ESTUDO CINÉTICO DA HIDRÓLISE DE SACAROSE POR INVERTASE LIVRE E IMOBILIZADA
UNIVERSIDADE ESTADUAL DE CAMPINAS
FACULDADE DE ENGENHARIA DE ALIMENTOS

ESTUDO CINÉTICO DA HIDRÓLISE DE SACAROSE POR INVERTASE LIVRE E IMOBILIZADA

Eloízo Júlio Ribeiro
Mestre Eng. Alimentos, FEA, 1983

Orientador: Prof. Dr. Francisco Mauger Filho

Este exemplar corresponde a redação final da tese defendida por Eloízo Júlio Ribeiro e aprovada pela comissão. Tese apresentada à Faculdade de Engenharia de Alimentos da Universidade Estadual de Campinas para obtenção do grau de Doutor em Engenharia de Alimentos.

Campinas, 07 de novembro de 1989

Presidente da Comissão
A MEUS PAIS, JOSÉ (IN MEMORIAM) E ANA, À MINHA ESPOSA MADALENA E A MEUS FILHOS GUSTAVO E GABRIELA, DEDICO ESTE TRABALHO.
Agradecimentos

- Ao professor Dr. Francisco Maugeri Filho, pela orientação desse trabalho.
- À Faculdade de Engenharia de Alimentos, em especial ao Departamento de Engenharia, que possibilitou o desenvolvimento da pesquisa.
- Ao Departamento de Engenharia Química da Universidade Federal de Uberlândia, pela concessão do afastamento.
- Ao professor Fernando Antônio Cabral, pela valiosa ajuda na parte computacional dessa tese.
- À professora Dra. Gisella Maria Zanin, pela doação do suporte de sílica de porosidade controlada.
- Ao PICD/CAPES, pela bolsa concedida.
- À ABIA pelo pagamento das cópias desta tese.
- A Maria Cecília Tavares e Mitiê Sônia Sadahira, pela ajuda na parte experimental.
- Aos colegas da pós-graduação, professores Jonas Contiero e Isabel Rodrigues, pela colaboração na montagem da parte experimental e pelo companheirismo.
- Aos funcionários do laboratório de Bioengenharia do DEA, Fátima Almeida Costa, Antônio Quirino e Maria Domingos Costa, pelos trabalhos prestados.
- A Maria Conceição Romuado pelo paciente trabalho de impressão desta tese.
- À minha esposa e filhos, por terem abdicado de muitas coisas, em favor do desenvolvimento dessa tese.
- A todos que, de uma forma ou de outra, colaboraram no desenvolvimento desse trabalho.
Sumário

Índice ... i
Índice de Tabelas ... ix
Índice de Figuras .. xiii
Nomenclatura .. xvii
Resumo .. xxiii
Summary .. xxv

1 - Introdução ... 1
2 - Revisão Bibliográfica ... 4
3 - Material e Métodos .. 74
4 - Resultados eDiscussão 94
5 - Conclusões .. 173
6 - Referências Bibliográficas 176
7 - Anexos ... 186
Índice

<table>
<thead>
<tr>
<th>Capítulo</th>
<th>Título</th>
<th>Páginas</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introdução</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Revisão Bibliográfica</td>
<td>4</td>
</tr>
<tr>
<td>2.1</td>
<td>Enzimas como catalisadores</td>
<td>4</td>
</tr>
<tr>
<td>2.2</td>
<td>Cinética Enzimática</td>
<td>5</td>
</tr>
<tr>
<td>2.2.1</td>
<td>Efeito da concentração da enzima</td>
<td>5</td>
</tr>
<tr>
<td>2.2.2</td>
<td>Efeito da concentração do substrato</td>
<td>6</td>
</tr>
<tr>
<td>2.2.3</td>
<td>Inibição enzimática</td>
<td>9</td>
</tr>
<tr>
<td>2.2.3.1</td>
<td>Inibição pelo substrato</td>
<td>9</td>
</tr>
<tr>
<td>2.2.3.2</td>
<td>Inibição competitiva</td>
<td>10</td>
</tr>
<tr>
<td>2.2.3.3</td>
<td>Inibição não competitiva</td>
<td>12</td>
</tr>
<tr>
<td>2.2.3.4</td>
<td>Inibição parcialmente não competitiva</td>
<td>14</td>
</tr>
<tr>
<td>2.2.4</td>
<td>Determinação dos parâmetros cinéticos</td>
<td>15</td>
</tr>
<tr>
<td>2.2.5</td>
<td>Influência do pH na taxa das reações enzimáticas</td>
<td>16</td>
</tr>
<tr>
<td>2.2.6</td>
<td>Efeito da temperatura na atividade e estabilidade das enzimas</td>
<td>18</td>
</tr>
<tr>
<td>2.3</td>
<td>Enzimas Imobilizadas</td>
<td>22</td>
</tr>
<tr>
<td>2.4</td>
<td>Métodos de Imobilização de Enzimas</td>
<td>23</td>
</tr>
<tr>
<td>2.5</td>
<td>Suportes para Imobilização de Enzimas</td>
<td>24</td>
</tr>
<tr>
<td>2.6</td>
<td>Descrição dos Métodos de Imobilização de Enzimas</td>
<td>28</td>
</tr>
<tr>
<td>Section</td>
<td>Page</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>2.6.1 - Ligação cruzada intermolecular</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>2.6.2 - Adsorção física</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>2.6.3 - Ligação iônica</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td>2.6.4 - Ligação metálica-queiação com metais de transição...</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>2.6.5 - Método da ligação covalente</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td>2.6.6 - Imobilização de enzimas por oclusão</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>2.6.7 - Método da enzima solúvel imobilizada</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>2.6.8 - Imobilização de enzimas em suportes inorgânicos...</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td>2.6.9 - Comparação entre os métodos de imobilização de enzimas</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>2.7 - Efeitos da imobilização nas propriedades cinéticas das enzimas</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>2.7.1 - Aspectos gerais</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>2.7.2 - Especificidade em relação ao substrato</td>
<td>37</td>
<td></td>
</tr>
<tr>
<td>2.7.3 - Perfil atividade-pH</td>
<td>37</td>
<td></td>
</tr>
<tr>
<td>2.7.4 - Perfil atividade-temperatura</td>
<td>38</td>
<td></td>
</tr>
<tr>
<td>2.7.5 - Energia de ativação</td>
<td>38</td>
<td></td>
</tr>
<tr>
<td>2.7.6 - Efeitos de transferência de massa</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>2.7.6.1 - Introdução</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>2.7.6.2 - Efeitos de transferência de massa externa</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>2.7.6.3 - Efeitos de transferência de massa interna</td>
<td>46</td>
<td></td>
</tr>
<tr>
<td>2.8 - Reatores para enzimas imobilizadas</td>
<td>54</td>
<td></td>
</tr>
</tbody>
</table>
2.8.1 - Introdução ... 54
2.8.2 - Reatores descontínuos 55
2.8.3 - Reator contínuo com agitação (CSTR) 57
2.8.4 - Reator contínuo de leito fixo 58
2.8.5 - Reator de leito fluidizado 61
2.9 - Microreactores catalíticos 62
 2.9.1 - Introdução ... 62
 2.9.2 - Microreactores tubulares 62
 2.9.3 - Microreactores de mistura 64
 2.9.4 - Microreactor de recirculação externa 65
2.10 - Invertase .. 68
 2.10.1 - Aspectos gerais 68
 2.10.2 - Imobilização de invertase 69
 2.10.3 - Cinética com invertase livre e imobilizada ... 70
 2.10.4 - Influência da temperatura e do pH na atividade de invertase 72
3 - Material e Métodos ... 74
 3.1 - Reagentes .. 74
 3.2 - Métodos .. 74
 3.2.1 - Determinação de açúcares redutores pelo método do ácido 3,5 dinitrosalicílico 74
 3.2.2 - Determinação da atividade da enzima livre 75
3.2.3 - Determinação da atividade da enzima imobilizada...

3.2.4 - Influência da concentração inicial de sacarose na atividade de invertase livre.

3.2.5 - Influência da concentração inicial de glicose e frutose na atividade de invertase.

3.2.6 - Imobilização de invertase.

3.2.6.1 - Imobilização de invertase em alumina ativada com T_iCl_4.

3.2.6.2 - Imobilização de invertase em sílica de porosidade controlada e em alumina ativadas por silanização.

3.2.6.3 - Condições de imobilização de invertase em sílica ativada por silanização.

a) - Influência da quantidade de enzima no meio de imobilização.

b) - Influência do pH do meio de imobilização.

3.2.7 - Caracterização da sílica de porosidade controlada (SPC).

a) - Densidade real, cristalina ou do esqueleto sólido.

b) - Porosidade interna da partícula.

c) - Densidade da partícula seca ou no ar.

d) - Densidade aparente.

e) - Porosidade do leito fixo.

3.2.8 - Influência da temperatura na atividade da enzima imobilizada.
3.2.9 - Influência do pH na atividade da enzima imobilizada
3.2.10 - Estabilidade de invertase imobilizada em relação ao pH
3.2.11 - Estabilidade térmica de invertase imobilizada
3.2.12 - Regeneração do suporte de imobilização
3.2.13 - Montagem do reator de reciproc externo
3.2.14 - Estudo do comportamento do reator
3.2.15 - Determinação das taxas de reação no reator de reciclo
 a) - Influência da concentração de substrato na atividade de invertase imobilizada
 b) - Influência da concentração de glicose e frutose na cinética da reação com invertase imobilizada
3.2.16 - Verificação experimental da resistência à transferência de massa externa no reator
3.2.17 - Determinação da difusividade efetiva de sacarose no suporte

4 - Resultados e Discussão
4.1 - Atividade da invertase usada no trabalho
4.2 - Cinética de invertase na forma livre
 4.2.1 - Influência da concentração de substrato na cinética da reação
 4.2.2 - Influência da concentração de glicose e frutose na atividade de invertase livre
4.3 - Imobilização de invertase
4.3.1 - Imobilização de invertase em alunina ativada com
TiCl_4 .. 109

4.3.2 - Imobilização de invertase em alumina ativada por silanização 110

4.3.3 - Imobilização de invertase em SPC ativada por silanização 110

4.4 - Caracterização da SPC .. 115

a) - Diâmetro médio das partículas e dos poros .. 115

b) - Densidade do esqueleto sólido, densidade real ou cristalina 115

c) - Porosidade interna da partícula .. 115

d) - Densidade da partícula seca ou partícula porosa 115

4.5 - Influência da temperatura na atividade de invertase imobilizada 115

4.6 - Influência do pH na atividade de invertase imobilizada em SPC 120

4.7 - Estabilidade de invertase imobilizada em relação ao pH 122

4.8 - Estabilidade térmica de invertase imobilizada ... 123

4.9 - Regeneração do suporte ... 130

4.10 - Cinética de invertase na forma imobilizada ... 131

4.10.1 - Estudo do comportamento do reator de recícolo 131

4.10.2 - Influência da concentração do substrato na cinética de invertase imobilizada .. 132

4.10.2.1 - Determinação dos parâmetros aparentes .. 132

4.10.2.2 - Determinação dos parâmetros intrínsecos 141
4.10.2.3 - Comprovação dos parâmetros cinéticos intrínsecos sem levar em conta a presença de produtos da reação 143

4.10.3 - Influência da concentração de glicose e frutose na cinética da reação com invertase imobilizada 149

a) - Inibição por frutose .. 149

b) - Inibição por glicose .. 152

4.10.4 - Comprovação dos parâmetros cinéticos intrínsecos considerando a inibição pelos produtos da reação .. 156

4.10.5 - Influência da resistência à transferência de massa intrapartícula .. 164

4.10.6 - Comprovação do modelo cinético intrínseco 166

4.10.7 - Determinação da difusividade efetiva de sacarose nas partículas de enzimas imobilizadas 170

5 - Conclusões .. 173

6 - Referências Bibliográficas .. 176

7 - Anexos ... 186

I - Cálculo das concentrações de substrato na superfície do suporte \(S_s \) ... 186

II - A - Cálculo das taxas globais de reação pelo método das diferenças finitas 190

II - B - Cálculo das taxas globais de reação pelo método de Runge-Kutta de 4ª ordem 196

II - C - Programa para o cálculo das taxas globais de reação por diferenças finitas e por Runge-Kutta de 4ª ordem 198
III - Obtenção do perfil de concentração adimensional em função do tempo, no interior das partículas 200
Índice de Tabelas

2 – Revisão Bibliográfica

2.1 - Classificação de enzimas imobilizadas 24

2.2 - Características desejáveis a um suporte para imobilização de enzimas ... 25

2.3 - Classificação química dos suportes para imobilização de enzimas ... 27

2.4 - Resinas trocadoras de íons para ligação iônica de enzimas ... 30

2.5 - Comparação das técnicas de imobilização de enzimas 36

2.6 - Classificação dos reatores enzimáticos 55

4 – Resultados e discussão

4.1 - Taxas iniciais de reação (v) em função da concentração inicial de substrato (S), para invertase livre 95

4.2 - Valores de v (experimentais) v' calculados pela equação 4.4 . 98

4.3 - Parâmetros cinéticos do modelo de inibição pelo substrato... 99

4.4 - Taxas iniciais de reação, v, em função das concentrações iniciais de substrato, S e de frutose, F 102

4.5 - Taxas iniciais de reação, v, em função das concentrações iniciais de substrato, S e de glicose, G 103
4.6 - Valores de X e Y, calculados pelas equações 4.16 e 4.17 106

4.7 - Atividade de invertase imobilizada, A \((U/g)\), em função da temperatura do meio, para \(S = 50g/l\) 116

4.8 - Taxas iniciais de reação para invertase livre e imobilizada, para \(S = 1g/l\) ... 119

4.9 - Atividades enzimáticas relativas, \(a\), em função do tempo, para a enzima imobilizada, a diferentes temperaturas 123

4.10 - Valores de \(k_d\) e \(t_{1/2}\), em função da temperatura 128

4.11 - Concentração de glicose na corrente de produto do reator, em função do tempo ... 131

4.12 - Taxas iniciais de reação \(v\), em função da concentração de substrato na alimentação \(S_a\), no reator \(S_0\) e da concentração de frutose \(F\), e de glicose \(G\), para o experimento I 134

4.13 - Taxas iniciais de reação \(v\), relacionadas com as concentrações de substrato na alimentação \(S_a\), no reator \(S_0\) e da concentração de frutose \(F\), e de glicose \(G\), para o experimento II 135

4.14 - Parâmetros cinéticos aparentes relativos aos experimentos I e II .. 137

4.15 - Determinação de \(D_{pa}\) pelas equações 4.31, 4.32 e 4.35 142

4.16 - Parâmetros cinéticos intrínsecos para a reação de inversão de sacarose com invertase imobilizada 143

4.17 - Taxas de reação em função da concentração de substrato, para o experimento I ... 145

4.18 - Taxas de reação em função da concentração de substrato,
para o experimento II ... 147

4.19 - Taxas de reação em função da concentração de frutose
para $F = 5g/l$... 149

4.20 - Taxas de reação em função da concentração de frutose
para $F = 10g/l$.. 149

4.21 - Taxas de reação em função da concentração de frutose
para $F = 20g/l$.. 150

4.22 - Taxas de reação em função da concentração de frutose
para $F = 30g/l$.. 150

4.23 - Valores de V_{mobs}, V_{m}, K_{m}, e K_{mobs} para o caso de inibição por
frutose ... 151

4.24 - Taxas de reação em função da concentração de glicose,
para $G = 5g/l$... 153

4.25 - Taxas de reação em função da concentração de glicose,
para $G = 10g/l$.. 153

4.26 - Taxas de reação em função da concentração de glicose,
para $G = 20g/l$.. 153

4.27 - Taxas de reação em função da concentração de glicose,
para $G = 30g/l$.. 154

4.28 - Valores de K_{mob}, V_{mob} e V_{m}' para inibição por glicose 154

4.29 - Taxas de reação, em função da concentração de substrato
e produto para o experimento I 158

4.30 - Taxas de reação experimentais (TE) e calculadas (TCI e TCG),
para o experimento II ... 160
4.31 - Conversões experimentais e calculadas, em função do tempo de residência .. 168

4.32 - Índice de refração (IR) da solução de sacarose no reator, em função do tempo .. 170
Índice de Figuras

2 – Revisão Bibliográfica

2.1 - Formação de produtos com o tempo, em diferentes concentrações de enzima .. 6

2.2 - Inibição pelo substrato ... 10

2.3 - Gráfico de v versus S em presença de um inibidor competitivo ... 11

2.4 - Gráfico de Lineweaver-Burk para inibição competitiva 12

2.5 - Representação Lineweaver-Burk para inibição não competitiva ... 13

2.6 - Representação Lineweaver-Burk para inibição parcialmente não competitiva .. 15

2.7 - Efeito do pH na atividade e estabilidade de uma enzima...... 18

2.8 - Velocidade de formação de produto, calculada como concentração do produto, dividida pelo tempo 20

2.9 - Representação esquemática da variação da energia de ativação em presença de efeitos difusoriais intrapartícula 40

2.10 - Fatores de eficiência como uma função do módulo Thiele, para cinética de inibição pelo substrato 53

2.11 - Tipos de reatores enzimáticos .. 57

2.12 - Relação entre diâmetro de partícula com queda de pressão (a) e com atividade da enzima imobilizada (b) 60

xiii
2.13 - Reator de reciclo contínuo 66
2.14 - Influencia da vazao de reciclo na taxa de reacao 67

3 – Material e Metodos

3.1 - Representao esquemtica do reator descontínuo 76
3.2 - Representao esquemtica do reator de reciclo 86
3.3 - Sistema para determinao experimental de D_c 93

4 – Resultados e Discussao

4.1 - Grfico de Lineweaver-Burk aplicado aos dados da tabela 4.1, considering cinética de inibio pelo substrato 96
4.2 - Comparao entre os resultados experimentais e os previstos pela equao 4.9 ... 100
4.3 - Grfico de Lineweaver-Burk aplicado às taxas iniciais de reao modificadas ... 101
4.4 - Grfico de Lineweaver-Burk, para os dados da tabela 4.4, a 40°C, para diferentes concentraes de frutose 104
4.5 - Grfico de \bar{X} em funo de \bar{Y} 107
4.6 - Grfico de Lineweaver-Burk, para os dados da tabela 4.5, a 40°C, para diferentes concentraes de glicose 108
4.7 - Atividade de invertase imobilizada, a 40°C, em função da concentração de enzima no meio de imobilização 111

4.8 - Atividade de invertase imobilizada, a 40°C, em função do volume do meio de imobilização, por 100 mg de suporte 112

4.9 - Influência do pH no meio de imobilização de invertase em SPC ... 113

4.10 - Efeito da temperatura na atividade de invertase imobilizada em SPC ... 117

4.11 - Gráfico de Arrhenius: lnA em função de 1/T, para invertase imobilizada .. 118

4.12 - Influência do pH na atividade de invertase imobilizada, a 40°C ... 121

4.13 - Influência do pH na estabilidade de invertase imobilizada . 122

4.14 - Atividade relativa a, em função do tempo para as temperaturas 65; 62,5 e 60°C .. 124

4.15 - Atividade relativa a, em função do tempo, para as temperaturas 58, 56 e 54°C .. 125

4.16 - (−lna) em função do tempo para as temperaturas 65; 62,5 e 60°C ... 126

4.17 - (−lna) em função do tempo para as temperaturas 58, 56 e 54°C ... 127

4.18 - (−lnk2) em função de 1/T ... 129

4.19 - Taxa de reação relativa, em função da vazão de circulação de solução reagente através do reator 133
4.20 - Comparação entre os pontos experimentais e os determinados pela equação 4.27, em termos de parâmetros aparentes ... 138

4.21 - Comparação entre os pontos experimentais e os determinados pela equação 4.28, em termos de parâmetros aparentes ... 140

4.22 - Comparação entre as taxas experimentais e calculadas para o experimento I .. 146

4.23 - Comparação entre as taxas experimentais e calculadas para o experimento II .. 148

4.24 -Determinação de K_F a partir da equação 4.38 152

4.25 - Determinação de K_C .. 155

4.26 - Comparação entre as taxas experimentais e as calculadas para o experimento I, considerando os produtos da reação 159

4.27 - Comparação entre as taxas experimentais e as calculadas para o experimento II, considerando os produtos da reação 161

4.28 - η_l em função de ϕ .. 166

4.29 - Comparação entre as conversões experimentais e as calculadas... 169

4.30 - Perfil adimensional de concentração, C_1/C_{10}, em função do tempo, calculado pela equação 3.11 172

xvi
Nomenclatura

\(a = \) atividade enzimática relativa, adimensional
\(a' = \) superfície da partícula por unidade de volume (eq. 2.20), \(\text{cm}^{-1} \)
\(A = \) atividade enzimática \((U, U/g, \text{mol/cm}^2.s)\)
\(A_0 = \) atividade enzimática inicial \((U, U/g, \text{mol/cm}^2.s)\)
\(A' = \) fator de frequência (eq. 2.11)
\(A_t = \) parâmetro de transformação (eq. 2.43)
\(C = \) concentração relativa (eq. 2.39), adimensional
\(C' = \) concentração relativa transformada (eq. 2.43), adimensional
\(C_0 = \) concentração inicial de traçador (eq. 2.64), g/l
\(C_r = \) concentração de açúcares redutores (eq. 3.7), g/l
\(C_{10} = \) concentração inicial de soluto na solução (eq. 3.11), g/l
\(C_1 = \) concentração de soluto na solução em função do tempo (eq. 3.11), g/l
\(d = \) diâmetro interno do reator, cm
\(d_p = \) diâmetro médio das partículas do suporte, cm
\(D = \) difusividade molecular, \(\text{cm}^2/s \)
\(D_{sf} = \) difusividade efetiva na partícula porosa, \(\text{cm}^2/s \)
\(D_{ss} = \) difusividade efetiva de sacarose, \(\text{cm}^2/s \)
\(D_{sp} = \) difusividade efetiva de produto, \(\text{cm}^2/s \)
$D_0 =$ difusividade de sacarose à diluição infinita, cm^2/s

$D(S) =$ difusividade de sacarose à concentração S. cm^2/s

$Da =$ número de Damköhler, (eq. 2.23)

$E =$ concentração de enzima. g/l

$E_t =$ concentração total de enzima, g/l

$E_a =$ energia de ativação da reação (eq. 2.11), cai/mol.

$E_d = -$ energia de desativação da enzima. cai/mol.

$F_o =$ vazão molar de substrato na alimentação do reator (eq. 2.62), mol/min.

$f(S) =$ fator de correção (eq. 2.67)

$F =$ concentração de frutose (eq. 4.10), mol/cm^3

$G =$ concentração de glicose (eq. 4.13), mol/cm^3

$h =$ altura do leito fixo (eq. 3.5), cm

$l =$ concentração do inibidor, mol/cm^3

$j =$ fluxo da massa (eq. 2.19), $mol/cm^2.s$

$j_D =$ fator de Chilton - Colburn

$k_1,k_2,k_{-1},k_{-2},k_p =$ constantes de taxa de reação

$k_d =$ constante da taxa de desativação da enzima (eq. 2.14), min^{-1}

$K_s =$ constante de equilíbrio (eq. 2.3)

$K_m =$ constante de Michaelis - Menten, mol/cm^3

$(K_m)^w =$ constante de Michaelis - Menten aparente, mol/cm^3
\[K_{m} = \text{constante de Michaelis-Menten na presença de inibidor, } \text{mol/cm}^3 \]

\[K'_m = \text{constante de Michaelis-Menten corrigida, definida pela equação 4.37} \]

\[K_{mol} = \text{constante de Michaelis-Menten observada, definida pela equação 4.37} \]

\[(K_m)^{in} = \text{constante de Michaelis-Menten intrínseca} \]

\[K_i = \text{constante de inibição pelo substrato (eq. 2.6), } \text{mol/cm}^2 \]

\[K_t = \text{coeficiente de transferência de massa (eq. 2.19), cm/s} \]

\[K_1 = \text{relação } K_m/S_k \text{ (eq. 2.36), adimensional} \]

\[K_2 = \text{relação } S_0/K_t \text{ (eq. 2.37), adimensional} \]

\[K_1 = K_1/A \text{ (eq. 2.47), adimensional} \]

\[K_2 = K_2/A \text{ (eq. 2.48), adimensional} \]

\[K_F = \text{constante de inibição por frutose (eq. 4.10), } \text{mol/cm}^2 \]

\[K_G = \text{constante de inibição por glicose (eq. 4.13), } \text{mol/cm}^2 \]

\[m_s = \text{massa de SPC (eq. 3.2), g} \]

\[P = \text{concentração de produto (} P = G = F \text{), } \text{mol/cm}^2 \]

\[P_0 = \text{concentração de produto no centro da partícula, } \text{mol/cm}^2 \]

\[q = \text{vazão volumétrica, cm}^3/min. \]

\[q_m = \text{raízes da equação 3.13} \]

\[R = \text{constante da lei dos gases (eq. 2.11), cal/mol} \cdot ^0K \]

\[R = \text{raio do suporte, cm} \]

\[R_e = \text{razão de reciclo (eq. 2.62), adimensional} \]
\[Re_s = \text{número de Reynolds relativo à partícula} \]

\[r = \text{distância radial, a partir do centro da esfera, cm} \]

\[S = \text{concentração de substrato, mol/cm}^3 \]

\[S_a = \text{concentração de substrato na alimentação do reator, mol/cm}^3 \]

(eq. 3.8)

\[S_f = \text{concentração de substrato na fase líquida do reator, mol/cm}^3 \]

\[S_e = \text{concentração experimental do substrato na superfície da partícula catalítica, mol/cm}^3 \]

\[S(N) = \text{concentração de sacarose calculada na superfície da partícula, mol/cm}^3 \]

\[S(0) = \text{concentração de sacarose calculada no centro da partícula, mol/cm}^3 \]

\[S^* = \text{concentração de sacarose disponível (eq. 2.69), mol/cm}^2 \]

\[S_e = \text{número de Shmidt} \]

\[t = \text{tempo, min.} \]

\[t_{1/2} = \text{tempo de meia vida, min.} \]

\[TA = \text{taxa de reação calculada pelos parâmetros aparentes} \]

\[TE = \text{taxa de reação experimental} \]

\[TCG = \text{taxa de reação global, calculada pelo gradiente de concentração na superfície da partícula} \]

\[TCi = \text{taxa de reação calculada pela integração numérica sobre o perfil de concentração no interior da partícula} \]

\[u = \text{velocidade de escoamento do fluido, cm/s} \]

\[v = \text{taxa de reação, mol/cm}^2s \]
\(v(S_b) \) taxa de reação se o catalisador estivesse à concentração do meio líquido no reator (eq. 2.51).

\(v = \) taxa de reação, \(mol/cm^3 \cdot s \)

\(\bar{v} = \) taxa média de reação (eq. 2.60)

\(v^* = \) taxa de reação segundo o modelo de inibição pelo substrato

\(\nu_{obs} = \) taxa de reação observada

\(V_m = \) taxa máxima de reação

\(V_{mi} = \) taxa máxima de reação em presença de inibidor

\(V_{mol} = \) taxa máxima de reação observada definida pela equação 4.3.7

\(V_m^* = \) taxa máxima de reação definida pela equação 4.40

\(V_S = \) volume de sólidos (eq. 3.1), \(cm^3 \)

\(V_b = \) volume do balão volumétrico (eq. 3.1), \(cm^3 \)

\(V_a = \) volume de água (eq. 3.1), \(cm^3 \)

\(V_{sp} = \) volume de vazios na partícula ou volume de água gasto na titulação (eq. 3.3), \(cm^3 \)

\(V_p = \) volume da partícula = \(V_b + V_{sp} \) (eq. 3.3)

\(V_R = \) volume do leito catalítico (eq. 3.5), \(cm^3 \)

\(V_l = \) volume de líquido (eq. 3.11), \(cm^3 \)

\(W = \) massa de catalisador (eq. 2.60), \(g \)

\(W_f = \) concentração de água livre (eq. 2.65)

\(W_t = \) concentração de água total (eq. 2.65)

\(z = \) distância a partir do centro da partícula, \(cm \)
\[X = \text{relação } r/R \text{ (eq. 2.38)} \]
\[X' = \text{conversão (eq. 2.59)} \]
\[X'' = \text{relação } u_i/u \text{ (eq. 4.16)} \]
\[Y = \text{relação definida pela eq. 4.17} \]
\[\alpha = \text{número de Sherwood modificado (eq. 2.42)} \]
\[\alpha = \text{relação } V_i/V_pK_p \text{ (eq. 3.12), adimensional} \]
\[\alpha = \text{relação } -D_{v_r}/D_{v_p} \text{ (eq. 4.46), adimensional} \]
\[\beta = \text{constante (eq. 2.10), adimensional} \]
\[\beta = R^2 \cdot V_m/K_m \cdot D_r \text{ (eq. 2.35), adimensional} \]
\[\gamma = \text{relação } R\sqrt{V_m} \text{ (eq. 4.55)} \]
\[\varepsilon = \text{porosidade do leito fixo (eq. 3.6)} \]
\[\varepsilon_p = \text{porosidade interna da partícula (eq. 3.3)} \]
\[\phi = \text{módulo de Thiele (eq. 3.7), adimensional} \]
\[\eta_e = \text{fator de eficiência externo (eq. 2.24)} \]
\[\eta_i = \text{fator de eficiência interno (eq. 2.31)} \]
\[\mu = \text{viscosidade de soluções, } g/cm.s \]
\[\rho = \text{densidade de soluções, } g/cm^3 \]
\[\rho_s = \text{densidade cristalina do sólido, } g/cm^3 \]
\[\rho_a = \text{densidade aparente (eq. 3.5), } g/cm^3 \]
\[\rho_p = \text{densidade da partícula porosa ou no ar (eq. 3.4), } g/cm^3 \]
\[\tau = \text{tempo de residência, min.} \]

xxii
Resumo

O principal objetivo deste trabalho, foi estudar a cinética de hidrólise de sacarose por invertase imobilizada em sílica de porosidade controlada, de diâmetro médio de poros igual a 375 Å e diâmetro médio de partículas de 0,456 mm.

A cinética da enzima livre foi estudada a 40ºC, a pH 4,5, verificando que para concentrações iniciais de sacarose maiores que 0,146 mol/l, o modelo de inibição pelo substrato foi inadequado, havendo necessidade de um fator de correção \(j(S) \), que foi definido em termos de difusividade de massa. Foi também estudado o efeito inibidor de glicose e de frutose sobre a reação de hidrólise de sacarose por invertase livre. A inibição exercida por frutose é do tipo competitiva e o efeito inibidor de glicose é do tipo parcialmente não competitivo.

Invertase foi imobilizada por ligação covalente, em sílica de porosidade controlada \((SPC) \), ativada por silanização e subsequente reação com glutaraldeído. As enzimas imobilizadas mais ativas foram obtidas quando o pH do meio de imobilização era 4,5. Verificou-se que havia uma saturação do suporte, quando a atividade do meio de imobilização aumentava além de um valor limite. Nessas condições, conseguiu-se uma atividade de 1800 U por grama de suporte seco.

As condições ótimas para a ação de invertase imobilizada foram pH 4,5 e temperatura de 55ºC. A energia de ativação da reação de hidrólise de sacarose pela enzima imobilizada foi 7,8 Kcal/mol.

A invertase na forma imobilizada se mostrou mais estável a pH 4,5 e foi bastante estável em relação à temperatura. A energia de desativação do complexo enzima-suporte foi de 122 Kcal/mol e a perda de atividade do mesmo, foi descrita por uma cinética de primeira ordem.

O suporte usado foi regenerado por pirólise, novamente ativado e usado em uma outra imobilização. A atividade alcançada foi cerca de 80% da atividade obtida na primeira imobilização.

O modelo de inibição pelo substrato foi adequado para descrever a cinética da reação na ausência de produtos da mesma, sem a necessidade de um fator de correção, como ocorreu para a enzima livre. Em presença
de frutose na alimentação do reator, verificou-se uma inibição da reação, modelada em termos de inibição competitiva. Em presença de glicose na alimentação do reator, a inibição observada foi do tipo não competitiva. As constantes de inibição pelos produtos da reação foram, \(K_F = 3.1022 \cdot 10^{-4} \text{mol/cm}^3 \) para frutose e \(K_G = 2.2521 \cdot 10^{-4} \text{mol/cm}^3 \) para glicose.

Os parâmetros cinéticos intrínsecos da equação da taxa de reação foram obtidos por procedimentos numéricos. O valor de \(K_m \) intrínseco foi igual a \(2.3847 \cdot 10^{-2} \text{mol/cm}^3 \) e \(K_m \) aparente foi \(4.3003 \cdot \text{mol/cm}^3 \). Os demais parâmetros cinéticos intrínsecos, \(K_v, K_F, K_G, \) e \(V_m \) foram iguais aos aparentes.

A difusividade efetiva de sacarose em \(SPC \) foi a mesma da sacarose em solução à diluição infinita, \(0.75 \cdot 10^{-5} \text{cm}^2/\text{s} \), a 40°C.
Summary

In this work, the kinetic of sucrose hydrolysis by free and immobilized invertase was studied. The enzyme was immobilized in controlled pore silica with pores of 37.5 nm mean diameter and 0.456 mm of particle mean diameter.

The kinetic studies of free enzyme were carried out at 40°C and pH 4.5. Under these conditions, the mathematical model for reaction rates considering substrate inhibition was inadequate for sucrose concentrations higher than 0.146 mol/l. A correction factor based on the sucrose diffusivities was used. The inhibition effect by glucose and fructose was also studied. For free enzyme, it was shown that fructose is a competitive inhibitor and glucose is a partially noncompetitive inhibitor.

Invertase was immobilized by covalent attachment method onto silanized controlled pore silica, using glutaraldehyde as bifunctional reagent. It was verified that the activity was higher when the immobilization was carried out at pH 4.5. Under this condition, an enzymatic activity of 1800 U/g of dry support was obtained.

The best conditions for immobilized invertase action were pH 4.5 and 55°C. The activation energy of the sucrose hydrolysis reaction was 7.8 kcal/mol. The immobilized invertase was very stable at temperatures lower than 50°C, and the stability was higher at pH 4.5. The deactivation energy was 122 kcal/mol and the kinetics of activity decay with temperature was described by a first order model.

The kinetic studies of immobilized invertase were carried out in a continuous recirculation reactor. The mathematical model for sucrose hydrolysis was found to be represented by substrate and products inhibition. The fructose has a competitive and glucose a noncompetitive effect. The inhibition constants were 3.1022×10^{-4} and 2.2521×10^{-4} mol/cm3, for fructose and glucose, respectively.

The intrinsic kinetic parameters for the mathematical model were found by numerical procedures. The values for intrinsic K_m was 2.3847×10^{-4} and for apparent K_m was 4.3003×10^{-8} mol/cm3. The others intrinsic parameters (K_i, K_F, K_G and V_m) were shown to be similar to the
apparents values.

The effective diffusivity of sucrose into the support was shown to be the same as for sucrose in dilute solution \((0.75 \cdot 10^{-5} \text{ cm}^2/\text{s} \text{ at } 40^\circ\text{C})\).

The support was regenerated by pyrolysis and then reused for immobilization purposes. An yield of 80% compared to the fresh support was attained.
1 - Introdução

Enzimas encontram aplicações em vários campos, tais como em indústrias químicas, alimentícias, têxteis, análises químicas, medicina e outros. Com o avanço das técnicas de purificação de proteínas e o desenvolvimento da bioquímica, microbiologia e genética, o uso de enzimas tem aumentado nos últimos anos. Embora as enzimas sejam catalisadores eficientes, atuando em condições brandas de temperatura, com alta especificidade, elas não são sempre ideais para aplicações práticas, uma vez que elas são geralmente instáveis em temperaturas mais elevadas e não podem ser usadas em solventes orgânicos.

Convencionalmente, as reações enzimáticas tem sido realizadas em processos descontínuos, incubando uma mistura de substrato e enzima solúvel. Após atingir as conversões desejadas, a enzima e outras proteínas contaminantes, são geralmente removidas por desnaturação por pH ou tratamento térmico, durante a separação do produto da mistura reacional.

Com o objetivo de melhorar os processos onde as enzimas atuam como catalisadores, uma alternativa que tem sido bastante estudada constitue-se no uso de enzimas imobilizadas. A imobilização de enzimas ocorreu pela primeira vez em 1916, mas o desenvolvimento dessa tecnologia, visando processos industriais, veio a ocorrer, principalmente após 1969, quando foi implantado o primeiro processo industrial, operando continuamente na resolução ótica de misturas racêmicas de aminoácidos por aminoacilase imobilizada. A partir de então, várias metodologias de imobilização foram desenvolvidas e um número muito grande de trabalhos tem sido publicado na área.

Para o uso de enzimas imobilizadas, foi necessário o desenvolvimento de suportes adequados à fixação das enzimas, assim como a adequação dos reatores químicos para atuarem com esses catalisadores. Estudos de catálise heterogênea foram igualmente necessários, embora na maioria dos casos tenham envolvido o uso de enzimas purificadas e soluções diluídas de substratos puros. Essas condições, normalmente, estão distanciadas daquelas que seriam necessárias num processo industrial.

Neste trabalho, propôs-se a estudar a imobilização de invertase em dois suportes inorgânicos disponíveis, bem como a caracterização do catalisador obtido e a cinética da inversão de sacarose por invertase imobilizada.
Isso devido principalmente, ao fato da sacarose ser uma matéria prima abundante e os produtos de sua hidrólise importantes na indústria de produtos açucarados.

Dentre os produtos da hidrólise da sacarose, destaca-se o açúcar invertido, cuja produção é basicamente realizada por processo ácido, o qual consiste na hidrólise com ácido, a quente, seguido de neutralização com base. Esse método leva a um produto escuro, devido à reações paralelas indesejáveis que ocorrem, além de alto teor de sais.

Um outro processo de inversão de sacarose é o catalisado por invertase, levando à obtenção de um produto de melhor qualidade devido à ausência de produtos secundários e de baixo teor de sais, porém o processo é mais caro que a hidrólise acida, devido ao custo relativamente alto da enzima.

Uma alternativa, então, seria o uso de invertase imobilizada, que poderia tornar o processo economicamente viável, uma vez que a enzima seria usada por um período de tempo maior usando reatores mais compactos, operando continuamente, levando à obtenção de um produto de características uniformes isento de substâncias indesejáveis.

Vários trabalhos têm sido publicados com relação à imobilização de invertase, porém poucos usaram suportes inorgânicos, apenas alguns determinaram parâmetros cinéticos intrínsecos, e nem todos estudaram a inibição da reação de hidrólise de sacarose por invertase imobilizada, pelos produtos da reação.

No presente trabalho, teve-se como principais objetivos:

i - Determinar o modelo cinético, em termos de taxas iniciais de reação em função da concentração inicial de sacarose, para invertase livre, usando uma ampla faixa de concentração de substrato.

ii - Estudar a influência dos produtos da reação, glicose e frutose, na cinética da reação catalisada por invertase livre.

iii - Testar a possibilidade de imobilização de invertase por processo covalente, a alumina ativada com T,Cl, e por silanização.

iv - Estudar a imobilização de invertase em sílica de porosidade controlada, ativada por silanização.
v - Estudar a influência do pH e da temperatura na atividade e estabilidade de invertase imobilizada em sílica de porosidade controlada (SPC).

vi - Verificar a possibilidade de reaproveitamento do suporte de SPC.

vii - Determinar a difusividade efetiva de sacarose em SPC.

viii - Deduzir o modelo cinético da ação de invertase imobilizada, em termos de parâmetros aparentes.

ix - Estudar a influência de glicose e frutose na cinética da reação com invertase imobilizada.

x - Determinar os parâmetros cinéticos intrínsecos da equação da taxa da reação de hidrólise de sacarose pela enzima imobilizada, para uma ampla faixa de concentrações de sacarose comercial (açúcar cristal), com e sem alimentação de glicose e frutose ao reator.
2 - Revisão Bibliográfica

2.1 - Enzimas como catalisadores

Enzimas são catalisadores biológicos de natureza proteica, que participam em reações químicas que ocorrem nas células vivas. Atuam acelerando uma reação termodinamicamente possível, sem alterar a constante de equilíbrio e a energia livre da reação. Uma das diferenças básicas entre enzimas e catalisadores químicos sintéticos é a capacidade daquelas em catalisar reações sob condições suaves, em soluções aquosas, a temperatura e pressão normais, reduzindo a possibilidade de alteração de compostos sensíveis ao calor, bem como reduzindo as necessidades energéticas e os efeitos de corrosão do processo (1,25).

As enzimas têm sido utilizadas pelo homem muito antes que sua função e natureza, ou mesmo os próprios microrganismos, fossem conhecidos. So mente após os trabalhos de Pasteur, no final do século passado, sobre fermentação alcoólica, em que se evidenciou a intervenção de leveduras nesse processo e os de Büchner, que extraiu em 1897, pela primeira vez, enzimas ativas de células vivas, é que foi considerada a existência de enzimas. O trabalho de Büchner foi muito importante, pois evidenciou que as enzimas exerciam seu papel de catalisador fora da célula viva (10).

Com a compreensão da natureza das enzimas e de seu potencial catalítico, sua utilização tem aumentado bastante, em diversos campos, tais como produção de alimentos, cervejas, indústrias têxteis, farmacêuticas e na medicina (10).

Ao contrário dos catalisadores sintéticos comuns, as enzimas apresentam uma elevada especificidade em relação ao substrato e sua utilização reduz a obtenção de subprodutos indesejáveis na reação, diminuindo dessa forma, os custos de separação dos produtos, bem como os problemas de tratamento de efluentes (83). Esse alto grau de especificidade das enzimas, devido à conformação tridimensional das mesmas, levou Emil Fischer, em 1894 a sugerir a hipótese da chave e fechadura. Esse modelo considera que a enzima possui uma região, chamada sítio ativo, o qual é complementar em tamanho, forma e natureza química à molécula do substrato. A hipótese de Koshland, mais moderna, da enzima flexível ou do encaixe induzido, considera que o sítio ativo não precisa preexistir sob uma forma geométrica rígida, devendo contudo existir um arranjo espacial preciso e
específico dos resíduos de aminoácidos, que é induzido em presença do substrato (84).

Tanto os catalisadores químicos, como os biológicos, perdem gradualmente atividade ao participar das reações que catalisam. As enzimas de um modo geral, são mais frágeis, porém à temperatura ambiente, são mais ativas que os catalisadores sintéticos (1).

2.2 - Cinética Enzimática

A cinética enzimática estuda os fatores que influenciam a taxa das reações catalisadas por enzimas, dentre os quais, os mais importantes são a concentração da enzima, concentração de ligantes (substratos, inibidores e ativadores), pH, força iônica e temperatura.

2.2.1 - Efeito da concentração da enzima

Como se verifica para qualquer catalisador, a taxa de uma reação catalisada por enzima, depende da concentração desta. A relação entre a taxa de reação e concentração da enzima só é linear se as verdadeiras taxas iniciais de reação são medidas, ou seja, a taxa de formação de produto deve ser constante em todo o tempo de ensaio, conforme ilustrado esquematicamente nas Figuras 2.1 a e b (84). Assim, quando nos estudos cinéticos usa-se o procedimento de taxas iniciais, é necessário estabelecer os limites de linearidade, estabelecendo a concentração máxima de produto que pode acumular no meio reacional, antes que P versus t e v versus E, se tornem não lineares, garantindo um excesso de substrato em relação à enzima. A velocidade de formação de produto na Figura 2.1 (a) é constante até o tempo t₁, para as enzimas nas concentrações E₁ a E₄. Se for escolhido um tempo t₂, a resposta não será linear para todas as concentrações de enzima. Por outro lado, se for usada uma concentração E₅, a resposta não será linear para t₁.
Figura 2.1 - a) Formação de produtos com o tempo em diferentes concentrações de enzimas onde $E_5 > E_4 > E_3 > E_2 > E_1$; b) Velocidade inicial calculada como v_1, como uma função da concentração de enzima, para o tempo t_1 (84).

A concentração molar real de uma preparação enzimática, normalmente é desconhecida, então a quantidade de enzima é expressa em termos de atividade. A comissão sobre enzimas, da União Internacional de Bioquímica, objetivando padronizar a maneira de expressar as atividades das enzimas, define uma unidade internacional (U) de enzimas, como sendo aquela quantidade que catalisa a transformação de 1 μ moir de substrato por minuto, sob condições definidas (76).

2.2.2 - Efeito da concentração de substrato

Em uma reação catalisada por enzima, é conhecido há muito tempo que essa se combina com o substrato de alguma forma. Algumas teorias tentam explicar a elevada especificidade e atividade das enzimas, porém os conceitos de sítio ativo e complexo enzima-substrato são universalmente aceitos e são o ponto de partida para determinação da maioria das equações da taxa de reação (3,15).

No final do século passado, muitos pesquisadores tentaram explicar
o comportamento das reações enzimáticas baseando-se nos princípios de equilíbrio. Em 1902, Henri formulou a primeira equação geral para a determinação da taxa da reação catalisada por enzima. Em 1913, Michaelis e Menten confirmaram o trabalho experimental de Henri e apresentaram uma equação levemente modificada (1,84).

A dedução da equação da taxa sugerida por Henri, Michaelis e Menten parte do conceito de formação de complexo enzima-substrato, ES, e do conceito de equilíbrio rápido. A sequência de reação, é:

\[E + S \xrightarrow{k_{-1}} ES \xrightarrow{k_{-2}} E + P, \quad \text{onde} \]

\[E \text{ representa a enzima, } S \text{ o substrato, } ES \text{ o complexo enzima-substrato e } P \text{ o produto. Os } k_i \text{ representam constantes das taxas de reação.} \]

Se for considerada apenas a taxa inicial da reação, a reação de formação de ES a partir de P é insignificante, pois ainda não se acumulou uma quantidade significativa de produto. Nas condições de equilíbrio rápido, \(E, S \) e \(ES \) alcançam o equilíbrio rapidamente em comparação com a velocidade com a qual \(ES \) se transforma em \(E + P \). Assim, a sequência de reação pode ser representada por:

\[E + S \xrightarrow{k_{-1}} ES \xrightarrow{k_p} E + P \]

A equação da taxa é então dada pela equação

\[v = k_p \cdot (ES) \quad (2.1) \]

onde, \((ES)\) é a concentração do complexo enzima-substrato.

A partir da equação 2.1 e de um balanço de massa para a enzima, chega-se à equação da taxa:

\[v = \frac{V_m \cdot S}{K_s + S} \quad (2.2) \]

onde,
\[V_m = \text{velocidade máxima de reação, se toda a enzima estivesse complexada} \]

\[K_s = \frac{k_{-1}}{k_1} \quad (2.3) \]

\[V_m = k_1 E_t \quad (2.4) \]

\(E_t \) = concentração total da enzima

A equação 2.2, conhecida como equação de Henri - Michaelis - Menten é válida quando \(k_1 \) é muito menor que \(k_{-1} \). Se forem da mesma ordem de grandeza, a equação da taxa deve ser formulada a partir da hipótese do estado estacionário.

Em 1925, Briggs e Haldane derivaram uma equação para a taxa de reação, onde não necessitava da restrição do equilíbrio rápido, mas admitia que, após um curto período de tempo depois de iniciada a reação, atingia-se um estado estacionário, em que a concentração do complexo enzima-substrato permanecia constante. Nesse caso, ES seria formado na mesma velocidade com que seria decomposto (83). Para uma sequência de reações

\[E + S \xrightarrow{k_l} \frac{k_l}{k_{-1}} \quad \text{ES} \xrightarrow{k_p} \quad E + P, \text{ a equação da taxa de reação seria:} \]

\[v = \frac{V_m \cdot S}{k_m + S} \quad (2.5) \]

onde

\[K_m = \frac{k_{-1} + k_p}{k_1} \] é chamada constante de Michaelis - Menten.

As equações 2.2 e 2.5 diferem na constante, enquanto \(K \) é uma constante de dissociação do complexo ES, \(K_m \) é uma constante dinâmica, que expressa a relação entre as concentrações reais no estado estacionário, ao invés de concentrações no equilíbrio (84).
A equação de Michaelis - Menten é aplicada com sucesso quando a concentração da enzima é pequena em relação àquela do substrato e para instantes iniciais de reação, quando é desprezível a concentração de produtos. Para situações em que a concentração de enzima é comparável com a do substrato, como por exemplo num reator com alto grau de conversão, ou reações realizadas na interface sólido-líquido, em que a concentração do substrato no microambiente da enzima pode ser muito pequena, a equação de Michaelis - Menten pode ser inapropriada, contudo ela serve de base para a formulação de equações cinéticas mais complexas, como presença de inibidores, ativadores e múltiplos substratos.

2.2.3 - Inibição enzimática

Qualquer substância que reduza a taxa de uma reação enzimática pode ser considerada como um inibidor. A inibição da atividade enzimática é um dos maiores instrumentos de regulação nas células vivas (83).

Dos vários tipos de inibição encontrados na literatura, trataremos aqui apenas inibição pelo substrato, inibição competitiva, não competitiva e parcialmente não competitiva.

2.2.3.1 - Inibição pelo substrato

Algumas vezes, quando uma grande quantidade de substrato está presente, a taxa da reação catalisada por enzima é diminuída pelo excesso de substrato, conforme Figura 2.2. A taxa da reação atinge um máximo conforme aumenta a concentração de substrato, após esse ponto, um acréscimo em S, diminui a taxa da reação. O comportamento das reações inibidas pelo substrato pode ser modelado a partir da equação de Michaelis - Menten. É assumido um mecanismo onde uma segunda molécula de substrato se liga ao complexo ES, formando um complexo não reativo ES₂ (1).

As etapas da reação, são:

\[
E + S \xrightarrow{k_{+}} ES; \quad ES + S \xrightarrow{k_{+}} ES_S; \quad ES \xrightarrow{k_{-}} E + P
\]

A equação da taxa de reação inibida pelo excesso de substrato resultante, é:

9
\[v = \frac{V_m \cdot S}{K_m + S + \frac{S^2}{K_i}} \] (2.6)

onde \(K_i \) = constante de inibição pelo substrato

Figura 2.2 - Inibição pelo substrato

2.2.3.2 - Inibição competitiva

Um inibidor competitivo é uma substância que combina com uma enzima, impedindo a ligação do substrato, havendo uma verdadeira competição pelo mesmo sítio. Um inibidor competitivo pode ser um análogo não metabolizável ou um derivado de um substrato verdadeiro ou um produto da reação (1.84).

O esquema da reação que descreve a inibição competitiva, é:

\[
E + S \xrightarrow{k_i} ES \xrightarrow{k_e} E+P
\]

\[
+ \quad \text{I} \quad \xleftarrow{K_i} \quad \text{EI}
\]

A equação cinética que descreve o fenômeno, é:
A equação cinética que descreve o fenômeno, é:

\[v = \frac{V_m \cdot S}{K_m (1 + \frac{I}{K_i} + S)} \] \hspace{1cm} (2.7)

onde,

\[I = \text{concentração do inibidor} \]
\[K_i = \text{constante de inibição} \]

Nesse caso de inibição, o valor de \(V_m \) não é afetado, mas o valor de \(K_m \) é aumentado.

Na figura 2.3, vemos o efeito da presença de um inibidor competitivo na taxa de uma reação catalisada por enzima.

![Gráfico de \(v \) versus \(S \) em presença de um inibidor competitivo (84).](image)

Figura 2.3 - Gráfico de \(v \) versus \(S \) em presença de um inibidor competitivo (84).

Numa representação de Lineweaver-Burk, figura 2.4, vê-se que a inter-
terseção no eixo $1/v$ fornece o valor de $1/V_m$ e no eixo $1/S$, fornece $1/K_m$.

Figura 2.4 - Gráfico de Lineweaver-Burk para inibição competitiva (84)

2.2.3.3 - Inibição não competitiva

Esta inibição é caracterizada pela formação de um complexo inativo ESI, formado pela ligação de EI com S ou de ES com I, segundo o mecanismo a seguir (20,83).

$$
E+S \quad \overset{\rightleftharpoons}{\quad} \quad ES \quad \rightarrow \quad E+P
$$

$$
+ \quad +
$$

$$
I \quad \quad I
$$

$$
\downarrow \quad \quad \downarrow
$$

$$
EI+S \quad \overset{\rightleftharpoons}{\quad} \quad ESI
$$

A equação que representa o fenômeno em termos de cinéticos, é:
\[v = \frac{V_m}{\left(1 + \frac{I}{K_i}\right)} \cdot \frac{S}{(K_m + S)} \] (2.8)

Pelos relações de equilíbrio, podemos notar que em qualquer concentração de inibidor, nenhuma concentração de substrato, por mais alta que seja, consegue levar toda a enzima à forma \(ES \), que é a forma produtiva. Em qualquer valor de \(I \), uma parte da enzima permanecerá sob a forma de complexo não produtivo \(ESI \), de onde podemos prever que \(V_m \) em presença de inibidor não competitivo será sempre menor que na ausência do mesmo. O valor de \(K_m \) permanece o mesmo. conforme Figura 2.5, na presença de um inibidor não competitivo, porque qualquer que seja a concentração do inibidor, as formas da enzima que podem combinar com \(S, E \) e \(EI \), apresentam a mesma afinidade para com \(S \) (84).

Figura 2.5 - Representação de Lineweaver-Burk para inibição não competitiva (84).
2.2.3.4 - Inibição parcialmente não competitiva

Neste tipo de inibição, o substrato e inibidor combinam-se independentemente e reversivelmente à enzima, produzindo os complexos ES, EI e ESI. O complexo ESI pode produzir produto, mas não tão efetivamente como ES e é esse aspecto que difere essa inibição da não competitiva pura. O mecanismo que descreve a inibição parcialmente não competitiva é apresentado a seguir:

$$
E + S \xrightleftharpoons[\frac{1}{K_m}]{K_m} ES \xrightarrow{b_r} E + P
$$

$$
I \xrightarrow{K_i} E + S \xrightarrow{\beta k_r} ESI \xrightarrow{\beta k_r} E + S
$$

A qualquer concentração de I, a taxa na qual P é produzido é dada por $k_r (ES) + \beta k_r (ESI)$, onde $\beta < 1$. A qualquer concentração de substrato, uma porção da enzima existirá na forma menos produtiva, ESI, portanto V_m sempre decrescerá na presença de um inibidor parcialmente não competitivo, quando comparada com V_m na ausência de inibidor. Por outro lado, K_m não se altera, porque as duas formas da enzima disponíveis para combinação com S, E e EI, tem igualas afinidades por S (83).

A equação da taxa de reação enzimática em presença de inibidor parcialmente não competitivo é dada pela equação 2.9 (20,83).

$$
\nu = \frac{V_m \cdot S}{K_m + S}
$$

onde,

$$
V_m = \frac{V_m(1 + \beta I/K_i)}{(1 + I/K_i)}
$$

A representação de Lineweaver-Burk para esse caso de inibição é dada pela Figura 2.6.
Figura 2.6 - Representação de Lineweaver-Burk para inibição parcialmente não competitiva (83).

2.2.4 - Determinação dos parâmetros cinéticos

A maioria dos estudos cinéticos de reações enzimáticas publicados na literatura, utilizam-se de transformações lineares da equação de Michaelis-Menten ou das equações modificadas, para levar em conta os efeitos de inibidores. Experimentalmente, obtém-se dados de taxas iniciais de reação em função da concentração de substrato ou de inibidor e analisa-os em gráficos de uma das transformações lineares seguintes (83).

a) Lineweaver-Burk

\[v^{-1} = f(S)^{-1} \]

b) Dixon

\[v^{-1} = f(I) \]
c) Hanes-Woolf
\[\frac{S}{V} = f(S) \]
d) Woolf - Augustinsson - Hofstee
\[v^{-1} = f(\frac{V}{S}) \]
e) Eadie - Scatchard
\[\frac{v}{S} = f(v) \]

Dessas, a transformação de Lineweaver-Burk tem sido a preferida pela maioria dos bioquímicos (29).

Segundo DOWD e RIGGS (27), as linearizações que utilizam o inverso da taxa, não fornecem estimativas precisas dos parâmetros cinéticos, a menos que as determinações experimentais não estejam sujeitas a erros. Elas dão muita ênfase aos menores valores da taxa de reação. Por outro lado, as transformações onde a variável aparece nos dois membros da equação, apresentarão inevitável correlação.

O ajuste direto de modelos matemáticos a dados experimentais, através do método dos mínimos quadrados tem sido sugerido por vários pesquisadores, na determinação dos parâmetros cinéticos de reações enzimáticas (4, 21, 38, 55).

MARQUARDT (56) apresenta um algoritmo para estimar parâmetros não lineares pelo método dos mínimos quadrados, que implica em uma convergência mais rápida no procedimento de ajuste ao modelo matemático.

EISENTHAL e CORNIS - BOWDEN (29) propõem um método que usa um gráfico linear direto, a partir dos dados experimentais de taxas de reação em função da concentração de substrato. O método consiste em designar o eixo da abscissa de \(K_m \) e o eixo da ordenada \(y \) de \(V_m \). Para cada par experimental \((S,v)\), marca-se os pontos \(K_m = -S \) e \(V_m = v \) e unese os dois pontos por uma reta, estendendo-a até o primeiro quadrante. Repete-se esse procedimento para todos os pontos experimentais \((S,v)\), que interceptarão em um ponto comum, cujas coordenadas são \((K_m,V_m)\).

2.2.5 - Influência do pH na taxa das reações enzimáticas

Os vários aminoácidos que compõem as proteínas possuem grupos laterais básicos, neutros ou ácidos, portanto a enzima pode conter grupos
carregados positiva ou negativamente, a um dado valor do pH. Tais grupos ionizáveis são frequentemente parte do sítio ativo, já que um mecanismo catalítico ácido-base está ligado a várias enzimas. Então para a catálise ser possível, os grupos ionizáveis no sítio ativo devem possuir uma carga particular, o que implica que a enzima cataliticamente ativa só existe em um estado particular de ionização. Assim, a enzima cataliticamente ativa pode ser uma fração maior ou menor da concentração total da enzima, dependendo do pH. De um modo geral, a atividade enzimática aumenta quando o pH aumenta conforme Figura 2.7 curva A, passa por um máximo, no pH ótimo, e depois decresce. No pH ótimo, a máxima quantidade possível de enzima está na forma ativa (1).

Por outro lado os sítios ativos nas enzimas, quase sempre compostos de grupos ionizáveis, devem-se encontrar numa forma iônica adequada para que mantenham a conformação do sítio ativo, liguem-se aos substratos ou catalisem a reação. Na Figura 2.7, a curva A ilustra uma dependência experimental da taxa de reação enzimática, versus pH, mas não explica porque a taxa diminui a valores de pH maiores e menores que 6,8, que é o pH ótimo. Esse declínio na taxa de reação pode ser devido a uma forma iônica não adequada à catálise, na enzima e ou no substrato, ou da inativação da enzima, ou ainda combinação dos dois efeitos. A curva B ilustra o efeito do pH na estabilidade da enzima. Notamos que a pré-incubação da enzima a pH entre 5 e 8 não afeta sua estabilidade. Logo, o declínio da atividade indicada pela curva A para os intervalos de pH de 6,8 a 8,0 e 5,0 a 6,8 deve ser causado apenas pela formação de uma forma iônica inadequada da enzima e ou do substrato. A valores de pH maiores que 8,0 e menores que 5,0 deverá estar ocorrendo inativação irreversível da enzima, pois após a pré-incubação a atividade total não é obtida em pH 6,8. O estudo do efeito do pH na estabilidade da enzima, constitui parte essencial na caracterização dessa. A estabilidade da enzima em relação ao pH depende de fatores como temperatura, força iônica, natureza química do tampão, concentração dos preservativos da enzima, concentração de íons metálicos, concentração do substrato e concentração da enzima (84).
2.2.6 - Efeito da temperatura na atividade e estabilidade das enzimas

A taxa da maioria das reações químicas aumenta com o aumento da temperatura. Um aumento desta, imprime maior energia cinética às moléculas dos reagentes, ocasionando maior número de colisões produtivas por unidade de tempo (84).

As constantes de taxa de reação variam com a temperatura, segundo a equação de Arrhenius, equação 2.11 (42).

\[k = A' e^{-E_a/RT} \] \hspace{1cm} (2.11)

onde
\(k \) = constante da taxa de reação
\(A' \) = fator de frequência para a reação
\(E_a \) = energia de ativação
\(T \) = temperatura absoluta
Diferenciando a equação 2.11 em relação à temperatura, obtem-se:

\[\frac{d \ln k}{dt} = \frac{E_a}{RT^2} \quad \text{ou} \quad \frac{d \ln k}{d(\frac{1}{T})} = -\frac{E_a}{R} \]

(2.12)

A equação 2.12 mostra que a constante da taxa de reação quase sempre aumentará com um aumento na temperatura, já que \(E_a \) é sempre uma quantidade positiva (42).

Um método acurado para determinar a energia de ativação envolve a integração da equação (2.12), num dado intervalo de temperatura:

\[\ln \left(\frac{k_2}{k_1} \right) = -\frac{E_a}{R} \left[\frac{1}{T_2} - \frac{1}{T_1} \right] \]

(2.13)

Segundo LEVENSPIEL (50), a expressão de Arrhenius se ajusta aos dados experimentais numa ampla faixa de temperatura, sendo sugerida, como uma primeira aproximação para a dependência real da temperatura, além de que concorda bem com a influência da temperatura indicada pela teoria das colisões e teoria do estado de transição.

As reações catalisadas por enzimas se comportam de modo semelhante às reações químicas ordinárias com relação à temperatura, porém numa pequena faixa de temperatura. As enzimas são moléculas complexas, suas atividades catalíticas provêm de uma estrutura terciária precisa, altamente ordenada de modo a formar os sítios estéreo específicos de ligação com o substrato e o centro catalítico. As ligações que mantem a estrutura terciária são fracas, não covalentes, de tal modo que a enzima é uma estrutura frágil. Ao absorver energia, essas ligações podem se romper, pelo aumento de vibrações e a enzima se desnatura. Então numa reação enzimática, a taxa da mesma aumenta com o aumento da temperatura, devido ao aumento da constante da taxa até se atingir um máximo, correspondente à chamada “temperatura ótima”, depois decresce rapidamente, devido à desnaturação da enzima. Na determinação dessa temperatura ótima, deve-se tomar o cuidado para que a atividade da enzima seja constante pelo menos durante a realização do experimento, pois caso contrário, tem-se dois efeitos, o aumento de \(k \) e a desnaturação da enzima (1.84).

A Figura 2.8 mostra uma curva típica de taxas iniciais de reação enzimática, em função da temperatura, obtida usando um tempo fixo de
incubação.

Figura 2.8 - Velocidade de formação de produto, calculada como concentração do produto, dividida pelo tempo t_x (84).

O conhecimento da cinética de desativação das enzimas é de grande importância no projeto de reatores enzimáticos. Na maioria dos casos considera-se cinética de primeira ordem para relacionar atividade enzimática com tempo, a uma dada temperatura (1, 40, 76).

Supondo desativação de 1a ordem, vem:

$$\frac{dA}{dt} = -k_d \cdot A$$ \hspace{1cm} (2.14)

$A =$ concentração de enzima ativa ou atividade num tempo t qualquer

$k_d =$ constante da taxa de desativação

Integrando a equação 2.14 entre $t = 0$ e t, obtem-se:

$$-ln\left(\frac{A}{A_0}\right) = k_d \cdot t$$ \hspace{1cm} (2.15)

20
A_0 = concentração inicial de enzima ativa ou atividade inicial

Algumas vezes A/A_0, é chamado de atividade do catalisador em qualquer tempo (50). Um conceito comum em cinética química e enzimática é o de meia vida, t_{1/2}, que é o tempo necessário para que A/A_0 seja igual a 0,5, ou seja, o tempo necessário, à temperatura T, sob condições específicas, para que a atividade catalítica seja reduzida à metade da inicial.

Da equação (2.15), vem que

\[t_{1/2} = \frac{\ln 0.5}{k_d} \] (2.16)

Com vários pontos experimentais de A em função de t, pode-se construir o gráfico \(-\ln (A/A_0) \), como função de t, e obter o valor de \(k_d \), para uma dada temperatura.

Por outro lado, \(k_d \) varia com a temperatura segundo a equação de Arrhenius ou seja:

\[k_d = A' \cdot e^{-E_d/RT} \text{ ou } \ln k_d = \ln A' - \frac{E_d}{R} \cdot \frac{1}{T} \] (2.17)

onde, \(E_d \) é a energia de desativação da enzima ou a energia de ativação para a reação de desativação

\[R = \text{constante da lei dos gases} = 1,9872 \frac{\text{cal}}{\text{mol} \cdot \text{K}} \]

Com valores de \(k_d \), a várias temperaturas, pode-se construir o gráfico \(\ln k_d \) em função de \(1/T \), obtendo-se assim \(E_d \).

Segundo HENLEY e SADANA (11), o modelo de desativação de 1ª ordem é frequentemente adequado para representar a cinética de desativação enzimática, mas fazendo uma revisão da literatura, verificaram que a taxa de decréscimo na atividade não é sempre constante. Esses autores classificaram as curvas de desativação em dois casos. Num deles, a atividade é sempre menor que a inicial e no outro caso, a atividade pode ser maior que a inicial em algum período de tempo e propõe uma cinética de desativação em série e agrupam os casos de desativação encontrados na literatura em várias categorias diferentes.
2.3 - Enzimas Imobilizadas

Apesar das várias vantagens das enzimas como catalisadores, o uso das mesmas em aplicações industriais tem sido limitado, porque a maioria das enzimas são relativamente instáveis, seu custo é alto e é difícil recuperar a enzima ativa no final do processo. Isso restringe o uso de enzimas solúveis a processo em batelada, seguido de procedimentos para separar o produto da mistura reacional, levando à desnaturação da enzima e tornando o processo, na maioria das vezes, antieconômico (18,48).

Para eliminar as desvantagens do uso de enzimas como catalisadores e com o objetivo de obter catalisadores altamente ativos e estáveis, dois caminhos tem sido investigados. Um é a tentativa de sintetizar catalisadores com atividades como enzimas, chamados enzimas sintéticas. O outro é a modificação de enzimas produzidas por seres vivos, tal como na imobilização (18).

Enzimas imobilizadas são definidas como “enzimas fisicamente confinadas ou localizadas em certa região definida do espaço, com retenção de sua atividade catalítica e que podem ser usadas repetidamente e continuamente” (18), tornando as moléculas de enzima insolúveis no meio aquoso (48).

Algumas das vantagens básicas das enzimas imobilizadas em relação às solúveis, são:

i) uso da mesma enzima por um período maior de tempo;

ii) processos podem ser operados continuamente e podem ser facilmente controlados;

iii) os produtos são facilmente separados do meio reacional;

iv) em muitos casos a estabilidade e atividade da enzima são aumentadas pela imobilização;

v) problemas de efluentes e manuseio de materiais são minimizados (48, 59).
A primeira notícia que se tem sobre imobilização de enzimas data de 1916, quando NELSON e GRIFFIN (67) adsorveram invertase em carvão ativado e alumina, com retenção de atividade na inversão de sacarose. Contudo o desenvolvimento da química de imobilização de enzimas, veio a ocorrer apenas no princípio da década de sessenta, quando extensivos estudos foram realizados em novas técnicas de imobilização, com vários suportes, obtendo preparações com altos teores de enzima imobilizada e características de estabilidade melhoradas (10,18).

A partir de meados de 1960, várias pesquisas foram realizadas, visando obter enzimas imobilizadas mais ativas e estáveis e também seu uso em reatores operados continuamente (10). Em 1969, CHIBATA et alii (19) montaram o primeiro processo industrial com enzimas imobilizadas, usando amilopectase fúngica para resolução de DL-aminoácidos, em processo contínuo.

2.4 - Métodos de Imobilização de Enzimas

Segundo KENNEDY e CABRAL (48), o termo enzima imobilizada inclui: i) enzimas modificadas a uma forma insolúvel em água por técnicas adequadas; ii) enzimas solúveis usadas em reatores equipados com uma membrana de ultrafiltração não permeável, que retem as moléculas da enzima na saída do reator; iii) enzimas cuja mobilidade foi restringida pela ligação a outra macromolécula, com a molécula resultante sendo solúvel na água.

Há várias maneiras de classificar os vários tipos de enzimas imobilizadas, como definido acima. ZABORSKY (104) classifica os métodos de imobilização de enzimas em físicos e químicos. Métodos químicos são aqueles dependentes da formação de ligações covalentes, tais como ligação da enzima ao suporte, incorporação da enzima à cadeia de um polímero em crescimento e a ligação cruzada da enzima com um reagente multifuncional de baixo peso molecular. Os métodos físicos independentes da formação de ligação covalente, tais como adsorção, oclusão dentro de matriz isoláveis em água e oclusão dentro de microcápulas.

Na primeira conferência de Engenharia Enzimática em 1971, foi recomendada uma classificação de enzimas imobilizadas baseada na natureza do complexo resultante, ou seja, em oclusão num polímero ou ligação a
um suporte (86).

A classificação apresentada na tabela 2.1, sugerida por KENNEDY e CABRAL (48), que é bastante semelhante àquela apresentada por CHIBATA (18), tenta combinar a natureza da interação responsável pela imobilização e a natureza do suporte. Do ponto de vista prático, o método de classificação é pouco importante, pois em muitas técnicas de imobilização são envolvidas combinações dos métodos básicos (10).

Tabela 2.1
Classificação de enzimas imobilizadas (48)

<table>
<thead>
<tr>
<th>Métodos</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Enzimas</td>
</tr>
<tr>
<td>- ligação cruzada intermolecular</td>
</tr>
<tr>
<td>- ligação a</td>
</tr>
<tr>
<td>- absorção</td>
</tr>
<tr>
<td>- ligação iônica</td>
</tr>
<tr>
<td>- ligação metálica</td>
</tr>
<tr>
<td>- ligação covalente</td>
</tr>
<tr>
<td>- géis</td>
</tr>
<tr>
<td>- fibras</td>
</tr>
<tr>
<td>- occlusão</td>
</tr>
<tr>
<td>- Enzimas solúveis</td>
</tr>
<tr>
<td>- membrana de ultra filtração</td>
</tr>
<tr>
<td>- fibras ocas</td>
</tr>
</tbody>
</table>

2.5 - Suportes para Imobilização de Enzimas

Vários suportes, naturais ou sintéticos têm sido sugeridos para imobilizar enzimas. Embora seja reconhecido que não exista um suporte universal para essa finalidade, várias características devem ser observadas, conforme mostra a Tabela 2.2 (32,48,59).
Tabela 2.2
Características desejáveis a um suporte para imobilização de enzimas

- Grande área superficial
- Permeabilidade a substratos e produtos
- Estabilidade química, mecânica e térmica
- Rígidez mecânica
- Insolubilidade em água
- Tamanho e forma de partícula adequados
- Inerte ao ataque microbiano
- Regenerabilidade
- Manter forma e tamanho de partícula durante uso
- Apresentar pouca compactação em operações de leito fixo com altas taxas de escoamento.

Os suportes para imobilização de enzimas podem ser classificados, de acordo com sua composição, em orgânicos e inorgânicos, porém essa classificação não descreve adequadamente a morfologia desses materiais (59). Para levar em conta parâmetros, tais como área superficial e diâmetro de poros, que afetam a carga da enzima, uma classificação baseada em sua morfologia, em suportes não porosos e porosos é mais adequada (48,59).

Segundo MESSING (59), a principal desvantagem dos suportes não porosos é o fato de sua área superficial ser extremamente baixa e assim, a área disponível para ligar a enzima é limitada. Para aumentar a atividade da enzima imobilizada, partículas ou fibras muito finas desses materiais não porosos podem ser utilizadas, mas tais configurações finas são difíceis de remover da mistura reacional e de empregar em processos contínuos,
já que levam a altas perdas de carga em reatores de leito fixo e taxas de escoamento limitadas em reatores de leito fluidizado (48,59).

Uma das vantagens de se utilizar suporte não poroso é que a enzima é ligada à superfície externa das partículas, e assim, as resistências à transferência de massa podem ser minimizadas pela diminuição do tamanho das partículas e pelo aumento da velocidade de escoamento do fluido (48,59).

Os suportes porosos, tanto orgânicos, como inorgânicos, tem uma área superficial alta, permitindo uma alta carga de enzima, tornando-os ideais para uso em reatores industriais. A maior desvantagem dos mesmos é que a maioria da área disponível é interna, portanto os suportes porosos devem ter uma morfologia interna que, permita à enzima se ligar, mas também que permita fácil acesso ao substrato e produtos, a fim de se minimizarem os efeitos difusoriais (32,48,59). Por outro lado, quando a enzima é ligada no interior das partículas, ela é protegida do ambiente turbulento externo (48).

Os suportes porosos podem apresentar uma distribuição de poros controlada ou não. Com uma distribuição de poros ampla, somente um número limitado dos mesmos será suficientemente grande para acomodar enzima e substrato e assim, apenas uma pequena fração da área total é efetivamente utilizada. Suportes com distribuição de poros controlada são disponíveis, com um amplo intervalo de diâmetros de poros. Para otimizar o diâmetro de poro para um sistema particular enzima-substrato, deve-se ter em mente a relação inversa entre diâmetro de poro e área superficial específica (32,48,59,99).

Uma outra classe de suportes, os géis tem sido utilizados para imobilizar enzimas por oclusão e encapsulação e também por ligação covalente e adsorção. O uso de géis leva à obtenção de enzimas imobilizadas com altas atividades, são úteis para substratos pequenos e extremamente limitado para materiais com altos pesos moleculares. Devido a seu caráter elástico, o gel pode ser formado na conformação desejada, como membrana ou partículas. Outra vantagem do uso de partículas de gel é que elas sofrem menor deformação que uma estrutura rígida, quando usadas em reatores agitados (48,59).

Dos vários suportes que tem sido sugeridos para imobilizar enzimas, os suportes inorgânicos preenchem melhor os requisitos necessários à sua utilização, principalmente em processos industriais, devido à sua estabilidade à degradação física, química, térmica e microbiana, à resistência mecânica
e estabilidade estrutural, que evita compactação em processos contínuos e à possibilidade de regeneração do suporte para reutilização, por processo pirolítico (10,32,48,59). Esse caráter inerte dos suportes inorgânicos dificulta a imobilização de enzimas nos mesmos, contrariamente ao que se verifica nos suportes orgânicos, que podem apresentar uma variedade muito grande de radicais reativos, que podem se ligar à enzima por ligação covalente (10,48). Na tabela 2.3 são apresentados vários suportes que tem sido usados para imobilizar enzimas (48).

Tabela 2.3

Classificação química dos suportes para imobilização de enzimas.

<table>
<thead>
<tr>
<th>Orgânicos</th>
<th>Inorgânicos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naturais</td>
<td>Minerais</td>
</tr>
<tr>
<td>– Polissacarídeos</td>
<td>– areia</td>
</tr>
<tr>
<td>• celulose</td>
<td>– bentonita</td>
</tr>
<tr>
<td>• amido</td>
<td>– horneblenda</td>
</tr>
<tr>
<td>• agar</td>
<td>– pedra-pomes</td>
</tr>
<tr>
<td>• quitina</td>
<td>– terra de diatomáceos</td>
</tr>
<tr>
<td>• dextrana</td>
<td>Fabricados</td>
</tr>
<tr>
<td>– Proteínas</td>
<td>– vidros não porosos</td>
</tr>
<tr>
<td>• colágeno</td>
<td>– vidros de porosidade controlada</td>
</tr>
<tr>
<td>• albumina</td>
<td>– cerâmicas de porosidade controlada (sílica, alumina, titânio)</td>
</tr>
<tr>
<td>• gelatina</td>
<td>– aluminossilicatos</td>
</tr>
<tr>
<td>• seda</td>
<td>– óxido de ferro</td>
</tr>
<tr>
<td>Sintéticos</td>
<td>– óxido de níquel</td>
</tr>
<tr>
<td>– poliestireno</td>
<td></td>
</tr>
<tr>
<td>– poliacrílatos</td>
<td></td>
</tr>
<tr>
<td>– polivinilicos</td>
<td></td>
</tr>
<tr>
<td>– resinas de troca iônica</td>
<td></td>
</tr>
</tbody>
</table>

27
2.6 - Descrição dos Métodos de Imobilização de Enzimas

2.6.1 - Ligação cruzada intermolecular

Esse método é baseado na formação de ligações covalentes entre as moléculas da enzima, por ação de reagentes multifuncionais, conduzindo a agregados enzimáticos tridimensionais insolúveis no meio aquoso, sem utilizar suportes insolúveis em água (10,18,48).

Dos vários reagentes multifuncionais que tem sido usados, o mais comum é o glutaraldeído. A reação entre esses e a enzima é altamente dependente das concentrações da enzima e do agente reticulante, do pH e da força iônica da solução, da temperatura e do tempo de reação. As condições de reação são relativamente severas, afetando em alguns casos a conformação do sítio ativo da enzima, levando a significantes perdas de atividade (10,18,48,104).

A principal vantagem do método de ligação cruzada é a preparação de enzimas imobilizadas que são proteínas quase puras, em diferentes formas, tais como géis enzimáticos, membranas enzimáticas e derivados adsorvidos em monocamadas, ligados a polímeros. As principais desvantagens do método são a frequente e inevitável inativação da enzima, causada por modificação química e a natureza gelatinosa desses derivados enzimáticos, que torna difíceis de serem utilizados em reatores (100,104).

Esse método tem sido utilizado em conjunto com outros, principalmente adsorção e ligação iônica, a fim de diminuir as desvantagens mencionadas anteriormente (6,10,17,68,96).

2.6.2 - Adsorção física

Segundo WEETALL (100), esse é o método mais antigo de imobilizar enzimas, porém o menos entendido. Em 1916, NELSON e GRIFFIN (67) observaram que invertase adsorvida em carvão ativo e em hidróxido de alumínio, retinha sua atividade em relação à hidrolise de sacarose, embora não fosse intenção desses pesquisadores imobilizar a enzima.

A adsorção física de enzimas a suportes é efetivada por forças de ligação relativamente fracas, tais como pontes de hidrogênio, interações hidrofóbicas e forças de Van der Walls, entre as moléculas de proteína e o
adsorvente. Como não ocorre reação química, a adsorção causa pouca ou nenhuma alteração na conformação da enzima e nem destroi seu centro ativo. Se o suporte é adequado, esse método é simples e efetivo, tendo todavia a desvantagem de que a enzima adsorvida pode desprender do suporte durante a utilização, porque a força de ligação entre a enzima e o suporte é fraca (18,48,59).

O processo de adsorção consiste em misturar uma solução de enzima com o adsorvente, sob condições apropriadas, e após certo tempo, separar o complexo enzima-adsorvente por filtração ou centrifugação. A adsorção da enzima é dependente do pH do meio, da natureza do solvente, força iônica, concentração da enzima e do adsorvente, temperatura e tempo. A atividade da enzima imobilizada obtida aumenta com a concentração da enzima, aproximando a um valor de saturação a altas concentrações de enzimas (48).

Como suportes para esse método, materiais inorgânicos tais como carvão ativado, vidros, areia, alumina, hidroxiapatita, sílica gel, bentonita, bem como polímeros naturais como amido, glúten e colágeno e polímeros sintéticos e adsorventes com afinidade de grupos derivados de agarose, celulose e sílica, tem sido usados (18,48,59,100).

2.6.3 - Ligação iônica

Esse método de imobilização é baseado, principalmente, na ligação iônica da enzima a suportes sólidos contendo resíduos trocadores de íons. Na prática, não somente ligação iônica, mas também adsorção física, temem parte da ligação. As forças de ligação são mais fortes que no caso da adsorção física, mas os procedimentos usados na imobilização são os mesmos nos dois casos, cujas condições são brandas, em comparação com métodos que envolvem ligações covalentes (18,48).

Desprendimento da enzima do suporte pode ocorrer, como na adsorção física, quando houver variações no pH e na força iônica do meio (18,48).

Como vantagens do método da ligação podem ser citadas simplicidade do procedimento de imobilização, baixo custo, possibilidade de reutilização do suporte, obtenção de enzimas imobilizadas com alta atividade e a disponibilidade de suportes (18,54,61,100).

Os suportes usados no método da ligação iônica são materiais trocadores de íons, que frequentemente são suportes orgânicos com resíduos
de troca iônica, embora também existam suportes inorgânicos, principalmente silice, com grupos para permutar íons. Os polímeros mais usados são derivados de celulose e dextrana e polímeros sintéticos à base de poliestireno. Os principais grupos trocadores de ânions são amino, guanidino e amônio quaternário e grupos sulfato, fosfato e carboxilato os principais trocadores de cátions [48].

Na tabela 2.4 (18,48), são listadas várias resinas trocadoras de íons adequadas para ligação iônica de enzimas.

Tabela 2.4

Resinas trocadoras de íons para ligação iônica de enzimas

<table>
<thead>
<tr>
<th>Aniónicas</th>
<th>Catiónicas</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEAE - celulose</td>
<td>CM - celulose</td>
</tr>
<tr>
<td>DEAA - celulose</td>
<td>Celulose - fosfato</td>
</tr>
<tr>
<td>ECTEOLA - celulose</td>
<td>CM - sephadex</td>
</tr>
<tr>
<td>TEAE - celulose</td>
<td>SP - sephadex</td>
</tr>
<tr>
<td>DEAE - sephadex</td>
<td>Dextrana sulfato</td>
</tr>
<tr>
<td>DEAE - Bio - Gel</td>
<td>Amberlite IRC - 50</td>
</tr>
<tr>
<td>Amberlite IRA 93</td>
<td>Amberlite IRC - 200</td>
</tr>
<tr>
<td>Amberlite IRA 94</td>
<td>Celulose - citrato</td>
</tr>
<tr>
<td>Amberlite IRA 410</td>
<td>Dowex - 50</td>
</tr>
</tbody>
</table>

2.6.4 - Ligação metálica - quebração com metais de transição

Enzimas tem sido imobilizadas pela utilização de compostos de metais de transição na ativação da superfície de suportes orgânicos e inorgânicos. Esse método é baseado nas propriedades de quebração dos metais de transição, que podem ser empregados para ligar enzimas (10,48).

Vários sais de metais de transição tem sido utilizados nesse processo de imobilização, mas os mais comuns tem sido os de titânio e zircônio. Suportes orgânicos, tais como celulose, quitina e ácido algínico, bem como inorgânicos, tais como celite, vidro e silício tem sido ativados pela técnica de secagem de uma mistura do suporte com a solução do sal do metal de transição. (10,48)
Numa solução de metal de transição, os íons do metal são coordenados com moléculas ou espécies iônicas, que são os ligantes do ion complexo. Grupos nucleofílicos, tais como os radicais hidroxi e amino, são ligantes efetivos para os íons do metal de transição, e assim, esses íons podem complexar ambos, suporte e enzimas (48).

O procedimento de imobilização de enzimas pelo uso de metais de transição é simples, consistindo da ativação do suporte pela técnica de secagem, e após lavagem do mesmo com tampão, suporte e enzima são misturados, normalmente no pH ótimo da enzima. Contudo as estabilidades operacionais conseguidas com tais catalisadores tem sido baixas, devido à perda de enzima para a solução (10,17,34,48).

Uma variação desse método, é a imobilização de enzimas em óxidos hidratados dos metais de transição (gês), particularmente de titânio (IV) e zircônio (IV). Nesse caso, não se usa suportes, sendo que a enzima se liga aos próprios óxidos (10,48).

Devido à não reprodutibilidade dos resultados obtidos, quando do uso de suportes inorgânicos, além das baixas estabilidades operacionais obtidas em alguns casos, várias modificações do método têm sido propostas, tais como uso de agentes de ligação cruzada, como glutaraldeído e ácido tânico (10,11,12).

Baseado no método da ligação metálica, um processo covalente foi desenvolvido por CABRAL et al.(10,12), o qual implica em maiores estabilidades operacionais da enzima imobilizada, em comparação com aquelas obtidas por quebração com metais de transição. Nesse método, o suporte inorgânicos é ativado com solução de tetracloreto de titânio, por secagem e o suporte ativado é aminado com uma solução de uma amina, especialmente a hexametilenodiamina, obtendo-se assim, o derivado aminado do suporte. A seguir, o suporte aminado é ativado com um reagente multifuncional, tal como o glutaraldeído, levando à formação do suporte alquil aminado, que a seguir, reage covalentemente com a enzima.

2.6.5 - Método da ligação covalente

Esse método baseia-se na formação de ligação covalente entre moléculas da enzima e o material do suporte. Os grupos funcionais da enzima que participam da formação da ligação covalente com o suporte são os grupos α ou ε amino, grupo carboxil, grupo α, β ou γ sulfidril, grupo hidroxil,
grupo imidazol e grupo fenólico. Nas reações de ligação, esses grupos funcionais reagem com suportes contendo grupos reativos, tais como diazônicos, azida ácida, isocianatos e haletos. As condições de reação requeridas para a formação dessas ligações, são relativamente complicadas e usualmente, não são brandas. Em alguns casos, a ligação covalente altera a estrutura conformacional e o centro ativo da enzima, resultando em diminuição, de atividade e/ou mudanças de especificidade de substrato (18,48).

Como ocorre no método da ligação cruzada, a ligação covalente é forte, tal que a enzima imobilizada é estável e não ocorre perda da enzima na solução, mesmo na presença de substrato ou soluções de alta força iônica (18,48).

É importante que os aminoácidos essenciais à atividade catalítica da enzima não sejam envolvidos na ligação covalente ao suporte. Isso pode ser difícil de se conseguir, e enzimas imobilizadas dessa maneira, geralmente perdem atividade na imobilização (46,48). Apesar dessas desvantagens, imobilização de enzimas por ligação covalente a suportes insolúveis em água constitui-se no método mais versátil e que produz derivados imobilizados mais estáveis (32, 100).

Vários suportes, tanto orgânicos como inorgânicos tem sido usados para imobilizar enzimas por processos covalentes, mas poucos desses suportes tem os grupos reativos adequados para ligação com a enzima, tendo então que ser ativados antes da reação com a mesma, passando a apresentar grupos hidroxil, amino, carboxil e amídico. De acordo com o método de ativação do suporte e a reação usada na imobilização, o método covalente pode ser classificado em método da ligação diazo, método da ligação peptídica, método da aiquilação, ligação ao suporte com reagentes multifuncionais, ligação ao suporte pela reação de Ugi, ligação ao suporte por intertroca triol-diisulfeto e outros (18,48).

2.6.6 - Imobilização de enzimas por oclusão

O processo de imobilização de enzimas por oclusão pode ser efetuado em geis, fibras e por microencapsulação em membranas. O método é baseado na retenção das moléculas da enzima dentro dos espaços intersticiais de polímeros ou em membranas semipermeáveis, de modo que moléculas de substratos e produtos de pesos moleculares adequados podem se difundir através e dentro dessa rede polimérica (18,48,104).
Esse método de imobilização difere dos métodos de ligação covalente e de ligação cruzada em que a enzima em si não se liga à matriz gel ou membrana. Assim, esse método pode ser usado para qualquer tipo de enzima ou de outros biocatalisadores, como células e organelas, porém se uma reação de polimerização é empregada para a oclusão, condições de reação relativamente severas podem ser requeridas e perdas de atividade enzimática podem ocorrer (18,48).

O método de oclusão em gel envolve a retenção física da enzima dentro dos espaços intersticiais de polímeros entrecruzados, insolúveis em água. As cadeias poliméricas podem ser obtidas a partir de monômeros ou de oligômeros. Nesses casos, uma mistura de reagentes, enzima solúvel, catalisador e iniciador de polimerização são misturados sob condições definidas e, à medida em que a reação se procede, moléculas de enzima são retidas nos espaços intersticiais do polímero que está sendo formado. Num terceiro caso, as enzimas são retidas durante a insolubilização do polímero, tal como ocorre com colágeno, gelatina, agar, alginate de cálcio, K-carrageena e quitosana (8,46).

O método de oclusão de enzimas em fibras foi desenvolvido por DI-NELLI, em 1972 (24) e baseia-se na dissolução de um polímero formado por fibras, tal como acetato de celulose, em um solvente orgânico imiscível em água, seguido de emulsificação dessa solução com solução aquosa da enzima. A emulsão é então extrudada em um líquido coagulante, que precipita o polímero em forma filamentosa, contendo gotículas da solução da enzima oclusas na fibra.

No caso de oclusão em microcápsulas, moléculas de enzimas são retidas por membranas de polímeros orgânicos. Essas membranas são permeáveis a substratos e produtos (18,48).

2.6.7 - Método da enzima solúvel imobilizada

Com o objetivo de se utilizar uma enzima continuamente por longo período em seu estado nativo, enzimas têm sido imobilizadas confinando-as fisicamente com uma membrana semipermeável, em dispositivos de fibras ocas ou de membranas de ultrafiltração (48).

Esse método de imobilização oferece várias vantagens em relação a outros procedimentos de imobilização, uma vez que a enzima não sofre modificações químicas e o processo é muito simples. O uso de membra-
nas é especialmente adequado para a conversão de substratos de alto peso molecular e quando há necessidade do uso simultâneo de várias enzimas. Como desvantagens do processo podem ser citadas a resistência à transferência de massa imposta pela membrana aos componentes da solução, possibilidade de entupimento da membrana e possibilidade de inativação da enzima devido às altas forças de cizalhamento provenientes da vigorosa agitação necessária (18,48).

2.6.8 - Imobilização de enzimas em suportes inorgânicos

Os métodos de imobilização de enzimas em suportes inorgânicos podem ser classificados em dois grupos, de acordo com a força de ligação existente entre as moléculas da enzima e o suporte (10): a) adsorção, ligação íônica e ligação metálica; b) ligação covalente.

Os métodos do item a já foram abordados anteriormente. Aqui, enfase será dada à ligação covalente de enzimas a suportes inorgânicos.

Embora uma das maiores vantagens dos suportes inorgânicos seja seu caráter inerte, essa característica dificulta a imobilização de enzimas nos mesmos por meio de ligação covalente. A superfície dos suportes inorgânicos é composta principalmente por grupos óxido ou hidroxil, tal como grupos silanol em sílica, os quais proveem uma superfície reativa para ativação e ligação da enzima (48).

O método mais comumente usado para ativar suportes inorgânicos, com vistas à imobilização de enzimas é o método de silanização, descrito por WEETALL (99). Dentro os vários agentes de silanização utilizados, o γ aminopropiltrietoxsilano tem sido o mais comum, levando à obtenção de um derivado alquilamino do suporte. WEETALL (99) apresenta as técnicas de silanização aquosa e orgânica. A reação química que ocorre em ambos os casos é a seguinte:

\[R(CH_2)_n, Si\{OCH_2CH_3\}_3 + HO-Si-O- \longrightarrow -O-Si-O-Si- \{CH_2\}_n R \]
onde \(R \) é grupo funcional orgânico. No caso particular do \(\gamma \)-aminopropil-trietoxilano, \(R = -C\text{H}_3N\text{H}_2 \) e \(n = 2 \).

Segundo WEETALL (101), silanos reagem não somente com o Si de sílicas e vidros, como mostrado na reação anterior, mas também com os óxidos metálicos, tais como \(\text{ZnO}_2 \), \(\text{Tl}_2\text{O}_3 \), \(\text{Al}_2\text{O}_3 \) e \(\text{NiO} \).

No processo de silanização aquoso, parece formar uma monocamada de silano na superfície do suporte. As técnicas de solventes orgânicos levam a maiores cargas de amina no suporte, porém maior durabilidade do suporte é alcançada pela silanização aquosa (99).

Os suportes silanizados podem reagir diretamente com a enzima, mas na maioria dos casos, os grupos orgânicos são modificados, produzindo intermediários ativados, que por sua vez, reagem com a enzima. Vários reagentes podem ser usados para ativar os suportes silanizados, mas o glutaraldeído é o mais utilizado, devido à simplicidade do método e à obtenção de enzimas imobilizadas ativas e estáveis (10,62,99,101).

A sequência de reações entre o suporte silanizado com glutaraldeído e do derivado aldeído com a enzima é mostrada a seguir (101):

\[
\begin{align*}
\text{[CH}_2\text{]}_n - \text{NH}_2 + \text{CHO} - \text{[CH}_2\text{]}_3\text{CHO} & \rightarrow \text{[CH}_2\text{]}_n - \text{N} = \text{CH} - \text{[CH}_2\text{]}_3\text{CHO} \\
\text{[CH}_2\text{]}_n - \text{N} = \text{CH} - \text{[CH}_2\text{]}_3\text{CHO} & + \text{Enzima} \\
\text{[CH}_2\text{]}_n - \text{N} = \text{CH} - \text{[CH}_2\text{]}_3\text{CHO} & = \text{N} - \text{Enzima}
\end{align*}
\]

Um outro processo de ativação de suportes inorgânicos, foi desenvolvido em 1981 por CABRAL et al. (12). O processo é baseado na ativação do suporte com \(\text{Tl}_2\text{Cl}_4 \), seguido de aminação com uma solução de amina adequada em um solvente e subsequente reação com um reagente bifuncional, que faz a ligação entre o derivado alquil aminado do suporte e a enzima.

2.6.9 - Comparação entre os métodos de imobilização de enzimas

É reconhecido que nenhum método de imobilização de enzimas é considerado um método ideal ou universal, devido às grandes diferenças em composição e características químicas das enzimas, bem como dos substratos e produtos. Cada método de imobilização tem limitações específicas e
para uma aplicação particular, é necessário encontrar um procedimento de imobilização que seja simples e barato, e que produza enzimas imobilizadas com alta atividade e apresente uma estabilidade operacional adequada (32,48).

Uma comparação, geral dos métodos de imobilização, tabela 2.5, é apresentada por KENNEDY e CABRAL (48). CHIBATA (18) apresenta uma tabela comparativa dos métodos de imobilização, semelhante a essa.

<table>
<thead>
<tr>
<th>característica</th>
<th>ligação cruzada</th>
<th>adseção física</th>
<th>ligação iônica</th>
<th>ligação metálica</th>
<th>ligação covalente</th>
<th>oclusão</th>
</tr>
</thead>
<tbody>
<tr>
<td>preparação</td>
<td>intermediaria</td>
<td>simples</td>
<td>simples</td>
<td>simples</td>
<td>dificil</td>
<td>dificil</td>
</tr>
<tr>
<td>força de ligação</td>
<td>forte</td>
<td>fraca</td>
<td>intermédia</td>
<td>alta</td>
<td>alta</td>
<td>baixa</td>
</tr>
<tr>
<td>atividade enzimática</td>
<td>baixa</td>
<td>inter</td>
<td>possível</td>
<td>possível</td>
<td>rara</td>
<td>impossivel</td>
</tr>
<tr>
<td>regeneração do suporte</td>
<td>imposível</td>
<td>baixo</td>
<td>baixo</td>
<td>intermédia</td>
<td>alta</td>
<td>alt</td>
</tr>
<tr>
<td>custo de imobilização</td>
<td>alto</td>
<td>sim</td>
<td>sim</td>
<td>sim</td>
<td>sim</td>
<td>sim</td>
</tr>
<tr>
<td>estabilidade</td>
<td>mais ou menos</td>
<td>não</td>
<td>não</td>
<td>não</td>
<td>não</td>
<td>não</td>
</tr>
<tr>
<td>aplicabilidade geral</td>
<td>não</td>
<td>não</td>
<td>não</td>
<td>não</td>
<td>não</td>
<td>não</td>
</tr>
<tr>
<td>proteção da enzima</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>de ataque microbiano</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

As características dos vários métodos de imobilização apresentadas na tabela 2.5, devem ser vistas com cuidado, pois existem muitas exessões (18).

2.7 - Efeitos da Imobilização nas Propriedades Cinéticas das Enzimas

2.7.1 - Aspectos gerais

As enzimas imobilizadas apresentam várias vantagens na sua aplicação, quando comparadas às enzimas livres, porém algumas alterações nas suas propriedades físicas e químicas, após imobilização, podem ocorrer, implicando em mudanças na atividade, estabilidade e cinética da enzima imobilizada (10,18).

Considera-se que as alterações nas propriedades enzimáticas são causadas por dois fatores. Um, é devido a mudanças na enzima em si e o outro
deve-se às propriedades físicas e químicas dos suportes usados na imobilização. O primeiro envolve modificações dos resíduos dos aminoácidos no centro ativo da enzima, alterações conformacionais da proteína enzimática e mudanças na carga da enzima. O segundo fator devido à natureza físico-química do suporte, conduz a efeitos difusoriais, efeitos estereoquímicos e interações eletrostáticas e hidrófobicas entre suporte e substrato (10,18,39,48).

2.7.2 - Especificidade em relação ao substrato

Quando a enzima é imobilizada, sua atividade frequentemente decrece e a especificidade de substrato algumas vezes altera, principalmente quando se trata de substratos de alto peso molecular, devido a alterações conformacionais na enzima e a efeitos estereoquímicos (18).

2.7.3 - Perfil atividade - pH

Quando uma enzima é imobilizada, o pH ótimo da mesma pode ou não se alterar. As alterações no pH ótimo e na curva atividade -pH, dependem da carga da molécula da enzima e/ou do suporte. Se o suporte é carregado, o comportamento cinético da enzima imobilizada pode diferir daquele da enzima livre, mesmo na ausência de efeitos difusoriais. Esse comportamento modificado pode ser atribuído ao fato de que as concentrações de espécies carregadas, tais como substrato, íons hidrogênio ou hidroxila e outros no microambiente da enzima imobilizada, são diferentes daqueles da solução externa, devido a interações eletrostáticas com cargas fixas no suporte. Essas diferenças de concentrações de espécies carregadas podem ser descritas pelo coeficiente de partição, dado pela equação 2.18 (39).

\[
K_p = \frac{C_i}{C_o} \quad (2.18)
\]

onde \(C_i \) e \(C_o \) são as concentrações no microambiente da enzima e no meio da solução, respectivamente.

Uma das principais consequências do efeito de partição é uma alteração no pH ótimo, com um deslocamento do perfil atividade - pH da enzima
imobilizada para valores de pH mais alcalinos ou mais ácidos, para suportes com carga negativa ou positiva, respectivamente (18,39).

2.7.4 - Perfil atividade-temperatura

Na imobilização de enzimas, alterações na temperatura ótima de reação ocorrem em alguns casos. Essa pode ser maior que a da enzima livre, em alguns casos, devido a efeitos difusoriais no caso de oclusão e ligação a suportes porosos, que protege a enzima contra desnaturação térmica, uma vez que a temperatura no microambiente da enzima imobilizada é menor que na solução. Alterações conformacionais e efeitos estereoquímicos podem desempenhar um papel importante na tolerância da enzima à desnaturação térmica (48).

Temperaturas ótimas da enzima imobilizada menores e iguais a da enzima nativa também tem sido verificadas (18).

2.7.5 - Energia de ativação

A partir dos dados usados para obter o perfil atividade-temperatura, é possível calcular a energia de ativação da reação catalisada pela enzima, livre ou imobilizada, conforme a equação 2.11.

Nosso caso de reações químicas com efeitos difusoriais, intraparticula, esses podem levar ao cálculo de uma falsa energia de ativação, segundo SMITH (85). Se as taxas de reação observadas são usadas para calcular a constante da taxa de reação, desprezando os efeitos difusoriais, uma energia de ativação aparente é calculada pela equação de Arrehenius. Nesse caso, os dados a diferentes temperaturas, não dariam uma linha reta no gráfico em ln k versus 1/T, e sim uma curva, indicando uma variação na energia de ativação aparente calculada, como esquematizado na Figura 2.9.
Os efeitos de transferência de massa aumentam menos com o aumento da temperatura, que a constante da taxa de reação, que cresce exponencialmente com a mesma. Portanto, a etapa determinante do processo tende a ser a difusiva, e assim, a energia de ativação aparente será menor que a verdadeira (8, 42, 50, 85). Por outro lado, a baixas temperaturas, a difusão será rápida, comparada à reação química e limitações difusionais na taxa de reação não serão observadas. Nesse regime de temperatura, observa-se a energia de ativação intrínseca da reação. Numa faixa intermediária de temperatura, a energia de ativação aparente é a média aritmética entre a energia de ativação intrínseca da reação e a da difusão. Numa temperatura alta, a etapa determinante do processo tende a ser a difusiva e a energia de ativação aparente, será, com boa aproximação, igual à metade da intrínseca (42, 50, 85).

Assim, para enzimas imobilizadas por métodos de ligação a suportes porosos ou por oclusão em géis e fibras, suas energias de ativação deveriam ser, teoricamente, menores do que as das correspondentes enzimas livres (48).

Segundo KENNEDY e CABRAL (48), há na literatura várias citações onde as energias de ativação das enzimas imobilizadas foram praticamente as mesmas das enzimas livres, havendo também algumas citações de aumentos nas mesmas.
Figura 2.9 - Representação esquemática da variação na energia de ativação em presença de efeitos difusionais intrapartícula.

2.7.6 - Efeitos de transferência de massa

2.7.6.1 - Introdução

Embora as alterações das propriedades cinéticas, sejam de fato devi- das a interações entre os vários efeitos já citados, admite-se a existência de parâmetros cinéticos diferenciados, de acordo com o efeito que efetiva- mente controla o comportamento cinético da enzima imobilizada. ENGASSER e HORVATH (30) apresentam as seguintes definições:

a) Parâmetros cinéticos intrínsecos - parâmetros relativos a uma enzima imobilizada em particular, sendo diferentes dos da correspondente enzima solúvel, devido a efeitos conformacionais e estereoquímicos.
b) Parâmetros cinéticos inerentes - parâmetros observados na ausência de efeitos difusoriais, diferindo dos intrínsecos devido a efeitos de partição.

c) Parâmetros cinéticos efetivos ou reais - parâmetros obtidos na presença de efeitos difusoriais, de partição, conformacionais e estereoquímicos.

Outras definições são encontradas na literatura. GOLDSTEIN (30) e WEBSTER (97) apresentam definições mais ou menos semelhantes. Para esses pesquisadores, parâmetros cinéticos intrínsecos referem-se à enzima livre em solução e inerentes referem-se à enzima imobilizada na ausência de quaisquer efeitos difusoriais. Para GOLDSTEIN (30), parâmetros efetivos são relativos a uma enzima imobilizada quando limitações difusoriais são significativas. Para WEBSTER (97), parâmetros cinéticos observados relacionam-se a uma enzima imobilizada em um suporte poroso, com limitações de transferência de massa. Outros autores, como FORD et al.(36), chamam de parâmetros verdadeiros aqueles obtidos para enzimas imobilizadas livres de quaisquer efeitos difusoriais.

Na literatura relativa à catalise heterogênea, o termo taxa de reação química intrínseca refere-se a dados cinéticos obtidos na ausência de efeitos de transferência de massa externos e internos. Parâmetros obtidos na presença de tais efeitos, são normalmente denominados de aparentes. Assim, constantes de taxa de reação intrínsecas são relacionadas com a cinética química em si, não sendo mascaradas pela transferência de massa e são válidas para qualquer geometria de catalisador e tipo de reator que se use (1,42). REGAN et al. (78) evidenciam os efeitos do raio do suporte, concentração da enzima e difusividade efetiva do substrato na cinética da enzima imobilizada.

O fato que em catalise heterogênea os reagentes e catalisadores estão em fases diferentes, significa que a taxa de conversão também pode ser determinada pela taxa de transporte de reagentes de uma fase a outra. Se a superfície catalítica é externa, pode haver apenas resistência à difusão externa. Se a superfície cataliticamente ativa está também situada no interior da partícula do catalisador a taxa de reação pode ser limitada por uma resistência à difusão externa, interna ou ambas (37).
2.7.6.2 - Efeitos de transferência de massa externa

As propriedades catalíticas de uma enzima imobilizada dependem da interação de transporte de substrato e produto e da atividade catalítica da enzima. Quando a enzima imobilizada se encontra em contato com solução de substrato, a concentração desse e outras variáveis de processo, tal como pH fora da partícula catalítica, tem valores característicos da mistura reacional, que podem ser medidas por técnicas analíticas convencionais (1).

Para suprir os sítios ativos da enzima imobilizada, o substrato tem que difundir de seio da solução até a superfície externa da partícula catalítica, por difusão molecular se a mistura é estagnada ou por difusão molecular e transporte convectivo se existe mistura ou escoamento da solução de substrato, constituindo assim a transferência de massa externa. Se a enzima está ligada a suportes não porosos, existe apenas efeitos de transferência de massa externa, na camada limite, na qual o transporte de substrato para a superfície sólida se dá por difusão molecular. Se o suporte for poroso, haverá o transporte do substrato desde a superfície sólida, até o interior poroso da partícula, surgindo assim um gradiente de concentração externo à partícula e outro interno. Com os produtos da reação os gradientes de concentração serão invertidos, em relação ao substrato (1,10).

Na determinação dos parâmetros intrínsecos da enzima imobilizada, é necessário conhecer a concentração de substrato na superfície da partícula catalítica. O fluxo de massa do substrato desde o meio líquido até a superfície da partícula é dado por (1).

\[
j = K_I \cdot (S_b - S_s)
\]

onde \(j\) = fluxo de massa em mol/cm\(^2\) \(\cdot\) s
\(K_I\) = coeficiente global de transferência de massa em cm/s
\(S_b\) = concentração substrato no meio líquido mol/cm\(^3\)
\(S_s\) = concentração substrato na superfície da partícula mol/cm\(^3\)

Se a reação ocorrer na superfície do sólido, tem-se em estado estacionário que a taxa de transferência de massa é igual à taxa da reação química, conforme a equação (2.20)
\[v = K_l \cdot a' \cdot (S_b - S_s) \] (2.20)

onde \(a' \) é a superfície da partícula por unidade de volume e \(v \) é a taxa da reação.

Com dados de taxa de reação, determina-se \(S_s \), através da equação 2.20, usando correlações disponíveis na literatura para calcular o coeficiente de transferência \(K_l \) (1,8,9).

Várias correlações para determinação de \(K_l \), para transferência de massa de líquido a sólidos são disponíveis na literatura. KARABELAS et alli (45), entre outros, apresenta várias dessas correlações.

No caso de reatores de leito fixo, uma correlação bastante citada na literatura é a de WILSON e GEANKOPLIS (102), aplicável para \(R_e \) variando entre 0.0016 até 55, mostrada na equação 2.21.

onde:

\[j_D = 2,50 \cdot (R_e)^{-2/3} \] (2.21)

\[j_D = \left(\frac{K_l}{u} \right) \cdot (S_s)^{2/3} \]

\(j_D \) = Fator de Chilton Colburn
\(R_e = \frac{\rho \cdot u \cdot d_p}{\mu} \) = número de Reynolds relativo à partícula
\(S_c = \frac{\mu}{\rho \cdot D} \) = número de Schmidt
\(u \) = velocidade de escoamento do fluido
\(\mu \) = viscosidade da solução
\(d_p \) = diâmetro da partícula
\(\rho \) = densidade da solução
\(D \) = difusividade molecular do substrato na solução

ROVITO e KITTELL (80) apresentam a correlação do coeficiente de transferência de massa, mostrada na equação (2.22), aplicável a leitos recheados com de esferas de vidro poroso.
\[J_D = 1,625(Re_p)^{-0.307} \]

(2.22)

Considerando as partículas de enzima imobilizada não porosas, pode-se verificar a importância da resistência à transferência de massa externa na cinética da reação.

Um parâmetro normalmente usado é o número de Damköhler (Da), definido como sendo a razão da taxa máxima de reação, pela taxa máxima de transferência de massa (1.14,74), dada pela equação (2.23).

\[Da = \frac{V_m}{K_1 \cdot a' \cdot S_0} \]

(2.23)

Nessa análise, se Da \(\ll 1 \), a taxa máxima de transferência de massa é muito maior que a taxa máxima de reação, ou seja, existe uma baixa resistência ao transporte de massa de substrato. Nesse caso, tem-se um regime limitado pela reação química. Por outro lado, quando a resistência ao transporte de substrato é grande, tem-se um regime limitado pela difusão (1).

Por tradição, na engenharia química, costuma-se verificar a importância da transferência de massa externa através do fator de eficiência externo, \(\eta_e \), definido como sendo a relação entre a taxa de reação verificada quando \(S = S_r \) e aquela quando \(S = S_0 \), conforme equação 2.24

\[\eta_e = \frac{v(S_r)}{v(S_0)} \]

(2.24)

onde: \(\eta_e \) = fator de eficiência externo; \(v(S_r) \) = taxa de reação verificada quando a concentração de substrato é igual ao valor da mesma na superfície do suporte.

\(v(S_0) \) = taxa de reação quando a concentração de substrato é igual ao do meio líquido.

CARBERRY (14) apresenta gráficos de \(\eta_e = f(Da) \) para cinéticas que seguem a lei das potências, que requerem o conhecimento da constante da taxa de reação e da concentração na superfície, parâmetros normalmente
desconhecidos. Para evitar esse problema, esse mesmo autor apresenta ábacos generalizados de \(\eta_r \cdot D_a \) em função de \(D_a \). O parâmetro \(\eta_r \cdot D_a \), dado pela equação (2.25) contém apenas parâmetros mensuráveis.

\[
\eta_r \cdot D_a = \frac{V_m}{K_i \cdot a' \cdot S_0}
\] \hspace{1cm} (2.25)

Quando a transferência de massa é relativamente rápida comparada à taxa de reação, o sistema comporta-se como se fosse homogêneo, isto é, \(v = v(S_0) \) e \(\eta_r \) será igual a unidade. Quando a reação à superfície é muito mais rápida que a transferência de massa, \(\eta_r \cdot D_a \gg 1 \), a taxa de reação é dada por \(v = K_i \cdot a' \cdot S_0 \), já que \(S_0 \) tende a zero. Assim, o processo é governado pela difusão e \(\eta_r \) será muito menor que a unidade (14.74).

Na obtenção de dados cinéticos em labóatório, alguns testes podem ser feitos para verificar a existência ou não de resistências de transporte de massa externo, como será tratado no tópico relativo a reatores de laboratório.

Segundo RADOVICH (74), poucos artigos da literatura analisam os efeitos da transferência de massa externa em cinética com células ou enzimas imobilizadas, assumindo que esses são desprezíveis.

HORVATH e ENGASSER (43) apresentam um tratamento do problema de reação com enzima imobilizada e transporte de massa externo, partindo da equação 2.20 para cinética de Michaelis-Menten. Eles analisam o efeito das limitações à transferência de massa interpartícula e apresentam gráficos do fator de eficiência externo \(\eta_r \), como função de um número de Damköhler modificado, definido pela equação (2.26), para várias concentrações adimensionais \(S/K_m \).

\[
D_a = \frac{V_m}{K_i \cdot a' \cdot K_m}
\] \hspace{1cm} (2.26)

GOLDSTEIN (39) apresenta uma revisão das pesquisas em transporte de massa externo em sistemas com enzimas imobilizadas, fazendo uma análise matemática, baseada principalmente, nos trabalhos de HORVATH e ENGASSER (43).
2.7.6.3 - Efeitos de transferência de massa interna

Quando uma enzima é imobilizada num suporte poroso, além dos efeitos de transferência de massa externa, geralmente existem resistência à difusão interna do substrato, devido à necessidade de suas moléculas se difundirem através dos poros para contactar com a enzima, e a resistência à difusão do produto, que tem de difundir para a solução externa. Assim, estabelece-se um gradiente de concentração das espécies em solução, no interior dos poros, resultando numa diminuição de concentração do substrato com o comprimento dos poros em relação à superfície exterior do catalisador. Com o produto, forma-se um gradiente de concentração em direção oposta (1.10).

O transporte de massa no interior dos poros do catalisador se dá simultaneamente com a reação química, implicando numa diminuição da taxa de reação a medida que o substrato afasta-se da superfície externa (10).

Na determinação dos parâmetros cinéticos intrínsecos, é necessário conhecer o perfil de concentração do substrato no interior das partículas catalíticas. A maneira usual de estudar esse problema, é considerar um processo acopiado de reação-difusão (9,10,37,94) que no estado estacionário, leva à equação (2.27), aplicável às várias geometrias do catalisador.

\[
D_{es} \left[\frac{d^2 S}{dz^2} + \frac{g + 1}{z} \frac{dS}{dz} \right] = v(S) \quad (2.27)
\]

onde:

- \(D_{es}\) = difusividade efetiva do substrato no suporte poroso.
- \(z\) = distância a partir do centro da partícula até à superfície
- \(g = +1\) para esfera; \(g = 0\) para catalisador cilíndrico e \(g = -1\) para placa plana.
- \(v(S)\) = equação da taxa de reação

Para o caso de partículas esféricas, a equação do balanço de massa se reduz a:

\[
D_{es} \left[\frac{d^2 S}{dr^2} + \frac{2}{r} \frac{dS}{dr} \right] = v(S) \quad (2.28)
\]
As condições de contorno relacionadas à equação 2.28, são:

a) O gradiente de concentração no centro da esfera é nulo

\[
\frac{dS}{dr} \bigg|_{r=r_0} = 0
\]

(2.29)

b) A concentração de substrato na superfície da esfera é igual a \(S_s \), para

\[
r = R, \ S = S_s
\]

(2.30)

onde \(R \) = raio da partícula.

A equação (2.28) pode ser resolvida analiticamente para reações de primeira ordem ou de ordem constante, mas são necessárias soluções numéricas para reações de ordem mista. Nesse caso existem na literatura soluções analíticas aproximadas (10). A maioria dessas soluções são representadas graficamente na forma do fator de efetividade interno, definido pela equação (2.31) como sendo a razão entre a taxa de reação real na partícula do catalisador e a taxa que seria obtida se todas as moléculas de enzima immobilizada estivessem expostas à concentração de substrato igual à da solução do meio exterior (10,37).

\[
\eta_t = \frac{v_{obs}}{v(S_h)}
\]

(2.31)

onde \(v_{obs} = \) taxa de reação observada no reator e \(v(S_h) \) é a taxa de reação que seria observada se o suporte estivesse exposto a uma concentração igual a da fase líquida no reator.

Para a determinação da concentração de substrato na superfície do suporte, \(S_s \), tem-se que, em estado estacionário, o fluxo de substrato desde a fase líquida até a matriz porosa, por transferência de massa na camada limite, deve ser igual ao fluxo do mesmo por difusão molecular para o interior da partícula porosa dado pela equação (2.32), que por sua vez é
igual à quantidade de reagente sendo convertida por unidade de tempo no catalisador (37).

\[
\frac{v_{obs}}{a^2} = j = \frac{dS}{dt} = -D_{er} \left(\frac{dS}{dr} \right)_{r=r_i}
\]

(2.32)

Vários trabalhos existentes na literatura, utilizando como suportes membranas e partículas com diferentes geometrias, em diferentes formas de reator, tem utilizado a equação geral do balanço de massa (2.28), para determinar parâmetros cinéticos intrínsecos e/ou fatores de eficiência.

Alguns pesquisadores aplicaram a equação (2.28) a cinética de primeira ordem e outros a cinética de Michaelis-Menten, com ou sem termos de inibição pelo substrato ou produto (9.33,37,43,61,92,94,95), considerando que a enzima imobilizada segue a mesma cinética que a correspondente enzima livre, diferindo nos parâmetros.

No caso de inibição pelo substrato, a equação da taxa é dada pela equação 2.6 e o balanço de massa fica na forma:

\[
D_{er} \left(\frac{d^2S}{dr^2} + \frac{2}{r} \frac{dS}{dr} \right) = \frac{V_m \cdot S}{K_m + S + S^2 / K_i}
\]

(2.33)

WADIACK e CARBONELL (94) apresentam uma metodologia para resolver a equação 2.33, conforme sequência mostrada a seguir:

Inicialmente, a equação 2.33 é transformada a uma forma adimensional

\[
\frac{d^2C}{dX^2} + \frac{2}{X} \frac{dC}{dX} = \frac{\beta \cdot K_1 \cdot C}{K_1 + C + K_2 C^2}
\]

(2.34)

onde

\[
\beta = \frac{R^2 \cdot V_m}{D_{er} \cdot K_m}
\]

(2.35)

\[
K_1 = \frac{K_m}{S_b}
\]

(2.36)
\[K_1 = \frac{S_b}{K_i} \] \hspace{1cm} (2.37)

\[X = \frac{r}{R} \] \hspace{1cm} (2.38)

\[C = \frac{S}{S_b} \] \hspace{1cm} (2.39)

As condições de contorno relacionadas à equação 2.34, são dadas pelas equações 2.40 e 2.41

\[\frac{dC}{dX} \bigg|_{X=0} = 0 \] \hspace{1cm} (2.40)

\[\frac{dC}{dX} \bigg|_{X=1} = \alpha (1 - C \bigg|_{X=1}) \] \hspace{1cm} (2.41)

onde

\[\alpha = \frac{K_i R}{D_{es}} \] \hspace{1cm} (2.42)

WADIACK e CARBONELL (94) introduzem o fator de transformação de \(Na \) e \(Na \), transformando as condições de contorno em condições iniciais, a fim de simplificar a integração numérica introduzindo o parâmetro de transformação \(A_1 \), na forma:

\[C = A_1 \cdot C^* \], tal que \[C^* \bigg|_{X=0} = 1 \] \hspace{1cm} (2.43)
Assim, a equação 2.34 pode ser escrita na forma:

\[
\frac{d^2 C'}{dX^2} + \frac{2}{X} \frac{dC'}{dX} = \frac{\beta \cdot K'_1 \cdot C'}{K'_1 + C' + K'_2 C'^2}
\]

(2.44)

sujeita às condições iniciais dadas pelas equações 2.45 e 2.46

\[
C' \bigg|_{X=0} = 1
\]

(2.45)

\[
\frac{dC'}{dX} \bigg|_{X=0} = 0
\]

(2.46)

onde:

\[
K'_1 = K'_1 / A_1
\]

(2.47)

\[
K'_2 = K'_2 \cdot A_1
\]

(2.48)

\[
C' = C / A_1
\]

(2.49)

Da equações (2.41 e 2.49) tem-se

\[
A_1 = \left[\frac{1}{\alpha} \cdot \frac{dC'}{dX} \bigg|_{X=1} + C' \bigg|_{X=1} \right]^{-1}
\]

(2.50)

A integração da equação 2.44 é feita, estimando-se \(K'_1 \), \(K'_2 \), e \(\beta \), sujeito às condições iniciais 2.45 e 2.46, obtendo-se assim, o perfil de concentração...
e com esse, determina-se $C^\ast\left|_{X=1} \right.$ e $(\frac{dC^\ast}{dX})\left|_{X=1} \right.

Assim, conhecendo α, determina-se A_1 pela equação 2.50. Com A_1, determina-se K_1, K_2, o perfil de concentração adimensional em C e o gradiente (dC/dX) para $X = 1$.

Para a determinação dos parâmetros cinéticos, a equação 2.44 é integrada, variando os parâmetros, até que o gradiente de concentração na superfície, dC/dX seja coincidente com o obtido experimentalmente pela taxa de reação.

Após conhecidos os parâmetros cinéticos intrínsecos da enzima imobilizada, as taxas de reação previstas podem ser normalizadas em gráficos apropriados, relacionando o fator de efetividade, em função do módulo de Thiele.

O fator de eficiência é definido por:

\[
\eta = \frac{\text{taxa reação observada}}{\upsilon(S_s)} \quad (2.51)
\]

E o módulo de Thiele generalizado pode ser definido por (33):

\[
\phi = L \left[\frac{\upsilon(S_s)}{D_{el} \cdot S_s} \right]^{1/2} \quad (2.52)
\]

na qual $L =$ dimensão característica da partícula catalítica ($L = R$ para esfera).

$\upsilon(S_s) =$ taxa de reação se o catalisador estivesse à concentração do meio líquido no reator (S_b).

O módulo de Thiele escrito em função de parâmetros adimensionais (descritos pelas equações 2.35 até 2.39), para cinética de inibição pelo substrato é dado por (94):

\[
\phi = \left(\frac{\beta \cdot K_1}{K_1 + 1 + K_2} \right)^{1/2} \quad (2.53)
\]
Da equação (2.32), lembrando que \(a' = \frac{a}{R} \) para partículas esféricas, vem:

\[
\frac{R}{3} v_{obs} = D_{os} \left. \frac{dS}{dr} \right|_{r=R}
\] \hspace{1cm} (2.54)

De (2.54) e (2.51), pode ser mostrado que (94):

\[
\eta = \frac{3}{\phi^2} \left(\frac{dC}{dX} \right)_{X=1}
\] \hspace{1cm} (2.55)

WADIKA e CARBONELL (94) fizeram a integração da equação 2.44, usando o método de Runge-Kutta de 4ª ordem, com passo \(\Delta X = 10^{-2} \), usando as equações 2.45 e 2.46 como condições iniciais. Após calcular \(K_1, K_2 \) e \(dC/dX \) para \(X = 1 \), \(\eta \) foi calculado pela equação 2.55 e \(\phi \) pela equação 2.53, para vários valores de \(\beta \). Com isso, construíram gráficos de \(\eta \) versus \(\phi \), conforme Figura 2.10. Essa Figura ilustra a existência de múltiplos estados estacionários para alguns valores de \(\beta \). Segundo esses autores, os fatores de eficiência calculados dessa forma, têm a vantagem de incluir os efeitos de transferência de massa externa, embutidos no número de Sherwood.
Figura 2.10 - Fatores de eficiência como uma função do módulo de Thiele, para cinética de inibição pelo substrato (94).

WADIAK e CARBONELL (94,95) apresentam também uma metodologia semelhante, aplicada a cinéticas de inibição pelo produto, competitiva e não competitiva, para enzimas imobilizadas.

LUONG (53) apresenta uma metodologia semelhante, para resolver a equação do balanço de massa, do processo reação-difusão, para células de *Zymomonas mobilis* imobilizada em gel de K-carragenas, considerando inibição pelo substrato e pelo produto, na produção de etanol.

FINK et al. (33) utilizaram do mesmo procedimento de WADIAK e CARBONELL (94), considerando resistências à transferência de massa externa e interna, para enzimas imobilizadas exibindo cinética de Michaelis-Menten.

A cinética de Michaelis-Menten, com ou sem termos de inibição, pode
ser representada pela cinética de 1ª ordem para valores de \(S < K_m \). Nesse caso, a equação do balanço de massa, em forma adimensional assume a forma:

\[
\frac{d^2C}{dX^2} + \frac{2}{X} \frac{dC}{dX} = \beta \cdot C
\]

onde:

\[
\beta = \frac{R^2 \cdot V_m}{K_m D_e} \quad e \quad \beta = \phi^2
\]

onde \(\phi \) definido pela equação 2.57 é o módulo de Thiele para reação de 1ª ordem, definido em termos de parâmetros cinéticos intrínsecos.

CABRAL (9) após resolver a equação 2.56 analiticamente, deriva a equação 2.58, que permite determinar o valor de \(\phi \) com os dados de \(\{V_m/K_m\} \) aparentes obtidos experimentalmente, uma vez sendo conhecidos os valores de \(R \) e de \(D_e \).

\[
\frac{\phi}{\tanh \phi} = 1 + \frac{1}{3} \left(\frac{V_m}{K_m} \right)_a \cdot \frac{R^2}{D_e}
\]

Com o parâmetro \(\beta \) calculado pela equação 2.57, CABRAL (9) integrou numericamente a equação 2.44, variando apenas \(K_m \), obtendo \(K_m \) intrínseco e com este e \(\beta \), calculou \(V_m \) intrínseco.

2.8 - Reatores para Enzimas Imobilizadas

2.8.1 - Introdução

Das várias aplicações para enzimas imobilizadas, a utilização industrial é provavelmente a mais importante e a mais discutida. Em processos industriais, as enzimas imobilizadas são empregadas em reatores químicos, normalmente similares aos utilizados em catálise heterogênea (10).
Várias classificações têm sido propostas para os reatores enzimáticos, fundamentando-se basicamente no modo de operação e características de escoamento de substrato e produtos nos mesmos [51].

De acordo com o modo de operação e características hidrodinâmicas, os reatores podem ser classificadas, conforme tabela 2.6 (93).

Tabela 2.6

Classificação dos reatores enzimáticos

<table>
<thead>
<tr>
<th>Modo de operação</th>
<th>Características hidrodinâmicas</th>
<th>Tipo de reator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Descontinuo</td>
<td>Mistura Ideal</td>
<td>Reator descontinuo de tanque agitado</td>
</tr>
<tr>
<td></td>
<td>Tipo Pistão</td>
<td>Reator descontinuo com recirculação</td>
</tr>
<tr>
<td>Continuo</td>
<td>Mistura Ideal</td>
<td>Reator continuo de tanque agitado (CSTR)</td>
</tr>
<tr>
<td></td>
<td>Tipo Pistão</td>
<td>Reator continuo com agitação e com membrana de ultrafiltração</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reator de leito fixo</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reator de leito fluidizado</td>
</tr>
</tbody>
</table>

2.8.2 - Reatores descontínuos

Reatores descontínuos com agitação são, normalmente, simples necessitam de pouco equipamento de suporte e são muito adequados para estudos experimentais em pequena escala. O uso de enzimas livres é geralmente restringido a operações em tanques agitados, operados em batelada, onde a enzima e o substrato são carregados no reator, a reação é conduzida até um grau de conversão desejado, após o que, a enzima é normalmente inativada pelo calor ou outros meios. Muitas reações enzimáticas são conduzidas dessa maneira na indústria de alimentos e de bebidas (93). Segundo LILLY e DUNNILL (51), a operação em batelada permite grande flexibilidade, particularmente quando são necessárias pequenas quantidades de muitos produtos diferentes.

Quando enzimas imobilizadas são usadas em um reator descontinuo com agitação, a enzima imobilizada deve ser recuperada da corrente de produto em uma etapa subsequente. Os procedimentos de recuperação,
por centrifugação ou filtração podem causar perdas de partículas de catalisador, bem como a inativação da enzima quando sujeita a ciclos repetidos de recuperação (93).

O reator descontínuo com agitação é muito simples, composto de um tanque com um agitador mecânico, permite uma boa mistura e pode ser dotado de controle de temperatura e pH. Esse reator apresenta como desvantagem, a possibilidade de quebrar alguns suportes de imobilização, tais como os inorgânicos. Um projeto alternativo de reator de tanque agitado descontínuo é o de cesta rotatória, que retém as partículas de enzima imobilizada numa malha. Esse reator tem encontrado mais aplicação em laboratório (10, 18).

Dentro da classificação de reatores descontínuos, encontra-se também o do tipo fluxo pistonar, com recirculação total, podendo operar como leito fixo ou fluidizado. Esse tipo de reator encontra boa aplicação na obtenção de dados cinéticos em laboratório. Ele pode ser aplicado, também, no processamento de substratos insolúveis, usando altas velocidades do fluido através do reator, minimizando assim, a resistência à transferência de massa externa. Normalmente, no reator de reciclo com recirculação total, a conversão por passe no reator é pequena, devido ao reduzido tempo de residência utilizado, mas pelo processo de reciclo, consegue-se atingir altas conversões e diminuir perdas de atividade enzimática durante etapas de recuperação do catalisador como no caso do reator de tanque agitado e evita a quebra de partículas pelo atrito causado pelo agitador (36, 93).

A Figura 2.11 ilustra alguns tipos de reatores usados para reações enzimáticas.
2.8.3 - Reator contínuo com agitação (CSTR)

Num CSTR ideal, a solução reacional está perfeitamente misturada, consequentemente, todos os elementos do reator têm a mesma composição,
que é a mesma do efluente do reator. Nesse reator, a taxa de reação é determinada pela composição da corrente de saída (93).

Os reatores contínuos com agitação (CSTR), são menos eficientes que os reatores contínuos de leito fixo ou tubulares (PFR), para cinéticas enzimáticas tipo Michaelis-Menten, uma vez que a taxa média de reação num CSTR é menor que num PFR, devido à baixa concentração de substrato na corrente de saída de um reator contínuo com agitação. A eficiência do CSTR ainda se torna menor em relação ao PFR, quando a reação é inibida pelo produto, pois este estará a uma concentração relativamente elevada no reator de mistura. Se ocorre inibição pelo substrato, então o reator de mistura pode se tornar mais eficiente que o tubular (32, 51, 73, 93).

Quando há necessidade de controles de pH e temperatura, esses podem ser mais facilmente conseguidos num CSTR (93). Também no processamento de substratos muito viscosos ou coloidais, é preferível usar um reator de mistura, evitando assim problemas de entupimento das colunas (100).

O reator contínuo agitado também apresenta as desvantagens de recuperação de partículas da corrente efluente e problemas de abrasão do suporte da enzima imobilizada, como no reator descontínuo agitado (93).

O processamento contínuo com enzimas solúveis num reator de mistura pode ser realizado utilizando uma membrana de ultrafiltração, num processo com recirculação. A membrana funciona como uma barreira semi-permeável, permitindo a passagem do produto e substrato não reagido e retendo a enzima. Um sistema combinado de CSTR e membrana de ultrafiltração pode também ser usado com uma enzima imobilizada solúvel, como por exemplo, enzima ligada a dextrana. Verifica-se no entanto, perdas de atividades enzimática por adsorção da enzima na membrana (93).

2.8.4 - Reator contínuo de leito fixo

O reator mais utilizado na catálise com enzimas imobilizadas é o reator contínuo de leito fixo. Se o perfil de velocidade do fluido é perfeitamente plano na seção transversal, diz-se que o reator opera de forma pistonada (PFR). Num reator ideal desse tipo, existe um fluxo ordenado de líquido através do leito da enzima imobilizada, numa direção espacial escolhida. O modelo idealizado deste tipo de reator assume que um elemento de fluido entrando no leito movimenta-se pelo reator como um pistão de material
que preenche completamente a secção transversal do reator (42). Num reator real, o escoamento do fluido tende a se diferenciar dessa condição idealizada, devido à existência de gradientes na direção normal ao escoamento, difusão de substrato na direção axial e a existência de gradientes de temperatura normais à direção do escoamento (93).

Para CHIBATA (18), os reatores de leito fixo são os mais usados para enzimas e células imobilizadas, podendo ser de fluxo ascendente, descendente ou ter uma corrente de recíclio de parte do efluente do reator. Nesse último caso, pode ser interessante na diminuição dos efeitos difusoriais externos. Se ocorrer compactação do leito, é preferível o reator com fluxo ascendente.

Em termos cinéticos, o PFR é mais favorável do que o CSTR para cinética tipo Michaelis-Menten, conforme assinalado no item anterior, mas sua utilização depende do tamanho das partículas e tipo do substrato. Quando a enzima é imobilizada em partículas muito pequenas, sua utilização em reatores de leito fixo se torna impraticável, devido às elevadas perdas de carga a que fica submetido o sistema. Segundo PITCHER (72), partículas menores que cerca de 45 ou 50 mesh são inadequadas para aplicações em grande escala. Frequentemente, a escolha do tamanho de partícula de enzima imobilizada é importante. Deve haver um compromisso entre limitações à difusão, diminuídas para partículas menores e queda de pressão, aumentada por partículas menores. As Figuras 2.12 a e b ilustram esses efeitos, segundo dados de WEETALL (92), para vidro de porosidade controlada. Além disso, como já foi dito para reatores descontínuos de leito fixo, no caso de substratos coloidais ou com sólidos em suspensão, esses reatores estão sujeitos a entupimentos (100). Também, o controle de pH é impraticável nos reatores de leito fixo (93).
Figura 2.12 - Relação entre diâmetro de partícula com queda de pressão (a) e com atividade da enzima imobilizada (b).

Apesar dessas desvantagens, os reatores de leito fixo são os mais utilizados e estudados, tanto em escala de laboratório, como em exploração comercial, e provavelmente, continuarão a dominar as aplicações industriais de enzimas imobilizadas, ao lado dos reatores de leito fluidizado (72).
2.8.5 - Reator de leito fluidizado

Num reator de leito fluidizado, o fluxo ascendente do substrato passa através do leito de partículas a velocidades suficientes para que as mesmas fiquem suspensas, ou fluidizadas, mas sem haver o arraste para fora do reator. O escoamento do fluido provê um grau de mistura intermediário entre a mistura completa, como no CSTR ideal e nenhuma mistura, como no PFR. O reator de leito fluidizado apresenta excelentes características de transferência de calor e massa (93).

Os reatores de leito fluidizado são usados preferencialmente quando as soluções de substrato são viscosas ou contêm partículas em suspensão, permitindo conversões superiores às aquelas obtidas nos reatores contínuos com agitação (10,18).

Uma outra vantagem do reator de leito fluidizado é sua capacidade de poder utilizar partículas muito pequenas, até da ordem de 100 μm, reduzindo os efeitos de transferência de massa externo e interno, bem como perdas de pressão muito menores do que as obtidas nos correspondentes reatores de leito fixo, além de não danificar as partículas (10, 72).

Por outro lado, segundo VIETH e VENKATASUBRAMANIAN (93), os reatores de leito fluidizado necessitam de uma potência mais elevada para fluidizar o leito, são difíceis de modelar e o projeto do reator deve ser baseado em correlações empíricas. Na ampliação de escala, frequentemente encontram-se excepcionais dificuldades. Também, os reatores de leito fluidizado são maiores que os de leito fixo correspondentes, devido à expansão do leito de partículas de enzima imobilizada e pode ter que operar com recirculação total ou parcial da solução de substrato, para se conseguir a conversão desejada.

VIETH e VENKATASUBRAMANIAN (93), discutem vários fatores relacionados à escolha do tipo de reator a ser utilizado num dado processo envolvendo o uso de enzimas imobilizadas.

Referências sobre outros tipos de reatores são encontradas na literatura (18, 72, 93), porém são aplicados a casos isolados.
2.9 - Microrreactores catalíticos

2.9.1 - Introdução

A finalidade de um microrreator, definido como um pequeno reator projetado para operação isotérmica no laboratório, é a de estudar e quantificar o fenômeno químico da reação, a uma temperatura bem definida, na ausência dos efeitos e incertezas criadas pelas resistências à transferência de massa e calor. Como tal, o microrreator é decisivo para a determinação da cinética intrínseca da reação. O microrreator é construído com o menor tamanho possível, de modo a permitir, sempre que necessário, o uso de reagentes puros (15, 26, 85).

2.9.2 - Microrreactores tubulares

Um microrreator tubular é, essencialmente um tubo reto ou em forma de U, construído de vidro, aço-inox ou outro material, de pequeno diâmetro, dotado de controle de temperatura, dentro do qual é empacotado o catalisador.

Os resultados obtidos com esses reatores são interpretados em termos do modelo de escoamento pistonar isotérmico, por isso alguns critérios devem ser observados na montagem do reator. As partículas de catalisador não devem em geral, ter dimensões abaixo de 400 μm, para evitar uma perda de carga excessiva e o eventual bloqueio do leito, nem superiores a cerca de 2 mm, para limitar os problemas de transferência de massa interna e o escoamento preferencial. É preferível usar partículas com uma estreita distribuição de tamanho, a fim de melhorar o empacotamento do leito, reduzindo a possibilidade do escoamento preferencial. Também com a finalidade da redução desse, o microrreator tubular de tubo reto deve ser montado na vertical (75).

Para eliminar o efeito da dispersão axial no leito, deve-se usar uma relação comprimento do leito pelo diâmetro da partícula superior a 100. A relação entre o diâmetro do reator e o da partícula, deve ser superior a 10, para reduzir a dispersão axial e o escoamento preferencial no leito (75).

Para testar a influência da resistência externa à transferência de massa, determina-se a taxa de reação a velocidade de circulação crescente do
líquido através do reator, determinando assim a velocidade crítica, acima da qual não se verifica aumento da taxa de reação (36).

Para testar a influência da resistência interna, realiza-se um conjunto de testes com diferentes tamanhos de partículas, determinando o diâmetro máximo de partículas para o qual os efeitos de transferências intra-fase são importantes (36, 42).

O modelo integral do reator tubular é dado pela equação 2.59 (50).

$$\frac{W}{F_0} = \int_0^{X'} \frac{dX'}{v}$$

onde:
- W = massa de catalisador
- F_0 = Vazão molar do substrato na alimentação
- X' = conversão
- v = taxa de reação, definida em termos do reagente

Através da equação 2.59, é bastante difícil obter a taxa da reação e é então preferível usar o modelo do reator diferencial, quando se considera uma taxa de reação média constante ao longo do reator. Como a taxa da reação é uma função da concentração, tal hipótese só é válida para pequenas conversões, ou para reatores muito pequenos, porém o reator diferencial não é necessariamente pequeno, uma vez que pode-se trabalhar com taxas de reação baixas, combinando baixas atividades do catalisador com pequenos tempos de residência. Para reações de ordem zero, qualquer reator pode ser considerado diferencial (50). Então, partindo da equação 2.59, para pequenas conversões no reator, na prática, menores que 5%, a taxa de reação pode ser obtida facilmente, pela equação (2.60).

$$\bar{v} = \frac{(S_a - S_s)}{W}$$

onde:
- S_a = concentração do substrato na alimentação
- S_s = concentração do substrato na saída do reator
- \bar{v} = vazão volumétrica no reator.
- \bar{v} = taxa de reação média no reator.

Num reator diferencial, a precisão da análise química é um fator muito importante na determinação das concentrações de entrada e saída do re-

63
ator, já que a conversão é baixa. Com isso, a taxa obtida poderá ser duvidosa (2,89).

2.9.3 - Microrreatores de mistura

No reator de mistura, obtém-se uma medida direta da taxa de reação, a partir da diferença entre as concentrações na entrada e na saída. Com esse reator pode-se obter mistura perfeita, eliminando praticamente toda resistência à transferência de massa externa (26).

Foram desenvolvidos vários tipos de reatores de mistura, com a finalidade básica de conseguir uniformidade de composição e temperatura em todo o reator. Embora os princípios básicos de todos esses tipos sejam os mesmos, eles são classificados conforme o catalisador seja estacionário ou não estacionário (26).

No reator de mistura, tipo cesta rotatória, as partículas do catalisador são mantidas num recipiente de malha de arame. A cesta, o qual é preso a um agitador, que gira dentro de um recipiente contendo a mistura reacional. Quando a cesta gira a altas velocidades, as quais podem ser superiores a 5000 rpm, ocorre uma boa mistura entre reagentes e produtos e os efeitos difusivos são minimizados. Um reator desse tipo foi primeiro proposto por CARBERRY (15).

Os reatores tipo cesta, têm encontrado bastante aplicação na obtenção de dados cinéticos na catalise heterogênea gás-sólido, sendo encontrados vários modelos, na literatura (2,13,26,89,98).

Vários outros tipos de microrreatores de mistura são citados por DORAIswamy e TAJBL (26), além dos de cesta rotatória, tais como reatores com catalisador impregnado nas paredes do reator ou formando uma cesta anular ajustada próxima às paredes do mesmo. Nesses casos, o catalisador é estacionário e o fluido é fortemente agitado.

Para comprovar a inexistência de resistências inter e/ou intrafases, é necessário realizar testes de conversão para diferentes velocidades de rotação e para diferentes tamanhos de partículas (50).

O modelo do reator de mistura perfeita, dado pela equação 2.61, permite obter diretamente o valor da taxa de reação, podendo operar com conversões mais altas do que quando se trabalha com um reator diferencial.
\[v = \frac{q(S_a - S_i)}{W} \]

(2.61)

2.9.4 - Microrreator de recirculação externa

Uma maneira prática de combinar as facilidades construtivas de um microrreator tubular com as vantagens operacionais do microrreator de mistura, consiste em recorrer a um microrreator tubular com reciclo externo (36).

A equação 2.62 é o modelo do reator tubular com reciclo externo, em que \(R_e \) é a razão de reciclo, definida pela relação entre a vazão da corrente reciclada e a vazão da corrente que sai do sistema (50).

\[
\frac{W}{F_0} = (R_e + 1) \int_{\frac{X_0}{R_e+1}}^{X} \frac{dX'}{v'}
\]

(2.62)

Para valores altos de \(R_e \), pode-se demonstrar que o comportamento do reator aproxima-se do escoamento em mistura, permitindo o cálculo direto da taxa de reação pela equação 2.61.

PERKINS e RASE (71) projetaram um reator diferencial com recirculação externa e o aplicaram com sucesso no estudo de cinéticas de reações químicas rápidas, sujeitas a problemas de difícil controle de temperatura e a resistências difusoriais. Essa foi uma das primeiras aplicações bem sucedidas desse tipo de reator.

Se o reator é operado de modo que a maior parte da corrente efusente seja reciclada, consegue-se um sistema praticamente isotérmino, e devido às altas velocidades com que o fluido passa através do leito catalítico, há uma eliminação quase completa da influência à transferência de massa externa (26).

Segundo FORD et al. (36), o sistema de reator com recirculação, é uma resposta ao problema de obtenção de dados cinéticos com enzimas imobilizadas, livres de gradientes diffusionais, tanto externos como internos. TEMKIN, segundo FORD et al. (36) reconhece no reator de recirculação, uma poderosa ferramenta de pesquisa, que provê dados cinéticos em estudos de catálise heterogênea, praticamente sem gradientes.
O reator de recirculação externa pode operar tanto continuamente, como em batelada, e ambos tem encontrado ampla aplicação em estudos de catálise heterogênea (13).

Na Figura 2.13 é esquematizado um reator de reciclo experimental (50).

![Diagrama de reator de reciclo](image)

Figura 2.13 - Reator de reciclo contínuo

O reator de reciclo emprega um reator diferencial, cuja pequena variação de concentração por passo, é ampliada pela alta taxa de recirculação, implicando em uma conversão facilmente mensurável no sistema como um todo (36).

Um balanço material para o sistema todo da figura 2.13, fornece a equação 2.63, que é igual à Equação 2.61 para reator de mistura.

\[
v = q(S_a - S_b) / W
\]

(2.63)

Uma das maiores dificuldades operacionais do sistema ocorre nos casos onde altas quedas de pressão através do leito de partículas, impedem altas vazões.

O efeito da resistência à transferência de massa externo pode ser verificado, usando correlações para o cálculo do coeficiente de transferência,
e através dos dados de taxa de reação, calcular a concentração de subs-trato na superfície da partícula, como discutido no item 2.7.6.2. Uma outra maneira de verificar a influência do transporte externo de massa, é aumentar a vazão de reciclo até que a taxa de reação não mais aumente, como mostrado na Figura 2.14 (36).

![Graph showing the relationship between flow rate and reaction rate](image)

Figura 2.14 - Influência da vazão de reciclo na taxa de reação (36).

Os efeitos de transferência de massa interna são muito persistentes e o melhor teste é determinar as taxas de reação a vários tamanhos de partículas (36). Na impossibilidade desse teste, deve-se resolver a equação do balanço de massa reação-difusão na partícula, por procedimentos numéricos, conforme item 2.7.6.3, determinando assim, os parâmetros cinéticos intrínsecos.

Para testar se o reator de reciclo externo apresenta comportamento de um CSTR, pode-se passar pelo reator um traçador, numa dada vazão de reciclo, e comparar o tempo de residência experimental, com o teórico, dado pela relação entre o volume de líquido no sistema e a vazão de alimentação ou de cfluent (81). A equação 2.64, relaciona a concentração de traçador, alimentado em forma de degrau, com o tempo.
\[
\ln \left(\frac{C_0}{C_0 - C} \right) = \frac{1}{\tau_{esp}} \cdot t
\]

onde: \(\tau_{esp} \) = tempo de residência experimental
\(C_0 \) = concentração de traçador na entrada do sistema
\(C \) = concentração de traçador na saída do sistema, em função do tempo.

Um gráfico para vários valores de \(\ln \left(\frac{C_0}{C_0 - C} \right) \) em função de \(t \) fornece uma reta com inclinação \(\frac{1}{\tau_{esp}} \).

Quando o tempo de residência experimental se aproximar do teórico, o comportamento do sistema se aproxima de um CSTR.

2.10 - Invertase

2.10.1 - Aspectos gerais

A sacarose é um dissacarídeo formado pela ligação glicosidica entre o carbono 1 da glicose e o carbono 2 da frutose, sendo portanto um açúcar não redutor, mas sua hidrólise leva à formação de uma mistura equimolar de açúcares redutores, glicose e frutose. Essa reação de hidrólise da molécula de sacarose recebe o nome de inversão, devido à mudança no sentido de rotação no plano da luz polarizada, ao atravessar uma solução do açúcar hidrolisado, como pode ser visto na reação mostrada a seguir (76).

\[
\text{sacarose} + H_2O \quad \rightarrow \quad \text{D}(+) \text{ glicose} + \text{D}(+) \text{ frutose}
\]

\[
\alpha_D = +66,5^0 \quad \alpha_D = +52,5^0 \quad \alpha_D = -92^0 \\
\alpha_D = -22^0
\]

A reação de hidrólise da sacarose pode ser catalisada por ácidos (ions \(H^+ \)) ou por dois tipos de enzimas, \(\alpha-D \)-glicosidasas (E.C. 2.1.20) e \(\beta-D \)-frutofuranosidase (E.C. 3.2.1.26). Essa última recebe várias denominações, tais como invertina, sacarase, sucrase e a mais comum, invertase (76,77).

A enzima \(\alpha-D \)-glicosidase ataca a sacarose, rompendo a ligação glicosídica pelo lado da glicose, enquanto que a invertase rompe a ligação pelo lado da frutose (76).
Invertase é uma das enzimas conhecidas há mais tempo, sendo produzida por várias plantas e microrganismos, mas somente aquelas produzidas por leveduras, tem importância industrial (47, 76, 77).

Segundo DRAETA (28), essa enzima foi descoberta em 1833 por Persoz, em leveduras, e isolada em 1860 por Berthelot, por precipitação com álcool e é uma das enzimas que mais tem sido estudada.

A maioria da invertase produzida por levedura está localizada na parede celular, havendo também uma forma intracelular. A invertase extracelular é uma glicoproteína, contendo 50% de carboidrato, principalmente fosfomananã, apresentando um peso molecular de 270.000. A forma intracelular é livre de carboidrato e possui um peso molecular de 135.000 (103).

Invertase encontra grande aplicação na produção de chocolates e produtos de confeitaria, onde a hidrólise de soluções concentradas de sacarose, dá origem a xaropes mais doces e mais solúveis na água presente. Outra aplicação é na produção de açúcar invertido, implicando num produto livre de impurezas que podem ser produzidas na hidrólise ácida, também usada na indústria açucareira (103). Segundo REED (77), o uso de invertase para a produção de açúcar invertido tem sido limitada, devido ao fato de que o mesmo pode ser obtido por glicose-isomerase, a partir de fontes mais baratas.

2.10.2 - Imobilização de invertase

A primeira citação de imobilização de invertase é de NELSON e GRIFFIN (67), que em 1916, ad sorveram essa enzima em carvão e hidróxido de alumínio gelatinoso, com retenção de atividade catalítica.

Nos últimos anos, essa enzima tem sido imobilizada por vários métodos em uma grande variedade de suportes. Ela foi ligada covalentemente a vidro poroso (57, 69), a homblienda (34, 35, 90), a sabugo de milho (64, 65), copolimerizada com acrilamida (47), adsorvida em quinita (88), ligada ionicamente a DEAE-cellulose (5, 87, 91) e a outras resinas (54, 70, 79), imobilizada por oclusão em gel (9) e em outros suportes.
2.10.3 - Cinética com invertase livre e imobilizada

A reação de hidrólise de sacarose por invertase livre, a baixas concentrações de substrato, até em torno de 0,3 mol/l, segue cinética de Michaelis-Menten, entretanto, para soluções de sacarose mais concentradas, surge o efeito de inibição pelo substrato e a dependência entre taxa de reação e concentração é dada pela equação 2.6. (3,7,23,49). Entretanto, tem sido verificado experimentalmente, que o modelo de inibição pelo substrato, descrito pela equação 2.6, não é adequado para descrever a cinética de inversão de soluções concentradas de sacarose (7,9,20).

BROWSKI et al. (7) estudaram a reação de hidrólise de soluções de sacarose, levando em consideração efeitos de difusão de substrato, viscosidade da solução, concentração de água e inibição pelo substrato. O modelo que melhor ajustou a seus dados experimentais, foi o de inibição pelo substrato, corrigido por um fator, dado pela razão entre a concentração de água livre e a concentração de água total, conforme a equação 2.65.

\[v = \frac{V_m \cdot S}{K_m + S + \frac{S}{K_i}} \cdot \frac{W_f}{W_t} \] \hspace{1cm} (2.65)

onde:
- \(W_f \) = concentração de água livre
- \(W_t \) = concentração de água total, que é igual à água livre mais a ligada.

A relação entre \(W_f \) e \(W_t \), depende do número de hidratação da molécula de sacarose.

BROWSKI et al. (7) propuseram um fator de correção, aplicado à cinética de Michaelis-Menten, derivado da equação de Stokes-Einstein, dado pela equação 2.66, porém não conseguiram ajuste entre os dados experimentais e os obtidos pelo modelo.

\[\frac{D(S)}{D_0} = \frac{\mu_0}{\mu_0} \frac{\mu(S)}{S} \] \hspace{1cm} (2.66)
onde: \(D(S) \) = coeficiente de difusão da sacarose à concentração \(S \).

\(D_0 \) = coeficiente de difusão à diluição infinita

\(\mu_0 \) = viscosidade da água pura

\(\mu(S) \) = viscosidade da solução de sacarose à concentração \(S \).

CABRAL (9) ajustou seus dados de taxas iniciais de reação de hidrólise de sacarose, pelo modelo de inibição pelo substrato, corrigido por um fator \(f(S) \), definido pela equação 2.67.

\[
f(S) = \frac{D(S)}{D_0}
\]

(2.67)

onde: \(D(S) \) = difusividade molecular da sacarose à concentração \(S \)

\(D_0 \) = difusividade molecular da sacarose à diluição infinita.

A relação \(D(S)/D_0 \) na equação 2.67, foi derivada a 40 e 50°C baseando-se em dados experimentais de \(D(S) \), obtidos por ENGLISH e DOLE (31), em que \(D(S) \) decresce linearmente com a concentração de sacarose. Assim, CABRAL (9) relaciona as taxas iniciais de reação observadas experimentalmente \((v_{obs}) \), com aquelas previstas pelo modelo de inibição pelo substrato \((v') \), através da equação 2.68.

\[
v_{obs} = v' \cdot f(S)
\]

(2.68)

COMBES e MONSAN (20) propõem um modelo para explicar o desvio de relação ao modelo de inibição pelo excesso de substrato, considerando que em solução, há formação de pontes de hidrogênio intra e intermoleculares nas moléculas de sacarose. Consideram que as moléculas de sacarose com pontes de hidrogênio intramoleculares não estão disponíveis à reação, e propõem o modelo cinético seguinte:

\[
v = \frac{V_m \cdot S^*}{K_m + S^* + \frac{S^*}{K_s} + \frac{S^*}{K_f}}
\]

(2.69)

onde: \(S^* \) = concentração de substrato disponível à reação

\(K_s \) e \(K_f \), são constantes de inibição pelo substrato.
Esses pesquisadores estudaram o efeito da inibição pelo produto na reação de hidrólise de soluções diluídas de sacarose, considerando separadamente, o efeito inibidor de glicose e frutose. Concluíram que a inibição por frutose é do tipo competitiva, enquanto que o da glicose é do tipo parcialmente não competitiva.

Com relação à invertase em forma imobilizada, praticamente todos os trabalhos publicados, tem considerado o modelo aplicado à enzima em solução, adequado para determinar as taxas da reação, porém com alteração dos valores dos parâmetros cinéticos na maioria das citações. Essas alterações nos parâmetros são atribuídas, quase sempre, a problemas difusoriais na matriz da enzima imobilizada (49,57,70), mas em alguns casos, tem-se determinado os parâmetros intrínsecos (9).

2.10.4 - Influência da temperatura e do pH na atividade de invertase

Como já foi mencionado no item 2.2.5, a temperatura exerce uma influência bastante acentuada na constante da taxa de reação e na estabilidade térmica da enzima. Assim, a taxa de reação aumenta com o aumento da temperatura, até um valor convencionalmente chamado de ótima, a partir da qual a atividade decresce, devido à inativação da enzima.

A temperatura ótima para invertase livre, se situa na faixa de 50 a 60ºC, na a maioria dos trabalhos publicados (9,47,57,79,91). Para invertase imobilizada, os valores de temperatura ótima dependem do suporte utilizado na imobilização e se situam, entre 35 e 65ºC (9, 47,54,57,79,91).

A estabilidade térmica de invertase depende das condições do meio onde se encontra, tais como pH, concentração de substrato e se está imobilizada ou complexada a outro componente.

MONSAN et al. (65) observaram um aumento acentuado na estabilidade térmica de invertase imobilizada covalentemente a sabugo de milho, para concentração de sacarose acima de 1,5 mol/l, a 60ºC e pH 4,5.

OOSHIMA et al. (69,70) imobilizaram invertase covalentemente a vidro poroso por processo de silanização orgânico e a resinas trocadoras de íons, por ligação iônica. Verificaram que, na faixa de temperatura entre 54 e 70ºC, a desativação de todas as formas de invertase em estudo, livre e imobilizadas, seguiram cinética de primeira ordem. Também foi verificado
que a estabilidade térmica foi maior para a enzima imobilizada por ligação iônica do que por processo covalente, mas que ambas formas imobilizadas foram mais estáveis que a enzima livre. Eles verificaram, também, que a estabilidade térmica de formas imobilizadas era maior no pH ótimo da enzima.

MASON E WEETALL (57) verificaram que invertase covalentemente ligada a vidro poroso era muito mais estável que quando imobilizada em derivados de celulose. Encontraram uma meia vida de 42,5 dias para o complexo vidro poroso-enzima e 3,7 dias para celulose-enzima.

LÓPEZ-SANTIN et al. (52) imobilizaram invertase em argila ativada e verificaram que a desativação da enzima imobilizada seguiu cinética de primeira ordem, na faixa de 25 a 50°C.

Com relação ao pH, pode-se dizer que para invertase livre, o pH ótimo se situa entre 3,5 e 5,5. Para a enzima imobilizada, tem-se verificado, na maioria dos casos, um afastamento do pH ótimo em relação ao da enzima livre (9,23,47,57,87) devido a efeitos de partição (39).
3 - Material e Métodos

3.1 - Reagentes

A enzima invertase foi obtida da Novo Ferment, em forma de pó solúvel em água.

Os reagentes químicos utilizados foram todos produtos P.A., exceto a sacarose utilizada nos experimentos em processo contínuo, que foi açúcar cristal comercial.

Como suportes para imobilização da enzima, foram utilizados Sílica de Porosidade Controlada, correspondente à fração que passou pela peneira Tyler 32 e que ficou retida na Tyler 35, obtida da Corning Glass Works, com diâmetro médio de poros de 375 Å e alumina, de diâmetro de partícula entre 2 e 4mm, com diâmetro médio de poros de 3000 Å, obtida da Rhône - Polenc Industries.

3.2 - Métodos

3.2.1 - Determinação de açúcares redutores pelo método do ácido 3,5 - dinitrosalicílico (60)

a) Preparação do reagente DNS

Misturar a quente 1416 ml de água destilada, 10.16 g de ácido 3,5 - dinitrosalicílico e 19.8 g de hidróxido de sódio, e após dissolução, acrescentar a essa mistura, 7.6 ml de fenol fundido a 50°C e 8.3 g de metabissulfito de sódio. Guardar esse reagente em frasco protegido da luz.

b) Curva padrão

A curva padrão foi obtida com soluções equimolares de glicose e frutose, cuja concentração total de açúcares redutores variou de 0 a 1.0 g/l, com intervalo de 0.1 g/l. Tomou-se 1 ml de cada uma dessas soluções em tubos de ensaios, acrescentou-se 1 ml do reagente DNS e levou-se a ebulição por 5 min, em banho María. Após esse tempo, resfriou-se os tubos em banho de gelo e adicionou-se em
cada um, 16 ml de solução de tartarato duplo de sódio e potássio a 11,25 g/l, para estabilizar a cor. Após homogeneização dos tubos, leu-se a absorbância a 540 nm em um espectrofotômetro, modelo B 382 da Micronal, considerando como branco, um tubo em que se substituiu a solução de açúcar redutor por 1 ml de água destilada. Após todas as leituras, construiu-se a curva de absorbância (Ab), em função da concentração de açúcares redutores, que no intervalo de concentração considerado, fornece uma reta.

Durante os ensaios, foram obtidas várias curvas de calibração. Sempre que era preparada nova solução de reagente DNS, era feita nova curva. Também, para uma mesma solução de DNS, era feita uma curva padrão a cada duas semanas.

c) Determinação de açúcares redutores em uma amostra desconhecida

Asamostras a serem analisadas eram diluídas de modo que a concentração de açúcares redutores se situasse entre 0 e 1 g/l. Da amostra diluída, tomava 1 ml e determinava o açúcar redutor, como descrito no item anterior, determinando-se a absorbância, e através da equação da curva padrão, determinava-se a concentração de açúcares redutores.

3.2.2 - Determinação da atividade da enzima livre

A atividade de invertase livre foi determinada conforme metodologia descrita a seguir:

Preparou-se uma solução de invertase a 0,01 g/l, em tampão acetato de sódio, pH 4,5, 10⁻² M e uma solução de sacarose a uma dada concentração, no mesmo tampão.

A reação de hidrólise de sacarose com invertase livre era realizada em um reator de vidro, com agitação magnética e com camisa externa, para recirculação de água proveniente de um banho termostatizado, para controle da temperatura. Inicialmente, colocava no reator 11 ml de solução de sacarose, e após atingir a temperatura desejada, acrescentava 1 ml da solução de invertase, marcando o tempo de início da reação. As amostras eram tomadas, normalmente em número de cinco, a intervalos adequados de tempo. Cada amostra era introduzida num tubo de ensaio contendo 1 ml do reagente DNS e determinado o teor de açúcares redutores.
A taxa inicial de reação foi obtida a partir da inclinação da reta de concentração de sacarose reagida, em função do tempo.

A atividade da enzima, em várias partes do presente trabalho, foi expressa em unidades internacionais, como definido no item 2.2.1. Para efeito de padronização, a concentração inicial de sacarose no meio reacional foi 50 g/l e a temperatura dos experimentos, foi 40° C.

3.2.3 - Determinação da atividade da enzima imobilizada

Para determinar a atividade de preparações de enzimas imobilizadas, utilizou-se reatores descontínuos com agitação magnética e controle de temperatura, como descrito no item anterior, em que a enzima imobilizada estava contida numa cesta (basket), construída em tela de aço inox, mesh 100, conforme Figura 3.1 [10].

Após determinada a atividade de uma dada amostra de invertase imobilizada, essa era seca em estufa até peso constante com a finalidade de apresentar a atividade em termos de unidades de taxa de reação ou de unidades de atividade, por grama de suporte seco.

Figura 3.1 - Representação esquemática do reator descontínuo.

(1) banho termostatizado; (2) termostato; (3) reator de vidro; (4) cesta com a enzima imobilizada; (5) base do agitador magnético; (6) agitador magnético.
Inicialmente, colocava-se no reator 24 ml de solução de sacarose, sob condições definidas de concentração e pH. Uma vez atingida a temperatura do experimento, e sob agitação, colocava-se a cesta com certa massa de enzima imobilizada dentro do reator e iniciava a marcação do tempo. Amostras eram retiradas a intervalos regulares de tempo e determinados seus conteúdos em açúcares redutores, a partir dos quais, determinava-se a taxa da reação.

Para efeito de comparação dos resultados, padronizou-se o experimento, determinando-se a atividade de invertase imobilizada a 40°C, usando uma concentração inicial de sacarose igual a 50 g/l, em tampão acetato de sódio, pH 4.5, 10⁻²M. Em várias partes do trabalho, a unidade de atividade utilizada foi unidades internacionais, por grama de suporte seco.

3.2.4 - Influência da concentração inicial de sacarose na atividade de invertase livre

Determinou-se as taxas iniciais de reação, a 40°C, usando concentrações de sacarose variando entre 2 e 500 g/l, conforme descrito no item 3.2.2, tomando sempre o cuidado para que a absorbância não ultrapassasse o limite correspondente a 1.0 g/l de açúcares redutores e que os pontos de concentração de sacarose reagida em função do tempo se ajustassem segundo uma reta, obtendo-se assim, as verdadeiras taxas iniciais de reação (84).

Com os dados de taxas iniciais de reação em função da concentração de substrato, procurou-se determinar as constantes cinéticas, considerando o modelo cinético de inibição pelo substrato, plotando-se os dados na forma de Lineweaver-Burk, para as faixas de baixas e altas concentrações de substrato.

3.2.5 - Influência da concentração inicial de glicose e frutose na atividade de invertase livre

Foram determinadas as taxas iniciais de reação de hidrólise de sacarose por invertase livre, em ensaios em que se mantinha constante a concentração de glicose ou de frutose, e variava a concentração de sacarose. Os experimentos foram realizados a 40°C, na mesma concentração de enzima usada no item 3.2.2, ou seja, 8,33 × 10⁻⁴ g/l e as soluções reagentes foram
preparadas dissolvendo-se os açúcares em tampão acetato de sódio $10^{-2}M$, pH 4.5.

Os experimentos com glicose e com frutose foram realizados separadamente. O efeito inibidor de glicose e de frutose foi caracterizado numa faixa de concentração de sacarose, na qual a inibição dessa pudesse ser desprezada (20). As concentrações de glicose e de frutose usadas foram 5, 20, 35, 50 e 65 g/l, e para cada uma dessas, variou-se a concentração inicial de sacarose de 10 a 50 g/l. O açúcar redutor formado foi analisado pelo método do DNS, utilizando diluições adequadas das amostras.

Obteve-se assim, conjuntos de taxas iniciais de reação em função da concentração inicial de sacarose, a diferentes concentrações de glicose e de frutose, os quais foram analisados através de gráficos de Lineweaver-Burk para verificação do tipo de inibição e determinação dos parâmetros cinéticos.

3.2.6 - Imobilização de invertase

3.2.6.1 - Imobilização de invertase em alumina ativada com T_4Cl_4

O procedimento, consistiu basicamente, em ativação do suporte com T_4Cl_4, seguido de aminação com hexametilendiamina e subsequente reação com glutaraldeído, o qual faz a ligação entre o derivado alquilaaminado do suporte e a enzima. A metodologia é apresentada a seguir (10.11.12.66):

1. O suporte é lavado com água destilada, e a seguir, tratado com solução de ácido nítrico a 13%, sob ebulição e agitação durante 1 hora, a fim de hidrátá-lo e remover a matéria orgânica de sua superfície.

2. Lavou-se o suporte com água até se obter pH entre 4 e 5.

3. Colocou-se o suporte em um frasco com a solução de T_4Cl_4 em HCl, a 15%, na razão de 5 ml de solução por 1 g de suporte, deixando em ebulição por 1 hora, em banho maria.

Obs: O T_4Cl_4 foi obtido pela oxidação de T_3Cl_3 com ácido perclórico e ácido clorídrico a quente. Quando se usou T_4Cl_4 diretamente, no item 3, em vez de T_4Cl_4, obteve-se praticamente, a mesma atividade de invertase após imobilização.
4. Lavou-se o suporte com acetona para remover o excesso de TCl_4.

5. A seguir, o suporte ativado com TCl_4, reagiu com solução de hexametilendiamina (HEMDA) a 10 g/l em acetona, durante 30 min a 45°C, com agitação. A razão entre o volume da solução e o peso do suporte foi 5:1.

6. O suporte aminado foi lavado com tampão acetato de sódio $10^{-2}M$, pH 4.5.

7. O suporte aminado reagiu com glutaldeído a 5% v/v, em tampão fosfato 0.05M, pH 7.0, a 25°C, durante 1 hora, utilizando a relação de 5 ml de solução de glutaldeído por grama de suporte.

8. O suporte foi lavado com água e depois com solução tampão de acetato de sódio $10^{-2}M$, pH 4.5.

9. A seguir, procedeu-se a imobilização de invertase. A 1 g de alumina ativada, adicionou-se 30 ml de solução de invertase a 0.5 g/l, em tampão acetato de sódio $10^{-2}M$, pH 4.5 e deixou-se reagir por 30 horas, a 25°C sob agitação de 100 rpm, num Shaker.

10. Após imobilização, o complexo suporte enzima imobilizada foi lavado com o mesmo tampão acetato de sódio dos itens anteriores, sob vácuo e determinada a sua atividade.

3.2.6.2 - Imobilização de invertase em sílica de porosidade controlada e em alumina, ativadas por silanização

Usou-se a técnica de silanização aquosa desenvolvida por WEETALL (99,105), conforme metodologia descrita a seguir:

1. Preparou-se soluções aquosas de γ-aminopropilrietoxisilano a 0.5% e ajustou-se seu pH num valor entre 3 e 4, com solução de HCl 6N.

2. Adicionou-se certa quantidade de solução de γ-aminopropilrietoxisilano ao suporte, a fim de embebê-lo, sob vácuo, para retirar o ar retido nos poros do mesmo. Após alguns minutos sob vácuo, quando não se notou mais a formação de bolhas de ar na solução, acresceu-se o resto da mesma. Usou-se uma relação de 10 ml de solução de
silano por grama de suporte. Media-se novamente o pH, que deveria permanecer entre 3 e 4.

3. Colocou-se o erlenmeyer com o suporte e a solução de γ-aminopropiltrietoxilsilano num banho com agitação, a 75°C e deixou-se reagir por 3 horas.

4. Lavou-se o material, sob vácuo, com água e deixou-se secar a (100 ± 5) °C overnight. O produto nesse ponto, pode ser estocado, protegido da luz, para posterior uso.

5. Adicionou-se ao suporte silanizado 10 ml de solução de glutaraldeído a 2,5% em tampão fosfato 0,1M, pH 7,0, por grama de suporte. Deixava-se sob vácuo algum tempo para desaerar as partículas e colocou-se no shaker, sob agitação, a 25°C, deixando reagir durante 45 minutos. MONSAN (62.63) recomenda ativação com glutaraldeído a 2%, em tampão pirofosfato 0,05 M, pH 8,6, usando grande excesso de glutaraldeído.

6. Após ativação com glutaraldeído, o suporte era lavado com água destilada, e seco sob vácuo.

7. A seguir, o suporte ativado reagia, com invertase em solução. Foram realizados vários experimentos de imobilização, a diferentes valores do pH no meio de imobilização e a várias concentrações de invertase, conforme item seguinte.

Como a atividade da enzima imobilizada em sílica de porosidade controlada foi maior do que a imobilizada em alumina, o trabalho foi concentrado no uso de sílica, que foi o suporte selecionado para o restante do trabalho.

3.2.6.3 - Condições de imobilização de invertase em sílica ativada por silanização

a) Influência da quantidade de enzima no meio de imobilização

Foram realizados dois tipos de experimentos. Num deles, fixou-se o volume de solução de invertase e variou-se a sua concentração. O volume
de solução usado foi 15 ml por 100 mg de suporte ativado seco e variou-se a concentração de invertase de 0,025 até 0,5 g/l, em tampão acetato de sódio 10^{-2} M, pH 4,5. A imobilização em todos os casos ocorreu a 20°C, no shaker, durante 24 horas, sob agitação.

Num segundo tipo de ensaio, fixou-se a concentração de enzima em 0,5g/l em tampão acetato de sódio 10^{-2} M, pH 4,5 e variou-se o volume de solução de 5 a 25 ml por 100 mg de suporte ativado, deixando reagir durante 24 horas, a 20°C, sob agitação no shaker.

b) Influência do pH do meio de imobilização

Foi realizado um conjunto de experimentos de imobilização, nos quais manteve-se o volume do meio de imobilização em 15 ml por 100 mg de suporte ativado, usando em todos eles, uma solução de invertase a 0,5g/l em tampão acetato de sódio 10^{-2} M, cujo pH variou de 3,0 a 6,0.

3.2.7 - Caracterização da sílica de porosidade controlada (SPC)

a) Densidade real, cristalina ou do esqueleto sólido

A densidade do esqueleto sólido foi determinada em balão volumétrico, segundo metodologia mostrada a seguir.

1. Tomou-se um balão volumétrico seco e determinou seu peso: \(m_s \).
2. Completou-se o volume com água, numa temperatura conhecida e pesou o conjunto: \(m_t \).
3. O volume do balão \((V_b) \) foi obtido pela relação \(m_t - m_s \) \(\rho_a \), onde \(\rho_a \) é a densidade da água, na temperatura do experimento.

4. Secou-se novamente o balão pesando no mesmo certa massa de \(SPC \) \((m_e) \). Acrescentou sobre ela certa quantidade de água, sob vácuo, a fim de remover o ar entre e dentro das partículas. A seguir, completou-se o volume do balão com água, e pesou-se novamente o conjunto. Esse peso, menos o do balão mais sílica, fornece o peso de água, o qual dividido pela densidade da água, conduz ao volume de água no balão \((V_e) \).
Portanto, o volume do sólido \(V_s \), foi:

\[
V_s = V_b - V_a
\] \hspace{1cm} (3.1)

E a densidade do esqueleto sólido foi calculada pela equação 3.2.

\[
\rho_s = \frac{m_s}{V_b - V_a}
\] \hspace{1cm} (3.2)

Repetiu-se o experimento três vezes tirou-se a média entre os valores da \(\rho_s \).

b) Porosidade interna da partícula

A porosidade interna da partícula \((\varepsilon_p) \) foi determinada por “titulação” da \(SPC \) com água, até início do umidecimento (105).

Colocou-se certa quantidade de sílica num erlenmeyer e fez-se vácuo. Em seguida, foi-se injetando água, aos poucos, sob vácuo, até verificar a adesão firme das partículas à superfície. Pesou-se novamente o erlenmeyer, determinando-se assim, o volume de água gasto na titulação \((V_{2p}) \).

A porosidade interna foi então calculada pela equação 3.3.

\[
\varepsilon_p = \frac{V_{2p}}{V_p}
\] \hspace{1cm} (3.3)

onde,

\[
V_p = \text{volume da partícula} = V_s + V_{2p}
\]
\[
V_s = \text{volume do esqueleto sólido} = \frac{m_s}{\rho_s}
\]
\[
M_s = \text{massa de } SPC.
\]

O procedimento foi repetido por três vezes e determinado o valor médio entre os \(\varepsilon_p \) obtidos.
c) Densidade da partícula seca

A densidade da partícula seca ou da partícula no ar foi determinada pela equação 3.4 (10).

\[\rho_p = (1 - \varepsilon_p) \cdot \rho_s = \frac{m_s}{V_s + V_{vp}} \]

(3.4)

d) Densidade aparente

A densidade aparente foi definida pela relação entre a massa de \text{SPC} e o volume do leito (10), dada pela equação 3.5.

\[\rho_a = \frac{m_s}{V_R} \]

(3.5)

onde:
- \(V_R = \frac{\pi \cdot d^2 \cdot h}{4} \)
- \(\rho_a = \) densidade aparente
- \(d = \) diâmetro interno do reator
- \(h = \) altura do leito de partículas (leito fixo)

e) Porosidade do leito fixo

A porosidade do leito fixo foi calculada pela equação 3.6 (10).

\[\varepsilon = \frac{V_R - (V_s + V_{vp})}{V_R} = 1 - \frac{\rho_a}{\rho_p} \]

(3.6)

3.2.8 - Influência da temperatura na atividade da enzima imobilizada

Determinou-se as taxas iniciais da reação de hidrólise de sacarose com invertease imobilizada em siica de porosidade controlada (\text{SPC}), conforme metodologia descrita no item 3.2.3. A concentração inicial de sacarose nos experimentos foi 50 g/l, em tampão acetato de sódio \(10^{-2}M\), pH 4.5, variando a temperatura entre 15 e 70ºC. Foram também determinadas
as taxas iniciais de reação com uma outra enzima imobilizada de menor atividade do que a usada para sacarose a 50 g/l e com invertase livre, na faixa de temperatura entre 15 e 50°C, porém usando uma concentração inicial de sacarose de 1g/l, no mesmo tampão citado acima.

A temperatura ótima da reação com invertase imobilizada foi obtida plotando-se em um gráfico, os valores da taxa de reação em função da temperatura e a energia de ativação foi obtida em gráfico tipo Arrhenius.

3.2.9 - Influência do pH na atividade da enzima imobilizada

Determinou-se taxas iniciais de reação de hidrólise de sacarose, numa concentração inicial dessa de 50 g/l, a 40°C variando o pH do meio de 3,0 a 6,0. O procedimento experimental consistiu em preparar soluções de sacarose em soluções tampão de acetato de sódio 10⁻² M, no pH desejado no experimento, ajustando o mesmo pela adição de solução de ácido acético ou de acetato de sódio, quando necessário.

3.2.10 - Estabilidade de invertase imobilizada em relação ao pH

Usou-se um procedimento similar àquele de CABRAL (10) para amillogicosidade imobilizada. Incubou-se amostras de invertase imobilizada, de atividade conhecida, em soluções tampão com pH variando de 3,0 a 6,0 durante 30 horas, a 40°C. Após esse tempo, as amostras foram lavadas com tampão acetato de sódio 10⁻² M, pH 4,5 e determinadas as suas atividades conforme item 3.2.3 e comparadas com a atividade inicial.

3.2.11 - Estabilidade térmica de invertase imobilizada

Colocava-se num banho termostático, a uma dada temperatura, vários tubos de ensaio contendo amostras de enzima imobilizada, de atividade conhecida, em tampão acetato de sódio 10⁻² M, pH 4,5. A intervalos de tempo apropriados, um tubo era retirado do banho e determinada sua atividade no reator de cesta, a 40°C usando uma concentração inicial de sacarose de 50 g/l, conforme item 3.2.3. As temperaturas usadas na incubação das amostras de invertase imobilizadas variaram de 54 a 65°C.
3.2.12 - Regeneração do suporte de imobilização

Uma certa massa de sílica de porosidade controlada, usada em uma imobilização com invertase, foi submetida a pirólise, a 600°C durante 4 horas, em um forno mufa (10). Após esse tratamento, o suporte foi novamente silanizado, ativado com glutaraldeído e reagiu com solução de invertase a 0,5 g/l, numa proporção de 15 ml de solução por 100 mg de suporte, durante 24 horas, a 20°C, a pH 4,5, sob agitação. A atividade da enzima imobilizada no suporte regenerado foi comparada com a obtida usando suporte novo, empregando as mesmas condições de imobilização.

3.2.13 - Montagem do reator de recíclo externo

Os estudos cinéticos com invertase imobilizada em sílica de porosidade controlada foram conduzidos num sistema de reator contínuo, com recirculação de parte do efluente do leito catalítico. Nesse reator, foram realizados os estudos relativos à dependência da taxa de reação em relação à concentração de substrato, bem como os de inibição pelos produtos da reação, glicose e frutose.

O sistema foi constituído de uma coluna de vidro, de diâmetro interno 1,1cm, altura 14 cm, com camisa externa para controle de temperatura e dotada de uma placa porosa, de vidro sinterizado na sua parte inferior, com a finalidade de suportar a enzima imobilizada e distribuir a alimentação de substrato. Os experimentos foram realizados com 1 g de catalisador (peso seco), implicando numa altura de leito fixo de 1,4 cm. A alimentação nova, que entrava no sistema, era feita por uma bomba peristáltica, modelo BP – 100, marca Incibrás, se juntava à corrente de recíclo, que era conduzida por uma bomba peristáltica Hiflow, passava pelo reator e era conduzida para um sistema de separação, constituído de uma coluna de vidro, da qual saíam duas correntes, uma de recíclo e outra de produto, que saía do sistema, conforme Figura 3.2. O leito catalítico foi ajustada uma tampa de tela de aço inox, mesh 100, de onde saía o tubo que conduzia o efluente do reator à coluna de separação. Na parte superior do reator, era injetado ar comprimido, com a finalidade de impedir que o nível de líquido subisse acima da tela e de agitar o líquido no separador. Ambas as bombas usadas no processo são de vazões reguláveis.
3.2.14 - Estudo do comportamento do reator

Um reator de leito fixo, com altas razões de reciclo, comporta-se como um reator de mistura, conforme foi assinalado no item 2.9.4, facilitando assim a determinação das taxas de reação.

Para verificar se o comportamento do reator era o de um CSTR, em uma dada condição de operação, usava-se a técnica de passar um traçador no sistema, em forma de degrau. No caso de leito contendo apenas SPC, sem atividade catalítica, o procedimento usado para se definir as vazões a serem testadas inicialmente, foi o seguinte. Alimentava-se primeiro, apenas água ao reator, e após entrar em regime, substituía essa por uma solução de sacarose a 10 g/l, e marcava o tempo zero quando a alimentação de sacarose alcançava o ponto de mistura com a corrente de reciclo. A intervalos regulares de tempo recolhia-se uma amostra na saída do sistema e determinava a concentração de sacarose em graus brix, através de um refratômetro, Carl Zeiss Jena, Model I.

Quando o leito era de enzima imobilizada, usava-se também o mesmo procedimento, trocando uma alimentação de tampão acetato de sódio.
\(10^{-2}M\), pH 4.5, por uma solução de glicose 1 g/l e a análise do efluente do sistema era feita pelo método do DNS.

Com os dados de concentração do traçador no efluente do sistema em função do tempo, verificava-se \(-\ln\left(\frac{C_t - C}{C_0}\right)\) em função de \(t\) se ajustavam segundo uma reta e se o tempo de residência experimental se aproximava do teórico, conforme ilustrado na seção 2.9.4.

O tempo de residência teórico foi considerado como sendo a razão entre o volume de líquido contido no sistema, ou seja, nas duas colunas e nas tubulações que as une, dividido pela vazão de alimentação.

Se os dois tempos de residência, teórico e experimental não fossem bastante próximos aumentava-se a vazão da corrente de reciclo e repetia-se o experimento.

3.2.15 - Determinação das taxas de reação no reator de reciclo

Nesse reator, foram obtidos os dados de taxa de reação em função da concentração do substrato, com e sem adição de glicose ou frutose na alimentação, para invertase imobilizada.

Procurou-se obter os dados de taxa de reação utilizando um catalisador de baixa atividade e com uma vazão alta no reator, a fim de conseguir baixas conversões de substrato a produto, para que pudesse entender melhor o efeito da concentração do substrato e dos produtos da reação separadamente, na taxa de reação. Para conseguir esse objetivo, foram realizadas várias imobilizações, e com cada porção de 1 g de enzima imobilizada obtida, determinava-se as conversões a várias vazões. Em cada uma dessas situações, verificava-se o comportamento do reator.

a) Influência da concentração do substrato na atividade de invertase imobilizada

As condições de trabalho selecionadas para o reator, foram:

- temperatura de operação: 40°C
- vazão de alimentação: 21,5 cm³/min

87
• atividade da invertase utilizada no experimento I: 540 U/g, determinada conforme item 3.2.3
• atividade da invertase utilizada no experimento II: 319 U/g, determinada conforme item 3.2.3
• volume de líquido no reator: 20.2 cm³
• tempo de residência: 0,9395 min
• massa de catalisador: 1 g, em base seca.
• pH da solução de alimentação: 4,5
• vazão da corrente de reciclo: 74,5 cm³/min
• porosidade do leito fixo: 0,405
• altura do leito: 1,4 cm
• diâmetro interno do reator: 1,1 cm.

• açúcar usado no preparo das soluções: pureza 98%, determinado por inversão total da sacarose por invertase livre e dosados os açúcares redutores pelo método do DNS.

Procedimento experimental

1. Preparou-se soluções de sacarose, de concentrações iniciais variando de 4,9 a 441 g/l, as quais foram filtradas em papel de filtro e ajustadas seus pH em 4,5.

2. As soluções eram pré-aquecidas a 40°C antes de serem alimentadas ao reator.

3. Iniciada a alimentação ao reator de uma solução numa dada concentração, esperava-se 20 minutos para retirar uma amostra do produto do reator e determinar seu teor em açúcares redutores. Esse tempo era suficiente para o sistema entrar em regime. Foram retiradas amostras de produto a tempos menores e verificado que não mais havia alteração na conversão.
4. Para cada concentração de substrato usada, era medida a vazão de alimentação, a fim de verificar sua constância ou não.

Com os dados de concentração de açúcares reduutores para cada concentração inicial de sacarose, determinou-se as taxas de reação pela equação 3.7.

\[v = \frac{0.95 \cdot C_r}{\tau \cdot w} \] \hspace{1cm} (3.7)

onde:
- \(v \) = taxa da reação \(gsac/l.min.gcat \)
- \(C_r \) = concentração de açúcares reduutores (g/l)
- \(\tau \) = tempo de residência (min).
- \(w \) = massa de catalisador = 1g

O fator 0.95 é a razão entre o peso molecular da sacarose, 342 e a soma dos pesos moleculares de glicose e frutose, 360. O produto 0.95\(C_r \) é igual à variação da concentração de sacarose devido à reação.

Foram realizadas duas séries de experimentos nas condições citadas anteriormente, usando duas enzimas imobilizadas com atividades diferentes. A primeira teve como objetivo básico, verificar o tipo de cinética seguida pela reação, bem como determinar os parâmetros intrínsecos da equação da taxa. A segunda série de experimentos foi realizada com a finalidade de, juntamente com os dados da primeira, permitir calcular a difusividade efetiva de sacarose nas partículas porosas de enzima imobilizada.

A concentração de substrato no reator \((S_l) \), é relacionada com a concentração na alimentação \((S_a) \), através da equação 3.8.

\[S_l = S_a - 0.95C_r \] \hspace{1cm} (3.8)

O fluxo de substrato na camada limite é dado pela equação 3.9

\[j = K_r (S_l - S_e) \] \hspace{1cm} (3.9)

onde: \(S_e \) é a concentração de sacarose na superfície do catalisador.
Por outro lado, a taxa de reação na partícula de enzima imobilizada, por unidade de área da mesma, em estado estacionário, é igual ao fluxo de massa de substrato na camada límite, conforme equação 3.10 (9).

\[v \frac{R}{3} = K_i(S_i - S_v) \]

na qual \(R \) é o raio da partícula do suporte.

Com os dados de taxa de reação \(v \), obtidos experimentalmente, calculou-se as concentrações de sacarose na superfície do suporte \(S_v \), através da equação 3.10, fazendo uso da correlação 2.22 para calcular o coeficiente de transferência de massa \(K_i \).

Na modelagem cinética da reação de inversão de sacarose por invertase imobilizada, a taxa da mesma foi relacionada com a concentração de substrato no reator, uma vez que os valores calculados para \(S_v \) foram muito próximos aos de \(S_i \).

b) Influência da concentração de glicose e frutose na cinética da reação com invertase imobilizada.

Foram realizados vários experimentos nas condições citadas no item a, com a invertase do experimento 1 em que se mantinha constante a concentração do inibidor (glicose ou frutose) na alimentação e variava a concentração de sacarose entre 4,9 e 49 g/l, para cada valor da concentração do inibidor escolhida. As concentrações de glicose ou de frutose usadas, foram 5, 10, 20, 30 e 40 g/l. Os experimentos com cada inibidor foram realizados separadamente.

As taxas de reação foram calculadas pela equação 3.7, sendo que agora, \(C_r \), representa a variação da concentração de produtos devida à reação, já que é alimentado produto de reação ao reator, juntamente com a alimentação nova.

Trabalhou-se com baixas concentrações de sacarose para que pudesse ser desprezado o efeito de inibição pelo excesso de substrato na análise dos dados.
3.2.16 - Verificação experimental da resistência à transferência de massa externa no reator

Com o objetivo de testar a influência da transferência de massa interpartícula, foram determinadas taxas de reação a uma vazão de alimentação constante e igual a 21,5 cm³/min, com uma concentração de sacarose na alimentação de 50 g/l, a várias vazões da corrente de reciclo. O procedimento de determinação das taxas de reação foi o mesmo do item 3.2.15 a. Todas as vezes em que era alterada a vazão da bomba de reciclo, aguardava-se 30 minutos para retirar a amostra e analisar os açúcares redutores formados.

3.2.17 - Determinação da difusividade efetiva de sacarose no suporte

No caso de partículas esféricas de material poroso, a determinação da difusividade efetiva de solutos tem sido obtida, através da difusão em estado não estacionário, do exterior para o interior das partículas (44), ou vice-versa (82), para um volume conhecido de partículas em um banho agitado. No primeiro caso, as partículas inicialmente livres de soluto, são suspensas numa solução bem agitada de volume limitado \(V \), numa concentração inicial \(C_{10} \). São efetuadas medidas de concentração no banho, em função do tempo, admitindo que a resistência à transferência de massa na camada limite, envolvendo as partículas seja desprezível, ou seja, que a concentração na superfície da partícula seja a mesma daqueja na solução \(C_1 \). No segundo caso, partículas saturadas de soluto são agitadas num banho de solvente, inicialmente livre de soluto.

Considerando o caso de difusão do soluto da solução externa para o interior das partículas, a difusividade efetiva do soluto \(D_a \), pode ser obtida pela equação 3.11.

\[
\frac{C_1}{C_{10}} = \frac{\alpha}{1 + \alpha} \left\{ 1 + \sum_{n=1}^{\infty} \frac{6(1 + \alpha)}{9 + 9\alpha + q_n^2\alpha^2} \cdot \exp \left[\frac{-D_a \cdot q_n^2 \cdot t}{R^2} \right] \right\}
\]

(3.11)
onde: C_{10} = a concentração inicial do soluto na solução
C_1 = a concentração do soluto na solução, no tempo t.
t = tempo
R = raio da partícula

$$\alpha = \frac{V_i}{V_p \cdot K_p} \tag{3.12}$$

V_i = volume de líquido
V_p = volume das partículas sólidas
K_p = coeficiente de partição
q_n = raízes positivas não nulas e sucessivas da equação 3.13.

$$\tan q_n = \frac{3q_n}{3 + \alpha \cdot q_n^2} \tag{3.13}$$

No presente trabalho, utilizou-se de uma modificação do método descrito anteriormente para a determinação de D_r. Foi montado o sistema experimental da Figura 3.3, no qual foi colocado 5 g de SPC, umedecida com água na coluna 1 e 20,2 cm3 de solução a 10 g/l de sacarose, no reator agitado, com controle de temperatura, indicado pelo número 2 na Figura 3.3. Ligou-se a bomba de recirculação e quando o líquido atingiu a base da coluna 1, iniciou a marcação do tempo. Utilizou-se uma vazão de 98,5 cm3/min e foram retiradas amostras do reator agitado, a intervalos de tempo, as quais foram analisadas através da leitura do índice de refrAÇÃO num refratômetro Acatec, modelo RDA 8500.
Figura 3.3 - Sistema para determinação experimental de D_α. (1) coluna com a SPC; (2) frasco agitado com a solução de sacarose.
4 - Resultados e Discussão

4.1 - Atividade da invertase usada no trabalho

Através dos dados de taxas iniciais de reação, conforme Tabela 4.1 obteve-se uma atividade de 505900 U por grama de enzima em pó, a 40°C, usando como substrato uma solução de sacarose de concentração inicial igual a 50g/l, em tampão acetato de sódio 0.01M, pH 4.5.

4.2 - Cinética de invertase na forma livre

4.2.1 - Influência da concentração de substrato na cinética da reação

Os resultados experimentais de taxas iniciais de reação de hidrólise de sacarose, com invertase livre, na ausência de produtos de reação, são apresentados na Tabela 4.1. Eles foram obtidos a 40°C, conforme item 3.2.2, usando uma concentração de enzima no meio reacional, de 8.33 x 10^{-4}g/l.

Primeiramente, tentou-se aplicar o modelo de inibição pelo excesso de substrato, para descrever a cinética de inversão de sacarose por invertase livre. Da equação 2.6, deriva-se a forma 4.1, para inibição pelo substrato.

\[
\frac{1}{v} = \frac{1}{V_m} + \frac{K_m}{V_m} \cdot \frac{1}{S} + \frac{1}{V_m \cdot K_i} \cdot S
\]

(4.1)

Para valores de \(S \ll K_i\) e para valores de \(S \gg K_m\), a equação 4.1 pode ser representada pelas equações 4.2 e 4.3, respectivamente.

\[
\frac{1}{v} = \frac{1}{V_m} + \frac{K_m}{V_m} \cdot \frac{1}{S}
\]

(4.2)

\[
\frac{1}{v} = \frac{1}{V_m} + \frac{1}{V_m \cdot K_i} \cdot S
\]

(4.3)
Tabela 4.1

Taxas iniciais de reação \(v \), em função da concentração inicial de substrato \(S \), para invertase livre.

<table>
<thead>
<tr>
<th>S (mol/l)</th>
<th>v (µmol/min)</th>
<th>S (mol/l)</th>
<th>v (µmol/min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,00585</td>
<td>0,9513</td>
<td>0,20468</td>
<td>5,1892</td>
</tr>
<tr>
<td>0,01462</td>
<td>2,1175</td>
<td>0,2392</td>
<td>5,0590</td>
</tr>
<tr>
<td>0,02193</td>
<td>2,6455</td>
<td>0,26316</td>
<td>4,7091</td>
</tr>
<tr>
<td>0,02924</td>
<td>3,2773</td>
<td>0,29240</td>
<td>4,2923</td>
</tr>
<tr>
<td>0,04386</td>
<td>3,9169</td>
<td>0,43860</td>
<td>3,4311</td>
</tr>
<tr>
<td>0,05848</td>
<td>4,1386</td>
<td>0,58480</td>
<td>3,1348</td>
</tr>
<tr>
<td>0,08772</td>
<td>4,8525</td>
<td>0,73099</td>
<td>2,1098</td>
</tr>
<tr>
<td>0,11696</td>
<td>5,2404</td>
<td>0,87719</td>
<td>1,8911</td>
</tr>
<tr>
<td>0,13158</td>
<td>5,2787</td>
<td>1,02339</td>
<td>1,3630</td>
</tr>
<tr>
<td>0,14620</td>
<td>5,3541</td>
<td>1,16959</td>
<td>1,1508</td>
</tr>
<tr>
<td>0,16082</td>
<td>5,4122</td>
<td>1,31579</td>
<td>0,9488</td>
</tr>
<tr>
<td>0,17544</td>
<td>5,3959</td>
<td>1,46199</td>
<td>0,5575</td>
</tr>
</tbody>
</table>

Os dados experimentais da Tabela 4.1, foram então plotados em gráficos de Lineweaver-Burk, Figura 4.1, para baixas e altas concentrações de substrato, de acordo com as equações 4.2 e 4.3.

Observou-se pelos gráficos das Figuras 4.1a e b, que a forma de Lineweaver-Burk se mostrou adequada para baixas concentrações de substrato, até 0,146 mol/l, havendo linearidade entre \(1/v \) e \(1/S \). Para altas concentrações de substrato, não se verificou linearidade entre \(1/v \) e \(S \), indicando que o modelo de inibição pelo substrato não era adequado para descrever a cinética de inversão de sacarose a altas concentrações, com invertase livre.

Com o objetivo de ajustar o modelo de inibição pelo substrato a toda a faixa de concentração de sacarose do experimento, utilizou-se do fator de correção \(f(S) \), definido por CABRAL (9), o qual é função da concentração de substrato e da temperatura. Com esses fatores, as taxas de reação obtidas experimentalmente, foram corrigidas, conforme mostra a equação 4.4.
Figura 4.1 - Gráfico de Lineweaver-Burk aplicado aos dados da Tabela 4.1, considerando cinética de inibição pelo substrato: (a) baixos valores de S; (b) altos valores de S.
\[v = v' \cdot f(S) \]
(4.4)

onde:
\(v = \) taxa de reação observada
\(v' = \) taxa de reação segundo o modelo de inibição pelo substrato

\(f(S) = \) fator de correção, em termos de difusividade do substrato

O fator \(f(S) \), foi definido pela relação entre a difusividade do substrato a uma dada concentração de sacarose e a difusividade à diluição infinita.

A 40°C, \(f(S) \) é dado pela equação 4.5 (9)

\[f(S) = \frac{D(S)}{D_S} = \left[1 - 0.4255 \frac{S}{1 + 0.1276 \cdot S} \right] \]
(4.5)

Com os dados experimentais da Tabela 4.1, e com as equações 4.4 e 4.5, montou-se a Tabela 4.2.

Segundo o modelo de inibição pelo substrato, \(v' \) é dado pela equação 4.6.

\[v' = V_m \cdot \frac{S}{K_m + S + S^2/K_i} \]
(4.6)

Da equação 4.6, obtêm-se as formas de Lineweaver-Burk, equações 4.7 e 4.8, para altas e baixas concentrações de substrato, respectivamente.

\[\left[\frac{1}{v'} - \frac{K_m}{V_m} \cdot \frac{1}{S} \right] = \frac{1}{V_m} + \frac{1}{V_m \cdot K_i} \cdot S \]
(4.7)

\[\left[\frac{1}{v'} - \frac{1}{V_m \cdot K_i} \cdot S \right] = \frac{1}{V_m} + \frac{K_m}{V_m} \cdot \frac{1}{S} \]
(4.8)

Os parâmetros \(K_m, V_m \) e \(K_i \) das equações 4.7 e 4.8 foram determinados por um procedimento iterativo de ajuste através de um programa computacional, onde o critério de encerramento foi a igualdade dos valores de \(1/V_m \) obtidos para altas e baixas concentrações de sacarose.

97
Tabela 4.2 - Valores de \(v \) (experimentais) e \(v' \) calculados pela equação 4.4.

<table>
<thead>
<tr>
<th>(mol/l)</th>
<th>(\mu \text{mol/min})</th>
<th>(f(S))</th>
<th>(\mu \text{mol/min})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,00585</td>
<td>0,9513</td>
<td>0,9975</td>
<td>0,9937</td>
</tr>
<tr>
<td>0,01462</td>
<td>2,1175</td>
<td>0,9938</td>
<td>2,1307</td>
</tr>
<tr>
<td>0,02193</td>
<td>2,6455</td>
<td>0,9907</td>
<td>2,6703</td>
</tr>
<tr>
<td>0,02924</td>
<td>3,2773</td>
<td>0,9876</td>
<td>3,3184</td>
</tr>
<tr>
<td>0,04386</td>
<td>3,9169</td>
<td>0,9815</td>
<td>3,9910</td>
</tr>
<tr>
<td>0,05848</td>
<td>4,1386</td>
<td>0,9753</td>
<td>4,2434</td>
</tr>
<tr>
<td>0,08772</td>
<td>4,8525</td>
<td>0,9631</td>
<td>5,0385</td>
</tr>
<tr>
<td>0,11696</td>
<td>5,2404</td>
<td>0,9510</td>
<td>5,5106</td>
</tr>
<tr>
<td>0,13158</td>
<td>5,2787</td>
<td>0,9449</td>
<td>5,5863</td>
</tr>
<tr>
<td>0,14620</td>
<td>5,3541</td>
<td>0,9389</td>
<td>5,7023</td>
</tr>
<tr>
<td>0,16082</td>
<td>5,4122</td>
<td>0,9329</td>
<td>5,8012</td>
</tr>
<tr>
<td>0,17544</td>
<td>5,3959</td>
<td>0,9270</td>
<td>5,8209</td>
</tr>
<tr>
<td>0,20468</td>
<td>5,1892</td>
<td>0,9151</td>
<td>5,6705</td>
</tr>
<tr>
<td>0,23392</td>
<td>5,0590</td>
<td>0,9034</td>
<td>5,6003</td>
</tr>
<tr>
<td>0,26316</td>
<td>4,7091</td>
<td>0,8917</td>
<td>5,2813</td>
</tr>
<tr>
<td>0,29240</td>
<td>4,2923</td>
<td>0,8801</td>
<td>4,8773</td>
</tr>
<tr>
<td>0,43860</td>
<td>3,4311</td>
<td>0,8233</td>
<td>4,1677</td>
</tr>
<tr>
<td>0,58480</td>
<td>3,1348</td>
<td>0,7685</td>
<td>4,0794</td>
</tr>
<tr>
<td>0,73099</td>
<td>2,1098</td>
<td>0,7155</td>
<td>2,9487</td>
</tr>
<tr>
<td>0,87719</td>
<td>1,8911</td>
<td>0,6643</td>
<td>2,8466</td>
</tr>
<tr>
<td>1,02339</td>
<td>1,3630</td>
<td>0,6148</td>
<td>2,2168</td>
</tr>
<tr>
<td>1,16959</td>
<td>1,1508</td>
<td>0,5670</td>
<td>2,0298</td>
</tr>
<tr>
<td>1,31579</td>
<td>0,9488</td>
<td>0,5296</td>
<td>1,8225</td>
</tr>
<tr>
<td>1,46199</td>
<td>0,5575</td>
<td>0,4757</td>
<td>1,1719</td>
</tr>
</tbody>
</table>

Nesse procedimento de ajuste não se desprezou o termo relativo a \(1/S \) para altas concentrações, nem o relacionado a \(S \) para baixas concentrações, como normalmente se faz na estimativa dos parâmetros cinéticos, no modelo de inibição pelo substrato. Os parâmetros cinéticos obtidos, a \(40^\circ C \), são mostrados na Tabela 4.3.
Tabela 4.3

Parâmetros cinéticos do modelo de inibição pelo substrato.

<table>
<thead>
<tr>
<th>(V_m(\mu mol/min))</th>
<th>(K_m(mol/l))</th>
<th>(K_i(mol/l))</th>
</tr>
</thead>
<tbody>
<tr>
<td>11,067</td>
<td>0.06238</td>
<td>0.275</td>
</tr>
</tbody>
</table>

Assim, de acordo com a equação 4.4 e os parâmetros da Tabela 4.3, o modelo cinético para inversão de sacarose por invertase livre, foi dado pela equação 4.9

\[v = 11,067 \cdot \frac{S}{0,06238 + S + S^2/0.275} \left[1 - 0.4255 \cdot \frac{S}{1 + 0.1276 \cdot S} \right] \]

(4.9)

Uma comparação entre os pontos obtidos experimentalmente e aqueles previstos pela equação 4.9, é mostrada na Figura 4.2, indicando bom ajuste entre os pontos experimentais e os previstos pelo modelo de inibição pelo substrato, corrigido pelo fator \(f(S)\).

Um gráfico de Lineweaver-Burk para as taxas iniciais de reação modificadas \(v'\), para cinética de inibição pelo substrato é apresentado na Figura 4.3. Nota-se por essa Figura, que o modelo proposto foi adequado para descrever a hidrólise de soluções de sacarose por invertase livre, havendo linearidade nos gráficos correspondentes às baixas e às altas concentrações de substrato e os coeficientes lineares resultaram bastante próximos. Estes resultados estão de acordo com os obtidos por CABRAL (9).
Figura 4.2 - Comparação entre os resultados experimentais (pontos) e os previstos pela equação 4.9, representados pela linha cheia.
Figura 4.3 - Gráfico de Lineaweaver-Burk aplicado às taxas iniciais de reação modificadas: (a) baixos valores de S; (b) altos valores de S.
4.2.2 - Influência da concentração de glicose e frutose na atividade de invertase livre

Os valores experimentais de taxas iniciais de reação, obtidos em presença de frutose no meio reacional são apresentados na Tabela 4.4.

Tabela 4.4

<table>
<thead>
<tr>
<th>(S \text{ (mol/l)})</th>
<th>(F \text{ (mol/l)})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0278</td>
</tr>
<tr>
<td>2.9061</td>
<td>0.1111</td>
</tr>
<tr>
<td>3.2389</td>
<td>0.1944</td>
</tr>
<tr>
<td>4.1667</td>
<td>5.8426</td>
</tr>
<tr>
<td>4.6032</td>
<td>4.1019</td>
</tr>
<tr>
<td>4.7731</td>
<td>4.0436</td>
</tr>
<tr>
<td>5.2631</td>
<td>4.3687</td>
</tr>
<tr>
<td>5.5249</td>
<td>5.0900</td>
</tr>
<tr>
<td>5.1280</td>
<td></td>
</tr>
</tbody>
</table>

A análise dos dados da Tabela 4.4, em gráfico de \(1/v \) em função de \(1/S \), sugere um modelo de inibição competitiva da frutose na reação de hidrólise de sacarose por invertase livre, como pode ser verificado pelos pontos experimentais da Figura 4.4.

O modelo cinético de inibição competitiva por frutose é representado pela equação 4.10.

\[
\frac{v}{V_m} = \frac{S}{K_m(1 + F/K_F) + S} \tag{4.10}
\]

onde, \(V_m \) e \(K_m \) são as constantes cinéticas da equação de Michaelis-Menten na ausência de inibidores e \(K_F \) é a constante de inibição pela frutose.

O valor da constante de Michaelis-Menten em presença do inibidor competitivo, frutose, é dado pela equação 4.11

\[
K_{mi} = K_m \left(1 + \frac{F}{K_F}\right) \tag{4.11}
\]

102
Os valores de K_m e V_m obtidos dos dados de taxas de reação, na ausência de inibidor, calculados por gráfico de Lineweaver-Burk, foram 0,04305 mol/l e 7,1968 μmol/min, respectivamente. Com esses valores de K_m e V_m, determinou-se K_P através de um programa computacional, o qual ajustou os dados experimentais para F igual a 0,0278; 0,1111 e 0,1944 mol/l a um modelo do tipo da equação 4.10, minimizando os erros entre o valor da taxa calculada pelo modelo e o valor experimental. O valor encontrado para K_P foi igual a 0,228 mol/l. Assim a equação do modelo de inibição por frutose, é dado pela equação (4.12),

$$v = \frac{7,1968 \cdot S}{0,04305(1 + 0,228/F) + S}$$ \hspace{1cm} (4.12)

Na Figura 4.4 são comparados os valores das taxas experimentais, com os valores calculados pela equação 4.12. Verifica-se que o modelo de inibição competitiva mostrou-se adequado para descrever o efeito inibidor de frutose na reação de inversão de sacarose por invertase livre.

Na Tabela 4.5, estão representados os resultados experimentais de taxas iniciais de reação, obtidos em presença de glicose no meio reacional, conforme item 3.2.5.

Tabela 4.5

Taxas iniciais de reação, em μmol/min, em função das concentrações iniciais de substrato, S e de glicose, G.

<table>
<thead>
<tr>
<th>S (mol/l)</th>
<th>G (mol/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.0292</td>
<td>2.9061</td>
</tr>
<tr>
<td>0.0585</td>
<td>4.1667</td>
</tr>
<tr>
<td>0.0877</td>
<td>4.8426</td>
</tr>
<tr>
<td>0.1170</td>
<td>5.2631</td>
</tr>
<tr>
<td>0.1462</td>
<td>5.5249</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

103
Figura 4.4 - Gráfico de Lineweaver-Burk, para os dados da Tabela 4.4, a 40ºC, para diferentes concentrações de frutose: $F_1 = 0$, $F_2 = 0.0278$, $F_3 = 0.1111$ e $F_4 = 0.1944$ mol/l. As linhas cheias representam pontos previstos pelo modelo e os pontos representam os resultados experimentais.
Pelo gráfico de Lineweaver-Burk, aplicado aos dados da Tabela 4.5 pôde-se concluir que a inibição exercida por glicose na reação de hidrólise de sacarose por invertase livre deverá ser não competitiva ou parcialmente não competitiva, conforme pontos experimentais apresentados na Figura 4.6.

A modelagem considerando inibição parcialmente não competitiva, ajustou-se melhor aos resultados experimentais, do que a inibição não competitiva simples.

O modelo cinético que descreve a inibição parcialmente não competitiva é dado pela equação 4.13 (83).

\[
v_i = \frac{V_m \cdot \left[1 + \left(\frac{\beta}{K_G}\right) \cdot G\right]}{(1 + G/K_G) \cdot \left(K_m + S\right)}
\]

onde: \(K_G\) é a constante de inibição pela glicose; \(\beta\) é uma constante menor que 1

Dividindo a equação 4.13 pela equação de Michaelis-Menten, dada pela equação 2.5, vem que:

\[
\frac{v_i}{v} = \frac{1 + \left(\frac{\beta}{K_G}\right) \cdot G}{1 + \frac{G}{K_G}}
\]

A equação 4.14 pode ser transformada na equação 4.15

\[
Y = \frac{X_1}{K_G} - \frac{\beta}{K_G}
\]

onde:

\[
X_1 = \frac{v_i}{v}
\]

\[
e
\]

105
\[Y = \frac{1 - v/v}{G} \tag{4.17} \]

Para os dados da Tabela 4.5, para \(G = 0 \), obteve-se a equação da taxa de reação, na ausência de inibidor, conforme equação 4.18

\[v = \frac{7.1968 \cdot S}{0.04305 + S} \tag{4.18} \]

Com os valores das taxas de reação, obtidos experimentalmente em função de \(S \) e \(G \), da Tabela 4.5 e com valores da taxa de reação na ausência de inibidor, calculados pela equação 4.18, montou-se a Tabela 4.6, para \(X_1 \) e \(Y \).

Tabela 4.6

<table>
<thead>
<tr>
<th>(S)</th>
<th>(v)</th>
<th>(G = 0.0278)</th>
<th>(G = 0.1111)</th>
<th>(G = 0.1940)</th>
<th>(G = 0.2778)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0292</td>
<td>2.9086</td>
<td>0.0090</td>
<td>0.0189</td>
<td>0.7917</td>
<td>0.01042</td>
</tr>
<tr>
<td>0.0585</td>
<td>4.1459</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>0.0877</td>
<td>4.8272</td>
<td>0.0890</td>
<td>0.02016</td>
<td>0.7810</td>
<td>0.01055</td>
</tr>
<tr>
<td>0.1170</td>
<td>5.3219</td>
<td>0.0841</td>
<td>0.02118</td>
<td>0.7478</td>
<td>0.01261</td>
</tr>
<tr>
<td>0.1462</td>
<td>5.9597</td>
<td>0.09125</td>
<td>0.01878</td>
<td>0.8444</td>
<td>0.00778</td>
</tr>
<tr>
<td>valores médios</td>
<td>0.09125</td>
<td>0.01975</td>
<td>0.7932</td>
<td>0.01034</td>
<td>0.7557</td>
</tr>
</tbody>
</table>

Os valores médios \(\bar{Y} \) e \(\bar{X}_1 \) se ajustaram segundo uma reta, de acordo com a equação 4.15, conforme Figura 4.5, da qual determinou-se \(\beta = 0.6739 \) e \(K_G = 0.064 \text{ mol/l} \).

Assim, o modelo cinético de hidrólise de sacarose por invertase livre, em presença de glicose, é dado pela equação 4.19.

\[v = \frac{7.1968(1 + 10.53G) \cdot S}{(1 + G/0.064)(0.04305 + S)} \tag{4.19} \]
Figura 4.5 - Gráfico de \bar{V} em função de \bar{X}.

Na Figura 4.6 estão representados gráficos de $1/v$ versus $1/S$, para taxas de reação obtidas em presença de glicose no meio reacional, para os dados da Tabela 4.5 e para valores de v calculados pela equação 4.19, indicando um bom ajuste entre os pontos experimentais e teóricos.
Figura 4.6 - Gráfico de Lineweaver-Burk, para os dados da Tabela 4.5, a 40°C, para diferentes concentrações de glicose: $G_1 = 0$; $G_2 = 0.0278$; $G_3 = 0.1111$ e $G_4 = 0.1944$ mol/l. As linhas cheias representam pontos previstos pela equação 4.19 e os pontos resultados experimentais.

Portanto, combinando as equações 4.9, 4.12 e 4.19, obtem-se a equação do modelo cinético de hidrólise de sacarose por invertase livre levando em conta inibição pelo substrato, um fator físico relacionado com a difusão.
da sacarose em solução e os efeitos inibidores dos produtos da reação, glicose e frutose a 40°C, dada pela equação 4.20. A inibição exercida por frutose sobre a reação de hidrólise de sacarose por invertase livre é do tipo competitiva e a exercida por glicose é parcialmente não competitiva.

\[v = \frac{7,1968(1 + 10,50G)}{[1 + G/0,064]} \cdot \frac{S}{[0,0305(1 + F/0,228) + S + S^2/0,275]} \left[1 - \frac{0,4255 \cdot S}{1 + 0,1276 \cdot S} \right] \quad (4.20) \]

Os resultados obtidos no presente trabalho concordam bem com aqueles obtidos por CABRAL (9), para a cinética de invertase livre, na ausência de produtos de reação, levando em conta o fator de correção pela difusão. Com relação a inibição da ação de invertase livre pelos produtos da hidrólise de sacarose, os presentes resultados estão de acordo com os obtidos por COMBES e MONSAN (20), que concluíram que a inibição por frutose é do tipo competitiva e a inibição por glicose, parcialmente não competitiva.

4.3 - Imobilização de Invertase

4.3.1 - Imobilização de invertase em alumina ativada com \(T_4Cl_4 \)

Invertase foi imobilizada em alumina na forma de partículas porosas e esféricas, de diâmetro médio de 2 a 4 mm, com diâmetro médio de poros de 3000 Á, ativada com \(T_4Cl_4 \), conforme descrito no item 3.2.6.1. Conseguiu-se uma atividade de 96 unidades internacionais por grama de alumina seca, a 40°C. Essa atividade foi bastante baixa, em comparação com a obtida na imobilização de invertase em silíca ativada por silanização, como será visto em itens seguintes, além de que as esferas de alumina ficaram quebradiças após os tratamentos de ativação, sendo que várias delas quebraram-se totalmente. Esse procedimento de imobilização para esse suporte, foi então abandonado no presente trabalho.
4.3.2 - Imobilização de invertase em alumina ativada por silanização

O procedimento usado para imobilizar invertase em alumina ativada por silanização, foi aquele do item 3.2.6.2. Nesse caso, variou-se a concentração de invertase no meio de imobilização de 0.1 a 0.5 g/l, porém as atividades alcançadas foram praticamente constantes, da ordem de 160 unidades por grama de suporte, a 40°C, atividade essa ainda baixa, se comparada com a obtida usando sílica de porosidade controlada. As partículas de enzima imobilizadas, nesse caso, mantiveram suas formas. Todo o restante do trabalho foi realizado utilizando sílica como suporte.

4.3.3 - Imobilização de invertase em sílica de porosidade controlada (SPC) ativada por silanização

A imobilização de invertase em SPC seguiu o procedimento descrito nos itens 3.2.6.2 e 3.2.6.3.

Inicialmente, foram realizados vários experimentos de imobilização, nos quais fixou-se o volume de solução enzimática em 15 ml por 100 mg de SPC e variou-se sua concentração de 0.025 a 0.5 g/l. em tampão acetato de sódio 10^{-2}M, pH 4.5. Conseguiu-se atividades de até 1800 U por grama de suporte seco, determinadas pelo procedimento padrão, conforme Figura 4.7.
Figura 4.7 - Atividade de invertase imobilizada, em unidades por grama de SPC seca, a 40°C, em função da concentração de enzima no meio de imobilização.

Num segundo tipo de ensaio, fixou-se a concentração de enzima em 0,5 g/l, em tampão acetato 10^{-2}M, pH 4,5 e variou-se a relação volume de enzima por massa de SPC. Os resultados da Figura 4.8 indicam uma atividade máxima da ordem de 1800 U/g de SPC.
Figura 4.8 - Atividade de invertase imobilizada, a 40°C, em unidades por grama de SPC, em função do volume do meio de imobilização, por 100 mg de suporte.

Foi também verificada a influência do pH do meio na imobilização de invertase em SPC. Usou-se um volume de solução de invertase de 15 ml por 100 mg de suporte ativado seco, a 0,5 g/l, em tampão acetato de sódio 10⁻² M, cujo pH variou de 3,0 a 6,0. Os resultados estão apresentados na Figura 4.9.
Figura 4.9 - Influência do pH no meio de imobilização de invertase em SPC

Pelos Figuras 4.7 e 4.8, verifica uma saturação do suporte, quando a quantidade de enzima no meio de imobilização aumenta. Assim, a eficiência de imobilização, definida pela relação entre a atividade retida no suporte e a atividade enzimática total do meio de imobilização, é maior quando o suporte está em contato com soluções de invertase menos ativas. Por exemplo, quando se usou um volume de imobilização de 15 ml a 0,5 g/l, a retenção de atividade foi de apenas 4%, porém quando o volume de solução de imobilização foi 15 ml numa concentração de enzima

113
de 0,025 g/l, a retenção de atividade foi de 55%. Analisando-se a Figura 4.9, observa-se que o pH ótimo de imobilização de invertase em SPC foi 4,5. Como será visto no item 4.7, esse é o pH de maior estabilidade de invertase imobilizada. Portanto, quando o pH da solução de imobilização afasta de 4,5, tanto para o lado ácido, como para o alcalino, ocorre uma desativação da enzima. Isso faz com que sejam obtidas enzimas imobilizadas de mais baixas atividades, quando o pH do meio de imobilização afasta de 4,5. MONSAN et al. (65), verificaram também que a melhor condição de imobilização de invertase, em suportes de sabugo de milho, foi a pH 4,5.

A atividade de invertase imobilizada em SPC, ativada por silanização, atingiu 1800 U por grama de suporte, determinada pela taxa inicial de reação, a 40°C, numa solução de sacarose de concentração inicial de 50g/l, em tampão acetato de sódio 0,01 M, pH 4,5. Essa atividade foi um pouco maior do que a obtida por MONSAN et al. (65), que obtiveram 1400 U por grama de sílica porosa, de diâmetro de partícula de 100 a 200 μm. Esses pesquisadores usaram a técnica de silanização e ativação do suporte com glutaraldeído e mediram a atividade a 40°C, numa solução de sacarose a 0,4 mol/l, em tampão acetato 0,1 M, pH 4,5. Eles também relatam a obtenção de invertase imobilizada em suporte de sabugo de milho, com atividade de 36000 U por grama de suporte. CABRAL (10) obteve invertase imobilizada em sílica porosa, ativada com TCl₄, com atividade inicial de 1718 U por grama de suporte, medida a 45°C, com solução de sacarose a 10% p/v, em tampão acetato 0,02 M, pH 4,5.

Embora o suporte utilizado por MONSAN et al. (65) seja diferente do usado nesse trabalho, as atividades obtidas em ambos são próximas, e comparáveis com a obtida por CABRAL (10), apesar de ter utilizado outro método de ativação. Invertase tem sido imobilizada em vários suportes, como citado no item 2.10.2, porém existem poucas citações de sua imobilização a suportes inorgânicos por processos covalentes. MASON e WEETALL (57) a imobilizaram em vidro, por processo covalente, mas a atividade por eles citada, não é diretamente comparável com os resultados obtidos no presente trabalho.
4.4 - Caracterização da SPC

a - Diâmetro médio das partículas e dos poros

A sílica de porosidade controlada, utilizada para a imobilização de invertase, corresponde à fração de peneirado da peneira Tyler 32 e retida na peneira Tyler 35. Logo, o diâmetro médio das partículas é a média aritmética das aberturas dessas duas peneiras, sendo portanto, igual a 0,456 mm. O diâmetro médio dos poros é fornecido pelo fabricante como 375 Å.

b - Densidade do esqueleto sólido, densidade real ou cristalina

A densidade do esqueleto sólido \(\rho_s \) da SPC utilizada, foi determinada conforme item 3.2.7 a e encontrado um valor médio igual a 2,151 g/cm\(^2\).

c - Porosidade interna da partícula

A porosidade interna da partícula \(\varepsilon_p \) foi determinada conforme item 3.2.7 b, e obtido um valor médio igual a 0,579.

d - Densidade da partícula seca ou partícula porosa

A densidade da partícula seca \(\rho_p \), foi calculada pela equação (3.4), a partir dos valores de \(\rho_s \) e \(\varepsilon_p \) determinados experimentalmente. O valor encontrado para \(\rho_p \) foi 0,905g/cm\(^3\).

4.5 - Influência da temperatura na atividade de invertase imobilizada

As taxas iniciais de reação de hidrólise de sacarose, com invertase imobilizada em SPC, para temperaturas variando de 15 a 70°C, determinadas de acordo com o item 3.2.8, são apresentadas na Tabela 4.7 e Figura 4.10. Os experimentos foram realizados com a enzima imobilizada no reator de cesta, numa concentração inicial de sacarose de 50g/l, em tampão acetato de sódio 10\(^{-2}\) M, pH 4,5.
Tabela 4.7

Atividades de invertase imobilizada, A (U/g), em função da temperatura do meio, para $S = 50g/l$

<table>
<thead>
<tr>
<th>${T}^{(\circ\mathrm{C})}$</th>
<th>A (U/g)</th>
<th>${T}^{(\circ\mathrm{C})}$</th>
<th>A (U/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>730.24</td>
<td>45</td>
<td>2419.78</td>
</tr>
<tr>
<td>20</td>
<td>946.00</td>
<td>50</td>
<td>2949.41</td>
</tr>
<tr>
<td>25</td>
<td>1180.68</td>
<td>55</td>
<td>3050.83</td>
</tr>
<tr>
<td>30</td>
<td>1276.56</td>
<td>60</td>
<td>2912.89</td>
</tr>
<tr>
<td>35</td>
<td>1681.99</td>
<td>65</td>
<td>1292.43</td>
</tr>
<tr>
<td>40</td>
<td>1872.83</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pela Figura 4.10, verifica-se que a temperatura ótima para invertase imobilizada em SPC é de 55$^{\circ}C$. Esse valor está de acordo com dados da literatura, que apresentam ótimos de temperatura para invertases imobilizadas em vários suportes, no intervalo de 35 a 65$^{\circ}C$. Para temperaturas de 15 a 50$^{\circ}C$, calculou-se a taxa inicial de reação, e para temperaturas acima de 50$^{\circ}C$, calculou-se a taxa média, num tempo igual ao usado em todo o experimento com taxas iniciais.
Figura 4.10 - Efeito da temperatura na atividade de invertase imobilizada em SPC

Com o objetivo de se determinar a energia de ativação da reação de inversão de sacarose com invertase imobilizada em SPC, foi plotado o gráfico de lnA em função de 1/T, Figura 4.11, para a faixa de temperatura de 15 a 50°C, aplicado aos dados da Tabela 4.7.

A melhor reta ajustada aos pontos da Figura 4.11, com um coeficiente de correlação 0,9953, é apresentada na equação 4.21.
\[\ln A = 19.01 - 3571.74 \cdot \frac{1}{T} \] (4.21)

onde \(T \) é a temperatura absoluta (\(^{0}K \)).

Figura 4.11 - Gráfico de Arrhenius: \(\ln A \) em função de \(1/T \), para invertase imobilizada em SPC.

Pela equação 4.21, a energia de ativação da reação é de 7.097 cal/mol de sacarose, utilizando uma concentração inicial desta de 50g/l. Esse valor da energia de ativação está abaixo dos valores encontrados na literatura para invertase livre, tais como 7322 cal/mol (23) e 7853 cal/mol (9), sugerindo
assim, de acordo com o item 2.7.5, a existência de efeitos difusónciais na reação.

Com o objetivo de estudar melhor o problema, foram determinadas as taxas iniciais de reação de hidrólise de sacarose com invertase livre e imobilizada. Usando uma concentração inicial de sacarose de 1g/l, a temperaturas na faixa de 15 a 50°C. A enzima imobilizada usada com a concentração inicial de 1g/l, foi de atividade menor do que a usada para 50 g/l. Os resultados são apresentados na Tabela 4.8.

Tabela 4.8

Taxas iniciais de reação para invertase livre e imobilizada, para $S = 1g/l$

<table>
<thead>
<tr>
<th>Invertase livre</th>
<th>Invertase imobilizada</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T(°C)$</td>
<td>$A(U/ml)$</td>
</tr>
<tr>
<td>15</td>
<td>0,4896</td>
</tr>
<tr>
<td>20</td>
<td>0,5630</td>
</tr>
<tr>
<td>25</td>
<td>0,8100</td>
</tr>
<tr>
<td>30</td>
<td>1,0560</td>
</tr>
<tr>
<td>35</td>
<td>1,2271</td>
</tr>
<tr>
<td>40</td>
<td>1,4770</td>
</tr>
<tr>
<td>45</td>
<td>1,6176</td>
</tr>
<tr>
<td>50</td>
<td>2,1726</td>
</tr>
</tbody>
</table>

A equação relacionando ln A em função de $1/T(°K)^{-1}$, para os dados relativos à invertase livre, Tabela 4.8, é dada pela equação 4.22, com um coeficiente de correlação de 0,993.

$$\ln A = 13,038 - 3960,69 \cdot \frac{1}{T}$$ (4.22)

Da equação 4.22, calculou-se uma energia de ativação de 7869 cal/mol para a hidrólise de sacarose, com invertase livre, partindo de uma concentração inicial de 1g/l.
Para a invertase imobilizada, a relação entre lnA e $1/T(K)^{-1}$, é dada pela equação 4.23, com um coeficiente de correlação de 0,998.

$$lnA = 16,25 - 3928,9 \cdot \frac{1}{T}$$ (4.23)

Da equação 4.23, obteve-se uma energia de ativação de 7807 cal/mol, para a enzima imobilizada, com uma concentração inicial de 1g/l.

O resultado de E_a obtido para a enzima livre está muito próximo daquele obtido por CABRAL (9) para a mesma enzima. O valor de $E_a = 7,807$ cal/mol para a enzima imobilizada, difere apenas 0,8% daquele da enzima livre, sugerindo que, praticamente não há resistência à transferência de massa intrapartícula e esse valor pode ser considerado como a energia de ativação intrínseca da reação de hidrólise de sacarose com invertase imobilizada em SPC. O fato de que as energias de ativação para a enzima livre e imobilizada são praticamente iguais, sugere, segundo PITCHER (72), que nenhuma limitação difusional está presente. Quando a concentração de sacarose nos experimentos foi igual a 50g/l, houve uma maior diferença entre os valores de E_a para as enzimas livre e imobilizada. Isso pode ter sido devido a erros experimentais ou porque a enzima imobilizada era bastante ativa. Para o experimento com concentração de sacarose 1g/l, usou-se também uma enzima imobilizada de baixa atividade, para que a reação ocorresse com um pequeno gradiente de concentração no interior do catalisador. Como a taxa de reação era baixa, não havia limitação de substrato para a enzima no interior dos poros, e assim, a reação ocorreu num regime cinético.

4.6 - Influência do pH na atividade de invertase imobilizada em SPC

As taxas iniciais de reação de hidrólise, determinadas de acordo com o item 3.2.9, para a faixa de pH de 3,0 a 6,0 são apresentadas na Figura 4.12, na forma de atividade relativa (α), definida pela relação da atividade a um dado valor de pH, pela atividade a pH igual a 4,5, a qual foi a máxima atingida.
Figura 4.12 - Influência do pH na atividade de invertase imobilizada, a 40°C.

Pela Figura 4.12, verifica-se que o pH ótimo para a ação de invertase imobilizada é 4,5, correspondendo ao valor ótimo para a mesma enzima, como determinado por CABRAL (9). Essa valor do pH ótimo da enzima imobilizada, correspondente ao da enzima livre, sugere um coeficiente de partição igual a 1,0 para os íons na solução e nas partículas porosas.
4.7 - Estabilidade de invertase imobilizada em relação ao pH

A influência do pH na estabilidade de invertase imobilizada foi estudada, incubando amostras da mesma, de atividade conhecida, em soluções tampão $10^{-2} M$, a $40^\circ C$, durante 30 horas, a valores de pH variando de 3,0 a 6,0. Após esse tempo, as amostras foram lavadas com tampão acetato de sódio $10^{-2} M$, pH 4,5 e determinadas suas atividades a $40^\circ C$, nas condições padronizadas. Na Figura 4.13 são representadas as atividades relativas, A/A_i, definidas pela relação entre a atividade após 30 horas de incubação e a inicial.

Pela Figura 4.13, verifica-se que a maior estabilidade de invertase imobilizada ocorreu a pH 4,5, que corresponde também ao seu pH ótimo. Para esse pH, após 30 horas de incubação a $40^\circ C$, não se verificou perda de atividade.

Não foi verificada a estabilidade da enzima imobilizada em relação ao pH na presença de substrato.

Figura 4.13 - Influência do pH na estabilidade de invertase imobilizada
4.8 - Estabilidade térmica de invertase immobilizada

A influência da temperatura na estabilidade da invertase immobilizada, foi estudada conforme item 3.2.11.

O decréscimo em atividade enzimática, em função do tempo, a várias temperaturas, é apresentado na Tabela 4.9 e Figuras 4.14 e 4.15.

Tabela 4.9

Atividades enzimáticas relativas, a em função do tempo, para a enzima immobilizada, a diferentes temperaturas.

<table>
<thead>
<tr>
<th>T(°C)</th>
<th>t(h)</th>
<th>a</th>
<th>T(°C)</th>
<th>t(h)</th>
<th>a</th>
<th>T(°C)</th>
<th>t(h)</th>
<th>a</th>
</tr>
</thead>
<tbody>
<tr>
<td>34</td>
<td>0</td>
<td>1,000</td>
<td>56</td>
<td>0</td>
<td>1,000</td>
<td>58</td>
<td>0</td>
<td>1,000</td>
</tr>
<tr>
<td>4</td>
<td>0,844</td>
<td>2</td>
<td>0,860</td>
<td>0,5</td>
<td>0,833</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0,779</td>
<td>4</td>
<td>0,804</td>
<td>1,0</td>
<td>0,748</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>0,679</td>
<td>6</td>
<td>0,722</td>
<td>1,5</td>
<td>0,677</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>0,658</td>
<td>8</td>
<td>0,677</td>
<td>2,0</td>
<td>0,620</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>0,588</td>
<td>10</td>
<td>0,592</td>
<td>3,0</td>
<td>0,588</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>0,587</td>
<td>12</td>
<td>0,610</td>
<td>4,0</td>
<td>0,600</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>0,589</td>
<td>14</td>
<td>0,584</td>
<td>5,0</td>
<td>0,486</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>0,541</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>T(°C)</th>
<th>t(min)</th>
<th>a</th>
<th>T(°C)</th>
<th>t(min)</th>
<th>a</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>0</td>
<td>1,000</td>
<td>62,5</td>
<td>0</td>
<td>1,000</td>
</tr>
<tr>
<td>15</td>
<td>0,855</td>
<td>15</td>
<td>0,564</td>
<td>2</td>
<td>0,626</td>
</tr>
<tr>
<td>45</td>
<td>0,628</td>
<td>30</td>
<td>0,343</td>
<td>4</td>
<td>0,403</td>
</tr>
<tr>
<td>65</td>
<td>0,547</td>
<td>45</td>
<td>0,156</td>
<td>6</td>
<td>0,342</td>
</tr>
<tr>
<td>80</td>
<td>0,533</td>
<td>60</td>
<td>0,173</td>
<td>8</td>
<td>0,239</td>
</tr>
<tr>
<td>95</td>
<td>0,540</td>
<td>75</td>
<td>0,159</td>
<td>10</td>
<td>0,171</td>
</tr>
<tr>
<td></td>
<td>90</td>
<td>0,145</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Verificou-se para as temperaturas 50 e 52°C, que a atividade enzimática decrescia com o tempo até um certo ponto, depois aumentava durante um período, para depois decrescer novamente. Assim, aplicou-se cinética de desativação térmica de 1ª ordem para temperaturas a partir de 54°C.

Figura 4.14 - Atividade relativa a, em função do tempo, para as temperaturas: (●) 65°; (○) 62,5°; (▲) 60°C
Figura 4.15 - Atividade relativa \(a \), em função do tempo, para as temperaturas: (●) 58; (○) 56; (▲) 54°C

Para uma cinética de desativação de 1ª ordem, a variação de \(a \) com \(t \), é dada pelas equações 2.14 e/ou 2.15, item 2.2.6.

Com a finalidade de determinar as constantes de desativação da enzima, nas várias temperaturas consideradas, plotou-se \(-\ln a\) em função de \(t \), conforme Figuras 4.16 e 4.17.
Figura 4.16 - $-\ln a$ em função do tempo para as temperaturas:

(●) 65; (○) 62.5; (▲) 60°C
Figura 4.17 - $-\ln a$ em função de t, para as temperaturas:
(♦)58; (○)56; (▲)54°C

Verifica-se pelas Figuras 4.16 e 4.17 que a cinética de desativação de 1º ordem se aplica melhor às temperaturas maiores. Para valores menores desta, a cinética de 1º ordem aplica-se melhor ao período inicial, afastando para tempos maiores, se tornando bem sensível a 54°C, onde ocorre após 16 horas de incubação, um aumento na atividade residual.

Na Tabela 4.10, são apresentados os valores de k_d, calculados a partir da parte reta das curvas das Figuras 4.16 e 4.17, o coeficiente de correlação, r, de $-\ln a$ versus t e as meias vidas correspondentes, calculadas pela
equação 2.16.

Tabela 4.10

Valores de k_d e $t_{1/2}$, em função da temperatura.

<table>
<thead>
<tr>
<th>$T(^\circ C)$</th>
<th>$k_d (\text{min}^{-1})$</th>
<th>r</th>
<th>$t_{1/2} (\text{min})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>54</td>
<td>0.0004214</td>
<td>0.985</td>
<td>1645.2</td>
</tr>
<tr>
<td>56</td>
<td>0.0008211</td>
<td>0.9934</td>
<td>844.2</td>
</tr>
<tr>
<td>58</td>
<td>0.0038797</td>
<td>0.988</td>
<td>178.66</td>
</tr>
<tr>
<td>60</td>
<td>0.0094116</td>
<td>0.9968</td>
<td>73.65</td>
</tr>
<tr>
<td>62.5</td>
<td>0.040541</td>
<td>0.995</td>
<td>17.1</td>
</tr>
<tr>
<td>65</td>
<td>0.16985</td>
<td>0.9924</td>
<td>4.08</td>
</tr>
</tbody>
</table>

Com o objetivo de determinar a energia de ativação da reação de desativação da enzima imobilizada, de acordo com a equação 2.17, plotou-se $-\ln k_d$ em função de $1/T$, conforme Figura 4.18.

A relação entre $k_d (\text{min}^{-1})$ e $1/T (\text{K})$, é dada pela equação 4.24, com um coeficiente de correlação de 0,996.

$$\ln k_d = 180.07 - 61.47905 \cdot \frac{1}{T}$$ \hspace{1cm} (4.24)

Da equação 4.24, calculou-se a energia de desativação, $E_d = 122171.17$ cal/mol. Pelas Figuras 4.16 e 4.17, verifica-se que a cinética de 1ª ordem é adequada para descrever a perda de atividade de invertase imobilizada em sílica de porosidade controlada, resultados esses, de acordo com aqueles obtidos por outros pesquisadores (9,52,69).

Para temperaturas menores que 54°C, ocorreu um decréscimo da atividade, seguido de um aumento da mesma, durante um certo período de tempo, voltando a decrescer depois, sugerindo um mecanismo de desativação em série, como sugerido por HENLEY e SADANA (40,41), porém descrever a desativação nesses casos, por cinética de 1ª ordem é mais seguro, pois implica numa meia vida menor do que a prevista no modelo de desativação em série.

128
Figura 4.18 - \(-\ln k_d\) em função de \(1/T(°K)^{-1}\)

A invertase imobilizada, obtida no presente trabalho, foi bastante estável em relação à temperatura, quando comparada com outros trabalhos da literatura (9,52,69). Os tempos de meia vida obtidos com invertase imobilizada em SPC são da mesma ordem de grandeza do que aqueles obtidos para a mesma enzima em estado livre obtidos por CABRAL (9).

A energia de desativação para a enzima imobilizada, igual a 122171 cal/mol, foi também superior àquela obtida para invertase imobilizada em esferas de alginato de cálcio (9) e em vidro poroso (69).

Deve ser ressaltado que o estudo de estabilidade térmica foi conduzido,
incubando amostras da enzima imobilizada em solução tampão, pH 4.5, $10^{-2}M$. Segundo MONSAN et al. (65), a estabilidade térmica de invertase imobilizada é diretamente dependente da concentração de sacarose. Em soluções concentradas ou xaropes, a enzima se mostrou muito mais estável que em soluções diluídas. Assim, é de se esperar que a enzima imobilizada em sílica, no presente trabalho, apresente estabilidades térmicas maiores que as calculadas, quando em uso para hidrolisar xaropes de sacarose.

No estudo da cinética com enzima imobilizada, que será apresentado em itens a seguir, escolheu-se uma temperatura de trabalho de 46°C, porque nessas condições, a enzima é bastante estável quanto à temperatura, sendo possível então considerá-la com atividade constante durante os experimentos.

4.9 - Regeneração do suporte

Uma porção de enzima imobilizada em SPC foi submetida a pirólise a 600°C, conforme item 3.2.12 e a seguir, novamente silanizada e ativada com glutaraldeído, da mesma forma que um suporte novo. Ambos suportes, regenerado e novo, foram colocados em contato com iguais volumes da mesma solução de invertase para imobilização, e determinadas suas atividades. Verificou-se que a enzima imobilizada no suporte regenerado, alcançou 83% da atividade apresentada pelo suporte novo. CA-BRAL (10), usou o mesmo procedimento na recuperação de sílica usada na imobilização de amiloglicosidade, pelo método de metais de transição, conseguindo 90% da atividade conseguida com um suporte novo.

A possibilidade de regeneração do suporte após desativação da enzima imobilizada, para posterior reutilização, é uma das vantagens de se utilizar suportes inorgânicos.
4.10 - Cinética de invertase na forma imobilizada

4.10.1 - Estudo do comportamento do reator de reciclo

Após a montagem do reator de reciclo com 1g de enzima imobilizada, conforme Figura 3.2 e selecionadas as condições de trabalho apresentadas no item 3.2.15a, procurou-se verificar se o sistema se comportava como um reator de mistura. Para tal, usou-se o procedimento de passar um traçador no sistema, em forma de degrau, conforme item 3.2.14, o qual consistiu de uma solução de glicose de concentração 1.0391g/l.

Os resultados de análise da corrente de produto são apresentados na Tabela 4.11.

Tabela 4.11

Concentração de glicose na corrente de produto do reator, em função do tempo

<table>
<thead>
<tr>
<th>t(s)</th>
<th>C(g/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0000</td>
</tr>
<tr>
<td>20</td>
<td>0.1169</td>
</tr>
<tr>
<td>40</td>
<td>0.3808</td>
</tr>
<tr>
<td>60</td>
<td>0.5867</td>
</tr>
<tr>
<td>80</td>
<td>0.7172</td>
</tr>
<tr>
<td>100</td>
<td>0.8331</td>
</tr>
<tr>
<td>120</td>
<td>0.8709</td>
</tr>
<tr>
<td>140</td>
<td>0.9214</td>
</tr>
<tr>
<td>160</td>
<td>0.9550</td>
</tr>
<tr>
<td>180</td>
<td>0.9825</td>
</tr>
<tr>
<td>200</td>
<td>0.9999</td>
</tr>
<tr>
<td>220</td>
<td>1.0086</td>
</tr>
<tr>
<td>240</td>
<td>1.0260</td>
</tr>
</tbody>
</table>

Correlacionando \(\ln\left(\frac{C}{C_0 - C}\right) \) em função do tempo, obteve-se um tempo de residência experimental, \(t_{exp} = 0.9458 \) minutos, com um coeficiente de correlação 0.995. Dessa forma, a relação \(t_{hidroc} / t_{exp} = 0.993 \). Assim, o sistema pode ser considerado como um reator de mistura ou CSTR.
4.10.2 - Influência da concentração do substrato na cinética de invertase imobilizada

4.10.2.1 - Determinação dos parâmetros aparentes

Foram realizados dois experimentos no reator de reciclo, conforme item 3.2.15a. com duas enzimas imobilizadas de atividades diferentes, cujos resultados são apresentados nas Tabelas 4.12 e 4.13. Esses experimentos foram denominados I e II. Obteve-se experimentalmente a concentração de açúcares redutores no meio reacional, para várias concentrações de sacarose na corrente de alimentação. A partir desses dados, determinou-se as taxas de reação pela equação 3.7, expressando-as em mol/cm² cat.s, através da densidade da partícula porosa ou seca, 0,905g/cm², determinada no item 4.4d. As concentrações de substrato no reator, Sᵢ, foram calculadas pela equação 3.8 e as concentrações do mesmo na superfície da partícula, Sₛ, pela equação 3.10, apresentadas no anexo I.

As concentrações de sacarose na superfície do suporte, Sₛ, calculadas pela equação 3.10, diferiram muito pouco daquelas do meio do reator, Sᵢ, conforme cálculos no anexo I. Por outro lado, como pode ser visto na Figura 4.19, nas condições de trabalho selecionadas, com uma vazão no reator de 96 cm³/min, a resistência à transferência de massa interpartícula é desprezível. Assim, na modelagem cinética da reação, relacionou-se a taxa, com a concentração no seio do reator, Sᵢ.
Figura 4.19 - Taxa de reação relativa, em função da vazão de circulação de solução reagente através do reator.
Tabela 4.12

Taxas de reação \(v \) em função da concentração de substrato na alimentação \(S_a \), no reator \(S_b \) e da concentração de frutose \(F \), e de glicose \(G \), para o experimento \(J \).

<table>
<thead>
<tr>
<th>(S_a \cdot 10^4) (mol/cm(^3))</th>
<th>(S_b \cdot 10^4) (mol/cm(^3))</th>
<th>(G = F) (mol/cm(^3)) \cdot 10^6</th>
<th>(v \cdot 10^6) (mol/cm(^3)cat.s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,4327</td>
<td>1,0837</td>
<td>3,490</td>
<td>1,1343</td>
</tr>
<tr>
<td>2,8655</td>
<td>2,2068</td>
<td>5,987</td>
<td>1,9460</td>
</tr>
<tr>
<td>4,2982</td>
<td>3,5223</td>
<td>7,759</td>
<td>2,5219</td>
</tr>
<tr>
<td>5,7310</td>
<td>4,8302</td>
<td>9,008</td>
<td>2,9277</td>
</tr>
<tr>
<td>7,1637</td>
<td>6,1542</td>
<td>10,095</td>
<td>3,2812</td>
</tr>
<tr>
<td>8,5965</td>
<td>7,5507</td>
<td>10,458</td>
<td>3,3990</td>
</tr>
<tr>
<td>10,0292</td>
<td>8,9351</td>
<td>10,941</td>
<td>3,5561</td>
</tr>
<tr>
<td>11,4620</td>
<td>10,3558</td>
<td>11,062</td>
<td>3,5954</td>
</tr>
<tr>
<td>12,8947</td>
<td>11,7322</td>
<td>11,626</td>
<td>3,7786</td>
</tr>
<tr>
<td>14,3275</td>
<td>13,1569</td>
<td>11,706</td>
<td>3,7916</td>
</tr>
<tr>
<td>17,1930</td>
<td>16,0264</td>
<td>11,666</td>
<td>3,8179</td>
</tr>
<tr>
<td>20,0585</td>
<td>18,8839</td>
<td>11,746</td>
<td>3,8571</td>
</tr>
<tr>
<td>22,9240</td>
<td>21,7372</td>
<td>11,867</td>
<td>3,8309</td>
</tr>
<tr>
<td>25,7895</td>
<td>24,6108</td>
<td>11,787</td>
<td>3,8310</td>
</tr>
<tr>
<td>28,6550</td>
<td>27,4884</td>
<td>11,666</td>
<td>3,7916</td>
</tr>
<tr>
<td>42,9824</td>
<td>41,8803</td>
<td>11,022</td>
<td>3,5822</td>
</tr>
<tr>
<td>51,3099</td>
<td>56,3528</td>
<td>9,572</td>
<td>3,1110</td>
</tr>
<tr>
<td>71,6374</td>
<td>70,7608</td>
<td>8,766</td>
<td>2,8492</td>
</tr>
<tr>
<td>85,9649</td>
<td>85,0237</td>
<td>9,411</td>
<td>3,0587</td>
</tr>
<tr>
<td>100,2924</td>
<td>99,5004</td>
<td>7,920</td>
<td>2,5743</td>
</tr>
<tr>
<td>114,6199</td>
<td>113,8762</td>
<td>7,437</td>
<td>2,4171</td>
</tr>
<tr>
<td>128,9474</td>
<td>128,2399</td>
<td>7,075</td>
<td>2,2995</td>
</tr>
</tbody>
</table>

(*) cm\(^2\) cat refere-se à taxa de reação por unidade de volume de catalisador.
Tabela 4.13

Taxas de reação \(v \), relacionadas com as concentrações de substrato na alimentação \(S_a \) e na superfície do suporte \(S_s \), e com as concentrações de glicose \(G \) e frutose \(F \), para o experimento II.

<table>
<thead>
<tr>
<th>(S_a \cdot 10^6) (mol/cm(^3))</th>
<th>(S_s \cdot 10^6) (mol/cm(^3))</th>
<th>(G = F) (mol/cm(^3)) (\cdot 10^6)</th>
<th>(v \cdot 10^6) (mol/cm(^3)cat.s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.4327</td>
<td>1.208</td>
<td>2.250</td>
<td>0.7307</td>
</tr>
<tr>
<td>2.8655</td>
<td>2.390</td>
<td>4.666</td>
<td>1.5164</td>
</tr>
<tr>
<td>4.2982</td>
<td>3.794</td>
<td>5.047</td>
<td>1.6404</td>
</tr>
<tr>
<td>5.7310</td>
<td>5.180</td>
<td>5.514</td>
<td>1.7921</td>
</tr>
<tr>
<td>7.1637</td>
<td>6.593</td>
<td>5.704</td>
<td>1.8540</td>
</tr>
<tr>
<td>8.5965</td>
<td>7.984</td>
<td>6.129</td>
<td>1.9910</td>
</tr>
<tr>
<td>10.0292</td>
<td>9.395</td>
<td>6.341</td>
<td>2.0608</td>
</tr>
<tr>
<td>11.4620</td>
<td>10.813</td>
<td>6.489</td>
<td>2.1091</td>
</tr>
<tr>
<td>12.8947</td>
<td>12.235</td>
<td>6.595</td>
<td>2.1435</td>
</tr>
<tr>
<td>17.1930</td>
<td>16.527</td>
<td>6.659</td>
<td>2.1642</td>
</tr>
<tr>
<td>20.0585</td>
<td>19.359</td>
<td>6.998</td>
<td>2.2746</td>
</tr>
<tr>
<td>22.9240</td>
<td>22.237</td>
<td>6.871</td>
<td>2.2331</td>
</tr>
<tr>
<td>25.7895</td>
<td>25.115</td>
<td>6.744</td>
<td>2.1918</td>
</tr>
<tr>
<td>28.6550</td>
<td>28.070</td>
<td>5.853</td>
<td>1.9023</td>
</tr>
<tr>
<td>42.9824</td>
<td>42.387</td>
<td>5.959</td>
<td>1.9368</td>
</tr>
<tr>
<td>57.3099</td>
<td>56.737</td>
<td>5.726</td>
<td>1.8610</td>
</tr>
<tr>
<td>71.6374</td>
<td>71.112</td>
<td>5.259</td>
<td>1.7093</td>
</tr>
<tr>
<td>85.9649</td>
<td>85.507</td>
<td>4.581</td>
<td>1.4889</td>
</tr>
<tr>
<td>100.2924</td>
<td>99.881</td>
<td>4.114</td>
<td>1.3372</td>
</tr>
<tr>
<td>114.6199</td>
<td>114.295</td>
<td>3.245</td>
<td>1.0546</td>
</tr>
<tr>
<td>128.9474</td>
<td>128.648</td>
<td>2.990</td>
<td>0.9719</td>
</tr>
</tbody>
</table>

Normalizou-se os dados de taxa de reação em função de concentração de substrato na superfície do suporte, na forma de Lineweaver-Burk, para os experimentos I e II, com a finalidade de se obter os parâmetros apa-
rentes. Observou-se que o modelo de inibição pelo substrato foi adequado para descrever a cinética da reação, em termos de parâmetros aparentes, sem necessitar de um fator de correção, como ocorreu com invertease livre, porém os coeficientes lineares não foram exatamente os mesmos.

Com a finalidade de obter os parâmetros cinéticos do modelo de inibição pelo substrato, V_m, K_m e K_i, foi usado um método iterativo, através de um programa de computador, aplicado às equações 4.25 e 4.26, onde o critério de parada foi a igualdade dos valores de $1/V_m$, para as faixas de baixas e altas concentrações.

\[
\left(\frac{1}{v} - \frac{1}{V_m \cdot K_i} \cdot S \right) = \frac{1}{V_m} - \frac{K_m}{V_m} \cdot \frac{1}{S} \quad (4.25)
\]

\[
\left(\frac{1}{v} - \frac{K_m}{V_m} \cdot \frac{1}{S} \right) = \frac{1}{V_m} + \frac{1}{V_m K_i} \cdot S \quad (4.26)
\]

O procedimento usado é apresentado a seguir:

a) Inicialmente, graficou-se os dados de v e S, na forma de Lineweaver-Burk, desprezando o segundo termo do primeiro membro das equações 4.25 e 4.26. Com isso, obteve-se valores aproximados de $(K_m/V_m)^{ap}$ e $(1/V_m K_i)^{ap}$

b) Com $(1/V_m K_i)^{ap}$ obtido no item a, e com a equação 4.25, obteve-se novos valores para $(K_m/V_m)^{ap}$ e $(1/V_m)^{ap}$. Com esse valor de $(K_m/V_m)^{ap}$, e com a equação 4.26 obteve-se novos valores para $(1/V_m K_i)^{ap}$ e $(1/V_m)^{ap}$.

Continuou-se o procedimento até que se verificasse a igualdade dos valores de $1/V_m$, obtidos para as faixas de baixas e altas concentrações. Esse procedimento foi aplicado, separadamente, aos experimentos I e II, correspondentes, respectivamente aos dados das Tabelas 4.12 e 4.13.

Tabela 4.14
Parâmetros cinéticos aparentes relativos aos experimentos I e II

<table>
<thead>
<tr>
<th>Parâmetro</th>
<th>Experimento I</th>
<th>Experimento II</th>
</tr>
</thead>
<tbody>
<tr>
<td>$K_m \cdot 10^9$ (mol/cm3)</td>
<td>4.3003</td>
<td>3.6250</td>
</tr>
<tr>
<td>$V_m \cdot 10^9$ (mol/cm2 cat.s)</td>
<td>5.6558</td>
<td>3.1250</td>
</tr>
<tr>
<td>$K_i \cdot 10^4$ (mol/cm3)</td>
<td>8.7335</td>
<td>8.7335</td>
</tr>
</tbody>
</table>

Assim, o modelo cinético de hidrólise de sacarose, em termos de parâmetros aparentes, é apresentado na equação 4.27 para o experimento I

$$v = 5.6558 \cdot 10^{-6} \frac{S_r}{4.3003 \cdot 10^{-9} + S_r + S_r^2/8,7335 \cdot 10^{-4}}$$ (4.27)

Uma comparação entre os resultados experimentais e os calculados pela equação 4.27 é apresentada na Figura 4.20.
Figura 4.20 - Comparação entre os pontos experimentais e os determinados pela equação 4.27, em termos de parâmetros aparentes. A linha cheia representa o modelo e os pontos representam resultados experimentais.

Para o experimento II, o modelo cinético em termos de parâmetros aparentes é dado pela equação 4.28.
\[v = 3,125 \cdot 10^{-9} \frac{S_0}{3,625 \cdot 10^{-5} + S_0 + S_0^2/8.7335 \cdot 10^{-4}} \] (4.28)

A comparação entre os dados experimentais e os previstos pela equação 4.28 é apresentada na Figura 4.21.

A cinética da reação catalisada por invertase imobilizada se ajustou bem ao modelo de inibição pelo substrato, sem a necessidade do fator de correção \(f(S) \), como pode ser visto pelas Figuras 4.20 e 4.21.
Figura 4.21 - Comparação entre pontos experimentais e determinados pela equação 4.28, em termos de parâmetros aparentes. A linha cheia representa o modelo e os pontos representam resultados experimentais.
4.10.2.2 - Determinação dos parâmetros cinéticos intrínsecos

Os parâmetros cinéticos intrínsecos são relacionados aos aparentes, para a faixa de concentrações em que a reação segue cinética de 1ª ordem, de acordo com a equação 4.29 (9).

\[
\frac{\phi}{\tanh \phi} = 1 + \frac{1}{3} \left(\frac{V_m}{K_m} \right)^{0.6} \frac{R^2}{D_{es}}
\]

(4.29)

onde:

\(\phi \) = módulo de Thiele para cinética de 1ª ordem, em termos de parâmetros intrínsecos

\[
\phi = R \sqrt{\frac{V_m}{K_m \cdot D_{es}}}
\]

(4.30)

\(R \) = raio do suporte, igual a 0.023 cm
\(D_{es} \) = difusividade efetiva do substrato no suporte

Como será assinalado no item 4.10.4, não foi possível a determinação de \(D_{es} \), conforme item 3.2.17. Assim, este foi estimado pela equação 4.29 aplicada aos dados dos experimentos I e II, do item anterior, da qual obteve-se os valores \((V_m/K_m)^{0.6}\).

Para o experimento I, tem-se que:

\[
\frac{\phi_1}{\tanh \phi_1} = 1 + \frac{1}{3} (0.13152) \left(\frac{0.023}{D_{es}} \right)^2
\]

(4.31)

E para o experimento II:

\[
\frac{\phi_2}{\tanh \phi_2} = 1 + \frac{1}{3} (0.086207) \left(\frac{0.023}{D_{es}} \right)^2
\]

(4.32)

onde:
\[\phi_1 = R_1 \sqrt{\frac{5.6558 \cdot 10^{-6}}{K_m \cdot D_{ts}}} \quad (4.33) \]

\[\phi_2 = R_1 \sqrt{\frac{3.125 \cdot 10^{-6}}{K_m \cdot D_{ts}}} \quad (4.34) \]

Das equações 4.33 e 4.34, obteve-se a relação entre \(\phi_1 \) e \(\phi_2 \), dada pela equação 4.35.

\[\phi_1 = 1.345 \cdot \phi_2 \quad (4.35) \]

Nas equações 4.33 e 4.34, considerou-se que \((V_m)_{so} \) seja igual a \((V_m)_{mt} \). Isso de fato se verifica, pois a taxa máxima de reação é alcançada em presença de altas concentrações de substrato, não existindo assim, limitações de difusão, pois com uma taxa de reação baixa e alta concentração de substrato, praticamente não há gradiente de concentração no interior do suporte.

O procedimento para determinação de \(D_{ts} \) e \((K_m)_{mt} \), consistiu em atribuir valores a \(D_{ts} \), e calcular \(\phi_1 \) pela equação 4.31 e \(\phi_2 \) pela 4.32 e compará-los, até que \(\phi_1/\phi_2 \) se aproximasse de 1.345, dado pela equação 4.35, conforme Tabela 4.15.

Tabela 4.15
Determinação de \(D_{ts} \) pelas equações 4.31, 4.32 e 4.35.

<table>
<thead>
<tr>
<th>(D_{ts} \cdot 10^4) (cm/s²)</th>
<th>(\phi_1/\tan \phi_1)</th>
<th>(\phi_1)</th>
<th>(\phi_2/\tan \phi_2)</th>
<th>(\phi_2)</th>
<th>(\phi_1/\phi_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,10</td>
<td>24,19</td>
<td>24,19</td>
<td>16,2</td>
<td>16,2</td>
<td>1,49</td>
</tr>
<tr>
<td>0,20</td>
<td>12,59</td>
<td>12,59</td>
<td>8,6</td>
<td>8,6</td>
<td>1,46</td>
</tr>
<tr>
<td>0,40</td>
<td>6,80</td>
<td>6,80</td>
<td>4,80</td>
<td>4,80</td>
<td>1,32</td>
</tr>
<tr>
<td>0,60</td>
<td>4,86</td>
<td>4,86</td>
<td>3,53</td>
<td>3,53</td>
<td>1,37</td>
</tr>
<tr>
<td>0,70</td>
<td>4,31</td>
<td>4,31</td>
<td>3,17</td>
<td>3,16</td>
<td>1,36</td>
</tr>
<tr>
<td>0,75</td>
<td>4,092</td>
<td>4,09</td>
<td>3,03</td>
<td>3,02</td>
<td>1,35</td>
</tr>
<tr>
<td>0,80</td>
<td>3,899</td>
<td>3,896</td>
<td>2,90</td>
<td>2,90</td>
<td>1,34</td>
</tr>
<tr>
<td>1,00</td>
<td>3,319</td>
<td>3,310</td>
<td>2,52</td>
<td>2,50</td>
<td>1,33</td>
</tr>
</tbody>
</table>
O valor de D_{s} calculado pela sequência apresentada na Tabela 4.15, que implicou na maior aproximação da relação entre ϕ_{1} e ϕ_{2}, dado pela equação 4.35, foi igual a $0.75 \cdot 10^{-5} \text{cm}^{2}/\text{s}$.

Da Tabela 4.15, para $D_{s} = 0.75 \cdot 10^{-5} \text{cm}^{2}/\text{s}$, obteve-se $\phi_{1} = 4.00$. Com esses valores de D_{s} e ϕ_{1} na equação 4.33, obteve-se um valor de $(K_{m})^{int} = 2.3847 \cdot 10^{-5} \text{mol/cm}^{2}$

Portanto, os parâmetros intrínsecos da reação de hidrólise de sacarose por invertase imobilizada em SPC, nas condições dos experimentos I e II, são apresentados na Tabela 4.16.

Tabela 4.16
Parâmetros intrínsecos para a reação de inversão de sacarose com invertase imobilizada.

<table>
<thead>
<tr>
<th>Parâmetro</th>
<th>Experimento I</th>
<th>Experimento II</th>
</tr>
</thead>
<tbody>
<tr>
<td>$K_{m} \cdot 10^{7} (\text{mol/cm}^{2})$</td>
<td>2.3847</td>
<td>2.3847</td>
</tr>
<tr>
<td>$V_{m} \cdot 10^{6} (\text{mol/cm}^{2}\text{cat.s})$</td>
<td>5.6558</td>
<td>3.1250</td>
</tr>
<tr>
<td>$K_{i} \cdot 10^{4} (\text{mol/cm}^{2})$</td>
<td>8.7335</td>
<td>8.7335</td>
</tr>
</tbody>
</table>

O valor de K_{i} aparente foi considerado igual ao intrínseco, uma vez que a inibição pelo substrato começa a ocorrer a valores altos para sua concentração, e assim, não existe interferências difusoriais na sua determinação.

A difusividade efetiva de sacarose no suporte, de $0.75 \times 10^{-5} \text{cm}^{2}/\text{s}$, determinada anteriormente, a 40°C, coincide com a difusividade de sacarose em solução à diluição infinita, calculada pela correlação de Wilke-Chang, à mesma temperatura (22).

4.10.2.3 - Comparação dos parâmetros cinéticos intrínsecos, sem levar em conta a presença de produtos de reação

Para comprovar a validade dos parâmetros cinéticos intrínsecos apresentados na Tabela 4.16, testou-se os dados experimentais relativos aos experimentos I e II, calculando a taxa global de reação, através de um programa computacional, anexo II, utilizando-se do método das diferenças finitas e do método de Runge-Kutta.

143
O modelo cinético considerado foi o de inibição pelo substrato e desprezou-se a presença de produtos. O modelo cinético para a reação com invertase imobilizada, associado ao balanço de massa no interior do catalisador, é dado pela equação 4.36.

\[
\frac{d^2 S}{dr^2} + \frac{2}{r} \frac{dS}{dr} = \frac{V_m/D_{xx} \cdot S}{K_m + S + S^2/K_i}
\]

onde:

\begin{itemize}
 \item \(S \) = concentração do substrato
 \item \(r \) = posição radial no interior do suporte
 \item \(D_{xx} \) = difusividade efetiva da sacarose na matriz de enzima imobilizada, igual a \(0.75 \times 10^{-4} \text{cm}^2/\text{s} \).
\end{itemize}

As taxas globais de reação apresentadas nas Tabelas 4.17 e 4.18, para os experimentos I e II, respectivamente, foram calculadas a partir do gradiente de concentração de substrato na superfície do suporte (TCG), pelo método das diferenças finitas e pela integração sobre o perfil de concentração no interior do suporte (TCT), pelo método de Runge-Kutta.
Tabela 4.17

Taxas de reação em mol/cm²·cat.s, em função da concentração de substrato em mol/cm³. S_* = concentração experimental de sacarose na superfície da partícula.

<table>
<thead>
<tr>
<th>S_*</th>
<th>$S(0)$</th>
<th>$S(N)$</th>
<th>TCI</th>
<th>TGC</th>
<th>TA</th>
<th>TE</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.8302</td>
<td>1.5749</td>
<td>4.8344</td>
<td>3.2034</td>
<td>3.2034</td>
<td>2.9080</td>
<td>2.9277</td>
</tr>
<tr>
<td>10.3558</td>
<td>5.6026</td>
<td>10.3596</td>
<td>4.0853</td>
<td>4.0853</td>
<td>3.6876</td>
<td>3.5954</td>
</tr>
<tr>
<td>27.4884</td>
<td>22.6488</td>
<td>27.4845</td>
<td>4.0804</td>
<td>4.0808</td>
<td>3.8444</td>
<td>3.7916</td>
</tr>
<tr>
<td>41.8803</td>
<td>37.4506</td>
<td>41.8666</td>
<td>3.7242</td>
<td>3.7243</td>
<td>3.5749</td>
<td>3.5822</td>
</tr>
<tr>
<td>50.3528</td>
<td>52.3241</td>
<td>56.3353</td>
<td>3.3862</td>
<td>3.3858</td>
<td>3.2856</td>
<td>3.1190</td>
</tr>
<tr>
<td>70.7608</td>
<td>67.0810</td>
<td>70.7440</td>
<td>3.0945</td>
<td>3.0947</td>
<td>3.0232</td>
<td>2.8492</td>
</tr>
<tr>
<td>85.0257</td>
<td>81.6405</td>
<td>85.0056</td>
<td>2.8472</td>
<td>2.8481</td>
<td>2.7945</td>
<td>3.0587</td>
</tr>
<tr>
<td>99.5004</td>
<td>96.3758</td>
<td>99.6906</td>
<td>2.6310</td>
<td>2.6342</td>
<td>2.5915</td>
<td>2.5743</td>
</tr>
<tr>
<td>113.8762</td>
<td>110.9074</td>
<td>113.8620</td>
<td>2.4466</td>
<td>2.4468</td>
<td>2.4154</td>
<td>2.4171</td>
</tr>
<tr>
<td>128.2309</td>
<td>125.5300</td>
<td>128.2300</td>
<td>2.2835</td>
<td>2.2826</td>
<td>2.2067</td>
<td>2.2095</td>
</tr>
</tbody>
</table>

onde:

- $S(0)$ = Concentração de sacarose no centro da partícula, calculada pelo perfil de concentração.
- $S(N)$ = concentração de sacarose na superfície da partícula, calculada pelo perfil de concentração.
- TCI = taxa de reação calculada pela integração sobre o perfil de concentração.
- TGC = taxa de reação calculada pelo gradiente de concentração na superfície do suporte.
- TA = taxa de reação calculada pelos parâmetros aparentes.
- TE = taxa de reação experimental.

145
Na Figura 4.22 é mostrada uma comparação entre os pontos experimentais e os calculados para as taxas de reação em função da concentração do substrato na superfície do suporte, para o experimento I.

Figura 4.22 - Comparação entre as taxas experimentais, representadas por pontos e as taxas calculadas, TCI ou TCG.

Verifica-se pela Figura 4.22 que não houve bom ajuste entre as taxas experimentais e as calculadas, para a faixa intermediária de valores de S_in. Para baixas e altas concentrações, o ajuste foi bom.
<table>
<thead>
<tr>
<th>S, 10⁻⁸</th>
<th>S[0], 10⁻⁸</th>
<th>S[N], 10⁻⁸</th>
<th>TCI, 10⁻⁸</th>
<th>TCG, 10⁻⁸</th>
<th>TA, 10⁻⁸</th>
<th>TE, 10⁻⁸</th>
</tr>
</thead>
<tbody>
<tr>
<td>3,794</td>
<td>1,9607</td>
<td>3,7947</td>
<td>1,7035</td>
<td>1,7035</td>
<td>1,5635</td>
<td>1,6404</td>
</tr>
<tr>
<td>5,180</td>
<td>3,0229</td>
<td>5,1804</td>
<td>1,9390</td>
<td>1,9390</td>
<td>1,7705</td>
<td>1,7921</td>
</tr>
<tr>
<td>6,593</td>
<td>4,2212</td>
<td>6,5985</td>
<td>2,0942</td>
<td>2,0943</td>
<td>1,9232</td>
<td>1,8540</td>
</tr>
<tr>
<td>7,984</td>
<td>5,4659</td>
<td>7,9862</td>
<td>2,1935</td>
<td>2,1935</td>
<td>2,0222</td>
<td>1,9919</td>
</tr>
<tr>
<td>9,395</td>
<td>6,7795</td>
<td>9,3964</td>
<td>2,2593</td>
<td>2,2392</td>
<td>2,0926</td>
<td>2,0608</td>
</tr>
<tr>
<td>10,613</td>
<td>8,1267</td>
<td>10,8071</td>
<td>2,5016</td>
<td>2,5016</td>
<td>2,4146</td>
<td>2,1091</td>
</tr>
<tr>
<td>12,235</td>
<td>9,5107</td>
<td>12,2318</td>
<td>2,3278</td>
<td>2,3278</td>
<td>2,7560</td>
<td>2,1435</td>
</tr>
<tr>
<td>13,645</td>
<td>10,8984</td>
<td>13,6437</td>
<td>2,3419</td>
<td>2,3421</td>
<td>2,1937</td>
<td>2,2153</td>
</tr>
<tr>
<td>16,527</td>
<td>15,7668</td>
<td>16,5264</td>
<td>2,3469</td>
<td>2,3467</td>
<td>2,2186</td>
<td>2,1642</td>
</tr>
<tr>
<td>15,359</td>
<td>16,6106</td>
<td>19,3591</td>
<td>2,3923</td>
<td>2,3922</td>
<td>2,2180</td>
<td>2,2746</td>
</tr>
<tr>
<td>22,537</td>
<td>19,5157</td>
<td>22,5366</td>
<td>2,3962</td>
<td>2,3962</td>
<td>2,2044</td>
<td>2,2331</td>
</tr>
<tr>
<td>25,115</td>
<td>23,0290</td>
<td>25,1114</td>
<td>2,2735</td>
<td>2,2730</td>
<td>2,1824</td>
<td>2,1918</td>
</tr>
<tr>
<td>28,070</td>
<td>25,4274</td>
<td>28,0676</td>
<td>2,2359</td>
<td>2,2359</td>
<td>2,1544</td>
<td>1,9023</td>
</tr>
<tr>
<td>42,587</td>
<td>39,5727</td>
<td>42,3817</td>
<td>2,0400</td>
<td>2,0400</td>
<td>1,9894</td>
<td>1,9368</td>
</tr>
<tr>
<td>56,737</td>
<td>54,5384</td>
<td>56,7284</td>
<td>1,8577</td>
<td>1,8566</td>
<td>1,8238</td>
<td>1,8610</td>
</tr>
<tr>
<td>71,112</td>
<td>69,1013</td>
<td>71,1068</td>
<td>1,6994</td>
<td>1,7010</td>
<td>1,6755</td>
<td>1,7093</td>
</tr>
<tr>
<td>85,507</td>
<td>83,6579</td>
<td>85,5008</td>
<td>1,5635</td>
<td>1,5641</td>
<td>1,5460</td>
<td>1,4889</td>
</tr>
<tr>
<td>99,881</td>
<td>98,1705</td>
<td>99,8819</td>
<td>1,4469</td>
<td>1,4552</td>
<td>1,4335</td>
<td>1,3372</td>
</tr>
<tr>
<td>114,295</td>
<td>112,7050</td>
<td>114,2950</td>
<td>1,3456</td>
<td>1,3540</td>
<td>1,3352</td>
<td>1,0546</td>
</tr>
<tr>
<td>128,648</td>
<td>127,1630</td>
<td>128,7380</td>
<td>1,2377</td>
<td>1,2357</td>
<td>1,2349</td>
<td>0,9719</td>
</tr>
</tbody>
</table>

Na Figura 4.23 é apresentada uma comparação entre as taxas de reação obtidas experimentalmente e aquelas calculadas, baseando-se no perfil de concentração no interior das partículas de enzima imobilizada ou no gradiente de concentração na superfície do suporte, para o experimento II.
Figura 4.23 - Comparação entre taxas experimentais, representadas por pontos e as taxas globais calculadas, representadas pela linha cheia, para o experimento II.

Novamente, verifica-se pela Figura 4.23 que não houve bom ajuste entre as taxas calculadas e as experimentais, porém os valores calculados estão mais próximos dos experimentais, quando comparados com a Figura 4.22, para o experimento I.

Pelas Figuras 4.22, e 4.23, verifica-se que não houve ajuste entre os

148
pontos experimentais e os calculados pelos modelos para a faixa de concentrações onde as taxas de reações são mais elevadas, sugerindo assim, que esteja ocorrendo inibição pelos produtos da reação.

4.10.3 - Influência da concentração de glicose e frutose na cinética da reação com invertase imobilizada

a) Inibição por frutose

As taxas de reação de hidrólise de sacarose, por invertase imobilizada em SPC, em presença de frutose, foram obtidas conforme item 3.2.15b e apresentadas nas Tabelas 4.19 a 4.22, as quais apresentam as taxas de reação obtidas experimentalmente, em presença de frutose. \(F \) = concentração de frutose; \(C_r \) = variação da concentração de açúcares reductores, devido a reação; \(S_s \) = concentração de sacarose na alimentação; \(S_f \) = concentração de sacarose na superfície da partícula.

Tabela 4.19 - \(F = 5g/l \)

<table>
<thead>
<tr>
<th>(S_s (g/l))</th>
<th>(C_r (g/l))</th>
<th>(v \cdot 10^9(\text{mol/cm}^2\text{cat} \cdot \text{s}))</th>
<th>(S_f \cdot 10^9(\text{mol/cm}^2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,9</td>
<td>1.0729</td>
<td>0,9666</td>
<td>1,1347</td>
</tr>
<tr>
<td>9,8</td>
<td>2.0588</td>
<td>1,8549</td>
<td>2,2936</td>
</tr>
<tr>
<td>19,6</td>
<td>3.1317</td>
<td>2,8215</td>
<td>4,8611</td>
</tr>
<tr>
<td>29,4</td>
<td>3.6828</td>
<td>3,3181</td>
<td>7,5735</td>
</tr>
<tr>
<td>39,2</td>
<td>4,0887</td>
<td>3,6837</td>
<td>10,3262</td>
</tr>
<tr>
<td>49,0</td>
<td>4,3207</td>
<td>3,8927</td>
<td>13,1273</td>
</tr>
</tbody>
</table>

Tabela 4.20. \(F = 10g/l \)

<table>
<thead>
<tr>
<th>(S_s (g/l))</th>
<th>(C_r (g/l))</th>
<th>(v \cdot 10^9(\text{mol/cm}^2\text{cat} \cdot \text{s}))</th>
<th>(S_f \cdot 10^9(\text{mol/cm}^2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,9</td>
<td>1,0439</td>
<td>0,9405</td>
<td>1,1428</td>
</tr>
<tr>
<td>9,8</td>
<td>1,9718</td>
<td>1,7765</td>
<td>2,3178</td>
</tr>
<tr>
<td>19,6</td>
<td>2,9897</td>
<td>2,6936</td>
<td>4,9005</td>
</tr>
<tr>
<td>29,4</td>
<td>3,4507</td>
<td>3,1090</td>
<td>7,6379</td>
</tr>
<tr>
<td>39,2</td>
<td>3,5667</td>
<td>3,2135</td>
<td>10,4712</td>
</tr>
<tr>
<td>49,0</td>
<td>6,3505</td>
<td>5,7215</td>
<td>12,5634</td>
</tr>
</tbody>
</table>
Tabela 4.21 - $F = 20g/l$

<table>
<thead>
<tr>
<th>$S_a (g/l)$</th>
<th>$C_r (g/l)$</th>
<th>$v \cdot 10^6 (mol/cm^2,cat\cdot s)$</th>
<th>$S_r \cdot 10^4 (mol/cm^3)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.9</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>9.8</td>
<td>1,6520</td>
<td>1,4891</td>
<td>2,4064</td>
</tr>
<tr>
<td>19.6</td>
<td>2,5228</td>
<td>2,2729</td>
<td>5,0302</td>
</tr>
<tr>
<td>29.4</td>
<td>2,9313</td>
<td>2,6409</td>
<td>7,7823</td>
</tr>
<tr>
<td>39.2</td>
<td>3,7118</td>
<td>3,3442</td>
<td>10,4399</td>
</tr>
<tr>
<td>49.0</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>

Tabela 4.22 - $F = 30g/l$

<table>
<thead>
<tr>
<th>$S_a (g/l)$</th>
<th>$C_r (g/l)$</th>
<th>$v \cdot 10^6 (mol/cm^2,cat\cdot s)$</th>
<th>$S_r \cdot 10^4 (mol/cm^3)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.9</td>
<td>0,8577</td>
<td>0,7728</td>
<td>1,1945</td>
</tr>
<tr>
<td>9.8</td>
<td>1,4789</td>
<td>1,3524</td>
<td>2,4839</td>
</tr>
<tr>
<td>19.6</td>
<td>2,7403</td>
<td>2,4689</td>
<td>4,9698</td>
</tr>
<tr>
<td>29.4</td>
<td>3,3058</td>
<td>2,9783</td>
<td>7,6782</td>
</tr>
<tr>
<td>39.2</td>
<td>3,4363</td>
<td>3,0959</td>
<td>10,5074</td>
</tr>
<tr>
<td>49.0</td>
<td>3,9558</td>
<td>3,5640</td>
<td>13,2286</td>
</tr>
</tbody>
</table>

Correlacionando os dados de taxa de reação, em função da concentração de sacarose na superfície da partícula, na forma de Lineweaver-Burk, para os dados das Tabelas 4.19 a 4.22, obteve-se valores de K'_m e V_m, apresentados na Tabela 4.23. Como os valores de V_m diferiram pouco para as concentrações de frutose usadas no experimento, usou-se o valor médio das taxas máximas obtidas.

Segundo REGAN (78), o método de Lineweaver-Burk é impreciso para a determinação de V_m, sendo porém, adequado para obter a relação (K'_m/V_m) aparente. Como no caso presente, os valores encontrados para V_m foram próximos, optou-se por tirar a média entre eles e corrigir o valor de K'_m encontrado, pela equação 4.37, de modo a manter a relação K'_m/V_m aparente constante.

$$
(K'_m) = K'_m \cdot \frac{V_m}{V_{m\,obs}}
$$

(4.37)

150
onde:

\(\bar{V_m} \) = taxa máxima média

\(K_{mol} \) = constante de Michaelis-Menten obtida pelo gráfico de \(1/v \) em função \(1/S \),

\(V_{mol} \) = taxa máxima de reação obtida pelo mesmo procedimento

\(K_{m}' \) = constante de Michaelis-Menten corrigida

Tabela 4.23

Valores de \(V_{mol}, \bar{V}_m, K_m \) e \(K_{m,0} \) para o caso de inibição por frutose.

<table>
<thead>
<tr>
<th>(F) [g/l]</th>
<th>(K_{mol} \cdot 10^6) (mol/cm(^3))</th>
<th>(K_m \cdot 10^6) (mol/cm(^3))</th>
<th>(V_{mol} \cdot 10^6) (mol/cm(^3)cat·s)</th>
<th>(\bar{V}_m \cdot 10^6) (mol/cm(^3)cat·s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>5,734</td>
<td>5,580</td>
<td>5,989</td>
<td>5,8285</td>
</tr>
<tr>
<td>10</td>
<td>6,420</td>
<td>6,930</td>
<td>6,310</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>5,930</td>
<td>6,796</td>
<td>5,240</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>7,767</td>
<td>7,839</td>
<td>5,775</td>
<td></td>
</tr>
</tbody>
</table>

Pelos resultados apresentados na Tabela 4.23, a inibição da frutose sobre invertase imobilizada, pode ser modelada segundo a cinética de inibição competitiva. Assim, \(K_m' \) é dada pela equação 4.38.

\[
K_{m}' = K_m \left[1 + \frac{F}{K_F}\right] \tag{4.38}
\]

onde: \(K_m = \) constante de Michaelis-Menten na ausência de inibidor

\(K_F = \) constante de inibição por frutose

Um gráfico dos valores de \(K_{m}' \) em função de \(F \), para os resultados da Tabela 4.23 é apresentado na Figura 4.24, com o objetivo de determinar o valor de \(K_F \) aparente.
Figura 4.24 - Determinação de K_F a partir da equação 4.38.

Da Figura 4.24 determinou-se um valor para K_F igual a $3.1022 \cdot 10^{-4}$ \(\text{mol/cm}^3 \) \((55.84g/l) \). COMBES e MONSAN (20), trabalhando com invertase livre, obtiveram um valor para K_F igual a 41.4g/l, e o modelo de inibição competitiva foi o que melhor se ajustou a seus dados experimentais. Com invertase inimobilizada, não encontramos na literatura, nenhum trabalho tratando de inibição pelos produtos da reação.

O modelo de inibição competitiva, dado pela equação 4.38, que mostra a variação de K_m com a concentração de frutose, ajustou-se bem aos dados experimentais, como pode ser visto na Figura 4.24.

b) Inibição por glicose

As taxas de reação de hidrólise de sacarose em presença de glicose,
obtidas pelo mesmo procedimento que em presença de frutose, são apresentadas nas Tabelas 4.24 a 4.27, nas quais G representa a concentração de glicose.

Tabela 4.24 - G = 5g/l

<table>
<thead>
<tr>
<th>S_a (g/l)</th>
<th>Cr (g/l)</th>
<th>$v \cdot 10^6$ (mol/cm²·cat·s)</th>
<th>$S_v \cdot 10^5$ (mol/cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.9</td>
<td>1.2759</td>
<td>1.1496</td>
<td>1.0783</td>
</tr>
<tr>
<td>9.8</td>
<td>2.0299</td>
<td>1.8289</td>
<td>2.3016</td>
</tr>
<tr>
<td>19.6</td>
<td>3.0738</td>
<td>2.7693</td>
<td>4.8772</td>
</tr>
<tr>
<td>29.4</td>
<td>3.4218</td>
<td>3.0829</td>
<td>7.6469</td>
</tr>
<tr>
<td>39.2</td>
<td>4.0017</td>
<td>3.6053</td>
<td>10.3504</td>
</tr>
<tr>
<td>49.0</td>
<td>4.1467</td>
<td>3.7360</td>
<td>13.1756</td>
</tr>
</tbody>
</table>

Tabela 4.25 - G = 10g/l

<table>
<thead>
<tr>
<th>S_a (g/l)</th>
<th>Cr (g/l)</th>
<th>$v \cdot 10^6$ (mol/cm²·cat·s)</th>
<th>$S_v \cdot 10^5$ (mol/cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.9</td>
<td>1.1599</td>
<td>1.0450</td>
<td>1.1105</td>
</tr>
<tr>
<td>9.8</td>
<td>1.7399</td>
<td>1.5675</td>
<td>2.3822</td>
</tr>
<tr>
<td>19.6</td>
<td>2.6388</td>
<td>2.3774</td>
<td>4.9980</td>
</tr>
<tr>
<td>29.4</td>
<td>2.9868</td>
<td>2.6910</td>
<td>7.7668</td>
</tr>
<tr>
<td>39.2</td>
<td>3.9147</td>
<td>3.5269</td>
<td>10.3624</td>
</tr>
<tr>
<td>49.0</td>
<td>4.2047</td>
<td>3.7883</td>
<td>13.1456</td>
</tr>
</tbody>
</table>

Tabela 4.26 - G = 20g/l

<table>
<thead>
<tr>
<th>S_a (g/l)</th>
<th>Cr (g/l)</th>
<th>$v \cdot 10^6$ (mol/cm²·cat·s)</th>
<th>$S_v \cdot 10^5$ (mol/cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.9</td>
<td>1.0328</td>
<td>0.9606</td>
<td>1.1458</td>
</tr>
<tr>
<td>9.8</td>
<td>1.5948</td>
<td>1.4368</td>
<td>2.4225</td>
</tr>
<tr>
<td>19.6</td>
<td>2.4938</td>
<td>2.2468</td>
<td>5.0383</td>
</tr>
<tr>
<td>29.4</td>
<td>2.7548</td>
<td>2.4820</td>
<td>7.8312</td>
</tr>
<tr>
<td>39.2</td>
<td>3.1608</td>
<td>2.8477</td>
<td>10.5840</td>
</tr>
<tr>
<td>49.0</td>
<td>3.1318</td>
<td>2.8216</td>
<td>13.4575</td>
</tr>
</tbody>
</table>
Tabela 4.27 - \(G = 30g/l \)

<table>
<thead>
<tr>
<th>(S_a (g/l))</th>
<th>(C_r (g/l))</th>
<th>(v \cdot 10^3 (mol/cm^2 \cdot cat \cdot s))</th>
<th>(S_r \cdot 10^3 (mol/cm^2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,9</td>
<td>0,9087</td>
<td>0,8187</td>
<td>1,1803</td>
</tr>
<tr>
<td>9,8</td>
<td>1,4799</td>
<td>1,3333</td>
<td>2,4544</td>
</tr>
<tr>
<td>19,6</td>
<td>2,1313</td>
<td>1,9202</td>
<td>5,1590</td>
</tr>
<tr>
<td>29,4</td>
<td>2,4665</td>
<td>2,2222</td>
<td>7,9113</td>
</tr>
<tr>
<td>39,2</td>
<td>2,5228</td>
<td>2,2729</td>
<td>10,7612</td>
</tr>
<tr>
<td>49,0</td>
<td>2,0900</td>
<td>2,6938</td>
<td>13,4969</td>
</tr>
</tbody>
</table>

Os dados de taxa de reação em função da concentração de substrato na superfície do suporte, foram correlacionados na forma de \(1/v \) versus \(1/S_r \), obtendo os valores de \(K_m \) e \(V_m' \), apresentados na Tabela 4.28. Como os valores de \(K_m \) diferiram muito pouco para as várias concentrações de glicose usadas no experimento, optou-se por usar a média dos valores obtidos. Da mesma forma que para fruttose, para manter constante a relação \(K_m/V_m \), corrigiu-se os valores de \(V_m \), conforme equação 4.39.

\[
V_m' = \frac{K_m}{K_{moh}} \cdot V_{moh}'
\]

onde:

\(V_m' \) é a constante de Michaelis-Menten média e \(V_{moh}' \) é a taxa máxima de reação corrigida

Tabela 4.28
Valores de \(K_{moh}, V_{moh} \) e \(V_m' \) para inibição por glicose

<table>
<thead>
<tr>
<th>(G) (g/l)</th>
<th>(K_{moh} \cdot 10^6) (mol/cm(^2))</th>
<th>(V_{moh} \cdot 10^6) (mol/cm(^2) cat \cdot s)</th>
<th>(V_{m} \cdot 10^6) (mol/cm(^2) cat \cdot s)</th>
<th>(K_m) (mol/cm(^2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>3,22</td>
<td>4,50</td>
<td>4,682</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>3,47</td>
<td>4,20</td>
<td>4,055</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>3,30</td>
<td>3,58</td>
<td>3,634</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>3,41</td>
<td>3,18</td>
<td>3,129</td>
<td>3,35</td>
</tr>
</tbody>
</table>

154
A partir dos dados da Tabela 4.28, foi proposto um modelo de inibição não competitiva da glicose, na reação de sacarose por invertase imobilizada em SPC. Assim, a máxima taxa de reação é dada pela equação 4.40.

\[
V'_m = \frac{V_m}{1 + G/K_G}
\] \hspace{1cm} (4.40)

Tomando as inversos, na equação 4.40, vem:

\[
\frac{1}{V'_m} = \frac{1}{V_m} + \frac{1}{K_G \cdot V_m} \cdot G
\] \hspace{1cm} (4.41)

Um gráfico de \(\frac{1}{V'_m}\) em função de \(G\), para os dados da Tabela 4.28, é apresentado na Figura 4.25. com o objetivo de determinar o valor de \(K_G\) aparente. segundo a equação 4.41, obteve um valor para \(K_G = 2.5210 \cdot 10^{-4} \text{mol/cm}^3\).

Figura 4.25 - Determinação de \(K_G\)
4.10.4 - Comprovação dos parâmetros cinéticos intrínsecos considerando a inibição pelos produtos da reação

Foram calculadas as taxas globais de reação com invertease imobilizada, por um programa computacional, utilizando-se do método das diferenças finitas e do método de Runge-Kutta de 4ª ordem, apresentadas no anexo II, levando em conta a inibição pelo substrato e pelos produtos da reação. Os perfis de concentração do substrato e produtos, no interior da matriz de enzima imobilizada, foram determinados pelo método das diferenças finitas. No cálculo das taxas de reação, foram usados os parâmetros cinéticos intrínsecos V_m e K_m, obtidos no item 4.10.2.2, K_F e K_C, obtidos no item 4.3.10, a difusividade efetiva de sacarose no suporte D_{es}, calculada no item 4.10.2.2 e a difusividade efetiva dos produtos D_{ep}, foi considerada aquela em solução diluída, $0.88 \cdot 10^{-4} \text{cm}^2/\text{s}$, calculada pela correlação de Wilke-Chang, a 40°C (22).

O modelo cinético no suporte, contendo a enzima imobilizada foi escrito na forma da equação 4.42

$$ v(S) = \frac{V_m}{(1 + G/K_G)} \cdot \frac{S}{K_m(1 + F/K_F) + S + S^2/K_i} \quad (4.42) $$

O balanço de massa, para o substrato e o produto, no interior do suporte é dado pelas equações 4.43 e 4.44, respectivamente.

$$ \frac{d^2S}{dr^2} + \frac{2}{r} \frac{dS}{dr} = \frac{(V_m/D_{es})}{(1 + G/K_G)} \cdot \frac{S}{K_m(1 + F/K_F) + S + S^2/K_i} \quad (4.43) $$

$$ \frac{d^2P}{dr^2} + \frac{2}{r} \frac{dP}{dr} = \frac{(V_m/D_{ep})}{(1 + G/K_G)} \cdot \frac{S}{K_m(1 + F/K_F) + S + S^2/K_i} \quad (4.44) $$

onde:

$S = \text{concentração de sacarose mol/cm}^3$

$P = G = \text{concentração de glicose (mol/cm}^3\text{)}$
\[P = F = \text{concentração de frutose (} \text{mol/cm}^2) \]

\[D_{eS} = \text{difusividade efetiva de sacarose no suporte} \ (\text{cm}^2/s). \]

\[D_{eP} = \text{difusividade efetiva de glicose ou frutose no suporte} \ (\text{cm}^2/s) \]

\[K_m, \ V_m, \ K_i, \ K_G \ e \ K_F \ são \ as \ constantes \ cinéticas \ (\text{mol/cm}^2). \]

Na equação 4.42 foram consideradas inibição competitiva por frutose e não competitiva por glicose, juntamente com a inibição pelo substrato, para descrever o modelo cinético.

Somando as equações 4.43 e 4.44, e integrando de \(r = 0 \) a \(r = r \), sujeitas às condições de contorno, de fluxo zero no centro das partículas, ou seja, \(dS/dr = dP/dr = 0 \), para \(r = a \), obtem-se a equação 4.45.

\[
\frac{dP}{dr} = -\frac{D_{eS}}{D_{eP}} \cdot \frac{dS}{dr} \quad \text{ou} \quad \frac{dP}{dr} = -\alpha \frac{dS}{dr} \quad (4.45)
\]

onde:

\[
\alpha = -\frac{D_{eS}}{D_{eP}} \quad (4.46)
\]

As taxas globais de reação foram então calculadas a partir do gradiente de concentração de sacarose na superfície do suporte, pelo método das diferenças finitas, conforme equação 4.47.

\[
v = \frac{3}{R} \cdot \frac{D_{eS}}{R} \cdot \left. \frac{dS}{dr} \right|_{r=R} \quad (4.47)
\]

As taxas globais de reação foram também calculadas, por integração numérica sobre o perfil de concentração, pelo método de Runge-Kutta de 4ª ordem, segundo a equação 4.48.

\[
v(\text{global}) = \frac{3}{R^3} \int_{r=0}^{r=R} v(S) \cdot r^2 \, dr \quad (4.48)
\]

157
Os valores das taxas globais de reação calculados pelo gradiente (TGG) e pela integração sobre o perfil de concentração de sacarose (TCI) são apresentados na Tabela 4.29 para o experimento I e 4.30, para o experimento II. Nas tabelas são também apresentadas as concentrações de substrato na superfície da partícula de catalisador, obtida experimentalmente S_r, e no centro e na superfície da mesma, $S(0)$ e $S(N)$, calculadas pelo perfil de concentração, bem como a concentração de glicose ou frutose, representada por P, obtida experimentalmente e aquela calculada pelo perfil de concentração, na superfície do suporte, $P(N)$.

Tabela 4.29

<table>
<thead>
<tr>
<th>S_r</th>
<th>$S(0)$</th>
<th>$S(N)$</th>
<th>P</th>
<th>$P(N)$</th>
<th>TE</th>
<th>TCI</th>
<th>TCG</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.8302</td>
<td>1.8076</td>
<td>4.8258</td>
<td>0.0078</td>
<td>0.0453</td>
<td>2.0277</td>
<td>2.0530</td>
<td>2.0536</td>
</tr>
<tr>
<td>27.4984</td>
<td>12.6256</td>
<td>27.5055</td>
<td>11.666</td>
<td>11.5254</td>
<td>3.7516</td>
<td>3.6758</td>
<td>3.6770</td>
</tr>
<tr>
<td>40.7950</td>
<td>20.9099</td>
<td>40.8048</td>
<td>8.861</td>
<td>8.8642</td>
<td>2.8442</td>
<td>2.8626</td>
<td>2.8631</td>
</tr>
<tr>
<td>85.0257</td>
<td>85.0390</td>
<td>85.0349</td>
<td>9.4109</td>
<td>9.5210</td>
<td>3.0567</td>
<td>2.6372</td>
<td>2.6370</td>
</tr>
<tr>
<td>90.5004</td>
<td>90.5144</td>
<td>90.5250</td>
<td>9.0203</td>
<td>8.8584</td>
<td>3.0743</td>
<td>2.4812</td>
<td>2.4801</td>
</tr>
<tr>
<td>112.8702</td>
<td>112.8750</td>
<td>112.7760</td>
<td>7.8300</td>
<td>8.3401</td>
<td>3.4171</td>
<td>2.5838</td>
<td>2.5870</td>
</tr>
<tr>
<td>128.1350</td>
<td>128.1560</td>
<td>128.1410</td>
<td>7.0747</td>
<td>7.0307</td>
<td>3.2055</td>
<td>2.1457</td>
<td>2.1407</td>
</tr>
</tbody>
</table>

Na Figura 4.26 é apresentada uma comparação entre as taxas de reação obtidas experimentalmente e aquelas calculadas, pelo gradiente na superfície do catalisador ou pela integração sobre o perfil de concentração de substrato, no interior da partícula. Nesses cálculos, considerou-se a presença de produtos de reação no meio.

158
Figura 4.26 - Comparação entre as taxas experimentais, representadas por pontos e as calculadas, representadas pela linha cheia. Experimento I.

O modelo cinético obtido para o experimento I, é dado pela equação 4.49, para S, G e F em mol/cm3.

$$v = \frac{5,6558 \cdot 10^{-6}}{(1 + \frac{G}{2,5521 \cdot 10^{-4}})} \cdot 2,3847 \cdot 10^{-6} (1 + \frac{F}{3,1022 \cdot 10^{-4}}) + S + \frac{S^2}{8,7355 \cdot 10^{-4}}$$

(4.49)
<table>
<thead>
<tr>
<th>S. 10^6</th>
<th>S(I) 10^6</th>
<th>S(N) 10^6</th>
<th>P 10^5</th>
<th>PI(N) 10^5</th>
<th>T.E 10^6</th>
<th>TCI 10^6</th>
<th>TCC 10^6</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.794</td>
<td>2.476</td>
<td>3.792</td>
<td>3.947</td>
<td>5.3571</td>
<td>1.6041</td>
<td>1.5426</td>
<td>1.5999</td>
</tr>
<tr>
<td>5.180</td>
<td>3.1605</td>
<td>5.1851</td>
<td>5.6136</td>
<td>5.4711</td>
<td>1.7921</td>
<td>1.8234</td>
<td>1.8354</td>
</tr>
<tr>
<td>6.553</td>
<td>4.4047</td>
<td>6.5918</td>
<td>5.7044</td>
<td>5.7184</td>
<td>1.8540</td>
<td>1.8923</td>
<td>1.9725</td>
</tr>
<tr>
<td>7.936</td>
<td>5.0747</td>
<td>7.9934</td>
<td>6.7826</td>
<td>6.1315</td>
<td>1.9919</td>
<td>2.0260</td>
<td>2.0500</td>
</tr>
<tr>
<td>9.305</td>
<td>7.0097</td>
<td>9.3555</td>
<td>8.9406</td>
<td>8.5386</td>
<td>2.0508</td>
<td>2.1101</td>
<td>2.1193</td>
</tr>
<tr>
<td>10.813</td>
<td>8.3744</td>
<td>10.8233</td>
<td>1.4095</td>
<td>4.4999</td>
<td>2.1031</td>
<td>2.1581</td>
<td>2.1582</td>
</tr>
<tr>
<td>13.904</td>
<td>11.1409</td>
<td>13.6520</td>
<td>8.3289</td>
<td>5.9046</td>
<td>2.1903</td>
<td>2.2323</td>
<td>2.2321</td>
</tr>
<tr>
<td>16.45</td>
<td>14.0121</td>
<td>16.5337</td>
<td>0.5865</td>
<td>0.5968</td>
<td>2.1842</td>
<td>2.2068</td>
<td>2.2070</td>
</tr>
<tr>
<td>19.950</td>
<td>16.6846</td>
<td>19.3641</td>
<td>0.5961</td>
<td>0.5853</td>
<td>2.2746</td>
<td>2.1880</td>
<td>2.1863</td>
</tr>
<tr>
<td>22.537</td>
<td>17.5759</td>
<td>22.7417</td>
<td>0.7678</td>
<td>0.8218</td>
<td>2.2351</td>
<td>2.1645</td>
<td>2.1546</td>
</tr>
<tr>
<td>25.115</td>
<td>20.6587</td>
<td>25.1195</td>
<td>0.7435</td>
<td>0.7072</td>
<td>2.1918</td>
<td>2.1367</td>
<td>2.1371</td>
</tr>
<tr>
<td>28.700</td>
<td>23.5420</td>
<td>28.0747</td>
<td>0.8513</td>
<td>0.8187</td>
<td>2.1023</td>
<td>2.1105</td>
<td>2.1108</td>
</tr>
<tr>
<td>32.367</td>
<td>40.1668</td>
<td>32.3604</td>
<td>0.5089</td>
<td>0.5094</td>
<td>1.9360</td>
<td>1.9330</td>
<td>1.9320</td>
</tr>
<tr>
<td>56.737</td>
<td>54.0554</td>
<td>56.8623</td>
<td>2.7758</td>
<td>3.8704</td>
<td>1.8010</td>
<td>1.7642</td>
<td>1.7055</td>
</tr>
<tr>
<td>71.112</td>
<td>60.5729</td>
<td>71.0856</td>
<td>3.2502</td>
<td>4.5724</td>
<td>1.7035</td>
<td>1.6209</td>
<td>1.6207</td>
</tr>
<tr>
<td>85.587</td>
<td>83.7290</td>
<td>85.4562</td>
<td>4.5808</td>
<td>4.9275</td>
<td>1.4860</td>
<td>1.4981</td>
<td>1.4984</td>
</tr>
<tr>
<td>99.681</td>
<td>98.2288</td>
<td>98.4857</td>
<td>4.1142</td>
<td>4.4600</td>
<td>1.3377</td>
<td>1.3935</td>
<td>1.3908</td>
</tr>
<tr>
<td>114.205</td>
<td>117.4700</td>
<td>114.2020</td>
<td>5.2447</td>
<td>5.5415</td>
<td>1.0340</td>
<td>1.3605</td>
<td>1.3522</td>
</tr>
<tr>
<td>128.046</td>
<td>127.1060</td>
<td>128.6510</td>
<td>5.2084</td>
<td>5.2761</td>
<td>0.9716</td>
<td>2.1243</td>
<td>2.1248</td>
</tr>
</tbody>
</table>

Na Figura 4.27 são comparadas as taxas experimentais de reação, com as calculadas, para o experimento II.
Figura 4.27 - Comparação entre as taxas de reação experimentais, representadas por pontos, com as calculadas, representadas pela linha cheia.

O modelo cinético para a inversão de sacarose por invertase imobilizada em SPC, aplicado aos dados experimentais obtidos no experimento II é dado pela equação 4.50, para S, G e F em mol/cm3.

161
\[v = \frac{3.125 \cdot 10^{-6}}{(1 + \frac{S}{2.3521 \cdot 10^{-4}})} \cdot \frac{S}{2.3847 \cdot 10^{-6}(1 + \frac{F}{3.1022 \cdot 10^{-4}}) + S + \frac{S^2}{8.7558 \cdot 10^{-4}}} \]

(4.50)

Verifica-se pela Figuras 4.26 e 4.27 que houve uma boa concordância entre os resultados experimentais de taxas de reação e os calculados, quando se considerou todos os parâmetros cinéticos na equação da taxa de reação. Isso evidencia que os produtos de reação, nas concentrações que alcançaram no meio racional, nos experimentos I e II, já exerciam um efeito inibidor, como pode ser visto nas Figuras 4.22 e 4.23, nas quais as taxas de reação calculadas levaram em conta somente inibição pelo substrato.

No caso das Figuras 4.22 e 4.23, quando se desprezou a presença de produtos, houve um bom ajuste entre os pontos experimentais e os teóricos para baixas concentrações de substrato, onde a concentração de produtos é menor e para altas concentrações de \(S \), onde também a concentração de produtos era baixa e há uma predominância da inibição pelo substrato. Para altas concentrações de \(S \), o seu perfil de concentração é pouco acentuado, ou seja, a concentração do substrato no centro da partícula de enzima imobilizada não difere muito daquele da superfiçe, como pode ser visto pelas Tabelas 4.29 e 4.30. Isso justifica a consideração feita de que a constante de inibição pelo substrato, \(K_i \), aparente, seja igual a \(K_i \), intrínseco. Para a faixa intermediária de concentrações do substrato, as taxas de reação, calculadas pelos métodos numéricos foram superiores às observadas experimentalmente.

Devido a esse desvio apresentado entre os valores calculados e os experimentais para as taxas de reação, foi escolhido um modelo cinético levando em consideração a presença de glicose e de frutose no meio reacional, além da inibição pelo substrato. Para isso, foi feito um estudo da influência desses produtos na cinética da reação e determinadas as constantes aparentes de inibição por frutose \(K_F \), e por glicose, \(K_G \). No cálculo das taxas, pelos métodos numéricos, foram considerados os perfis de concentração de substrato e produto no interior das partículas de enzima imobilizada e as constantes de inibição \(K_G \) e \(K_F \) foram consideradas iguais às aparentes. Essa suposição de igualdade dessas constantes foi feita, baseando-se no procedimento experimental usado nas suas determinações. As taxas de reação foram obtidas em experimentos, onde frutose ou glicose foi alimen-
tada ao reator, juntamente com sacarose. Como a conversão de substrato era baixa, a concentração de glicose ou de frutose, no interior e fora do suporte, diferiam pouco, e assim, as constantes de inibição aparentes, se aproximam das intrínsecas, uma vez que o gradiente de produto foi pequeno.

Por outro lado, visto os resultados experimentais de taxa de reação terem apresentado um bom ajuste às taxas calculadas, considerando os perfiles de concentração de substrato e produtos, com todos os parâmetros calculados, a consideração feita em relação às constantes \(K_s \), \(K_F \) e \(K_D \) em relação à \(V_m \) como intrínsecas, foi correta.

Assim, o modelo cinético de hidrólise de sacarose por invertase imobilizada, é descrito pela equação 4.51, para \(v \) em \(\text{mol/cm}^3 \cdot \text{cat.s} \) e \(S, G \) e \(F \) em \(\text{mol/cm}^2 \), em termos de parâmetros intrínsecos.

\[
v = \frac{V_m}{(1 + \frac{G}{2,3847 \cdot 10^{-5}})} \cdot 2,3847 \cdot 10^{-5}(1 + \frac{S}{3,1022 \cdot 10^{-4}}) + S + \frac{S^2}{6,335 \cdot 10^{-4}} (4.51)
\]

Na equação 4.51, o parâmetro \(V_m \) depende da quantidade de enzima ligada ao suporte. Assim, ele deve ser determinado todas as vezes que se imobiliza a enzima. Os demais parâmetros, considerados intrínsecos, são válidos para invertase imobilizada no mesmo suporte, para qualquer geometria do reator.

O valor de \(K_m \) intrínseco, igual a \(2,3847 \cdot 10^{-5} \) \(\text{mol/cm}^2 \), foi menor que o aparente, \(4,3003 \cdot 10^{-5} \). Para a enzima livre, o valor de \(K_m \) foi igual a \(6,238 \cdot 10^{-2} \) \(\text{mol/cm}^2 \).

O fato de \(K_m \) intrínseco ser menor que o aparente, sugere que há limitações difusoriais intrapartícula, contrariando a afirmação de PITCHCHER (72), de que quando se verifica igualdade nas energias de ativação entre a enzima na forma livre e imobilizada, o processo não apresenta limitações difusoriais. Como pode ser notado nas Tabelas 4.29 e 4.30, os perfis de concentração de substrato são mais acentuados para os menores valores de \(S_t \), que é uma faixa de concentração mais influenciada por \(K_m \) no modelo de inibição pelo substrato. Para valores maiores de \(S_t \), a constante \(K_i \) é que passa a ter maior influência.

Por outro lado, comparando os valores de \(K_m \) para a enzima livre e para a enzima imobilizada, conclui-se que a forma imobilizada tem maior afinidade pelo substrato que a livre.
4.10.5 - Influência da resistência à transferência de massa intrapartícula

Com o objetivo de verificar a influência da transferência de massa interna nas partículas de enzima immobilizada, calculou-se os fatores de eficiência \(\eta_i \), baseado na equação 2.31, para uma situação particular de 50% de conversão de substrato a produtos, com as concentrações de sacarose na alimentação variando de 0,02 a 2,00 \(\text{mol} / \text{l} \).

Nos cálculos de \(\eta_i \), \(v_{ob} \) foram calculados pelos mesmos procedimentos numéricos dos itens anteriores, considerando os perfis de concentração de sacarose e produtos no interior das partículas de enzima immobilizada e usando como modelo cinético, a equação 4.49, com todos os parâmetros intrínsecos. As difusividades eletivas de sacarose e produtos no suporte, foram \(0,75 \cdot 10^{-5} \) e \(0,88 \cdot 10^{-5} \text{cm}^2 / \text{s} \), respectivamente. Os valores de \(v(S_i) \) foram calculados pela equação 4.49, admitindo que todas as moléculas de enzima estivessem à concentração do meio líquido, ou seja, \(S_i \).

Para representar gráficamente os valores de \(\eta_i \), relacionou-os ao módulo de Thiele generalizado, conforme procedimento apresentado a seguir.

Partindo-se das equações 2.52 e 4.51, chega-se à equação 4.52, que permite o cálculo de \(\phi \) para a cinética de inibição de invertease immobilizada, pelo substrato e pelos produtos da reação.

\[
\phi = \frac{1}{K_m} \left[\frac{D_{sr} \cdot (1 + G/K_G)}{K_m(1 + F/K_F) + S_b + S_i^2/K_i} \right]^{1/2} \tag{4.52}
\]

onde:

\[
\gamma = R \sqrt{V_m} \tag{4.53}
\]

Os parâmetros \(K_m, K_G, K_F \) e \(K_i \) na equação 4.52 são os mesmos da equação 4.49, \(D_{sr} = 0,75 \cdot 10^{-5} \text{ cm}^2 / \text{s} \) e \(S_i \), \(G \) e \(F \) foram calculados para cada concentração de sacarose na alimentação do reator, considerando uma conversão de 50%. O parâmetro \(\gamma \) assumiu vários valores, fixando \(R \) como 0,023 \(\text{cm} / \text{s} \) e variando \(V_m \), conforme equação 4.53.

Na Figura 4.28, representou-se \(\eta_i \) em função de \(\phi \), para alguns valores de \(\gamma \). Verificou-se que para altos valores de \(S_b \), ou para baixos valores de
V_m, ou para as duas condições conjuntamente, η, é praticamente igual a 1.0. Nessa Figura, as curvas apresentando os parâmetros γ são, portanto, simulações de η, em função de ϕ, para uma faixa de concentração de sacarose na alimentação do reator, de 0,02 a 2,00 mol/l, admitindo em todos os casos, uma conversão de 50%.

No caso real dos experimentos usados para a determinação dos parâmetros intrínsecos, as conversões de substrato a produto foram baixas. Calculou-se então η e ϕ nas condições dos experimentos e os resultados são apresentados na Figura 4.28, pela curva E. Verifica-se que η, foi igual a 0,97 para altas concentrações de substrato e 0,85 para os valores mais baixos da concentração desse. O valor de V_m foi $5,6558 \cdot 10^{-6} mol/cm^2 cat \cdot s$ e R igual a 0,023 cm.
Figura 4.28 - η_i em função de ϕ, para: $\gamma_1 = 1 \cdot 10^{-6}$; $\gamma_2 = 2 \cdot 10^{-5}$; $\gamma_3 = 4 \cdot 10^{-5}$ e $\gamma_4 = 6 \cdot 10^{-5}$. A curva E é relativa aos dados experimentais

4.10.6 - Comprovação do modelo cinético intrínseco

Com o objetivo de testar o modelo cinético intrínseco para a hidrólise de sacarose, equação 4.51, montou-se novamente o reator com uma inver-tase imobilizada com uma atividade maior do que a usada nos experimentos I e II. O sistema foi alimentado com uma solução de sacarose a 50 g/l,
e determinadas as conversões alcançadas a várias vazões de alimentação diferentes, usando o procedimento experimental descrito em 3.2.15a.

As conversões de sacarose a produtos foram determinadas experimentalmente, usando a equação 4.54.

\[
X'_{\text{exp}} = \frac{S_a - S_t}{S_a} \quad (4.54)
\]

onde:

\(X'_{\text{exp}}\) = conversão experimental

\(S_a\) = concentração de sacarose na alimentação do reator, igual a 50g/l

\(S_t\) = concentração de sacarose na saída do reator.

Com os resultados experimentais de \(P\) (concentração de glicose ou de frutose) e de \(S_a\), calculou-se as taxas de reação \(v\), levando em consideração os perfis de concentração de produtos e de substrato no interior das partículas de catalisador. Os procedimentos de cálculos de \(v\) foram os mesmos do item 4.10.4. O modelo cinético usado foi a equação 4.51, com todos os seus parâmetros, exceto \(V_n\), que foi calculado para a enzima imobilizada em questão como sendo \(11.0 \cdot 10^{-9}\text{mol/cm}^2\text{cat.s}\). As difusividades efetivas de sacarose e de produtos nas partículas porosas, foram respectivamente \(D_s = 0.75 \cdot 10^{-5}\text{cm}^2\text{/s}\) e \(D_{ep} = 0.88 \cdot 10^{-5}\text{cm}^2\text{/s}\).

Com os valores das taxas de reação calculados, determinou-se as conversões que seriam alcançadas em cada condição de alimentação ao reator, pela equação 4.55.

\[
X'_{\text{calc}} = \frac{v \cdot \tau}{S_a} \quad (4.55)
\]

onde:

\(X'_{\text{calc}}\) = conversão calculada

\(v\) = taxa de reação calculada

\(\tau\) = tempo de residência no reator.
Na Tabela 4.31, são apresentadas as conversões obtidas experimentalmente, bem como as calculadas pela equação 4.55. As taxas de reação apresentadas na Tabela 4.31 foram, calculadas pelos procedimentos numéricos em mol sac/cm³ cat · s e transformadas a g sac/l · min, para permitir o cálculo de X'_{calc}. O fator de transformação pelo qual devem ser multiplicadas as taxas de reação em g sac/l · min para obter-las em mol sac/cm³ cat · s é 8,91 · 10⁻⁷, para um volume de líquido no reator igual a 20,2 cm³ e com uma densidade de 0,905 g/cm³ para as partículas de SPC no ar.

Tabela 4.31

Conversões experimentais (X'_{exp}) e calculadas (X'_{calc}) em função do tempo de residência ($τ$)

<table>
<thead>
<tr>
<th>$τ$ (min)</th>
<th>X'_{exp}</th>
<th>v (g sac/l·min)</th>
<th>X'_{calc}</th>
<th>P · 10⁵ (mol/cm³)</th>
<th>S_0 · 10⁵ (mol/cm³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,9182</td>
<td>0,1428</td>
<td>7,4420</td>
<td>0,1368</td>
<td>2,0467</td>
<td>12,2608</td>
</tr>
<tr>
<td>0,9506</td>
<td>0,1508</td>
<td>7,3959</td>
<td>0,1400</td>
<td>2,1614</td>
<td>12,1661</td>
</tr>
<tr>
<td>1,0376</td>
<td>0,1620</td>
<td>7,3445</td>
<td>0,1553</td>
<td>2,3208</td>
<td>12,0686</td>
</tr>
<tr>
<td>1,1412</td>
<td>0,1646</td>
<td>7,3311</td>
<td>0,1673</td>
<td>2,3580</td>
<td>11,9089</td>
</tr>
<tr>
<td>1,3001</td>
<td>0,2034</td>
<td>7,1307</td>
<td>0,1987</td>
<td>2,9150</td>
<td>11,4150</td>
</tr>
<tr>
<td>1,6160</td>
<td>0,2274</td>
<td>7,0041</td>
<td>0,2264</td>
<td>3,2383</td>
<td>11,0691</td>
</tr>
<tr>
<td>1,9238</td>
<td>0,2407</td>
<td>6,8666</td>
<td>0,2650</td>
<td>5,5778</td>
<td>10,7497</td>
</tr>
<tr>
<td>2,6234</td>
<td>0,3280</td>
<td>6,4591</td>
<td>0,3380</td>
<td>4,6089</td>
<td>9,6286</td>
</tr>
<tr>
<td>3,7407</td>
<td>0,4182</td>
<td>5,9278</td>
<td>0,4435</td>
<td>5,0917</td>
<td>8,3358</td>
</tr>
<tr>
<td>7,9216</td>
<td>0,6126</td>
<td>3,8881</td>
<td>0,6164</td>
<td>8,7778</td>
<td>5,5497</td>
</tr>
</tbody>
</table>

Na Figura 4.29 é apresentada uma comparação entre as conversões de substrato a produtos, experimentais e teóricas. Verifica-se por este gráfico uma boa concordância entre os valores experimentais e os calculados, considerando como modelo cinético intrínseco, a equação 4.51. Isso confirma a validade dos parâmetros cinéticos obtidos, bem como a adequação do método usado nas suas determinações.
Figura 4.29 - Comparação entre as conversões experimentais, representadas por pontos e as calculadas, pela linha cheia.
4.10.7 - Determinação da difusividade efetiva de sacarose nas partículas de enzima imobilizada

Para a determinação da difusividade efetiva de sacarose em SPC, utilizou-se do procedimento apresentado no item 3.2.17. A variação da concentração da solução de sacarose em função do tempo, é apresentada na Tabela 4.32.

Tabela 4.32

Índice de refração (IR) da solução de sacarose no reator, em função do tempo.

<table>
<thead>
<tr>
<th>t(s)</th>
<th>I.R.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.3330</td>
</tr>
<tr>
<td>20</td>
<td>1.3328</td>
</tr>
<tr>
<td>40</td>
<td>1.3326</td>
</tr>
<tr>
<td>60</td>
<td>1.3326</td>
</tr>
<tr>
<td>80</td>
<td>1.3326</td>
</tr>
<tr>
<td>100</td>
<td>1.3326</td>
</tr>
<tr>
<td>120</td>
<td>1.3326</td>
</tr>
<tr>
<td>140</td>
<td>1.3326</td>
</tr>
<tr>
<td>160</td>
<td>1.3326</td>
</tr>
</tbody>
</table>

Pelos dados apresentados na Tabela 4.32, concluiu-se que o experimento não foi adequado para a determinação de D_α pelo procedimento apresentado no item 3.2.17. A variação da concentração de sacarose, indicada pelo IR, foi muito pequena e estabilizou-se rapidamente. Para que pudesse ser aplicada a equação 3.11, para a determinação de D_α, seriam necessários vários pontos, a diferentes concentrações. Foram realizados outros experimentos, usando concentrações de sacarose menores, com o objetivo de se obter uma maior variação nos pontos de concentração em função do tempo, mas as leituras de IR não foram precisas.

Por outro lado, para se usar uma maior quantidade de suporte na coluna da Figura 3.3, implicaria em desvio no comportamento de reator de mistura do sistema. Também, as partículas de sílica de porosidade
controlada não são adequadas para que pudesse utilizar de um reator agitado, pois se rompem pelo atrito na agitação.

Pelos resultados apresentados na Tabela 4.32, verifica-se que a concentração de sacarose se estabilizou muito depressa, devido principalmente, à sua pequena dimensão e à sua característica de partícula porosa.

Em função do exposto acima, optou-se por determinar \(D_c \), a partir de dados de taxa de reação, utilizando-se de duas enzimas imobilizadas, de diferentes atividades, como exposto no item 4.10.2.2.

Com o objetivo de verificar como seria a variação da concentração de sacarose no experimento apresentado acima, resolvi-se a equação 3.11, para tempos fixos, considerando para \(D_c \) o valor calculado no item 4.10.2.2, igual a \(0.75 \cdot 10^{-5} \text{cm}^2/\text{s} \), calculando por um programa computacional, a relação \(C_t/C_{30} \), apresentada na Figura 4.30. O procedimento de cálculo e o programa computacional são apresentados no anexo III.

Baseado na Figura 4.30, verifica-se que após 30 segundos a partir do início da circulação da solução de sacarose através do leito de partículas, atingiu-se o equilíbrio, ou seja, as concentrações dentro e fora das partículas não mais variaram. Isso indica que, no caso da enzima imobilizada, os perfis de concentração de substrato e produtos no interior do suporte se formam rapidamente.
Figura 4.30 - Perfil adimensional de concentração, C_1/C_{10}, em função do tempo, calculado pela equação 3.11, para $D_{m} = 0,75 \cdot 10^{-5} \text{ cm}^2/\text{s}$.

172
5 – Conclusões

Do presente trabalho, tiram-se as seguintes conclusões:

5.1 - A cinética da reação de hidrólise de sacarose por invertase livre foi modelada pela equação 4.20, considerando inibição pelo substrato, um fator de correção \(f(S) \) em termos de difusividade de massa e inibição pelos produtos da reação, glicose e frutose.

5.2 - A inibição por frutose, da reação de hidrólise de sacarose com invertase livre foi modelada pela cinética de inibição competitiva, com uma constante de inibição \(K_F = 0.228 \text{ mol}/l \).

5.3 - A inibição da reação com invertase livre por glicose foi descrita por inibição parcialmente não competitiva, com \(K_C = 0.064 \text{ mol}/l \) e \(\beta = 0.6739 \).

5.4 - Invertase imobilizada em partículas porosas de alumina ativada com \(TiCl_4 \) apresentou uma atividade baixa, de apenas 96 \(U/g \) de suporte. Quando este foi ativado por silanização, a atividade alcançada foi de 160\(U/g \) de suporte.

5.5 - Invertase imobilizada em sílica de porosidade controlada, ativada por silanização com \(\gamma \)-aminopropiltriimoxilano e glutaraldeído, atingiu atividades de 1800 \(U/g \) de suporte. As atividades citadas em 5.4 e 5.5 foram medidas a 40°C, com solução de sacarose com concentração inicial de 50g/l em tampão acetato de sódio 0,01 \(M \), pH 4,5.

5.6 - A atividade de invertase obtida na imobilização usando \(SPC \) como suporte, depende da quantidade de enzima disponível no meio e verifica-se uma saturação do suporte, quando essa aumenta além de um valor limite. Enzimas imobilizadas com maior atividade são obtidas quando o pH do meio de imobilização é 4,5.

173
5.7 - A retenção de atividade pelo suporte, definida pela relação entre a atividade da enzima imobilizada e a do meio de imobilização, é maior para baixas concentrações de enzima no meio. São conseguidas altas atividades de invertase imobilizada, quando a concentração de enzima livre no meio é alta, porém com baixas retenções de atividade.

5.8 - As condições ótimas para a ação de invertase imobilizada em SPC foram pH 4.5 e temperatura 55°C.

5.9 - A energia de ativação da reação catalisada por invertase imobilizada em SPC foi praticamente a mesma daquela obtida com invertase livre. Dessa forma, o valor de $E_a = 7807 \text{ cal/mol}$ para invertase imobilizada é a energia de ativação intrínseca da reação de hidrólise de sacarose.

5.10 - O pH de maior estabilidade de invertase imobilizada, a 40°C, foi 4.5.

5.11 - A invertase imobilizada em SPC, por processo covalente, apresenta uma boa estabilidade térmica, com uma energia de desativação de 122 Kcal/mol, determinada a partir da cinética de desativação de primeira ordem. A imobilização praticamente não alterou a estabilidade térmica da invertase usada.

5.12 - Silica de porosidade controlada mostrou-se um excelente suporte para imobilização de invertase, implicando em enzimas imobilizadas ativas e estáveis, além do que este suporte pode ser regenerado por pirólise, quando a atividade enzimática estiver baixa, e ser reutilizado para outras imobilizações.

5.13 - A cinética da reação catalisada por invertase imobilizada em SPC foi modelada considerando inibição pelo substrato e produtos da reação. A inibição exercida por frutose é do tipo competitiva e por glicose, do tipo não competitiva.

5.14 - A difusividade efetiva de sacarose no suporte, calculada a partir dos resultados experimentais de taxas iniciais de reação para duas
enzimas imobilizadas com diferentes atividades, foi a mesma da sacarose em soluções diluídas a 40ºC, ou seja, 0,75 \cdot 10^{-5} \text{ cm}^2/\text{s}.

5.15 - O valor da constante de Michaelis-Menten intrínseca foi menor do que o da aparente, que por sua vez, foi menor que o da enzima livre. Assim a enzima imobilizada tem maior afinidade pelo substrato que a livre.

5.16 - As constantes cinéticas V_m, K_i, K_F e K_G aparentes foram iguais às intrínsecas, nas condições experimentais usadas nas suas determinações.

5.17 - O sistema de reator usado nos experimentos, não apresentou resistência à transferência de massa externa, como pode ser verificado pela figura 4.19 e pela proximidade dos valores de S_i e S_0, conforme tabela A.1.

5.18 - As partículas de SPC apresentaram resistência à transferência de massa interna, evidenciado pelo menor valor da constante de Michaelis-Menten intrínseca em relação à aparente e pelos gradientes de concentração de sacarose, que podem ser verificados nas tabelas 4.17 e 4.18.

Sugestões para trabalhos futuros

5.1 Utilizar suportes de sílica de porosidade controlada com outros diâmetros de poros, maiores e menores que 375 \AA, visando otimizar o processo de imobilização de invertase.

5.2 Estudar melhor a imobilização de invertase em alumina, já que esse suporte é disponível na indústria química, com porosidades bastante acentuadas, onde é usado para impregnação de catalisadores.
6 – Referências Bibliográficas

176

21. CORNISH-BOWDEN, A. & EISENTHAL, R. Statistical Considerations in the Estimation of Enzyme Kinetic Parameters by the Direct

179

66. MORAES, F.F. & ZANIN, G.M. Sacarificação de Amido e Resíduos Celulósicos em Reator de Leito Fluidizado. 3º Relatório Semestral de Pesquisas, maio 1983.

182

7 – ANEXOS

Anexo I

Cálculo das concentrações de substrato na superfície do suporte (S_s)

A sequência de cálculo usada, foi a seguinte:

1) As taxas de reação (v) foram calculadas pela equação 3.7, para cada condição de concentração no reator (S_b).

2) As concentrações no reator (S_b), foram calculadas pela equação 3.8.

3) Com as condições experimentais usadas no reator, apresentadas no item 3.2.15 a calculou-se a velocidade de escoamento de solução no leito catalítico (u).

$$u = \frac{q}{A \cdot \varepsilon} = \frac{96 \cdot 4}{60 \cdot \pi \cdot (1,1)^2 \cdot 0,405} = 4,157 \text{cm/s}$$

onde: $q =$ vazão no leito
$A =$ área da reação transversal do leito
$\varepsilon =$ porosidade do leito fixo

4) Cálculo dos números de Reynolds, (R_e)

$$R_e = \frac{\rho \cdot d_r \cdot u}{\mu}$$

186
onde: \(\rho \) = densidade da solução
\(d_p \) = diâmetro médio das partículas
\(\mu \) = viscosidade da solução

5) Cálculo do fator de Chilton - Colburn, \((J_D)\) pela correlação 3.22.

\[J_D = 1,625 \cdot (R_e)^{-0.507} \]

6) Cálculo do número de Schmidt \((S_c)\)

\[S_c = \frac{\mu}{\rho \cdot D(S)} \]

onde: \(D(S) \) = difusividade de sacarose à concentração \(S \).

7) Cálculo de \(K_i \), a partir da definição de \(J_D \).

\[K_i = \frac{J_D \cdot u}{S_c^{2/3}} \]

onde: \(K_i \) = coeficiente de transferência de massa

8) Cálculo de \(S_* \), pela equação 3.10

\[v \cdot \frac{R}{3} = K_i \left(S_b - S_* \right) \]

As difusividades \(D(S) \) foram obtidas pela correção da difusidade de sacarose à diluição infinita \(D_0 \), a 40°C, igual a 0,75.10^{-4} \text{cm}^2/\text{s}, baseado nos trabalhos de ENGLISH e DOLE (31).
Dessa forma, \(D(S) \) é dado pela equação seguinte:

\[
D(S) = 0.75 \times 10^{-4} (1 - 1.2346 \bar{X})
\]

onde: \(\bar{X} \) = concentração de sacarose em grama de sacarose por grama de solução.

As demais propriedades físicas das soluções de sacarose foram obtidas da referência 68.

Na tabela A.1, apresentada a seguir são mostradas as concentrações de sacarose na alimentação do reator \((S_a) \), no reator \((S_i) \), na superfície da partícula \((S_r) \), bem como a taxa da reação obtida experimentalmente \((v) \) e o coeficiente de transferência de massa na camada limite \((K_i) \), para o experimento 1.
<table>
<thead>
<tr>
<th>$S_0 \cdot 10^6$ (mol/cm2)</th>
<th>$S_t \cdot 10^6$ (mol/cm2)</th>
<th>$v \cdot 10^6$ (mol/cm2cat.s)</th>
<th>$K_0 \cdot 10^2$ (cm/s)</th>
<th>$S_r \cdot 10^5$ (mol/cm3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.4327</td>
<td>1.0837</td>
<td>1.1343</td>
<td>1.32</td>
<td>1.0168</td>
</tr>
<tr>
<td>2.8655</td>
<td>2.2668</td>
<td>1.9460</td>
<td>1.30</td>
<td>2.1520</td>
</tr>
<tr>
<td>4.2982</td>
<td>3.5223</td>
<td>2.5219</td>
<td>1.28</td>
<td>3.3712</td>
</tr>
<tr>
<td>5.7310</td>
<td>4.8302</td>
<td>2.9277</td>
<td>1.28</td>
<td>4.6548</td>
</tr>
<tr>
<td>7.1637</td>
<td>6.1542</td>
<td>3.2812</td>
<td>1.27</td>
<td>5.9561</td>
</tr>
<tr>
<td>8.5965</td>
<td>7.5507</td>
<td>3.3990</td>
<td>1.26</td>
<td>7.3439</td>
</tr>
<tr>
<td>10.0292</td>
<td>8.9351</td>
<td>3.5561</td>
<td>1.25</td>
<td>8.7170</td>
</tr>
<tr>
<td>11.4620</td>
<td>10.3558</td>
<td>3.5954</td>
<td>1.25</td>
<td>10.1353</td>
</tr>
<tr>
<td>12.8947</td>
<td>11.7322</td>
<td>3.7786</td>
<td>1.24</td>
<td>11.4956</td>
</tr>
<tr>
<td>14.3275</td>
<td>13.1569</td>
<td>3.7916</td>
<td>1.23</td>
<td>12.9206</td>
</tr>
<tr>
<td>17.1930</td>
<td>16.0264</td>
<td>3.8179</td>
<td>1.21</td>
<td>15.7845</td>
</tr>
<tr>
<td>20.0585</td>
<td>18.8839</td>
<td>3.8571</td>
<td>1.20</td>
<td>18.6375</td>
</tr>
<tr>
<td>25.7895</td>
<td>24.6108</td>
<td>3.8310</td>
<td>1.17</td>
<td>24.3598</td>
</tr>
<tr>
<td>28.6530</td>
<td>27.4884</td>
<td>3.7916</td>
<td>1.15</td>
<td>27.2356</td>
</tr>
<tr>
<td>42.0824</td>
<td>41.8803</td>
<td>3.5822</td>
<td>1.08</td>
<td>41.6260</td>
</tr>
<tr>
<td>57.3099</td>
<td>56.3528</td>
<td>3.1110</td>
<td>1.02</td>
<td>56.3505</td>
</tr>
<tr>
<td>71.6374</td>
<td>70.7608</td>
<td>2.8492</td>
<td>0.95</td>
<td>70.5309</td>
</tr>
<tr>
<td>85.9649</td>
<td>85.0237</td>
<td>3.0587</td>
<td>0.88</td>
<td>85.0221</td>
</tr>
<tr>
<td>100.2924</td>
<td>99.5004</td>
<td>2.5743</td>
<td>0.81</td>
<td>99.2567</td>
</tr>
<tr>
<td>114.6199</td>
<td>113.8762</td>
<td>2.4171</td>
<td>0.75</td>
<td>113.6291</td>
</tr>
<tr>
<td>128.9474</td>
<td>128.2399</td>
<td>2.2995</td>
<td>0.68</td>
<td>127.9806</td>
</tr>
</tbody>
</table>

Comparando os valores de S_t e S_r, verifica-se que para o caso do experimento I, a maior diferença entre essas concentrações corresponde a um erro de 6.17%. Para o experimento II, seguindo a mesma metodologia de cálculo, verificou-se que o maior erro entre S_t e S_r foi de 3.51%.

Esses erros foram muito pequenos, e nos cálculos foi considerado $S_r = S_t$, conforme assinalado no item 4.10.2.1.
Anexo II

A – Cálculo das taxas globais de reação pelo método das diferenças finitas

O modelo cinético para a reação de hidrólise de sacarose por invertase imobilizada em SPC é dado pela equação 1.

\[v(S) = \frac{V_m \cdot S}{(1 + G/K_G) \cdot K_m(1 + F/K_F) + S + S^2/K_i} \] (1)

Do balanço de massa para substrato e produto no interior do suporte, vem que:

\[\frac{d^2S}{dr^2} + \frac{2}{r} \frac{dS}{dr} = \frac{V_m/D_s}{(1 + G/K_G)} \cdot \frac{S}{K_m(1 + F/K_F) + S + S^2/K_i} = FS \] (2)

\[\frac{d^2P}{dr^2} + \frac{2}{r} \frac{dP}{dr} = \frac{-V_m/D_p}{(1 + G/K_G)} \cdot \frac{S}{K_m(1 + F/K_F) + S + S^2/K_i} = FP \] (3)

onde: \(S \) = concentração de sacarose (mol/cm\(^3\))
\(P = G \) = concentração de glicose (mol/cm\(^3\))
\(P = F \) = concentração de frutose (mol/cm\(^3\))
\(D_s \) = difusividade efetiva de sacarose nas partículas de enzima imobilizada.
\(D_p \) = difusividade efetiva de glicose ou frutose no suporte
\(K_m, K_G, K_F, K_i \) são as constantes cinéticas.

FS e FP, são generalizações dos segundos membros das equações 2 e 3, respectivamente.

Das equações 2 e 3, vem:
\[-D_e \frac{dP}{dr} = D_e \frac{dS}{dr}\] ou

\[\frac{dP}{dr} = -\frac{D_e}{D_e} \left(\frac{dS}{dr}\right)\] ou

\[\frac{\Delta P}{\Delta r} = \alpha \frac{\Delta S}{\Delta r}\] (4)

onde \(\alpha = -\frac{D_e}{D_e}\) (5)

As equações 2 e 3, podem então ser generalizadas como:

\[\frac{d^2 S}{dr^2} + \frac{2}{r} \frac{dS}{dr} = FS\] (6)

\[\frac{d^2 P}{dr^2} + \frac{2}{r} \frac{dP}{dr} = FP = \alpha \cdot FS\] (7)

O perfil de concentração de substrato e produto no interior do suporte foi obtido pelo método das diferenças finitas como mostrado a seguir:
Na figura 1 são mostrados, esquematicamente, os perfis de S e P.

Figura A.1

Dividiu-se a posição radial em 100 intervalos iguais, com 101 pontos nodais (0, 1, 2, 3,..., 100), onde $h = R/100$.

Do método de diferenças finitas, tem-se:

\[
\frac{dS}{dr} = \frac{S_{i+1} - S_{i-1}}{2h}
\]
\[\text{(8)}\]

\[
\frac{dP}{dr} = \frac{P_{i+1} - P_{i-1}}{2h}
\]
\[\text{(9)}\]

\[
\frac{d^2S}{dr^2} = \frac{S_{i-1} - 2S_i + S_{i+1}}{h^2}
\]
\[\text{(10)}\]
\[
\frac{d^2 P}{dr^2} = \frac{P_{i-1} - 2P_i + P_{i+1}}{\hbar^2}
\] (11)

No centro das partículas, tem-se que:

\[
\left. \frac{dS}{dr} \right|_{r=0} = 0 \quad e \quad \left. \frac{dP}{dr} \right|_{r=0} = 0
\]

Assim, pela regra de L'Hopital, vem:

\[
\lim_{r \to 0} \frac{1}{r} \left. \frac{dS}{dr} \right| = \left. \frac{d^2 S}{dr^2} \right|_{r=0}
\]

que aplicado na equação geral, tem-se

\[
\frac{d^2 S}{dr^2} + \frac{2}{r} \left. \frac{dS}{dr} \right| = FS(0)
\]

\[
\frac{d^2 S}{dr^2} + \frac{2}{r} \frac{d^2 S}{dr^2} = FS(0) \implies 3 \left. \frac{d^2 S}{dr^2} \right| = FS(0)
\] (12)

Substituindo (12) em (10), implica que:

\[
3 \left(\frac{S_{-1} - 2S_0 + S_1}{\hbar^2} \right) = FS(0)
\]

Mas por simetria, \(S_{-1} = S_1\)

\[
3 \left(\frac{S_{-1} - 2S_0 + S_1}{\hbar^2} \right) - \frac{6(S_1 - S_0)}{\hbar^2} = FS(0)
\]
\[S_1 = S_0 + \frac{h^2}{6} FS(0) \] \hspace{1cm} (13)

Conhecendo-se a concentração no centro da matriz ou estimando-a, pode-se determinar a concentração no nó número 1, \(S_1 \), pela equação 13.

Para os nós seguintes, a partir do primeiro, pode-se escrever uma relação geral, na forma:

\[S_{i+1} = \frac{i}{i+1} \left[h^2 \cdot FS(i) - \left(1 - \frac{1}{i} \right) S_{i-1} + 2S_i \right] \] \hspace{1cm} (14)

Determina-se a concentração até um ponto fictício, \(S_{N+1} \) fora da partícula de enzima imobilizada. A taxa global de reação pode se calcular a partir do gradiente de concentração na superfície

\[\frac{dS}{dr}_{r=R} = \frac{S_{N+1} - S_{N-1}}{2h} \]

Assim, \(v \) é dado por:

\[v = D_e \frac{dS}{dr}_{r=R} \left(\frac{A}{V} \right) \]

ou

\[v = \frac{3}{R} \cdot D_e \frac{dS}{dr}_{r=R} \] \hspace{1cm} (15)

onde \(A \) = área da superfície da partícula
\(V \) = volume da partícula

194
O perfil de concentração de produtos de reação foi obtido concomitante ao perfil de substrato e de forma análoga, ou seja, conhecendo ou estimando \(P_0 \) no centro da partícula, determina-se \(P_1 \).

\[
P_1 = P_0 + \frac{h^2}{6} \cdot \alpha \cdot FS
\]

(16)

\[
e \cdot P_{i+1} = \frac{i}{i+1} \left[k^2 \alpha FS(i) - \left(1 - \frac{1}{i} \right) \cdot P_{i-1} + 2P_i \right]
\]

(17)

Pelos dados experimentados, tem-se taxas de reação globais, concentração de substrato e produtos de reação na superfície da matriz \(S_N \) e \(P_N \).

Para obter a concentração no centro da matriz, utilizou-se de um processo iterativo, considerando a taxa de reação com parâmetros conhecidos.

Procedimento de ajuste

Sendo conhecido \(S_N \) e \(P_N \), faz-se uma estimativa inicial de \(S_0 = S_N \).

Logo, \(P_0 = P_N + \alpha (S_0 - S_N) \)

Com \(P_0 > P_N \) já que \(\alpha < 0 \) e \((S_0 - S_N) < 0 \)

O perfil foi obtido por diferenças finitas e o valor de \(S_N \) obtido foi comparado com \(S_N \) experimental.

\[
\text{Se } |(S_N) \text{ obtido} - (S_N) \text{ exp}| < \varepsilon ,
\]

o valor de \(S_0 \) é correto;

\[
\text{Se } |(S_N) \text{ obtido} - (S_N) \text{ exp}| > \varepsilon ,
\]

195
estimou-se novo valor de S_0, conforme procedimento a seguir:

$$S_0 = (S_0)_{\text{anterior}} + \left[(S_N)_{\text{obtido}} - (S_N)_{\text{exp}}\right]$$

$$e \quad P_0 = (P_0)_{\text{anterior}} + \alpha \left[(S_N)_{\text{obtido}} - S_N_{\text{exp}}\right]$$

Repetiu-se o procedimento até que ϵ se torne bastante pequeno.

O programa computacional para o cálculo dos perfis de concentração de produto e substrato, bem como para o cálculo das taxas de reação por diferenças finitas e por integração sobre o perfil de concentração pelo método de Runge-Kutta é apresentado no item C desse anexo.

B – Cálculo das taxas globais de reação pelo método de Runge-Kutta de 4ª ordem

As taxas globais de reação foram calculadas pela integração numérica sobre o perfil de concentração obtido anteriormente.

$$v_{\text{global}} = \frac{1}{V} \int \int \int_{V(S)} v(S) dV = \frac{3}{4\pi R^2} \int_{r=0}^{r=R} v(S) \cdot 4\pi r^2 dr$$

$$v_{\text{global}} = \frac{3}{R^3} \int_{r=0}^{r=R} v(S)r^2 dr \quad (18)$$

Fazendo-se $x(i) = v(i) \cdot (ih)^2$ e $r = ih$, onde $h = \frac{R}{N}$, vem que:

Conhecidos os perfis de concentração $S(i)$ e $P(i)$, calcula-se $x(i) = v(i) \cdot (ih)^2$.

O cálculo da integral foi efetuado caminhando de 2 em 2 nós, ou seja, para $i = 0, 2, 4, \ldots, N$.

196
chamando \(y_i = \int_{r=0}^{r=r_i} v(i) \cdot r^2 \, dr \), com \(y(0) = 0 \), tem-se que:

\[
y_i = y_{i-2} + \frac{1}{6} (K_1 + K_4) + \frac{1}{3} (bK_2 + dK_3), \quad \text{onde:}
\]

\[
K_1 = h \cdot x(i - 2), \\
K_2 = h \cdot x(i - 1), \\
K_3 = h \cdot x(i - 1), \\
K_4 = h \cdot x(i), \\
b = 1 - \sqrt{2}/2, \\
d = 1 + \sqrt{2}/2.
\]

Logo: \(v_{\text{global}} = \frac{3}{R^3} \cdot y_N \) \hspace{1cm} (19)

O programa computacional é apresentado no item C.
C - Programa para o cálculo das taxas globais de reação por diferenças finitas e por Runge - Kutta de 4ª ordem

REM "PREVISAO DE TAXAS GLOBAIS DE REACAO: O programa calcula"
REM "cuia taxas de reacao, a partir de parametros cineticos"
REM "cos conhecidos e com dados de concentração de substancias"
REM "trato e produtos de reacao na superficie da matriz."
10 INPUT "taxa maxima de reacao Vmax=":VM
15 INPUT "raio da matriz Rm=":R
20 INPUT "difusividade efetiva De=":KE
25 INPUT "relacao ALFA =": ALFA
30 INPUT "constante de Michaelis-Menten Km=":KM
35 INPUT "constante de inibicao pelo substrato Ki=": KI
40 INPUT "constante de inibicao Kg": KG
45 INPUT "constante de inibicao Kf=": Kf
50 INPUT "numero de pontos experimentais q":Q
55 DIM S(102),P(102),F(102),FP(102),X(102)
60 DIM V(102),XS(Q),XP(Q),T(Q),Y(102)
70 GOSUB 405
75 LPRINT "nomenclatura"
80 LPRINT "S(0)= concentração de substrato no centro"
85 LPRINT "S(N)= concentração de substrato na superficie"
90 LPRINT "T(N)= conc. de prod. na superficie (P=G=F)"
95 LPRINT "TCG= taxa de reacao calculada pelo integracao"
100 LPRINT "TE = taxa de reacao experimental"
105 L=1
120 A=XG(L)
125 B=XP(L)
130 TE=T(L)
135 N=10
140 H=R/N
145 S(0)=A/2
150 P(0)=B*ALFA*(S(0)-A)
155 Z=(1+P(0)/KG)*(KM*(1+P(0)/KF)+S(0)+(S(0)^2)/KI)
160 V(0)=VM*S(0)/Z
165 FS(0)=V(0)/DE
170 FP(0)=FS(0)*ALFA
175 S(1)=S(0)+((H^2)/6)*FS(0)
180 P(1)=P(0)+((H^2)/6)*FP(0)
185 FOR I=1 TO N
190 Z=(1+P(I)/KG)*(KM*(1+P(I)/KF)+S(I)+(S(I)^2)/KI)
195 \(V(I) = VM^*S(I)/Z \)
200 \(PS(I) = V(I)/DE \)
205 \(FP(I) = PS(I)^*ALFA \)
210 \(S(I+1) = ((I/(I+1))^{-2}*S(I) + 2*S(I) - (1-1/I)*S(I-1)) \)
215 \(P(I+1) = ((I/(I+1))^{-2}*FP(I) + 2*FP(I) - (1-1/I)*FP(I-1)) \)
220 NEXT I
225 C = S(N) - A
230 D = P(N) - B
235 E = ABS(C)
240 F = ABS(D)
245 G = E / A
250 IF G < 0.001 GOTO 270
255 S(0) = S(0) - C
260 P(0) = P(0) - D
262 IF S(0) < 0 GOTO 397
269 GOTO 155
270 IF N = 100 GOTO 270
275 N = 100
280 H = R / N
285 GOTO 155
290 REM "Calculos finais"
295 HA = 1 - (2^-15) / 2
300 DA = 1 + (2^-15) / 2
305 FOR I = 0 TO N
310 X(I) = V(I)^*{(I*H)^*2}
315 NEXT I
320 Y(I) = 0
325 FOR J = 1 TO 50
330 I = 2 * J
335 M1 = 2 * H * X(I - 2)
340 M2 = 2 * H * X(I - 1)
345 M3 = M2
350 M4 = 2 * H * X(I)
355 V(I) = V(I - 1) + (M1 + M4) / 6 + (HA * M2 + HA * M3) / 3
360 NEXT J
365 TCI = 3 * Y(N) / (R^2)
370 TCG = 0.001 * (S(N+1) - S(N-1)) / (2 * H * R)
380 LPRINT S(0), S(N), P(N), TCI, TCG, TE
385 IF L = 0 GOTO 400
390 L = L + 1
395 GOTO 120
397 PRINT "Problema nao resolvido, s(0) < 0"
400 STOP
403 FOR I = 1 TO Q
407 PRINT "i = "; I
410 INPUT "concent. substr. na superficie xs(i) = "; XS(I)
415 INPUT "concent. prod. na auv perf. xp(i) = "; XP(I)
420 INPUT "taxa de reacao experimental Te = "; T(I)
425 NEXT I
430 RETURN
Anexo III

Obtenção do perfil de concentração adimensional em função do tempo, no interior das partículas

Resolviu-se numericamente a equação 3.11, apresentada a seguir:

$$\frac{C_t}{C_{10}} = \frac{\alpha}{1 + \alpha} \left\{ 1 + \sum_{n=1}^{\infty} \frac{6(1 + \alpha)}{9 + 9\alpha - q_n^2 \cdot \alpha^2} \cdot \exp \left(\frac{-D \cdot q_n^2 \cdot t}{R^2} \right) \right\}$$

onde:

$$\alpha = \frac{V_l}{V_s \cdot K_p}$$

V_l = volume da fase líquida
V_s = volume da fase sólida
K_p = coeficiente de participação, considerado aqui, igual a 1
q_n = raízes positivas não nulas e sucessivas da equação (21).

$$\tan q_n = \frac{3 \cdot q_n}{3 + \alpha \cdot q_n^2}$$

As raízes q_n foram obtidas pelo método de Newton.

Fazendo

$$F = \tan q_n - \frac{3 \cdot q_n}{3 + \alpha \cdot q_n^2}$$
Estimativa inicial \((q_n) = (q_n)_i \);

Da figura A.2, tem-se que

\[
F' \left[(q_n)_i \right] = \frac{F \left[(q_n)_i \right] - 0}{(q_n)_i - (q_n)_{i+1}}
\]

Logo:

\[
(q_n)_{i+1} = (q_n)_i - \frac{F(q_n)}{F'(q_n)}
\] \((23) \)
Foram determinados 150 raízes \(q_n \) para a equação A.24, conforme ilustrado na figura A.3, com a seguinte estimativa inicial:

\[
\begin{align*}
q_1 &> \pi/2 \\
q_2 &= q_1 + \pi
\end{align*}
\]

Figura A.3

Com 150 valores de \(q_n \), resolveu-se a equação 21, para tempos fixos, \(D_\alpha = 0.75 \times 10^{-5} \text{cm}^2/\text{s} \), \(R = 0.023 \text{ cm} \) e \(\alpha = 3.656 \), determinando-se o perfil \(C_1/C_{10} \) pelo programa computacional apresentado a seguir.
5 REM "DIFUSIVIDADE EFETIVA: O programa calcula o de-
6 REM "crescimento da concentração CL/Cl0 na fase liquida"
7 REM "em função do tempo para especificacao de ALFA e"
8 REM "da difusividade efetiva De."
9 REM "DADOS"
15 INPUT "alfa=":ALFA
20 INPUT "numero de ptos para qn: Na":N
25 DIM QN(N+1)
30 J=1
33 Q=1.6
35 PRINT "Para alfa=":ALFA
37 PRINT "n":"qn"
40 F=TAN(Q)-3*Q/(3+ALFA*(Q^2))
45 FL=(1/COS(Q))^2+(3*ALFA*(Q^2)-9)/(9+ALFA*(Q^2))^2)
50 A=Q
55 Q=A-F/FL
60 B=ABS(Q-A)
65 C=B/Q
70 IF C<=0.0001 GOTO 80
75 GOTO 40
80 QN(J)=Q
85 J=J+1
90 IF J>N GOTO 110
95 Q=Q+3.15
100 GOTO 40
110 REM "calculo de conc. relativa CL/Cl0 vs tempo"
115 INPUT "Raio r=":R
120 INPUT "De=":D
125 PRINT "Para De="";D"";"";R"";"";alfa="";ALFA
130 PRINT "t","";CL/Cl0"
135 INPUT "tempo="";T
140 S=0
145 FOR I=1 TO N
150 K=-D*(QN(I)^2)*T/(R^2)
155 S=S+6*(1+ALFA)*EXP(K)/(9+9*ALFA+(QN(I)*ALFA)^2)
160 NEXT I
165 CR=ALFA*(1+S)/(1+ALFA)
170 PRINT T,CR
175 INPUT "deseja novo t (sim L=0) L=";L
180 IF L=0 GOTO 135
185 INPUT "Deseja novo valor de De (sim L=0): L=";L
190 IF L=0 GOTO 120
200 STOP
205 END