \quad \Rightarrow \quad CHC = \text{USD} \ 57.12
\]

- Cálculo do Custo por Pesa (por aplicação) - MODELO DE CUSTO DE MÓDULO

\textbf{Operaḉão 20}

\[\text{CP} = 0.52 \times (5.91/60) = 57.12\]

\[\text{CP}_{20} = \text{USD} \ 57.12\]

\textbf{Operaḉão 30}

\[\text{CP} = 0.52 \times (1.61/60) = 57.12\]

\[\text{CP}_{30} = \text{USD} \ 57.12\]

- Custo Total das Máquinas do Centro de Custo - MODELO C/ FATOR DE CONTRIBUIÇÃO

\textbf{CMRE \ (tabela 5.7)}

\textbf{Custo dos Acessórios Cérul} \ (valor nacional \ \text{CMR} = \text{CMRE} \times 0.20)

\textbf{Operaḉão 20}

\[\text{CMR} = (126,05 \times 0.20) \Rightarrow \text{USD} \ 25,21 \ (\text{Place de Entrag)}\]

\textbf{Operaḉão 30}

\[\text{CMR} = (240,84 \times 0.20) \Rightarrow \text{USD} \ 48,17 \ (\text{Place de Entrag})\]
ANEXO 5 - Memorial de Cálculos

CML = Custo de manutenção ao ano e no ano de máquina

- Seria → (2.552, 54 + 0,07) x 3,55 = U$ 4.308,55
- Torno Universal → (1065,51) x 6,52 = U$ 7.277,43
- Torno CNC → (2.501,05) x 6,52 = U$ 16.641,17

- CEM = Em. (custo atual por item)

- Seria → 0,66 x 128,58 = U$ 84,64
- Torno Universal → 4,60 x 188,58 = U$ 877,72
- Torno CNC → 11,38 x 188,58 = U$ 2.159,84

- Custo Percentual de máquina

- Torno CNC → $C_1 = 120.528,57 \Rightarrow CM_1 = 100\%
- Torno Universal → $C_2 = 14.520,92 \Rightarrow CM_2 = 12,05\%
- Seria → $C_3 = 2.783,66 \Rightarrow CM_3 = 2,24\%

- Produtividade

Seria → $P_1 = 0,75$

- Torno Universal → $P_2 = \frac{120.528,57}{160} \Rightarrow 0,687$

- Torno CNC → $P_3 = \frac{143.08}{160} \Rightarrow 0,843$

\[P = \frac{P_1 + P_2 + P_3}{3} = 0,75 \]
ANEXO B - Memorial de Cálculos

* Fator de Contribuição

\[
F_1 = \frac{\left(\frac{2,25}{100}\right) + 0,75 + 0,8}{\left(\frac{2,51}{100}\right) + 0,75 + 0,6837 + 0,018} = 0,68342
\]

\[
F_2 = \frac{\left(\frac{12,05}{100}\right) + 0,6837 + 0,75}{\left(\frac{12,51}{100}\right) + 0,75 + 0,6837 + 0,018} = 0,71741
\]

\[
F_3 = \frac{\left(\frac{100}{100}\right) + 0,8}{\left(\frac{10,05}{100}\right) + 0,6837 + 0,018} = 1,60077
\]

* Custo/hora/máquina \(\rightarrow FC_1 \cdot Ch_{oe} \)

Leve \(\rightarrow 0,68342 \cdot 57,12 = \) US$ 38,04

Torno Unid. \(\rightarrow 0,71741 \cdot 57,12 = \) US$ 40,77

Torno CNC \(\rightarrow 1,60077 \cdot 57,12 = \) US$ 91,55

* Custo por peça (per operação) \(\rightarrow \) MODELO PROPOSTO (C/ FC_i)

Operação 20

\[
CP = 0,59 + 5,94 \left(30,04\right)
\]

\[
CP = US$ 4,60
\]

Operação 30

\[
CP = 0,59 + 4,81 \left(30,04\right)
\]

\[
CP = US$ 3,05
\]