ESTUDO DE CAROTENÓIDES E PRÓ-VITAMINA A EM ALIMENTOS

Paesena

Este exemplar corresponde à redação final da tese defendida por Helena Teixeira Godoy e aprovada pela Comissão julgadora em
Farmacêutico-bioquímico
03.05.93.
Dra. Délia Rodriguez-Amaya
Orientadora

Tese apresentada à Faculdade de Engenharia de Alimentos, UNICAMP,
para a obtenção do título de Doutor em Ciência de Alimentos.

-1993-
BANCA EXAMINADORA

Prof. Drª Délia Rodrigues-Amaya
(orientadora)

Heloisa M. Cecchi
Prof. Drª Heloisa Máscia Cecchi
(membro)

Prof. Drª Hilary Castle de Menezes
(membro)

Prof. Drª Marilene De Vuono Camargo Penteado
(membro)

Prof. Dr. Jorge Mancini Filho
(membro)

Prof. Dr. João Bosco Faria
(membro)

Prof. Dr. Luis Antonio Gioielli
(membro)

Campinas, 03 de maio de 1993.
Ao Eduardo, meu companheiro sobretudo,
as minhas ANAS, por existirem,
a José e Helena, meus pais, pelo amor e dedicação,
a José, meu irmão, pela pessoa incrível que é
e à Clesilda

dedico
À Prof. Dr.ª Délia Rodríguez-Amaya, pelo seu exemplo de pessoa e profissional, o meu especial agradecimento.
AGRADECIMENTOS

A todos os membros da banca examinadora pelas correções e sugestões apresentadas à redação final da tese.

À FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo) e FINEP (Financiadora de Estudos e Projetos) pelo apoio financeiro para a realização desta tese.

À Hoffmann-LaRoche pelos padrões de carotenóides cedidos.

Ao Prof. Dr. George Britton, do Departamento de Bioquímica da Universidade de Liverpool, pelos espectros de massa e pela valiosa troca de informações.

Ao Prof. Dr. Paulo A. Bobbio pela utilização do espectrofotômetro em seu laboratório, durante parte do experimento.

À Cecília Gonçalves e Liliane Castro pela colaboração no envio das amostras.

Aos amigos do Laboratório de Análise de Alimentos da FEA pelo carinho e auxílio, em especial aos professores e funcionários.
Aos professores e funcionários do Departamento de Ciência de Alimentos da FEA pela colaboração e apoio prestados durante a elaboração deste trabalho.

À ABIA (Associação Brasileira de Indústrias de Alimentos) pela colaboração na reprodução das cópias desta tese.
ÍNDICE

ÍNDICE DE TABELAS... v
ÍNDICE DE FIGURAS... viii
ÍNDICE DE ANEXOS.. x
RESUMO... xi
SUMMARY... xv

1. INTRODUÇÃO... 1

2. OBJETIVOS... 4

3. REVISÃO BIBLIOGRÁFICA... 5
 3.1. Metodologia para a Determinação de Pró-vitamina A... 5
 3.1.1. Método recomendado pela AOAC............................ 12
 3.1.2. Método recomendado pela COST91....................... 16
 3.1.3. Método recomendado pelo IVACG......................... 18
 3.1.4. Método recomendado por RODRIGUEZ-AMAYA et
 alií simplificado.. 19
 3.1.5. Métodos por cromatografia líquida de alta
 eficiência (CLAE)... 21
 3.1.6. Isômeros de pró-vitaminas A............................... 25
3.2. Métodos Analíticos para a Determinação de carotenóides

3.2.1. Extração ... 37
3.2.2. Saponificação... 39
3.2.3. Separação cromatográfica 41
 3.2.3.1. Cromatografia de adsorção em coluna aberta (CCA) 42
 3.2.3.2. Cromatografia líquida de alta eficiência (CLAE) 44
3.2.4. Identificação e quantificação 45

4. MATERIAL E MÉTODOS .. 47
4.1. Amostragem e Preparo de Amostra 47
4.2. Cuidados Necessários 50
4.3. Métodos para a Determinação do Valor de Vitamina A 52
4.4. Determinação dos Coeficientes de Absorção.................. 57
4.5. Determinação dos Isômeros de Pró-vitaminas A 58
4.6. Confirmação da Presença de Cis-isômeros por CLAE 59
4.7. Cálculo do Valor de Vitamina A 60
4.8.Determinação Completa de Carotenóides 61
 4.8.1. Triagem ... 61
 4.8.2. Método por cromatografia em coluna aberta 62
5. RESULTADOS E DISCUSSÃO.. 66

5.1. Desempenho de Três Métodos para a Determinação de
Pré-vitaminas A... 66

5.2. Coeficientes de Absorção ($A_{1cm}^{1%}$) de Alguns Carotenóides
em Solventes Comuns.. 74

5.3. Ocorrência de Isômeros de Pré-vitaminas A.................... 77

5.3.1. Em frutas... 77

5.3.2. Em hortaliças... 83

5.3.3. Confirmação da ocorrência de isômeros de pró-
vitaminas A por CLAE... 90

5.3.3.1. Em frutas... 92

5.3.3.2. Em hortaliças... 96

5.3.4. Comparação das porcentagens de isômeros do
β-caroteno..101

5.4. Triagem da Composição de Carotenóides de Abricó,
Buriti, Pequi, Nêspera, Nectarina e Pêssego..............103

5.5. Composição de Carotenóides de Abricó (Mammea
americana L.)...106

5.6. Composição de Carotenóides de Buriti (Mauritia
vinifera)... 115

5.7. Composição de Carotenóides de Pequi (Caryocar
villosium)...120

5.8. Composição de Carotenóides de Nêspera (Eriobotrya
japonica)...126

5.9. Composição de Carotenóides de Pêssego (Prunus
persica)..132

iii
5.10. Composição de Carotenóides de Nectarina (*Prunus persica*). ..138

6. CONCLUSÕES...142

7. REFERÊNCIAS BIBLIOGRÁFICAS.................................146
ÍNDICE DE TABELAS

TABELA 1: Valores de vitamina A de algumas frutas e hortaliças obtidos de Tabelas de Composição de Alimentos... 6
TABELA 2: Composição de carotenóides e valor de vitamina A de frutas e hortaliças... 10
TABELA 3: Classificação de frutas e hortaliças segundo a composição de carotenóides pró-vitamínicos......... 14
TABELA 4: Bioatividade dos isômeros das principais pró-vitaminas A.. 28
TABELA 5: Isômeros do β-caroteno reportados na literatura.. 35
TABELA 6: Amostragem de frutas para a determinação de cis-isômeros.. 49
TABELA 7: Amostragem e condições do preparo doméstico de hortaliças para a determinação de cis-isômeros... 51
TABELA 8: Teores de pró-vitamina A (µg/g) em tomate, couve e cenoura determinados por três métodos............ 67
TABELA 9: Teores de pró-vitamina A de mamão obtidos com os diferentes procedimentos de saponificação, sugeri-ridos pelo IVACG... 69
TABELA 10: Teores de pró-vitamina A (µg/g) determinados em mamão pelos três métodos................................. 71
TABELA 11: Coeficientes de absorção de alguns trans-carotenóides.. 75
TABELA 12: Valores da "razão Q" e máximos de absorção dos isômeros do β-caroteno

TABELA 13: Coeficientes de absorção dos isômeros do β-caroteno e da β-criptoxantina, e do β-apo-8'-'carotenol

TABELA 14: Concentração de cis- e trans-isômeros de pró-vitaminas A em frutas

TABELA 15: Valores de vitamina A calculados com e sem a separação dos isômeros em frutas

TABELA 16: Concentração de cis- e trans-isômeros de pró-vitaminas A em hortalícias "in natura"

TABELA 17: Concentração de cis- e trans-isômeros de pró-vitaminas A em hortalícias cozidas

TABELA 18: Valores de vitamina A calculados com e sem a separação dos isômeros em hortalícias "in natura"

TABELA 19: Valores de vitamina A calculados com e sem a separação dos isômeros em hortalícias cozidas

TABELA 20: Isômeros cis-trans do β-caroteno encontrados em frutas e hortalícias frescas e cozidas

TABELA 21: Resultado da triagem da composição de carotenóides

TABELA 22: Principais características dos carotenóides do abricó

TABELA 23: Composição de carotenóides (µg/g) e valor de vitamina A de abricó

TABELA 24: Principais características dos carotenóides do buriti

vi
TABELA 25:	Composição de carotenóides (μg/g) e valor de vitamina A de buriti.	117
TABELA 26:	Principais características dos carotenóides de pequi.	121
TABELA 27:	Composição de carotenóides (μg/g) e valor de vitamina A de pequi.	122
TABELA 28:	Principais características dos carotenóides de nêspera.	128
TABELA 29:	Composição de carotenóides (μg/g) e valor de vitamina A de nêspera.	130
TABELA 30:	Comparação da composição de carotenóides de nêsperas produzidas no Brasil, em Israel e no Japão.	131
TABELA 31:	Principais características dos carotenóides de pêssego cultivar Diamante e de uma variedade chilena.	134
TABELA 32:	Composição de carotenóides (μg/g) e valor de vitamina A de pêssego cultivar Diamante e de uma variedade de pêssego chileno.	135
TABELA 33:	Comparação dos teores de carotenóides de pêssego.	136
TABELA 34:	Principais características dos carotenóides de nectarina.	139
TABELA 35:	Composição de carotenóides (μg/g) e valor de vitamina A de nectarina.	141
ÍNDICE DE FIGURAS

FIGURA 1: Estrutura dos retinóis e de alguns carotenóides pró-vitamínicos......................... 8
FIGURA 2: Estrutura dos principais isômeros do β-caroteno.. 26
FIGURA 3: Esquema da metodologia recomendada por COST91.... 53
FIGURA 4: Esquema da metodologia recomendada pelo IVACG.... 54
FIGURA 5: Esquema da metodologia de RODRIGUEZ-AMAYA et alií simplificada.......................... 55
FIGURA 6: Valores de equivalentes de retinol obtido pelos métodos de COST91, IVACG e RODRIGUEZ-AMAYA et alií simplificado.............................. 72
FIGURA 7: Valores de equivalentes de retinol obtido pelos métodos de COST91-modificado, IVACG-modificado e RODRIGUEZ-AMAYA et alií simplificado........... 73
FIGURA 8: Cromatogramas obtidos por CLAE dos extratos totais de (A) mamão, (B) maracujá, (C) nectarina e (D) pêssego............................... 93
FIGURA 9: Cromatogramas obtidos por CLAE das frações pró-vitamínicas separadas pela coluna de MgO:hiflosupercl: (A) fração de β-caroteno de pêssego, (B) fração de β-caroteno de mamão, (C) fração de β-cryptoxantina de mamão e (D) Fração de β-cryptoxantina de pêssego......................... 94
FIGURA 10: Cromatogramas obtidos por CLAE dos extratos totais de (A) cenoura e (B) abóbora, e das frações de β-caroteno, isoladas através de coluna de MgO:hiflosupercl, de (C) tomate e (D) pimentão vermelho.. 97
FIGURA 11: Cromatogramas por CLAE das frações de β-caroten obtidas a partir da coluna de MgO:hiflosupercl : (A) brócolis, (B) couve, (C) espinafre e (D) vagem.. 98
FIGURA 12: Cromatograma obtido por CLAE do extrato total de cenoura cultivar Nantes cozida............. 99
FIGURA 13: Cromatograma e espectros de absorção dos isômeros do β-caroteno de espinhafrê, obtidos utilizando o detector de arranjo de diodos...................... 100

FIGURA 14: Aspecto das placas de sílica gel após desenvolvimento em 10% de éter etílico em éter de petróleo (a); 70% de éter etílico em éter de petróleo (b) e 5% de etanol em éter de petróleo (c).................. 104

FIGURA 15: Espectro de massa do β-apo-8'-carotenol................. 109

FIGURA 16: Espectro de massa do produto de redução com NaBH₄ de um padrão sintético de β-apo-8'-carotenal..... 110

FIGURA 17: Cromatogramas obtidos por CLAE: (A) frações de β-apo-8'-carotenol (1) e β-apo-10'-carotenal (2) do abricó; (B) frações de β-apo-8'-carotenol (1) e β-apo-10'-carotenal (2) do abricó e padrão sintético de β-apo-8'-carotenal (3); (C) fração de β-apo-8'-carotenol do abricó + produto de redução do padrão de β-apo-8'-carotenol (1) e β-apo-10'-carotenal (2) do abricó......................... 114

FIGURA 18: Comparação dos valores de vitamina A entre algumas fontes ricas em pró-vitaminas A.................. 119

FIGURA 19: Espectro de massa da fração de β-criptoxantina isolada do pequi.. 124

FIGURA 20: Espectro de massa da fração de zeaxantina isolada do pequi... 125

FIGURA 21: Cromatograma obtido por CLAE do extrato total de pequi.. 127
ÍNDICE DE ANEXOS

ANEXO 1: Estrutura dos carotenóides presentes nas amostras analisadas.. 177

ANEXO 2: Espectro de absorção em éter de petróleo do β-caroteno e zeaxantina (—), 13-cis-β-caroteno (—)
e 9-cis-β-caroteno (—).. 179

ANEXO 3: Espectro de absorção em éter de petróleo do α-caroteno (…), 13-cis-α-caroteno (—) e 9-cis-α-caroteno (—).. 180

ANEXO 4: Espectro de absorção em éter de petróleo da α-criptoxantina (—), γ-caroteno (—…), ζ-caroteno (—…)
e β-zeaxacaroten (—…))... 181

ANEXO 5: Espectro de absorção em éter de petróleo da β-criptoxantina (—), neo-β-criptoxantina (—)
e 5,6-monoepoxi-β-criptoxantina (—)............................. 182

ANEXO 6: Espectro de absorção em éter de petróleo do β-apo-8'-carotenol (—) e do β-apo-10'-carotenal, antes (…)
e depois (—…) da reação de redução com NaNBH₄................................. 183

ANEXO 7: Espectro de absorção em éter de petróleo da violaxantina (—), luteoxantina (—…), auroxantina (…
e neoxantina (—…))... 184

ANEXO 8: Espectro de absorção em éter de petróleo do neurosporeno (—).. 185

x

INDEPENDENTE DO MÉTODO CROMATOGRAFÍCO EMPREGADO, OS COEFICIENTES DE ABSORÇÃO SÃO UTILIZADOS NOS CÁLCULOS DAS CONCENTRAÇÕES DOS CAROTENÓIDES. SENDO ASSIM, FORAM DETERMINADOS OS VALORES DOS COEFICIENTES DE ABSORÇÃO, DE ALGUMAS PRÓ-VITAMINAS A E CAROTENÓIDES, AINDA INEXISTENTES OU QUE APRESENTAM UMA DISCREPÂNCIA NOS DADOS DA LITERATURA.

DESADE QUE OS CIS-ISÔMEROS POSSUEM UMA ATIVIDADE VITAMÍNICA MENOR QUE A RESPECTIVA FORMA TRANS HÁ UMA PREOCUPAÇÃO SOBRE A NECESSIDADE DA SEPARAÇÃO DOS ISÔMEROS DAS PRÓ-VITAMINAS A NA DETERMINAÇÃO DO REAL VALOR DE VITAMINA A DOS ALIMENTOS. NESTE
trabalho 12 frutas, algumas de diferentes cultivares, e 11 hortaliças cruas e 7 cozidas, totalizando 198 amostras, foram analisadas em duplicata fornecendo uma visão mais ampla da ocorrência natural dos cis-isômeros das pró-vitamina. A presença de isômeros foi confirmada por cromatografia de coluna aberta e por CLAÇ. As frutas puderam ser classificadas em dois grandes grupos: (1) aquelas que tinham o ß-caroteno como principal pró-vitamina e, (2) aquelas nas quais a ß-criptoxantina predominava. Cis-isômeros não foram encontrados em cajá, mamão Solo e Tailândia, maracujá, pitanga e acerola. Traços de 13-cis-ß-caroteno foram encontrados em algumas amostras de nêspera e manga Tommy Atkins e Haden. Abricó, buriti, nectarina, pêssego Diamante e uma variedade chilena e pequi apresentaram os isômeros 13-cis e 9-cis do ß-caroteno. Nectarina, pêssego e pequi também tinham neo-ß-criptoxantina (provavelmente 13-cis). Utilizando o procedimento de cálculo atualmente adotado em todo o mundo, o valor de vitamina A foi calculado com e sem a separação dos isômeros. Uma superestimação de apenas 3-10% de equivalentes de retinol ocorreu quando a separação de isômeros não fez parte da análise, indicando dessa forma que a separação de isômeros não é importante para as frutas frescas. Por outro lado, todas as hortaliças "in natura" analisadas, exceto tomate e cenoura, apresentaram cis-isômeros. O valor de vitamina A calculado sem e com a separação dos isômeros, mostrou uma superestimação de 10-22%, quando os isômeros não foram separados. Todas as hortaliças cozidas analisadas, inclusive cenoura, apresentaram isômeros de pró-vitaminas A, ficando a superestimação do valor vitamínico quando os isômeros não são separados entre 5-20%. Desta forma, a separação de isômeros é necessária para a maioria das hortaliças, tanto "in natura" como cozidas.

Devido a outras funções fisiológicas, observadas mais recentemente, a composição completa de carotenóides de algumas frutas brasileiras também foi determinada. O abricó (Mammea americana L.) apresentou variações quantitativas maiores que aquelas normalmente encontradas em frutas. Violaxantina, ß-
caroteneno e β-apo-8'-carotenol alternavam como carotenóide principal. Além disso, sua composição revelou-se atípica, devido à concentração elevada de β-apo-10'-carotenal e a presença de um novo carotenóide, β-apo-8'-carotenol, também presente em concentrações apreciáveis. A estrutura desse carotenóide foi elucidada utilizando-se a espectrometria de massa (EM). O valor de vitamina A encontrado (483 RE/100g) foi alto devido a quantidades elevadas de γ-caroteno e β-apo-10'-carotenal, que são pigmentos que possuem as maiores atividades vitamínicas (100%). Pela sua estrutura o β-apo-8'-carotenol foi considerado também uma pró-vitamina com atividade semelhante ao β-apo-8'-carotenal (72%).

No buriti (Mauritia vinifera Mart.) foram identificados oito carotenos (13-cis-a-caroteno, a-caroteno, 13-cis-β-caroteno, β-caroteno, 9-cis-β-caroteno, β-caroteneno e γ-caroteno) e apenas uma xantofila (zeaxantina). O a- e β-caroteno foram os pigmentos majoritários, com 80,1 e 359,8 μg/g, respectivamente (16 e 70% dos carotenóides totais). Devido à grande quantidade, especialmente de β-caroteno, o valor médio de vitamina A encontrado foi de 6489 RE/100g, o que torna o buriti uma das maiores fontes de pró-vitamina A.

O pequi é comumente citado como uma fonte rica em pró-vitamina A, entretanto a espécie Caryocar villosium acusou um valor médio relativamente baixo, 65 RE/100g. Isto porque o principal pigmento, a zeaxantina (56% do total de carotenóides) é inativa, e a β-criptoxantina (31% do total de carotenóides) possui apenas 50% de atividade. Os outros pigmentos identificados, em pequenas quantidades, foram o a-caroteno, 13-cis-β-caroteno, β-caroteno, γ-caroteno e neo-β-criptoxantina.

Em néespera foram encontrados: 13-cis-β-caroteno, β-caroteno, γ-caroteno, neurosporeno, β-criptoxantina, 5,6-monoeoxip- β-criptoxantina, violaxantina, auroxantina e neoxantina. β-Caroteno e β-criptoxantina foram os principais pigmentos representando 45% e 27%, respectivamente, de um total
de carotenóides de 17,7 µg/g e os que mais contribuíram para o valor de vitamina A de 179 RE/100g.

Os carotenóides identificados no pêssego cultivar Diamante foram: 13-cis-β-caroteno, β-caroteno, 9-cis-β-caroteno, ζ-caroteno, neo-β-criptoxantina, β-criptoxantina, violaxantina, auroxantina e luteoxantina. Os primeiros sete carotenóides foram também encontrados na variedade chilena, além de luteína e zeaxantina. A β-criptoxantina foi o pigmento majoritário nos dois casos, representando 75% no pêssego Diamante e 43% na variedade chilena. O valor médio de vitamina A encontrado foi de 55 RE/100g e 73 RE/100g para o cultivar Diamante e para a variedade chilena, respectivamente.

Os frutos da nectarina apresentaram a seguinte composição: 13-cis-β-caroteno, β-caroteno, 9-cis-β-caroteno, ζ-caroteno, neo-β-criptoxantina, β-criptoxantina, luteína, zeaxantina, violaxantina, mutatoxantina e auroxantina. O pigmento predominante foi a β-criptoxantina, representando 41% do conteúdo total de carotenóides (9,6 µg/g). Devido a pequena quantidade de pigmentos, o valor de vitamina A encontrado foi de apenas 54 RE/100g.
Many analytical methods have been developed with the purpose of establishing a simple, rapid and economic procedure for determining the provitamins A in foods. In the present study, three methods were assessed: those of COST91, IVACG and RODRIGUEZ-AMAYA et alii simplified. Kale, carrot, papaya and tomato were chosen as food samples because of their distinct characteristics in terms of the provitamin A composition. Incomplete extraction and drastic saponification were the principal deficiencies of the COST91 method. In addition, α- and β-carotene eluted together and β-cryptoxanthin and γ-carotene were not considered. For the IVACG method, the extraction was insufficient only for kale; it was more versatile than that of COST91, since the different provitamins were separated. Of the different saponification procedures, cold saponification was confirmed to be the best technique. The RODRIGUEZ-AMAYA et alii simplified method proved to be the method of choice, principally for its simplicity and accuracy.

Irrespective of the chromatographic process utilized, the absorption coefficients are used for the calculation of the concentrations carotenoids. Thus, coefficients hitherto unestablished, or are discrepant in current literature, were determined.

Since the cis-isomers have lower biological potency than the corresponding trans-carotenoids, concern has been raised over the necessity of separating the isomers of provitamins A so as to determine the vitamin A value of foods more accurately. In this paper 12 fruits, some of different cultivars, 11 fresh vegetables and 7 cooked vegetables, totalling 198 samples, were analyzed in duplicate, to get an idea of the
natural occurrence of cis-isomers of provitamins A. The presence of isomers was confirmed by open column chromatography and HPLC. The different fruits can be divided into two main groups: (1) those having β-carotene as the principal provitamin, and (2) those with β-cryptoxanthin as the major provitamin. Cis-isomers of provitamins A were not found in "cajá", papaya cultivars Solo and Tailândia, passionfruit, "pitanga" and West Indian cherry. Traces of 13-cis-β-carotene were observed in some samples of loquat and mango cultivars Tommy Atkins and Haden. 13-Cis- and 9-cis-β-carotene were found at low levels in mamey, "buriti", nectarine, peach cultivar Diamante and Chilean peach and "pequi". Nectarine, peach and "pequi" had neo-β-cryptoxanthin, probably 13-cis. Utilizing the currently employed calculation procedure, the vitamin A values of the fruits were calculated, with and without isomer separation. Overestimations of only 3-10% of the retinol equivalents occurred when the isomers were not individually quantified, indicating that isomer separation is not necessary in the provitamin A determination of fresh fruits. On the other hand, the fresh vegetables, except tomato and carrot, had cis-isomers. Overestimations of 10-22% were obtained when individual quantification of isomers was not accomplished. All cooked vegetables analyzed, including carrot, had isomers of provitamins A, the overestimation being 5-20% when the isomers were not separated. Thus, isomer separation appears to be necessary for most vegetables, fresh or cooked.

Considering the other physiological functions, the complete carotenoid composition of some Brazilian fruits was determined. Mamey (Mammea americana L.) showed quantitative variation greater than normally found in fruits. Violaxanthin, β-carotene and β-apo-8'-carotenol alternated as principal pigment. Moreover, for two reasons, the composition was atypical: the presence of β-apo-10'-carotenal, especially at high levels, and of a new carotenoid, β-apo-8'-carotenol, also present in appreciable amounts. Mass spectrometry unequivocally proved the structure. The vitamin A value (483 RE/100g) was high because of
substantial amounts of β-carotene and β-apo-10’-carotenal, the pigments with the highest vitamin A activity (100%). With its structure, the β-apo-8’-carotenol was considered a vitamin A precursor with activity similar to β-apo-8’-carotenal (72%).

In "buriti" (Mauritia vinifera Mart.) eight carotenes (13-cis-α-carotene, α-carotene, 13-cis-β-carotene, β-carotene, 9-cis-β-carotene, ζ-carotene, β-zeacarotene and γ-carotene) and only one xanthophyll (zeaxanthin) were identified. α- and β-carotene were the principal pigments, with 80.1 and 359.8 μg/g, respectively (16 and 70% of total carotenoid content). The vitamin A value, 6489 RE/100g, was high because of the high amounts of β-carotene, making "buriti" one of the richest sources of provitamin A.

"Pequi" is usually cited as a rich source of provitamin A. The Caryocar villosium species, however, presented a low vitamin A value, 65 RE/100g. This is because the major pigment zeaxanthin (56% of the total carotenoid content) is inactive, and β-cryptoxanthin (31% of the total carotenoid) has only 50% activity. The other pigments identified, in small amounts, were: α-carotene, 13-cis-β-carotene, β-carotene, ζ-carotene and neocryptoxanthin.

13-Cis-β-carotene, β-carotene, ζ-carotene, neurosporene, β-cryptoxanthin, 5,6-mono-epoxy-β-cryptoxanthin, violaxanthin, auroxanthin and neoxanthin were found in loquat. β-Carotene and β-cryptoxanthin were the principal pigments, representing 45% and 27%, respectively, of a total carotenoid content of 17.7 μg/g. Both were the major contributors to the vitamin A value of 179 RE/100g.

The carotenoids encountered in peach cultivar Diamante were: 13-cis-β-carotene, β-carotene, 9-cis-β-carotene, ζ-carotene, neocryptoxanthin, β-cryptoxanthin, violaxanthin, auroxanthin and luteoxanthin. The first seven carotenoids were also found in the Chilean variety, besides lutein and zeaxanthin. In both varieties, β-cryptoxanthin was the principal
pigment, being responsible for 75% of the total carotenoid in Diamante and 43% in the Chilean peach. The mean vitamin A value was 55 RE/100g and 73 RE/100g for the Diamante and Chilean fruit, respectively.

13-Cis-β-carotene, 9-cis-β-carotene, ζ-carotene, neocryptoxanthin, β-cryptoxanthin, lutein, zeaxanthin, violaxanthin, mutatoxanthin and auroxanthin were identified in nectarine. β-Cryptoxanthin was the major pigment, accounting for 41% of the total carotenoid content (9.6 μg/g). Considering the low pigment level, the vitamin A value was low, 54 RE/100g.
1. INTRODUÇÃO

Os carotenóides têm sido objeto de investigações por mais de um século. Mesmo assim, existem ainda pontos de discordância e falta de informações em outros. Portanto, aproveitando a riqueza natural brasileira em carotenóides, o presente trabalho pretende preencher algumas dessas lacunas.

Há muito tempo temos assistido discussões sobre a importância da vitamina A e as linhas de ação que podem ser tomadas para combater a sua deficiência. Entretanto, a hipovitaminose A ainda persiste como um problema nutricional sério nos países em desenvolvimento. Devido ao alto custo de alimentos de origem animal, uma grande parte da vitamina A fornecida pela dieta encontra-se na forma de pró-vitamina A, proveniente dos alimentos de origem vegetal, como frutas, hortaliças e legumes.

Muitos esforços têm sido feitos visando a determinação correta dos valores de vitamina A nos alimentos, considerando-se que esta análise não é uma tarefa fácil. Existe um grande número de carotenóides na natureza e os alimentos variam consideravelmente na sua composição qualitativa e quantitativa. Além disso, nem todos os carotenóides possuem atividade pró-vitamínica A e aqueles que são ativos apresentam atividades diferentes.

Vários procedimentos analíticos, incluindo as técnicas mais modernas, têm sido empregados para a determinação de pró-vitaminas A. Sabendo-se, no entanto, que essas técnicas avançadas são muito onerosas, alguns métodos foram desenvolvidos a fim de se obter técnicas mais simples, rápidas e mais econômicas, sem prejuízo da confiabilidade dos resultados.
No Brasil, o método desenvolvido por RODRIGUEZ et alii (1976a) tem sido usado para a determinação da composição completa de carotenóides e com base nas concentrações das pró-vitaminas e utilizando as respectivas atividades, os valores de vitamina A são também calculados. Para determinar somente as pró-vitaminas, pode ser utilizada uma versão simplificada do método. O referido procedimento simplificado já foi comparado e demonstrado ser superior ao método oficial da AOAC (Association of Official Analytical Chemists) (RODRIGUEZ-AMAYA et alii, 1988), bem como comparável com métodos que utilizam cromatografia líquida de alta eficiência (CARVALHO et alii, 1992). Uma das vantagens do método descrito é que o mesmo permite ajustes de acordo com a natureza da amostra, mas a principal é que todas as pró-vitaminas podem ser determinadas separadamente, permitindo a obtenção de valores mais exatos de vitamina A.

Neste trabalho foram avaliados os métodos de COST91 (BRUBACHER et alii, 1985) e IVACG (1987) em comparação ao método de RODRIGUEZ-AMAYA et alii simplificado. A COST (Cooperation Europeenne dans le domaine de la recherche Scientifique et Technique) e o IVACG (International Vitamin A Consultative Group) são entidades de renome internacional que também reconheceram a necessidade de métodos mais adequados com vistas à obtenção de resultados mais consistentes.

Na natureza os carotenóides se apresentam normalmente na sua forma mais estável que é a configuração trans, embora algumas formas cis possam ocorrer naturalmente. Desde que os isômeros possuam atividade vitamínica menor que as respectivas formas trans, aumenta a preocupação quanto à necessidade da separação e quantificação individual dos isômeros das pró-vitaminas A para uma determinação mais exata do valor vitamínico dos alimentos. Esta operação, entretanto, não é fácil de ser realizada. Utilizando cromatografia de coluna aberta, é necessária uma recromatografia das frações isoladas das pró-vitaminas em colunas de MgO:hidrosuperencial em colunas de Ca(OH)₂ e, especialmente no caso da segunda coluna, a eficiência e
reprodutibilidade da separação dependem consideravelmente da experiência e habilidade do analista.

Mesmo com o grande potencial e poder de resolução que a cromatografia líquida de alta eficiência (CLAE) apresenta, as condições de análise ainda não estão bem estabelecidas. Somente duas colunas parecem ser eficientes na separação dos isômeros do α- e β-caroteno: VyDAC 201 TP C18 e Ca(OH)₂, embora esta última tenha que ser empacotada no laboratório. A separação dos isômeros das outras pró-vitaminas por CLAE ainda não foi reportada. Mesmo com uma boa separação dos isômeros das pró-vitaminas, a determinação da concentração absoluta é problemática, pois devido à susceptibilidade dos carotenóides à isomerização e oxidação, é difícil manter os padrões estáveis e a obtenção de padrões de cis-isômeros é extremamente difícil.

Outros problemas, como a formação de cis-isômeros durante a análise e o desconhecimento dos valores dos coeficientes de absorção desses isômeros, já que a concentração é calculada espectrofotometricamente, fazem com que antes da introdução de uma etapa de separação das formas isoméricas num método oficial de análise, se deva ter uma visão mais ampla da ocorrência natural de cis-isômeros de pró-vitaminas.

Com sua grande extensão territorial, sujeita a diferentes condições climáticas, o Brasil possui uma grande variedade de frutas e hortaliças, o que proporciona condições ideais para um estudo da ocorrência de isômeros de pró-vitaminas A.

Além das já conhecidas, outras funções tem sido também atribuídas aos carotenóides, sendo a mais destacada sua possível ação inibidora de certos tipos de câncer (MATHEUS-ROTH, 1985; COLDITZ et alii, 1985; BENDICK, 1989a,b; ZIEGLER, 1989; KRINSKY, 1989). Como tais funções não são restritas somente às pró-vitaminas, a abordagem ideal envolveria determinação da composição completa desses pigmentos, porém a análise torna-se neste caso mais complexa e demorada.
2. OBJETIVOS

Os principais objetivos deste trabalho são:

(1) Avaliar e comparar métodos de determinação de carotenóides pró-vitamínicos, para países em desenvolvimento.

(2) Verificar a incidência de cis isômeros em frutas e hortaliças nacionais, a fim de avaliar a real necessidade da separação dessas formas isoméricas para um cálculo mais exato do valor de vitamina A.

(3) Determinar a composição completa de carotenóides de frutas nacionais, principalmente de algumas frutas nativas e outras ainda não estudadas, ou com poucos dados a respeito da composição de carotenóides.
3. REVISÃO BIBLIOGRÁFICA

3.1. Metodologia para a Determinação de Pró-vitaminas A

A atividade pró-vitaminica A é uma das principais funções desempenhadas pelos carotenóides. Principalmente em países em desenvolvimento a deficiência de vitamina A é um problema de saúde pública, pois devido ao alto custo de alimentos de origem animal, que são fontes de vitamina A (retinol, ácido retinoico, éster de retinila, retinal, 3-desidroretinol), grande parte da população é impossibilitada de consumir esse tipo de alimento. Neste caso, os carotenóides podem chegar a contribuir com mais de 80% das necessidades de vitamina A (SIMPSON, 1983). Em países desenvolvidos, a contribuição das pró-vitaminas, embora menor, ainda é significativa, chegando a 50% nos EUA e 30-50% na Inglaterra (WITSCHI et alii, 1970; THOMPSON, 1965).

TABELA 1: Valores de vitamina A de algumas frutas e hortaliças, obtidos de Tabelas de Composição de Alimentos.

<table>
<thead>
<tr>
<th>alimento</th>
<th>Taiwan</th>
<th>Japão</th>
<th>Filipinas</th>
<th>USA</th>
<th>FAO</th>
<th>INCAP</th>
<th>Brasil a</th>
<th>Brasil b</th>
</tr>
</thead>
<tbody>
<tr>
<td>cenoura</td>
<td>13000</td>
<td>4100</td>
<td>18500</td>
<td>11000</td>
<td>11667</td>
<td>11767</td>
<td>11000</td>
<td>11000</td>
</tr>
<tr>
<td>nespera</td>
<td>900</td>
<td>400</td>
<td>-</td>
<td>670</td>
<td>1291</td>
<td>433</td>
<td>430</td>
<td>-</td>
</tr>
<tr>
<td>manga</td>
<td>2100</td>
<td>-</td>
<td>2580-4225</td>
<td>4800</td>
<td>3130</td>
<td>2100</td>
<td>-</td>
<td>2200</td>
</tr>
<tr>
<td>mamão</td>
<td>1560</td>
<td>47</td>
<td>425</td>
<td>1750</td>
<td>1180</td>
<td>367</td>
<td>370</td>
<td>-</td>
</tr>
<tr>
<td>pimentão</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>verde</td>
<td>4000</td>
<td>160</td>
<td>260</td>
<td>420</td>
<td>2917</td>
<td>1567</td>
<td>245</td>
<td>2000</td>
</tr>
<tr>
<td>vermelho</td>
<td>6500</td>
<td>1100</td>
<td>1785</td>
<td>21600</td>
<td>11000</td>
<td>1567</td>
<td>-</td>
<td>6500</td>
</tr>
<tr>
<td>pêssego</td>
<td>tr</td>
<td>-</td>
<td>-</td>
<td>1330</td>
<td>410</td>
<td>17</td>
<td>400</td>
<td>3750</td>
</tr>
<tr>
<td>abóbora</td>
<td>900</td>
<td>340</td>
<td>-</td>
<td>1600</td>
<td>1308</td>
<td>3066</td>
<td>3500</td>
<td>2800</td>
</tr>
<tr>
<td>caqui</td>
<td>1800</td>
<td>65</td>
<td>2500</td>
<td>2710</td>
<td>1000</td>
<td>2500</td>
<td>-</td>
<td>2500</td>
</tr>
</tbody>
</table>

INCAP-ICNND - LEUNG & FLORES (1961)
a Tabela de Composição de Alimentos - IBGE - ENDEF (1985)
b Tabela de Composição Química dos Alimentos - FRANCO (1992)
Cerca de 800 carotenóides já foram isolados e mais de 600 tem suas estruturas elucidadas. No entanto, os carotenóides que ocorrem em alimentos não atingem nem a metade desse número, e aqueles que podem ser convertidos em vitamina A no organismo são mais ou menos 50 (BAUERNFEIND et alií, 1972; GOODWIN & BRITTON, 1988) (FIGURA 1). Para atuar como precursor de vitamina A, o carotenóide deve apresentar pelo menos um anel β-ionona não substituído, ligado a uma cadeia lateral poliênica de pelo menos 11 carbonos. Isso deixa bem claro que nem todos os carotenóides tem atividade vitamínica. É evidente, também, que não há necessidade em se determinar a composição completa de carotenóides para se avaliar o teor de vitamina A, basta apenas separar e quantificar os pró-vitaminicos.

Existem vários fatores que dificultam a obtenção de dados confiáveis sobre o teor de pró-vitamina A. Devido à própria natureza dos carotenóides, muitos cuidados devem ser tomados durante a análise, especialmente com relação à exposição ao oxigênio, luz, calor e ácidos que promovem além da perda dos carotenóides, a formação de artefatos. A esses cuidados inclui-se o uso de solventes livres de impurezas (peróxidos, ácidos, etc), tempo de análise o menor possível, aplicação de atmosfera inerte e o uso de antioxidantes. Além disso, as amostras de alimentos podem variar amplamente tanto na composição qualitativa como quantitativa. Todos esses fatores dificultam em se estabelecer um método geral para a determinação do valor vitamínico A. EITENMILLER (1989) numa revisão sobre desenvolvimento das metodologias para a determinação de vitaminas, classificou os métodos para carotenos como conflitantes.

Independente do método utilizado para a determinação de carotenóides pró-vitaminicos, este deve apresentar alguns requisitos indispensáveis para a obtenção de dados confiáveis, como: (1) separação individual dos carotenóides ativos e de suas respectivas formas isoméricas; (2) eliminação dos carotenóides inativos, evitando dessa forma a superestimação do valor vitamínico; (3) medidas para evitar perdas e formação de
FIGURA 1: Estrutura dos retinoides e de alguns carotenoides pró-vitaminicos.
arteefatos durante a análise; e (4) adequação do método à natureza da amostra a ser analisada (RODRIGUEZ-AMAYA, 1989). À medida que essas exigências são cumpridas, é claro que a execução do método se torna cada vez mais difícil, porém pequenas simplificações podem ser introduzidas, desde que não prejudiquem o resultado final.

Os primeiros procedimentos para a determinação do valor de pró-vitamina A baseavam-se no conteúdo total de carotenóides, calculado através da absorção no comprimento de onda máximo do β-caroteno. A falha do método é imediatamente sentida à medida que a TABELA 2 é considerada. Em muitos alimentos há um grande número de carotenóides e por vezes o principal carotenóide não é ativo, como no caso de tomate, goiaba e mamão.

Posteriormente, o valor de vitamina A passou a ser calculado baseando-se na chamada "fração de β-caroteno" ou "caroteno total". O método recomendado pela AOAC (DEUTSCH, 1990) e o recomendado pela COST291 baseiam-se exatamente nessa abordagem. Essa aproximação é apropriada se for considerado que o β-caroteno é o carotenóide mais amplamente distribuído na natureza e é o que possui a maior atividade pró-vitamínica. No entanto, em alguns alimentos, nessa fração existem quantidades significativas de carotenóides com atividades pró-vitamínicas menores, como também carotenóides inativos, resultando na superestimação do valor de vitamina A. Por outro lado, podem existir carotenóides ativos que não estão incluídos nessa fração, assim subestimando significativamente o valor de vitamina A, como por exemplo em caju, mamão e abóbora (RODRIGUEZ-AMAYA, 1989).

Métodos para uma determinação mais exata do valor de vitamina A foram desenvolvidos, baseando-se na separação e quantificação individual de todas as pró-vitaminas, considerando-se a atividade de cada uma delas. São os métodos recomendados pelo IVACC (1987) e por RODRIGUEZ-AMAYA et alii (1988), baseado no método de RODRIGUEZ et alii (1976a) para a composição completa de carotenóides.
<table>
<thead>
<tr>
<th>Alimento</th>
<th>Total carot. (µg/g)</th>
<th>Carot. pró-vitamínico (%)</th>
<th>Contribuição para o valor de vitamina A</th>
<th>Outros carot.</th>
<th>Valor vit RE/100g</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abóbora cv "Menina Verde"</td>
<td>79,6</td>
<td>α-caroteno (22%)</td>
<td></td>
<td>2,5, 6, 7, 10, 11, 12, 21, 22</td>
<td>β-caroteno 862,4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>β-caroteno (76%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>mutacrocromo (−)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>α-criptoxantina (1%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>β-caroteno (−)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cv "Baianinha"</td>
<td>317,8</td>
<td>α-caroteno (9%)</td>
<td></td>
<td>3, 5, 6, 7, 10, 12, 13</td>
<td>β-caroteno 4317,5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>β-caroteno (91%)</td>
<td></td>
<td>15, 18, 22, 23</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>α-criptoxantina (−)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5,6-epoki-β-caroteno (−)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>mutacrocromo (−)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cv "Tetsukaboto"</td>
<td>52,3</td>
<td>α-caroteno (1%)</td>
<td></td>
<td>5, 10, 11, 12, 14, 17</td>
<td>β-caroteno 295,6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>β-caroteno (73%)</td>
<td></td>
<td>18, 22, 23, 24</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>α-criptoxantina (26%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>mutacrocromo (−)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>cis-β-caroteno (−)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cv "Exposição"</td>
<td>46,0</td>
<td>α-caroteno (−)</td>
<td></td>
<td>7, 10, 11, 13, 17, 21, 23, 24</td>
<td>β-caroteno 287,5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>β-caroteno (96%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>α-criptoxantina (3%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>β-criptoxantina (−)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>mutacrocromo (−)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>criptoflavina (−)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cajá</td>
<td>25,8</td>
<td>α-caroteno (9%)</td>
<td></td>
<td>6, 10, 25</td>
<td>luteína 188,7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>β-caroteno (14%)</td>
<td></td>
<td></td>
<td>β-caroteno</td>
</tr>
<tr>
<td></td>
<td></td>
<td>β-criptoxantina (74%)</td>
<td></td>
<td></td>
<td>β-criptoxantina</td>
</tr>
<tr>
<td></td>
<td></td>
<td>criptoflavina (8%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Goiaba cv "IAC-4"</td>
<td>62,1</td>
<td>β-caroteno (10%)</td>
<td></td>
<td>6, 8, 19, 20, 25</td>
<td>lycopeno 61,7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>γ-caroteno (−)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mamão cv "comum"</td>
<td>11,0</td>
<td>β-caroteno (18%)</td>
<td></td>
<td>6</td>
<td>β-criptoxantina 111,7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>β-zacaroteno (1%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5,6-epoki-β-criptoxantina (15%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>β-criptoxantina (60%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>criptoflavina (6%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cv "Formosa"</td>
<td>40,6</td>
<td>β-caroteno (43%)</td>
<td></td>
<td>1, 6, 8</td>
<td>lycopeno 143,3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5,6-epoki-β-criptoxantina (15%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>β-criptoxantina (41%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cv "Solo"</td>
<td>34,8</td>
<td>β-caroteno (34%)</td>
<td></td>
<td>6, 8</td>
<td>lycopeno 124,2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>γ-caroteno (3%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5,6-epoki-β-criptoxantina (−)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>β-criptoxantina (65%)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

10
<table>
<thead>
<tr>
<th>cv</th>
<th>5,6-epoxi-β-caroteno (28%)</th>
<th>5,6-epoxi-α-caroteno (28%)</th>
<th>luteoxantina (15%)</th>
<th>luteina (1%)</th>
<th>10,21,24</th>
<th>16,7</th>
<th>1836,1</th>
<th>luteoxantina</th>
<th>luteoxantina</th>
<th>luteoxantina</th>
</tr>
</thead>
<tbody>
<tr>
<td>"Tailândia"</td>
<td>60,1</td>
<td>5,6-epoxi-β-caroteno (28%)</td>
<td>5,6-epoxi-α-caroteno (28%)</td>
<td>luteoxantina (15%)</td>
<td>luteoxantina (15%)</td>
<td>10,21,24</td>
<td>16,7</td>
<td>1836,1</td>
<td>luteoxantina</td>
<td>luteoxantina</td>
</tr>
<tr>
<td>"Bourbon"</td>
<td>14,3</td>
<td>5,6-epoxi-β-caroteno (28%)</td>
<td>5,6-epoxi-α-caroteno (28%)</td>
<td>luteoxantina (15%)</td>
<td>luteoxantina (15%)</td>
<td>10,21,24</td>
<td>16,7</td>
<td>1836,1</td>
<td>luteoxantina</td>
<td>luteoxantina</td>
</tr>
<tr>
<td>"Extrema"</td>
<td>30,5</td>
<td>5,6-epoxi-β-caroteno (28%)</td>
<td>5,6-epoxi-α-caroteno (28%)</td>
<td>luteoxantina (15%)</td>
<td>luteoxantina (15%)</td>
<td>10,21,24</td>
<td>16,7</td>
<td>1836,1</td>
<td>luteoxantina</td>
<td>luteoxantina</td>
</tr>
<tr>
<td>"Haden"</td>
<td>13,9</td>
<td>5,6-epoxi-β-caroteno (28%)</td>
<td>5,6-epoxi-α-caroteno (28%)</td>
<td>luteoxantina (15%)</td>
<td>luteoxantina (15%)</td>
<td>10,21,24</td>
<td>16,7</td>
<td>1836,1</td>
<td>luteoxantina</td>
<td>luteoxantina</td>
</tr>
<tr>
<td>"Ouro"</td>
<td>24,0</td>
<td>5,6-epoxi-β-caroteno (28%)</td>
<td>5,6-epoxi-α-caroteno (28%)</td>
<td>luteoxantina (15%)</td>
<td>luteoxantina (15%)</td>
<td>10,21,24</td>
<td>16,7</td>
<td>1836,1</td>
<td>luteoxantina</td>
<td>luteoxantina</td>
</tr>
<tr>
<td>"Tommy Atkins"</td>
<td>19,2</td>
<td>5,6-epoxi-β-caroteno (28%)</td>
<td>5,6-epoxi-α-caroteno (28%)</td>
<td>luteoxantina (15%)</td>
<td>luteoxantina (15%)</td>
<td>10,21,24</td>
<td>16,7</td>
<td>1836,1</td>
<td>luteoxantina</td>
<td>luteoxantina</td>
</tr>
<tr>
<td>"Amarelo"</td>
<td>1,4</td>
<td>5,6-epoxi-β-caroteno (28%)</td>
<td>5,6-epoxi-α-caroteno (28%)</td>
<td>luteoxantina (15%)</td>
<td>luteoxantina (15%)</td>
<td>10,21,24</td>
<td>16,7</td>
<td>1836,1</td>
<td>luteoxantina</td>
<td>luteoxantina</td>
</tr>
<tr>
<td>"Vermelho"</td>
<td>3,4</td>
<td>5,6-epoxi-β-caroteno (28%)</td>
<td>5,6-epoxi-α-caroteno (28%)</td>
<td>luteoxantina (15%)</td>
<td>luteoxantina (15%)</td>
<td>10,21,24</td>
<td>16,7</td>
<td>1836,1</td>
<td>luteoxantina</td>
<td>luteoxantina</td>
</tr>
<tr>
<td>"Santa Cruz"</td>
<td>41,4</td>
<td>5,6-epoxi-β-caroteno (28%)</td>
<td>5,6-epoxi-α-caroteno (28%)</td>
<td>luteoxantina (15%)</td>
<td>luteoxantina (15%)</td>
<td>10,21,24</td>
<td>16,7</td>
<td>1836,1</td>
<td>luteoxantina</td>
<td>luteoxantina</td>
</tr>
</tbody>
</table>

Referência: RODRIGUEZ-AMAYA (1988)
(-) contribuição despropositual

(1) anteraxantina; (2) aurocromo; (3) auroxantina; (4) criptoermomo; (5) β-zeaxcaroteno;
(6) δ-caroteno; (7) cis-β-caroteno; (8) licoopeno; (9) cis-licopeno; (10) luteina;
(11) cis-luteina; (12) luteoxantina; (13) cis-luteoxantina; (14) flavoxantina; (15) cis-
flavoxantina; (16) mutatoxantina; (17) neoaxantina; (18) neuroeoporo; (19) 5,6,5',6'-
diepoxi-β-caroteno; (20) 5,6-epoxi-β-caroteno; (21) violaxantina; (22) cis-violaxantina
(23) taraxantina; (24) zeaxantina; (25) zeinoxantina.

3.1.1. Método recomendado pela AOAC

Foi um dos métodos mais utilizados para a determinação de pró-vitamina A em alimentos (método 941.15 da AOAC) (DEUTSCH, 1990). Basicamente o método consiste na extração com acetona e hexano, filtração, lavagem com água e ajuste do extrato a um volume conhecido. A solução é aplicada em uma coluna cromatográfica de MgO ativado:hiflosupercaI (1:1). Os carotenos são eluídos com acetona/hexano (4:96), a absorbância lida a 436 nm e o resultado é expresso em UI (unidades internacionais) ou mg de α-caroteno. Os dados para carotenos e valor de vitamina A encontrados nas tabelas de composição de alimentos foram obtidos a partir desse método.

Devido a sua simplicidade, aparentemente é um método vantajoso. No entanto, tem sido muito criticado, citado muitas vezes como um método inadequado para a determinação de pró-vitamina A (REEDER & PARK, 1975; SIMPSON & CHICESTER, 1981; CECCHI & RODRIGUEZ-AMAYA, 1981a; RODRIGUEZ-AMAYA, 1985; SIMPSON...

GEBHARDT et alii (1977), trabalhando com pêssego, compararam o método da AOAC e um proposto pelos autores, envolvendo separação em coluna aberta empacotada com MgO:hiflosupercel (1:3) e Mg(OH)₂:Ca(OH)₂ (1:6), utilizando concentrações crescentes de acetona em éter de petróleo. O valor de vitamina A foi de 2983 UI/100g pelo método da AOAC e de apenas 535 UI/100g pelo método proposto. Os autores observaram que na fração de caroteno da AOAC, além do α-caroteno, haviam β-criptoxantina e outros carotenoides poli-hidroxilados, o que explicava o alto valor de vitamina A encontrado.

Em 1979, ZAKARIA et alii encontraram por CLAE um valor de vitamina A de tomate, considerando apenas o α-caroteno, e assumiram que este valor era 15 vezes menor do que seria o obtido pelo método da AOAC. Os autores não realizaram a determinação de acordo com a AOAC e basearam a superestimação no conteúdo de licopeno, que, na realidade, não é quantificado pelo método da AOAC.

BUSHWAY & WILSON (1982) compararam os valores de vitamina A obtidos pelo método da AOAC e um método utilizando CLAE, que quantificava apenas α- e β-carotenos. Os resultados obtidos pelo método da AOAC foram sempre superiores, e a justificativa dada pelos autores é que na técnica utilizando coluna aberta, carotenoides sem atividade ou com atividade menor que a do β-caroteno eram eluídos da coluna e quantificados como β-caroteno.

SIMPSON et alii (1985) comparando os resultados encontrados pelo método da AOAC e métodos por CLAE, observaram que para algumas frutas e hortaliças tinha-se resultados semelhantes, enquanto que para outros ocorria uma superestimação do valor vitamínico. Tomando como base os dados da pesquisa, SIMPSON & TSOU (1986) classificaram as frutas e hortaliças em três grupos (TABELA 3). No grupo (1) estariam aqueles onde o
<table>
<thead>
<tr>
<th>grupo</th>
<th>alimentos</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>couve, alface, espinafre, repolho, pimentão verde, tomate, coentro, batata-doce, aipo, melão, mameia</td>
</tr>
<tr>
<td>2</td>
<td>cenoura, abóbora</td>
</tr>
<tr>
<td>3</td>
<td>manga, mamão, laranja, pessego, carambola, pimenta</td>
</tr>
</tbody>
</table>

referência: SIMPSON & TSOU (1986)
método da AOAC poderia ser aplicado sem qualquer modificação; no grupo (2) aqueles que necessitam de gradiente durante a cromatografia, para possibilitar a separação dos diferentes carotenóides pró-vitamínicos; e no grupo (3) aqueles que precisam, além do gradiente, uma etapa de saponificação.

RODRIGUEZ-AMAYA et alii (1988) determinaram a composição da fração obtida pelo método da AOAC de vários alimentos e constataram a presença de pró-vitaminas menos ativas, como α-caroteno, β-zeacaroteno, α-criptoxantina, β-criptoxantina e γ-caroteno, assim como carotenóides inativos, como β-caroteno e zeinoxantina, que eluem juntamente com o β-caroteno. Outra falha do método é o uso de uma quantidade fixa de solvente para a extração, não levando em conta a natureza da amostra, o que pode ocasionar uma extração incompleta dos pigmentos. Além disso, a leitura da solução é feita a 436 nm, que não representa o comprimento de absorção máxima do β-caroteno. Segundo os resultados obtidos por RODRIGUEZ-AMAYA et alii (1988), o método da AOAC apresentou resultados comparáveis para couve e tomate, quando comparado com o método proposto pelos autores, no entanto foi três vezes maior em abóbora, e dobrou com relação ao mamão.

3.1.2. Método recomendado pela COST91

A COST91 é uma organização inaugurada com a participação de cientistas europeus que sentiram a necessidade de melhores métodos padronizados, em virtude da falta de dados confiáveis em relação ao valor nutricional, à distribuição e ao efeito do processamento sobre as vitaminas nos alimentos. COST91 (BRUBACHER et alii, 1985) descreve três procedimentos diferentes que dependem do material a ser analisado:

Procedimento A: Determinação do total de carotenos em alimentos prontos para o consumo.

Procedimento B: Determinação do total de carotenos em frutas, hortaliças e materiais de origem vegetal inalterados.

Procedimento C: Determinação do total de carotenos em bebidas, sucos de frutas e preparações à base de frutas.

Nos três procedimentos os carotenos são recolhidos em uma única fração e calculados como β-caroteno. Carotenos homólogos e isômeros não são separados, já que segundo os autores as quantidades de α-caroteno e isômeros presentes nos alimentos são muito pequenas, tornando a separação desnecessária.

No procedimento A, a amostra é saponificada com hidróxido de potássio 50% em etanol, éter de petróleo (30°C-60°C) e hidroquinona, deixando a mistura em banho-maria por 30 minutos, com agitação, a uma temperatura de aproximadamente 60°C sob refluxo de nitrogênio. Os pigmentos são extraídos com éter etílico com adição de água e agitação. Após separação das fases, uma alíquota é retirada e lavada com éter saturado com água, para
a remoção do álcali, evaporada em evaporador rotatório e submetida à cromatografia.

No procedimento B para amostras secas (abaixo de 15% de umidade), de 1,5 a 3,0 g são deixadas em uma mistura de hexano ou éter de petróleo e acetona (70:30) por uma noite, sob atmosfera de nitrogênio. A saponificação é feita com solução metanolica de KOH 40% durante 30 minutos à temperatura ambiente. Após adição de água e separação das fases, a porção orgânica é colocada a volume e uma alíquota é tomada e evaporada em evaporador rotatório, seguindo-se então a cromatografia.

Para amostras frescas, como frutas e hortaliças, 10 g são tomadas e extraídas com três porções de 50 mL de acetona. O extrato combinado é colocado a volume e uma alíquota é então saponificada da mesma forma como descrito anteriormente para amostras secas. Após adição de hexano ou éter de petróleo, a mistura é lavada com água, para a remoção do álcali e da acetona, e evaporada.

No procedimento C, cerca de 50 mL (ou gramas) da amostra é agitada com 200-400 mL de clorofórmio por 30 minutos. A emulsão formada é então centrífugada e a fase aquosa desprezada. O extrato clorofórmico é filtrado a uma alíquota é concentrada para a cromatografia.

Nos três procedimentos, a água residual é removida pela adição de etanol e após evaporação, o resíduo é dissolvido em hexano e novamente evaporado para a remoção de traços de etanol. O resíduo é finalmente dissolvido em hexano ou éter de petróleo e aplicado em coluna cromatográfica, empacotada com Al₂O₃ desativada. A fração de carotenos é eluída, sem o auxílio de vácuo, com hexano ou éter de petróleo. As xantofilas devem permanecer no topo da coluna.

A quantificação é feita utilizando-se o valor da absorbância a 450 nm e o valor de 2590 e 2600 para o coeficiente de absorção em hexano ou éter de petróleo, respectivamente.
Segundo RODRIGUEZ-AMAYA (1989) e RODRIGUEZ-AMAYA & FARFAN (1991), existem no método etapas que podem ser simplificadas, eliminando a possibilidade de degradação pelo excessivo manuseio da amostra. Em amostras onde a quantidade de β-caroteno é significativa, como por exemplo em abóbora e cenoura, pode ocorrer uma superestimação do valor de vitamina A. Por outro lado, em amostras que apresentam a β-criptoxantina como principal pigmento, como no caso do mamão, o valor vitamínico é subestimado.

Por ser um método recente, não existe ainda na literatura trabalhos de avaliação do mesmo.

3.1.3. Método recomendado pelo IVACG

Entre as propostas do IVACG, além da preparação de relatórios mostrando a distribuição e magnitude da hipovitaminose A, está a dos métodos analíticos para uma determinação mais exata dos teores de vitamina A em alimentos.

O método recomendado pelo grupo inicialmente se preocupa com a inativação das enzimas por branqueamento. A extração é feita com acetona em liquidificador, e o homogeneizado transferido para um funil de vidro sinterizado. Sucessivas porções de acetona são adicionadas para completar a extração. O extrato é transferido para um funil de separação com água e hexano, agitando vagarosamente e deixando em repouso até separação das fases. A fase de acetona e água é colocada num segundo funil de separação e re-extraída com porções de hexano, duas ou três vezes. Os extratos de hexano são combinados, lavados com água, para a retirada da acetona, e concentrado em evaporador
rotatório. Neste ponto o extrato pode ser cromatografado ou ir para a saponificação.

A saponificação é feita com igual volume de uma solução metanólica de KOH 5-10%, e pode ser realizada a frio ou a quente, com ou sem evaporação do hexano. O extrato saponificado é transferido para um funil de separação com hexano e lavado com porções sucessivas da água, até a remoção completa do álcali. Após concentração, segue-se a separação cromatográfica.

Diferente da técnica empregada pelo método de COST91 e da AOAC, no método de IVACG os carotenóides são separados individualmente em coluna aberta, empacotada com MgO:hiflosupercel (1:1). Os extratos não saponificados são eluídos com 50 mL de acetona 10% em hexano, enquanto que os saponificados requerem para a separação gradiente de solvente, éter etílico e acetona em hexano. A concentração é calculada através dos máximos de absorção e dos correspondentes valores de absorbividade (DAVIES, 1976).

Assim como o método de COST91, não foi encontrado na literatura nenhum trabalho utilizando o método do IVACG.

3.1.4. Método recomendado por Rodríguez-Amaya et alii

O método foi desenvolvido para a determinação completa de carotenóides (RODRIGUEZ et alii, 1976a), mas para a determinação apenas das pró-vitaminas pode ser bastante simplificado (RODRIGUEZ-AMAYA et alii, 1988). Basicamente consiste na homogeneização da amostra (a quantidade depende do conteúdo de carotenóides) em liquidificador com acetona fria,
seguido de filtração. A operação é repetida até que o resíduo se torne incolor. Os pigmentos são transferidos para o éter de petróleo, em funil de separação, adicionando-se pequenas porções da solução de pigmento em acetona ao éter, seguida pela lavagem com água para a retirada da acetona. Neste ponto o extrato é concentrado e segue para a cromatografia ou então é saponificado.

A saponificação é feita com igual volume de KOH 10% em metanol por uma noite, à temperatura ambiente. O extrato saponificado é colocado em funil de separação e lavado com várias porções de água até eliminação do álcali, e concentrado.

Os pigmentos são separados individualmente, utilizando coluna de MgO:hidrosupercel (1:1) desenvolvida com concentrações crescentes de acetona em éter de petróleo (1-15%). As frações são recolhidas e lavadas com água para remover a acetona, e para a retirada da água residual, Na₂SO₄ anidro é adicionado. As frações são evaporadas em evaporador rotatório, não permitindo que a temperatura ultrapasse os 35°C e colocada a volume. A concentração dos carotenóides é calculada através dos máximos de absorção e dos correspondentes valores de absorbividades (A₁%₅₅₅) tabelados por Davies (1976).

Ainda para a separação de isômeros, o método adota uma recromatografia das frações isoladas em coluna de Ca(OH)$_2$ (Mallinkrodt) (BICKOFF et alii, 1949), desenvolvida com diferentes concentrações de éter etílico em éter de petróleo.

3.1.5. Métodos por cromatografia líquida de alta eficiência (CLAE)

Muitos métodos para a determinação de pró-vitaminas A, utilizando CLAE vêm sendo reportados na literatura. Vantagens como rapidez, simplicidade, eficiência na separação, reprodutibilidade e exatidão, tem sido atribuídas a essa técnica.

As fases móveis mais utilizadas são combinações de acetonitrila, metanol, tetrahidrofurano, clorofórmio e hexano usadas isocraticamente, já que a eluição por gradiente requer longos períodos entre as corridas para equiliriação do sistema (ZACARIA et alii, 1979; NELIS & LEENHEER, 1983).
Todavia, segundo RODRIGUEZ-AMAYA (1989), numa revisão minuciosa sobre a determinação quantitativa de pró-vitamina A, a CLAE necessita de muito aprimoramento, mesmo porque o seu potencial não tem sido todo aproveitado e os resultados apresentados utilizando essa técnica são divergentes.

Embora sempre citada como uma técnica rápida, muitas vezes os passos que antecedem o procedimento cromatográfico são longos e trabalhosos (ZACARIA et alii, 1979). Alguns autores tentam uma preparação de amostra mais rápida, excluindo principalmente a etapa da saponificação (BUSHWAY & WILSON, 1982; HSIEH & KAREL, 1983; PHILIP et alii, 1988), no entanto, esses procedimentos não podem ser utilizados para alimentos que possuam quantidades apreciáveis de ésteres de pró-vitaminas, como no caso de mamão.

A maioria dos trabalhos se limita a quantificar apenas o β-caroteno (α-caroteno e β-criptoxantina ocasionalmente) e mesmo assim os dados se mostram conflitantes.

REEDER & PARK (1975) foram os primeiros a desenvolver um método por CLAE para a determinação de pró-vitamina A em suco de laranja. O método requer duas colunas, uma de Al₂O₃ para α- e β-caroteno e outra de sílica para β-criptoxantina. STEWART (1977a,b) simplificou o método utilizando apenas uma coluna de MgO, com um gradiente de eluição de acetona-hexano.

BUSHWAY & WILSON (1982) elaboraram uma metodologia por CLAE para a determinação de α- e β-caroteno em hortaliças. O mesmo método foi empregado por BUREAU & BUSHWAY (1986) em 22 frutas e hortaliças, determinando também a β-criptoxantina. Quatorze desses alimentos tiveram valores de vitamina A bem diferentes daqueles relatados em tabelas de composição de alimentos dos EUA.

SPEEK et alii (1988) determinaram o valor vitamínico A de 55 frutas e hortaliças da Tailândia, utilizando um método por CLAE anteriormente desenvolvido por eles (SPEEK et
alií, 1986) e em geral o valor de vitamina A encontrado foi menor que o relatado no "Thai Food Composition Table" de 1978. A mesma metodologia foi empregada por PEPPING et alií (1988) modificando apenas a fase móvel, para determinar o conteúdo de α- e β-caroteno de vários alimentos do oeste da África.

QUACKENBUSH & SMALLIDGE (1986) desenvolveram um sistema por CLAE, utilizando fase reversa e metanol-clorofórmio (9:1) como fase móvel, onde era possível separar as principais pró-vitaminas, assim como algumas forma isoméricas.

PHILIP & CHEN (1988b) trabalhando com frutas, compararam o método de coluna convencional e CLAE quantificando β-caroteno, β-criptoxantina e os ésteres de criptoxantina. Os resultados obtidos por CLAE foram na sua maioria superiores aos por coluna aberta. GREGORY et alií (1987) já haviam conseguido uma boa resolução de ésteres de carotenóides inativos por CLAE, demonstrando a potencialidade da técnica na separação dos ésteres de pró-vitaminas.

MEJIA et alií (1988) determinaram o valor de vitamina A de 5 diferentes cultivares de pimenta, utilizando CLAE. No geral os resultados foram superiores aos encontrados na tabela de composição de alimentos do México e menores que os apresentados pelo INCAP/ICNND (LEUNG & FLORES, 1961).

Utilizando fase reversa e gradiente, formado por uma mistura ternária de solventes, HEINONEM et alií (1989) determinaram o teor de vitamina A de 60 frutas e hortaliças. Prosseguindo o trabalho, HEINONEM (1990) determinou, utilizando a mesma técnica, o valor vitamínico de diferentes cultivares de cenouras.

TEE & LIN (1991b) compararam o método oficial da AOAC com um método por eles desenvolvido utilizando CLAE, em 40 hortaliças e 14 frutas. Principalmente nos alimentos onde quantidades expressivas de outros carotenóides pró-vitamínicos estão presentes, o valor de vitamina A obtido pelo método da AOAC foi bem inferior ao obtido por CLAE. Por outro lado, em alimentos
onde a concentração de β-caroteno é expressiva, ocorreu o inverso.

CARVALHO et alii (1992) compararam um método por CLAE, utilizando fase reversa, e quantificação por padronização interna e externa, com o método por coluna aberta de RODRIGUEZ-AMAYA et alii (1988) para a determinação de pró-vitamina A. Os autores obtiveram a mesma performance utilizando as duas técnicas.

Poucos foram os métodos que apresentaram boa resolução, principalmente em relação aos isômeros das pró-vitaminas, e existe dificuldade na obtenção de padrões adequados para uma calibração correta. A normalização ou o cálculo da % das áreas dos picos a partir da área total, conduzem a falsos resultados, já que as diferentes pró-vitaminas apresentam diferentes coeficientes de absorbividade e máximos de absorção em diferentes comprimentos de onda.

3.1.6. Isômeros de pró-vitaminas A

Os carotenóides existem na natureza sob a forma mais estável que é a configuração trans. No entanto algumas formas cis podem ocorrer naturalmente (GOODWIN, 1976). Os dois primeiros carotenóides na rota biossintética, fitoeno e fitoflueno, existem predominantemente na configuração 15-cis. A presença de pequenas quantidades de cis-isômeros de outros carotenóides tem sido cada vez mais reportada na literatura.

O uso de agentes neutralizantes na etapa de extração, na tentativa de neutralizar os ácidos que são liberados durante a preparação da amostra, faz parte de uma série de métodos (Curl, 1962, 1964, 1967; Stewart & Wheaton, 1973;
FIGURA 2: Estrutura dos principais isômeros do β-caroteno.

Os métodos utilizados para a separação e quantificação de isômeros, no entanto, são difíceis e pouco
TABELA 4: Bioatividade dos isômeros das principais pró-vitaminas A.

<table>
<thead>
<tr>
<th>pró-vitaminas</th>
<th>bioatividade (%)<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>13-cis-α-caroteno</td>
<td>13</td>
</tr>
<tr>
<td>trans-α-caroteno</td>
<td>50-54</td>
</tr>
<tr>
<td>9-cis-α-caroteno</td>
<td>16</td>
</tr>
<tr>
<td>13-cis-β-caroteno</td>
<td>53</td>
</tr>
<tr>
<td>trans-β-caroteno</td>
<td>100</td>
</tr>
<tr>
<td>9-cis-β-caroteno</td>
<td>38</td>
</tr>
<tr>
<td>15-cis-β-caroteno</td>
<td>nd</td>
</tr>
<tr>
<td>trans-γ-caroteno</td>
<td>27-42</td>
</tr>
<tr>
<td>neo-γ-caroteno</td>
<td>19</td>
</tr>
<tr>
<td>trans-β-criptoxantina</td>
<td>57</td>
</tr>
<tr>
<td>neo-β-criptoxantina U</td>
<td>27</td>
</tr>
<tr>
<td>neo-β-criptoxantina A</td>
<td>42</td>
</tr>
</tbody>
</table>

^a DEUEL et alii (1944, 1945) e ZECHMEISTER (1962)
nd - não determinado

Em 1970, SWEENEY & MARSH desenvolveram um método para a separação de isômeros de α- e β-caroteno em hortaliças, recromatografando separadamente as frações isoladas em coluna de MgO:hiflosupercl (1:2), em coluna de Ca(OH)₂-Mg(OH)₂ desenvolvida com 0,5-1,5% de p-metilansol em éter de petróleo. Os principais isômeros do β-caroteno foram o neo-β-caroteno B e o neo-β-caroteno U, que eluíram antes e depois do trans β-caroteno, respectivamente (ZECHMEISTER, 1960). O método foi utilizado por SWEENEY & MARSH (1971b) para estudar os efeitos do processamento em hortaliças, e por GEHRHARDT et alii (1977) em pêssegos. Esses isômeros mostraram ser o 13-cis e 9-cis com base nos seus espectros de RMN de ¹H e ¹³C (TSUKIDA et alii, 1981).

Segundo SCHWARTZ & PATRONI-KILLAM (1985) a separação dos isômeros pode ser feita utilizando Ca(OH)₂ como adsorvente em cromatografia de camada delgada. Nenhuma forma isomérica foi encontrada quando aplicou-se padrões de α- e β-caroteno trans, o que demonstra que as formas cis não foram formadas durante a separação. Analisando hortaliças verdes e amarelas, os autores observaram que todas as hortaliças frescas verdes apresentavam isômeros. Sabe-se que a clorofila influência na fotoisomerização de certos carotenóides através do mecanismo de transferência de energia e esse é um fator importante a ser considerado durante o trabalho com a amostra.

RODRIGUEZ-AMAYA & TAVARES (1992) observaram a importância da separação de cis isômeros na determinação do valor de vitamina A de produtos processados de tomate. As amostras "in natura" não tinham tais isômeros. Os autores concluíram que, nos produtos processados realmente há uma superestimação do valor
vitamínico quando a separação dos isômeros não é realizada, mas
que a magnitude depende de como são feitos os cálculos.
Demonstraram a necessidade de se estabelecer as verdadeiras
biopotências das formas isoméricas.

Devido a alta resolução e melhor reprodutibilidade
que a CLAE apresenta sobre a cromatografia de coluna aberta
(RUEDI, 1985), essa técnica tem sido ultimamente muito estudada
na tentativa de se obter a composição completa dos carotenoides e
as respectivas formas isoméricas, sem a necessidade da
recromatografia. Infelizmente nenhum método ainda foi capaz de
satisfazer esse desejo, e a maioria dos trabalhos encontrados na
literatura só levam em consideração as formas cis do β-caroteno,
as vezes do α-caroteno também, desconsiderando as outras pró-
vitaminas. Mesmo quando a separação dos isômeros foi obtida, não
se determinou a concentração absoluta.

As primeiras tentativas para a separação de
isômeros por CLAE foram feitas utilizando colunas de Al₂O₃

VECCHI et alii (1981) separaram 12 isômeros de β-
caroteno fotoisomerizado usando coluna de Al₂O₃. Entretanto, para
compensar a menor seletividade da Al₂O₃ em relação ao Ca(OH)₂,
várias modificações no equipamento foram necessárias,
principalmente para manter a temperatura e a quantidade de água
da fase móvel.

TSUKIDA et alii (1982) separaram 17 isômeros do β-
caroteno produzidos por fotoisomerização, utilizando coluna de
Ca(OH)₂ desenvolvida com 0,1 ou 0,5% de acetona em hexano.
CHANDLER & SCHWARTZ (1987), empregando o mesmo tipo de coluna e
acetona-hexano (3:97) como fase móvel, separaram isômeros de α-
e β-caroteno de frutas e hortaliças. PETTERSON & JONSSON (1990)
na tentativa de uma separação mais rápida e picos sem caudas na
coluna de Ca(OH)₂, utilizaram gradiente de eluição e sistema de
aquecimento na coluna. Embora os isômeros tenham sido detectados,
a quantificação foi dada em termos de α- e β-caroteno, sem
distinguir os isômeros. Esses trabalhos enfatizaram os problemas
em se obter e manter padrões de cis-carotenóides para a
quantificação e a sensibilidade do Ca(OH)₂ à água e outros
solventes polares. Ainda, a eluição final do isômero do α-
caroteno se sobrepuje ao início da eluição do isômero do β-
caroteno.

BUSHWAY (1985), testando 2 colunas de fase normal
(Al₂O₃ e NH₂) e 4 colunas de fase reversa C18, obteve
cromatogramas que demonstravam nitidamente a dificuldade em
separar os diferentes carotenóides e seus isômeros,
principalmente devido a complexidade da composição de
carotenóides nos alimentos.

Normalmente a fase móvel utilizada para a
separação de isômeros em colunas de fase normal é o n-hexano com
pequenas quantidades de acetona e isopropanol. Com relação à fase
estacionária poucas são as marcas de Ca(OH)₂ que produzem uma
separação eficiente (SCHWARTZ & PATRONI-KILLAN, 1985; CHANDLER &
SCHWARTZ, 1987; CRAFT et alii, 1990), e seu uso requer o controle
de uma série de condições, porém o mais crítico é que essas
colunas não são encontradas comercialmente.

A utilização de fase reversa ainda não apresentou
com sucesso uma separação dos isômeros, principalmente devido às
características similares desse composado (BUSHWAY & WILSON,
1982; STANCHER & ZONTA, 1982; BEECHER & KHACHIK, 1984; GRANADO et
alii, 1991). No entanto, muitos trabalhos empregam esse tipo de
coluna, principalmente pelo fato de serem encontradas
comercialmente.

QUACKENBUSH & SMALLIDGE (1986) testaram mais de 20
colunas comerciais de fase reversa C18 e C8, e somente 3 colunas
C18 poliméricas demonstraram a capacidade em separar os isômeros
do β-caroteno, sendo a Vydac 201 TP a mais efetiva. Utilizando
esse tipo de coluna e metanol:clorofórmio (94:6) como fase móvel,
QUACKENBUSH (1987) analisou alguns alimentos e os resultados
confirmaram as observações feitas por Sweeney & Marsh (1970), que em hortaliças verdes a proporção de 9-cis em relação ao 13-cis é maior, enquanto que em alimentos não verdes o 13-cis é o predominante. Os alimentos cozidos apresentavam no geral uma quantidade de isômero 10 vezes maior que os alimentos crus.

Craft et alii (1990) compararam 5 marcas de colunas C18, escolhendo a Vydc 201 TP com metanol:água (97:3) como fase móvel para a separação de isômeros de preparações comerciais de β-caroteno. O grau de pureza do β-caroteno variou de 7 a 83%, semelhante ao observado por Quackenbush & Smallidge (1986). Os dados quantitativos foram calculados em porcentagem, isto é de forma estimativa, já que os isômeros possuem diferentes coeficientes de absorção e absorção máxima a diferentes comprimentos de onda. Para avaliar o valor nutritivo dos alimentos, a concentração absoluta é necessária.

O'Neil et alii (1991) recentemente avaliaram 3 colunas C18 e de Ca(OH)2 e vários sistemas de solventes, verificando ser a Vydc 201 TP e a de Ca(OH)2 as colunas mais efetivas. As colunas de Ca(OH)2 foram mais eficientes para separar o 15-cis do 13-cis-β-caroteno, enquanto que a Vydc teve uma melhor resolução para separar o 9-cis do 13-cis-β-caroteno.

Alguns autores relatam que a utilização de solventes halogenados promove a isomerização de polímeros conjugados (Kulry et alii, 1983; Pesek et alii, 1990), no entanto Saleh & Tan (1991) trabalhando em sistemas com e sem diclorometano, um dos solventes mais utilizados em CLAE, obtinham a mesma proporção de isômeros, provavelmente pelo pequeno tempo de exposição do pigmento com o solvente.
KHACHIK et alii (1989) encontraram que interações entre as moléculas de carotenóides, o solvente de injeção e a fase móvel podem produzir picos-artefatos na CLAE, os quais podem ser confundidos como impurezas ou cis-carotenóides. Solventes de injeção como cloreto de metileno, clorofórmio, tetrahidrofurano, benzeno e tolueno em colunas de C18 desenvolvida com uma mistura de metanol, acetonitrila, hexano e cloreto de metileno produzem esses artefatos. A distorção dos pico e a formação de picos múltiplos pode ser evitada injetando-se amostras concentradas em pequenos volumes.

SCHMITZ et alii (1989) foram capazes de separar cis isômeros de α- e β-caroteno por cromatografia capilar de fluido supercrítico, mas esse método possui certas limitações, principalmente no que diz respeito à quantidade de amostra injetada na coluna, que é muito pequena. Por outro lado não é um método simples e pelos dados apresentados pelos autores (baixa resolução) não seria possível aplicá-lo universalmente nem para a separação de todas as pré-vitaminas, muito menos para a separação de suas formas isoméricas.

A separação de isômeros da β-criptoxantina por CLAE ainda não foi reportada na literatura.

Cis/trans isômeros podem ser inicialmente identificados pela mudança nos máximos de absorção na presença de iodo (LIAAEN-JENSEN, 1971, 1973) e pela presença do chamado "pico cis" (ZECHMEISTER, 1943; KARRER & JUCKER, 1950; SCOTT, 1964). Os isômeros cis do α- e β-caroteno absorvem em comprimento de onda máximo menor que a forma trans, aproximadamente 2 a 5 nm para os mono-cis, 10 nm para os di-cis e pode chegar a 50 nm para os poli-cis (SCOTT, 1964; WEEDON, 1971). O pico cis é um novo máximo de absorção na região do UV (330-350 nm) e se localiza aproximadamente 140 nm, medido em hexano e etanol de petróleo, abaixo do comprimento de onda máximo (VETTER et alii, 1971; DAVIES, 1976). Os carotenóides mono-cis centrais possuem esse pico mais intenso que os mono-cis laterais.
o valor da absorbividade molar no comprimento de onda máximo e no pico cis varia de isômero para isômero, e essa característica qualitativa permite a identificação, embora não conclusiva, desses compostos através da chamada "razão Q" (absorção no comprimento de onda máximo/absorção no pico cis).

Para calcular a porcentagem de cada isômero presente CHANDLER & SCHWARTZ (1987) adotaram o chamado ponto isobátsico a 436 nm, observado quando os espectros de absorção dos isômeros, individualmente obtidos a partir de soluções de mesma concentração, são sobrepostos. Nesse ponto é assumido que os valores das absorbividades dos isômeros são iguais (KIAUI & BAUERFEIND, 1981), o que permite o cálculo da porcentagem de cada isômero a partir de uma única curva padrão, a do trans-α-caroteno. CHANDLER & SCHWARTZ (1988) fizeram a quantificação dos isômeros de α-caroteno de batata-doce utilizando esse método. O’NEIL et alii (1991) encontraram o ponto isobátsico a 410 nm, e segundo os autores essa discrepância se deve principalmente a coeluição dos isômeros e os espectros obtidos de misturas, já que não há padrões puros disponíveis.

Nos poucos trabalhos que tentaram a quantificação, somente as porcentagens foram apresentadas. Em nenhum estudo por CLAE os valores de pró-vitamina A foram convertidos em equivalentes de retinol.
<table>
<thead>
<tr>
<th>referência</th>
<th>isômeros encontrados</th>
<th>amostras analisadas</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>trans</td>
<td>9-cis</td>
</tr>
<tr>
<td>TSUKIDA et alii (1981)</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>CHANDLER & SCHWARTZ (1987)</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>JENSEN et alii (1964)</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>QUACKENBUSH (1987)</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>BUSHWAY (1986)</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>KHACHIK et alii (1986)</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>KHACHIK & BEECHER (1987)</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>BEN-AMOTZ et alii (1988)</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

\(^a\) \(\beta\)-caroteno isomerizado ou por tratamento térmico ou por reação catalisada por iodo

\(^b\) Dunaliella bardawil

referência: O’NEIL et alii (1991)
3.2. Métodos Analíticos para a Determinação de Carotenóides

Os carotenóides são os pigmentos mais amplamente distribuídos na natureza, estão presentes em plantas, em alguns animais, fungos e bactérias. São formados por 8 unidades de isopreno (C₅H₉) unidas por ligações tipo "cabeça-cauda", com exceção da posição central onde a ligação é do tipo "cauda-cauda". O sistema de duplas ligações conjugadas é o responsável pela cor amarela ao vermelho que esses pigmentos apresentam. Podem ser classificados em dois grandes grupos: carotenos (hidrocarbonetos) e xantofilas (hidrocarbonetos oxigenados).

Os carotenóides diferem no grau de saturação, ciclização, grupos funcionais e no número de carbonos do esqueleto. São bastante susceptíveis à isomerização e oxidação (DAVIES, 1976; LIAAEN-JENSEN, 1971).

Devido às várias funções que lhes são atribuídas, esses compostos despertaram o interesse de muitos pesquisadores em diversas áreas. Em alimentos, a sua atuação como corante natural e precursor de vitamina A são bem conhecidas. Recentemente voltaram a ocupar lugar de destaque, devido a estudos que demonstram que alguns carotenóides, mesmo aqueles que não possuem atividade pró-vitamínica, exercem outras funções fisiológicas, tais como prevenção de determinados tipos de câncer, proteção da mucosa contra úlceras gástricas e aumento da resposta imunológica a determinados tipos de infecção (MOSZIK et alii, 1983; JAVOR et alii, 1983; ONG & CHYTIL, 1983; MATHEUS-ROTH, 1985; COLDITZ et alii, 1985; RITEMBAUGH, 1987; BENDICK, 1989a; ZIEGLER, 1989; KRINSKY, 1989). Assim o consumo de alimentos ricos em carotenóides tem sido recomendado.

a composição completa de carotenóides é também um parâmetro importante, do ponto de vista tecnológico, já que durante o processamento a cor dos alimentos e sua retenção dependem do tipo e quantidade dos pigmentos presentes.

Devido a essas informações, muitos autores, já a alguns anos, vem se dedicando para estabelecer uma metodologia adequada para a determinação da composição completa de carotenóides. No entanto ainda existem muitos resultados divergentes, principalmente em consequência das diferenças existentes entre os próprios procedimentos analíticos, e a composição diversificada dos carotenóides nos alimentos.

Devido à susceptibilidade à degradação, para a execução de qualquer etapa analítica, é necessário tomar cuidados a fim de resguardar a integridade dos carotenóides ao final de cada etapa.

3.2.1. Extração

Nenhum método de extração pode ser aplicado para todas as amostras e adotado como uma técnica padrão. Deve ser sempre adaptado à amostra devido a diferente distribuição e
ocorrência dos carotenóides nos diferentes tipos de alimentos. Solventes orgânicosmiscíveis em água, tais como acetona, metanol e etanol (DAVIES, 1976), são os mais indicados para a extração dos carotenóides, isso porque as amostras frescas possuem alta porcentagem de água e os carotenóides são na sua grande maioria lipossolúveis. A extração para amostras secas pode ser feita com solventes imiscíveis em água (éter de petróleo, hexano, éter etílico).

Outros solventes e misturas já foram empregados, tais como álcool isopropílico, hexano-acetona ou éter de petróleo-acetona (em diversas proporções), éter de petróleo-isopropanol e diclorometano-metanol. QUACKENBUSH et alii (1970) empregaram uma mistura de hexano-acetona-etanol-tolueno para a extração dos pigmentos por uma noite. EDWARDS & LEE (1986) não encontraram diferença significativa no conteúdo de carotenóides totais de cenouras extraídas com acetona e com metanol.

Agentes antioxidanteis recomendados por DAVIES (1976), com o objetivo de prevenir a perda de carotenóides por oxidação durante as análises, tem sido empregados. Entre eles o pirogalo (THOMPSOM & MAXWELL, 1977; EDWARDS & LEE, 1986), ácido ascórbico (GROSS et alii, 1971), ascorbato de sódio (SPEEK et alii, 1986) e hidroquinona (BALOCH et alii, 1977). No entanto, o hidroxibutiltolueno (BHT) parece ter a preferência dos

O uso de agentes neutralizantes, recomendado para neutralizar os ácidos que são liberados durante a etapa de extração e que podem promover a isomerização dos carotenóides, também faz parte de alguns métodos, inclusive da AOAC. Entre os agentes neutralizantes o mais utilizado é MgCO₃.

Normalmente a extração completa envolve operações sucessivas até a retirada quantitativa do pigmento, com ou sem trituração da amostra. Muitas impurezas co-extraídas são removidas através de partição, e o passo seguinte, geralmente, é a saponificação.

3.2.2. Saponificação

A etapa de saponificação justifica-se pela necessidade de hidrolisar os ésteres de carotenóides e remover lipídios e clorofilas, que podem interferir na análise (LIAAEN-JENSEN, 1971; DAVIES, 1976).
Basicamente a técnica consiste na adição de uma solução metanólica de KOH ao extrato do pigmento em éter de petróleo ou hexano. Pode ser realizada a quente ou a temperatura ambiente. Diversas formas de saponificação, com diferentes concentrações de KOH, tempo e temperatura, foram empregadas, embora poucos estudos avaliaram o mérito desses procedimentos e várias opiniões divergentes foram citadas com relação a ocorrência ou não de perdas de carotenóides durante a saponificação.

BUSHWAY & WILSON (1982) não encontraram diferença significativa nos teores de α- e β-caroteno entre amostras saponificadas e não saponificadas, embora as condições não tenham sido especificadas. BARANYAI et alii (1982) constataram que a saponificação realizada à temperatura ambiente por 16 horas, com solução metanólica de KOH a 30%, não causou perda no conteúdo de carotenóides. Porém, KHACHIK et alii (1986) reportou uma perda de 6% de β-caroteno e de 17-84% de outros carotenóides de brócolis, como resultado da saponificação com 30% de KOH/metanol, à temperatura ambiente por 3 horas.

SCHWARTZ & PATRONI-KILLAM (1985) não observaram nenhuma diferença no número de isômeros de α- e β-caroteno após a etapa de saponificação, com solução saturada de KOH durante 30 minutos, à temperatura ambiente.

TAYLOR et alii (1987) verificaram os efeitos da saponificação com a utilização de diferentes concentrações de KOH (6 a 30%), diferentes temperaturas (temperatura ambiente a 60°C) e variando o tempo de saponificação (1,5 a 18 horas). O parâmetro mais crítico foi a concentração do álcali, levando a perdas significativas, especialmente das xantofilas.

Numa comparação entre 6 procedimentos mais comuns de saponificação, verificou-se que a perda quantitativa, assim como a formação de artefatos (cis isômeros e epóxidos), ocorria quando as condições empregadas eram mais drásticas, como alta temperatura, maior concentração de KOH e maior exposição do
pigmento com o álcali (KIMURA et alii, 1990). A magnitude da degradação variava também com o tipo de carotenóide, as xantofilas parecem ser mais susceptíveis.

Em amostras contendo apo-carotenóides, toda a acetona utilizada na extração deve ser eliminada antes da saponificação, já que traços de acetona podem promover a reação de condensação aldólica com esses pigmentos na presença de KOH, formando metil-cetonas (SCHMIDT et alii, 1971; STEWART & WHEATON, 1973).

3.2.3. SEPARAÇÃO CROMATOGRAFICA

Os métodos de separação de carotenóides são cromatográficos e podem ser divididos segundo a técnica utilizada.

 Poucos são os trabalhos encontrados em carotenóides empregando camada delgada (CCD). Na realidade a CCD é uma técnica particularmente útil quando usada em combinação com outras técnicas, para a separação e purificação das frações de

3.2.3.1. Cromatografia de adsorção em coluna aberta (CCA)

Tem sido a técnica mais utilizada para a separação de carotenóides em alimentos. Vários adsorventes podem ser utilizados em uma série de combinações destes são encontradas nas revisões de DAVIES (1976) e TAYLOR (1983), além de várias considerações práticas para o uso da técnica e preparação da coluna. Segundo DAVIES (1976) os carotenos são melhores resolvidos em coluna de Ca(OH)\textsubscript{2} ou Al\textsubscript{2}O\textsubscript{3}, os carotenóides de polaridade intermediária em CaCO\textsubscript{3} e MgO, enquanto que as xantofilas requerem adsorventes menos ativos, como a celulose. A sílica gel deve ser utilizada com cautela, pois pode levar à degradação e isomerização (STRAIN et alii, 1967; RODRIGUEZ et alii, 1976b; TANAKA et alii, 1981; TAYLOR, 1983).

Estudando o efeito de diferentes adsorventes, TANAKA et alii (1981) observaram que o MgO causou menor, enquanto que a sílica gel maior alteração no espectro do \(\beta\)-caroteno. CHEN & YANG (1992) verificaram que sílica gel também não promovia a separação de carotenóides. RODRIGUEZ et alii (1976b) observaram a
hidroxilação na posição 4 do anel quando o β-caroteno foi exposto ao micro-Cel C. Os mesmos autores verificaram a perda de β-caroteno quando exposto à Al₂O₃, sílica gel, MgO, celite e hiflosupercel, constatando a menor perda (1%) quando exposto ao hiflosupercel.

ROUCHAUD et alii (1984) foram os únicos pesquisadores a constatar perda significativa de carotenóides em coluna de MgO:hiflosupercel (1:1) ativado.

Éter de petróleo ou hexana e concentrações crescentes de éter etílico e acetona em éter de petróleo são as combinações de solventes mais utilizadas como fase móvel na determinação de carotenóides por coluna aberta.
3.2.3.2. Cromatografia líquida de alta eficiência (CLAE)

Embora a ênfase maior na utilização da CLAE esteja na determinação de pró-vitamina A, essa técnica vem sendo pesquisada para a separação completa de carotenóides. Contudo, ainda não se tornou um método bem estabelecido e de uso rotineiro. Nenhum procedimento com a composição completa de carotenóides se mostrou satisfatório. As mesmas considerações feitas em relação à CLAE para a determinação de pró-vitaminas A também se aplicam à determinação de carotenóides em geral, incluindo as vantagens e desvantagens.

Segundo RUEDI (1985) a grande vantagem da utilização da CLAE seria a alta capacidade de resolução, permitindo dessa forma determinar a composição completa de carotenóides, inclusive separando as formas isométricas, sem a necessidade de recromatografar as frações não resolvidas, como ocorre em coluna aberta. No entanto nenhum método foi capaz de apresentar tal vantagem. BUSHWAY (1985) utilizando 6 colunas comerciais e vários sistemas de solventes obteve vários cromatogramas que demonstram a dificuldade na separação dos carotenóides.

44
3.2.4. Identificação e quantificação

Alguns parâmetros são muito úteis na identificação, tais como: (a) afinidade de adsorção na coluna (ordem de eluição) e na camada delgada (valores de Rf); (b) espectros de absorção; (c) reações químicas específicas e (d) espectroscopia de infra-vermelho (VETTER et alii, 1971; LIAAEN-JENSEN, 1971, 1973; MOSS & WEEDON, 1976; DAVIES, 1976; GOODWIN, 1980).

A confirmação da identidade de carotenóides já conhecidos pode ser obtida a partir de uma combinação criteriosa desses parâmetros mais tradicionais (RODRIGUEZ-AMAYA, 1989). Mas, para a elucidação de estruturas de novos carotenóides, os cientistas devem recorrer a técnicas mais modernas e sofisticadas, como a espectrometria de massa (EM) e ressonância magnética nuclear (RMN).

Qualquer que seja o método de quantificação de carotenóides por CLAE, o grande problema é obter e manter padrões puros, de modo a obter uma quantificação segura e rápida.
4. MATERIAL E MÉTODOS

4.1. Amostragem e Preparo de Amostra

Quatro tipos de alimentos, com características diferentes quanto à composição de carotenóides, foram selecionados para comparar e avaliar três procedimentos na determinação de pró-vitamina A. Foram escolhidos: couve cultivar Manteiga; cenoura cultivar Nantes; tomate cultivar Santa Cruz e mamão cultivar Solo. Todas as amostras foram obtidas em supermercados e feiras-livres da cidade de Campinas. Quatro lotes de cada alimento foram analisados em duplicata simultaneamente pelos três métodos.

Para couve partiu-se sempre de um maço finamente picado e misturado, e para cenoura e tomate de uma amostra de 1 kg homogeneizada. Para o mamão, após a retirada das sementes, foi utilizada a polpa homogeneizada das partes opostas resultantes do quarteamento longitudinal feito em dois frutos.

Para verificar a incidência de cis isômeros de algumas pró-vitaminas A, em alimentos "in natura" e processados, foram escolhidas 12 frutas, algumas com diferentes cultivares, e 11 hortaliças. Sete das hortaliças sofreram cozimento e duas foram refogadas, em condições semelhantes às utilizadas no preparo doméstico. Para cada amostra foram feitas cinco determinações em duplicata.

A maioria das frutas foram obtidas em supermercados e feiras-livres na região de Campinas, São Paulo. Manga cultivar Haden, mamão cultivar Solo, nectarina, nêspera, maracujá e pêssego cultivar Diamante foram produzidas no estado
de São Paulo. Acerola e pitanga foram apanhadas em quintais domésticos na cidade de Campinas. Manga cultivar Tommy Atkins e mamão cultivar Tailândia vieram do Mato Grosso do Sul e Bahia, respectivamente. Um tipo de pêssego veio do Chile. Abricó e cajá foram comprados no Maranhão e Rio Grande do Norte, respectivamente, e pequi e buriti no Piauí. As quatro últimas frutas, compradas em feiras-livres no estádio maduro, foram transportadas de avião e analisadas assim que chegaram ao laboratório.

No caso dos frutos grandes (mamão, manga, abricó), de cada lote formado por 3 a 5 frutos que foram quarteados, as partes opostas foram tomadas e após retirada das sementes e da casca, a polpa foi homogeneizada num liquidificador tipo "Waring". Para os frutos de tamanho médio (pêssego, nectarina, nêspera, pequi e buriti), as polpas de cada lote composto de 5 a 10 frutos foram homogeneizadas após a retirada das sementes e da casca. Cerca de 30 frutos foram utilizados para formar cada lote para as frutas pequenas (acerola, cajá, pitanga), cujas polpas foram homogeneizadas após a retirada das sementes. Para a maracujá, a polpa de 5 frutos foi colocada em liquidificador visando facilitar a retirada dos caroços.

Dependendo do conteúdo de carotenoides presente nas frutas, foram tomadas para análise de 5 a 100 g de amostra homogeneizada. Na TABELA 6 estão esquematizadas as amostragens realizadas com as frutas.

As hortaliças foram compradas em supermercados e mercearias de Campinas, São Paulo. Nos casos de agrião, espinafre, brócolis e couve, para a tomada da amostra, partiu-se sempre de um maço finamente picado e homogeneizado. Para o giló, cenoura, pimentão, quiabo, vagem e milho (previamente debulhado) partiu-se sempre de um lote de 500 g inteiramente homogeneizado. Para abóbora foram utilizados 2 frutos, que após o quarteamento tiveram as partes opostas homogeneizadas.

48
<table>
<thead>
<tr>
<th>frutos</th>
<th>origem</th>
<th>quantidade de cada lote</th>
<th>quantidade de amostra submetida à análise (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>.pequeno</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>acerola</td>
<td>Campinas-SP</td>
<td>30 frutos</td>
<td>100</td>
</tr>
<tr>
<td>pitanga</td>
<td>Campinas-SP</td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>cajá</td>
<td>Natal-RN</td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>.médio</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>nectarina</td>
<td>Limeira-SP</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>náspera cv Mizuho</td>
<td>Limeira-SP</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>maracujá cv Mamão</td>
<td>Limeira-SP</td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>pêssego chileno</td>
<td>Chile</td>
<td>5-10 frutos</td>
<td>100</td>
</tr>
<tr>
<td>pêssego cv Diamante</td>
<td>Jundiaí-SP</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>pequi</td>
<td>Teresina-PI</td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>buriti</td>
<td>Teresina-PI</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>.grande</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>manga cv Haden</td>
<td>Sumaré-SP</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>manga cv Tommy Atkins</td>
<td>Meto Grosso do sul-MS</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>mamão cv Solo</td>
<td>Jundiaí-SP</td>
<td>3-5 frutos</td>
<td>80</td>
</tr>
<tr>
<td>mamão cv Tailândia</td>
<td>Teixeira de Freitas-BA</td>
<td></td>
<td>80</td>
</tr>
<tr>
<td>abricó</td>
<td>São Luis-MA</td>
<td></td>
<td>80</td>
</tr>
<tr>
<td>cv-cultivar</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

49
Dependendo do conteúdo de carotenóides, foram tomadas para análise de 5 a 60 g de amostra.

Amostras de milho, espinafre, cenoura, brócolis, quiabo, vagem e abóbora sofreram cozimento, sendo que as duas últimas também foram refogadas em óleo. A amostragem nesse caso, também foi feita de modo semelhante à descrita para as mesmas hortaliças quando analisadas crus. Um esquema da amostragem e das condições de processamento estão apresentados na TABELA 7.

Para a determinação da composição completa de carotenóides foram escolhidos o abricó, o buriti e o pequi, que são muito consumidos e apreciados pelas populações onde essas frutas ocorrem, assim como outras frutas brasileiras das quais não havia nenhum, ou poucos dados sobre a composição de carotenóides, como é o caso da nectarina, da néspera e do pêssego. A obtenção das amostras seguiu os mesmos parâmetros já descritos anteriormente para essas frutas, sendo feitas para cada amostra cinco determinações, em duplícata.

Padrões de 8-apo-8'-carotenal, 8-criptoxantina e zeinoxantina, utilizados para a obtenção dos espectros de massa, foram cedidos pela Hoffmann-LaRoche & Co. (Basel-Switzerland).

4.2. Cuidados Necessários

Todas as precauções foram tomadas para se evitar a cis-isomerização e a degradação dos carotenóides durante a análise, de tal forma que as análises foram feitas o mais rápido possível, protegendo os pigmentos da luz e evitando-se as altas temperaturas. A adição de MgCO₃ para a neutralização dos ácidos,
<table>
<thead>
<tr>
<th>hortaliças</th>
<th>quantidade de cada lote</th>
<th>preparo doméstico</th>
<th>quantidade de amostra submetida à análise (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>abóbora cv Menina Verde</td>
<td>2 frutos</td>
<td>cru</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>2 frutos</td>
<td>cozido por 15'</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>2 frutos</td>
<td>refogado em óleo por 10'</td>
<td>10</td>
</tr>
<tr>
<td>agrião</td>
<td>1 maço</td>
<td>cru</td>
<td>5</td>
</tr>
<tr>
<td>brócolis</td>
<td>1 maço</td>
<td>cru</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>1 maço</td>
<td>cozido por 5'</td>
<td>5</td>
</tr>
<tr>
<td>cenoura cv Imperador</td>
<td>500 g</td>
<td>cru</td>
<td>10</td>
</tr>
<tr>
<td>cv Nantes</td>
<td>500 g</td>
<td>cru</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>500 g</td>
<td>cozido por 10'</td>
<td>10</td>
</tr>
<tr>
<td>couve cv Nanteiga</td>
<td>1 maço</td>
<td>cru</td>
<td>5</td>
</tr>
<tr>
<td>espinafre</td>
<td>1 maço</td>
<td>cru</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>1 maço</td>
<td>cozido por 5'</td>
<td>5</td>
</tr>
<tr>
<td>giló</td>
<td>500 g</td>
<td>cru</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>500 g</td>
<td>cozido por 10'</td>
<td>60</td>
</tr>
<tr>
<td>milho</td>
<td>500 g</td>
<td>cru</td>
<td>60</td>
</tr>
<tr>
<td>pimentão verde</td>
<td>500 g</td>
<td>cru</td>
<td>30</td>
</tr>
<tr>
<td>vermelho</td>
<td>500 g</td>
<td>cru</td>
<td>30</td>
</tr>
<tr>
<td>amarelo</td>
<td>500 g</td>
<td>cru</td>
<td>30</td>
</tr>
<tr>
<td>quiabo</td>
<td>500 g</td>
<td>cru</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>500 g</td>
<td>cozido por 5'</td>
<td>60</td>
</tr>
<tr>
<td>vagem cv Macarrão</td>
<td>500 g</td>
<td>cru</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>500 g</td>
<td>cozido por 10'</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>500 g</td>
<td>refogado em óleo por 10'</td>
<td>60</td>
</tr>
</tbody>
</table>

cv-cultivar

51
no sentido de evitar a isomerização dos carotenóides, se mostrou desnecessária.

4.3. Métodos para a Determinação do Valor de Vitamina A

Nas FIGURAS 3, 4 e 5 estão esquematizadas as três metodologias avaliadas.

No método recomendado pela COST91 (BRUBACHER et alii, 1985), as amostras foram analisadas seguindo-se o procedimento B, descrito para a determinação total de carotenos em frutas, hortaliças e materiais de origem vegetal inalterados. Embora o método de COST91 utilize coluna de AL₂O₃, não há nenhuma intenção em separar as diferentes pró-vitaminas A, já que os autores consideram a contribuição das pró-vitaminas, além do β-caroteno, desprezível. A fração recolhida da coluna é assumida como β-caroteno, quantificada pela absorbância a 450 nm, utilizando o coeficiente de absorção de 2600 (éter de petróleo) ou 2590 (hexano).

Existem no método proposto por COST91 algumas etapas onde há um grande manuseio da amostra, como por exemplo para a retirada da água residual, onde se adiciona etanol e após evaporação o resíduo é dissolvido em hexano e novamente evaporado para a remoção de traços de etanol e finalmente redissolvido em hexano ou éter de petróleo.

Os métodos de IVACG e RODRIGUEZ-AMAYA simplificado são semelhantes em várias etapas. A saponificação é realizada apenas em amostras contendo ésteres de pró-vitaminas A. A separação das diferentes pró-vitaminas é realizada em coluna de MgO:hiﬁlosupercel, e a quantificação das frações isoladas feita
10 g Amostra

Extração
50 mL acetona (3x)

Extrato combinado
Completer volume p/ 200 mL

Saponificação
alíquota 20 mL + 0,5 mL KOH 40% em metanol
30 minutos à temperatura ambiente

Retirada do álcali
30-40 mL éter de petróleo + 10 mL água (3x)

Evaporação da porção orgânica sob N₂ e
Dissolução em 3-5 mL éter de petróleo

Cromatografia
coluna: Al₂O₃ desativada
fase móvel: éter de petróleo

Eluato
leitura a 450 nm

FIGURA 3: Esquema da metodologia recomendada por COST91.
5-10 g Amostra branqueada

Extração
30 mL acetona (3x) + porções de 10 mL acetona

Transferência para éter de petróleo
10 mL água + 15 mL éter de petróleo (3x)

Eliminação da acetona
100 mL água (2x)

Saponificação
10% KOH em metanol
- quente ou frio
- com ou sem eliminação da fase orgânica

Eliminação do álcali
50 mL éter de petróleo + sucessivas porções água
Concentração do extrato
evaporador rotatório

Concentração do extrato
evaporador rotatório

Cromatografia
coluna: MgO:híflo (1:1)
fase móvel: 10% acetona/EP

Cromatografia
coluna: MgO:híflo (1:1)
fase móvel: RE e acetona/EP

Coleta das frações
Leitura nos λ de absorção máxima

FIGURA 4: Esquema da metodologia recomendada pelo IVACO.
5-10 g Amostra

Extrair com acetona

Transferência para éter de petróleo
Retirada da acetona com água

Saponificação
10% KOH em metanol
temperatura ambiente
por uma noite

Concentração do extrato
evaporador rotatório

Eliminação do álcali
lavagem com água
até pH neutro

Concentração do extrato
evaporador rotatório

Cromatografia
coluna: MgO:hidro (1:1) ativada (110°C/4 horas)
eluente: éter etílico e acetona em éter de petróleo

Coleta das frações

Leitura nos λ de absorção máxima

FIGURA 5: Esquema da metodologia de RODRIGUEZ-AMAYA et ali simplificada
através dos máximos de absorção, utilizando os coeficientes de absorção tabelados por DAVIES (1976), de acordo com a Lei de Beer.

No IVACG quatro tipos de saponificação são sugeridos, a frio ou a quente, com e sem evaporação da camada orgânica. As amostras não saponificadas são eluídas da coluna com 10% de acetona em éter de petróleo, enquanto que concentrações crescentes de éter etílico (1, 2 e 5%) e acetona (5 e 20%) em éter de petróleo são usadas para amostras saponificadas. No método descrito por RODRIGUEZ-AMAYA et alii (1988) a saponificação é realizada à frio (temperatura ambiente) por uma noite.

No método recomendado pelo IVACG como a identificação dos pigmentos não é especificada, supõe-se que seja pela ordem de eluição na coluna e pelo espectro de absorção. Já no método de RODRIGUEZ-AMAYA et alii (1988), a identificação é feita, além do comportamento na coluna, através dos máximos de absorção registrados na faixa de comprimento de onda de 300 a 550 nm, pelo comportamento na camada delgada de sílica gel e por respostas a reações químicas específicas.

Pelo método de RODRIGUEZ-AMAYA et alii (1988), pode-se conseguir a separação e quantificação de todas as pró-vitaminas, mesmo aquelas presentes em pequenas quantidades (limite de detecção de 0,04 μg/g), ressaltando-se no entanto, que neste caso o método torna-se mais longo e complicado.
Para analisar os dados estatisticamente, foi feita a análise de variância, comparando-se as médias pelo teste de Tukey.

4.4. Determinação dos Coeficientes de Absorção

Trans-α-caroteno e trans-β-caroteno foram cedidos pela Hoffmann-LaRoche (Basel, Switzerland). Trans-β-criptoxantina e trans-licopeno foram isolados de mamão. 13-Cis-β-caroteno e 9-cis-β-caroteno foram isolados de couve e agrião e a neo-β-criptoxantina de pêssego e nectarina. Um novo pigmento identificado no abricó também teve seu coeficiente de absorção determinado.

Os isômeros foram obtidos das frações conseguidas pelo método descrito por RODRIGUEZ-AMAYA et alii (1988), recromatografadas em coluna de Ca(OH)$_2$. As frações isoladas na coluna de Ca(OH)$_2$ foram submetidas à cromatografia de camada delgada de sílica gel, desenvolvida com 5% de éter etílico em éter de petróleo para os isômeros do α-caroteno, β-caroteno e licopeno, e 50% de éter etílico em éter de petróleo para os isômeros da β-criptoxantina e para o β-apo-8'-carotenol. Após o desenvolvimento só o centro das manchas foi retirado e os pigmentos extraídos com éter de petróleo. A purificação foi finalizada em uma pipeta "Pasteur" empacotada com Al$_2$O$_3$ desenvolvida com concentrações crescentes de éter etílico em éter de petróleo.

Os pigmentos purificados, após evaporação do solvente sob atmosfera de N$_2$, foram imediatamente pesados (10 a 20 µg) numa balança analítica de alta sensibilidade, marca Perkin-Elmer modelo AD-6 (precisão de ± 0,0001 mg), e dissolvidos
em solventes de grau analítico, utilizando para isso um agitador de ultrassom. O espectro de absorção foi registrado num espectrofotômetro marca Perkin-Elmer modelo Lambda 6, numa faixa de comprimento de onda de 300 a 550 nm. Os coeficientes de absorção \(A_{\text{cm}}^{1%} \) foram calculados de acordo com a Lei de Beer (DAVIES, 1976).

Para cada pigmento dissolvido em cada um dos solventes foram feitas em média 20 determinações. Para a rejeição de alguns poucos resultados foi aplicado o teste "Q" (DEAN & DIXON, 1951).

4.5. Determinação dos Isômeros de Pró-vitaminas A

As etapas desde a extração até a separação individual das pró-vitaminas en coluna de MgO:hidrosupercel (1:2) seguiram o método descrito por RODRIGUEZ-AMAYA et alii (1988). As frações pró-vitamínicas obtidas foram recromatografadas em coluna (1,2 cm de diâmetro interno por 8 cm de altura) de Ca(OH)\(_2\) para a separação dos isômeros (BICKOFF et alii, 1949 e SWEENEY & MARSH, 1970).

Para os isômeros do \(\beta \)-caroteno a coluna de Ca(OH)\(_2\) foi desenvolvida apenas com éter de petróleo. 13-Cis-\(\beta \)-caroteno e trans-\(\beta \)-caroteno foram eluídos com éter de petróleo e o 9-cis-\(\beta \)-
caroteno com 5% de éter etílico em éter de petróleo. Para os isômeros da \(\beta \)-criptoxantina utilizou-se como eluente 10% de acetona em éter de petróleo.

A identificação dos carotenóides foi feita como descrito anteriormente em detalhes por RODRIGUEZ et alii (1976). Isto envolve os espectros de absorção, o comportamento
cromatográfico na coluna e na camada delgada e reações químicas específicas (LIAAEN-JENSEN, 1971). Uma propriedade dos isômeros que também foi utilizada para auxiliar na identificação, foi a chamada "razão Q" (absorção no λ máx./ absorção no pico cis) (VETTER et alii, 1971).

A quantificação das pró-vitaminas isoladas foi feita espectrofotometricamente como descrito por DAVIES (1976), utilizando os coeficientes de absorção determinados neste trabalho.

4.6. Confirmação da Presença de Cis-isômeros por CLAE

Para verificar a incidência de isômeros por CLAE utilizou-se um cromatógrafo líquido VARIAN modelo 5010, constituído de um sistema de bombeamento de solvente ternário, com válvula injetora tipo "rheodyne" e uma alça de amostragem de 10 μl de capacidade. Foram utilizados dois detetores, o UV-visível Varian modelo 5100 e o de arranjo de diodos da Waters modelo 994, ambos com lâmpada de deutério, que operaram a 450 nm, acoplado a um integrador-registrador Varian modelo 4400.

A separação cromatográfica foi feita em coluna de 250x4.6 i.d. mm C18 (5 μm), marca Vydc 201-TP54 (Vydc Separation Group, Hesperia, CA), protegida por uma coluna de guarda de 30x4.6 i.d. mm C18 (10μm), marca Micropore MCH-120 (Varian).

A extração e saponificação das amostras foram realizadas segundo RODRIGUEZ-AMAYA et alii (1988). As amostras foram dissolvidas em hexana e injetadas diretamente no cromatógrafo. Para uma demonstração mais nítida da presença ou
não de formas isoméricas das pró-vitaminas, estas foram isoladas em coluna de MgO:hiflosupercel (RODRIGUEZ-AMAYA et alii, 1988) e as frações injetadas individualmente. Operou-se sempre de modo isocrático utilizando metanol:água (98:2) como fase móvel, com fluxo de 1,5 mL/min.

Os solventes empregados, marca Lichrosolv (Merck), foram previamente filtrados em sistema Millipore de filtração à vácuo, empregando membrana tipo HVLP de 0,45 µm e a seguir degaseificado em ultrassom. A água utilizada foi obtida através do sistema de filtração Milli-Q. As amostras (ou padrões) foram filtrados em membrana FHT, também de 0,45 µm (Millipore).

As formas cis e trans das pró-vitaminas foram localizadas por co-cromatografia com isômeros isolados, conforme descrito anteriormente para a determinação dos coeficientes de absorção, e com aqueles produzidos pela isomerização catalisada pelo iodo.

4.7. Cálculo do Valor de Vitamina A

A razão de conversão de 6 µg de β-caroteno correspondendo a 1 RE (retinol equivalente) estabelecida pelo NAS-NRC (1980) foi utilizada para calcular os valores de vitamina A, assim como foi levado em consideração os valores de biopotência de cada isômero (13% para 13-cis-α-caroteno, 50% para trans-α-caroteno, 53% para 13-cis-β-caroteno, 100% para trans-β-caroteno, 38% para 9-cis-β-caroteno, 30% para trans-α-criptoxantina, 42% para neo-β-criptoxantina, 57% para β-criptoxantina, 100% para trans-α-apo-10′-carotenal) (DEUEL et
4.8. Determinação Completa de Carotenóides

4.8.1. Triagem

Para a realização da triagem da composição de carotenóides, útil na verificação da complexidade das amostras e visando facilitar a otimização das condições de operação, tanto em cromatografia de coluna aberta como em CLAE, aplicou-se a técnica desenvolvida por BRITTON (1985). Foram utilizadas pequenas placas prontas (4 x 10 cm) de sílica gel em alumínio (TLC e HPTLC), desenvolvidas em béquers de 100 mL como cuba cromatográfica, utilizando 10 mL de cada fase móvel.

Tanto as placas de TLC como as de HPTLC foram desenvolvidas com os mesmos sistemas de solventes. Após a aplicação da amostra, o primeiro desenvolvimento foi realizado em 10% de éter etílico em éter de petróleo, que possui a capacidade de separar os carotenos entre si. Após verificar o número de carotenos presentes nas amostras, a mesma placa foi colocada em outro béquer com 70% de éter etílico em éter de petróleo, que provoca a separação entre os mono-hidroxilados e possibilita também verificar a presença de apo-carotenais. A seguir a mesma placa foi desenvolvida com 5% de etanol em éter de petróleo, que separa os di- e tri-hidroxilados. Para evidenciar a presença de epóxidos a placa foi exposta a vapores de HCl.

61
4.8.2. Método por cromatografia de coluna aberta

A metodologia seguida foi a descrita por RODRIGUEZ et alii (1976). As etapas de extração e saponificação dos carotenóides foram realizadas da mesma forma já descrita anteriormente no método simplificado de RODRIGUEZ-AMAYA et alii (1988) para a determinação de pró-vitaminas A. Em amostras onde a concentração de óleo era muito alta, como por exemplo no buriti e piqui que são frutos de palmeáceas, a saponificação foi realizada de forma mais drástica, utilizando para tanto uma solução de KOH 40% em metanol, seguindo as mesmas condições descritas anteriormente.

Após eliminação do álcali, através de lavagem com água, o extrato foi diluído a volume inicial e uma alíquota tomada para a realização da triagem da composição de carotenóides. A outra parte do extrato foi concentrada e se procedeu a separação dos carotenóides.

Uma coluna de vidro (2 cm de diâmetro interno e 30 cm de altura) foi empacotada a vácuo com uma mistura de MgO e hiflosupercel (1:2) até a altura de 12 cm, após empacotamento. Sulfato de sódio anidro foi colocado no topo da coluna para reter a água que ainda estivesse presente na amostra. Mantendo-se o vácuo, o extrato foi aplicado e as primeiras frações foram eluídas com concentrações crescentes de éter etílico e acetona em éter de petróleo, e os carotenóides mais polares foram eluídos com acetona pura e acetona:água (9:1). No caso específico do abricó a coluna de MgO:hiflosupercel não se mostrou eficiente na separação dos pigmentos, sendo utilizada uma coluna de Al₂O₃ neutro (atividade II-III), desenvolvida com o mesmo sistema de solventes.

As frações contendo acetona foram lavadas com água destilada, sendo adicionado a seguir Na₂SO₄ anidro para a eliminação da água residual. As frações isoladas foram
concentradas ou diluídas a volume adequado para leitura no espectrofotômetro.

As frações que mostraram ser misturas, quando cromatografadas em camada delgada, foram recromatografadas em coluna de Al_2O_3 neutro, desenvolvida com os mesmos eluentes.

Para a separação das formas isoméricas das frações seguiu-se o procedimento descrito por BICKOFF et alii (1949), descrito em detalhes no item 4.5.

A identificação dos carotenóides foi feita analisando-se um conjunto de parâmetros, tais como: ordem de eluição na coluna, espectros de absorção na região do visível, valores de R_f na camada delgada e reações químicas específicas. No caso de carotenóides ainda não relatados na literatura e com vistas a uma confirmação mais definitiva de outros, somou-se aos parâmetros acima citados, dados obtidos por espectrometria de massa (EM).

Os espectros de absorção foram registrados na faixa de comprimento de onda de 300 a 550 nm, utilizando um espectrofotômetro de duplo feixe (Perkin Elmer modelo Lambda 6). Os máximos de absorção foram comparados com os valores tabelados por DAVIES (1976).

Para a determinação dos valores de R_f, as frações de carotenóides isoladas foram concentradas e cromatografadas em camada delgada de sílica gel (0,25 mm de espessura) ativada por 1 hora a 110°C, utilizando como fase móvel 3% de metanol em benzeno. Nessas condições os carotenos eluem com a frente do solvente e as xantofilas ficam mais ou menos retidas de acordo com o número e tipo de grupos funcionais.

Após desenvolvimento, a placa foi exposta a vapore de HCl para verificar a presença de epóxidos, evidenciada pela mudança na coloração de amarelo ou laranja para azul ou verde. O tipo e o número de grupos epóxidos foram confirmados pela adição de HCl 0,1N à solução etanólica do pigmento. A
presença de 1 ou 2 grupos 5,6-epóxido é confirmada pela diminuição de 20 e 40 nm, respectivamente, dos máximos de absorção devido à transformação do 5,6-epóxido em 5,8-epóxido.

A configuração cis ou trans foi determinada através da adição de algumas gotas de uma solução etérica de iodo ao pigmento em éter de petróleo. O espectro registrado após cinco minutos de exposição à luz, demonstra no caso de carotenóide originariamente trans um deslocamento hipsocrômico, devido a isomerização para a forma cis. Para os originariamente cis-carotenóides ocorreu o inverso.

A reação de acetilação é útil para constatar a presença de hidroxilas. Esta técnica consiste em juntar 0,2 mL de anidrido acético ao pigmento dissolvido em 2,0 mL de piridina e deixar a mistura por 21 horas no escuro à temperatura ambiente. O pigmento é então transferido para éter de petróleo e submetido novamente à cromatografia em camada delgada. A reação é considerada positiva quando ocorre um aumento no valor de Rf.

As hidroxilas podem ser állicas ou não, e esta posição é confirmada através da reação de metilação. Ao pigmento dissolvido em metanol, adiciona-se gotas de HCl 2N e após 3 horas no escuro à temperatura ambiente o pigmento é transferido para o éter de petróleo e recromatografado em camada delgada. A reação positiva caracteriza-se por um aumento do valor de Rf.

Finalmente, a presença de grupos carbonilas conjugadas é verificada por redução com NaBH₄. O espectro desses carotenóides é caracterizado por um único pico alargado. Para a redução, alguns cristais de NaBH₄ são adicionados ao pigmento previamente dissolvido em etanol 95%. Após 3 horas no refrigerador, o espectro é novamente registrado. A transformação de um único máximo em três máximos reflete a conversão de um cetocarotenóide em xantofila.

O espectrômetro de massa utilizado para a confirmação da identificação foi de impacto eletrônico, modelo VG
Micromass 70/70 F, operando com uma energia de ionização de 70 eV e temperatura de ionização de 200–220°C.

A quantificação foi feita a partir da absorbância máxima, aplicando-se a Lei de Beer, utilizando os valores de absorbividade tabelados por Davies (1976) e os determinados neste trabalho.
5. RESULTADOS E DISCUSSÃO

5.1. Desempenho de Três Métodos para a Determinação de Pró-
Vitaminas A

Na TABELA 8 estão apresentados os teores de carotenóides de tomate, couve e cenoura obtidos por três metodologias.

O método de COST91, resultou sempre em teores de carotenos mais baixos. Uma das falhas observadas foi primeiramente o volume fixo de solvente para a extração, não considerando a natureza da amostra.

Para minimizar este problema foi realizada a extração exaustiva, isto é extração e filtração feita repetidamente (em média 3 vezes) até que o resíduo se tornou incolor, seguida do método original (COST91-modificado). Em alimentos onde a composição de carotenóides pró-vitaminicos e a própria matriz do alimento permitiu uma extração rápida, como no caso do tomate, o teor de caroteno aumentou em apenas 2% com a extração exaustiva. No entanto, para couve e cenoura o valor aumentou em 24% e 50%, respectivamente. Ainda assim os teores obtidos pelo COST91-modificado, continuaram os mais baixos, indicando dessa forma a existência de outra etapa crítica, provavelmente a saponificação. Esta etapa pode provocar a formação de artefatos (epóxidos e isômeros cis) e perdas quantitativas, principalmente das xantofílias, dependendo das condições utilizadas (KIMURA et alii, 1990).

Embora a saponificação fosse realizada a frio e por um período de tempo curto (30 minutos) no método de COST91, a
<table>
<thead>
<tr>
<th>amostra/pró-vitamina</th>
<th>COST91</th>
<th>COST91*</th>
<th>IVACG</th>
<th>IVACG*</th>
<th>ROD-AMAYA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tomate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>amostra 1</td>
<td>3,4</td>
<td>3,9</td>
<td>4,5</td>
<td>4,4</td>
<td>4,5</td>
</tr>
<tr>
<td>β-caroteno</td>
<td></td>
<td></td>
<td>0,4</td>
<td>0,5</td>
<td>0,9</td>
</tr>
<tr>
<td>γ-caroteno</td>
<td></td>
<td></td>
<td>0,4</td>
<td>0,5</td>
<td>0,9</td>
</tr>
<tr>
<td>amostra 2</td>
<td>3,8</td>
<td>3,9</td>
<td>4,0</td>
<td>4,2</td>
<td>4,5</td>
</tr>
<tr>
<td>β-caroteno</td>
<td></td>
<td></td>
<td>0,5</td>
<td>0,7</td>
<td>1,2</td>
</tr>
<tr>
<td>γ-caroteno</td>
<td></td>
<td></td>
<td>0,6</td>
<td>1,0</td>
<td>1,4</td>
</tr>
<tr>
<td>amostra 3</td>
<td>4,1</td>
<td>4,5</td>
<td>4,7</td>
<td>4,7</td>
<td>4,6</td>
</tr>
<tr>
<td>β-caroteno</td>
<td></td>
<td></td>
<td>0,6</td>
<td>1,0</td>
<td>1,4</td>
</tr>
<tr>
<td>γ-caroteno</td>
<td></td>
<td></td>
<td>0,3</td>
<td>0,8</td>
<td>1,0</td>
</tr>
<tr>
<td>amostra 4</td>
<td>3,1</td>
<td>3,4</td>
<td>4,6</td>
<td>4,4</td>
<td>4,4</td>
</tr>
<tr>
<td>β-caroteno</td>
<td></td>
<td></td>
<td>0,3</td>
<td>0,8</td>
<td>1,0</td>
</tr>
<tr>
<td>γ-caroteno</td>
<td></td>
<td></td>
<td>4,5</td>
<td>0,3a</td>
<td>4,4 ± 0,2a</td>
</tr>
<tr>
<td>média dp</td>
<td>3,6 ± 0,4</td>
<td>3,9 ± 0,5</td>
<td>0,5 ± 0,1b</td>
<td>0,8 ± 0,2a</td>
<td>1,1 ± 0,2a</td>
</tr>
<tr>
<td>β-caroteno</td>
<td></td>
<td></td>
<td>4,5 ± 0,3a</td>
<td>4,4 ± 0,2a</td>
<td>4,4 ± 0,1a</td>
</tr>
<tr>
<td>γ-caroteno</td>
<td></td>
<td></td>
<td>0,5 ± 0,1b</td>
<td>0,8 ± 0,2a</td>
<td>1,1 ± 0,2a</td>
</tr>
<tr>
<td>Couve</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>amostra 1</td>
<td>23,4</td>
<td>29,7</td>
<td>26,8</td>
<td>35,7</td>
<td>36,2</td>
</tr>
<tr>
<td>β-caroteno</td>
<td></td>
<td></td>
<td>22,1</td>
<td>31,0</td>
<td>33,6</td>
</tr>
<tr>
<td>amostra 2</td>
<td>18,2</td>
<td>23,8</td>
<td>25,5</td>
<td>32,4</td>
<td>35,3</td>
</tr>
<tr>
<td>β-caroteno</td>
<td></td>
<td></td>
<td>23,8</td>
<td>33,8</td>
<td>37,1</td>
</tr>
<tr>
<td>amostra 3</td>
<td>21,3</td>
<td>25,3</td>
<td>25,5</td>
<td>32,4</td>
<td>35,3</td>
</tr>
<tr>
<td>β-caroteno</td>
<td></td>
<td></td>
<td>23,8</td>
<td>33,8</td>
<td>37,1</td>
</tr>
<tr>
<td>amostra 4</td>
<td>22,6</td>
<td>27,1</td>
<td>25,5</td>
<td>32,4</td>
<td>35,3</td>
</tr>
<tr>
<td>β-caroteno</td>
<td></td>
<td></td>
<td>23,8</td>
<td>33,8</td>
<td>37,1</td>
</tr>
<tr>
<td>média dp</td>
<td>21,4 ± 2,3b</td>
<td>26,5 ± 2,5b</td>
<td>24,6 ± 2,0b</td>
<td>33,2 ± 2,1a</td>
<td>35,5 ± 1,5a</td>
</tr>
<tr>
<td>β-caroteno</td>
<td></td>
<td></td>
<td>24,6 ± 2,0b</td>
<td>33,2 ± 2,1a</td>
<td>35,5 ± 1,5a</td>
</tr>
<tr>
<td>Cenoura</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>amostra 1</td>
<td>34,2</td>
<td>55,4</td>
<td>13,3</td>
<td>14,2</td>
<td>14,5</td>
</tr>
<tr>
<td>α-caroteno</td>
<td></td>
<td></td>
<td>38,4</td>
<td>52,8</td>
<td>54,2</td>
</tr>
<tr>
<td>amostra 2</td>
<td>29,1</td>
<td>48,2</td>
<td>8,9</td>
<td>11,7</td>
<td>12,0</td>
</tr>
<tr>
<td>α-caroteno</td>
<td></td>
<td></td>
<td>35,7</td>
<td>46,7</td>
<td>49,6</td>
</tr>
<tr>
<td>amostra 3</td>
<td>42,8</td>
<td>62,6</td>
<td>11,9</td>
<td>13,2</td>
<td>12,9</td>
</tr>
<tr>
<td>α-caroteno</td>
<td></td>
<td></td>
<td>33,2</td>
<td>47,4</td>
<td>52,9</td>
</tr>
<tr>
<td>amostra 4</td>
<td>37,6</td>
<td>51,9</td>
<td>12,5</td>
<td>14,7</td>
<td>14,3</td>
</tr>
<tr>
<td>α-caroteno</td>
<td></td>
<td></td>
<td>40,1</td>
<td>51,5</td>
<td>56,7</td>
</tr>
<tr>
<td>média dp</td>
<td>36,0 ± 5,8</td>
<td>54,5 ± 6,1</td>
<td>11,7 ± 1,9a</td>
<td>13,5 ± 1,3a</td>
<td>13,4 ± 1,2a</td>
</tr>
<tr>
<td>α-caroteno</td>
<td></td>
<td></td>
<td>36,9 ± 3,1b</td>
<td>49,6 ± 3,0a</td>
<td>53,8 ± 2,9a</td>
</tr>
</tbody>
</table>

COST91 e IVACG* - modificado com extração exhaustiva.
A mesma letra, na mesma linha, significa que não há diferença significativa (P<0.05)
concentração de KOH utilizada (40%) é muito alta, podendo levar dessa forma à degradação dos carotenóides. TAYLOR et alii (1987), verificando os efeitos da saponificação com a utilização de diferentes concentrações de KOH em metanol (6 a 30%), constataram que quanto maior a concentração do álcali maiores são as perdas de carotenóides. Além do problema da saponificação, o volume de água para a retirada do álcali especificado pelo COST91 não foi suficiente, pois após a lavagem, o pH da solução variava entre 9 a 10. A presença de álcali residual não permite uma boa separação dos carotenos na coluna.

Os métodos recomendados pelo IVACG e RODRIGUEZ-AMAYA et alii (1988) são mais versáteis que o de COST91, pois permitem a separação dos diferentes carotenóides. No entanto, os volumes dos solventes para a eluição das frações devem ser ajustados à natureza da amostra, e não fixados como no método de IVACG.

Tanto no método recomendado pelo IVACG como no de RODRIGUEZ-AMAYA et alii (1988) a quantidade de amostra tomada para a extração mostrou-se adequada à quantidade de carotenóides presentes. No IVACG, embora o branqueamento facilite a extração, pois permite uma maior penetração do solvente, o volume fixo do solvente extratante e a não repetição da trituração da amostra, não permitiram uma extração completa para couve e cenoura. Após extração exaustiva (IVACG-modificado), o teor de carotenóides aumentou em 34% e 30%, respectivamente.

Por último, pode-se observar que o método de COST91, além de apresentar os menores valores, é o que apresenta os maiores desvios padrão, provavelmente em decorrência da maior manipulação da amostra, como ocorre por exemplo durante a retirada da água residual.

Os resultados dos quatro procedimentos de saponificação sugeridos pelo método de IVACG, testados em mamão, estão apresentados na TABELA 9. Para o β-caroteno não houve diferença significativa, ao nível de 5%, entre os quatro
TABELA 9: Teores de pró-vitamins A de mamão obtidos com os diferentes procedimentos de saponificação, sugeridos pelo método de IVACG.

<table>
<thead>
<tr>
<th>amostra 1</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I</td>
<td>II</td>
<td>III</td>
<td>IV</td>
</tr>
<tr>
<td>β-caroteno</td>
<td>1,9</td>
<td>2,0</td>
<td>1,8</td>
<td>1,7</td>
</tr>
<tr>
<td>β-criptoxantina</td>
<td>8,2</td>
<td>8,3</td>
<td>7,3</td>
<td>7,1</td>
</tr>
<tr>
<td>5,6-epoxi-β-criptoxantina</td>
<td>0,0</td>
<td>0,0</td>
<td>0,7</td>
<td>0,6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>amostra 2</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I</td>
<td>II</td>
<td>III</td>
<td>IV</td>
</tr>
<tr>
<td>β-caroteno</td>
<td>2,4</td>
<td>2,3</td>
<td>2,1</td>
<td>2,0</td>
</tr>
<tr>
<td>β-criptoxantina</td>
<td>9,3</td>
<td>9,1</td>
<td>8,4</td>
<td>8,2</td>
</tr>
<tr>
<td>5,6-epoxi-β-criptoxantina</td>
<td>0,0</td>
<td>0,0</td>
<td>0,5</td>
<td>0,2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>amostra 3</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I</td>
<td>II</td>
<td>III</td>
<td>IV</td>
</tr>
<tr>
<td>β-caroteno</td>
<td>2,3</td>
<td>2,0</td>
<td>1,8</td>
<td>1,8</td>
</tr>
<tr>
<td>β-criptoxantina</td>
<td>7,8</td>
<td>7,2</td>
<td>6,9</td>
<td>7,1</td>
</tr>
<tr>
<td>5,6-epoxi-β-criptoxantina</td>
<td>0,0</td>
<td>0,0</td>
<td>0,4</td>
<td>0,5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>amostra 4</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I</td>
<td>II</td>
<td>III</td>
<td>IV</td>
</tr>
<tr>
<td>β-caroteno</td>
<td>2,0</td>
<td>1,7</td>
<td>1,7</td>
<td>1,6</td>
</tr>
<tr>
<td>β-criptoxantina</td>
<td>8,8</td>
<td>8,5</td>
<td>7,2</td>
<td>7,0</td>
</tr>
<tr>
<td>5,6-epoxi-β-criptoxantina</td>
<td>0,0</td>
<td>0,0</td>
<td>1,1</td>
<td>0,9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>média ± dp</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>β-caroteno</td>
<td>2,2 ± 0,2a</td>
<td>2,0 ± 0,2a</td>
<td>1,9 ± 0,2a</td>
<td>1,8 ± 0,2a</td>
</tr>
<tr>
<td>β-criptoxantina</td>
<td>8,8 ± 0,7a</td>
<td>8,3 ± 0,9a</td>
<td>7,5 ± 0,7b</td>
<td>7,4 ± 0,6b</td>
</tr>
<tr>
<td>5,6-epoxi-β-criptoxantina</td>
<td>0,0 ± 0,0b</td>
<td>0,0 ± 0,0b</td>
<td>0,7 ± 0,3a</td>
<td>0,6 ± 0,3a</td>
</tr>
</tbody>
</table>

I - saponificação a frio
II - saponificação a frio com evaporação da fase orgânica
III - saponificação a quente
IV - saponificação a quente com evaporação da fase orgânica
A mesma letra, na mesma linha, significa que não há diferença significativa (P≤0,05)
procedimentos. Já para a β-criptoxantina os dois procedimentos à quente resultaram em valores significativamente mais baixos, levando inclusive à formação de epóxidos da β-criptoxantina. Os resultados confirmaram as observações feitas anteriormente por KIMURA et alii (1990), que recomendam a saponificação a frio.

A TABELA 10 apresenta os teores de pró-vitamina A para mamão, determinados pelos três métodos. Mesmo utilizando o método de COST91-modificado, os teores de carotenos foram significativamente inferiores aos obtidos pelos dois outros métodos. Além disso, este método não determina a β-criptoxantina, que é o principal pigmento pró-vitamínico (KIMURA et alii, 1991).

Para a comparação escolheu-se os melhores dados obtidos pelo IVACC, resultantes da saponificação a frio. Assim os métodos de IVACC e RODRIGUEZ-AMAYA simplificado apresentaram o mesmo desempenho.

A FIGURA 6 mostra comparativamente os valores de vitamina A, obtidos pelas três metodologias, para os diferentes tipos de alimentos e a FIGURA 7 os valores de vitamina A quando se realizou extração exaustiva das amostras nos métodos de COST91 e IVACC.

O método de COST91 apresenta dois problemas inerentes. O valor de vitamina A pode ser superestimado, já que não há a separação entre α-caroteno (pró-vitamina com 50% de atividade) e β-caroteno (pró-vitamina com 100% de atividade). Isso pode ser observado em cenoura onde, mesmo com teores mais baixos de carotenos, não houve diferença significativa no valor de vitamina A (FIGURA 7). Por outro lado, pode ocorrer subestimação do valor vitamínico, pois o método não leva em consideração a contribuição de xantofilas com atividade pró-vitamínica. No caso de mamão, por exemplo, a exclusão da β-criptoxantina resultou em subestimação do valor de vitamina A de aproximadamente 75%.

O método de IVACC apresentou valores de vitamina A significativamente menores que o método de RODRIGUEZ-AMAYA et
TABELA 10: Teores de pró-vitamina A (μg/g) determinados em mamão pelos três métodos.

<table>
<thead>
<tr>
<th>amostra/pró-vitamina</th>
<th>COST91</th>
<th>COST91*</th>
<th>IVACC¹</th>
<th>IVACC*</th>
<th>ROD-AMAYA</th>
</tr>
</thead>
<tbody>
<tr>
<td>amostra 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>β-caroteno</td>
<td>1,5</td>
<td>1,6</td>
<td>2,2</td>
<td>2,3</td>
<td>2,4</td>
</tr>
<tr>
<td>β-criptoxantina</td>
<td></td>
<td></td>
<td>8,2</td>
<td>8,4</td>
<td>9,0</td>
</tr>
<tr>
<td>amostra 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>β-caroteno</td>
<td>2,2</td>
<td>2,3</td>
<td>2,8</td>
<td>2,6</td>
<td>3,1</td>
</tr>
<tr>
<td>β-criptoxantina</td>
<td></td>
<td></td>
<td>9,3</td>
<td>9,2</td>
<td>9,2</td>
</tr>
<tr>
<td>amostra 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>β-caroteno</td>
<td>1,3</td>
<td>1,7</td>
<td>2,3</td>
<td>2,5</td>
<td>2,6</td>
</tr>
<tr>
<td>β-criptoxantina</td>
<td></td>
<td></td>
<td>7,8</td>
<td>8,1</td>
<td>8,8</td>
</tr>
<tr>
<td>amostra 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>β-caroteno</td>
<td>1,9</td>
<td>2,1</td>
<td>2,2</td>
<td>2,2</td>
<td>2,5</td>
</tr>
<tr>
<td>β-criptoxantina</td>
<td></td>
<td></td>
<td>8,8</td>
<td>8,5</td>
<td>8,8</td>
</tr>
<tr>
<td>média ± dp</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>β-caroteno</td>
<td>1,7 ± 0,4b</td>
<td>1,9 ± 0,3b</td>
<td>2,4 ± 0,3a</td>
<td>2,4 ± 0,2a</td>
<td>2,7 ± 0,3a</td>
</tr>
<tr>
<td>β-criptoxantina</td>
<td></td>
<td></td>
<td>8,6 ± 0,6a</td>
<td>8,6 ± 0,5a</td>
<td>9,0 ± 0,2a</td>
</tr>
</tbody>
</table>

COST91* e IVACC* - modificado com extração exaustiva
¹ melhores dados, resultados da saponificação a frio
Letras iguais, na mesma linha, significa que não há diferença significativa (P < 0,05)
FIGURA 6: Valores de equivalentes de retinol obtido pelos métodos de COST91, IVACG e RODRIGUEZ-AMAYA et alii simplificado.
FIGURA 7: Valores de equivalentes de retinol obtido pelos métodos de COST91-modificado, IVACG-modificado e RODRIGUEZ-AMAYA et alii simplificado.

5.2. Coeficientes de Absorção \([A_{\text{loc}}^1]\) de Alguns Carotenóides em Solventes Comuns

A quantificação dos carotenóides, quer sua separação seja realizada por cromatografia de coluna aberta ou por CLAE, sempre é feita espectrofotometricamente. Assim, a precisão dos resultados depende dos valores dos coeficientes de absorção utilizados no cálculo das concentrações.

A TABELA 11 permite observar algumas discrepâncias nos valores dos coeficientes de absorção tabelados, no mesmo solvente. Nossos resultados, no entanto, mostraram-se coerentes com a maioria dos valores reportados. Isso representou uma grande confiabilidade na técnica empregada.

Os coeficientes de absorção dos isômeros das pró-vitaminas A não são conhecidos, exceto para o 13-cis- e 9-cis-β-caroteno determinados em éter de petróleo com 1,5% e 0,5% de p-metilaniisol, respectivamente (Sweeney & Marsh, 1970). Como o p-metilaniisol não é um solvente muito utilizado na análise de carotenóides, os valores dos coeficientes de absorção foram determinados em éter de petróleo, hexano e metanol, que são solventes mais comuns na análise de carotenóides, tanto em cromatografia de coluna aberta como em CLAE.

Os isômeros do β-caroteno foram identificados pelos máximos de absorção, pela ordem de eluição na coluna de Ca(OH)\(_2\) e também pelos valores da chamada "razão Q" (TABELA 12).
TABELA 11: Valores dos coeficientes de absorção de alguns trans-carotenóides.

| pigmento | λ<sub>λ<sub>\text{max}\text{c}

2730	446	hexano	ZSCHIELE et alii (1942)
2800	445	hexano	GOODWIN (1955)
2180	474	disulfeto de carbono	GOODWIN (1955)
2800	444	éter de petróleo	SCHWIETER et alii (1965)
2770±60°	444	éter de petróleo	obtido neste trabalho

| pigmento | λ<sub>λ<sub>\text{max}\text{c}

2580	450	hexano	ZSCHIELE et alii (1942)
2505	451	hexano	GOODWIN (1955)
2592	449	hexano	ISLER et alii (1965)
2590	450	hexano	BRUBACHER et alii (1985)
2540	450	metanol	CRAFT & SOARES (1992)
2600	450	éter de petróleo	BRUBACHER et alii (1985)
2592	453	éter de petróleo	SCHWIETER et alii (1965)
2580±40°	449	éter de petróleo	obtido neste trabalho

| pigmento | λ<sub>λ<sub>\text{max}\text{c}

2470	452	hexano	ZSCHIELE et alii (1942)
2386	452	éter de petróleo	ISLER et alii (1957)
2330±90°	447	éter de petróleo	obtido neste trabalho

| pigmento | λ<sub>λ<sub>\text{max}\text{c}

1460	472	hexano	ZECHMEISTER et alii (1943)
3370	487	benzeno	SUBRAMAT & OPNER (1963)
3450	472	éter de petróleo	SCHWIETER et alii (1965)
3420±60°	470	éter de petróleo	obtido neste trabalho

^a os valores são média de 20 determinações.
TABELA 12: Valores da razão \(q^a \) e máximos de absorção dos isômeros do \(\beta \)-caroteno.

<table>
<thead>
<tr>
<th>isômero</th>
<th>razão (q)</th>
<th>(\lambda) (nm)</th>
<th>solvente</th>
<th>referência</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(\lambda_{\text{máx}})</td>
<td>pico cis</td>
<td></td>
</tr>
<tr>
<td>trans</td>
<td>18,3</td>
<td>449</td>
<td>337</td>
<td>éter de obtido neste</td>
</tr>
<tr>
<td>13-cis</td>
<td>2,3</td>
<td>443</td>
<td>336</td>
<td>petróleo trabalho</td>
</tr>
<tr>
<td>9-cis</td>
<td>6,5</td>
<td>445</td>
<td>335</td>
<td></td>
</tr>
<tr>
<td>trans</td>
<td>21,2</td>
<td>449</td>
<td>338</td>
<td>obtido neste</td>
</tr>
<tr>
<td>13-cis</td>
<td>2,6</td>
<td>444</td>
<td>337</td>
<td>hexano trabalho</td>
</tr>
<tr>
<td>9-cis</td>
<td>5,7</td>
<td>445</td>
<td>337</td>
<td></td>
</tr>
<tr>
<td>trans</td>
<td>15,3</td>
<td>451</td>
<td>339</td>
<td>obtido neste</td>
</tr>
<tr>
<td>13-cis</td>
<td>2,1</td>
<td>445</td>
<td>339</td>
<td>metanol trabalho</td>
</tr>
<tr>
<td>9-cis</td>
<td>4,8</td>
<td>446</td>
<td>338</td>
<td></td>
</tr>
<tr>
<td>trans</td>
<td>20,69</td>
<td>455</td>
<td>341</td>
<td>acetona JENSEN et alii (1964)b</td>
</tr>
<tr>
<td>13-cis</td>
<td>2,16</td>
<td>448</td>
<td>341</td>
<td></td>
</tr>
<tr>
<td>9-cis</td>
<td>9,40</td>
<td>450</td>
<td>341</td>
<td></td>
</tr>
<tr>
<td>15-cis</td>
<td>1,65</td>
<td>452</td>
<td>341</td>
<td></td>
</tr>
<tr>
<td>trans</td>
<td>> 12</td>
<td>453</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13-cis</td>
<td>2,30</td>
<td>444</td>
<td></td>
<td>metanol QUACKENBUSH (1987)c</td>
</tr>
<tr>
<td>9-cis</td>
<td>8,50</td>
<td>448</td>
<td></td>
<td></td>
</tr>
<tr>
<td>trans</td>
<td>17,4</td>
<td>450</td>
<td>337</td>
<td></td>
</tr>
<tr>
<td>13-cis</td>
<td>2,8</td>
<td>442</td>
<td>336</td>
<td>hexano TSUKIDA et alii (1981)d</td>
</tr>
<tr>
<td>9-cis</td>
<td>1,5</td>
<td>445</td>
<td>338</td>
<td></td>
</tr>
<tr>
<td>15-cis</td>
<td>1,9</td>
<td>448</td>
<td>335</td>
<td></td>
</tr>
<tr>
<td>trans</td>
<td>11,3</td>
<td>452</td>
<td>340</td>
<td></td>
</tr>
<tr>
<td>13-cis</td>
<td>2,2</td>
<td>445</td>
<td>338</td>
<td>metanol O’NEIL et alii (1991)a</td>
</tr>
<tr>
<td>9-cis</td>
<td>7,3</td>
<td>446</td>
<td>344</td>
<td></td>
</tr>
<tr>
<td>15-cis</td>
<td>1,7</td>
<td>449</td>
<td>339</td>
<td></td>
</tr>
<tr>
<td>trans</td>
<td>12,1</td>
<td>451</td>
<td>339</td>
<td></td>
</tr>
<tr>
<td>13-cis</td>
<td>2,7</td>
<td>443</td>
<td>339</td>
<td>metanol O’NEIL et alii (1991)a</td>
</tr>
<tr>
<td>9-cis</td>
<td>10,1</td>
<td>445</td>
<td>339</td>
<td></td>
</tr>
<tr>
<td>15-cis</td>
<td>1,7</td>
<td>448</td>
<td>338</td>
<td></td>
</tr>
</tbody>
</table>

a razão \(q \) - absorção no \(\lambda_{\text{máx}} \)/absorção no pico cis

b separado em coluna Nucleosil C18 com acetona:água (88:12)

c separado em coluna Vydac 2017PC18 com metanol por 5 minutos, seguido de metanol:cloroformo (94:6)

d separado em coluna de Ca(OH)\(_2\)

e separado em coluna de Ca(OH)\(_2\) com acetona:hexano (99,4:0,6)
A TABELA 13 apresenta os valores de A_{10}^{λ}, nos três diferentes solventes, determinados para os isômeros do β-caroteno e da β-criptoxantina, e os de um novo pigmento, ainda não relatado, que foi identificado no abricó.

A determinação dos coeficientes de absorção não é uma tarefa fácil conforme mostram os desvios padrões observados nesse estudo, utilizando a microbalança, que estão apresentados nas TABELAS 11 e 13.

5.3. Ocorrência de Isômeros de Pró-vitaminas A

5.3.1. Em frutas

Considerando os resultados apresentados na TABELA 14, as diferentes frutas podem ser divididas em dois grandes grupos: (1) frutas que possuem o β-caroteno como pigmento pró-vitamínico majoritário, e (2) frutas onde a β-criptoxantina é a principal pró-vitamina. Abricó, acerola, buriti, manga, maracujá e nêspera, pertencem ao primeiro grupo. O conteúdo médio de β-caroteno variou entre 3,4 a 359,8 µg/g. O buriti é excepcionalmente rico em pró-vitamina A, seu conteúdo de β-caroteno é muito maior que o de qualquer outra fruta analisada. O segundo grupo é constituído de cajá, mamão, nectarina, pêssego, pequi e pitanga, apresentando um conteúdo de β-criptoxantina na faixa de 3,9 a 16,9 µg/g. O β-caroteno foi encontrado em todas as amostras analisadas, enquanto o α-caroteno apenas em buriti e em baixa concentração, ou traços em acerola e cajá. Embora o β-caroteno fosse o pigmento predominante em nêspera, quantidades
TABELA 13: Valores dos coeficientes de absorção dos isômeros do β-caroteno e da β-criptoxantina, e do β-apo-β'-carotenol.

<table>
<thead>
<tr>
<th>Pigmento</th>
<th>(A_{1\text{cm}})</th>
<th>(\lambda(\text{nm}))</th>
<th>Solvente</th>
</tr>
</thead>
<tbody>
<tr>
<td>13-cis-β-caroteno</td>
<td>1730 ± 30</td>
<td>443</td>
<td>éter de petróleo</td>
</tr>
<tr>
<td></td>
<td>1760 ± 30</td>
<td>444</td>
<td>hexano</td>
</tr>
<tr>
<td></td>
<td>1670 ± 40</td>
<td>445</td>
<td>metanol</td>
</tr>
<tr>
<td></td>
<td>1930(^{b})</td>
<td>444</td>
<td>1,5% p-metilanisol</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>em éter de petróleo</td>
</tr>
<tr>
<td>9-cis-β-caroteno</td>
<td>2370 ± 60</td>
<td>445</td>
<td>éter de petróleo</td>
</tr>
<tr>
<td></td>
<td>2390 ± 40</td>
<td>445</td>
<td>hexano</td>
</tr>
<tr>
<td></td>
<td>2220 ± 30</td>
<td>446</td>
<td>metanol</td>
</tr>
<tr>
<td></td>
<td>2360(^{b})</td>
<td>449</td>
<td>0,5% p-metilanisol</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>em éter de petróleo</td>
</tr>
<tr>
<td>neo-β-criptoxantina</td>
<td>2150 ± 120</td>
<td>445</td>
<td>éter de petróleo</td>
</tr>
<tr>
<td></td>
<td>2180 ± 60</td>
<td>444</td>
<td>hexano</td>
</tr>
<tr>
<td></td>
<td>2070 ± 20</td>
<td>445</td>
<td>metanol</td>
</tr>
<tr>
<td>β-apo-β'-carotenol</td>
<td>2050 ± 40</td>
<td>398</td>
<td>éter de petróleo</td>
</tr>
<tr>
<td></td>
<td>1970 ± 50</td>
<td>398</td>
<td>hexano</td>
</tr>
<tr>
<td></td>
<td>2030 ± 10</td>
<td>396</td>
<td>metanol</td>
</tr>
</tbody>
</table>

a média e desvio padrão de 20 determinações.

b dados tabelados por SWEENEY & MARSH (1970), para comparação.
<table>
<thead>
<tr>
<th>Frutas</th>
<th>nome científico</th>
<th>lotes</th>
<th>pH</th>
<th>pró-vitamina A</th>
<th>concentração (µg/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abricó</td>
<td>Maçoea americana</td>
<td>5</td>
<td>4.3-4.6</td>
<td>13-cis-β-caroteno 0,5 ± 0,1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>trans-β-caroteno 14,1 ± 4,1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9-cis-β-caroteno 0,3 ± 0,2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>trans-β-zeacaroteno 0,8 ± 0,1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>trans-β-apo-10'-carotenal 5,0 ± 1,4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>trans-β-apo-8'-carotenol 11,1 ± 3,7</td>
<td></td>
</tr>
<tr>
<td>Acerola</td>
<td>Malpighia glabra</td>
<td>5</td>
<td>4.1-4.4</td>
<td>trans-α-caroteno tr em 2 amostras</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>trans-β-caroteno 3,4 ± 0,2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>trans-β-criptoxantina 0,4 ± 0,1</td>
<td></td>
</tr>
<tr>
<td>Buriti</td>
<td>Mauritia vinifera</td>
<td>5</td>
<td>nd</td>
<td>13-cis-α-caroteno 1,5 ± 1,4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>trans-α-caroteno 80,1 ± 9,0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>trans-β-caroteno 4,2 ± 2,4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9-cis-β-caroteno 1,0 ± 0,5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>trans-β-apo-10'-carotenal 359,8 ± 32,5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>trans-β-apo-8'-carotenol 5,4 ± 1,4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>trans-γ-caroteno 36,8 ± 4,5</td>
<td></td>
</tr>
<tr>
<td>Cajá</td>
<td>Spondias lutesia</td>
<td>5</td>
<td>3.9-4.4</td>
<td>trans-α-caroteno 0,3 ± 0,1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>trans-β-caroteno 1,4 ± 0,3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>neo-β-criptoxantina tr em 2 amostras</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>trans-β-criptoxantina 16,9 ± 2,2</td>
<td></td>
</tr>
<tr>
<td>Mamão</td>
<td>Carica papaya</td>
<td>5</td>
<td>4.0-4.4</td>
<td>trans-β-caroteno 3,0 ± 0,4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Solo</td>
<td></td>
<td></td>
<td>trans-β-criptoxantina 7,6 ± 0,8</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>trans-γ-carotina tr em 3 amostras</td>
<td></td>
</tr>
<tr>
<td></td>
<td>cultivar Tailândia</td>
<td>5</td>
<td>4.0-4.2</td>
<td>trans-β-caroteno 2,6 ± 0,6</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>trans-β-criptoxantina 10,2 ± 2,5</td>
<td></td>
</tr>
<tr>
<td>Manga</td>
<td>Mangifera indica</td>
<td>5</td>
<td>4.1-4.4</td>
<td>13-cis-β-caroteno tr em 3 amostras</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Haden</td>
<td></td>
<td></td>
<td>trans-β-caroteno 12,5 ± 4,4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>trans-α-caroteno 0,3 ± 0,1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tommy Atkins</td>
<td>5</td>
<td>4.3-4.7</td>
<td>13-cis-β-caroteno tr em 2 amostras</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>trans-β-caroteno 15,5 ± 0,9</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>trans-α-criptoxantina 0,4 ± 0,2</td>
<td></td>
</tr>
<tr>
<td>Fruta</td>
<td>Cultivar</td>
<td>Carotenos</td>
<td>Valores (μg/g)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------------</td>
<td>-------------------</td>
<td>----------------------------------</td>
<td>----------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maracujá Passiflora</td>
<td>cultivar ligulares</td>
<td>4.0-4.2 trans-β-carotenó</td>
<td>4,7 ± 1,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mamão</td>
<td></td>
<td>13-cis-β-carotenó</td>
<td>0,1 ± 0,1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>trans-β-carotenó</td>
<td>1,3 ± 0,2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>9-cis-β-carotenó</td>
<td>0,1 ± 0,1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>neo-β-criptoxantina</td>
<td>0,3 ± 0,2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>trans-β-criptoxantina</td>
<td>3,9 ± 0,7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nêespera Eriobotrya</td>
<td>cultivar japonica</td>
<td>4.1-4.3 trans-β-carotenó</td>
<td>tr em 3 amostras</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mizuho</td>
<td></td>
<td>13-cis-β-carotenó</td>
<td>8,0 ± 0,6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>trans-β-carotenó</td>
<td>4,6 ± 0,5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pequi Cariocar</td>
<td>villosum</td>
<td>nd trans-β-carotenó</td>
<td>0,1 ± 0,1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>13-cis-β-carotenó</td>
<td>tr em 2 amostras</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>trans-β-carotenó</td>
<td>1,2 ± 0,5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>neo-β-criptoxantina</td>
<td>0,4 ± 0,2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>trans-β-criptoxantina</td>
<td>4,4 ± 0,9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pêssego Prunus</td>
<td>Chileno persica</td>
<td>4.2-4.4 13-cis-β-carotenó</td>
<td>0,2 ± 0,1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>cultivar Diamante</td>
<td>trans-β-carotenó</td>
<td>1,2 ± 0,2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>9-cis-β-carotenó</td>
<td>0,1 ± 0,1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>neo-β-criptoxantina</td>
<td>0,3 ± 0,1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>trans-β-criptoxantina</td>
<td>5,1 ± 0,5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pitanga Eugenia</td>
<td>uniflora</td>
<td>4.0-4.1 trans-β-carotenó</td>
<td>3,7 ± 0,6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>trans-β-criptoxantina</td>
<td>12,3 ± 1,1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>trans-γ-carotenó</td>
<td>0,4 ± 0,1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*a cada lote foi analisado em duplicata
*tr - traços
*nd - não determinado (a natureza da fruta não permitiu a determinação do pH, como foi feito para as outras frutas).
apreciáveis de β-criptoxtantina foram também observadas. Pequenas quantidades de α-criptoxtantina apareceram nos cultivares de manga. γ-Caroteno foi detectado em buriti e pitanga e em traços em mamão cultivar Solo. No abricó foram encontradas quantidades apreciáveis de β-apo-10'-carotenal e β-apo-8'-carotenol.

Cis-isômeros das pró-vitaminas A, não foram encontrados em acerola, cajá, mamão cultivares Solo e Tailândia, maracujá e pitanga. Traços de 13-cis-β-caroteno foram observados em algumas amostras de mangas cultivares Haden e Tommy Atkins, nêspera e pequi. A média dos valores de vitamina A para as frutas mencionadas variou de 64 a 259 RE/100g (TABELA 15).

Cis-isômeros foram encontrados em níveis baixos em abricó (0,5 µg/g de 13-cis-β-caroteno e 0,3 µg/g de 9-cis-β-caroteno), nectarina (0,1 µg/g de 13-cis-β-caroteno, 0,1 µg/g de 9-cis-β-caroteno e 0,3 µg/g de neo-β-criptoxtantina), pêssego (0,2 µg/g de 13-cis-β-caroteno, 0,1 µg/g de 9-cis-β-caroteno e 0,3 µg/g de neo-β-criptoxtantina para o pêssego Chileno e 0,2 µg/g de 13-cis-β-caroteno, 0,1 µg/g de 9-cis-β-caroteno e 0,2 µg/g de neo-β-criptoxtantina para o pêssego cultivar Diamante) e pequi (0,4 µg/g de neo-β-criptoxtantina).

Os valores de vitamina A das frutas que continham cis-isômeros foram calculados com (45 a 6.489 RE/100g) e sem (47 a 6.992 RE/100g) a separação das formas isoméricas, mostrando uma superestimação de 3-10% quando os isômeros não foram separados (TABELA 15).

A recuperação obtida em nosso laboratório para o β-caroteno e β-criptoxtantina em coluna de Ca(OH)₂, utilizada para a separação de isômeros, foi de 96% e 94%, respectivamente. SWEENEY & MARSH (1970) encontraram o mesmo valor para o β-caroteno, utilizando coluna de Mg(OH)₂/Ca(OH)₂ com a mesma finalidade. A isomerização na coluna não foi observada neste estudo, como também no de SWEENEY & MARSH. Se essas perdas, 4% para o β-caroteno e 6% para a β-criptoxtantina forem consideradas, a superestimação do conteúdo em vitamina A em frutas "in natura"
TABELA 15: Valores de vitamina A calculados com e sem a separação dos isômeros em frutas

<table>
<thead>
<tr>
<th>Fruta/cultivar</th>
<th>sem separação dos isômeros</th>
<th>com separação dos isômeros</th>
<th>% superestimação</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a</td>
<td>b</td>
<td>a</td>
</tr>
<tr>
<td>Abricó</td>
<td>328</td>
<td>293</td>
<td>306</td>
</tr>
<tr>
<td>Acerola</td>
<td>64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Buriti</td>
<td>6992</td>
<td>6489</td>
<td>6769</td>
</tr>
<tr>
<td>Cajá</td>
<td>191</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Namão</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solo</td>
<td>122</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tailândia</td>
<td>140</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manga</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Haden</td>
<td>209</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tommy Atkins</td>
<td>259</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maracujá</td>
<td>78</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nectarina</td>
<td>47</td>
<td>45</td>
<td>47</td>
</tr>
<tr>
<td>Náspera</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mizuho</td>
<td>179</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pequi</td>
<td>57</td>
<td>54</td>
<td>56</td>
</tr>
<tr>
<td>Pêssego</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>chileno</td>
<td>75</td>
<td>73</td>
<td>75</td>
</tr>
<tr>
<td>Diamante</td>
<td>58</td>
<td>55</td>
<td>57</td>
</tr>
<tr>
<td>Pitanga</td>
<td>178</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 os valores são médias e desvio padrão de 5 lotes analisados individualmente.
a - calculado de acordo com a atividade biológica obtida por DEUEL et alii (1945).
b - calculado de acordo com a atividade biológica obtida por DEUEL et alii (1945), corrigido pela perda na coluna.
deixa de existir ou ocorre em valores muito mais baixos (2-6%) (TABELA 15). Portanto observa-se que, a separação de isômeros se mostra desnecessária para a determinação do valor de vitamina A em frutas frescas.

5.3.2. Em hortalícios

O exame dos trabalhos realizados com isômeros, demonstra que a forma cis ocorre mais em hortalícios do que em frutas, tendência confirmada pelos nossos resultados. Os cis-isômeros foram encontrados, em geral, em baixas quantidades, em todas as hortalícias frescas analisadas exceto em cenoura (cultivar Imperador) e tomate (cultivares Santa Cruz e Marglobe) (TABELA 16). A faixa de concentração média foi de traços-3,4 μg/g para 13-cis-β-caroteno e traços-4,1 μg/g para 9-cis-β-caroteno. A média de trans-β-caroteno foi de 1,1 a 38,4 μg/g. Nas hortalícias verdes, como brócolis, giló, vagem, couve, espinafre e agrião, o 9-cis está presente em quantidade maior que o 13-cis-β-caroteno; já nas hortalícias não verdes verificou-se o inverso. Esse fato já havia sido observado por Sweeney & Marsh (1970).

O α-caroteno foi encontrado em quantidades significativas em cenoura e abóbora, e em baixas concentrações em pimentão amarelo e vagem. Cenoura cultivar Imperador apresentou uma média de 19,0 μg/g de trans-α-caroteno e a cultivar Nantes 16,5 μg/g. Três dos cinco lotes de cenoura cultivar Nantes acusaram a presença de traços de 13-cis-α-caroteno. As amostras de abóbora cultivar Menina verde (estágio maduro) apresentaram uma média de 17,1 μg/g de trans-α-caroteno e os maiores teores de 13-cis-α-caroteno (0,3 μg/g).
Tabela 16: Concentração de cis- e trans-isômeros de pró-vitaminas A em hortaliças "in natura".

<table>
<thead>
<tr>
<th>Hortalisans</th>
<th>nome científico</th>
<th>nº de lotes analisados</th>
<th>pró-vitamina A</th>
<th>concentração (μg/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abóbora</td>
<td>Cucurbita moschata Menina</td>
<td>5</td>
<td>13-cis-α-caroteno 0,3 ± 0,2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>trans-α-caroteno 17,1 ± 2,3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>9-cis-α-caroteno 0,1 ± 0,1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>13-cis-β-caroteno 0,2 ± 0,1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>trans-β-caroteno 23,6 ± 3,2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>9-cis-β-caroteno 0,3 ± 0,2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>trans-α-criptoxantina 0,7 ± 0,4</td>
<td></td>
</tr>
<tr>
<td>Agrião</td>
<td>Nasturtium officinale</td>
<td>5</td>
<td>13-cis-β-caroteno 1,6 ± 1,1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>trans-β-caroteno 23,3 ± 2,8</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>9-cis-β-caroteno 2,2 ± 1,2</td>
<td></td>
</tr>
<tr>
<td>Brócolis</td>
<td>Brassica oleracea</td>
<td>4</td>
<td>13-cis-β-caroteno 1,2 ± 0,4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>trans-β-caroteno 18,1 ± 1,3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>9-cis-β-caroteno 1,5 ± 0,6</td>
<td></td>
</tr>
<tr>
<td>Cenoura</td>
<td>Daucus carota</td>
<td>5</td>
<td>trans-α-caroteno 38,4 ± 4,1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Imperador</td>
<td></td>
<td>trans-β-caroteno 38,4 ± 4,1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>tr em 3 amostras</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>13-cis-α-caroteno 16,5 ± 2,3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>trans-β-caroteno 33,0 ± 2,4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>tr em 2 amostras</td>
<td></td>
</tr>
<tr>
<td>Couve</td>
<td>Brassica oleracea</td>
<td>5</td>
<td>13-cis-β-caroteno 3,4 ± 2,1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>trans-β-caroteno 25,8 ± 4,4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>9-cis-β-caroteno 4,1 ± 2,8</td>
<td></td>
</tr>
<tr>
<td>Espinafre</td>
<td>Spinacea oleracea</td>
<td>5</td>
<td>13-cis-β-caroteno 2,3 ± 1,2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>trans-β-caroteno 25,0 ± 4,4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>9-cis-β-caroteno 2,7 ± 0,8</td>
<td></td>
</tr>
<tr>
<td>Giló</td>
<td></td>
<td>5</td>
<td>13-cis-β-caroteno tr em 2 amostras</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>trans-β-caroteno 1,4 ± 0,4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>9-cis-β-caroteno 0,1 ± 0,1</td>
<td></td>
</tr>
<tr>
<td>Produto</td>
<td>Espécie</td>
<td>13-cis-β-caroteno</td>
<td>trans-β-caroteno</td>
<td>9-cis-β-caroteno</td>
</tr>
<tr>
<td>---------</td>
<td>---------</td>
<td>-------------------</td>
<td>------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>Milho</td>
<td>Zea mays</td>
<td>0,4 ± 0,2</td>
<td>1,1 ± 0,2</td>
<td>0,2 ± 0,1</td>
</tr>
<tr>
<td>Pimentão</td>
<td>Capsicum annuum verde</td>
<td>0,2 ± 0,1</td>
<td>2,1 ± 0,4</td>
<td>0,2 ± 0,1</td>
</tr>
<tr>
<td></td>
<td>amarelo</td>
<td>0,5 ± 0,2</td>
<td>0,1 ± 0,1</td>
<td>1,5 ± 0,3</td>
</tr>
<tr>
<td></td>
<td>vermelho</td>
<td>0,4 ± 0,2</td>
<td>3,8 ± 0,7</td>
<td>0,2 ± 0,2</td>
</tr>
<tr>
<td>Quiabo</td>
<td>Hibiscus esculentus</td>
<td>0,2 ± 0,1</td>
<td>2,7 ± 0,6</td>
<td>0,2 ± 0,1</td>
</tr>
<tr>
<td>Tomate</td>
<td>Lycopersicon esculentum Santa Cruz</td>
<td>5,1 ± 0,4</td>
<td>0,7 ± 0,2</td>
<td>6,2 ± 0,3</td>
</tr>
<tr>
<td></td>
<td>Marglobe</td>
<td>0,2 ± 0,1</td>
<td>0,2 ± 0,1</td>
<td>1,2 ± 0,2</td>
</tr>
</tbody>
</table>

* a cada lote foi analisado em duplicata.
* tr - trigos
Pequenas quantidades de trans-β-criptoxantina foram encontradas em milho, enquanto que em abóbora e pimentão amarelo foi detectado a trans-α-criptoxantina, também em baixos teores.

A composição de pró-vitamina A de algumas hortaliças cozidas foi também determinada (TABELA 17). Cis-isômeros foram detectados em todas as hortaliças cozinhas analisadas, inclusive em cenoura. A faixa de concentração média ficou em 0,1-1,2 µg/g para 13-cis-α-caroteno, 0,1-1,8 µg/g para 9-cis-β-caroteno e 0,8-36,1 µg/g para trans-β-caroteno. Cis-α-caroteno só foi observado em cenoura cultivar Nantes (0,2 µg/g de 13-cis) e em abóbora cozida (0,8 µg/g de 13-cis e 0,3 µg/g de 9-cis). Em abóbora refogada não foi observada a presença de isômeros de α-caroteno.

Com o processamento a quantidade de isômeros de β-caroteno, em termos percentuais, aumentou em 1% na cenoura (nos dois cultivares analisados), 15% no giló, 7% no quiabo, 4% na abóbora cozida e 1% na abóbora refogada. Ocorreu também um aumento de 1% e 5% de isômeros do α-caroteno na cenoura e abóbora cozidas, respectivamente. Para brócolis, vagem cozida e refogada, por outro lado, houve respectivamente uma diminuição de 0,2%, 6%, 2% na quantidade de isômeros do β-caroteno. Em abóbora refogada os isômeros do α-caroteno desapareceram.

A exemplo das frutas, os valores de vitamina A para os vegetais que continham isômeros foram calculados, empregando as biopotências obtidas por DEUEL et alii (1945), baseadas no crescimento de ratos, com e sem a separação das formas isoméricas (TABELA 18). Superestimações de 10-22%, sensivelmente maiores que as observadas para frutas, foram constatadas quando os isômeros não foram separados. A superestimação dos valores de vitamina A para hortaliças frescas como agrião (14%), brócolis (15%), couve (19%), espinafre (16%), giló (17%), milho (22%), pimentão verde (19%), amarelo (20%) e vermelho (22%) e quiabo (16%) é considerável e portanto recomendável que a separação dos isômeros faça parte da análise.
Tabela 17: Concentração de cis- e trans-isômeros de pró-vitaminas A em hortaliças cozidas.

<table>
<thead>
<tr>
<th>Hortalícias</th>
<th>preparo</th>
<th>n° de lotes</th>
<th>pró-vitamina A</th>
<th>concentração (µg/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>doméstico</td>
<td>nalisados</td>
<td>13-cis-α-caroteno</td>
<td>0,8 ± 0,3</td>
</tr>
<tr>
<td>Abóbora</td>
<td>cozido</td>
<td>5</td>
<td>trans-α-caroteno</td>
<td>15,6 ± 2,1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>9-cis-α-caroteno</td>
<td>0,3 ± 0,2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>13-cis-β-caroteno</td>
<td>1,0 ± 0,4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>trans-β-caroteno</td>
<td>21,1 ± 2,5</td>
</tr>
<tr>
<td></td>
<td>refogado</td>
<td>5</td>
<td>9-cis-β-caroteno</td>
<td>0,4 ± 0,2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>trans-α-criptoxantina</td>
<td>0,6 ± 0,2</td>
</tr>
<tr>
<td>Brócolis</td>
<td>cozido</td>
<td>4</td>
<td>trans-α-caroteno</td>
<td>18,0 ± 3,1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>trans-β-caroteno</td>
<td>20,7 ± 1,8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>9-cis-β-caroteno</td>
<td>0,7 ± 0,2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>trans-α-criptoxantina</td>
<td>0,7 ± 0,1</td>
</tr>
<tr>
<td>Cenoura</td>
<td>cozido</td>
<td>4</td>
<td>13-cis-β-caroteno</td>
<td>0,6 ± 0,2</td>
</tr>
<tr>
<td>Imperador</td>
<td></td>
<td></td>
<td>trans-β-caroteno</td>
<td>14,9 ± 1,1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>9-cis-β-caroteno</td>
<td>0,8 ± 0,5</td>
</tr>
<tr>
<td>Nantes</td>
<td></td>
<td></td>
<td>trans-α-caroteno</td>
<td>16,3 ± 0,4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>13-cis-β-caroteno</td>
<td>0,2 ± 0,1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>trans-β-caroteno</td>
<td>36,1 ± 2,0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>9-cis-β-caroteno</td>
<td>0,1 ± 0,1</td>
</tr>
<tr>
<td>Espinafre</td>
<td>cozido</td>
<td>5</td>
<td>13-cis-β-caroteno</td>
<td>0,2 ± 0,1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>trans-β-caroteno</td>
<td>13,4 ± 1,2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>9-cis-β-caroteno</td>
<td>0,2 ± 0,1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>trans-α-caroteno</td>
<td>30,3 ± 1,6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>trans-β-caroteno</td>
<td>0,1 ± 0,1</td>
</tr>
<tr>
<td>Giló</td>
<td>cozido</td>
<td>5</td>
<td>13-cis-β-caroteno</td>
<td>1,2 ± 0,2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>trans-β-caroteno</td>
<td>20,5 ± 2,0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>9-cis-β-caroteno</td>
<td>1,8 ± 0,7</td>
</tr>
</tbody>
</table>

87
<table>
<thead>
<tr>
<th></th>
<th>cozido</th>
<th>5</th>
<th>13-cis-β-caroteno</th>
<th>0,1 ± 0,1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>trans-β-caroteno</td>
<td>1,8 ± 0,6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>9-cis-β-caroteno</td>
<td>0,2 ± 0,2</td>
</tr>
</tbody>
</table>

Vagem	cozido	5	trans-α-caroteno	0,2 ± 0,1
			13-cis-β-caroteno	0,2 ± 0,2
			trans-β-caroteno	1,0 ± 0,2
			9-cis-β-caroteno	0,1 ± 0,1
	refogado	5	13-cis-β-caroteno	0,2 ± 0,1
			trans-β-caroteno	0,8 ± 0,2
			9-cis-β-caroteno	0,1 ± 0,1

* Cada lote foi analisado em duplicata.
TABELA 18: Valores de vitamina A calculados com e sem a separação dos isômeros, em hortaliças "in natura".

<table>
<thead>
<tr>
<th>hortaliças</th>
<th>sem separação dos isômeros</th>
<th>com separação dos isômeros</th>
<th>% superestimação</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a</td>
<td>b</td>
<td>c</td>
</tr>
<tr>
<td>Abóbora</td>
<td>599</td>
<td>543</td>
<td>568</td>
</tr>
<tr>
<td>Menina Verde</td>
<td>486</td>
<td>418</td>
<td>432</td>
</tr>
<tr>
<td>Brócolis</td>
<td>397</td>
<td>322</td>
<td>332</td>
</tr>
<tr>
<td>Cenoura</td>
<td>798</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Imperador</td>
<td>899</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Nantes</td>
<td>598</td>
<td>486</td>
<td>510</td>
</tr>
<tr>
<td>Couve Manteiga</td>
<td>538</td>
<td>454</td>
<td>475</td>
</tr>
<tr>
<td>Espinafre</td>
<td>520</td>
<td>365</td>
<td>390</td>
</tr>
<tr>
<td>Giló</td>
<td>41</td>
<td>32</td>
<td>35</td>
</tr>
<tr>
<td>Milho</td>
<td>47</td>
<td>38</td>
<td>40</td>
</tr>
<tr>
<td>Pimentão verde</td>
<td>49</td>
<td>39</td>
<td>42</td>
</tr>
<tr>
<td>amarelo</td>
<td>87</td>
<td>65</td>
<td>72</td>
</tr>
<tr>
<td>Pimentão vermelho</td>
<td>57</td>
<td>48</td>
<td>50</td>
</tr>
<tr>
<td>Quiabo</td>
<td>91</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tomate Santa Cruz</td>
<td>104</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Vagem Macarrão</td>
<td>29</td>
<td>26</td>
<td>27</td>
</tr>
</tbody>
</table>

* os valores são médias de 5 determinações em duplicatas
a - calculado de acordo com a atividade biológica obtida por DEUEL et alii (1945).
b - calculado de acordo com a atividade biológica obtida por DEUEL et alii (1945), corrigido pela perda na coluna.
c - calculado de acordo com a atividade biológica obtida por SWEENEY & MARSH (1973), corrigido pela perda na coluna.
dessas hortaliças. Essas porcentagens tornam-se, entretanto, menores se as perdas ocorridas na coluna de Ca(OH)₂ e os valores de biopotência apresentados por Sweeney & Marsh (1973) (74% para o 13-cis-β-caroteno e 61% para o 9-cis-β-caroteno), baseados no conteúdo de vitamina A no fígado, forem considerados (Tabela 18), ficando entre 3-14%. Portanto, a reavaliação das biopotências, utilizando técnicas mais modernas para que se obtenham os verdadeiros valores, é imprescindível, como enfatizaram Rodriguez-Amaya & Tavares (1992).

Para alimentos contendo isômeros do α-caroteno, como por exemplo abóbora, o cálculo da superestimação não pode ser feito pelas biopotências de Sweeney & Marsh, já que eles não estudaram este pigmento.

Para hortaliças cozidas, a superestimação, utilizando as biopotências determinadas por Deuel et alii (1944, 1945), variou de 5-20% (Tabela 19), sendo que os maiores valores foram para abóbora cozida (20%), vagem refogada (16%), quiabo cozido (16%) e espinhafre cozida (15%). Se forem também consideradas as perdas na coluna e as biopotências obtidas por Sweeney & Marsh (1973), as superestimações diminuem para 3-8%. Portanto, as mesmas considerações feitas em relação à reavaliação das biopotências também se aplicam aqui.

5.3.3. Confirmação da Ocorrência de Isômeros de Pró-vitaminas A por CLAE

Para a separação dos isômeros das pró-vitaminas, foram testadas colunas de fase normal (NH₂, CN, Ca(OH)₂) e colunas de fase reversa (C₁₈). A escolha pela fase reversa se deu primeiramente pelo menor risco de formação de produtos de
TABELA 19: Valores de vitamina A calculados com e sem a separação dos isômeros, em hortaliças cozidas.

<table>
<thead>
<tr>
<th>hortaliças</th>
<th>sem separação dos isômeros</th>
<th>com separação dos isômeros</th>
<th>% superestimação</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a</td>
<td>b</td>
<td>c</td>
</tr>
<tr>
<td>Abóbora cozida</td>
<td>627</td>
<td>502</td>
<td>527</td>
</tr>
<tr>
<td>refogada</td>
<td>525</td>
<td>499</td>
<td>520</td>
</tr>
<tr>
<td>Brócolis cozido</td>
<td>298</td>
<td>259</td>
<td>271</td>
</tr>
<tr>
<td>Cenoura Imperador cozida</td>
<td>790</td>
<td>740</td>
<td>772</td>
</tr>
<tr>
<td>Nantes cozida</td>
<td>686</td>
<td>620</td>
<td>647</td>
</tr>
<tr>
<td>Espinafre cozida</td>
<td>427</td>
<td>364</td>
<td>381</td>
</tr>
<tr>
<td>Giló cozido</td>
<td>29</td>
<td>25</td>
<td>26</td>
</tr>
<tr>
<td>Quiabo cozido</td>
<td>38</td>
<td>32</td>
<td>34</td>
</tr>
<tr>
<td>Vagem cozida</td>
<td>24</td>
<td>21</td>
<td>22</td>
</tr>
<tr>
<td>refogada</td>
<td>19</td>
<td>16</td>
<td>17</td>
</tr>
</tbody>
</table>

1- os valores são médias de 5 determinações em duplicatas
2- Não calculados, a bioatividade dos isômeros do δ-caroteno não foram estabelecidas por SWEENEY & MARSH (1973).
a - calculado de acordo com a atividade biológica obtida por DEUEL et alii (1945).
b - calculado de acordo com a atividade biológica obtida por DEUEL et alii (1945), corrigido pela perda na coluna.
c - calculado de acordo com a atividade biológica obtida por SWEENEY & MARSH (1973), corrigido pela perda na coluna.
degradação durante a cromatografia (LAMBERT et alii, 1985) e porque são encontradas facilmente no comércio. Das quatro marcas de colunas C18 utilizadas, Econosphere, Spherisorb ODS-1, LiChrospher e Vydac, esta última foi a que apresentou uma melhor resolução para os isômeros, confermando as observações feitas anteriormente por QUACKENBUSH & SMALLIDGE (1986) e por O'NEIL et alii (1991).

Para a separação apenas dos isômeros das pré-vitaminas, não se justificava o uso de gradiente de fase móvel e dentro desse pensamento foram testados como fase móvel em sistema isocrático além do metanol puro, misturas em diferentes proporções de metanol com clorofórmio, tetrahidrofurano, acetonitrila e água. Metanol/acetonitrila (90:10) e metanol/água (98:2) apresentaram as melhores resoluções. Para evitar o uso de substâncias tóxicas e ter um menor tempo de análise, optou-se pela mistura de metanol/água.

O comprimento de onda utilizado foi de 450 nm, embora a 436 e 445 nm os cromatogramas não apresentaram grandes alterações.

Ainda assim, a técnica de separação de isômeros por CLAE necessita de maiores aprimoramentos e somando este fato aos outros problemas citados a respeito da quantificação, os resultados obtidos por CLAE só foram analisados de forma qualitativa.

5.3.3.1. Em frutas

Os cromatogramas obtidos por CLAE, alguns dos quais são mostrados nas FIGURAS 8 e 9, confirmam os resultados das determinações feitas por coluna aberta. Na FIGURA 8, os dois
FIGURA 8: Cromatogramas obtidos por CLAE dos extratos totais de
(A) mamão, (B) maracujá, (C) nectarina e (D) pêssego.
FIGURA 9: Cromatogramas obtidos por CLAE das frações pró-vitamínicas separadas pela coluna de MgO:hiiflosercel: (A) fração de β-caroteno de pêssego, (B) fração de β-caroteno de mamão, (C) fração de β-criptoxantina de mamão e (D) fração de β-criptoxantina de pêssego.
primeiros cromatogramas (8A e 8B) mostram a ausência de ísômeros do β-caroteno e da β-criptoxantina em mamão e do β-caroteno em maracujá. Os outros dois cromatogramas demonstram a presença de cis-íisômeros de β-caroteno e β-criptoxantina em nectarina (8C) e péssugo (8D). Os cromatogramas dos extratos totais foram confirmados pelo perfil dos cromatogramas das frações de pró-vitaminas isoladas em coluna de MgO:hiflosupercel. A fração de β-caroteno de péssugo (FIGURA 9A) mostra os dois ísômeros enquanto na de mamão não há esses ísômeros (FIGURA 9B). A fração de β-criptoxantina de mamão está destituída de ísômeros (9C) enquanto a de péssugo apresenta o cis-íisômero (9D).

A presença de cis-íisômeros do β-caroteno foi reportada em péssugo, damasco e ameixa por CHANDLER & SCHWARTZ (1987) e em péssugo e damasco por QUACKENBUSH (1987), usando métodos por CLAE. Esses autores não verificaram a ocorrência de β-criptoxantina, assim como da sua forma isomérica.

Especialmente em artigos utilizando CLAE, há muito mais dados na literatura sobre a separação de ísômeros do β-caroteno e α-caroteno, do que a quantificação da α-criptoxantina, mesmo na sua configuração trans. Os resultados deste estudo mostram que, pelo menos para frutas, a quantificação da β-criptoxantina é muito mais importante para a determinação do valor de vitamina A que a separação dos ísômeros.
5.3.3.2. Em hortaliças

Também em hortaliças os cromatogramas obtidos por CLAE confirmaram os resultados das determinações em coluna aberta.

Alguns cromatogramas de hortaliças não verdes analisadas estão apresentados na FIGURA 10. Os dois primeiros cromatogramas (10A e 10B) mostram a ausência e a presença dos isômeros do α- e do β-caroteno em cenoura e abóbora, respectivamente. Os outros dois cromatogramas demonstram a ausência em tomate (10C) e presença em pimentão vermelho (10D) dos isômeros da fração de β-caroteno isolada em coluna de MgO:hiflosupercl.

Na FIGURA 11 estão os cromatogramas das hortaliças verdes, como brócolis (11A), couve (11B), espinafre (11C) e vagem (11D). Em todos eles há a presença dos dois principais isômeros do β-caroteno, valendo ressaltar que a altura do pico correspondente ao 9-cis é um pouco superior a do 13-cis-β-caroteno, inversamente ao que foi observado em frutas e hortaliças não verdes, conferindo os dados observados em coluna aberta.

Para as hortaliças "in natura" que possuíam isômeros cis, os cromatogramas obtidos após cozimento foram praticamente idênticos. No caso de cenoura, os isômeros cis, inexistentes na amostra fresca, surgiram após o cozimento (FIGURA 12).

A FIGURA 13 apresenta o cromatograma e os espectros de absorção dos isômeros da fração de β-caroteno de espinafre, obtida a partir de coluna de MgO:hiflosupercl, utilizando o detector de arranjo de diodos. O resultado confirma novamente a ordem de eluição do 13-cis- e 9-cis-β-caroteno, no sistema cromatográfico utilizado.
FIGURA 10: Cromatogramas obtidos por CLAE dos extratos totais de (A) cenoura e (B) abóbora, e das frações de β-caroteno, isoladas através de coluna de MgO:hexilicosupercel, de (C) tomate e (D) pimentão vermelho.
FIGURA 11: Cromatogramas obtidos por CLAE das frações de β-caroteno obtidas a partir da coluna de MgO:hiflosupercel: (A) brócolis, (B) couve, (C) espinafre e (D) vagem.
FIGURA 12: Cromatograma obtido por C18E do extrato total de cenoura cultivar Nantes cozida.
FIGURA 13: Cromatograma e espectros de absorção dos isômeros do β-caroteno de espinafre, obtidos utilizando o detector de arranjo de diodos.
5.3.4. Comparação com os dados da literatura das porcentagens dos isômeros do β-caroteno

Na maioria dos trabalhos realizados, os níveis de cis-isômeros são reportados apenas em porcentagens e não em concentrações absolutas. A TABELA 20 apresenta comparativamente os resultados em porcentagens obtidos neste trabalho, por cromatografia de coluna aberta, com os dados encontrados na literatura, utilizando métodos envolvendo a CLAE.

Os dados deste trabalho se mostraram muito próximos aos de CHANDLER & SCHWARTZ (1987) em amostras "in natura" de cenoura, couve, espinafre e pêssego. Assim como no presente estudo, os autores não detectaram isômeros de cenoura, embora QUACKENBUSH (1987) tenha encontrado 1,2% para o 13-cis e 0,4% para o 9-cis. Para abóbora e nectarina as porcentagens de isômeros encontradas por CHANDLER & SCHWARTZ foram bem maiores que as observadas neste trabalho. Os valores apresentados por QUACKENBUSH são nítidamente menores para hortaliças verdes (couve e espinafre), mas maiores para pêssego. Os resultados apresentam maior variação ainda com relação aos alimentos cozidos, o que era esperado devido às prováveis diferenças nas condições do preparo.
TABELA 20: Isómeros cis-trans do β-caroteno encontrados em frutas e hortaliças frescas e cozidas.

<table>
<thead>
<tr>
<th>produto</th>
<th>% 13-cis</th>
<th></th>
<th>% trans</th>
<th></th>
<th>% 9-cis</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>abóbora</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fresca</td>
<td>15,3</td>
<td>5,0</td>
<td>0,8</td>
<td>75,0</td>
<td>93,6</td>
<td>97,9</td>
</tr>
<tr>
<td>cozida</td>
<td>22,0</td>
<td>-</td>
<td>- 4,4</td>
<td>66,6</td>
<td>-</td>
<td>93,8</td>
</tr>
<tr>
<td>refogada</td>
<td>-</td>
<td>-</td>
<td>0,0</td>
<td>-</td>
<td>96,7</td>
<td>-</td>
</tr>
<tr>
<td>cenoura</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fresca</td>
<td>0,0</td>
<td>1,2</td>
<td>0,0(^a)</td>
<td>100,0</td>
<td>98,4</td>
<td>100,0(^a)</td>
</tr>
<tr>
<td>cozida</td>
<td>19,1</td>
<td>13,8</td>
<td>0,5(^a)</td>
<td>72,8</td>
<td>79,9</td>
<td>99,2(^a)</td>
</tr>
<tr>
<td>couve</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fresca</td>
<td>16,6</td>
<td>4,4</td>
<td>10,2</td>
<td>71,8</td>
<td>83,0</td>
<td>77,5</td>
</tr>
<tr>
<td>espinafre</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fresca</td>
<td>8,8</td>
<td>3,2</td>
<td>7,7</td>
<td>80,4</td>
<td>89,4</td>
<td>83,3</td>
</tr>
<tr>
<td>cozida</td>
<td>15,3</td>
<td>-</td>
<td>5,1</td>
<td>58,4</td>
<td>-</td>
<td>87,2</td>
</tr>
<tr>
<td>pêssego</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fresco</td>
<td>9,4</td>
<td>23,6</td>
<td>13,3(^c)</td>
<td>83,7</td>
<td>70,4</td>
<td>80,6(^c)</td>
</tr>
<tr>
<td>nectarina</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fresca</td>
<td>13,5</td>
<td>-</td>
<td>7,7</td>
<td>76,6</td>
<td>-</td>
<td>84,6</td>
</tr>
</tbody>
</table>

1 CHANDLER & SCHWARTZ (1987)
2 QUACKENBUSH (1987)
3 obtidos neste trabalho
\(a\) cenoura Nantes e \(b\) cenoura Imperador
\(c\) pêssego Diamante e \(d\) pêssego chileno

102
5.4. Triagem da Composição de Carotenóides de Abricó, Buriti, Pequi, Nêespera, Pêssego e Nectarina.

Considerando a crescente importância conferida aos carotenóides, inclusive os não pró-vitamínicos, foram determinadas as composições completas de carotenóides de várias frutas brasileiras ainda não analisadas ou apenas parcialmente estudadas.

Os carotenos presentes nas amostras são evidenciados após o desenvolvimento em solução contendo 10% de éter etílico em éter de petróleo. Assim, o buriti apresentou 5 carotenos, o abricó, a nêespera, a nectarina e o pêssego 4 e o pequi 3. Com o desenvolvimento subsequente em 70% de éter etílico em éter de petróleo os carotenos se compactaram em uma única mancha na frente do solvente e os mono-hidroxilados foram evidenciados. Nêespera, nectarina e pêssego apresentaram 3 mono-hidroxilados, enquanto que abricó e pequi apenas 1. O buriti não apresentou nenhum pigmento mono-hidroxilado. Com o desenvolvimento em 5% de etanol em éter de petróleo os mono-hidroxilados correram com a frente do solvente e os di-hidroxilados foram evidenciados. A nectarina e o pêssego acusaram 5 di-hidroxilados, o abricó e a nêespera 3, o pequi 2 e o buriti apenas 1. O buriti apresentou apenas uma xantofila, tendo sua composição quase que restrita a carotenos.

As triagens feitas tanto em placas de sílica gel de CCD normal e CCD de alta eficiência sempre apresentaram o mesmo resultado, embora nesta última a visualização das manchas tenha sido mais nítida.
FIGURA 14: Aspecto das placas de sílica gel após desenvolvimento em 10% de éter etílico em éter de petróleo (a); 70% de éter etílico em éter de petróleo (b) e 5% de etanol em éter de petróleo (c).

104
<table>
<thead>
<tr>
<th>Fruta</th>
<th>número de carotenóides</th>
<th>carotenos</th>
<th>mono-hidroxilados</th>
<th>di-hidroxilados</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abricó</td>
<td></td>
<td>4</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Buriti</td>
<td></td>
<td>5</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Pequi</td>
<td></td>
<td>3</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Nêspera</td>
<td></td>
<td>4</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Nectarina</td>
<td></td>
<td>4</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>Pêssego</td>
<td></td>
<td>4</td>
<td>3</td>
<td>5</td>
</tr>
</tbody>
</table>
5.5. Composição de Carotenóides de Abricó (Mammea americana L.)

O abricó é uma fruta nativa encontrada no norte-nordeste, embora não cultivada comercialmente. A safra é entre os meses de junho a dezembro e a polpa é consumida como tal ou em preparações como licores, geléias, néctares e sorvetes. O epicarpo grosso e firme dá uma excelente proteção, facilitando o transporte e extendendo a vida de prateleira do fruto. Isso faz com que o abricó apresente um bom potencial para a produção comercial.

Os frutos maduros apresentaram a seguinte composição de carotenóides: 13-cis-β-caroteno, β-caroteno, 9-cis-β-caroteno, ξ-caroteno, θ-zeacaroteno, θ-apo-10′-carotenal, θ-apo-8′-carotenol, violaxantina, luteoxantina e auroxantina, composição já esperada pelos dados obtidos na triagem. As estruturas destes pigmentos estão apresentadas no ANEXO 1 e os espectros de absorção nos ANEXOS de 2 a 8. As características desses carotenóides estão resumidas na TABELA 22.

O θ-caroteno e suas formas isoméricas, o ξ-caroteno e o θ-zeacaroteno foram identificados através dos máximos de absorção, assim como pelo perfil dos espectros. A ausência de grupos substituintes foi confirmada pela ordem de eluição na coluna, bem como pelo comportamento na camada delgada de sílica gel desenvolvida com 3% de metanol em benzeno, eluindo junto com a frente do solvente. As formas cis-trans foram confirmadas por fotoisomerização catalisada por iodo.

A fração correspondente ao θ-apo-10′-carotenal apresentou um único máximo de absorção (λmáx 437 nm em éter de petróleo, λmáx 449 nm em metanol e λmáx 460 nm em clorofórmio), forma característica de cetocarotenóides que foi confirmada pela
<table>
<thead>
<tr>
<th>Pigmentos</th>
<th>máx (nm)<sup>a</sup></th>
<th>(\lambda_{	ext{b.max}} \text{b} \lambda_{	ext{cm}})</th>
<th>Atividade</th>
<th>(\text{Rf})</th>
<th>Reação química</th>
</tr>
</thead>
<tbody>
<tr>
<td>13-cis-β-carotenol</td>
<td>(422) 445 472 1730</td>
<td>53</td>
<td>0,98 cis +</td>
<td></td>
<td></td>
</tr>
<tr>
<td>β-carotenol</td>
<td>(424) 449 475 2592</td>
<td>100</td>
<td>0,99 trans +</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9-cis-β-carotenol</td>
<td>(420) 444 472 2370</td>
<td>38</td>
<td>0,97 cis +</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ζ-carotenol</td>
<td>382 400 425 2555</td>
<td>-</td>
<td>0,98 trans +</td>
<td></td>
<td></td>
</tr>
<tr>
<td>γ-carotenol</td>
<td>400 425 450 2520</td>
<td>40</td>
<td>0,95 trans +</td>
<td></td>
<td></td>
</tr>
<tr>
<td>β-apo-10'-carotenal</td>
<td>437 2190 100</td>
<td>0,94 red +</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>β-apo-8'-carotenol</td>
<td>378 398 420 2190</td>
<td>72</td>
<td>0,47 acet +</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Violaxantina</td>
<td>419 439 468 2550</td>
<td>-</td>
<td>0,11 acet + epox +</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Luteoxantina</td>
<td>400 422 447 2592</td>
<td>-</td>
<td>0,09 acet + epox +</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Auroxantina</td>
<td>382 400 425 2592</td>
<td>-</td>
<td>0,09 acet + epox +</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

^a Absorção em éter de petróleo; valores entre parenteses significam ombro no lugar de pico

^b Valores tabelados por Davies (1976) e determinados neste trabalho

^c Valores determinados Zechmeister (1962) e Bauerfeind (1972)
resposta positiva à redução com NaBH₄. Após a redução o espectro registrado apresentou três máximos de absorção: 398, 424, 442 nm em éter de petróleo. A resposta negativa à acetilação mostrou a ausência de hidroxilas.

A fração que eluiu após o β-apo-10'-carotenal, apresentou espectro de absorção com máximos a 378, 398 e 420 nm em éter de petróleo, indicando um cromóforo com cerca de 7 ligações duplas conjugadas, e seu perfil acusou uma conjugação que se extendia dentro do anel, ou então a presença de um grupo carbonila. Esta última hipótese foi eliminada pela resposta negativa à redução. O valor de Rf de 0,45 na camada delgada indicou a presença de um grupo substituinte, provavelmente uma hidroxila, que foi confirmada pela resposta positiva à acetilação. Após exposição da camada delgada a vapores de HCl não ocorreu mudança na coloração da mancha, indicando a ausência de epóxidos.

A análise de todos esses parâmetros revelou um novo pigmento ainda não relatado na literatura, cuja estrutura foi elucidada com a utilização da espectrometria de massa. A fração foi purificada em placa de camada delgada de sílica gel desenvolvida com 10% de acetona em éter de petróleo. O espectro de massa (FIGURA 15) apresentou um sinal intenso correspondente ao ion molecular M/Z 378, que corresponde a uma fórmula molecular C₂₇H₃₈O. Um fragmento característico a M/Z 360 (M-18, H₂O) confirmou a presença de hidroxila. Um outro fragmento a M/Z 319 (M-59) e a ausência de fragmento a M/Z 225 (M-153) confirmaram a localização da hidroxila na cadeia lateral e não no anel.

A partir dessas evidências a estrutura mais provável era do β-apo-8'-carotenol (FIGURA 15), que foi confirmada pelo produto da redução de um padrão sintético de β-apo-8'-carotenol com NaBH₄, que apresentou espectros de absorção e de massa idênticos ao pigmento desconhecido (FIGURA 16).

A presença de duas hidroxilas nos três últimos pigmentos foi indicada primeiramente pelo valor de Rf na camada delgada de sílica gel, desenvolvida com 3% de metanol em benzeno,
FIGURA 15: Espectro de massa do β-apor-8'-carotenol.
FIGURA 16: Espectro de massa do produto de redução com NaBH₄ de um padrão sintético de β-apo-8'-ca- rotenal.
e confirmada pela resposta positiva à acetilação. Essas frações foram identificadas também como epóxidos pela mudança da coração amarelo para azul ou verde, após exposição da camada delgada desenvolvida a vapores de HCl concentrado.

A adição de HCl 0,1N à solução etanólica da fração que eluiu logo após o β-apo-8'-carotenol, apresentou um deslocamento hipsoocrômico de 40 nm, confirmando a presença de dois grupos epóxidos nas posições 5,6 e 5',6'. Todas as propriedades concordam com a identificação do pigmento como sendo a violaxantina. Com a fração que eluiu após a violaxantina, o deslocamento hipsoocrômico do espectro foi de apenas 20 nm e o espectro original se apresentou também 20 nm mais baixo que o do β-caroteno, indicando a presença de um grupo epóxido na posição 5,6 e outro na posição 5',8', o que leva a identificação final da luteoxantina. A mesma reação foi realizada com a última fração porém nenhuma mudança foi observada, mas os máximos de absorção já mostraram-se 40 nm mais baixos que os do β-caroteno, indicativo da presença de dois grupos epóxidos nas posições 5,8 e 5',8', levando, portanto, à identificação da auroxantina.

Em duas das treze determinações realizadas foram encontradas pequenas quantidades de sintonaxantina, provavelmente produto da condensação aldólica. Tal reação ocorre em cetocarotenóides durante a saponificação na presença de traços de acetona. STEWART & WHEATON (1973) reportaram a conversão de β-citaurina em reticulaxantina e β-apo-8'-carotenol a citranaxantina durante a análise de citrus.

Em termos quantitativos (TABELA 23) o abricó apresentou variações maiores que aquelas normalmente encontradas em frutas. Cinco lotes (perfil 1) tiveram a violaxantina como principal pigmento, apresentando também altos teores de β-caroteno e β-apo-8'-carotenol e quantidades moderadas de β-apo-10'-carotenol. Em dois outros lotes (perfil 2) o β-caroteno foi o pigmento majoritário, com níveis altos de apocarotenol e violaxantina. Nos seis outros lotes (perfil 3) o β-apo-8'-carotenol foi o carotenóide principal, com altos teores de
<table>
<thead>
<tr>
<th>pigmentos</th>
<th>perfil 1</th>
<th>perfil 2</th>
<th>perfil 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>intervalo</td>
<td>M ± dp</td>
<td>intervalo</td>
</tr>
<tr>
<td>13-cis-β-caroteno</td>
<td>ND-0,5</td>
<td>0,3±0,2</td>
<td>0,4-0,6</td>
</tr>
<tr>
<td>β-caroteno</td>
<td>14,3-17,9</td>
<td>16,4±1,3</td>
<td>16,3-19,1</td>
</tr>
<tr>
<td>9-cis-β-caroteno</td>
<td>ND-0,4</td>
<td>0,2±0,2</td>
<td>0,3-0,6</td>
</tr>
<tr>
<td>ζ-caroteno</td>
<td>0,8-1,6</td>
<td>1,3±0,4</td>
<td>1,1-2,3</td>
</tr>
<tr>
<td>β-zeacaroteno</td>
<td>0,3-0,9</td>
<td>0,7±0,2</td>
<td>ND-0,4</td>
</tr>
<tr>
<td>β-apo-10'-carotenal</td>
<td>3,5-5,2</td>
<td>4,5±0,7</td>
<td>4,8-6,1</td>
</tr>
<tr>
<td>β-apo-8'-carotenol</td>
<td>6,5-13,8</td>
<td>10,8±3,3</td>
<td>10,4-14,7</td>
</tr>
<tr>
<td>violaxantina</td>
<td>28,4-41,6</td>
<td>33,4±6,2</td>
<td>11,2-19,4</td>
</tr>
<tr>
<td>luteoxantina</td>
<td>ND-0,4</td>
<td>0,2±0,2</td>
<td>0,6-1,1</td>
</tr>
<tr>
<td>auroxantina</td>
<td>ND-0,9</td>
<td>0,6±0,4</td>
<td>1,8-2,7</td>
</tr>
<tr>
<td>total</td>
<td>54,6-79,14</td>
<td>68,4±16,4</td>
<td>33,1-58,7</td>
</tr>
<tr>
<td>valor de vitamina A (RE/100g)</td>
<td>436-533</td>
<td>487±48</td>
<td>497-601</td>
</tr>
</tbody>
</table>

perfil 1: média de 5 determinações em duplicata de frutas que apresentaram a violaxantina como principal pigmento.
perfil 2: média de 2 determinações em duplicata de frutas que apresentaram o β-caroteno como principal pigmento.
perfil 3: média de 6 determinações em duplicata de frutas que apresentaram o β-apo-8'-carotenol como principal pigmento.
ND- não detectado.
violaxantina e de β-caroteno. Além disso, por duas razões a composição foi atípica: a presença de β-apo-10'-carotenal, especialmente em alto teor e de um novo carotenóide, β-apo-8'-carotenol, também em concentrações apreciáveis, chegando a ser o pigmento principal em algumas amostras.

O valor de vitamina A encontrado foi significativo (483 RE/100g) devido a quantidades elevadas de β-caroteno e β-apo-10'-carotenal, que são pigmentos que possuem as maiores atividades pró-vitamínicas A (100%). Pela sua estrutura, o β-apo-8'-carotenol deve ser também uma pró-vitamina, e para fins de cálculo foi considerado com a mesma atividade do β-apo-10'-carotenal (72%).

O perfil da composição de carotenóides do abricó obtido por CLAE, com o mesmo sistema de coluna e fase móvel utilizados para a observação da ocorrência de isômeros, confirmou a composição qualitativa obtida por coluna aberta. A identificação dos pigmentos majoritários foi feita através do enriquecimento dos picos com padrões ou com os pigmentos isolados.

A CLAE proporcionou ainda mais evidências na identificação do β-apo-8'-carotenol e β-apo-10'-carotenal. Padrão sintético de β-apo-8'-carotenal, mostrou um tempo de retenção na CLAE diferente do β-apo-10'-carotenal, mas o seu produto de redução coincidiu com o β-apo-8'-carotenol (FIGURA 17).
FIGURA 17: Cromatogramas obtidos por CLAE: (A) frações de β-apo-8'-carotenol (1) e β-apo-10'-carotenal (2) do abricó; (B) frações de β-apo-8'-carotenol (1) e β-apo-10'-carotenal (2) do abricó e padrão sintético de β-apo-8'-carotenal (3); (C) fração de β-apo-8'-carotenol do abricó + produto de redução do padrão de β-apo-8'-carotenal (1) e β-apo-10'-carotenal (2) do abricó.
5.6. Composição de Carotenóides do Buriti (*Mauritia vinifera*)

O buriti digno de aproveitamento econômico no estado selvagem, e mais ainda quando racionalmente melhorado e cultivado, se encontra abandonado, tendo o seu aproveitamento atual restringido aos interesses domésticos das populações locais. É encontrado principalmente na região norte, como também em extensas áreas do Brasil central.

Nove pigmentos foram detectados nas amostras analisadas de buriti: 13-cis-α-caroteno, α-caroteno, 13-cis-β-caroteno, β-caroteno, 9-cis-β-caroteno, γ-caroteno, β-zeacaroteno, γ-caroteno e zeaxantina. As estruturas e os espectros de absorção desses carotenóides estão nos ANEXOS 1 a 8, e as principais características na TABELA 24.

Com exceção da zeaxantina, todos os pigmentos foram identificados como carotenos, concordando com o resultado da triagem. A ausência de grupos substituintes foi confirmada pela ordem de eluição na coluna, bem como pelo comportamento na camada delgada de sílica gel desenvolvida com 3% de metanol em benzeno, onde as frações eluíram junto com a frente do solvente. Os isômeros cis-trans foram identificados da mesma forma descrita anteriormente.

A única xantofila presente tinha espectro de absorção idêntico ao do β-caroteno. A ordem de eluição na coluna e o valor de Rf da camada delgada (0,11) foram característicos de pigmento di-hidroxilado. A resposta positiva à acetilação e negativa à metilação confirmaram hidroxilas na posição não alílica. A partir da avaliação conjunta desses parâmetros, chegou-se à identificação do pigmento como sendo a zeaxantina.

A TABELA 25 apresenta a composição quantitativa dos carotenóides do buriti. As determinações feitas, embora não mostrassem variação qualitativa dos pigmentos, mostraram uma moderada variação quantitativa, provavelmente, devido ao estádio
TABELA 24: Principais características dos carotenóides do buriti.

<table>
<thead>
<tr>
<th>Pigmentos</th>
<th>λ max (nm)</th>
<th>R<sub>1k</sub></th>
<th>Atividade de PrÓ-vít. A (%)</th>
<th>Valor de Rf</th>
<th>Reações</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>13-cis-α-caroteno</td>
<td>420 441 469</td>
<td>2800</td>
<td>ativo</td>
<td>0,98 cis +</td>
</tr>
<tr>
<td></td>
<td>α-caroteno</td>
<td>422 444 472</td>
<td>2800</td>
<td>50</td>
<td>0,98 trans +</td>
</tr>
<tr>
<td></td>
<td>13-cis-β-carotenos</td>
<td>(422) 445 474</td>
<td>1730</td>
<td>53</td>
<td>0,97 cis +</td>
</tr>
<tr>
<td></td>
<td>β-carotenos</td>
<td>(424) 449 475</td>
<td>2592</td>
<td>100</td>
<td>0,99 trans +</td>
</tr>
<tr>
<td></td>
<td>9-cis-β-carotenos</td>
<td>(420) 444 470</td>
<td>2370</td>
<td>38</td>
<td>0,97 cis +</td>
</tr>
<tr>
<td></td>
<td>ζ-carotenos</td>
<td>360 400 442</td>
<td>2555</td>
<td>-</td>
<td>0,96 trans +</td>
</tr>
<tr>
<td></td>
<td>β-zeacarotenos</td>
<td>404 426 452</td>
<td>2520</td>
<td>20 - 40</td>
<td>0,96 trans +</td>
</tr>
<tr>
<td></td>
<td>γ-carotenos</td>
<td>435 460 491</td>
<td>3100</td>
<td>42 - 50</td>
<td>0,97 trans +</td>
</tr>
<tr>
<td></td>
<td>zeaxantina</td>
<td>(424) 448 474</td>
<td>2350</td>
<td>-</td>
<td>0,11 acet. +</td>
</tr>
</tbody>
</table>

^aMáximos de absorção em éter de petróleo
^bValores tabelados por DAVIES (1976) e obtidos neste trabalho
^cZECHMEISTER (1962) e BAUMENFEIND (1972)
TABELA 25: Composição de carotenóides (µg/g) e valor de vitamina A do buriti.

<table>
<thead>
<tr>
<th>Pigmentos</th>
<th>Intervalo</th>
<th>Média ± Dp<sup>a</sup></th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>13-cis-α-caroteno</td>
<td>ND - 3,9</td>
<td>1,5 ± 1,4</td>
<td>0,3</td>
</tr>
<tr>
<td>α-caroteno</td>
<td>70,0 - 90,5</td>
<td>80,1 ± 9,1</td>
<td>15,6</td>
</tr>
<tr>
<td>13-cis-β-caroteno</td>
<td>ND - 7,5</td>
<td>3,8 ± 2,9</td>
<td>0,7</td>
</tr>
<tr>
<td>β-caroteno</td>
<td>334,6 - 398,1</td>
<td>359,8 ± 32,5</td>
<td>70,2</td>
</tr>
<tr>
<td>9-cis-β-caroteno</td>
<td>ND - 1,2</td>
<td>0,7 ± 0,5</td>
<td>0,1</td>
</tr>
<tr>
<td>ζ-caroteno</td>
<td>4,0 - 5,2</td>
<td>4,6 ± 0,5</td>
<td>0,9</td>
</tr>
<tr>
<td>β-zeacaroteno</td>
<td>3,7 - 6,8</td>
<td>5,4 ± 1,5</td>
<td>1,1</td>
</tr>
<tr>
<td>Υ-caroteno</td>
<td>32,4 - 41,9</td>
<td>36,8 ± 4,5</td>
<td>7,2</td>
</tr>
<tr>
<td>zeaxantina</td>
<td>14,6 - 25,2</td>
<td>20,1 ± 4,3</td>
<td>3,9</td>
</tr>
<tr>
<td>total</td>
<td>440,6 - 514,7</td>
<td>512,8 ± 30,5</td>
<td></td>
</tr>
<tr>
<td>valor de vitamina A</td>
<td>6231 - 7174</td>
<td>6489 ± 462</td>
<td></td>
</tr>
</tbody>
</table>

^aMédia e desvio padrão de 5 determinações em duplicata.
ND= não detectado.
de maturação em que os frutos foram colhidos. Sabe-se que frutos do mesmo cacho apresentam grande variação do estádio de maturação. Normalmente o fruto só é apanhado quando cai do pé, o que é indicativo da maturação, mas não há um controle rígido e muitas vezes os frutos são arrancados dos cachos, tendo seu grau de maturação estabelecido apenas visualmente.

O principal carotenóide encontrado foi o β-caroteno, sendo detectado em quantidades substanciais, numa faixa de 334,8 a 398,1 μg/g, representando em média 70% dos carotenóides totais. O α-caroteno foi o segundo principal pigmento, representando cerca de 16% dos carotenóides (70,0 a 90,5 μg/g).

Com um valor de vitamina A de 6.489 RE/100g, o buriti é uma das maiores, se não a maior fonte de pró-vitamina A. A FIGURA 18 mostra com mais clareza a potencialidade do buriti quando comparado com outras fontes consideradas ricas em pró-vitamina A.

Não foi encontrado na literatura nenhum trabalho contendo a composição de carotenóides do buriti, impossibilitando dessa forma uma comparação direta entre resultados. Há pouquíssimos dados a respeito do óleo de buriti, apresentando apenas o conteúdo total de carotenóides, erroneamente denominado de β-caroteno (PEIXOTO, 1973). O valor relatado de 3.000 μg/g (50.000 RE/100g) é demasiadamente alto, mesmo para uma fonte riquíssima em β-caroteno.

Utilizou-se também a CLAE para a obtenção do perfil da composição de carotenóides, nas mesmas condições descritas para as outras frutas. Mesmo sem quantificar, o cromatograma obtido por CLAE confirmou a predominância do β-caroteno, seguido de longe de α-caroteno.
FIGURA 18: Comparação dos valores de vitamina A entre algumas fontes ricas em pró-vitaminas A.
5.7. Composição de Carotenóides de Pecuí (Caryocar villosium)

No Brasil há duas espécies de pequizeiros que merecem destaque, o Caryocar villosum, que se desenvolve principalmente no norte-nordeste do país, e o Caryocar brasiliense, da região centro-oeste (HERING, 1962; MIRANDA, 1986). O seu fruto possui substancioso alimento que é empregado, à semelhança do dendê, no preparo de dois tipos de óleo, um extraído da polpa e outro da amêndoa. Entretanto, é essa polpa amarela, que envolve o caroço, o produto mais significativo da planta, sobretudo, por representar um dos poucos recursos alimentares da população subnutrida moradora das áreas de ocorrência do pecuí. A frutificação ocorre geralmente nos meses de janeiro a março.

Sobre o valor vitamínico existem poucos dados e alguns bastante duvidosos, que colocam o pecuí como uma das fontes mais ricas de pró-vitamina A. Além disso, na maioria dos trabalhos a espécie estudada não é identificada (DIAS da SILVA, 1939; PECHINIK & GUIMARÃES, 1957; HERING, 1962).

No presente trabalho, foi analisada a espécie villosum e foram encontrados e identificados sete pigmentos: α-caroteno, 13-cis-β-caroteno, β-caroteno, ζ-caroteno, neo-β-criptoxantina, β-criptoxantina e zeaxantina. A composição de carotenóides, novamente, concorda com o resultado da triagem. As estruturas e os espectros de absorção estão nos ANEXOS 1 a 8. Na TABELA 26 estão as principais características dos carotenóides identificados.

A identificação dos pigmentos do pecuí seguiu os mesmos parâmetros descritos anteriormente para as outras frutas. A composição quantitativa está apresentada na TABELA 27. O principal pigmento foi a zeaxantina (que não apresenta ação pró-vitamínica A) com um teor médio de 7,8 µg/g, representando 56% do total de carotenóides. A β-criptoxantina foi o segundo principal
TABELA 26: Principais características dos carotenóides de pequi.

<table>
<thead>
<tr>
<th>Pigmentos</th>
<th>(\lambda_{\text{máx.}}) (nm) (^a)</th>
<th>(\frac{\lambda_{\text{máx.}}}{lc})</th>
<th>Atividade de Pró-vit. A (%) (^b)</th>
<th>Valor de Rf</th>
<th>Reações Químicas</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\alpha)-caroteno</td>
<td>422, 444, 472</td>
<td>2800</td>
<td>50</td>
<td>0,97</td>
<td>trans +</td>
</tr>
<tr>
<td>13-cis-(\beta)-caroteno</td>
<td>(422), 447, 472</td>
<td>1730</td>
<td>53</td>
<td>0,99</td>
<td>cis +</td>
</tr>
<tr>
<td>(\beta)-caroteno</td>
<td>(424), 449, 475</td>
<td>2592</td>
<td>100</td>
<td>0,99</td>
<td>trans +</td>
</tr>
<tr>
<td>(\gamma)-caroteno</td>
<td>378, 397, 424</td>
<td>2555</td>
<td>-</td>
<td>0,96</td>
<td>trans +</td>
</tr>
<tr>
<td>neo-(\beta)-criptoxantina</td>
<td>(421), 444, 472</td>
<td>2150</td>
<td>27</td>
<td>0,48</td>
<td>cis +</td>
</tr>
<tr>
<td>(\delta)-criptoxantina</td>
<td>(424), 447, 474</td>
<td>2386</td>
<td>57</td>
<td>0,51</td>
<td>acet +</td>
</tr>
<tr>
<td>zeaxantina</td>
<td>(423), 447, 474</td>
<td>2336</td>
<td>-</td>
<td>0,11</td>
<td>acet +</td>
</tr>
</tbody>
</table>

\(^a\)Máximos de absorção em éter de petróleo; parênteses significam um cômbo no lugar de pico
\(^b\)Dados tabelados por DAVIES (1976) e determinados neste trabalho
\(^c\)ZECHMEISTER (1962) e BAUERNFEIND (1972)

121
<table>
<thead>
<tr>
<th>pigmentos</th>
<th>intervalo</th>
<th>MD+SD(^a)</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>α-caroteno</td>
<td>tr - 0,1</td>
<td>0,1 + 0,1</td>
<td>0,6</td>
</tr>
<tr>
<td>13-cis-β-caroteno</td>
<td>ND - tr</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>β-caroteno</td>
<td>0,5 - 2,0</td>
<td>1,2 + 0,5</td>
<td>8,1</td>
</tr>
<tr>
<td>ζ-caroteno</td>
<td>0,2 - 0,9</td>
<td>0,5 + 0,3</td>
<td>3,3</td>
</tr>
<tr>
<td>neo-β-criptoxantina</td>
<td>ND - 1,2</td>
<td>0,4 + 0,2</td>
<td>2,9</td>
</tr>
<tr>
<td>β-criptoxantina</td>
<td>3,4 - 4,8</td>
<td>4,4 + 0,9</td>
<td>30,6</td>
</tr>
<tr>
<td>zeaxantina</td>
<td>6,9 - 9,3</td>
<td>7,8 + 1,2</td>
<td>55,5</td>
</tr>
<tr>
<td>total</td>
<td>11,6 - 14,7</td>
<td>13,5 + 1,3</td>
<td></td>
</tr>
<tr>
<td>valor de vit. A</td>
<td>53,0 - 68,6</td>
<td>65,0 + 9,5</td>
<td></td>
</tr>
</tbody>
</table>

\(^a\) Média e desvio padrão de 5 determinações em duplicata
ND - não detectado
tr - traços
pigmento seguida do \(\beta \)-caroteno, com teores médio de 4,4 \(\mu g/g \) (31\%) e 1,2 \(\mu g/g \) (8\%), respectivamente.

O valor de vitamina A calculado através dos pigmentos pró-vitamínicos foi de 65 RE/100g, o que contradiz os poucos resultados encontrados na literatura que caracterizam o pequi, independente da espécie, como uma fonte rica em pró-vitamina A.

Cabe salientar que, com exceção do \(\alpha \)-caroteno, todos os pigmentos identificados no pequi apresentam os máximos de absorção praticamente nos mesmos comprimentos de onda do \(\beta \)-caroteno (TABELA 26). Isso pode levar a uma grande superestimação do valor vitamínico, se para o cálculo deste levarmos em consideração a leitura do extrato total, como foi feito nos trabalhos encontrados na literatura.

Nenhuma das frutas brasileiras já analisadas, com exceção de pêssego, nectarina e buriti, acusou a presença de zeaxantina e, principalmente, em grande quantidade. Tal fato fez com que os principais pigmentos do pequi merecessem uma identificação mais aprimorada. Assim, foram obtidos os espectros de massa das frações de \(\beta \)-criptoxantina e zeaxantina.

O espectro de massa apresentado na FIGURA 19 mostra um sinal intenso correspondente ao ion molecular M/Z 552, o que corresponde a uma fórmula mínima C\(_{40}H\(_{56}\)O. Um fragmento característico a M/Z 534 (M-18, H\(_2\)O) confirmou a presença de hidroxila. A ausência de outros fragmentos característicos concordam com a identificação da \(\beta \)-criptoxantina. Na FIGURA 20, o ion molecular M/Z 568 corresponde a uma fórmula mínima C\(_{40}H\(_{56}\)O\(_2\). Dois fragmentos característicos, uma a M/Z 550 (M-18, H\(_2\)O) e outro intenso a M/Z 532 (M-18-18, 2 H\(_2\)O) confirmam a presença de duas hidroxilas na molécula. Para maior segurança, os espectros de massa dos pigmentos isolados foram comparados aos de padrões de \(\beta \)-criptoxantina e zeaxantina obtidos sob as mesmas condições, confirmando dessa forma a identificação dos pigmentos.
FIGURA 19: Espectro de massa da fração de β-criptoxantina isolada do piqui.
FIGURA 20: Espectro de massa da fração de zeaxantina isolada do piqui.
O perfil do cromatograma obtido por CLAE (FIGURA 21), utilizando o mesmo sistema cromatográfico descrito anteriormente, ilustra ainda mais a composição atípica da fruta.

5.8. Composição de Carotenóides de Nêspera (Eriobotrya japonica)

A importância da nêspera no Brasil tem aumentado significativamente nos últimos anos. Sua safras (maio-outubro) coincide com a escassez de outras frutas no mercado. A nêspera brasileira tem encontrado grande aceitação no mercado internacional, e sua exportação tem aumentado a cada ano.

O perfil em carotenóides de nêspera ficou assim definido: 13-cis-β-caroteno; β-caroteno; ζ-caroteno; neurosporeno; β-criptoxantina; 5,6-epoxi-β-criptoxantina; violaxantina; auroxantina e neoxantina. A composição concorda mais uma vez com a triagem. As propriedades desses pigmentos estão apresentadas na TABELA 28. As estruturas e os espectros de absorção estão nos ANEXOS 1 a 8.

O neurosporeno foi identificado através do perfil e dos máximos de absorção. O valor de Rf de 0,91 na camada delgada indicou a ausência de substituintes e a forma trans foi confirmada pelo deslocamento hipsocrômico de 4 nm após a reação catalisada por iodo.

A fração que eluiu da coluna a seguir, apresentou um valor de Rf indicativo da presença de um grupo substituinte, confirmado como uma hidroxila pela resposta positiva à acetilação. A reação de metilação foi necessária para indicar a posição, sendo que a resposta negativa confirmou a posição não alílica, compatível com a estrutura de β-criptoxantina. A fração
FIGURA 21: Cromatograma obtido por CLAE do extrato total de piqui.
TABELA 28: Principais características dos carotenóides da náspera

<table>
<thead>
<tr>
<th>pigmentos</th>
<th>$\lambda_{\text{máx}}$ (nm)a</th>
<th>λ_{lc}</th>
<th>atividade pró-vitamina</th>
<th>Rf (%)</th>
<th>reação química</th>
</tr>
</thead>
<tbody>
<tr>
<td>13-cis-β-caroteno</td>
<td>(422)</td>
<td>446 472 1730</td>
<td>53</td>
<td>0,98</td>
<td>cis +</td>
</tr>
<tr>
<td>β-caroteno</td>
<td>(424)</td>
<td>449 477 2592</td>
<td>100</td>
<td>0,99</td>
<td>trans +</td>
</tr>
<tr>
<td>ξ-caroteno</td>
<td>380</td>
<td>400 425 2555</td>
<td>-</td>
<td>0,97</td>
<td>trans +</td>
</tr>
<tr>
<td>neurosporeno</td>
<td>420</td>
<td>442 472 2918</td>
<td>-</td>
<td>0,95</td>
<td>trans +</td>
</tr>
<tr>
<td>β-criptoxantina</td>
<td>(423)</td>
<td>447 477 2386</td>
<td>57</td>
<td>0,49</td>
<td>acet +</td>
</tr>
<tr>
<td>5,6-epoxi-β-criptoxantina</td>
<td>420</td>
<td>444 472 2386</td>
<td>50</td>
<td>0,45</td>
<td>acet + epox +</td>
</tr>
<tr>
<td>violaxantina</td>
<td>418</td>
<td>441 468 2550</td>
<td>-</td>
<td>0,11</td>
<td>acet + epox +</td>
</tr>
<tr>
<td>auroxantina</td>
<td>382</td>
<td>400 425 2592</td>
<td>-</td>
<td>0,09</td>
<td>acet + epox +</td>
</tr>
<tr>
<td>neoxantina</td>
<td>412</td>
<td>436 468 2243</td>
<td>-</td>
<td>0,02</td>
<td>acet + epox +</td>
</tr>
</tbody>
</table>

a Máximo de absorção em éter de petróleo; parênteses significam um ombro no lugar de pico
b Valores tabelados por DAVIES (1976) e obtidos neste trabalho
c ZECHMEISTER (1962) e BAUERNFEIND (1972)
seguinte apresentou, praticamente, as mesmas características, mas quando a mancha na placa de sílica gel foi exposta a vapores de HCl ocorreu mudança na coloração para azul. Com a adição de HCl 0,1N à solução etanólica do pigmento observou-se um deslocamento hipsocrômico de 20 nm, confirmando a presença de um grupo epóxi do tipo 5,6. Todas as propriedades concordaram, portanto, com a identificação do 5,6-epoxi-β-criptoxantina.

A última fração após desenvolvimento na camada delgada de sílica gel, desenvolvida com 3% de metanol em benzeno, praticamente não se deslocou do ponto de aplicação, um indicativo da presença de três hidroxilas, confirmada pela resposta positiva à acetilação. Quando submetida a vapores de HCl a mancha na placa tornou-se azul. Com a adição de gotas de HCl 0,1N o pigmento exibiu efeito hipsocrômico de 20 nm, indicando a presença de um grupo 5,6-epóxi. Pela análise desses parâmetros e pelo espectro de absorção, a fração foi identificada como sendo neoxantina.

Em termos quantitativos (TABELA 29) o que existe é a predominância do β-caroteno (8,0 μg/g) e da β-criptoxantina (4,5 μg/g), sendo encontrados traços de 13-cis-β-caroteno em apenas duas amostras. O valor de vitamina A de 179 RE/100g é quase que exclusivamente devido a contribuição desses dois carotenóides.

Na TABELA 30 a composição de carotenóides está apresentada em % para permitir uma comparação direta com os dados da composição de nêsperas de Israel (GROSS et alii, 1973) e do Japão (KOBAYASHI et alii, 1978). Em ambos os estudos o número de amostras não foi especificado e os desvios padrão não foram apresentados, impossibilitando dessa forma uma idéia da variação entre as amostras. Em termos qualitativo a semelhança muito grande entre a cultivar brasileira analisada (Mizuho) e a japonesa (Tanaka), especialmente em termos de β-caroteno, β-criptoxantina e violaxantina. Segundo OJIMA & KIGITANO (1978), as principais variedades plantadas no Brasil são Mizuho e Precoce, que são produtos do cruzamento entre as variedades japonesas Kusunoki x Tanaka e Mogi x Tanaka,
TABELA 29: Composição de carotenoides (μg/g) e valor de vitamina A da nêpera

<table>
<thead>
<tr>
<th>Pigmentos</th>
<th>Intervalo</th>
<th>ND + DF<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>13-cis-β-caroteno</td>
<td>ND - tr</td>
<td>-</td>
</tr>
<tr>
<td>β-caroteno</td>
<td>7,4 - 8,3</td>
<td>8,0 ± 0,6</td>
</tr>
<tr>
<td>ζ-caroteno</td>
<td>0,1 - 0,2</td>
<td>0,1 ± 0,1</td>
</tr>
<tr>
<td>neurosporeno</td>
<td>0,9 - 1,5</td>
<td>1,1 ± 0,3</td>
</tr>
<tr>
<td>β-criptoxantina</td>
<td>4,6 - 5,0</td>
<td>4,5 ± 0,5</td>
</tr>
<tr>
<td>5,6-epoxi-β-criptoxantina</td>
<td>0,3 - 0,9</td>
<td>0,6 ± 0,2</td>
</tr>
<tr>
<td>violaxantina</td>
<td>1,5 - 1,7</td>
<td>1,6 ± 0,1</td>
</tr>
<tr>
<td>auroxantina</td>
<td>0,8 - 1,0</td>
<td>0,9 ± 0,1</td>
</tr>
<tr>
<td>neoaxantina</td>
<td>0,6 - 0,9</td>
<td>0,8 ± 0,1</td>
</tr>
<tr>
<td>Total</td>
<td>16,9 - 18,2</td>
<td>17,7 ± 0,2</td>
</tr>
<tr>
<td>Valor de vitamina A (RE/100g)</td>
<td>166 - 189</td>
<td>179 ± 12</td>
</tr>
</tbody>
</table>

^a Média e desvio padrão de 5 determinações em duplicata
ND - não detectado
tr - traços
<table>
<thead>
<tr>
<th>Carotenóides</th>
<th>Brasil cv Misuho</th>
<th>Israel cv "Golden Nugget"</th>
<th>Japão cv Mogi</th>
<th>Japão cv Tanaka</th>
</tr>
</thead>
<tbody>
<tr>
<td>cis-neo-β-caroteno</td>
<td>44,6</td>
<td>33,0</td>
<td>30,0</td>
<td>42,0</td>
</tr>
<tr>
<td>β-caroteno</td>
<td>0,7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ζ-caroteno</td>
<td>6,2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>α-caroteno</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>neurosporeno</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mutacromino</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5,6-epoxi-β-criptoxantina</td>
<td>3,5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5,6,5',6'-diepoxi-β-crip-toxantina</td>
<td>2,2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>criptoflavina</td>
<td>27,3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>luteína</td>
<td>1,6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cis-luteína</td>
<td>3,2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>isoluteína</td>
<td>0,7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>violaxantina</td>
<td>8,8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>crisantemaxantina</td>
<td>1,7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>luteoxantina</td>
<td>0,9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>neocromono</td>
<td>8,0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>neoxantina</td>
<td>4,3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>auroxantina</td>
<td>4,9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total de carotenóides (µg/g)</td>
<td>17,6</td>
<td>22,0</td>
<td>17,0</td>
<td>21,0</td>
</tr>
<tr>
<td>Vitamina A (RE/100g)</td>
<td>179</td>
<td>210</td>
<td>180</td>
<td>236</td>
</tr>
</tbody>
</table>

a GROSS et alii (1973)
b KOBAYASHI et alii (1978)
respectivamente, o que explica tal semelhança. As nésperas israelenses apresentaram uma composição de carotenóides diferente, embora o β-caroteno e a β-criptoxantina fossem também os carotenóides majoritários.

O conteúdo total de carotenóides e o valor de vitamina A da fruta brasileira (17,6 µg/g e 179 RE/100g) foram similar ao da fruta japonesa (17,0 µg/g e 180 RE/100g) e um pouco menor ao da fruta israelense (22,0 µg/g e 210 RE/100g).

O perfil cromatográfico obtido por CLAE, mais uma vez, confirma os dados da cromatografia de coluna aberta, com relação à composição dos principais pigmentos.

5.9. Composição de Carotenóides de Pêssego (Prunus persica)

Ao contrário das frutas tropicais, muitas das quais ricas em carotenóides, as frutas de clima temperado são normalmente ricas em antocianinas e pobres em carotenóides. Praticamente as únicas frutas carotenogênicas de clima temperado são pêssego, nectarina e damasco. Sendo assim, pêssego tem sido uma das frutas mais estudadas em termos de carotenóides, no entanto, a sua composição ainda não está bem estabelecida.

No Brasil, pêssego e nectarina são basicamente as únicas frutas fontes de pró-vitamina A do sul do país, o que justificou a sua inclusão neste estudo.

O perfil em carotenóides para os dois tipos de pêssego (cultivar Diamante e uma variedade chilena) estudados foi muito semelhante, ficando assim definido: 11-cis-β-caroteno, β-caroteno, 9-cis-β-caroteno, Λ-caroteno, neo-β-criptoxantina, β-criptoxantina, luteína, zeaxantina, violaxantina, luteoxantina e
auroxantina. A luteína e a zeaxantina só foram detectadas na variedade chilena, enquanto que a luteoxantina só no cultivar Diamante, embora o resultado da triagem tenha sido idêntico para ambos. As estruturas e os espectros de absorção são encontrados nos ANEXOS 1 a 8. Na TABELA 31 estão resumidas as principais características dos pigmentos identificados. A identificação dos pigmentos seguiu os mesmos moldes anteriores.

Em relação aos teores de carotenóides (TABELA 32) a β-criptoxantina foi o carotenóide predominante tanto para o pêssego Diamante (4,1 μg/g) como para o chileno (5,1 μg/g). Em todas as amostras analisadas foram encontrados isômeros do β-caroteno e da β-criptoxantina. O valor médio de vitamina A calculado foi de 55 RE/100g para o pêssego Diamante e 73 RE/100g para a variedade chilena. Tais resultados estão coerentes com o apresentado por TAVARES (1991), mas discordantes dos dados apresentados por BUREAU & BUSWAY (1986) (4,35 e 29,72 RE/100g). Essa discrepância pode ser devida, pelo menos em parte, ao fato de que os últimos autores não realizaram a saponificação e, portanto a maior parte dos ésteres da β-criptoxantina não foram quantificados.

Na TABELA 33 temos uma comparação dos teores de carotenóides de pêssego encontrados na literatura. Em pêssegos cultivar Halford e Redhaven maduros (CURT, 1959 e GROSS, 1979, respectivamente) o principal pigmento encontrado foi a violaxantina. O α-caroteno, presente em pêssegos analisados por MACKINNEY (1937) e MCCARTY & LESLEY (1954), identificado e quantificado por BUREAU & BUSHWAY (1986) não foi encontrado nas amostras analisadas neste trabalho. A composição de carotenóides determinada por TAVARES (1991) para o pêssego cultivar Rei da Conserva é muito semelhante a do pêssego chileno, no entanto é um pouco discordante da composição do pêssego Diamante onde há ausência de luteína e zeaxantina, e presença de auroxantina e luteoxantina.

GEBHART et alií (1977), QUACKENBUSH (1987), KHACHIK (1989) e TAVARES (1991) observaram a presença de cis -
TABELA 31: Principais características dos carotenóides de pêssego cultivar Diamante e de uma variedade chilena.

<table>
<thead>
<tr>
<th>Pigmentos</th>
<th>λ máx (nm)</th>
<th>λ% b 1cm</th>
<th>Atividade de Pró-vit. A (%)</th>
<th>Valor de Rf</th>
<th>Reações</th>
</tr>
</thead>
<tbody>
<tr>
<td>13-cis-β-caroteno</td>
<td>(422)</td>
<td>444</td>
<td>472</td>
<td>1730</td>
<td>0,97 cis +</td>
</tr>
<tr>
<td>β-caroteno</td>
<td>(424)</td>
<td>449</td>
<td>474</td>
<td>2592</td>
<td>0,99 trans +</td>
</tr>
<tr>
<td>9-cis-β-caroteno</td>
<td>(420)</td>
<td>445</td>
<td>473</td>
<td>2370</td>
<td>0,98 cis +</td>
</tr>
<tr>
<td>ζ-caroteno</td>
<td>378</td>
<td>398</td>
<td>424</td>
<td>2555</td>
<td>0,97 trans +</td>
</tr>
<tr>
<td>neo-β-criptoxantina</td>
<td>(423)</td>
<td>447</td>
<td>472</td>
<td>2386</td>
<td>0,49 acet + cis +</td>
</tr>
<tr>
<td>β-criptoxantina</td>
<td>(424)</td>
<td>448</td>
<td>474</td>
<td>2386</td>
<td>0,50 acet +</td>
</tr>
<tr>
<td>luteína</td>
<td>423</td>
<td>448</td>
<td>474</td>
<td>2350</td>
<td>0,21 met + acet +</td>
</tr>
<tr>
<td>zeaxantina</td>
<td>(422)</td>
<td>446</td>
<td>473</td>
<td>2350</td>
<td>0,12 acet +</td>
</tr>
<tr>
<td>violaxantina</td>
<td>418</td>
<td>444</td>
<td>466</td>
<td>2550</td>
<td>0,11 acet + epox +</td>
</tr>
<tr>
<td>luteoxantina</td>
<td>400</td>
<td>423</td>
<td>447</td>
<td>2592</td>
<td>0,09 acet + epox +</td>
</tr>
<tr>
<td>auroxantina</td>
<td>382</td>
<td>402</td>
<td>426</td>
<td>1850</td>
<td>0,09 acet + epox +</td>
</tr>
</tbody>
</table>

a Máximos de absorção em éter de petróleo; parênteses significam um ombro no lugar do pico
b dados tabelados por Davies (1976) e obtidos neste trabalho
c Zechmeister (1962) e Bauerneind (1972)
TABELA 32: Composição de carotenóides (µg/g) e valor de vitamina A de pessão cultivar Diamante e de uma variedade de pessão chileno.

<table>
<thead>
<tr>
<th>pigmentos</th>
<th>cultivar Diamante</th>
<th>variedade chilena</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>intervalo</td>
<td>M ± DP</td>
</tr>
<tr>
<td>13-cis-β-caroteno</td>
<td>tr - 0,2</td>
<td>0,2 ± 0,1</td>
</tr>
<tr>
<td>β-caroteno</td>
<td>0,5 - 0,8</td>
<td>0,6 ± 0,2</td>
</tr>
<tr>
<td>9-cis-β-caroteno</td>
<td>tr - 0,1</td>
<td>0,1 ± 0,1</td>
</tr>
<tr>
<td>ξ-caroteno</td>
<td>0,1 - 0,3</td>
<td>0,2 ± 0,1</td>
</tr>
<tr>
<td>neo-β-criptoxantina</td>
<td>0,2 - 0,4</td>
<td>0,2 ± 0,1</td>
</tr>
<tr>
<td>β-criptoxantina</td>
<td>3,1 - 4,6</td>
<td>4,1 ± 0,8</td>
</tr>
<tr>
<td>luteína</td>
<td>ND</td>
<td>-</td>
</tr>
<tr>
<td>zeaxantina</td>
<td>ND</td>
<td>-</td>
</tr>
<tr>
<td>violaxantina</td>
<td>0,6 - 1,2</td>
<td>0,9 ± 0,4</td>
</tr>
<tr>
<td>luteoxantina</td>
<td>0,3 - 0,9</td>
<td>0,7 ± 0,3</td>
</tr>
<tr>
<td>auroxantina</td>
<td>tr - 0,4</td>
<td>0,2 ± 0,2</td>
</tr>
<tr>
<td>total</td>
<td>4,2 - 8,1</td>
<td>5,5 ± 2,4</td>
</tr>
<tr>
<td>valor de vitamina A</td>
<td>48 - 64</td>
<td>55 ± 8</td>
</tr>
</tbody>
</table>

(ND) = não detectado
(tr) = traços

a média e desvio padrão de 5 determinações em duplicata

135
<table>
<thead>
<tr>
<th>variedade</th>
<th>país</th>
<th>n° amostra</th>
<th>método</th>
<th>carotenóides (µg/g)</th>
<th>referência</th>
</tr>
</thead>
</table>
| Halford | USA | - | CCA | ε-caroteno (0,03)
β-caroteno (2,30)
β-criptoxantina (2,97)
vioxlaxantina (7,02)
persicaxantina (3,24)
+ 35 carotenóides com teores abaixo de 0,01 | CURL, 1959a |
| Clingstone | Austrália | 1 | CCA | 13-cis-β-caroteno (0,14)
β-caroteno (1,90)
9-cis-β-caroteno (0,21)
β-criptoxantina (2,01) | GESHARDT et alii, 1977 |
| Redhaven | - | - | CCD | β-caroteno (0,2)
zeaxantina (0,3)
neoxantina (0,2)
isoluteína (0,4)
β-criptoxantina (0,7)
vioxlaxantina (1,6)
+ 33 carotenóides com teores abaixo de 0,1 | GROSS, 1979 |
| não | especificado | 8 | CLAE | α-caroteno (0,03)
β-caroteno (0,77)
β-criptoxantina (0,03) | BUREAU & BUSHWAY, 1986 |
| não | especificado | - | CLAE | 13-cis-β-caroteno (1,02)
β-caroteno (3,05)
9-cis-β-caroteno (0,26) | QUACKENBUSH, 1987a |
| Elberta | USA | - | CCA | β-caroteno (0,6)
β-criptoxantina (0,5) | PHILIP & CHEN, 1988b |
| | | - | CLAE | β-caroteno (0,8)
β-criptoxantina (0,5) | |
| Cling | USA | - | CCA | β-caroteno (2,1)
β-criptoxantina (2,3) | |
| | | - | CLAE | β-caroteno (2,2)
β-criptoxantina (2,5) | |

136
<table>
<thead>
<tr>
<th>Varieta de</th>
<th>Paisagem</th>
<th>Estado</th>
<th>Atributos Bioquímicos</th>
<th>Fonte</th>
<th>Ano</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elbertha</td>
<td>USA</td>
<td>- CLAE</td>
<td>13-cis-β-caroteno (0,30)</td>
<td>KHACHIK et alii, 1989</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>β-caroteno (0,82)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>β-criptoxantina (0,03)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>éster β-criptoxantina (0,12)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>zeaxantina (0,04)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>éster zeaxantina (0,04)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>éster luteína (0,06)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rei da</td>
<td>Brasil</td>
<td>3 CCA</td>
<td>13-cis-β-caroteno (0,2)</td>
<td>TAVARES, 1991</td>
<td></td>
</tr>
<tr>
<td>Conserva</td>
<td></td>
<td></td>
<td>β-caroteno (1,1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>9-cis-β-caroteno (0,1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>neo-β-criptoxantina (0,4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>β-criptoxantina (0,4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>luteína (3,8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>zeaxantina (1,5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>violaxantina (0,8)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a valores calculados segundo as porcentagens apresentadas.
isômeros do β-caroteno. Com exceção de TAVARES, em nenhum outro trabalho foi reportada a presença do neo-β-criptoxantina.

Mesmo admitindo-se um certo grau de variabilidade inerente entre amostras, devido a fatores como diferença entre variedades, efeitos geográficos, condições de colheita e, principalmente no caso de frutas, o grau de maturação, a magnitude das variações apontam também erros devido aos métodos analíticos, como já observado anteriormente por RODRIGUEZ-AMAYA (1989).

5.10. Composição de Carotenóides de Nectarina (Prunus persica)

Os frutos maduros de nectarina apresentaram a seguinte composição: 13-cis-β-caroteno, β-caroteno, 9-cis-β-caroteno, τ-caroteno, neo-β-criptoxantina, β-criptoxantina, luteína, zeaxantina, violaxantina, mutatoxantina e auroxantina. Assim como nas outras frutas, o perfil determinado na triagem concorda com a identificação dos pigmentos. As estruturas e os espectros de absorção estão nos ANEXOS 1 a 8. As características dos pigmento identificados são apresentadas na TABELA 34.
TABELA 34: Principais características dos carotenóides de nectarina.

<table>
<thead>
<tr>
<th>Pigmentos</th>
<th>λ máx (nm)</th>
<th>A à b</th>
<th>Atividade de Pró-vit. A (%)</th>
<th>Valor de Rf</th>
<th>Reações Químicas</th>
</tr>
</thead>
<tbody>
<tr>
<td>13-cis-β-caroteno</td>
<td>(422)</td>
<td>443</td>
<td>472</td>
<td>1730</td>
<td>53</td>
</tr>
<tr>
<td>β-caroteno</td>
<td>(424)</td>
<td>448</td>
<td>474</td>
<td>2592</td>
<td>100</td>
</tr>
<tr>
<td>9-cis-β-caroteno</td>
<td>(420)</td>
<td>444</td>
<td>471</td>
<td>2370</td>
<td>38</td>
</tr>
<tr>
<td>ζ-caroteno</td>
<td>378</td>
<td>397</td>
<td>424</td>
<td>2555</td>
<td>-</td>
</tr>
<tr>
<td>não identificado</td>
<td>432</td>
<td></td>
<td></td>
<td>2592</td>
<td></td>
</tr>
<tr>
<td>neo-β-criptoxantina</td>
<td>(422)</td>
<td>446</td>
<td>472</td>
<td>2386</td>
<td>50</td>
</tr>
<tr>
<td>β-criptoxantina</td>
<td>(424)</td>
<td>447</td>
<td>474</td>
<td>2386</td>
<td>57</td>
</tr>
<tr>
<td>luteína</td>
<td>423</td>
<td>448</td>
<td>474</td>
<td>2350</td>
<td>-</td>
</tr>
<tr>
<td>zeaxantina</td>
<td>(422)</td>
<td>446</td>
<td>472</td>
<td>2350</td>
<td>-</td>
</tr>
<tr>
<td>violaxantina</td>
<td>418</td>
<td>444</td>
<td>468</td>
<td>2550</td>
<td>-</td>
</tr>
<tr>
<td>mutatoxantina</td>
<td>400</td>
<td>426</td>
<td>447</td>
<td>2592</td>
<td>-</td>
</tr>
<tr>
<td>auroxantina</td>
<td>392</td>
<td>402</td>
<td>426</td>
<td>1850</td>
<td>-</td>
</tr>
</tbody>
</table>

a Máximos de absorção em éter de petróleo; parênteses significam um ombro no lugar de pico
b Dados tabelados por DAVIES (1976) e obtidos neste trabalho
c ZECHMEISTER (1962) e BAUERNFEIND (1972)
A identificação foi feita de forma semelhante às descritas anteriormente. Um pigmento, que eluiu após o α-caroteno, apresentou um único máximo de absorção (λ_{max} 432 nm em éter de petróleo; 443 nm em metanol) forma característica de cetocarotenóide, porém não respondeu à redução com NaBH₄. A resposta negativa à acetilação mostrou que o composto não apresentava hidroxilas e após exposição a vapores de HCl não ocorreu mudança na coloração da mancha, indicando a ausência de grupo epóxido. Embora não tenha sido possível a sua identificação, nem por espectrometria de massa devido à pequena quantidade, uma estimativa da concentração foi feita baseada na absorvividade do β-caroteno.

O principal pigmento encontrado foi a β-criptoxantina, representando 41% do conteúdo total de carotenóides (9,6 μg/g) (TABELA 35). Dos pigmentos encontrados na nectarina, são precursores de vitamina A o β-caroteno, a β-criptoxantina e as formas isoméricas de ambos. Embora a soma desses pigmentos representasse 55% do total de carotenóides, o valor de vitamina A foi de apenas 54 RE/100g devido a baixa concentração de carotenóides observada nesta fruta.
<table>
<thead>
<tr>
<th>pigmentos</th>
<th>intervalo</th>
<th>MD ± DP<sup>a</sup></th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>13-cis-β-caroteno</td>
<td>ND - 0,2</td>
<td>0,1 ± 0,1</td>
<td>0,9</td>
</tr>
<tr>
<td>β-caroteno</td>
<td>1,0 - 1,3</td>
<td>1,0 ± 0,2</td>
<td>10,4</td>
</tr>
<tr>
<td>9-cis-β-caroteno</td>
<td>ND - 0,1</td>
<td>0,1 ± 0,1</td>
<td>0,8</td>
</tr>
<tr>
<td>ζ-caroteno</td>
<td>0,1 - 0,2</td>
<td>0,2 ± 0,1</td>
<td>2,1</td>
</tr>
<tr>
<td>não identificado</td>
<td>ND - 0,1</td>
<td>0,1 ± 0,1</td>
<td>0,9</td>
</tr>
<tr>
<td>neocriptoxantina</td>
<td>0,2 - 0,6</td>
<td>0,3 ± 0,2</td>
<td>3,1</td>
</tr>
<tr>
<td>β-criptoxantina</td>
<td>3,3 - 4,6</td>
<td>3,9 ± 0,7</td>
<td>40,6</td>
</tr>
<tr>
<td>luteína</td>
<td>1,0 - 1,4</td>
<td>1,1 ± 0,2</td>
<td>11,4</td>
</tr>
<tr>
<td>zeaxantina</td>
<td>1,1 - 2,0</td>
<td>1,6 ± 0,3</td>
<td>16,7</td>
</tr>
<tr>
<td>violaxantina</td>
<td>0,5 - 0,9</td>
<td>0,8 ± 0,1</td>
<td>8,3</td>
</tr>
<tr>
<td>mutatoxantina</td>
<td>ND - 0,1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>auroxantina</td>
<td>ND - 1,0</td>
<td>0,4 ± 0,3</td>
<td>4,2</td>
</tr>
<tr>
<td>total</td>
<td>8,9 - 10,2</td>
<td>9,6 ± 0,7</td>
<td></td>
</tr>
<tr>
<td>valor de vitamina A</td>
<td>48 - 60</td>
<td>54 ± 5</td>
<td></td>
</tr>
<tr>
<td>(RE/100g)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

^a média e desvio padrão de 5 determinações em duplicata
ND = não detectado
6. CONCLUSÕES

a. O método recomendado pelo IVACG, com pequenas modificações e o de RODRIGUEZ-AMAYA et alii simplificado demonstraram precisão e exatidão para a determinação de pró-vitaminas A. O método de COST91 não se mostrou satisfatório, necessitando várias modificações na maioria de suas etapas, desde a tomada da amostra até o processo cromatográfico.

b. Devido à variação observada nos valores encontrados na literatura, a confirmação dos coeficientes de absorção e o estabelecimento daqueles ainda não existentes devem ser continuados, já que são valores necessários para o cálculo da concentração de carotenóides e pró-vitaminas A.

c. Os isômeros são inexistentes ou ocorrem em quantidades muito pequenas em frutas "in natura". A separação das formas isoméricas, portanto, não é necessária para a determinação do valor de vitamina A. A quantificação de β-criptoxantina, raramente realizada no exterior, tem maior importância em muitas frutas.

d. Os isômeros ocorrem mais frequentemente e em concentrações maiores em hortaliças frescas e cozidas. Neste caso, a separação dos isômeros parece ser necessária para a determinação dos valores de vitamina A, desde que as biopotências sejam melhor estabelecidas.
e. A triagem é uma boa técnica auxiliar na determinação da composição de carotenóides.

f. Em abricó, os carotenóides identificados foram: 13-cis-β-caroteno, β-caroteno, 9-cis-β-caroteno, ζ-caroteno, β-zeacaroteno, β-apo-10'-carotenal, β-apo-8'-carotenol, violaxantina, luteoxantina e auroxantina.

g. No abricó foram observadas grandes variações na composição quantitativa, maiores mesmo que as encontradas normalmente em frutas. Violaxantina, β-caroteno ou β-apo-8'-carotenol alternam como principal pigmento.

h. A espectrometria de massa, juntamente com os parâmetros tradicionais, estabeleceram a estrutura de um novo carotenóide, o β-apo-8'-carotenol, no abricó.

j. A composição em carotenóides, quase que exclusivamente carotenos pró-vitamínicos em quantidades elevadas, revela o buriti como uma das fontes mais ricas de pró-vitamina A.

l. O pequi (Cariocar villosium) apresenta a seguinte composição em carotenóides: α-caroteno, 13-cis-β-caroteno, β-caroteno, ζ-caroteno, β-criptoxantina, neo-β-criptoxantina e zeaxantina.
m. A composição de carotenóides do pequi é atípica, tendo a zeaxantina como principal pigmento, seguida da \(\beta \)-criptoxantina. O valor de vitamina A é baixo, ao contrário do afirmado na literatura.

n. Nove pigmentos foram identificados nos cinco lotes de nêsteras analisados: 13-cis-\(\beta \)-caroteno, \(\beta \)-caroteno, \(\xi \)-caroteno, neurosporeno, \(\beta \)-criptoxantina, 5,6-epoxi-\(\beta \) -criptoxantina, violaxantina, auroxantina e neoxantina.

o. A composição de carotenóides de nêsteras brasileiras é muito semelhante a das nêsteras japonesas, porém, diferem um pouco das israelenses, embora o \(\beta \)-caroteno e a \(\beta \)-criptoxantina sejam também os principais pigmentos.

p. Os carotenóides identificados no pêssego Diamante foram: 13-cis-\(\beta \)-caroteno, \(\beta \)-caroteno, 9-cis-\(\beta \)-caroteno, \(\xi \)-caroteno, neo-\(\beta \)-criptoxantina, \(\beta \)-criptoxantina, violaxantina, auroxantina e luteoxantina. Os sete primeiros pigmentos são também encontrados na variedade chilena, além de luteína e zeaxantina.

q. Os pêssegos brasileiros mostram maiores teores de \(\beta \)-criptoxantina (principal pigmento) que os pêssegos analisados no exterior. Tal fato pode ser devido a diferença de variedade ou decorrente do procedimento analítico.

r. Em nectarina foram encontrados os carotenóides: 13-cis-\(\beta \)-caroteno, \(\beta \)-caroteno, 9-cis-\(\beta \)-caroteno, \(\xi \)-caroteno, neo-\(\beta \)-criptoxantina, \(\beta \)-criptoxantina, luteína, zeaxantina, violaxantina, mutatoxantina, auroxantina e um pigmento não identificado.
A composição de carotenóides de nectarina mostrou-se muito semelhante à do pêssego, fato esperado já que essas frutas pertencem à mesma família.

154

RANGANATH, D.R. & DUBASH, P.J. Loss of colour and vitamins on dehydration of vegetables. Indian Food Packer 8: 4-10, 1981.

ANEXO 1: Estrutura dos carotenóides presentes nas amostras analisadas.
ANEXO 2: Espectro de absorção em éter de petróleo do β-caroteno e zeaxantina (---), 13-cis-β-caroteno (----) e 9-cis-β-caroteno (-----).
ANEXO 3: Espectro de absorção em éter de petróleo do α-caroteno (-----), 13-cis-α-caroteno (-----) e 9-cis-α-caroteno (-----)
ANEXO 4: Espectro de absorção em éter de petróleo da α-criptoxantina (---), γ-caroteno (-----), η-caroteno (---) e β-zeacaroteno (-----).
ANEXO 5: Espectro de absorção em éter de petróleo da β-criptonantina (- - -), neo- β-criptoxantina (---) e 5,6-monoepoxi-β-criptoxantina (· · ·).
ANEXO 6: Espectro de absorção em éter de petróleo do β-apo-8'-carotenol (---) e do β-apo-10'-carotenal, antes (-----) e depois (-----) da reação de redução com NaBH₄.
ANEXO 7: Espectro de absorção em éter de petróleo da vilolaxantina (---), luteoxantina (---), auroxantina (-----) e neoxantina (----).
ANEXO 8: Espectro de absorção em éter de petróleo do neurospore no.