OBTENÇÃO DE CONCENTRADOS E HIDROLISADOS PROTÉICOS DE TILÁPIA DO NILO (*Oreochromus niloticus*): COMPOSIÇÃO, PROPRIEDADES NUTRITIVAS E FUNCIONAIS

LYS MARY BILESKI CÂNDIDO

CAMPINAS
1998
ERRATA

<table>
<thead>
<tr>
<th>Página</th>
<th>Linha</th>
<th>Onde se lê:</th>
<th>Leia-se:</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>21</td>
<td>a funcionalidade</td>
<td>à funcionalidade</td>
</tr>
<tr>
<td>34</td>
<td>24</td>
<td>Thankamma et alii, 1979; Adler-Niesen, (1986), reviu serina proteases origem animal</td>
<td>Thankamma et alii, 1979; Adler-Niesen (1986) reviu serina proteases de origem animal</td>
</tr>
<tr>
<td>37</td>
<td>12</td>
<td>CCP</td>
<td>CPP</td>
</tr>
<tr>
<td>39</td>
<td>9</td>
<td>do e o FDA, (Holmberg, 1987), 40% de grau de hidrólise (menos de 3,0%).</td>
<td>da e a FDA Holmberg, 1987), 45% de grau de hidrólise (menos de 3,0% de gordura) produto também</td>
</tr>
<tr>
<td>41</td>
<td>11</td>
<td>também</td>
<td>Incluir: Estes valores são inferiores aos obtidos neste trabalho.</td>
</tr>
<tr>
<td>44</td>
<td>22,26</td>
<td>Tonsend & Nakai</td>
<td>Townsend & Nakai</td>
</tr>
<tr>
<td>64</td>
<td>12</td>
<td>Tonsend & Nakai</td>
<td>Townsend & Nakai</td>
</tr>
<tr>
<td>67</td>
<td>9</td>
<td>Alcalase® Flavourzime®</td>
<td>Alcalase®, Flavourzime®</td>
</tr>
<tr>
<td>72</td>
<td>31</td>
<td>tilápi do Nilo ([S = 12%])</td>
<td>tilápi do Nilo ([S = 12%])</td>
</tr>
<tr>
<td>77</td>
<td>20</td>
<td>citocromo C 12327 Da; aminoácidos presentes grau de hidrólise de 40%</td>
<td>citocromo C 12327 Da; aminoácidos livres presentes grau de hidrólise de 45%</td>
</tr>
<tr>
<td>85</td>
<td>20</td>
<td>aminoácidos totais do</td>
<td>aminoácidos livres do</td>
</tr>
<tr>
<td>87</td>
<td>11</td>
<td>g óleo absorvido/g proteína observar solubilidade</td>
<td>mL óleo absorvido/g proteína observar que a solubilidade</td>
</tr>
<tr>
<td>89</td>
<td>10</td>
<td>Tonsend & Nakai</td>
<td>Townsend & Nakai</td>
</tr>
<tr>
<td>90</td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>92</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>93</td>
<td></td>
<td>Legenda</td>
<td></td>
</tr>
<tr>
<td>96</td>
<td></td>
<td>Legenda</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>37</td>
<td></td>
<td></td>
</tr>
<tr>
<td>101</td>
<td></td>
<td>Legenda</td>
<td></td>
</tr>
<tr>
<td>106</td>
<td></td>
<td>Legenda</td>
<td></td>
</tr>
<tr>
<td>106</td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>108</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>117</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>117</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>117</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>117</td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>127</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>127</td>
<td>19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>133</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>133</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>148</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>149</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>155</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>156</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>160</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>160</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>164</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>166</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>166</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>166</td>
<td>24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>167</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>167</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>167</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>167</td>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>176</td>
<td>18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>182</td>
<td>16</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tabela</th>
<th>Legenda</th>
<th>Figura</th>
<th>Detalhes</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td></td>
<td></td>
<td>g óleo absorvido/g proteína observar solubilidade</td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
<td>1M. Concentrações</td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
<td>7,81 3,30 e 2,04 g água</td>
</tr>
<tr>
<td>29</td>
<td></td>
<td></td>
<td>tilápi do Nilo... Contudo, tratado com polifosfatos</td>
</tr>
<tr>
<td>30</td>
<td></td>
<td></td>
<td>comparável aos do efeito mostrando valor 10 vezes</td>
</tr>
<tr>
<td>31</td>
<td></td>
<td></td>
<td>Verifica-se, também, que caseina aumentam de forma</td>
</tr>
<tr>
<td>32</td>
<td></td>
<td></td>
<td>observada na Figura 50</td>
</tr>
<tr>
<td>33</td>
<td></td>
<td></td>
<td>emulsificante tensão superficial e solubilidade,</td>
</tr>
<tr>
<td>34</td>
<td></td>
<td></td>
<td>mL óleo absorvido/g proteína 3,5% de hidrólise e o apresentar elevadas propriedades proteica</td>
</tr>
<tr>
<td>35</td>
<td></td>
<td></td>
<td>hidrolisados com suplementos 40% de grau de hidrólise</td>
</tr>
<tr>
<td>36</td>
<td></td>
<td></td>
<td>punção venosa e analisados</td>
</tr>
<tr>
<td>37</td>
<td></td>
<td></td>
<td>comparados ao concentrado</td>
</tr>
<tr>
<td>38</td>
<td></td>
<td></td>
<td>GH 40,0 % arterogénicidade da dieta. correspondeu a 86,6%</td>
</tr>
<tr>
<td>39</td>
<td></td>
<td></td>
<td>5% de hidrólise, e o apresentar elevadas propriedades</td>
</tr>
<tr>
<td>40</td>
<td></td>
<td></td>
<td>Caseina hidrolisados como suplementos 45% de grau de hidrólise</td>
</tr>
<tr>
<td>41</td>
<td></td>
<td></td>
<td>punção venosa e analisado</td>
</tr>
<tr>
<td>42</td>
<td></td>
<td></td>
<td>em relação aos aminoácidos totais do concentrado</td>
</tr>
<tr>
<td>43</td>
<td></td>
<td></td>
<td>GH 45,0 % arterogénicidade da dieta. correspondeu a 86,6%</td>
</tr>
<tr>
<td>44</td>
<td></td>
<td></td>
<td>alta correlação (R² = 0,916)</td>
</tr>
</tbody>
</table>
OBTENÇÃO DE CONCENTRADOS E HIDROLISADOS PROTÉICOS DE TILÁPIA DO NILO (*Oreochromus niloticus*): COMPOSIÇÃO, PROPRIEDADES NUTRITIVAS E FUNCIONAIS

LYS MARY BILESKI CÂNDIDO
"Farmacêutica Industrial"
"Mestre em Bioquímica"

PARECER

Este exemplar corresponde à redação final da tese defendida por LYS MARY BILESKI CÂNDIDO aprovada pela Comissão Julgadora em 20 de fevereiro de 1998.

Campinas, 20 de fevereiro de 1998.

PROF. DR. VALDEMIRO CARLOS SGARBIERI
Presidente da Banca

Tese apresentada à Faculdade de Engenharia de Alimentos da Universidade Estadual de Campinas para obtenção do Título de Doutor

ORIENTADOR
PROF. DR. VALDEMIRO CARLOS SGARBIERI

CAMPINAS
1998
Cândido, Lys Mary Bileski

Obtenção de concentrados e hidrolisados protéicos de Tilapia do Nilo (*Oreochromus niloticus*): composição, propriedades nutritivas e funcionais / Lys Mary Bileski Cândido. – Campinas, SP: [s.n.], 1998.

Orientador: Valdemiro Carlos Sgarbieri

Tese (doutorado) – Universidade Estadual de Campinas. Faculdade de Engenharia de Alimentos.

BANCA EXAMINADORA

Prof. Dr. Valdemiro Carlos Sgarbieri - (Presidente)

Nelson José Beraquet - (Membro)

Paulo José do Amaral Sobral - (Membro)

Jaime Amaya Farfán - (Membro)

Carlos Grosso - (Membro)

Hélia Harumi Sato - (Membro suplente)

Adilma Regina P. Scamparini - (Membro suplente)

Campinas, de de 1998
Como expressão de gratidão e com carinho, dedico este trabalho a meu esposo Nelson e a meus filhos Marcus, Louise e Cláudia pela compreensão por períodos tão prolongados de ausência, pelo estímulo para que este trabalho fosse concluído, por abrirem mão do tempo que lhes era devido, dedicando-me seu carinho, o seu tempo e o melhor que poderiam oferecer.

Este trabalho é dedicado também à minha mãe pelo zelo e acompanhamento constante, e a meu pai ("in memorian") porque desde cedo me estimularam e me mostraram a importância do conhecimento. Com carinho e gratidão.
AGRADECIMENTOS

Ao meu orientador, prof. Dr. Valdemiro Carlos Sgarbieri pelo acompanhamento constante, quer dirimindo dúvidas, auxiliando no planejamento do trabalho, ou proporcionando recursos para que o trabalho chegasse a bom termo, pela motivação, e por acreditar no meu trabalho

Ao Departamento de Nutrição da Universidade Federal do Paraná por me conceder a oportunidade do afastamento das atividades didáticas para que eu pudesse me dedicar integralmente ao curso

Ao Instituto de Tecnologia de Alimentos que permitiu o desenvolvimento da tese em suas instalações, aos Diretores do Instituto, aos Coordenadores dos Centros pela disponibilidade de recursos humanos e materiais. Agradeço a oportunidade de novas amizades proporcionadas pelo convívio com técnicos, pesquisadores e pessoal de apoio; pelo estímulo, ajuda profissional ou pessoal, seja compartilhando conhecimento, realizando análises, e pela disponibilidade de tempo e amizade do corpo de funcionários

Aos estagiários do Instituto pelo alegre convívio e pela oportunidade de repartir experiências, e muito especialmente às bolsistas de iniciação científica Patrícia Zinsly e Alexandra Nogueira

Aos professores, colegas e amigos da Faculdade de Engenharia de Alimentos da UNICAMP pelo conhecimento compartilhado. Aos amigos e funcionários do Instituto de Química, do Instituto de Biologia, da coordenação de pós-graduação da FEA, do Depan e do Departamento de Ciência de Alimentos da UNICAMP pela colaboração prestada

A FAPESP pelo apoio financeiro que possibilitou a aquisição de matéria prima, equipamentos e reagentes que viabilizaram o trabalho

A CAPES pela bolsa concedida e pelo auxílio semestral para aquisição de material de consumo

Aos membros da banca, que com sua experiência, contribuíram para a otimização do trabalho

A todos que contribuíram para que este trabalho se efetivasse,

muito obrigada!
RESUMO

O objetivo geral deste trabalho foi o de otimizar as propriedades funcionais de concentrados proteicos de tilápia do Nilo, mediante modificações nos processos de obtenção de concentrados, ou através de hidrólise enzimática de proteínas. A matéria prima empregada na elaboração deste trabalho foi a tilápia do Nilo (*Oreochromis niloticus*). Inicialmente foi preparado um concentrado de proteínas totais, tratado com 3 ciclos de etanol a 50°C, o qual apresentou baixo teor de gorduras (2,14 ± 0,07%), mas não apresentou funcionalidade. Foram preparados concentrados de proteínas miofibrilares, nos quais os filés de tilápia foram moidos, e lavados com soluções de cloreto de sódio, e bicarbonato de sódio e água consecutivamente. Após a eliminação da água possível, por prensagem, foram aplicados seis tratamentos diferentes, incluindo: etanol a frio (E), adição de crioprotetores, à semelhança do preparo do surimi (S), tratamento do concentrado S com etanol a frio (SE), tratamento do filé triturado com etanol hexano (EH), adição de polifosfatos aos filés triturados (F), e tratamento do concentrado F com etanol a frio (FE). A avaliação preliminar das propriedades funcionais e da estabilidade dos concentrados mostrou que o concentrado adicionado de polifosfatos e tratado com etanol foi a melhor alternativa. Este foi a seguir, preparado em grande quantidade (CP) e entre suas propriedades destacaram-se: a capacidade emulsificante (297,33 ± 3,79 mL de óleo/g proteína); o índice de atividade emulsificante (34,76 ± 1,63 m²/g de proteína), e a capacidade espumante (171,67 ± 7,64%). A capacidade de retenção de água foi de 12,50 ± 0,99 mL de água/g de proteína, muito superior à das demais preparações. Foram preparados hidrolisados protécios mediante a utilização da preparação enzimática Flavourzyme® (Novo Nordisk). Os hidrolisados com 2,5%, 3,5%, 7%, 9%; e 14% de hidrólise foram utilizados para avaliação de propriedades funcionais e os restantes (22%, 25% e 45% de hidrólise) para aspectos nutricionais especiais e de avaliação sensorial. Conseguiu-se melhora estatisticamente significativa (p≤0,05) em todas as propriedades funcionais. Com 7% de grau de hidrólise foram obtidas as melhores propriedades funcionais, destacando-se a solubilidade (42,43 ± 1,43%), capacidade emulsificante (287,17 ± 11,14 mL de óleo/g proteína), índice de atividade emulsificante (30,49 ± 0,11 m²/g de proteína) e capacidade espumante (177,00 ± 1,00%). Para grau de hidrólise de 14% houve expressivo abaixamento da tensão superficial (13,3%) e interfacial (53,6%). Foram desenvolvidas formulações de biscoito doce e salgado, nas quais parte da gordura foi substituída por sucedâneos de gordura de base protéica, ou seja Dairy-Lo® para o biscoito doce e Simplesse® para o biscoito salgado, empregando-se o hidrolisado com 45% de grau de hidrólise. O teor de proteínas para o biscoito doce foi de 19,86 ± 0,05, e de gordura, 10,84 ± 0,35. Para o biscoito salgado, os valores
foram 20,31 ± 0,20 e 9,19 ± 0,52, para proteínas e gordura, respectivamente, bastante diferenciados dos demais produtos comerciais, que apresentam teor de gorduras superior ao de proteínas. O teor de fibras foi de 4,80% (doce) e 2,40% (salgado). O teste de aceitação dos biscoitos foi realizado com 100 atletas. O biscoito salgado foi o preferido independentemente do sexo dos provadores. No atributo aceitação global, para o biscoito doce, 14% assinalou que gostou muito e 36% que gostou. Para o biscoito salgado, os percentuais foram 11% e 66% respectivamente. Considerando a aceitação dos biscoitos pelos atletas, acreditamos que esta seja uma das aplicações para o produto, e eventualmente em usos clínicos. Estas modificações não alteraram o valor nutritivo dos diversos concentrados e hidrolisados preparados, não se verificando diferença estatisticamente significativa entre índices como valor biológico, digestibilidade, NPU, e NPR, comparativamente à caseína. Houve diferença estisticamente significativa (p≤0,05) com a caseína quando foram testadas separadamente as frações solúveis e insolúveis dos hidrolisados. Verificou-se também que quando se analisou o PDCAAS para o sobrenadante do hidrolisado, houve um aumento deste índice proporcionalmente ao grau de hidrólise, indicando que do ponto de vista nutricional o hidrolisado total seria a melhor forma de utilização do produto, porquanto mantém inalterado o balanço de aminoácidos. Foram comparados hidrolisados com 25% de grau de hidrólise preparados com Alcalase® e Flavourzyme® quanto à presença de peptídio com atividade inibidora da enzima conversora de angiotensina I em angiotensina II (ACE). O IC50 do inhibidor no hidrolisado de Alcalase® foi de 0,064 mg e no de Flavourzyme®, 0,087 mg de proteína. Após purificação por HPLC de exclusão molecular, o IC20 para hidrolisado de Alcalase® foi de 0,0048 mg de proteína, indicando um aumento de 20 vezes na atividade inibidora.
ABSTRACT

The general objective of this research was the optimization of the Nile tilapia protein concentrate as to functional properties by modifications in the preparation procedure or controlled enzymatic hydrolysis. The raw material used for this research was the Nile tilapia (*Oreochromus niloticus*). Whole protein concentrate was obtained after three cycles of treatment with ethanol at 50°C. Total lipid content (2.14 ± 0.07%), was considered low, but no functionality was shown. Myofibrilar protein concentrates were prepared under milder conditions aiming at a product with better functionality. Tilapia fillets were minced and washed with sodium chloride and sodium bicarbonate solutions, and water respectively. After removing the water by compression, it was submitted to six distinct treatments including: cold ethanol (E); cryoprotector addition, as for surimi preparation (S); treatment of the previous (S) concentrate with cold ethanol (SE); treatment of fillets with ethanol hexane (EH); addition of polyphosphates to the minced fillets (F), and treatment of F with cold ethanol (FE). Preliminary evaluation of functional properties and stability of the concentrates showed that concentrate treated with polyphosphates was the best concerning functionality. Such concentrate was then prepared in greater amounts and its major properties were: emulsifying capacity (297.33 ± 3.79 mL of oil/g protein), emulsifying activity index (34.76 ± 1.63 m²/g protein), and foaming capacity (171.67 ± 7.64%). The water retention capacity was 12.50 ± 0.99 mL of water/g protein. Protein hydrolysates were prepared with Flavourizme® for obtaining nutritionally adequate products with better functional properties. The concentrates with degrees of hydrolysis of 2.5%, 3.5%, 7%, 9%, and 14% were tested for functional properties, and the others (22%, 25% and 45%) for nutritional aspects and sensorial evaluation. There was statistically significant (p<0.05) improvement for all functional properties. The best functional properties were obtained with 7% degree of hydrolysis, specially: solubility (42.43 ± 1.43%), emulsifying capacity (287.17 ± 11.14 mL of oil/g protein), emulsifying activity index (30.49 ± 0.11 m²/g protein), and foaming capacity (177.00 ± 1.00%). Hydrolysis of 14% caused a lowering of the surface tension (13.3% decrease), and interface tension (53.6% decrease). Cookies (sweet and salted) were developed, in which part of the fat was replaced by protein based fat replacers: Dairy-Lo® for the sweet and Simplesse® for the salted cookies, using the sample with 45% percent of hydrolysis. Protein content was 19.86 ± 0.05 for the sweet cookies, and 10.84 ± 0.35 for total lipids. For the salted cookies the values were 20.31 ± 0.20 and 9.19 ± 0.52 for protein and fat respectively. Fiber content was 4.80% (sweet) and 2.40% (salted). Acceptance test was done with 100 athletes, and the salted cookies were preferred by athletes of both sexes. Overall acceptance for the sweet cookies was: 14% liked it very much and 36% liked
it. For the salted cookies the results were 11% liked very much, and 66%, liked. Regarding acceptance the product could be recommended for athletes and for clinical nutrition. Hydrolysis did not affect the nutritional value of the concentrates. There was no statistic differences (p<0.05) among indexes such as biological value, digestibility, NPU and NPR, among the sample when compared to casein. There was statistic differences when their soluble and insoluble fractions were tested separately. It was also shown that when the PDCAAS is calculated for the soluble fraction of the hydrolysates, there was an increase in this index proportionally to the degree of hydrolysis, indicating a better amino acid balance for the total hydrolysates. It was shown that peptides which inhibits the angiotensin converting enzyme are present in the hydrolysates. The IC\textsubscript{50} for the Alcalase® hydrolysate was 0.064 mg of protein and for Flavourzyme® was 0.087 mg protein. After separation by molecular exclusion (HPLC) the IC\textsubscript{50} was 0.0048 mg of protein, for the enzyme Alcalase®, a twelve-fold increase in the inhibition power.
ÍNDICE ANALÍTICO

LISTA DE ABREVIATURAS ... iv
LISTA DE FIGURAS ... v
LISTA DE TABELAS .. viii
RESUMO .. x
ABSTRACT ... xii

1 INTRODUÇÃO .. 1

1 OBJETIVOS ... 2
 Objetivo geral ... 2
 Objetivos específicos ... 2

2 REVISÃO DA LITERATURA ... 3

2.1 MATÉRIA PRIMA .. 3

2.2 ESTRUTURA DO MÚSCULO DE PEIXE .. 3

2.3 COMPOSIÇÃO E VALOR NUTRITIVO DE PESCADO .. 5
 2.3.1 Composição .. 5
 Água .. 5
 Proteínas .. 5
 Compostos nitrogenados não protêicos ... 6
 Lipídios ... 7
 2.3.2 Valor nutritivo .. 7

2.4 CONCENTRADO PROTÉICO DE PESCADO (CPP) .. 7
 2.4.1 Desenvolvimento e fatores de qualidade .. 7
 2.4.2 Métodos para melhorar as propriedades funcionais dos concentrados protêicos de pescado ... 11
 Condições de processamento mais brandas .. 11
 Adição de fosfatos ... 12
 Surimi ... 14
 2.4.3 Resíduos de processamento ... 16

2.5 PROPRIEDADES FUNCIONAIS DAS PROTEÍNAS ... 17
 2.5.1 Propriedades de hidratação ... 19
 Absorção e retenção de água ... 19
 Solubilidade ... 20
 Viscosidade ... 21
 2.5.2 Propriedades de superfície ... 22
 Hidrofobicidade ... 23
 Formação de emulsões .. 24
 Formação de espumas .. 27
 2.5.3 Avanços tecnológicos ... 29

2.6 MODIFICAÇÕES ENZIMÁTICAS DE PROTEÍNAS - PRODUÇÃO DE HIDROLISADOS 29
 2.6.1 Mecanismos e aplicações .. 29
 2.6.2 Determinação do grau de hidrólise ... 34
 pH stat ... 35
 TNBS ... 36
 2.6.3 Enzimas protéolíticas .. 37
Proteases contendo serina (EC 3.4.21) .. 39
Proteases contendo cisteína (EC 3.4.22) .. 39
Metalproteases .. 40
Proteases ácidas (aspárticas) .. 40
2.6.4. Hidrolisado protéico de pescado .. 41

2.7 AVALIAÇÃO NUTRICIONAL .. 43

2.8 AVALIAÇÃO DE PROPRIEDADES BIOLÓGICAS ... 45
2.8.1 Peptídeos biologicamente ativos .. 45

3 MATERIAL E MÉTODOS .. 46

3.1 MATÉRIA PRIMA E REAGENTES ... 46

3.2 EQUIPAMENTOS .. 46

3.3 METODOLOGIA ... 46
3.3.1 Preparo de concentrados e subprodutos .. 46
 a) Preparo do extrato alcoólico de proteínas totais de musculo de pescado (PT) 46
 b) Preparo de concentrados de proteínas mucopeptídicas 47
 c) Concentrado tratado com etanol e água(ET) ... 49
 d) Concentrado tratado com polietileno (PE) ... 49
 e) Resíduo da desossiagem .. 49
 f) Concentrado de proteínas sarcoplasmáticas .. 49
3.3.2 Hidrolisados protéicos ... 51
 Otimização das condições de hidrólise .. 51
 Fracionamento do hidrolisado .. 51
3.3.3 Determinações químicas .. 52
 Composição centesimal ... 53
 Aminoácidos .. 53
 Minerais .. 53
 Produtos de oxidação lipídica .. 54
3.3.4 Atividade proteolítica .. 54
3.3.5 Eletroforese em gel de poliacrilamida ... 54
3.3.6 Flexibilidade ... 55
3.3.7 Cromatografia de exclusão molecular ... 55
3.3.8 Isotermas de sorção de água .. 55
3.3.9 Propriedades Funcionais .. 56
 Solubilidade (S%) .. 56
 Capacidade de absorção espontânea de água (CAA) ... 56
 Capacidade de absorção espontânea de óleo (CAO) ... 57
 Capacidade de retenção de água (CRA) ... 57
 Formação e estabilidade de espumas ... 57
 Formação de emulsões ... 58
 Viscosidade .. 61
 Tensão superficial e interfacial ... 61
 Análise de variação multivariada das propriedades funcionais 63
3.3.10 Avaliação nutricional e de propriedades fisiológicas 63
 Ensaios “in vivo” .. 63
 Perfil bioquímico do soro dos ratos ... 65
 Digestibilidade “in vitro” ... 65
 Lisina disponível ... 65
 Inibição da enzima conversora de angiotensina ... 66
3.3.11 Avaliação sensorial ... 66
 Análise descritiva quantitativa ... 66
4 RESULTADOS E DISCUSSÃO

4.1 CONCENTRADOS PROTÉICOS DE PESCAO

4.1.1 Caracterização química dos concentrados .. 71
 Análise de minerais dos concentrados protéicos de tilápia do Nilo 76
 Linha quimicamente disponível .. 77
4.1.2 Caracterização química dos resíduos de processamento 78
4.1.3 Electroforese dos concentrados protéicos de tilápia do Nilo 80
4.1.4 Propriedades funcionais dos concentrados protéicos 82
 Solubilidade e capacidade de absorção de água e de gordura 83
 Formação de espumas e emulsões ... 87
 Flexibilidade .. 88
4.1.5 Concentrado proteico tratado com polifosfatos (CP) 91

4.2 PREPARO E CARACTERIZAÇÃO DOS HIDROLISADOS

4.2.1 Otimização das condições de hidólise ... 92
4.2.2 Composição centesimal dos hidrolisados .. 95
4.2.3 Determinação de peso molecular dos hidrolisados 97
4.2.4 Aminoaçídios dos hidrolisados .. 100
4.2.5 Isotermas de sorção de água .. 102

4.3 PROPRIEDADES FUNCIONAIS DE CONCENTRADOS E HIDROLISADOS

4.3.1 Solubilidade ... 105
4.3.2 Capacidade de retenção de água (CRA) .. 111
4.3.3 Capacidade de absorção de água e de óleo ... 115
4.3.4 Formação de emulsões .. 120
4.3.5 Formação de espumas .. 133
4.3.6 Tensão superficial (TS) e interfacial (TI) .. 143
4.3.7 Viscosidade .. 145
4.3.8 Avaliação sensorial: odor e sabor a peixe, gosto umami e gosto amargo 150

4.4 AVALIAÇÃO NUTRICIONAL DE CONCENTRADOS E HIDROLISADOS PROTÉICOS

4.4.1 Ensaios “in vivo” e “in vitro” .. 160
4.4.2 Avaliação bioquímica dos soros sanguíneos dos ratos 166
4.4.3 Aspectos nutricionais de sub-produtos do processamento 174
4.4.4 Aplicação dos hidrolisados em alimentos para fins especiais 176
4.4.5 Peptídeos com atividade fisiológica: inhibidor de enzima conversora da angiotensina (ACE) 181

5. CONCLUSÕES .. 184

6 REFERÊNCIAS BIBLIOGRÁFICAS .. 186
LISTA DE ABREVIATURAS

BV - (biological value) - valor biológico
CAA - capacidade de absorção espontânea de água
CAO - capacidade de absorção espontânea de óleo
CEM - capacidade emulsificante
CESP - capacidade espumante
CP - concentrado adicionado de polifosfatos e tratado com etanol a frio (mesma metodologia empregada para FE)
CPP - concentrado proteico de pescado
CRA - capacidade de retenção de água
E - concentrado tratado com etanol a frio
EE - estabilidade de emulsão
EESP - estabilidade de espumas
EH - concentrado obtido por tratamento com hexano/etanol
EQ - concentrado tratado com etanol a quente
F - concentrado adicionado de polifosfatos
FAO - Food and Agriculture Organization
FE - concentrado adicionado de polifosfatos e tratado com etanol a frio
GH - grau de hidrólise
HI - fração insolúvel do hidrolisado após centrífugação
HMP - hexametafosfato de sódio
HPP - hidrolisado protéico de pescado
HS - sobrenadante do hidrolisado após centrífugação
HT - hidrolisado total (mistura de reação)
IAAO - razão absorção de água/absorção de óleo
IAE - índice de atividade emulsificante
IC50 - concentração de inibidor que ocasiona 50% de inibição
MANOVA - análise de variância multivariada
NPR - (net protein ratio) - quociente de eficiência protéica líquida
NPU - (net protein utilization) - utilização líquida da proteína
OMS - Organização Mundial de Saúde
PDCAAS - (protein digestibility corrected aminoacid scoring) - digestibilidade da proteína corrigida pelo escore de aminoácidos
PER - (protein efficiency ratio) - quociente de eficiência protéica
R - resíduo da desossa mecânica
S - concentrado preparado com a tecnologia do surimi
SARC - concentrado de proteínas sarcoplasmáticas
SE - concentrado preparado com a tecnologia do surimi, e tratado com etanol a frio
TBARS - substâncias reativas ao ácido tiobarbitúrico
TI - tensão interfacial
TNBS - ácido trinitrobenzenosulfônico
TS - tensão superficial
LISTA DE FIGURAS

1. Fluxograma de processamento dos concentrados proteicos de tilápia do Nilo ... 48
2. Fluxograma para o preparo de concentrado proteico de tilápia do Nilo ... 50
3. Fluxograma para obtenção do concentrado tratado com polifosfatos (CP) ... 51
4. Fracionamento do hidrolisado ... 52
5. Formulário utilizado para avaliação sensorial dos hidrolisados ... 68
6. Formulário para análise sensorial de biscoito salgado ... 69
7. Formulário para teste de aceitação de biscoito doce ... 70
8. Concentrados proteicos de tilápia do Nilo .. 74
9. Eletroforese em gel de poliacrilamida dos concentrados proteicos de tilápia do Nilo 81
10. Solubilidade dos concentrados proteicos de tilápia do Nilo em função do pH, em presença de cloreto de sódio 0,5 M .. 84
11. Capacidade dos absorção dos água dos concentrados proteicos de tilápia do Nilo (pH ≈ 6,5) 86
12. Capacidade de absorção de óleo dos concentrados proteicos de tilápia do Nilo (pH ≈ 6,5) 86
13. Efeito da relação E/S sobre o grau de hidrólise do concentrado proteico (EQ) de tilápia do Nilo 93
14. Correlação de metodologia para determinação de grau de hidrólise ... 94
15. Intervalos de confiança e de predição da relação TNBS/pH stat ... 95
16. Perfil de eluição dos peptídeos dos hidrolisados proteicos de tilápia do Nilo (HPLC) 98
17. Eletroforese em gel de poliacrilamida dos hidrolisados proteicos de tilápia do Nilo 99
18. Efeito do sistema de extração sobre o perfil de aminoácidos de hidrolisado de tilápia do Nilo com grau de hidrólise de 25% ... 101
19. Aminoácidos livres de hidrolisados de tilápia do Nilo em função do grau de hidrólise e em relação aos aminoácidos totais do concentrado (EQ) .. 101
20. Relação entre grau de hidrólise e liberação de aminoácidos em hidrolisados de tilápia do Nilo 102
21. Isoterma de sorção de água dos hidrolisados de tilápia do Nilo e do concentrado EQ 104
22. Análise hierárquica de “cluster” para as isotermas de sorção de água ... 104
23. Efeito do pH sobre a solubilidade dos hidrolisados e concentrados (EQ e CP) proteicos de tilápia do Nilo em presença de cloreto de sódio 0,5 M ... 107
24. Efeito da concentração salina sobre a solubilidade dos hidrolisados e concentrados (EQ e CP) proteicos de tilápia do Nilo a pH 7,0 ... 108
25. Influência do grau de hidrólise na solubilidade dos hidrolisados proteicos de tilápia do Nilo 109
26. Efeito do pH sobre a capacidade de retenção de água dos hidrolisados e dos concentrados (EQ e CP) proteicos de tilápia do Nilo ... 113
27. Efeito da concentração salina sobre a capacidade de retenção de água dos hidrolisados e dos concentrados (EQ e CP) proteicos de tilápia do Nilo .. 113
28. Capacidade de absorção de água dos hidrolisados e dos concentrados (EQ e CP) proteicos de tilápia do Nilo .. 116
29. Capacidade de absorção de óleo dos hidrolisados e dos concentrados (EQ e CP) proteicos de tilápia do Nilo .. 116
30. Efeito do pH sobre a capacidade de absorção de água dos concentrados (EQ e CP) proteicos de tilápia do Nilo .. 117
31. Efeito do pH sobre a capacidade de absorção de óleo dos concentrados (EQ e CP) proteicos de tilápia do Nilo .. 118
32. Efeito do pH sobre a capacidade de absorção de água do hidrolisado com 7% de hidrólise .. 119
33. Efeito do pH sobre a capacidade de absorção de óleo do hidrolisado com 7% de hidrólise .. 119
34. Efeito do grau de hidrólise sobre a capacidade emulsificante e estabilidade da emulsão dos hidrolisados e do concentrado tratado com polifosfatos .. 122
35. Efeito da adição de cloreto de sódio no índice de atividade emulsificante do concentrado tratado com polifosfatos (CP) e do hidrolisado de EQ com 7% de hidrólise .. 126
36. Efeito da variação de pH no índice de atividade emulsificante do concentrado tratado com polifosfatos (CP) .. 126
37. Efeito da variação de pH no índice de atividade emulsificante do hidrolisado de EQ com 7% de hidrólise .. 127
38. Cinética de desestabilização de emulsão do concentrado tratado com polifosfatos (CP) em água e pH 7.0 .. 129
39. Efeito da adição de cloreto de sódio sobre estabilidade da emulsão do concentrado tratado com polifosfatos (CP) .. 130
40. Efeito da variação de pH na estabilidade da emulsão do concentrado tratado com polifosfatos (CP) .. 130
41. Efeito da adição de cloreto de sódio sobre estabilidade da emulsão do hidrolisado com 7% de hidrólise .. 132
42. Efeito da variação do pH na estabilidade da emulsão do hidrolisado com 7% de hidrólise .. 132
43. Efeito da variação do pH sobre a formação e estabilidade de espuma do sobrenadante do hidrolisado de EQ (GH 18%) .. 139
44. Efeito do pH sobre a formação e estabilidade de espuma do concentrado tratado com polifosfatos (CP) .. 139
45. Influência da adição de cloreto de sódio sobre a formação e estabilidade de espuma do hidrolisado de EQ (GH 18%) .. 141
46. Influência da adição de cloreto de sódio sobre a formação e estabilidade de espuma do concentrado tratado com polifosfatos (CP) ... 141
47. Efeito da concentração de proteínas sobre a viscosidade do concentrado tratado com polifosfatos (CP) ... 147
48. Correlação entre concentração de proteínas e viscosidade aparente do concentrado tratado com polifosfatos (CP) ... 147
49. Efeito da variação do pH sobre a viscosidade do concentrado tratado com polifosfatos (CP) ... 149
50. Matriz de correlação entre as propriedades funcionais de concentrados e hidrolisados de tilápia do Nilo .. 155
51. Análise hierárquica de “cluster” para concentrados e hidrolisados (A) e para propriedades funcionais (B) ... 158
52. Análise de componentes principais “loadings” (A) e “scores” (B) de concentrados e hidrolisados proteicos de tilápia do Nilo .. 159
53. Perfil de aminoácidos essenciais dos produtos de tilápia do Nilo, da caseína, comparativamente ao padrão FAO/WHO ... 161
54. Aminoácidos indispensáveis da fração sobrenadante dos hidrolisados de tilápia do Nilo com diferentes graus de hidrólise, comparados ao concentrado EQ .. 167
55. Relação entre PDCAAS e grau de hidrólise da fração sobrenadante dos hidrolisados de tilápia do Nilo ... 167
56A. Médias e desvios padrão dos componentes séricos de soro de ratos alimentados com dietas à base de tilápia do Nilo ... 170
56B. Médias e desvios padrão dos componentes séricos de soro de ratos alimentados com dietas à base de tilápia do Nilo ... 171
57. Análise de variância multivariada (MANOVA) do perfil bioquímico (Intervalos de Bonferroni) (p≤5%) ... 171
58. Cápsulas de hidrolisado proteico de tilápia do Nilo ... 177
59. Biscoitos para atletas enriquecidos com hidrolisado de tilápia do Nilo ... 180
60. Efeito da concentração de proteína sobre a inibição da enzima conversora de angiotensina 182
LISTA DE TABELAS

1. Especificações FAO/OMS/UNICEF-1961 para concentrados protéicos de tilápia do Nilo... 9
2. Especificidade das enzimas proteolíticas: clivagem da cadeia B da insulina bovina oxidada.. 38
3. Composição centesimal dos concentrados protéicos de tilápia do Nilo... 71
4. Rendimento no preparo dos extratos de concentrados protéicos de tilápia do Nilo... 72
5. Número de TBARS de concentrados protéicos de tilápia do Nilo... 75
6. Minerais dos concentrados protéicos de tilápia do Nilo... 76
7. Lisina disponível de concentrados protéicos de tilápia do Nilo... 78
8. Composição centesimal de sub-produtos de tilápia do Nilo... 79
9. Composição mineral de sub-produtos de processamento de tilápia do Nilo... 79
10. Capacidade emulsificante de concentrados protéicos de tilápia do Nilo.. 87
11. Capacidade de formação de espuma de concentrados protéicos de tilápia do Nilo.. 88
12. Flexibilidade de concentrados protéicos de tilápia do Nilo... 90
13. Composição centesimal dos hidrolisados de concentrado protéico de tilápia do Nilo.. 96
14. Pesos moleculares de hidrolisados protéicos de tilápia do Nilo (HPLC).. 97
15. Pesos moleculares de hidrolisados protéicos de tilápia do Nilo (eleetroforese)... 100
16. Propriedades de hidratação de hidrolisados e concentrados protéicos de tilápia do Nilo... 106
17. Efeito da concentração de proteína sobre a solubilidade de concentrados protéicos de tilápia do Nilo... 110
18. Efeito da concentração de proteína sobre a capacidade de retenção de água de concentrados protéicos de tilápia do Nilo... 111
19. Propriedades emulsificantes de hidrolisados de EQ em função do grau de hidrólise e dos concentrados EQ e CP... 122
20. Relação entre a capacidade de absorção de água e de óleo do hidrolisados de EQ e dos concentrados EQ e CP... 125
21. Propriedades espumantes de concentrados e hidrolisados de tilápia do Nilo... 134
22. Efeito da concentração de proteína sobre as propriedades espumantes do hidrolisado de EQ (GH 18%)... 138
23. Tensão superficial e interfacial de hidrolisados de EQ e dos concentrados EQ e CP... 144
24. Comparação dos atributos de gosto, odor e sabor a peixe dos hidrolisados de EQ (GH = 21%), obtidos através de hidrólise com Flavourzyme® e com Alcalase®... 151
25. Análise de cor dos hidrolisados de tilápia do Nilo ... 153
26. Sumário das propriedades funcionais de concentrados e hidrolisados proteicos de tilápia do Nilo ... 156
27. Aminoácidos (mg/g proteína) dos concentrados e hidrolisados proteicos e do resíduo da desossa mecânica de tilápia do Nilo ... 160
28. Índices químicos para avaliação nutricional de concentrados proteicos de tilápia do Nilo e de um hidrolisado com 25% de grau de hidrólise ... 162
29. Índices biológicos para avaliação nutricional de concentrados proteicos e do hidrolisado (GH = 25%) de pescado ... 164
30. Determinações bioquímicas em soro de ratos ... 168
31. Componentes bioquímicos de soro de animais de laboratório ... 172
32. Digestibilidade aparente dos resíduos de processamento para peixes e digestibilidade “in vitro” ... 175
33. Composição de aminoácidos indispensáveis de sub-produtos de tilápia do Nilo ... 176
34. Perfil de aminoácidos livres e totais de hidrolisado proteico de tilápia do Nilo com 45% de hidrólise ... 178
35. Minerais em hidrolisado de tilápia do Nilo com 45% de grau de hidrólise ... 178
36. Análise microbiológica do hidrolisado proteico de tilápia do Nilo ... 179
37. Composição centesimal dos biscoitos preparados com hidrolisado de tilápia do Nilo ... 179
38. Inibição de enzima conversora de angiotensina I em angiotensina II por hidrolisados de tilápia do Nilo
1 INTRODUÇÃO

Para atender à crescente demanda de alimentos, os recursos pesqueiros podem contribuir significativamente para melhorar a qualidade nutricional dos alimentos, especialmente nos países em desenvolvimento. De mais de 22000 espécies de peixes, apenas algumas centenas estão sendo utilizadas como alimento.

A sub-utilização de recursos pesqueiros, pode ser atribuída a inúmeros fatores, que vão desde a falta de tecnologia para captura, e para prevenção de perdas no transporte e armazenamento de um produto altamente percutível, à baixa disponibilidade de produtos aceitáveis ao consumidor, nos quais o custo não torne inviável a oferta.

Os principais componentes dos peixes são água, proteínas e lipídeos que totalizam cerca de 98% do tecido muscular. O teor de proteínas varia de 18 a 22%. Componentes menores como carboidratos, vitaminas e minerais desempenham importante papel na dinâmica bioquímica do pescado. Variações na composição química leva a alterações em atributos como sabor, odor, cor, textura e aparência, as quais determinam a aceitabilidade do produto (Hultin, 1993, Venugopal & Shahidi, 1996).

Devido ao elevado valor nutricional das proteínas de pescado, e à abundância de matéria prima, é interessante rever a metodologia para elaboração de produtos com propriedades funcionais a partir de pescado. O preparo de concentrados proteicos de peixe para consumo humano apresenta consideráveis problemas técnicos, uma vez que o peixe se deteriora muito rapidamente e desenvolve odores e sabores difíceis de serem removidos, além da perda de propriedades funcionais das proteínas. A gordura pode ser removida por extração em meio alcalino, ou por tratamento com solventes orgânicos como isopropanol ou etanol, que favorecem a desidratação, originando produtos com qualidades organolépticas favoráveis, mas desprovidos de propriedades funcionais.

Este tema parecia ter sido abandonado na década de 70, em decorrência da facilidade com que estas proteínas sofrem desnaturação e consequente perda da funcionalidade (Hall & Ahmad, 1992), mas na década de 90, retornou aos periódicos científicos. Estão sendo apresentadas alternativas para a obtenção de produtos com melhores características através de modificações nos processos de extração e de hidrólise enzimática, de modo a permitir a incorporação na

O potencial para produção de peixe de catéveiro em água doce é muito grande no Brasil devido às suas características hídricas e regionais. Em sua grande maioria estas espécies têm valor comercial reduzido quando comparado às espécies marinhas. À época em que este trabalho foi iniciado, algumas represas de São Paulo que foram povoadas experimentalmente com tilápias apresentaram problemas de superpopulação. Desta forma, a disponibilidade de produtos nutricionalmente equilibrados, a partir de pescado, pode fornecer importante aporte proteico, e de custo menos elevado que as fontes protéicas convencionais. Além da disponibilidade, a escolha da tilápia estava relacionada ao baixo teor de lipídios desta espécie, o que dispensa tratamentos mais enérgicos para eliminação de gordura dos concentrados, mantendo a funcionalidade das proteínas.

1 OBJETIVOS

Objetivo geral

Otimizar as propriedades funcionais de concentrados proteicos de tilápia do Nilo (Oreochromus niloticus), mediante modificações nos processos convencionais de obtenção dos concentrados, ou através de modificações enzimáticas, mantendo-se a qualidade nutricional.

Objetivos específicos

Os objetivos específicos desta pesquisa foram:

a) preparar concentrados proteicos com melhores propriedades funcionais mediante modificações na metodologia de preparo e modificações enzimáticas;
b) estudar as propriedades nutritivas e funcionais dos preparados com a finalidade de sugerir aplicações em alimentos convencionais ou alimentos para fins especiais; c) caracterização dos hidrolisados quanto à distribuição de pesos moleculares, com vistas à formulação de alimentos para fins médicos.
2 REVISÃO DA LITERATURA

2.1 MATÉRIA PRIMA

De origem africana, a tilápia do Nilo (*Oreochromus niloticus*) foi importada pelo DNOCs Departamento Nacional de Obras Contra as Secas, no Nordeste, em 1971, para substituir a tilápia-do-congo (*Tilapia rendalli*), que apesar de bastante diseminada não apresentava resultados satisfatórios em termos de produção. A introdução no Estado de São Paulo, como espécie de interesse comercial pela CESP (Companhia Energética de São Paulo), deu-se em 1973 (Companhia Energética de São Paulo, 1985).

A tilápia do Nilo é classificada taxonomicamente na classe Osteichthyes, superordem Teleostei, ordem Perciformes, família Cichlidae. É bastante resistente a doenças e ao manejo, e sobrevive em águas com menos de 1 mg/L de oxigênio dissolvido, e temperatura mínima de 15°C, apesar da temperatura ideal para o crescimento ser superior a 25°C.

Apresenta coloração cinza azulada, corpo curto e alto, cabeça e caudas pequenas, e listas verticais na nadadeira caudal. É uma espécie de crescimento rápido, podendo atingir 5 quilos ou mais, e fornece carne de ótima qualidade, sem espinhas e de bom paladar. O rendimento em fileis e da ordem de 32% (Companhia Energética de São Paulo, 1985).

2.2 ESTRUTURA DO MÚSCULO DE PEIXE

O tecido muscular dos peixes é geralmente de cor branca, à exceção dos subcutâneos, que são escuros por conterem expressivas quantidades de mioglobina. A composição de ambos os tipos de músculo é bastante similar, diferindo pela maior concentração de mioglobina e de lipídios, vitaminas do complexo B, glicogênio e ácidos nucleicos nos músculos escuros. O músculo escuro contém mais mitocôndrias e menos retículo sarcoplasmático. A proporção de músculo escuro varia com a espécie de peixe, mas pode se intensificar, em uma mesma espécie, em função da atividade física, aumentando no verão e diminuindo durante o inverno. Este
aumento geralmente diminui o valor comercial do peixe (Hall & Ahmad, 1992; Suzuki, 1987; Venugopal & Shahidi, 1996).

Os peixes possuem um sistema muscular que se estende por todo o corpo, em longos feixes verticais chamados miómeros, e que está dividido na direção dorsoventral por apófises vertebrais e raios ósseos das aletas, e em sentido horizontal por septos. De acordo com o número de vértebras, a musculatura do tronco divide-se em setores musculares (miómeros) separados entre si por membranas de tecido conjuntivo (transversais: miocomatas; horizontais: mioseptos). Os mioseptos orientam-se em linha reta, e as miocomatas em zig-zag. Observados em seção transversal os miómeros das zonas dorsal e ventral estão ordenados em círculos concêntricos. Cada miómero é controlado por um nervo independente, o que possibilita ao peixe flexionar a parte dianteira do seu corpo em uma direção, enquanto dobra a cauda em direção oposta.

O miómero é composto de fibras musculares de 20 mm de comprimento e 0,02 a 1 mm de diâmetro. Cada fibra é cercada de uma membrana denominada sarcolema, contendo fibrilas de colágeno, e contém todos os componentes de uma célula, além de miofibrilas (1000 a 2000), com 5 μm de diâmetro, banhadas pelo sarcoplasma. As miofibrilas são segmentadas em sarcómeros, os quais são compostos de filamentos grossos e finos. A disposição alternada dos filamentos origina bandas claras, isotrópicas (borda I) ou bandas escuras, anisotrópicas (borda A). A linha Z situa-se ao centro da banda I, e a zona H, ligeiramente mais brilhante, ao centro da banda A. O sarcómero é a unidade morfológica da miofibrila, e corresponde à zona entre duas linhas Z, e apresenta o padrão estrutural descrito ao longo do comprimento das miofibrilas.

Os filamentos grossos são constituídos de moléculas de miosina, e os filamentos finos de duplas hélices de actina, além de troponina e tropomiosina. Entre as miofibrilas há quantidades pequenas de sarcoplasma, mitocôndrias, grânulos de glicogênio e retículo sarcoplasmático, uma especialização do retículo endoplasmático, formado por um sistema de vesículas achatadas de membrana dupla com muitas perfurações, que circunda cada conjunto de sarcómeros adjacentes de uma miofibrila (Suzuki, 1987, Belitz & Grosch, 1988, Hultin, 1993, Venugopal & Shahidi, 1996).
2.3 COMPOSIÇÃO E VALOR NUTRITIVO DE PESCADO

2.3.1 Composição

Peixes e animais marinhos são uma excelente opção como fonte de nutrientes. Os fatores de importância nutricional incluem: calorias, proteínas, lipídios, colesterol, minerais e vitaminas. Em termos médios, a composição de músculo de pescado é a seguinte: proteína 15 a 24%, lipídios 0,1 a 22%; carboidratos 1 a 3%, substâncias inorgânicas menos de 1%, e água, de 65 a 80%. O valor calórico é de 100 a 200 kcal/100g. O teor de colesterol é da ordem de 50 - 90 mg/100g. O peixe é rico em minerais (potássio, cálcio, ferro, fósforo e zinco) e vitaminas do complexo B, e vitaminas A e D (Kinsella, 1988; Venugopal & Shahidi, 1996).

Água

A água é o principal componente da porção comestível dos peixes. Normalmente existe uma relação inversa entre o conteúdo de água e lipídios.

Proteínas

As proteínas do tecido muscular podem ser classificadas em três grupos: proteínas sarcoplasmáticas (20 - 30%), proteínas miofibrilares (65-80%), compostas principalmente de actina, miosina, tropomiosina e troponina e as proteínas do tecido conjuntivo (3 - 5%) (Venugopal & Shahidi, 1996; Hultin, 1993).

Entre as proteínas miofibrilares, a miosina é a mais abundante (50 - 58%). Pode ser extraída por homogeneização em presença de sais neutros com força iônica superior a 0,3, contendo MgCl₂ e ATP ou solução de pirofosfato para dissociar a molécula de actomiosina. O cloreto de magnésio inibe a decomposição do ATP. É composta de duas cadeias pesadas (200 e 240 kDa) associada não covalentemente a dois pares de cadeias leves (16 e 28 kDa). Apresenta atividade de ATPase, regulada pela presença de Ca²⁺ e Mg²⁺. Apesar de existir uma pequena diferença na composição de aminoácidos, a miosina de tilápia é semelhante a de coelho e galinha. A miosina de espécies como tilápia, e de atum, parece ser tão estável quanto a de animais terrestres, mas de um modo geral a miosina de peixe é sensível à desnaturação (congelamento),
coagulação, ou alterações químicas que comprometem as propriedades físicas dos tecidos musculares. As proteínas miofibrilares são intermediárias em solubilidade, mas afetam as propriedades culinárias do peixe devido à sua alta capacidade emulsificante e de retenção de água (Venugopal & Shahidi, 1996).

Cerca de 22% da proteína miofibrilar corresponde a actina. Existe como filamentos helicoidais duplos no músculo esquelético e no músculo cardíaco (F-actina). É composta de monômeros globulares polimerizados, com peso molecular aproximado de 43 kDa (G-actina). Em presença de sais neutros a a G-actina é polimerizada à F-actina. A miosina e a actina apresentam composição constante variando muito pouco entre fibras musculares e entre músculos de diferentes espécies. No músculo "pos-mortem" a miosina e actina existem como complexo actomiosina. A tropomiosina é uma proteína dimérica composta de duas sub-unidades α e β, com peso molecular de 34 e 36 kDa, respectivamente. A troponina, proteína ligadora de cálcio, é composta de 3 diferentes sub-unidades: troponina C, I e T com pesos moleculares de 18, 23 e 37 kDa, respectivamente (Xiong, 1994).

O termo proteínas sarcoplasmáticas geralmente se refere às proteínas do sarcoplasma, os componentes do fluido extracelular, e às proteínas contidas em pequenas partículas do sarcoplasma. São extraídas por homogeneização do músculo com água ou soluções salinas diluídas. Inclui compostos de baixo peso molecular como albuminas, globulinas, hemoglobina, mioglobina, enzimas da via glicolítica, lisossomas, proteases, peptídos, enzimas que catalisam a degradação de compostos nitrogenados, e proteínas ligadoras de cálcio, como as parvalbuminas (Pascual & Esteban, 1992) e calmodulinas (Venugopal & Shahidi, 1996). Entre as proteínas do tecido conjuntivo, a mais importante é o colágeno, cujo teor varia com a espécie, idade, estação do ano, e estado nutricional.

Compostos nitrogenados não protéicos

A fração formada pelos compostos nitrogenados não protéicos do músculo de peixe é de cerca de 10 a 40% superior a dos animais terrestres. É representada por aminoácidos, peptídos, óxido de trimetilamina, creatina, creatinina e nucleotídeos (Venugopal & Shahidi, 1996).
Lipídios

O teor de lipídios em peixes varia de 0,2 a 23,7%, dependendo da posição anatômica, sexo, dieta e da estação do ano. A variação é maior em termos de triacilgliceróis que de fosfolipídios. A composição lipídica de peixes de água doce é intermediária entre os de água salgada e de animais terrestres. Lipídios de animais marinhos são altamente insaturados, a relação insaturados:saturados é de 3:1, mas em peixe de água doce é de 1:1. Em peixes de água doce predominam ácidos graxos ω-6, e de água salgada ω-3 (Venugopal & Shahidi, 1996).

2.3.2 Valor nutritivo

Para ilustrar a qualidade nutricional das proteínas de pescado, em um trabalho recente, El & Kavas (1996) avaliaram a qualidade proteica de truta arco-íris. Através de ensaios de digestibilidade “in vitro” obtiveram valores de 84,7 a 95,5% de digestibilidade, em função do método empregado. O PDCAAS (protein digestibility corrected aminoacid scoring) foi de 99,8%, e o escore de aminoácidos de 100%.

O pacu é um peixe de água doce, rico em gordura (17,2%). O valor de PER (protein efficiency ratio - quociente de eficiência proteica) obtido com filés de pacu por Machado & Sgarbieri (1991), foi de 2,9 (caseína 2,8), a digestibilidade “in vivo” de 90,0% (caseína, 89,8%), e o valor biológico de 74,6% (caseína, 82,0%).

2.4 CONCENTRADO PROTÉICO DE PESCAO (CPP)

2.4.1 Desenvolvimento e fatores de qualidade

Uma parte expressiva dos recursos pesqueiros é transformada em produtos para alimentação animal, especialmente os de baixo valor comercial, mas é uma excelente fonte de proteínas para países em desenvolvimento, cuja população ingere quantidades marginais do nutriente. O termo Concentrado Protéico de Pescado (CPP) inclui as farinhas de peixe, e produtos fermentados como molhos e pastas (Brody, 1965; Halliday & Disney, 1971).
Uma das primeiras tentativas de produção de CPP deu-se na África em 1937, quando do preparo de farinhas extraídas com etanol. A produção comercial iniciou em 1956, para enriquecimento de pães (2%). Posteriormente (1962), foi empregado em um produto para alimentação infantil - “Pronutro” (Halliday & Disney, 1971).

Um fator determinante para o desenvolvimento dos CPP foi o programa do UNICEF para pesquisa de fontes proteicas não convencionais, na década de 50. Financiou no Chile a construção de uma planta para o preparo de CPP partindo de merlúcio e processo de extração com hexano/etanol. Em Marrocos, o processo financiado utilizava sardinha e mistura de solvantes incluindo hexano, acetato de etila e isopropanol.

Nos Estados Unidos, a produção foi iniciada em 1959 pela empresa Viobin Corporation de Monticello (Illinois), que desenvolveu um método no qual o peixe era moido e as partículas suspensas em cloro etileno. O solvente era elevado à ebulição por vapor indireto. A destilação azeotrópica removia a água em forma de vapor e dissolvia o óleo simultaneamente, que era eliminado junto com o solvente. A eliminação de fosfatídios (para prevenir a reversão do óleo), aminas e substâncias relacionadas, que são responsáveis pelo sabor de peixe, era feita mediante lavagens sucessivas com álcool. Posteriormente, em 1963, através do programa do “Bureau of Commercial Fisheries” e da “Agency for International Development” (AID) foi selecionado o concentrado obtido com isopropanol. A aprovação pela FDA (Food and Drug Administration) para o concentrado obtido com isopropanol foi concedida somente em 1967 e tendo como matéria prima, o merlúcio (Brody, 1965; Halliday & Disney, 1971).

O estudo do emprego do isopropanol para obtenção de CPP teve início em 1955, no Canadá (Halifax Laboratory of Fisheries Research Board). Mais tarde outros peixes como areque e bacalhau foram estudados como matéria prima para CPP. Produtos semelhantes foram desenvolvidos na Suécia, Noruega e na Rússia. Posteriormente outros produtos para consumo humano foram desenvolvidos no Peru e na Índia (Halliday & Disney, 1971).

A matéria prima para produção de concentrados proteicos depende da aplicação que se pretende dar ao produto. Para alimentação humana, pode-se partir de pescado processado através de separação mecânica, ou de filetagem. O produto cominuido deve ser submetido a processos de lavagem com solução salina para eliminação das proteínas sarcoplasmáticas e outros materiais (sangue, pigmentos, enzimas) que comprometem o concentrado ou hidrolisado proteico em
termos de sabor, odor e conservação. Para fins de alimentação animal, pode-se partir de peixe eviscerado, moído sem separação de cabeça, pele e ossos, eliminando o resíduo ao final do processo. Para eliminação da gordura, é recomendado o tratamento com solventes (álcool, hexano, acetato de etila) à quente (70 a 100°C), os quais têm efeito desidratante e dessaturante sobre a proteína, promovendo a perda de funcionalidade.

De acordo com Hall & Ahmad (1992), estão disponíveis três tipos de concentrados protéicos de peixe, cujas especificações encontram-se na Tabela 1. O tipo A no qual o concentrado de proteína é préviamente tratado com solventes orgânicos, e os tipos B e C sem tratamento prévio.

<table>
<thead>
<tr>
<th></th>
<th>Tipo A</th>
<th>Tipo B</th>
<th>Tipo C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Umidade (máximo,%)</td>
<td>10,0</td>
<td>10,0</td>
<td>10,0</td>
</tr>
<tr>
<td>Proteína * (minimo,%)</td>
<td>67,5</td>
<td>65,0</td>
<td>60,0</td>
</tr>
<tr>
<td>Digestibilidade Pepsina (máximo,%)</td>
<td>92,0</td>
<td>92,0</td>
<td>92,0</td>
</tr>
<tr>
<td>Lisina disponível (min. % de proteína)</td>
<td>6,5</td>
<td>6,5</td>
<td>6,5</td>
</tr>
<tr>
<td>Lipídios totais (máximo,%)</td>
<td>0,75</td>
<td>3,0</td>
<td>10,0</td>
</tr>
<tr>
<td>Cloretos (máximo,%)</td>
<td>1,5</td>
<td>1,5</td>
<td>2,0</td>
</tr>
<tr>
<td>Silica (máximo,%)</td>
<td>0,5</td>
<td>0,5</td>
<td>0,5</td>
</tr>
</tbody>
</table>

* Proteína (N x 6,25), calculada com base em 10% de umidade

Outras especificações foram incluídas: a) odor e sabor: o CPP do tipo A não pode apresentar mais que leve odor ou sabor quando fervido em recipiente fechado; b) armazenamento: após 6 meses a 27 °C em embalagem hermeticamente fechada não deve ocorrer perda da qualidade da proteína avaliada em termos de disponibilidade de lisina e digestibilidade à pepsina, para os três tipos e ausência de sabor ou odor estranho para o tipo A; c) microbiologia: o tipo A deve ser livre de Enterococci, Salmonella Shigella, Staphylococci coagulase +, e Clostridia e apresentar contagem bacteriana inferior a 10⁴ UFC/g, os demais tipos devem apresentar ausência de microorganismos patogênicos, mas não há especificação para contagem bacteriana total; e d) segurança: nenhum aditivo, preservativo ou resíduo de solvente pode ser
observado no concentrado do tipo A, para os demais não é permitida a adição de antioxidantes ou flavorizantes, exceto se houver permissão do país onde o produto é consumido.

Marinou et alii (1974) utilizaram concentrado protéico de pescado obtido por tratamento com isopropanol para substituição de leite desnatado em produtos à base de cereais, os quais foram servidos em forma de sopas, cereais para bebês e bolinhos para dietas de desmame. Do ponto de vista sensorial, não houve diferença estatisticamente significativa entre os produtos suplementados com leite ou CPP. O PER do produto suplementado com 14,05% de CPP foi superior (2,53) ao do adicionado de 10% de leite em pó desnatado (2,15). Para caseina o PER foi de 2,5.

Sikka et alii (1979) avaliaram nutricionalmente concentrado protéico de várias espécies de peixes, disponíveis na costa da Índia, em termos de PER, NPR (net protein ratio - quociente de eficiência protéica líquida), BV (biological value - valor biológico), aminoácidos, índice químico, composição centesimal, além de avaliação organoléptica. O PER foi significativamente superior ao da caseina, o NPR foi de 3,53 a 3,96, para caseina igual a 4,6; os aminoácidos limitantes foram os sulfurados: metionina + cisteina, e o valor biológico em média 65% da caseina.

O nível de aminoácidos essenciais em CPP é significativamente maior que o do padrão FAO/OMS de 1973, tendo como aminoácidos limitantes metionina e cisteina. O PER é superior ao da caseina, e uma das principais indicações dos CPP é a suplementação de alimentos à base de cereais (Fox et alii, 1982).

Sheata et alii (1989) estudaram o efeito da suplementação de farinha de trigo para elaboração de 4 tipos de pastéis egípcios, na proporção de 0, 2, 4, 6, e 8% de concentrado na farinha. Foram avaliados aparência externa e interna, sabor, aroma, e cor. Os escores para estes níveis de adição oscilaram entre 5 e 6 (valor máximo = 7), o que permitiu aos autores concluírem que a adição de até 6% é considerada uma suplementação favorável. Posteriormente, em 1992, Sheata avaliou nutricionalmente a suplementação a nível de 4 e 6% nos mesmos pastéis. O PER aumentou à medida que aumentou a concentração de CPP, variando de 0,47 - 0,86 (caseina 2,8); nos diferentes pastéis sem adição do CPP a entre 1,44 e 1,8 nos pastéis com adição de 6% do concentrado.
A utilização protéica e a síntese de proteínas “in vivo” decorrente da adição de CPP (níveis de 5, 10, 15 e 20%), em farinha de milho germinado, foi testada por Asiedu et alii (1994). A síntese protéica, o ganho de peso, o balanço nitrogenado e a utilização protéica líquida (NPU - net protein utilization) aumentaram proporcionalmente à adição de proteína de pescado. O objetivo era desenvolver um produto para uso infantil. A possibilidade tecnológica da suplementação de talharim com CPP foi testada por Das & Chattora (1989). Em termos de qualidade global a suplementação de trigo com 3% de CPP foi a mais efetiva.

Outra possibilidade foi estudada por Venugopal (1987), mas sem utilizar CPP, apenas com carne de pescado cominuída, cozida e desodorizada, a ser adicionada à farinha de trigo na elaboração de produtos de cereais por extrusão. Os resultados preliminares foram promissores. Yu & Kaur (1992), partindo de carne de peixe cominuída, lavada com solução de cloreto de sódio e posteriormente cozida ou seca em forno a 100°C, prepararam biscoitos contendo 8, 16, e 24% de adição do peixe. A aceitabilidade sensorial foi avaliada em termos de cor, textura, odor e sabor. Os resultados mostraram que os biscoitos preferidos foram os obtidos com 16% de peixe cozido em água e com farinha cujo teor protéico era de 9,63%. Venugopal & Shahidi (1995) reportaram inúmeras formas de agregar valor a espécies de peixes pouco utilizadas entre as quais: elaboração de concentrados protéicos, surimi, salsichas, produtos fermentados, uso de extrusão e outros produtos convencionais.

2.4.2 Métodos para melhorar as propriedades funcionais dos concentrados protéicos de pescado

Condições de processamento mais brandas

Uma série de trabalhos foram publicados com propostas para resolver o problema da baixa capacidade de hidratação dos CPP, incluindo condições de processamento mais brandas e modificações químicas e enzimáticas. No início da década de 70, Hermansson et alii (1971) usaram tratamento alcalino para melhorar as propriedades funcionais de CPP, e obtiveram expressiva melhora na solubilidade, capacidade de absorção espontânea de água e na capacidade espumante. Por outro lado, o tratamento alcalino comprometeu a qualidade nutricional do concentrado.
Alguns procedimentos registrados na literatura permitem a obtenção de concentrados dotados de melhor funcionalidade, o que é especialmente importante quando se utiliza, como matéria prima, peixes de baixo valor comercial (Cob III & Hyder, 1972; Spinelli et alii, 1972a,b; Fox et alii, 1982; Venugopal et alii, 1994a,b, 1996).

Os procedimentos incluem: a) tratamento controlado com etanol/hexano, originando um produto com boa capacidade emulsificante (Cob III & Hyder, 1972); b) conversão das proteínas miofibrilares a um gel, mediante a adição de ácido acético para baixar o pH (Venugopal et alii, 1996), originando um concentrado com boa solubilidade em presença de fosfatos (tripolifosfato), boa capacidade de retenção de água e emulsificação; e c) lavagem do peixe cominuído com água (<10°C), cloreto de sódio (0,5%), e bicarbonato de sódio (0,5%) e novamente com água originando suspensões de 5 a 30% de proteína. As suspensões foram mantidas a temperatura ambiente por 18 horas, homogeneizadas e submetidas a tratamento térmico (70°C). A solubilidade do concentrado foi superior a 80%. A capacidade emulsificante foi de 30 mL de oleo por 100 g de proteína. O produto apresentou elevada termoestabilidade (Venugopal et alii, 1994a,b).

O Ministério da Agricultura e da Pesca do Japão desenvolveu um concentrado proteico texturizado denominado “marinbeef”, que apresenta sabor agradável após a reidratação. Para sua obtenção também se utilizam solventes orgânicos para eliminar água e gordura, mas não se utiliza o pescado inteiro, apenas o músculo, o qual é amassado em presença de cloreto de sódio (1 a 2%) até a obtenção de uma pasta viscosa, que é aplicada a uma extrusora e posteriormente tratada com etanol e desidratada (concentrado proteico do tipo B).

O valor nutritivo do “marinbeef” é semelhante ao dos peixes de origem, atingindo valores como 98% de digestibilidade, NPU de 88-90, PER 3,5 a 3,7 (caseína = 2,8), e valor biológico de 89 a 92 (Suzuki, 1987).

Adição de fosfatos

Spinelli et alii (1972a,b) desenvolveram metodologia para o preparo de isolados proteicos de proteínas miofibrilares. A separação das proteínas miofibrilares deveu-se à sua maior estabilidade, uma vez que a oxidação da fração sarcoplasmática é muito maior e que compostos que poderiam conferir odor e sabor desagradável ao produto final podem ser extraídos da fração
miofibrilar com isopropanol, mas não se consegue extrai-los da fração sarcoplasmática. Os autores estudaram as propriedades funcionais destas proteínas na forma de isolado, e após hidrólise enzimática com RHOZYMEn-11, e modificação com hexametafosfato. Após a hidrólise, o concentrado foi complexado com fosfato, e o complexo proteína-fosfato, precipitado em pH 2,5 a 3,5. O precipitado foi neutralizado com base a pH 8,0. As características nutricionais não foram afetadas pela complexação com fosfato. Os níveis de metionina, treonina, e triptofano permaneceram inalterados, e o de lisina disponível decresceu apenas 15% (Fox et alii, 1982).

Os fosfatos são utilizados na indústria de carnes principalmente para melhorar a capacidade de retenção de água e outras características reológicas. São empregadas duas classes gerais de fosfatos: ortofosfatos (um átomo de P) e polifosfatos (dois ou mais átomos de P). Os polifosfatos incluem: pirofosfato ácido de sódio (SAPP), pirofosfato de tetrasódio (TSPP), tripolifosfato de sódio (STPP) e fosfatos de cadeias mais longas, designados coletivamente como hexametafosfato de sódio (ASHMP) (Trout & Schmidt, 1986, Henson & Kowalewski 1992).

O mecanismo de ação não está totalmente esclarecido, mas o principal efeito dos fosfatos, e particularmente dos polifosfatos, é elevar o pH da carne e restaurar a capacidade de absorção de água que começa a decrescer com o início da rigidez cadavérica; os fosfatos contribuem para aumentar a concentração íônica, aumentando a retenção de água, também atuam através da ação sequestrante de metais alcalino-terrosos normalmente presentes na carne, prevenindo o sabor desagradável, exercem ação específica aumentando a solubilidade da miosina e actomiosina; e estabilizam emulsões. Os polifosfatos são hidrolisados a ortofosfato, que é o agente ativo, por ação de tripolifosfatases (Fox et alii, 1982; Trout & Schmidt, 1986; Henson & Kowalewski 1992).

Os diferentes tipos de fosfatos melhoram as propriedades funcionais na seguinte ordem: pirofosfato>tripolifosfato>tetrapolifosfato>hexametafosfato>ortofosfato. A atividade do pirofosfato é maior por sua habilidade de dissociar a actomiosina em actina e miosina. Sua ação seria de aumentar a solubilização de proteínas, particularmente da actomiosina (Trout & Schmidt, 1986; Chang & Regenstein, 1997). Os resultados dos trabalhos de Trout & Schmidt (1986) indicam que os fosfatos não melhoram a funcionalidade só por aumentar a força íônica e o pH. Segundo os autores, os fosfatos melhoram a funcionalidade por alterar interações hidrofóbicas.
O hexametafosfato de sódio liga-se mais fortemente a actomiosina que outros polifosfatos, através de grupos positivamente carregados das proteínas miofibrilares. A ligação do hexametafosfato a sitios da miosina próximos da ligação com a actina, interrompe a ligação com a actina. A actina e miosina permanecem dissociadas uma da outra, permitindo o aumento de espaçamento da rede de filamentos. As ligações cruzadas entre os filamentos finos e grossos podem atuar como uma força que restringe este espaçamento. Esta restrição não existiria se estas ligações fossem suprimidas. Se os ânions polifosfato se ligassem às cargas positivas restantes dos filamentos, acima do ponto isoelétrico, a repulsão eletrostática entre os filamentos aumentaria e como conseqüência aumentaria a retenção de água (Chang & Regenstein, 1997).

Surimi

O surimi é um produto de músculo de peixe separado mecanicamente, lavado com água, solução salina e novamente com água, e adicionado de crioprotetores. O processo de lavagem remove gordura, sangue, pigmentos, e compostos odoríferos. O produto ideal apresenta menos de 1% de gordura, e baixo teor de tecido conjuntivo e proteínas sarcoplasmáticas. Do ponto de vista bioquímico é um concentrado de proteínas miofibrilares. Sua propriedade funcional mais expressiva é a geleificação (Lee, 1984, 1986; Hall & Ahmad, 1992; Giese, 1994).

Proteínas miofibrilares de peixe são altamente sensíveis à desnaturação pelo congelenamento e consequente perda de funcionalidade. A desnaturação consiste na agregação de proteínas miofibrilares, nas quais são formadas ligações de hidrogênio, ligações iônicas, ligações hidrofóbicas e pontes dissulfeto. O papel da água e fundamental. À medida que a água congela ocorre concentração de solutos, promovendo alteração da força iônica e do pH, e permitindo a formação de novas ligações. A água imediatamente ao redor das moléculas de proteínas, responsável pela manutenção do seu estado ordenado, é removida progressivamente por congelenamento, ocasionando desidratação. A migração da água promove a agregação das moléculas de proteínas e alterações conformacionais. No ambiente desidratado, ocorrem uma
série de reações, entre as quais, oxidação lipídica, originando compostos, como o malonaldeído, que reagem com as proteínas, promovendo ligações cruzadas adicionais e desnaturação. A temperatura de congelamento e consequente velocidade de congelamento, também determinam a ocorrência de desnaturação. Quando o tecido é congelado rapidamente formam-se cristais de gelo muito pequenos, tanto intracelularmente como extracelularmente. Se o congelamento é lento, formam-se grandes cristais de gelo, inicialmente no espaço extracelular. Grandes cristais de gelo intracelulares lesionam as membranas celulares (Suzuki, 1987; Hultin, 1993; Xiong, 1994).

Uma das maneiras mais efetivas de prevenir a desnaturação é mediante o uso de crioprotectores. Habitualmente o surimi é preparado com a adição de poliôis e fosfatos, que apresentam efeito crioprotetor (Park et alii, 1987; Sych et alii, 1990, 1991; Hall & Ahmad, 1992; Park, 1994). Por outro lado, em decorrência do processo envolver homogeneização e sucessivas lavagens, os radicais livres e espécies ativas de oxigênio geradas durante o processo, podem ocasionar danos à estrutura da proteína e destruição de certos aminoácidos. Um sistema antioxidante, como o proposto por Kelleher et alii (1992, 1994), contendo 0,2% de ascorbato e 0,2% de tripolifosfato incluído desde a etapa inicial do processo, inibe a oxidação lipídica. Esta combinação foi anteriormente testada por Shahidi et alii (1987), mostrando ser efetiva na prevenção da oxidação em carnes cozidas.

O surimi é um produto intermediário para o preparo de kamaboko, um produto japonês tradicional (Suzuki, 1987, Ockerman, 1992). Karmas & Lauber (1987) partiram do surimi para o preparo de “snack foods” de alto teor proteico. Através de processo de coçção, fermentação e extrusão, chegaram a um produto contendo 20 - 25% de proteína, pH inferior a 5,2, atividade de água 0,9 ou menos e 30 - 32% de umidade intermediária. Pode ser aromatizado e usado como ingrediente em diversos tipos de formulações.
2.4.3 Resíduos de processamento

O resíduo de pele e ossos produzido nos processos de separação corresponde a mais de 50% na separação mecânica; e mais de 70% na filetagem (Morais & Martins, 1981). Normalmente este resíduo é destinado a ensilagem, ou é simplesmente descartado, mas existem trabalhos sugerindo o aproveitamento deste resíduo. Tarky et alii (1973) prepararam hidrolisado de resíduo sólido da indústria pesqueira com pepsina. O produto apresentou PER de 1,65 (caseina = 3,33). Quando adicionado de caseina (rica em triptofano) em proporções iguais, o PER elevou-se para 3,39. Montecalvo et alii (1984) testaram várias formas de recuperar a proteína que sobra do resíduo da filetagem de linguado, avaliando variáveis como pH do meio de extração, tempo e temperatura do processo, precipitação isoeletérica, relação proteína/solvente, e na forma de complexos de fosfato as proteínas solúveis resultantes da precipitação isoeletérica. O rendimento foi de cerca de 70%.

No preparo de produtos como o surimi (item 3.3.1), ou o “marinbeef” (Suzuki, 1987), o resíduo é líquido e corresponde às diversas frações de lavagem com solução salina, bicarbonato e água e contém cerca de 20 - 36% de proteína. (Lee, 1984; Wu et alii, 1991; Hall & Ahmad, 1992; Yean et alii, 1994). Em algumas unidades de produção de surimi existem sistemas de microfiltração e ultrafiltração para reutilização da água na etapa seguinte, mas muitas vezes este material é descartado. Parte dos sólidos solúveis perdidos nestas frações podem representar proteínas miofibrilares de alta funcionalidade e que devem ser recuperados, caracterizados e reutilizados para agregar valor, ao mesmo tempo que com a recirculação pode-se poupar água (Lin et alii, 1995). Spinelly & Koury (1970) compararam 4 tipos de fosfatos complexos, sob condições ácidas, para precipitação das proteínas sarcoplasmáticas. O hexametafosfato de sódio (HMP) foi o que proporcionou maior recuperação. Foram comparados os indicadores desta proteína e com tratamento posterior com isopropanol (IP). O PER foi 4,0 para a proteína complexada com HMP (caseina 3,11), e de 3,82 para a amostra HMP/IP. O teor de lisina disponível foi de 6,7g e 6,5g em 100g de proteínas, respectivamente.

2.5 PROPRIEDADES FUNCIONAIS DAS PROTEÍNAS

Propriedade funcional é uma propriedade físico-química que afeta o processamento e o comportamento de proteínas em um sistema alimentar, julgada pelos atributos de qualidade do produto final. As propriedades funcionais são as várias características que a proteína hidratada transmite ou com a qual contribui em um produto alimentício: solubilidade, hidrofobicidade, capacidade de absorção e retenção de água e de óleo, viscosidade, capacidade emulsificante, e formação de géis e espumas.

Hirose, 1993, descreveu a ocorrência de um estado parcialmente enovelado, intermediário entre a forma nativa ou desnaturada de proteínas globulares. O estado intermediário ("molten globule state") se forma em condições de desnaturação reversível, e segundo o autor, explica a conformação molecular das proteínas envolvidas com propriedades funcionais.

As propriedades funcionais podem ser alteradas por condições de processamento; hidrólise; métodos de purificação; fatores ambientais (força iônica, constante dielétrica, pH, temperatura, viscosidade, solvente, cations di e trivaientes); oxidação de grupos SH; adição de proteínas de carga oposta e interação com outros componentes do alimento. Os métodos para modificar a funcionalidade das proteínas incluem: aumento da solubilidade, proteólise controlada, modificações no ponto isoeletrico, modificações químicas de resíduos de cadeias laterais de
proteína, oxidação de grupos SH, adição de sais, modificações na viscosidade, estabilidade e hidrofobicidade, substituição de um ou mais resíduos de aminoácidos, e variações no tamanho da proteína por ligações cruzadas intercada. No caso de hidrolisados, as propriedades funcionais são influenciadas também pela especificidade da enzima proteolítica, natureza da proteína original e das condições de hidrólise. Os eventos mais importantes, decorrentes da hidrólise, são: (a) aumento no número de grupos ionizáveis - COO⁻ e NH₄⁺ com concomitante aumento da hidrofílicidade e da carga líquida; (b) diminuição do tamanho molecular, e (c) modificação da estrutura molecular expondo grupos hidrofóbicos do interior da molécula (Borderías & Montero, 1988, Mahmoud, 1994, Vodjani & Whitaker, 1994, Whitaker, 1995, Panyam & Kilara, 1996).

As propriedades funcionais das proteínas podem ser classificadas em três grupos principais:

a) propriedades de hidratação (dependentes das interações proteína-água): absorção e retenção de água, suculação, adesividade, dispersibilidade, solubilidade e viscosidade;

b) propriedades dependentes da interação proteína-proteína: precipitação, geleificação, associação, agregação, coesão, e adesividade;

c) propriedades de superfície (interfacial): hidrofobicidade, tensão superficial, emulsificação, e capacidade de espumar.

As propriedades funcionais mais importantes em relação aos sistemas musculares e que impactam na qualidade do produto final são: adsorção e retenção de água, solubilidade, enumescimento, viscosidade, atividade de superfície, coesão-adesão, geleificação e elasticidade (Morrissey et alii, 1987).

Deve-se assinalar que algumas das propriedades funcionais dependem de mais de uma característica: a geleificação, a viscosidade e a solubilidade dependem da interação proteína-proteína, e da interação proteína-água. A emulsificação depende da solubilidade, hidrofobicidade, e do tamanho molecular. As propriedades hidrodinâmicas são fundamentalmente afetadas pelo tamanho, forma e flexibilidade das proteínas, enquanto que as propriedades de superfície relacionam-se às características hidrofóbicas, hidrofílicas, eletrostáticas e estéricas, e portanto da composição e distribuição de aminoácidos, e conformação (Damodaran, 1993).

A determinação sistemática das propriedades funcionais das proteínas requer a padronização de métodos para que dados obtidos por diferentes autores possam ser comparados.
Muitos dos métodos existentes são empíricos, de baixa reprodutibilidade e nem sempre descrevem os fenômenos físico-químicos que se quer estudar. Nem sempre existe concordância entre os autores sobre que fenômeno está sendo efetivamente mensurado sobre a validade da forma de acessar determinada propriedade funcional. Muitos trabalhos falham em buscar correlação entre os resultados obtidos para mais de uma propriedade, ou por não apresentarem tratamento matemático dos dados. A complexidade da matriz alimentar, quando não se trabalha com proteína isolada, acarreta interações que são fatores complicadores para interpretação dos resultados. Por isto, nem sempre o resultado obtido com proteína isolada pode ser extrapolado para sistemas alimentares.

2.5.1 Propriedades de hidratação

Absorção e retenção de água

As propriedades hidrofólicas são expressas em termos de solubilidade ou dispersibilidade das proteínas, e as lipofólicas em termos de hidrofobicidade. Moléculas de proteínas orientam seus segmentos hidrofílicos em relação à fase aquosa, e os lipofílicos em relação à fase de óleo em uma emulsão. Desta forma, a propriedade físico-química que descreve a afinidade da proteína pela água na interface, pode ser a capacidade de absorção espontânea de água, mais que propriamente a solubilidade. O mesmo ocorre em relação à interação lipofílica, que seria determinada pela capacidade de absorção espontânea de óleo (De Kanterewicz et alii, 1987).

A conformação de uma proteína em solução depende basicamente de sua interação com a água. Em relação à proteína, a água pode estar "livre" ou "ligada". A água constitucional está associada à proteína através de pontes de hidrogênio, e tem como função estabilizá-la. O segundo nível de associação constitui a monocamada (monocamada de BET), uma camada hidrodinâmica, adsorvida em sitos específicos da proteína (cadeias laterais polares), através de pontes de hidrogênio ou de interações dipolo-dipolo. Não está disponível como solvente. A esta monocamada seguem-se sucessivas camadas (multicamadas) em torno da proteína, ligadas umas às outras através das mesmas interações acima citadas. Segue-se a água retida fisicamente (por capilaridade) nos "poros" dos alimentos umidos, mais ou menos geleificados (queijo, carne). Este nível representa a água livre, disponível como solvente. A medida que aumenta o teor de água do alimento, a esfera de hidratação aumenta e afeta a conformação da proteína em solução. São empregados diversos termos para expressar a quantidade de água associada a proteína: sorção,
hidratação e umidade de equilíbrio (Kinsella, 1976; Morrissey et alii, 1987; Trout, 1988; Cheftel et alii, 1989).

Solubilidade

A solubilidade em sistemas aquosos é um pré-requisito para a maioria das propriedades funcionais, mas por si só não garante esta funcionalidade. A solubilidade das proteínas é afetada pela presença de sais neutros. Kumasinski & Farrel, (1993) consideram que o tratamento deste efeito não deve ser apenas qualitativo, conforme descrito, e expõe um método quantitativo usando a Teoria da Ligação Termo-dinâmica de Wyman's aplicada ao perfil de solubilidade das proteínas do leite em presença de cálcio, mostrando o envolvimento de grupos fosfato e de carboxilato.

Muitas das propriedades funcionais das proteínas, incluindo a habilidade de formar geis, estabilizar emulsões e espumas, dependem de sua solubilidade. A solubilidade da proteína em um sistema de multicomponentes é de grande importância na escolha de métodos para produção de isolados protéicos, fracionamento de proteínas e purificação.

A solubilidade depende de numerosos fatores, incluindo a proporção de grupos hidrofóbos e hidrófílos na molecula. A medida que as moléculas proteicas aumentam de tamanho, diminui a relação grupos hidrofílicos/hidrofóbicos e consequentemente a solubilidade. Enquanto o volume das moléculas aumenta ao cubo de seu raio, a superfície cresce ao quadrado, o que aumenta ligeiramente a possibilidade de grupos polares se situarem na superfície, ou seja, a solubilidade da proteína decresce inversamente ao seu volume. As variações de pH modificam a ionização e a carga líquida da proteína, alterando as forças de atração e repulsão entre as proteínas e a associação com a água (Borderias & Montero, 1988).
Do ponto de vista termodinâmico, a solubilização corresponde à uma dissociação simultânea das moléculas do solvente e das moléculas de proteínas. Occorre, então, uma dispersão com uma superfície interfacial de máximo contacto entre a proteína e o solvente através de interações como pontes de hidrogênio, interações iônicas e dipolo-dipolo. Os fatores que modificam a solubilidade são os mesmos que afetam a retenção de água (Kinsella, 1976; Cheftel et alii, 1989; Hall & Ahmad, 1992).

A medida da solubilidade pode ser efetuada por diferentes métodos: nitrogênio solúvel em água; proteína solúvel em água; índice de solubilidade da proteína; índice de solubilidade de nitrogênio; ou índice de dispersibilidade da proteína (Hall & Ahmad, 1992). Normalmente esta determinação envolve a dispersão da proteína em água, agitação sob condições controladas de pH, temperatura e força iônica e centrifugação, determinando-se o nitrogênio na fração solúvel através do método de Kjeldahl, ou mediante a determinação de proteínas através de métodos espectrofotométricos. O método de Morr et alii (1985) é o resultado de um esforço colaborativo para determinação desta propriedade, e considera a solubilidade, e não a dispersibilidade da proteína, uma vez que a centrifugação é realizada a alta velocidade.

Viscosidade

O entumecimento ao se preparar uma dispersão de proteína, causado pela absorção espontânea de água é conseqüência da hidratação protéica e reflete o afrouxamento da estrutura protéica devido ao aprisionamento de água na matriz polipeptídica, o que ocasiona variações nas propriedades hidrodinâmicas que se refletem no espessamento da solução, e conseqüente aumento da viscosidade. A viscosidade de um fluido reflete sua resistência ao fluxo. O termo viscosidade é empregado para fluidos Newtonianos. No caso de líquidos não Newtonianos, a viscosidade a uma determinada taxa de deformação é chamada viscosidade aparente. Devido a variações na forma, tamanho e flexibilidade e às interações proteína-proteína e proteína solvente, as proteínas geralmente exibem características de fluido não Newtoniano. A maioria das soluções de proteínas apresentam comportamento pseudoplástico, ou seja à medida que aumenta a taxa de deformação, ocorre decrescimo da viscosidade aparente. A viscosidade e a consistência dos sistemas proteicos são propriedades funcionais importantes em alimentos fluidos como bebidas, sopas e cremes (Morrissey et alii, 1987; Borderias & Montero, 1988; Cheftel et alii, 1989; Xiong, 1994).
O diâmetro aparente das moléculas ou partículas dispersas é o fator que mais afeta o comportamento viscoso dos fluidos. Este, por sua vez, depende de uma série de características: a) intrínsecas da molécula de proteína como massa, tamanho, volume, estrutura, assimetria molecular, cargas elétricas, facilidade de deformação; b) fatores externos como pH, força iônica e temperatura, c) interação proteína-solvente, que afeta o entumecimento, a solubilidade e a esfera de hidratação hidrodinâmica, e d) interações proteína-proteína que afetam o tamanho das partículas.

O coeficiente de viscosidade aumenta exponencialmente com a concentração proteica devido às interações proteína-proteína. Variações de pH, força iônica, temperatura, bem como a adição de íons cálcio, agentes redutores ou oxidantes ou outros reativos que afetem as ligações de hidrogênio ou pontes dissulfeto podem modificar profundamente a viscosidade de soluções de proteínas. As cadeias laterais de aminoácidos também afetam a viscosidade da solução de proteína, e de forma diferente para proteínas globulares ou em hélice, especialmente em função do pH do meio. Desta forma, o estudo das propriedades de fluxo sob diferentes condições proporciona informações sobre a estrutura molecular da proteína (Borderias & Montero, 1988; Cheftel et alii, 1989; Hall & Ahmad, 1992; Ma, 1993; Xiong, 1994).

A clivagem de ligações peptídicas reduz drasticamente a viscosidade e a capacidade geleificante. Este fato permite a utilização de hidrolisados de alto GH na formulação de suplementos ricos em alta densidade de proteínas, como os consumidos por atletas, sem afetar suas propriedades de fluxo, e favorece a secagem por “spray drying” (Ma, 1993; Frokjaher, 1994; Mahmoud, 1994).

2.5.2 Propriedades de superfície

Muitas das propriedades funcionais e moleculares das proteínas estão relacionadas ao conteúdo de aminoácidos hidrofílicos e hidrofóbicos. As características físicas e químicas da superfície da proteína e a termodinâmica de sua interação com o meio ambiente são mais importantes que a hidrofobicidade média ou a frequência de carga. Duas proteínas com mesma hidrofobicidade e mesma frequência de carga exibem diferentes características de solubilidade dependendo de sua sequência de aminoácidos e consequente arranjo espacial. Normalmente nas proteínas globulares os aminoácidos polares estão orientados para a superfície e os hidrofóbicos
para o interior da molécula. As propriedades funcionais de superfície mais importantes são a hidrofobicidade, capacidade emulsificante e a capacidade de formar espumas, as quais estão relacionadas com a habilidade das proteínas de diminuir as tensões entre a fase hidrofílica e hidrofóbica de um alimento (Borderías & Montero, 1988).

Hidrofobicidade

Em um trabalho pioneiro, Bigelow (1967) calculou o valor da hidrofobicidade média de 150 proteínas, com base na energia livre de transferência de cadeias de aminoácidos de um meio ambiente orgânico (etanol) a um ambiente aquoso e sugeriu a aplicação deste parâmetro estrutural na química de proteínas. Devido a estrutura secundária e terciária, os resíduos hidrofóbicos não estão todos expostos à superfície e a hidrofobicidade da proteína (hidrofobicidade de superfície - \(S_s\)) pode ser menor que a soma das hidrofobicidades dos aminoácidos (hidrofobicidade total). Como os peptídeos são menores, e o enovelamento é limitado, estes valores são mais próximos. Existem evidências de que a hidrofobicidade mostra boa correlação com tensão superficial, tensão interfacial e atividade emulsificante, mas nem sempre com a insolubilidade. A hidrofobicidade pode variar como consequência de tratamento térmico e da proteólise. As condições de hidrolise, e a especificidade da enzima afetam a hidrofobicidade, e consequentemente as propriedades interfaciais (Kato *et al.* 1983; Hayakawa & Nakai, 1985; Hall & Ahmad, 1992; Panyam & Kilara, 1996).

De uma forma geral, a hidrolise diminui a hidrofobicidade proporcionalmente ao aumento do GH (Quaglia e Orban, 1990). Para baixos graus de hidrolise há um aumento da hidrofobicidade em decorrência da exposição de grupos hidrofóbicos do interior da molécula de proteína, que favorece a adsorção na interface, formando um filme coesivo interfacial, no qual os resíduos hidrofóbicos interagem com o óleo, e os hidrofílicos com a água. Este aumento é influenciado pela especificidade da enzima, porque esta determina o tamanho molecular e o tipo de aglomerados de resíduos hidrofóbicos em distintas zonas ou regiões, que permitem ao peptídio adsorver eficientemente na interface. Assim, enzimas como a tripsina, que cliva ligações peptídicas no lado carboxílico de aminoácidos básicos como lisina e arginina, originam aglomerados de resíduos hidrofóbicos. Por outro lado, a quimiotripsina que hidrolisa ligações de resíduos aromáticos como tirosina, triptofano, e fenilalanina, rompe estes aglomerados, originando peptídeos com menor capacidade emulsificante (Turgeon *et al.* 1992; Mahmoud, 1994).
Entre os métodos para determinação de hidrofobicidade, está o método fluorimétrico que utiliza o ácido cis-parinárico (CPA), um ácido graxo poliinsaturado, \((\text{CH}_2\text{CH}=\text{CHCH}=\text{CHCH}=\text{CH}(\text{CH}_2\text{)}\text{COOH})\), que apresenta fluorescência (Kato & Nakai, 1980; Li-Chan et alii, 1985). Para Nakai (1983), é razoável que a hidrofobicidade medida por este método guarde boa relação com a capacidade espumante e emulsificante, uma vez que as proteínas hidrofóbicas migram rapidamente para interface, diminuindo a tensão interfacial e facilitando a formação de espumas e emulsões. Este método mede a hidrofobicidade alifática. O método do ácido 1-anilino-8-naftalenosulfônico (ANS), também fluorimétrico, mede a hidrofobicidade aromática (Hayakawa & Nakai, 1985). Para estes autores a hidrofobicidade aromática desempenha papel muito mais importante na solubilidade que a hidrofobicidade alifática. O ANS é composto de anéis aromáticos. Nakai et alii (1986) mediram a solubilidade de 42 amostras de proteínas e não encontraram correlação entre a solubilidade e a hidrofobicidade medida pelo CPA, mas sim com ANS, sugerindo que a hidrofobicidade aromática desempenha um papel mais importante que a alifática na solubilidade da proteína. A hidrofobicidade total pode ser determinada através da ligação com SDS (Kato et alii, 1984).

Formação de emulsões

Emulsões são misturas de substâncias imiscíveis, termodinamicamente estáveis. Quando água e lipídios são misturados existe uma força que limita o contacto entre ambos, ocasionando separação de fases. Moléculas que são parcialmente solúveis em ambas as fases podem diminuir a energia interfacial e estabilizar as partículas dispersas. As proteínas são capazes de se difundir na interface e funcionar como emulsificantes. Uma barreira energética para a associação e separação de fase de ambas as partículas faz com que se forme uma camada de proteína na interface água/lipídio. A proteína estabiliza a emulsão através da estruturação ordenada de moléculas de água resultando num contacto mínimo de grupos hidrofóbicos com a água. A adsorção das proteínas na interface ocorre em três estágios: a proteína nativa se difunde as regiões de contacto, onde penetra, sofrendo desnaturação de superfície. A proteína adsorvida se rearranja para originar um estágio de mínima energia livre por inserir seus resíduos hidrofóbicos na fase oleosa. Isto resulta na formação de um filme de proteína ao redor do globo de gordura. A formação de um gel pseudoplástico composto de proteína ou de proteína com carboidrato estabiliza a emulsão. Emulsões estudadas com proteínas alimentares são geralmente de óleo em água (Kinsella, 1976;

A adsorção de proteína na superfície da gordura, a qual pode ser induzida por emulsificação lipídica ou por promover a distribuição da gordura dispersa, é o mais importante mecanismo de estabilização de emulsões em sistemas alimentares coloidais. Espalhada rapidamente sobre a superfície, a cobertura de proteína previne a coalescência das goticulas de gordura através de repulsão eletrostática e impedimento estérico. A importância relativa da contribuição de cada um destes mecanismos para prevenir a coalescência depende da extensão da cobertura proteica e de fatores como pH da emulsão ou força iônica. Baixa força iónica e valores extremos de pH acentuam a importância relativa do efeito de repulsão eletrostática entre gotas de gordura revestidas de proteínas. O impedimento estérico é menos sensível a estes fatores ambientais, e pode ser o fator determinante para estabilização no caso de proteínas que originam coberturas mais volumosas. A presença de polissacarídeos pode atuar sinergicamente amplificando o efeito estérico (Jost, 1993).

No ponto isoelettrico, ou submetidas a certas forças iônicas a maioria das proteínas apresenta mínima capacidade emulsificante uma vez que adotam estruturas compactas dotadas de elevada viscoelasticidade, o que impede o desenovelamento e extensão necessárias à emulsificação. Este efeito favorece a estabilidade da emulsão, pois a desestabilização da emulsão é precedida de deformação ou desorção da película interfacial.

O valor do limiar de emulsificação corresponde à menor concentração de uma solução de proteína na qual a fase não polar não se separa mediante centrifugação branda. Este valor define a habilidade de uma proteína de formar camadas de adsorção.

Uma das funções mais importantes das proteínas musculares é formar uma camada proteica na interface água/lípido em emulsões de carnes cominuidas. As proteínas solúveis em sal são as mais importantes na formação de filmes interfaciais e encapsulamento de partículas. A capacidade emulsificante das proteínas musculares obedece à sequência: miosina>actomiosina>proteínas sarcoplasmáticas>actina, em solução 0,3M de NaCl (Morrissey et alii, 1987).

De Kanterewicz et alii (1987) propuseram a utilização de um índice baseado na determinação da absorção espontânea de óleo e de água (IAAO), para predizer a capacidade emulsificante das proteínas alimentares. O índice descreve o caráter hidrofílico/hidrofóbico da proteína. A máxima capacidade emulsificante foi verificada quando IAAO era próximo de 2. Posteriormente, Elizalde et alii (1991) concluíram que proteínas com baixa capacidade de absorção de água e baixo IAAO não formam emulsões estáveis. Em um trabalho mais recente (1996), estes autores estudaram o efeito do pH nas características hidrofílicas/lipofílicas e nas propriedades emulsificantes de isolado e hidrolisado proteíco de soja. Constataram que a capacidade emulsificante para o isolado foi máxima a pH 5,5 (próximo ao ponto isoelétrico - pl). O hidrolisado mostrou atividade emulsificante máxima a pH 3,0. A medida que o balanço hidrofílico-lipofílico alcançou valores mais baixos, em decorrência do pH, aumentou a capacidade emulsificante, sugerindo que uma hidrofobicidade relativamente alta é necessária para aumentar a capacidade emulsificante das proteínas de soja. O efeito do pH na estabilidade da emulsão foi inverso do verificado para atividade emulsificante. Próximo ao ponto isoelétrico as interações estérica e eletrostática diminuem, favorecendo a aproximação das gotículas de gordura. O efeito do pH na estabilidade da emulsão mostrou correlação com a capacidade de absorção de água, indicando que a alta hidratação do filme interfacial é necessária para prevenir “creaming” e flocação (Elizalde et alii, 1996).

Não existe nenhum método de aplicação geral quando se trata de avaliar a propriedade emulsificante. O método de Pearce & Kinsella (1978) é o mais utilizado. Cameron et alii (1991), propuseram uma correção na fórmula de cálculo, na qual se considera o tamanho das gotas de óleo. Também não existe uniformidade na avaliação da estabilidade da emulsão. A centrifugação a

Formação de espumas

Espumas são sistemas coloidais nos quais é essencial o desenvolvimento de uma rede bidimensional, que consiste na dispersão de um gás em uma fase líquida contínua. A fase contínua contém substâncias que baixam a tensão superficial e formam uma barreira protetora que evita a coalescência e ruptura da bolha. A proteção é proporcionada pela viscosidade e elasticidade do filme polimérico ao redor da bolha de gás. Para ser um bom agente formador de espuma, a proteína deve: (a) absorver rapidamente na interface ar-água durante a batedura; (b) sofrer rápido arranjo e rearranjo na interface; e (c) formar um filme coesivo viscoelástico.

O estudo deste fenômeno em nível molecular tem sido feito especialmente utilizando β-lactoglobulina (Vodjani & Whitaker, 1994) e a compreensão dos eventos permite predizer a força do filme e a estabilidade da espuma. A obtenção e exploração comercial de filmes de proteínas é bastante promissora, mas devido à complexidade de sua estrutura é difícil predizer seu comportamento.

Três fatores devem ser considerados em relação à capacidade espumante poder espumante (mede a quantidade de espuma formada num tempo determinado); a estabilidade da espuma (volume de espuma em repouso em um dado tempo) e a consistência ou densidade da espuma. Estes índices estão associados à qualidade da propriedade funcional da proteína (Kinsella, 1976; Borderias & Montero, 1988; Cheffel et alii, 1989; German & Phillips, 1993; Giese, 1994; Panyam & Kilara, 1996).

A formação de espuma requer a difusão das proteínas solúveis até a interface ar/água, onde deverá se desenrolar, concentrar-se e estender-se rapidamente para baixar a tensão superficial. Para estabilizar a espuma as propriedades requeridas das proteínas são diferentes das necessárias à sua formação. Para isto é necessária a formação de uma película proteica impermeável ao ar, espessa, elástica, coesa e continua em torno de cada bolha. Proteínas globulares de peso molecular elevado produzem espumas mais estáveis e com boas propriedades
reológicas de superfície. As interações moleculares presentes incluem: pontes de hidrogênio, interações hidrofóbicas e interações eletrostáticas (Kinsella, 1976; Borderias & Montero, 1988).

Para avaliar a capacidade espumante, o gás pode ser incorporado através de processos de agitação, borbolumento de gás (CO₂, ar, NO₂ ou N₂), ou batedura. O método de batedura reproduz com mais fidelidade os eventos no processo industrial. O volume e as propriedades da espuma variam com o método e o equipamento usado para sua preparação. O tipo de recipiente, o tipo e desenho das pás, e a velocidade de batedura são condições que precisam ser padronizadas porque esta variabilidade dificulta a interpretação e a comparação de resultados (Patel & Fry, 1987; Patel et alii, 1988; Phillips et alii, 1987, 1990). A medida da estabilidade da espuma (112) representa estágios de desestabilização da espuma. Reflete um estágio inicial de desestabilização e descreve a capacidade da proteína de se difundir na interface e ser absorvida lentamente, estabilizando as bolhas de ar logo após a sua formação (Monteiro & Prakash, 1994).

A proteólise parcial melhora a capacidade espumante, mas diminui a estabilidade. Hidrolisados apresentam ampla superfície de absorção na região na qual a equação de Gibbs, pode ser aplicada

\[A = c \cdot RT(\alpha \cdot dc) \]

onde: A, R e T são a quantidade de soluto absorvido, a constante dos gasos \(8,314 \times 10^{-7} \text{ erg.mol}^{-1} \text{K}^{-1}\) e a temperatura absoluta, respectivamente; \(\alpha\) é a tensão superficial e c a concentração de soluto. A estabilidade da espuma pode estar correlacionada à região hidrofóbica externa (sob a superfície das moléculas) que são formadas e estabilizadas através de pontes dissulfeto intramoleculares. Por outro lado, a estabilidade da espuma não deve estar relacionada à estrutura secundária nem ao total de aminoácidos hidrofóbicos (Kilara, 1985).

Guilherme et alii (1993) desenvolveram equipamento para estudar a formação e estabilidade de espuma através de imagens de vídeo, que associa condutividade e análise de
imagens de vídeo. As câmeras estão acopladas a um dispositivo transparente dotado de sistema para borbuleamento de ar e electrodos para a medeia da resistência eléctrica. Todo o processo é controlado por computador. Este sistema fornece informações complementares por mostrar diferenças na aparência da textura e na evolução da espuma com o tempo, mas até o momento não informa sobre o mecanismo de formação de espuma e desestabilização.

2.5.3 Avanços Tecnológicos

O valor tecnológico das proteínas depende de suas propriedades nutricionais e funcionais. Uma série de processos estão disponíveis para melhorar as propriedades funcionais, de modo a permitir a atender necessidades específicas. Avanços expressivos na melhoria da qualidade nutricional e de propriedades funcionais das proteínas podem ser conseguidos através de técnicas de DNA recombinante. A biotecnologia promete mudar os alimentos, o que terá um impacto significativo sobre a cadeia alimentar, do ponto de vista de melhoramento genético animal e vegetal, produção de ingredientes, e modificações nos alimentos existentes com vistas ao melhoramento nutricional e funcional (Vodjani & Whitaker, 1994; Goodenough, 1995; Whitaker, 1995).

Do ponto de vista prático, Venugopal & Shahidi (1995) propuseram a utilização de técnicas como fermentação, extrusão, hidrólise, elaboração de concentrados, e outras possibilidades biotecnológicas para o aproveitamento de espécies de peixes sub-utilizadas, pertencentes aos cefalópodos, mesopelágicos, sub-producentes da pesca de camarões, enfim espécies que são difícies de preparar de forma convencional, mas que constituem importante aporte de proteína para alimentação humana.

2.6 MODIFICAÇÕES ENZIMÁTICAS DE PROTEÍNAS - PRODUÇÃO DE HIDROLISADOS

2.6.1 Mecanismos e aplicações

A modificação enzimática das proteínas dos alimentos é uma técnica muito antiga, utilizada para melhorar a palatabilidade e estabilidade no armazenamento de fontes proteicas, fabricação de queijos na França, de molhos de soja no Japão, "sofu" na China, "oncom" (amendoim), "temph" (soja) e "bongkrek" (coco) da Indonésia, "papadam" (grão de bico) na Índia e "dawadawa" (feijão locusta) na Nigéria (Adler-Nissen, 1985).
Desde 1940 os hidrolisados proteicos são utilizados com finalidades medicas para manutenção do estado nutricional de pacientes impossibilitados de digerir proteinas, mas foi na década de 70 que se manifestou expressivo crescimento, o qual tem aumentado ao longo dos últimos anos, quer por seus aspectos nutricionais e clinicos, como pela melhoria das propriedades funcionais das proteinas.

Adler-Nissen (1985) apresentou uma revisão exaustiva da evolução da aplicação da hidrolise de proteinas em alimentos, passando por áreas tradicionais como a fabricação de queijos, amaciamento de carnes, maturação e autólise de pescado e a produção de extratos de levedura, amaciamento do glúten, e prevenção de turvação química da cerveja pelo resfriamento. Discutiu a utilização de proteases para fins não alimenticios: manufatura do couro e da gelatina, fabricação de detergentes, dissolução de coágulos sanguíneos e em medicina legal para digestão de tecido humano para pesquisa de venenos e/ou medicamentos, adição de hidrolisados proteicos de gelatina a xampus, fabricação de hidrolisados proteicos para aplicação em meios de cultura para fermentação, e a hidrolise de proteinas para o estudo de sua composição aminoacidica.

A hidrolise pode ser catalisada por ácidos, bases, ou enzimas. A hidrolise ácida ou alcalina é totalmente inespecífica e pode destruir aminoácidos como o triptofano, lisina, treonina, e causar a racemização da maioria dos aminoácidos, comprometendo o valor nutricional da proteina. A catalise enzimática permite que se recupere o catalisador, que se trabalhe sob condições brandas, sem que ocorram perdas do ponto de vista nutricional, previne a formação de reações colaterais indesejáveis, e especialmente devido à especificidade enzimática. Por outro lado, por se tratar de reação enzimática, uma série de variáveis devem ser controladas para se obter resultados confiáveis: pH, temperatura, tempo de hidrolise, tipo e concentração de substrato, relação enzima/substrato; inativação enzimática ao final do processo e o método para determinação do grau de hidrolise (Mohr, 1980; Petersen, 1981; Fox et alii, 1982; Adler-Nissen, 1985, 1986; Kilara, 1985; Hamada, 1991; Novo Nordisk, 1991a,b, 1995a,b,c; Blenford, 1994; Giese, 1994; Lahl & Braun, 1994; Nielsen, 1995; Pommer & BFA Protein, 1995; Withaker, 1995; Panyam & Kilara, 1996).

A escolha da enzima, relacionada a sua ação específica sobre a proteina, irá influenciar a composição dos produtos de digestão. Não existe especificação precisa para diferenciar hidrolisados do ponto de vista químico. São considerados dois grandes grupos: a) extensivamente
hidrolisado; e b) parcialmente hidrolisado, este de maior dificuldade de caracterização. Valores superiores a 50, indicam produto altamente hidrolisado. A escolha da proteína a ser hidrolisada, o sistema enzimático e o tamanho da cadeia peptídica obtida vão determinar a aplicação do hidrolisado (Petersen, 1981; Fox et alii, 1982; Kilara, 1985; Gauthier et alii, 1986; Novo Nordisk, 1991a,b, 1995a,b,c; Blenford, 1994; Gallagher et alii, 1994; González-Tello et alii, 1994a; Lahl & Braun, 1994; Mahmoud, 1994; Schmidl et alii, 1994; Pommer & BFA Protein, 1995; Panyam & Kilara, 1996).

A hidrólise controlada permite a obtenção de produtos com características adequadas a uma dada aplicação:

a) produtos nutricionalmente modificados especialmente para nutrição enteral e parenteral, para crianças e para determinadas patologias como doença de Hartnup, sindrome de Lowe, cistinúria, pancreatite, fenilecetonúria; sindrome do intestino curto, e outras (Kilara, 1985; Arvola et alii, 1992; García & Sales, 1992; Hall & Ahmad, 1992; Medjad-Guillou et alii, 1992; Monchi & Rérat, 1993; Babst et alii, 1993; Jiang et alii, 1993; Rudolf & Lönnerdal, 1992; Vandenplas et alii, 1993; González-Tello et alii, 1994a,b; Blenford, 1994; Cordle, 1994, Frokjaer, 1994; Mahmoud, 1994; Schmidl et alii, 1994, Novo Nordisk, 1995c; Panyam & Kilara, 1996);

- capacidade de formação de espuma (Puski, 1975; Deeslie & Cheryan, 1988,1991; Mannheim & Cheryan, 1992; Monteiro & Prakash, 1994; Althouse et alii, 1995; Shahidi et alii, 1995);
- capacidade de retenção de oleo (Haque & Mozaffar, 1992);
- absorção de água (Puski, 1975, Deeslie & Cheryan, 1988); e
- efeito sobre a hidrafóbicidade (Quaglia & Orban, 1990; Mahmoud et alii, 1992)
c) suplementação e obtenção de novos produtos alimentícios (Sugimoto et alii, 1971; Yañez et alii, 1976; Beddows, & Ardeshir, 1979; Thankamma et alii, 1979; Mohr, 1980; Petersen, 1981; Fox et alii, 1982; Mackie, 1982; Kilara, 1985; Shehata et alii, 1989; Yu & Tan, 1990; Rebeca et alii, 1991; Sugiyama et alii, 1991b; Shehata, 1992; Yu & Kaur, 1992; Blenford, 1994; Frokjaer, 1994; Mahmoud, 1994; Yu & Fazidah, 1994; Pommer & BFA Protein, 1995; Panyam & Kilara, 1996);

d) componentes de sabor (Noguchi et alii, 1975a,b; Kilara, 1985; Hall & Ahmad, 1992; Zhang et alii, 1993; Blenford, 1994; Kawakami et alii, 1995; Nielssen, 1995; Novo Nordisk, 1995a,b; Pommer & BFA Protein, 1995);

e) redução do potencial alergênico de alimentos (Businco et alii, 1992; Leary, 1992; Lee et alii, 1992; Hall & Ahmad, 1992; Mahmoud, et alii 1992; Pascual & Esteban, 1992; Walker, 1992; Matsuda & Nakamura, 1993; Vandenplas et alii, 1993; Siemensma et alii, 1993; Cordle, 1994, Martins, 1994);

f) destruição de aflatoxinas (Williams & Dutton, 1988; Monteiro & Prakash, 1994);

g) indústria de cosméticos (Pommer & BFA Protein, 1995).

Um dos problemas verificados na obtenção de hidrolisados proteicos é a ocorrência de peptídios amargos, especialmente aqueles contendo aminoácidos hidrofóbicos (Kilara, 1985) e como consequência, estes produtos eram considerados muito desagradáveis. Hidrolisados de gelatina e albumina de ovo apresentam sabor mais brando, mas os de lactalbumina e caseína apresentam sabor extremamente desagrável. Este assunto tem sido alvo de inúmeros trabalhos recentes (Minagawa, 1989; Tamura et alii, 1990; Matsuoka et alii, 1991; Tanimoto et alii, 1991; Roy, 1992; Tan et alii, 1993; Blenford, 1994; Pedersen, 1994).

Para reverter o problema, tradicionalmente utilizava-se a reação da plasteina (Fox et alii, 1982; Belitz & Grosch, 1988; Watanabe & Aray, 1988), mas pode-se controlar o grau de hidrólise, e utilizar uma segunda etapa de reação empregando-se enzimas como aminopeptidases (Matsuoka et alii, 1991; Tan et alii, 1993); transglutaminases (Tanimoto et alii, 1991); tratamento posterior de um hidrolisado obtido com Alcalase, com pancreatina (Lalasidis et alii, 1978); extração dos
peptídios amargos com solventes orgânicos (Chakrabartti, 1983; Lalasidis, 1978); produção de peptídios ácidos de baixo peso molecular (<1000 kDa) de hidrolisado de peixe com pronase, seguido de fracionamento em trocadores iónicos (Fujimaki et alii, 1973; Noguchi et alii, 1975a); e aditivos como amido gelatinizado, ciclodextrinas, leite desnaturado, soja, gelatina, e aminoácidos acetilados (Tamura et alii, 1990). A redução do amargor de hidrolisado de sardinha foi efetuada com leucina-aminopeptidase, aminopeptidase M e carboxipeptidase A (Sugiyma et alii, 1991c). O amargor pode ser removido por cromatografia, adição de gelatina, ciclodextrinas, políolosfatos, ou a adição de glicina, em função de seu sabor doce, precipitação a pH 4,5, passagem através de resinas fenólicas ou ainda tratamento com carvão ativo, talco ou fibra de vidro (Pedersen, 1994; Kilara, 1985). Por outro lado, o tratamento com carvão afeta as características do hidrolisado, incluindo, cor, sabor, odor, perfil de aminoácidos, e a distribuição de peso molecular (Giese, 1994). Mais recentemente foi proposta a combinação de complexos multienzimáticos contendo endo-proteases ácidas e exo-peptidases para eliminar o amargor, uma vez que promove a remoção de aminoácido terminal, contudo, o uso de exo-peptidases, aumenta muito o grau de hidrólise, resultando na liberação de aminoácidos livres, o que ocasionará o aumento da osmolaridade e limitará a aplicação do hidrolisado (Pedersen, 1994; Pommer & BFA Protein, 1995). Proteínas com teor aumentado de ácido glutâmico mostram um interessante efeito sensorial: não formam compostos amargos por hidrólise parcial e ainda proporcionam pronunciado gosto umami (Kilara, 1985; Belitz & Grosch, 1988).

O tipo de enzima empregada também pode determinar a ocorrência de amargor. Hoyle & Merritt (1994) observaram que o hidrolisado obtido com Alcalase® a um maior GH, era menos amargo que o obtido com papaina. Sugiyma et alii (1991c) compararam o amargor de hidrolisados de sardinha obtidos com Alcalase® (1,7), actinase (1,8), Proteather (4,0), Neutrase® (4,0); papaina (3,5), Molsin (2,7); pepsina (3,2); e Neulase (2,7), verificando que o menos amargo era o obtido com Alcalase®. Os valores entre parênteses correspondem ao escores dados para o amargor, e quanto mais elevados, mais amargos são os hidrolisados.
2.6.2 Determinação do grau de hidrólise

Hidrolisado proteico é um produto obtido por ação de proteasas sobre um alimento proteico, sob condições controladas de temperatura e pH, com distribuição de peso molecular com características adequadas à sua aplicação. De acordo com Hall & Ahmad, 1992, a distribuição de peso molecular de peptídeos resultantes do processo hidrolítico pode ser determinado através de: (a) índice de solubilidade em TCA; (b) grau de hidrólise e (c) cromatografia de exclusão molecular. Estes métodos podem ser aplicados isoladamente ou de forma combinada.

Não existe unanimidade sobre o conceito operacional de hidrolisado. Para alguns autores (Puski, 1975; Mackie, 1982; Chobert et alii, 1988, 1989; Mahmoud et alii, 1992; Mannheim & Cheryan, 1992; Monteiro & Prakash, 1994), o hidrolisado é a mistura total de proteína hidrolisada, sem fracionamento posterior à incubação com a enzima, para outros (Thankamma et alii, 1979; Mackie, 1982; Quaglia & Orban, 1987a; Hoyle, & Merritt, 1994; Althouse et alii, 1995; Shahidi et alii, 1995), é o sobrenadante obtido por processos de centrifugação, filtração, ultrafiltração e outros.

O progresso da hidrólise pode ser medido por um de dois métodos: (a) relação NA/NT que representa a quantidade de nitrogênio aminico (NA) presente no hidrolisado, determinado através da titulação com formaldeído, relativamente ao N medido pelo método de Kjeldahl (NT); (b) determinação do grau de hidrólise, que é o mais utilizado (Blenford, 1994; Lahl & Braun, 1994).
Para avaliar o progresso da reação, do ponto de vista cinético, como medida quantitativa, utiliza-se o equivalente de hidrólise (h), mas do ponto de vista prático, prefere-se avaliá-lo através grau de hidrólise (GH): a porcentagem de ligações peptídicas rompidas (h), comparativamente ao número total de ligações \(h_{tot} \) por kg de proteína. Para a maioria das proteínas, \(h_{tot} \) corresponde a 8 moles equiv/kg (peso molecular médio dos aminoácidos é de 125 g/mol), estimado com base na composição de aminoácidos. Para proteínas, como as de músculo de peixe, o valor é 8,6, para caseína, 8,2; para carnes, 7,6 e para gelatina, 11,1 (Petersen, 1981; Adler-Niessen, 1985, 1986; Novo Nordisk, 1991; Pommer & BFA Protein, 1995).

\[
\text{GH (\%)} = \frac{\text{número de ligações peptídicas hidrolisadas}}{\text{número total de ligações peptídicas}} = \frac{h}{h_{tot}} \times 100
\]

Analiticamente, o grau de hidrólise pode ser medido por vários métodos: (a) aumento na osmolaridade usando abaixamento do ponto de congelação; (b) aumento do índice de refração (expresso como °Brix); (c) determinação de grupos amino liberados, através da reação colorimétrica com TNBS (ácido trinitrobenzenosulfônico) ou OPA (o-ftaldialdeído); (d) titulação com formol; e (e) titulação de grupos amino liberados em pH-stat a pH e temperatura constantes (Adler-Niessen, 1985, 1986; Novo Nordisk, 1991; Pommer & BFA Protein, 1995, Panyam & Kilara, 1996). Serão discutidos unicamente os métodos que foram aplicados neste trabalho.

pH stat

Quando uma ligação peptídica é hidrolisada a pH superior a 7,0, o grupo carboxi terminal formado contribui para o abaixamento do pH. O consumo de base, através de titulação automática, para manter constante o pH no decorrer da reação, é utilizado no cálculo do GH. Considerando que o pK médio dos grupos amino seja constante deverá existir proporcionalidade entre a liberação de prótons (≈ consumo de base) e a quantidade de ligações peptídicas cindidas. O fator de proporcionalidade será o grau de dissociação dos α-aminogrupos (α).
\[\alpha = \frac{1}{1 + 10^{\text{pK} \cdot \text{pH}}} \]

Para valores de pH próximos ao pK, \(\alpha = 0.5 \). Para valores superiores aproxima-se de 1, e varia também com a temperatura. Assim, a 50 °C, e pH 7.0, o valor de \(\alpha \) é 0.44; a pH 8, e à mesma temperatura, 0.89. Para o cálculo do GH utiliza-se a equação:

\[
\text{GH (\%) } = \frac{1}{\alpha \times \text{h} \times \text{MP}} \times B \times \text{Nb} \times 100\%
\]

na qual: \(B = \) consumo de base (mL ou L)
\(\text{Nb} = \) normalidade da base
\(\text{MP} = \) massa de proteína (N \times \text{fator de Kjeldahl}) em g ou kg
\(\alpha = \) grau de dissociação

Quando o grau de hidrólise é 10\% ou 50\% significa que 10\% ou 50\% das ligações peptídicas foram hidrolisadas, e que o número médio de aminoácidos na cadeia peptídica é de 10 e 2 respectivamente. Este método é simples, preciso e permite o monitoramento do grau de hidrólise durante o processo, mas tem o inconveniente de adicionar grandes quantidades de sal ao hidrolisado.

TNBS

O método foi proposto por Adler-Nissen, em 1979, e consiste na medida espectrofotométrica do cromóforo formado pela reação entre o ácido trinitro-benzenosulfônico e aminas primárias sob condições alcalinas. Após 1 hora de incubação a reação é interrompida por abaixamento do pH. A amostra é dispersada em dodecil sulfato de sódio (SDS) e a reação ocorre em presença de tampão fosfato 0,2125M e pH 8,2±0,02. Como padrão utiliza-se L-leucina. A leitura é efetuada a 420 nm.
2.6.3 Enzimas proteolíticas

A União Internacional de Bioquímica (IUB), através da Comissão de Nomenclatura de Enzimas (EC), estabeleceu um sistema de denominação baseado em quatro números, separados por pontos e dispostos de acordo com o seguinte princípio: a) o primeiro especifica a classe básica em que se enquadra a enzima: 1. oxido-redutases, 2. transferases, 3. hidrolases, 4. liases, 5. isomerases, 6. ligases, b) o segundo corresponde à subclasse, e especifica o substrato ou a ligação sobre a qual a enzima atua, c) o terceiro define a atividade enzimática, e d) o quarto é o número de série da enzima.

As enzimas proteolíticas, classificadas como hidrolases que atuam sobre proteínas (EC 3.4.), encontram ampla aplicação na indústria de alimentos: produção de hidrolisados protécicos, modificações de propriedades funcionais e nutricionais, amaciamento de carnes, modificação da viscoelasticidade da massa do pão, desenvolvimento de flavorizantes, prevenção da turvação química da cerveja, produção de queijos, fabricação de detergentes, e procedimentos analíticos, que correspondem a usos clássicos desta classe de enzimas (Kilara, 1985; Adler-Niessen, 1986; Boyce, 1986; Löffler, 1986; Gusek, 1988). Enzimas com alta estabilidade térmica e frente a variações de pH, ampliam o potencial de aplicações no processamento de alimentos (Gusek, 1988).

As proteases têm sido classificadas de diferentes formas, mas a classificação mais satisfatória é a adotada pela Comissão de Enzimas (CE) da IUB: proteases contendo serina, contendo cisteína, metaloproteases, e proteases ácidas (proteases aspárticas). Em relação ao local de atuação na molécula de proteína são classificadas como exo e endopeptidases (Belitz & Grosch, 1988; Adler-Niessen, 1986; Barret, 1986; Boyce, 1986; Löffler, 1986). A especificidade das enzimas proteolíticas é bastante variável, conforme se verifica na Tabela 2.
Tabela 2. Especificidade das enzimas proteolíticas: clivagem da cadeia B da insulina bovina oxidadada (Belitz & Grosch, 1988)

| FIAA | Phe | Val | Asp | Gln | His | Leu | Cys | Gly | Ser | His | Leu | Val | Gln | Ala | Leu | Tyr | Leu | Val | Cys | Gly | Gln | Arg | Gly | Phe | Phe | Tyr | Thr | Pro | Lys | Ala |
|------|
| 1 | |
| 2 | |
| 3 | |
| 4 | |
| 5 | |
| 6 | |
| 7 | |
| 8 | |
| 9 | |
| 10 | |
| 11 | |
| 12 | |
| 13 | |
| 14 | |
| 15 | |
| 16 | |
| 17 | |
| 18 | |
| 19 | |

E = Enzima

A.A = Aminoácido seguinte à ligação peptídica hidrolisada (indicada pela seta ↓)

1. Tripsina bovina
2. Quinasepsa A bovina
3. Quinasepsa C suína
4. Aspergillopeptidase C de Aspergillus oryzae
5. Protease de Streptomyces griseus
6. Subtilisina BPN'
7. Protease de Aspergillus oryzae
8. Protease de Aspergillus flavius
9. Papaina (Chacera papaya)
10. Fisina III (Ficus glabrata)
11. Quinasepsa (Chacera papaya)
12. Protease II de Aspergillus oryzae
13. Protease de Bacillus subtilis
14. Termolisina de Bacillus thermoproteolyticus
15. Papaina A suína
16. Remina bezerro
17. Protease de Candida albicans
18. Protease de Mucor miehei
19. Protease de Rhizopus chunsensis
Proteases contendo serina (EC 3.4.21)

É o maior grupo das proteases. Enzimas deste grupo, na qual a atividade ótima corresponde a pH 7 a 11, são genericamente denominadas de proteases alcalinas. Estas enzimas têm em comum a presença de resíduos de serina e de histidina em seu sítio ativo e se caracterizam pela formação de um complexo intermediário acil-enzima. Várias destas enzimas são ativadas através de ions cálcio.

Proteases contendo cisteína (EC 3.4.22)

Este grupo de proteases é encontrado em bactérias, microorganismos, animais (catepsinas) e vegetais (papaina, bromelina e ficina). São proteases cujo centro ativo é o grupo tiol (cisteína), com pH ótimo próximo à neutralidade. São endoenzimas, de amplo espectro que catalisam a hidrólise de ligações peptídicas com diferentes aminoácidos. O mecanismo de ação destas enzimas é semelhante ao das proteases de serina. Forma-se um tióester como intermediário. Estas enzimas são altamente sensíveis à oxidação, portanto requerem a presença de um agente redutor e de um quelante (Belitz & Grosh, 1988; Barret, 1986; Robinson, 1991).

Tiol proteases de microorganismos são utilizadas para amaciamento de carnes, mas apresentam pouco efeito sobre o tecido conjuntivo. Por outro lado, papaina, bromelina e ficina atuam sobre o tecido conjuntivo. Outra área de aplicação refere-se à produção de hidrolisado proteico para indústria de aromas, redução da viscosidade em hidrolisados de peixe, e na

Metaloproteases

Este grupo inclui exopeptidases, carboxipeptidases A e B, aminopeptidases, dipeptidases, prolidase e prolínase e proteínases de bactérias e fungos: pronase e termolísina. A maioria destas enzimas contém um mol de Zn\(^{2+}\), exceto a leucina-aminopeptidase, a prolidase e iminodipeptidase que contém Mn\(^{2+}\). O ión metálico atua como um ácido de Lewis na carboxipeptidase A, estabelecendo contacto com o grupo carbonílico da ligação peptídica a ser rompida. A carboxipeptidase A apresenta atividade enzimática maior frente a ligações peptídicas terminais, derivadas da porção C-terminal de aminoácidos aromáticos ou com cadeias laterais ramificadas. As colagenases são importantes no amaciamento de carnes, por hidrolisar o tecido conjuntivo (Belitz & Grosch, 1988; Barret, 1986; Robinson, 1991).

Proteases ácidas (aspárticas)

2.6.4. Hidrolisado proteico de pescado

Uma vez que o isolado proteico de proteínas miofibrilares de peixe não apresenta propriedades funcionais satisfatórias, a hidrólise enzimática é uma forma de melhorar suas características e permitir a incorporação na formulação de alimentos e bebidas nutricionalmente enriquecidos (Lahl & Braun, 1994; Mahmoud, 1994; Venugopal, 1995).

Atualmente, a matéria prima para produção do hidrolisado pode ser a mesma empregada para o preparo do concentrado proteico, e depende da aplicação que se pretende dar ao produto. Para alimentação humana, pode-se partir de concentrados proteicos (CPP), ou da polpa obtida através de separação mecânica, ou de filetagem, com os cuidados já descritos para o CCP.

Os primeiros hidrolisados eram produzidos através de processos autolíticos, para produção de ensilados (Hall & Ahmad, 1992), ou de molhos fermentados, principalmente nos países asiáticos. Nesta situação intervêm enzimas como pepsina ou catapsinas liberadas das células quando o peixe é triturado. De acordo com Adler-Niessen (1986), a velocidade de proteólise pode ser aumentada pela adição de proteases vegetais, mas o aroma do molho é inferior ao obtido por fermentação natural, contudo, Beddows & Ardeshir (1979) verificaram que com o emprego de proteases vegetais, especialmente bromelina, com 65% de hidrólise, é possível produzir um molho que pode ser adicionado ao molho natural sem alterar a sua qualidade. Hidrolisados empregando enzimas comerciais eram, inicialmente, produzidos principalmente para alimentação animal, e como substitutos do leite para bezerros e carneiros (Mackie, 1982; Kilara, 1985; Adler-Niessen, 1986). Papaina e pepsina foram as primeiras enzimas utilizadas no amaciamento de carnes, e na produção de hidrolisados de pescado no início da década de 60. As
primeiras patentes com vistas a aplicação de hidrolisados de pescado datam de 1970 e 1971 (Thankamma et alii, 1979; Adler-Niessen, 1986).

O resíduo líquido proveniente do preparo da torta de peixe (fish stickwater) é rico em nutrientes, incluindo proteínas e tem excelente valor nutricional. Pode ser vendido como condensado de sólidos solúveis de pescado. Durante o processo de desidratação, ocorre um expressivo aumento na viscosidade, que atinge a 2100 cps (60°C) com 52% de sólidos, o que torna o processo caro, além de entupir as tubulações. Fazendo-se hidrólise prévia, consegue-se redução de viscosidade para valores na faixa de 180 cps com 60% de sólidos (Boyce, 1986; Pommer & BFA Protein, 1995).

O perfil de aminoácidos é igual ao da proteína original quando não se separa a fração insolúvel (Yáñez et alii, 1976), e um pouco inferior, se considera só a fração solúvel, e neste caso, dependendo do GH (Quaglia & Orban, 1987a; Shahidi et alii, 1994, 1995). Yáñez et alii (1976) obtiveram valor de PER com hidrolisado de merlúcio (2,81-2,96) superior ao da caseína (2,5), e o aumento do PER de preparações contendo farinha de trigo, ou de milho e ou de arroz, adicionadas do hidrolisado, proporcionalmente ao aumento da concentração do hidrolisado. Para 10% de suplementação os valores foram: 2,49, 2,70 e 3,36, respectivamente. O perfil de aminoácidos foi semelhante ao do padrão FAO/OMS-1973, exceto em relação à treonina. O teor de lisina disponível foi de 73%.

O escore químico obtido por Quaglia & Orban (1987a) com hidrolisado de sardinha, foi de 60% para hidrolisado empregando Alcalase 60, e 68% quando utilizaram papaina. Os aminoácidos limitantes foram metionina + cisteína. Através da utilização de proteases bacterianas, Rebeca et alii (1991) obtiveram hidrolisados proteicos para uso veterinário, contendo de 83 a 86% de proteína, contendo de 70 a 80% de lisina disponível e solubilidade de 70 a 80%. O PER e o NPR diminuíram pela inclusão do hidrolisado na dieta, e o valor nutricional foi de 10 a 15% menor que o da caseína. O objetivo era obter um produto que pudesse substituir o leite na alimentação de bezerros.

Shahidi et alii (1994) trabalharam com hidrolisado de foca, e verificaram que a composição de aminoácidos foi similar ao do produto original, com quantidade maior de glicina e menor de isoleucina, fenilalanina e treonina. O rendimento foi de 92,75% para grau de hidrólise de 20,67%. Para hidrolisado de Mallotus villosus, os valores de aminoácidos foram semelhantes
ao do material original, com menores teores de metionina e triptofano. O valor de PER foi um pouco inferior ao do produto original (Shahidi et alii 1995).

A determinação do valor nutritivo de hidrolisado de sardinha também mostrou resultados elevados: o escor de aminoácidos foi 100 (padrão FAO/OMS-1973); PER 3,2 (caseina 3,1), NPR 5,2; valor biológico 86; digestibilidade 99%; e NPU (utilização líquida de proteína) 85. O perfil bioquímico mostrou todos os componentes sanguíneos normais (Sugiyama et alii, 1991b).

2.7 AVALIAÇÃO NUTRICIONAL

Para determinação do valor nutritivo e de segurança de proteínas podem ser empregados ensaios biológicos que se baseiam em medidas de crescimento ou retenção de nitrogênio. Os bioensaios podem ser efetuados com ratos, e incluem: PER (protein efficiency ratio), que avalia o ganho de peso pela quantidade de proteína ingerida; NPR (net protein ratio), semelhante ao PER mas envolve a perda de peso de um grupo com dieta aprotéica; e RPV (relative protein values) quando se compara com proteínas de referência como as do leite ou dos ovos. A utilização líquida de proteína (NPU = net protein utilization) pode ser determinada através de ensaios de crescimento nos quais se mede o N da carcaça do grupo alimentado com a proteína em estudo, comparativamente a um grupo com dieta aprotéica.

O balanço de nitrogênio (BN) é a diferença entre o nitrogênio ingerido e a soma do nitrogênio excretado nas fezes e na urina, a digestibilidade é a medida da porcentagem de proteínas que são hidrolisadas pelas enzimas digestivas e absorvidas, sendo determinada pela medida da relação, expressa em porcentagem, entre o nitrogênio ingerido e o excretado pelas fezes. O valor biológico (BV = biological value) é a relação entre o nitrogênio retido e o nitrogênio absorvido, também expressa de forma percentual. O NPU é definido pela relação entre o nitrogênio retido e o nitrogênio ingerido, igualmente expressa de forma percentual, ou seja corresponde ao produto do valor biológico pela digestibilidade. Quando estes ensaios são realizados em ausência de um grupo com dieta aprotéica, são designados aparentes (Hállaz, 1991; Sgarbieri, 1987).

Sarwar et alii (1984), relataram resultados de um estudo colaborativo entre seis laboratórios, utilizando sete fontes de proteínas para avaliar a variabilidade inter e intralaboratorial de ensaios biológicos para estimar a qualidade de proteínas, tendo a caseina como proteína de
referência. Foram testados os seguintes métodos: PER, PER relativo, NPR, NPR relativo e utilização de N. O método NPR relativo foi o método recomendado por apresentar menor variabilidade (4,7 a 7%). Happich, citado por Sarwar et alii (1985) propôs ao AOAC a adoção do NPR como método alternativo do PER, cuja duração é de quatorze dias.

Ensaios com micorganismos como Tetrahyena pyriformis, que apresenta o mesmo requerimento nutricional que humanos e ratos, apresentam vantagens porque requerem menos espaço, tempo, e equipamento, e portanto, menor custo que os demais ensaios biológicos, mas as correlações com os demais métodos ainda são muito empíricas. Ensaios bioquímicos podem ser utilizados para medir parâmetros metabólicos como, níveis plasmáticos de aminoácidos, excreção de creatinina, ou a concentração de uréia no sangue, ou mais especificamente, a recuperação do valor da uréia, que correlaciona bem com BV e NPR. Além dos métodos biológicos podem ser conduzidos estudos de digestibilidade “in vitro” através de digestão com pepsina/tripsina ou tripsina/quinotripsina/peptidase, ou ainda, tripsina/pancreatina com controle de pH, tempo e temperatura, com ou sem diálise. Podem ser realizados bioensaios com humanos, especialmente balanço de nitrogênio, em termos de digestibilidade e digestibilidade aparente (Hállaz, 1991).

Gauthier et alii (1986) desenvolveram uma unidade de digestão que permitia a eliminação dos produtos de digestão através de diálise simultânea, para avaliação da disponibilidade e digestibilidade de proteínas com pepsina/pancreatina. Não é necessário, nem tecnicamente viável reproduzir as condições “in vivo” da digestão protéica, mas deve-se privilegiar condições particulares que prevalecem no organismo, as quais podem influenciar a natureza dos produtos de digestão.

Por outro lado, na reunião de 1992 do Comitê de Métodos para Determinação de Proteínas e Aminoácidos do FDA (Food and Drug Administration), conforme relatado por Madi (1993), foram discutidos aspectos da determinação da qualidade nutricional de proteínas, com vistas à regulamentação. Após rever uma publicação da junta FAO/WHO (Food and Agriculture Organization/World Health Organization), que discutia necessidades dietéticas em nível de aminoácidos e proteínas, o FDA incluiu, no suplemento de novembro de 1991, do NLEA (Nutritional Labelling Education Act), um requerimento para que fosse utilizado o PDCAAS (protein digestibility - corrected aminoacid scoring) para avaliar a qualidade de uma proteína com base nos requerimentos de aminoácidos para humanos, corrigido pela digestibilidade da proteína. Para calcular este índice, o alimento testado é analisado para proteína (N X 6,25, ou fator mais
específico, dependendo do alimento), determinada a composição de aminoácidos, e a digestibilidade, através de ensaio biológico com ratos.

2.8 AVALIAÇÃO DE PROPRIEDADES BIOLÓGICAS

2.8.1 Peptídio biologicamente ativos

De acordo com Mills et alii (1992), os peptídeos estão entre os agentes farmacológicos mais importantes: veneno de cobra, hormônios, peptídeos imunogenéticos, neurotransmissores e opiáceos naturais. A digestão das proteínas "in vivo" ou "in vitro" pode levar à formação de peptídeos com atividade farmacológica ou fisiológica, ou com propriedades físico-químicas de interesse na tecnologia de alimentos (Meisel & Schlimme, 1990; Mills et alii , 1992; Matsui et alii, 1993; Bienford, 1994; Kawakami et alii, 1995). Os peptídeos do leite têm sido estudados especialmente no que se refere ao metabolismo de cálcio (caseínopeptídeos) (Kitts & Yuan, 1992); antagonistas (casoxinas) e agonistas (casomorfinas, α- e β-lactorfinas) opiáceos, e imunoestimulantes (Meisel & Schlimme, 1990). Os caseínofosfopeptídeos atuam, possivelmente, aumentando a solubilização do cálcio por impedir a formação de fosfato de cálcio insolúvel. As casomorfinas produzem analgesia e afetam a absorção de nutrientes por estimular a secreção de insulina e somatostatina. A hidrólise de β-conglicinina (proteína 7S) de soja, produziu 6 peptídeos com atividade antioxidante contra a peroxidação de ácido ômega. Os peptídeos foram purificados por cromatografia de exclusão molecular e de hidrofobicidade (HPLC). Todos os peptídeos apresentaram aminoácido hidrofóbico na posição N terminal e quatro deles, histidina na molécula. A atividade antioxidante dos peptídeos contendo histidina foi mais elevada (Chen et alii, 1995).

As proteínas de peixe são fontes de peptídeos com ação imbíbida sobre a enzima conversora da angiotensina (ACE-peptidildipeptídio hidrolase - EC 3.4.15.1), a enzima que catalisa a conversão do decapéptido inativo angiotensina I a angiotensina II. A angiotensina II é um octapeptídio com potente ação vasoconstritora, e inibidor do nonapeptídio vasodilatador, a bradicinina. Podem ser encontrados após a digestão de proteínas como: gelatina, látex do figo, zeina (Ariyoshi, 1993), caseina (Ariyoshi, 1993; Matuyama et alii, 1985) e soja (Kinoshita et alii, 1993), e em proteínas de várias espécies de animais aquáticos, como: atum (Ariyoshi, 1993; Astawan et alii, 1995), bonito (Matsumura et alii, 1993), ostra (Matsumoto et alii, 1994), e sardinha (Ariyoshi, 1993; Matsui et alii, 1993; Seki et alii, 1993; Sugiyama et alii, 1991a).
3 MATERIAL E MÉTODOS

3.1 MATÉRIA PRIMA E REAGENTES

Matéria Prima: utilizou-se tilápia do Nilo (*Oreochromus niloticus*). Foi obtida do Centro de Piscicultura da UNESP (Universidade Estadual Paulista) em Jaboticabal, e do Instituto de Pesca em Pindamonhangaba. Os peixes pesaram em média 400 g.

Reagentes: os reagentes, de grau analítico, foram os disponíveis comercialmente de empresas como: Merck, Sigma, Eciabra, Grupo Química, Pharmacia, etc. As enzimas Alcalase® 2,4L; e Flavourzyme® foram gentilmente cedidas pela Novo Nordisk S.A.

3.2 EQUIPAMENTOS

Agitadores; homogeneizadores; balança analítica e semi-analítica; analisador de aminoácidos; liofilizador; banho maria; pHstat; pHmetro; espectrofotômetros, fluorímetro; digestor e destilador de Kjeldahl; estufas, mufla, sistema para eleetroforese; gaiolas metabólicas; fermentador; despolpadora; prensa; demais equipamentos e material de uso corrente em laboratório.

3.3 METODOLOGIA

3.3.1 Preparo de concentrados e subprodutos

Foram preparados dois tipos básicos de concentrados: 1 concentrado de proteínas totais, obtido com etanol e tratado por 3 vezes com etanol a quente, e 7 concentrados de proteínas miofibrilares, preparados em meio aquoso e submetidos a diferentes tratamentos:

a) Preparo do extrato alcoólico de proteínas totais de músculo de pescado (PT)

Após a evisceração e retirada das cabeças, os peixes foram lavados com água corrente e mantidos em etanol até o momento do processamento (12h). O preparo foi executado conforme descrito por Quaglia & Orban (1987a), mediante extrações sucessivas com etanol em substituição ao isopropanol, na proporção de 3:1 em relação à polpa. O produto da desossa mecânica (BIBUN, modelo SDX-13) foi submetido à extração com três tratamentos com etanol a 70°C (3:1, 20 min) com o objetivo de eliminar gordura e componentes responsáveis pelo odor. A eliminação do etanol entre as diferentes etapas foi realizada em prensa Sardik Engineering.
b) Preparo de concentrados de proteínas miofibrilares

Filés de peixe foram homogeneizados em multiprocessador de alimentos da marca Arno e mantidos em agitação por dez minutos em solução de cloreto de sódio 0,1 M na proporção de 3:1 em relação ao filé e a seguir centrifugado a 2500 rpm por 10 minutos (rotor JA-14, centrífuga Beckman, modelo J-21B). A fração contendo as proteínas sarcoplasmáticas foi descartada. O material insolúvel foi ressuspendido em solução de bicarbonato de sódio 0,5%, extraiado por 10 min e centrifugado; a operação foi repetida com água. As soluções extratoras continham ácido ascórbico e tripolifosfato de sódio a 0,2% (Venugopal et alii, 1994b, Kelleher et alii, 1994). Este tratamento facilita a remoção dos lipídios e promove a hidrofílica do concentrado protéico. Após a centrifugação final, o concentrado de proteínas miofibrilares foi submetido a diferentes tratamentos.

Tratamentos dos concentrados de proteínas miofibrilares

O concentrado (F) corresponde à proteína tratada com hexametafosfato de sódio a 5%, através de uma adaptação do método proposto por Spinelli et alii (1972a,b), no qual foi suprimida a etapa de hidrólise prévia das proteínas. O concentrado (FE) corresponde ao concentrado F tratado com etanol (3:1, 30 min) à temperatura ambiente. O concentrado (S) seguiu a tecnologia de preparo do surimi (Venugopal et alii, 1994b; Kelleher et alii, 1994; Sych et alii, 1991; Lee, 1986; Reppond et alii, 1995), adicionando-se crioproteatores como sacarose (4%), sorbitol (4%) e uma formulação contendo hexametafosfato de sódio, tripolifosfato de sódio e pirofosfato de sódio (0,2%). O concentrado (SE) foi preparado da mesma forma que o (S), com etapa adicional de tratamento com etanol, à semelhança do realizado com a proteína fosforilada. Para obtenção do concentrado (E), a preparação de proteínas miofibrilares foi submetida a tratamento com etanol à temperatura ambiente, e para obtenção do concentrado (EH), as proteínas miofibrilares foram tratadas inicialmente com etanol à temperatura ambiente e posteriormente com hexano, numa modificação do método proposto por Cob III & Hyder (1972). O aquecimento a refluxo para remoção do hexano foi eliminado, sendo este separado por decantação, e o produto submetido à nova lavagem com etanol para eliminar o hexano residual. Todos os concentrados foram liofilizados e moidos, obtendo-se granulometria de 100 mesh. O fluxograma da Figura 1 descreve comparativamente estes tratamentos.
Filetagem

Homogeneização

Lavagem com NaCl 0.1M (3:1)

Centrifugação

NaHCO₃ 0,5% (3:1)

Centrifugação

Agua (3:1)

Centrifugação

CONCENTRADO DE PROTEÍNAS MIOFIBRILARES

O concentrado de proteínas miofibrilares assim obtido recebeu tratamentos adicionais, que originaram sete diferentes concentrados:

EQ = Tratamento com etanol a quente (70°C) - (3 volumes)
Quaglia & Orban (1987a,b)

F = Tratamento com hexametafosfato de sódio a 5%
(Spinelli et alii, 1972a,b)

FE = idem F + Tratamento com 3 volumes de etanol a frio

S = Adição de crioprotectores: sacarose (4%); sorbitol (4%); fosfatos (0,2%)
(Venugopal et alii, 1994b, Kelleher et alii, 1994)

SE = idem S + Tratamento com 3 volumes de etanol a frio

E = 3 Volumes de etanol a frio

EH = idem E + Tratamento com hexano (2volumes) + etanol (3volumes)
Cob III & Hyde (1972)

Secagem

Figura 1. Fluxograma de processamento de concentrados protéicos de tilápia do Nilo
c) Concentrado tratado com etanol a quente (EQ)

Foi preparado um concentrado de proteínas miofibrilares (EQ), para ser utilizado como matéria prima para obtenção de hidrolisados. Partiu-se de 150 kg de tilápia, das quais foram retiradas cabeças e vísceras, e após lavadas, submetidas a processo de separação em despolpadora Bibun. A polpa foi lavada com cloreto de sódio, bicarbonato, etanol a frio, e submetido a uma etapa posterior de extração com etanol à 50°C, conforme mostra o fluxograma da Figura 2.

d) Concentrado tratado com polifosfatos (CP)

Paralelamente foi obtido um concentrado (CP) seguindo-se as mesmas etapas de preparo do concentrado EQ, até a etapa anterior ao tratamento com etanol a frio. Foram retirados 7 kg da polpa tratada com etanol a frio, da qual se dispunha de 30,6 kg (Figura 2), para preparar o concentrado com polifosfatos, ao qual foi adicionado uma mistura de fosfatos (5%), contendo: hexametafosfato, tripolifosfato e pirofosfato de sódio, utilizando-se o método proposto por Spinelli et alii (1972a,b), suprimindo-se a etapa de hidrólise. As diversas etapas, após tratamento com etanol, estão descritas no fluxograma da Figura 3. Este concentrado foi obtido com a mesma metodologia que o concentrado anteriormente denominado fosfatos/etanol (FE), conforme mostra a Figura 1, exceto que em grande quantidade, e usando uma mistura de polifosfatos em substituição ao hexametafosfato. Como se trata de uma nova preparação, e para não confundir os dois concentrados passou-se a adotar a sigla CP.

e) Resíduo da desossa mecânica

O resíduo (R), de pele e ossos provenientes da desossa mecânica, retém apreciável quantidade de tecido muscular. Este resíduo foi seco em secador de bandeja a 45°C, moído, e tratado com etanol a 50°C (30 min) por 3 vêzes para remover o excesso de gordura (Figura 2).

f) Concentrado de proteínas sarcoplasmáticas

A solução salina utilizada na primeira etapa de tratamento da polpa, retira os componentes solúveis incluindo enzimas, sangue, proteínas sarcoplasmáticas, e nitrogenados não proteicos. Esta fração (SARC) foi previamente concentrada em tacho de Gerber, e a pasta resultante foi liofilizada e tratada com etanol a quente (50°C-30 min) para remoção de gordura (Figura 2).
150 kg de tilápia (380 peixes)
peso médio aproximado de 400g

elierção e retirada de cabeças

104,05 kg de peixe

desossa mecânica

73 kg de polpa

\[\Rightarrow \] 32 kg de resíduo (R)

Lavagem com 2 volumes de NaCl 0,05 M a 5°C, contendo ácido ascórbico 0,2%

Prensagem (prensa hidráulica Schwing Siwa)

\[\Rightarrow \] Concentrado de proteínas sarcoplasmáticas (SARC)

Lavagem com 2 volumes de bicarbonato de sódio 0,4% a 5°C

prensagem

64,8 kg de polpa úmida

\[\downarrow \]

Tratamento com etanol a frio

\[\downarrow \]

Prensagem

30,6 kg de polpa

\[\downarrow \]

Tratamento com etanol a 50 °C

Prensagem

Secagem do etanol em secador de bandeja a 40 °C

Moagem (moinho Reeves)

\[\downarrow \]

8,98 kg concentrado protéico (EQ)

Figura 2. Fluxograma para o preparo de concentrado protéico de tilápia do Nilo
Para o preparo do concentrado tratado com polifosfatos, parte do material utilizado no preparo do concentrado EQ foi retirado na etapa posterior ao tratamento com etanol a frio, seguindo o fluxograma da Figura 3.

A partir dos 30,6 kg de polpa tratada com etanol a frio e prensagem foram retirados 7 Kg de polpa

2 volumes de água
Mistura de hexametafosfato de sódio, pirofosfato de sódio e tripolifosfato de sódio (7:1:1)
P pH acertado para 3,0 com ácido sulfúrico 3,6 N

Prensagem

26,75 L de sobrenadante (coletando-se o ppt)

16,25 kg de polpa úmida com pH 5,5

Prensagem (prena Sardik Engineering Pty)

Lavagem da polpa com água (20 L)

Prensagem

Acerto do pH para 7,0 com NaOH 1N

Hidrolisão

3,2 kg de concentrado com polifosfatos (CP)

Figura 3. Fluxograma para obtenção do concentrado tratado com polifosfatos (CP)

3.3.2 Hidrolisados proteicos

Optimização das condições de hidrólise

Foram realizados ensaios empregando diferentes relações enzima:substrato, tempos de incubação dependentes do grau de hidrólise pretendidos nas condições preconizadas pelo fabricante. O ponto final da reação foi obtido mediante inativação térmica da enzima a 80°C por 5 min. O grau de hidrólise (GH) foi determinado comparativamente pelos métodos de pHstat
(Adler-Niessen, 1986) e TNBS (Adler-Niessen, 1979). Pelo método do TNBS, o progresso da reação foi seguido através da retirada periódica de alíquotas do meio de incubação, tratada com ácido tricloroacético em concentração final de 10%, e filtrada através de papel de filtro Whatmann 42. Alíquotas do filtrado foram empregadas na determinação do GH.

Fracionamento do hidrolisado

Como matéria prima foi utilizado o concentrado de proteínas miofibrilares, tratado com etanol à quente (EQ) a 12%, e relação enzima-substrato e tempos de incubação dependentes do grau de hidrólise pretendidos, a pH 7,0 e 50ºC. Foram obtidas três frações: (a) hidrolisado total (HT = suspensão de concentrado proteico hidrolisado), e após centrifugação a 6000 x g por 15 min: (b) sobrenadante (HS) e (c) sedimento ou fração insolúvel (HI). O fluxograma da Figura 4 ilustra este procedimento.

![Diagrama de Fracionamento do Hidrolisado](attachment:Diagrama.png)

Figura 4. Fracionamento do hidrolisado
3.3.3 Determinações químicas

Composição centesimal

Aminoácidos

Para determinação de aminoácidos a hidrólise foi efetuada com HCl 6N, a 108°C por 22 horas. Após hidrólise, filtração em membranas de 0,22μ e transferência para balão volumétrico de 50 mL, completou-se o volume com água microfiltrada (MILLI Q). Aliquota de 500 μL foi concentrada a vácuo e diluída em diluente Pickering pH 2,3. Foram injetadas alíquotas de 25μL em analisador DIONEX para separação dos aminoácidos em coluna de troca iônica e reação pós-coluna com ninidrina. A análise de triptofano foi efetuada através do método descrito por Spies (1967).

Minerais

Produtos de oxidação lipídica

A determinação de produtos reativos ao ácido tiobarbitúrico (TBARS) foi conduzida em extrato de ácido tricloroacético, de acordo com o procedimento de Wyncke (1975).

3.3.4 Atividade proteolítica

Para determinação da atividade proteolítica a mistura de reação constou de: enzima, e 5,0 mL solução de caseína a 0,6% em tampão apropriado. Após 10 minutos a 37°C a reação foi interrompida pela adição de 5 mL de TCA 10%. Após 20 min, a solução foi filtrada através de papel Whatmann 42, e a absorbância do filtrado foi lida em espectrofotômetro Hitachi, a 280 nm, comparativamente a uma solução padrão de tirosina a 50 μg/mL (Bergmeyer, 1965).

3.3.5 Eletroforese em gel de poliacrilamida

Para eletroforese dos hidrolisados foi empregado gel a 16% contendo tricina, conforme preconizado por Schägger & von Jagow (1987). Foram aplicados 75 μg de proteína por amostra. A eletroforese foi conduzida à temperatura ambiente, utilizando-se uma unidade vertical Protean II - Bio-Rad, empregando-se corrente de 20 mA/placa de gel. Para coloração dos géis foi utilizado o corante proposto por Blakesley & Boezi (1977). Preparou-se uma solução aquosa a 0,2% (p/v) de Comassie Brilliant Blue G-250 à qual foi adicionado igual volume de solução de ácido sulfúrico 1M. Homogeneizou-se bem e manteve-se em repouso durante uma noite. A solução foi filtrada em papel Whatman nº 1. A 9 partes do filtrado foi adicionada 1 parte de solução de hidróxido de potássio 10M e logo após, ácido tricloroacético para concentração final de 12%. Os géis foram mantidos por uma noite no corante e descorados em água destilada. A densitometria dos géis foi efetuada em densitômetro Sharp JX330, empregando "software" Image Master (Pharmacia). Para eletroforese dos concentrados foi adotado o procedimento de Laemmli (1970), em gel de separação a 12,5% e gel de concentração a 4%, na mesma unidade acima descrita.
3.3.6 Flexibilidade

A medida da flexibilidade baseia-se na determinação da susceptibilidade da proteína à hidrólise pela tripsina, a qual, por sua vez, fornece informações sobre o grau de estruturação da proteína. A flexibilidade dos concentrados proteicos foi determinada através da metodologia proposta por Kato et alii (1985) e Lee et alii (1992). Para hidrólise, o sistema de incubação constou de: 4 mL de solução de proteína a 0,1% em tampão Tris-HCl 0,05 M pH 8,0 e 250 μL de solução de tripsina (Sigma T0134) a 0,1%. A reação foi conduzida por 5, 10, 20 e 60 min a 38°C. Após o tempo requerido a reação foi interrompida pela adição de 4,0 mL de solução de ácido tricloroacético a 4%. O precipitado foi removido por filtração através de papel de filtro Whatman n. 1. A concentração de aminoácidos e peptídeos no filtrado foi determinada pelo método de Lowry et alii (1951). A extensão da digestão foi indicada como % de digestão da proteína total, e o valor a 60 minutos foi considerado como 100%. A velocidade de digestão foi representada como porcentagem de digestão por min, calculada através da inclinação inicial das curvas de digestão versus tempo, mediante análise de regressão linear. Para análise de variância (ANOVA) foi utilizado o “software” Statgraphics 7.0 (Graphic Software Systems, Inc.) e teste de Tukey a 95% de confiança.

3.3.7 Cromatografia de exclusão molecular

A determinação das faixas de peso molecular dos hidrolisados foi efetuada através de HPLC, em equipamento Waters 510, empregando-se coluna Protein Pak 60 - Waters (7,8 mm x 30 cm), eluindo-se com tampão fosfato 0,064M (Mannheim & Cheryan, 1993) e fluxo de 0,3 mL/min. Os padrões empregados (Sigma) foram: inibidor de enzima conversora de angiotensina (1101,3 Da); aprotinina (6500 Da), angiotensina I (1296,5 Da); citocromo C (12327 Da); β-lactoglobulina (18400 Da).

3.3.8. Isoterma de sorção de água

As isotermas de sorção de água dos hidrolisados foram elaboradas de acordo com o procedimento descrito por Teixeira Neto & Quast (1977), a 25°C, com algumas modificações. Ambientes com diversas umidades relativas (11,3%; 21,7%; 32,78%; 57,57%; e 69,99%) foram obtidos dentro de dessecadores contendo soluções saturadas de sais e soluções aquosas de ácido
sulfúrico. As amostras foram transferidas para os dessecadores contendo as soluções de atividade de água controlada. Os dessecadores foram transferidos para câmara de temperatura controlada e deixados por 15 dias. Após este período, os pesa filtro contendo as amostras foram tampados, limpos com lenço de papel, e pesados (precisão de 0,1 mg). As amostras foram novamente transferidas para seus dessecadores por mais 6 dias e novamente pesadas. A umidade final foi determinada por secagem em estufa a 105°C por 5 horas (até peso constante).

3.3.9 Propriedades Funcionais

Solubilidade (S%)

A solubilidade foi determinada de acordo com o método de Morr et alii (1985), variando-se o pH de uma solução de proteína a 1%, em solução de cloreto de sódio 0,5 N, e também, variando-se a concentração de cloreto de sódio, e mantendo-se o pH em 7,0. O N do sobrenadante foi determinado pelo método de Kjeldahl (semi-micro). A porcentagem de proteína solúvel foi dada pela equação:

\[
S(\%) = \frac{\text{concentração de proteína em } 50\text{ mL de sobrenadante (g)}}{\text{peso da amostra (g)}} \times \frac{\text{teor de proteína da amostra (g%)}}{100}
\]

Capacidade de absorção espontânea de água (CAA)

Foi determinada usando modificação do aparelho de Baumann efetuada por Torgersen & Toledo (1977). O aparelho consiste de um funil conectado a um capilar horizontal (pipeta de 1,0 mL graduada em centésimos de mL). A amostra (100 mg) foi espalhada em um papel de filtro Whatman nº 1, úmido, colocado no topo de um funil de Büchner com água ao nível da placa perfurada, com o cuidado de retirar o excedente de água, mediante papel absorvente. O ensaio foi conduzido à temperatura ambiente de 25 °C. A absorção de água pela amostra, ao longo de 30 minutos foi lida na pipeta, a intervalos de tempo cronometrados, e expressa como mL de água absorvida por g de proteína. As determinações foram efetuadas em triplicata, e quando necessário em quintuplicata, devido à variabilidade intrínseca do método.
Capacidade de absorção espontânea de óleo (CAO)

Foi realizada no mesmo equipamento descrito para absorção de água, seguindo-se a metodologia de De Kanterewicz et alii, 1987, e empregando filtro de microfibra de vidro Whatman GF/C, e óleo de milho Mazola, por um período de dez minutos, a intervalos de tempo cronometrados. O resultado foi expresso em mL de óleo absorvido por g de proteína.

Capacidade de retenção de água (CRA)

O potencial de retenção de água foi determinado conforme preconizado por Regenstein et alii (1984), com pequenas adaptações às condições do laboratório. Foram preparadas dispersões de proteína a 1%, em tampão Universal (Stauffer, 1989), ou quando foi o caso, variando-se a concentração de cloreto de sódio. Após agitação por 1 hora as amostras foram centrífugadas a 30000xg por 15 min a 5°C. A proteína do sobrenadante foi determinada pelo método Kjeldahl (semi-micro) e a do precipitado por diferença da amostra inicial, expressando-se o resultado em gramas de água retida por grama de proteína, através da equação abaixo:

\[
CRA = \frac{\text{Peso amostra hidratada (g)} - \text{peso amostra original (g)}}{\text{concentração de proteína na amostra (g)}}
\]

Formação e estabilidade de espumas

Capacidade espumante: expansão de volume (CESP)

A capacidade de formação de espuma (evidenciada pela expansão de volume) foi determinada através do método de Phillips et alii, (1987, 1990), com adaptações do procedimento descrito por Britten & Lavoie (1992), partindo-se de 50 mL de uma dispersão de proteína a 3%, a qual foi mantida sob agitação durante 30 minutos. Após este tempo, o pH foi ajustado para 7,0 e a agitação mantida por mais trinta minutos. O pH foi novamente ajustado para 7,0 e o volume completado para 50 mL. A suspensão foi agitada por 5 minutos, a 9500 rpm em homogeneizador UltraTurrax, e transferida para proveta de 100 ou 250 mL de acordo com o volume de espuma obtido, para avaliação da estabilidade. A expansão de volume foi calculada pela equação:
CESP% = \(\frac{Vo (mL)}{50} \times 100 \)

Vo = volume inicial de espuma incluindo líquido

A estabilidade da espuma foi avaliada conforme descrito por Patel et alii (1988) e Howell & Taylor (1995). Foram medidos: o volume de líquido drenado, o colapso da espuma e o tempo em que ocorreram ambos os eventos. Os cálculos foram efetuados pelas equações abaixo:

Estabilidade da espuma (EESP):

\[
EESP (%) = \frac{\text{Volume de espuma após 10 min (mL)}}{\text{Volume inicial de espuma incluindo volume de líquido (mL)}} \times 100
\]

Líquido drenado (LD):

\[
LD (%) = \frac{\text{Volume de líquido drenado após 10 min (mL)}}{\text{Volume inicial de solução (mL)}} \times 100
\]

Formação de emulsões

Capacidade emulsificante (CEM)

Para avaliação prévia foi empregado o procedimento descrito por De Kanterewicz et alii (1987), combinando-se dispersions de proteína a 1% e óleo de milho Mazola em volume final de 50 mL. Após 3 min de homogeneização (em banho de gelo) em homogeneizador Ultra Turrax (Irka Werk) a 9500 rpm, o óleo foi adicionado a partir de uma bureta mediante homogeneização simultânea até a inversão das fases. Como esta visualização não é muito precisa, o ponto de inversão das fases foi determinado por condutivimetria, com modificações do método descrito por Dagorn-Scaviner et alii (1987), ou seja, preparava-se a mistura de dispersão de proteína/óleo de milho em proporções próximas ao ponto de quebra determinado pelo método de De Kanterewicz et alii (1987), homogeneizando-se por 1 minuto a 9500 rpm em banho de gelo. A seguir o óleo era adicionado gota a gota sobre a mistura em agitação até inversão das fases caracterizada pela queda na condutividade elétrica (condutivímetro C 702, Analion). O tempo final de agitação era em torno de 3 minutos. O resultado foi expresso em mL de óleo, adicionados até o ponto de inversão, por g de proteína.
Índice de atividade emulsificante (IAE)

O índice de atividade emulsificante foi determinado conforme proposto por Pearce & Kinsella (1978), modificado por Mine et alii (1991) e Shahidi et alii (1995): 21 mL de solução de proteína a 1% e 7,0 mL de óleo foram agitados a 21000 rpm por 30 seg. Aliquotas da emulsão foram imediatamente coletadas e diluídas 1000 - 2000 vezes em solução de SDS 0,1%. O tubo foi invertido três vezes para homogeneização e a leitura efetuada em 500 nm, usando cubetas de 1 cm de caminho ótico, tomando-se a absorbância de, no mínimo, triplicatas da amostra. O resultado, obtido pela equação abaixo, foi expresso em m²/grama de proteína.

\[
\text{IAE (m²/g)} = \frac{2T}{\phi C}
\]

na qual:

C = concentração de proteína (%)

\(T = \text{Turbidez} = 2,303 \times A/\ell \), onde \(A = \text{absorbância} \)

\(\ell = \text{caminho ótico (1 cm)} \)

\(\phi = \text{fração de volume da fase aquosa (determinado pelo procedimento descrito por Pearce & Kinsella (1978), utilizando a equação a seguir:}

\[
\phi = \frac{C - A - E \times (B - C)}{C - A + (B - C) \left[(1 + E) \frac{D_o}{D_s} - E \right]}
\]

onde: \(A = \text{peso do bequer} \); \(B = \text{massa do bequer mais a emulsão} \); \(C = \text{massa do bequer mais matéria seca} \); \(D_o = \text{densidade da solução de proteína} \), e \(E = \text{concentração de solutos} \)

Estabilidade da emulsão (EE)

A determinação foi efetuada conforme descrito por Acton & Saife (1970). As emulsões foram preparadas na proporção de 25 mL óleo:25 mL dispersão de proteína, homogeneizando-se por 3 min a 10000 rpm, após os quais foi coletada uma aliquota de 5 mL para determinação de umidade. Uma aliquota de 10 mL foi mantida a temperatura ambiente por 24 horas, da qual foi coletada nova amostra de 5 mL para determinação de umidade. A estabilidade foi calculada pela relação:
EE = \frac{100 - U \text{ 24 horas}}{100 - U \text{ original}} \times 100

onde:
U 24 horas = porcentagem de umidade após 24 horas
U original = porcentagem de umidade na emulsão recém preparada

Floculação e “creaming”

Foram determinados conforme descrito por Dagorn-Scaviner *et alii* (1987). Logo após o preparo a emulsão foi transferida a uma proveta graduada de 10 mL. O volume da fase aquosa (V) separada foi medido a intervalos de tempo escolhidos de acordo com a velocidade de separação das fases, aumentando de 15 a 60 seg durante a primeira etapa e finalmente a intervalos de 1 hora até 24 horas (t). Ve representa o volume da fase aquosa no equilíbrio. O volume da fase aquosa aumenta com o tempo de repouso da emulsão seguindo cinética de primeira ordem, segundo a equação:

\[
\frac{V_t - V_\alpha}{V_0 - V_\alpha} = \exp(-Kt)
\]

Considerando-se: Vt o volume das fase aquosa no tempo t; K a constante do processo; Vo o volume da fase aquosa no tempo zero (igual a zero), e V_\alpha o volume da fase aquosa no equilíbrio (Ve), a equação pode ser reescrita como:

\[
\frac{(Ve - Vt)}{Ve} = \exp(-Kt)
\]

ou

\[
\ln \frac{Ve}{Ve - Vt} = Kt
\]

Para o cálculo da constante de velocidade (K), por regressão linear, foram traçados gráficos contendo na ordenada os valores de ln Ve / (Ve - Vt) e na abcissa o tempo (t). Foi analisado o efeito de variação do pH (pH 3; pH 5; pH 7; e pH 9) e de concentrações de cloreto de sódio (0,1M; 0,25M; 0,5M e 1M) sobre a floculação e “creaming” das emulsões de hidrolisado com grau de hidrólise de 7% e do concentrado contendo polifosfatos (CP).
Viscosidade

O equipamento empregado nesta análise foi um viscosímetro Brookfield Synchro-Lentric (Modelo LVF). Neste equipamento, um motor sincrono movimenta (com velocidade constante) um cilindro imerso num fluido e mede o torque necessário para vencer a resistência do fluido ao movimento rotativo. Devido às características da amostra, empregou-se um adaptador UL (ultra low). A unidade de medida é o "poise", definido como a resistência oferecida por um material que requer a força de um dina/cm² de área para produzir velocidade de cisalhamento igual a um ciclo por segundo.

Após o preparo, 24 mL da solução do concentrado contendo polifosfatos (CP) foi mantida por 30 minutos em repouso à temperatura ambiente (Voutsinas et alii, 1983). A viscosidade foi medida em quatro velocidades de rotação diferentes, a saber: 6, 12, 30 e 60 rpm, utilizando-se os fatores de conversão 1, 0,5, 0,2 e 1 respectivamente, para o cálculo da viscosidade. Estes fatores são os preconizados pelo fabricante do equipamento para o adaptador UL. Foram avaliados o efeito do pH e da concentração de proteínas sobre a viscosidade.

Tensão superficial e interfacial

As determinações de tensão superficial e interfacial foram conduzidas de acordo com metodologia proposta por Halpin & Richardson (1985) em Tensiômetro Fisher, modelo 20 (Fisher Scientific), que é essencialmente uma balança de torsão. Este instrumento fornece valores aparentes de tensão superficial ou interfacial, razão pela qual é necessário proceder à correção dos valores lidos seguindo-se as instruções contidas no manual do aparelho (Fisher Scientific Tensiometer, [198-]). Para calibração, o anel “du Nouy”, de Pt-Ir, é pendurado no braço do tensiômetro, que deve estar preso pelo grampo. Libera-se o grampo e ajusta-se o indicador de nível através da manivela lateral até que esteja exatamente sobre sua imagem no espelho. Gira-se o painel para valor de leitura zero, prende-se o grampo e coloca-se sobre o anel uma pequena placa de metal de massa determinada através de balança analítica. Mediante a equação abaixo obtém-se o valor ideal da leitura:

\[
V_{\text{ideal}} = mg/2L, \text{ onde:}
\]

\[
V = \text{tensão que deve ser obtida ao se colocar sobre o anel uma massa } m \text{ (dyn/cm)}
\]

\[
m = \text{massa da placa de metal (g)}
\]

\[
L = \text{comprimento da circunferência do anel (cm)}
\]

\[
g = \text{aceleração da gravidade (cm/s²)}
\]
Procedeu-se à leitura no painel, e através da relação abaixo obtém-se um fator de correção para todas as leituras efetuadas:

$$f_c = \frac{V \text{ lido}}{V \text{ ideal}}$$

f_c = fator de correção para as leituras
$V \text{ lido}$ = valor lido no painel do tensíômetro
$V \text{ ideal}$ = valor obtido para uma massa m de metal

Para determinação da tensão superficial aparente, 30 mL das soluções de hidrolisados e/ou concentrados contendo 0,4% de proteína foram colocados em bequeres de 50 mL. O anel de “du Nouy” foi imerso abaixo da superfície do líquido, até uma profundidade de 8 a 9 mm, e o instrumento foi zerado. Após 5 minutos de repouso para equilíbrio da superfície foi efetuada a leitura da força requerida para deslocar o anel para fora do líquido. Entre cada leitura o anel foi lavado com água, mergulhado em acetona e seco em papel absorvente. Para determinação da tensão interfacial, 10 mL de óleo de milho Mazola foram cuidadosamente colocados sobre 30 mL de solução de proteína, e após 5 min para equilíbrio da interface foi efetuada a leitura da força necessária para romper o filme interfacial.

Um fator de correção (F), que considera o tamanho do anel, o tamanho do arame usado no anel, e a densidade das duas fases deve ser aplicado ao valor lido ($V \text{ lido}$) e corrigido pela calibração do aparelho (f_c), para obtenção do valor verdadeiro de tensão superficial ou interfacial (TS ou TI). A densidade foi medida através do método de Firestone (1990). Os valores reais são obtidos pelas relações:

$$\text{TS ou TI} = F \times V \text{ lido} \times f_c$$

$$F = 0,7250 + \frac{0,01452P}{\sqrt{C^2(D - d)}} + 0,04534 - \frac{1,679r}{R}$$

onde:

F = fator de correção
R = raio do anel
r = raio do arame do anel
$V \text{ lido} \times f_c$ = valor lido corrigido pela calibração do aparelho
D = densidade da fase inferior
d = densidade da fase superior
C = circunferência do anel
Análise de variância multivariada das propriedades funcionais

As interações entre as variáveis no estudo das propriedades funcionais dos hidrolisados e dos concentrados tratado com polifosfatos (CP) e etanol a quente (EQ) foram analisadas conjuntamente através de Análise Multivariada, incluindo análise de componentes principais e análise hierárquica de “cluster”. Estas análises foram realizadas através do “software” Pirouett 2.02 (Infometrix, Seatle, WA - 1997). Para análise de variância, as médias foram comparadas pelo teste de Tukey a 5%, através de programa estatístico “STATISTICA 5.0 (StatSoft)”.

3.3.10 Avaliação nutricional e de propriedades fisiológicas

Ensaios “in vivo”

Para o balanço de nitrogênio e determinação do NPR (Net Protein Ratio) foram utilizados ratos machos, recém desmamados, da linhagem Wistar, procedentes do biotério central da Unicamp. O peso médio era de 64,95 ± 6,11 g. Foram oferecidas dietas contendo diferentes concentrados protéicos de pescado, hidrolisado protéico de pescado, caseína como proteína de referência, e um grupo com dieta aprotéica, oferecendo-se água e dieta "ad libitum". O balanço foi determinado por um período de 7 dias, antecedido de dieta de adaptação de 7 dias. A determinação do NPR (quociente protéico líquido) iniciou-se após dieta de adaptação de 4 dias, prolongando-se por mais 10 dias. A formulação da dieta foi efetuada de acordo com as recomendações do American Institute of Nutrition-AIN 1993 (Reeves et alii , 1993) contendo 10% de proteínas, 8% de lipídios (óleo vegetal), 3,5% de sais minerais, 1% de vitaminas, 2% de fibra bruta e 75% de carboidratos.

Os cálculos de digestibilidade, utilização líquida de proteína, valor biológico, e balanço de nitrogênio foram efetuados, considerando-se o N ingerido e excretado nas fezes e urina (Sgarbieri, 1987). Os dados do ensaio biológico foram submetidos à análise de variância utilizando programa estatístico “STATISTICA (StatSoft)”, comparando-se as diferenças entre as médias dos tratamentos pelo Teste de Tukey a 5% de significância.

A estimativa da digestibilidade aparente em peixes foi determinada pelos métodos de Nose (1966), e Cho et alii (1974), respectivamente, com o objetivo de avaliar a adequação da utilização dos resíduos de processamento dos concentrados para alimentação de peixes. O
primeiro método avalia a digestibilidade aparente da proteína da dieta e o segundo, a digestibilidade aparente da proteína do ingrediente. Foram testados o resíduo da desossificação, este mesmo resíduo com 25% de grau de hidrólise e a fração de proteínas sarcoplasmáticas (Figura 2). Foi elaborada uma dieta referência (base), contendo os ingredientes normalmente utilizados em dietas para peixes e balanceada para conter 24,32% de proteína bruta, 5,59% de cinzas, 6,87% extrato etéreo, 7,45% de fibra, 44,9% de extratável não nitrogenado (carbonhidratos). As dietas experimentais foram elaboradas substituindo-se 30% da dieta referência pelo ingrediente teste, e em cada dieta foi adicionado 1% de óxido de cromo como marcador inerte. Todas as dietas foram suplementadas com vitaminas e minerais (suplemento "Supremais" para frango de corte) e peletizadas.

Para cada dieta experimental foram utilizados dezessessés pacus (Piaractus mesopotamicus, Holmberg, 1987), com peso médio de 183,74 g. Os peixes foram acomodados em tanques de 500 L e submetidos a 2 semanas de dieta base para adaptação ao ambiente e 4 dias com a dieta experimental fornecida "ad libitum", 4 vezes ao dia. No quinto dia da alimentação com a dieta experimental, 10 horas após a última alimentação, os peixes foram transferidos para caixas coletoras de fezes, e estas coletadas em intervalos de 30 minutos, num período de 8 horas. Para análise as fezes foram secas em estufa com circulação de ar a 60°C. O óxido de cromo da dieta e das fezes foi determinado colorimetricamente pelo método de Funukawa & Tsukahara (1966) e a proteína da dieta pelo Kjeldahl (AOAC, 1990), usando 6,25 como fator de conversão.

A digestibilidade aparente da proteína da dieta (DAPD) foi calculada pela relação:

$$\text{DAPD} = \frac{100 - 100 \times \left(\frac{\% \text{ de óxido de cromo dieta} \times \% \text{ proteína nas fezes}}{\text{de óxido de cromo nas fezes} \times \% \text{ proteína na dieta}} \right)}{\% \text{ de óxido de cromo na dieta}}$$

A digestibilidade aparente da proteína do ingrediente (DAPI) foi determinada adicionando 30% do ingrediente à dieta base e calculada pela relação:

$$\text{DAPI} = \frac{100}{30} \times \text{digestibilidade da dieta teste} - \frac{70}{100} \times \text{digestibilidade da proteína de referencia}$$
Perfil bioquímico do soro dos ratos

Após 21 dias de alimentação com as dietas especificadas para determinação do balanço de N e do NPR, coletou-se o sangue dos ratos e após a separação do soro foram analisados componentes séricos que poderiam fornecer informações adicionais sobre o efeito destas dietas. Através de “kits” (Celim) adquiridos de empresas que atendem a laboratórios de análises clínicas foram determinados os níveis séricos de glicose, proteínas totais e albumina, lipídios totais, triacilgliceróis, colesterol total e HDL colesterol, e ureia, dos ratos após 21 dias de ingestão da dieta.

Os dados das análises bioquímicas foram submetidos à análise de variância multivariada (MANOVA) e teste de Tukey a nível de 5%, de significância, empregando-se o pacote estatístico Statgraphics 7.0 (Graphic Software Systems, Inc), e o “software” Matlab (Mathworks, Inc.). Os gráficos representando as médias e desvios padrão (“box & whisker plot”) foram obtidos com o “software” Statistica 5.0 (StatSoft).

Digestibilidade “in vitro”

Lisina disponível

Lisina disponível foi determinada pelo método de Kakade & Liener (1969) e a análise estatística efetuada através do “software” Statgraphics 7.0 (Graphic Software Systems, Inc).
Inibição da enzima conversora de angiotensina

O efeito inibidor dos hidrolisados sobre a enzima ACE-peptidilpeptidio hidrolase (EC 3.4.15.1), que converte a angiotensina I em angiotensina II, foi pesquisado mediante a utilização de kit Sigma Diagnostics, para determinação desta atividade enzimática, ACE Reagent (cat. 305-10), que se baseia no método de Harjarne (1984), variando-se a concentração de hidrolisado, contendo o inibidor. O sistema de incubação constava de: 0,5 mL de N-[3-(2-furil)acriloi]-L-fenilalanil-glicil-glicina (FAPGG) a 0,5mmol/L, 0,05 mL enzima (0,0335 unidades), 0,1 mL de solução de hidrolisado contendo o inibidor, e 0,35 mL de água. As leituras da absorbância a 340 nm eram efetuadas no tempo zero, 5 min e 10 min, calculando-se a variação da absorbância por minuto. Foram analisados comparativamente hidrolisados produzidos com Flavourzyme® e Alcalase®, e o inibidor da enzima comercializado pela Sigma (cat. A-0773). Em uma segunda etapa, os hidrolisados de ambas as enzimas foram separados por ultrafiltração em sistema Millipore, empregando-se membrana (Pellicon) de polietersulfona com “cut-off” de 5 kDa. As frações de peso molecular inferior a 5 kDa foram empregadas para determinação de atividade inibidora sobre ACE.

3.3.11 Avaliação sensorial

Análise descritiva quantitativa

Foram comparados hidrolisados obtidos com Flavourzyme® e com Alcalase® (enzima convencionalmente utilizada na elaboração de hidrolisados), quanto aos atributos: odor e sabor de peixe, gosto umami e gosto amargo. Para o treinamento dos provadores, empregou-se Teste de Ordenação (Associação Brasileira de Normas Técnicas - ABNT, 1992), com diferentes concentrações de cafeína para o teste de amargor, e de glutamato monossódico para umami, que deveriam ser ordenadas em ordem crescente de intensidade de gosto. A avaliação dos hidrolisados foi conduzida através de técnica de ADQ (Análise Descritiva Quantitativa). O padrão para o gosto umami foi uma solução de glutamato a 0,2%, e para o gosto amargo, cafeína 0,02%, cujas intensidades correspondem ao ponto médio da escala, segundo recomendações da norma ISO/TC 34 DIS 3972 (International Organization for Standardization, 1990). Para o odor e sabor de peixe foi utilizado o concentrado de proteínas miofibrilares sem hidrolise a 1% de concentração. A avaliação foi conduzida com provadores treinados, que manifestaram suas opiniões em uma
escala não estruturada, conforme mostra a Figura 5, apresentada através do “software” Computerized Sensory Analysis (V4.2), no qual registraram suas respostas. As amostras foram codificadas com números de 3 dígitos, obtidos de tabelas de permutações randônicas. Para detectar diferenças foi utilizada análise de variância multivariada e para comparação das médias o teste de Tukey ao nível de erro de 5%, utilizando pacote estatístico Statgraphics 7.0.

Teste de aceitação de biscoitos para atletas

A partir de hidrolisado com 40% de grau de hidrólise foram preparados biscoitos salgados e doces. Para testar a aceitação dos produtos, foram convidados 100 atletas que competem nas seguintes modalidades e instituições: natação (Clube do Golfinho - Juventus, uma conceituada escola de Curitiba), voleibol e handball (Associação Atlética Banco do Brasil) e futebol de salão (Universidade Federal do Paraná), sendo 50 provadores do sexo masculino e 50 do sexo feminino. Os provadores não treinados foram convidados a provar os biscoitos e preencher as respectivas fichas, recebendo o mesmo número para ambos os biscoitos. Os resultados foram analisados estatisticamente através de estatística não paramétrica, teste de Wilcoxon para dados pareados, utilizando-se o “software” Statistica 5.0 (StatSoft). As fichas encontram-se nas Figuras 6 (biscoito doce) e 7 (biscoito salgado).

Análise de cor

Para análise de cor dos hidrolisados empregou-se espectrofotômetro COMCOR MS 1500 PLUS versão 7.0 BB (iluminante C - 10 graus). Os resultados foram analisados estatisticamente através de teste t para dados pareados, conhecido como teste antes e depois.

3.3.12 Análise microbiológica

A análise microbiológica dos hidrolisados e concentrados foi realizada adotando-se o procedimento de Vanderzant & Splittoesser (1992), que constou da pesquisa da presença e quantificação dos seguintes microorganismos: Salmonella, coliformes totais, coliformes fecais, Staphylococcus aureus, Bacillus cereus, clostrídios sulfito redutores, e contagem de bolores e leveduras.
Você irá receber duas amostras de hidrolisado de pescado, para serem avaliadas quanto aos seguintes atributos:
- gosto amargo
- gosto umami (glutamato)
- sabor de peixe
- odor a peixe

Você irá receber padrões para avaliar estes atributos, cuja intensidade situa-se ao centro das escalas abaixo.

Por favor, compare os atributos das amostras que lhe serão fornecidas, e assinale nas respectivas escalas as intensidades comparativamente aos padrões.

<table>
<thead>
<tr>
<th>Atributo</th>
<th>Fraco</th>
<th>P</th>
<th>Forte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Odor a peixe</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sabor de peixe</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gosto umami</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gosto amargo</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

COMENTÁRIOS

Figura 5. Formulário utilizado para avaliação sensorial dos hidrolisados
<table>
<thead>
<tr>
<th>NOME</th>
<th>SEXO</th>
<th>IDADE</th>
<th>DATA</th>
</tr>
</thead>
<tbody>
<tr>
<td>MODALIDADE ESPORTIVA/LOCAL</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Você irá receber uma amostra de biscoito salgado, rico em proteínas, aminoácidos e fibras, e formulado sem aditivos artificiais ou conservantes, no qual se fez a substituição de gorduras por produtos de base protéica. Os quadrados abaixo representam uma seqüência de 5 intensidades, nos quais você deverá marcar sua opinião sobre cada atributo:

Cor da superfície:
- Muito clara
- Boa
- Muito escura

Odor:
- Muito suave
- Bom
- Muito acentuado

Identifique:

Sabor
- Muito agradável
- Bom
- Muito desagradável

Identifique:

Sabor salgado
- Muito salgado
- Bom
- Sal insuficiente

Sabor residual
- Pouco acentuado
- Medianamente
- Muito acentuado

Identifique:

Textura: Crocância
- Muito úmido
- Bom
- Muito crocante

Dureza
- Muito macio
- Bom
- Muito duro

Aceitação global
- Gostei muito
- Gostei
- Não gostei nem desgostei
- Gostei pouco
- Não gostei

Apresente críticas e sugestões que em sua opinião melhorariam as características do produto em estudo:

Obrigada por sua participação

Figura 6. **Formulário para teste de aceitação de biscoito salgado**
Você irá receber uma amostra de biscoito doce, tipo “cooky” rico em proteínas, aminoácidos e fibras, e formulado sem aditivos artificiais ou conservantes, no qual se fez a substituição de gorduras por produtos de base protéica. Os quadrados abaixo representam uma sequência de 5 intensidades, nos quais você deverá marcar sua opinião sobre cada atributo:

Cor da superfície:
- Muito clara
- Boa
- Muito escura

Odor:
- Muito suave
- Bom
- Muito Acentuado

Identifique:

Sabor:
- Muito agradável
- Bom
- Muito desagradável

Identifique:

Nível de doçura:
- Muito elevado
- Bom
- Muito baixo

Sabor residual:
- Pouco acentuado
- Medianamente
- Muito

Identifique:

Textura: Crocância:
- Muito umido
- Bom
- Muito crocante

Dureza:
- Muito macio
- Bom
- Muito duro

Aceitação global:
- Gostei muito
- Gostei
- Não gostei nem desgostei
- Gostei pouco
- Não gostei

Apresente críticas e sugestões que em sua opinião melhorariam as características do produto em estudo:

Obrigada por sua participação

Figura 7. **Formulário para teste de aceitação de biscoito doce**
4 RESULTADOS E DISCUSSÃO

4.1 CONCENTRADOS PROTÉICOS DE PESCADO

4.1.1 Caracterização química dos concentrados

O concentrado de proteínas totais (PT) foi o primeiro a ser elaborado. O objetivo era produzir um concentrado do tipo A, conforme especificação FAO/OMS/UNICEF (Brody, 1965; Halliday & Disney, 1971). De acordo com esta norma, este tipo de concentrado deveria apresentar teor de gordura inferior a 0,75%. Foi possível obter um concentrado do tipo B (teor de gordura inferior a 3%), que devido à desnaturação protéica decorrente do tratamento térmico para eliminação de gordura, não apresentou funcionalidade.

Os demais concentrados que constam da Tabela 3 são formas alternativas de obtenção de concentrados protéicos nos quais foram estudadas as propriedades funcionais e são compostos apenas de proteínas miofibrilares, porque o tratamento de lavagem da polpa elimina as proteínas sarcoplasmáticas, conforme mostra o fluxograma da Figura 1 (Cob III & Hyder, 1972; Spinelli et alii, 1972a,b; Quaglia & Orban 1987a,b; Kelleher et alii, 1994; Venugopal et alii, 1994b).

Estes concentrados foram preparados em pequena quantidade (a partir de 300 a 500 g de filé) para verificar qual seria o concentrado com melhores propriedades funcionais. O concentrado etanol a quente (EQ) foi preparado para servir de substrato à produção de hidrolisados, a partir de 150 kg de tilápias, conforme mostra o fluxograma da Figura 2.

Tabela 3. Composição centesimal dos concentrados protéicos de tilápia do Nilo

<table>
<thead>
<tr>
<th>Concentrados</th>
<th>Proteínas</th>
<th>Lipídios</th>
<th>Carboídratos</th>
<th>Umidade</th>
<th>Cinzas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fosfatos (F)</td>
<td>69,93±0,10</td>
<td>4,23±0,12</td>
<td>0,06±0,01</td>
<td>16,81±0,35</td>
<td>10,56±0,35</td>
</tr>
<tr>
<td>Fosfatos/Etanol (FE)</td>
<td>81,75±0,05</td>
<td>4,05±0,16</td>
<td>0,08±0,004</td>
<td>8,17±0,30</td>
<td>6,64±0,23</td>
</tr>
<tr>
<td>Etanol a frio(E)</td>
<td>88,85±0,42</td>
<td>3,61±0,11</td>
<td>0,13±0,003</td>
<td>7,60±0,28</td>
<td>1,84±0,04</td>
</tr>
<tr>
<td>Etanol à quente (EQ)</td>
<td>86,34±0,12</td>
<td>2,73±0,014</td>
<td>0,45±0,002</td>
<td>8,38±0,07</td>
<td>2,85±0,05</td>
</tr>
<tr>
<td>Etanol/Hexano (EH)</td>
<td>89,26±0,44</td>
<td>1,65±0,05</td>
<td>0,11±0,0003</td>
<td>8,83±0,04</td>
<td>2,30±0,11</td>
</tr>
<tr>
<td>Surimi (S)</td>
<td>59,91±0,09</td>
<td>4,21±0,14</td>
<td>11,76±0,02</td>
<td>7,39±0,06</td>
<td>2,73±0,06</td>
</tr>
<tr>
<td>Surimi/Etanol (SE)</td>
<td>77,26±0,03</td>
<td>5,06±0,15</td>
<td>5,55±0,013</td>
<td>7,36±0,12</td>
<td>2,04±0,05</td>
</tr>
<tr>
<td>Proteínas totais (PT)</td>
<td>87,90±0,06</td>
<td>2,14±0,07</td>
<td>0,35±0,008</td>
<td>5,47±0,06</td>
<td>2,85±0,01</td>
</tr>
<tr>
<td>Peixe (polpa)</td>
<td>17,85±0,32</td>
<td>2,73±0,09</td>
<td>0,72±0,012</td>
<td>77,19±0,67</td>
<td>1,25±0,04</td>
</tr>
<tr>
<td>Peixe (filé)</td>
<td>18,88±0,50</td>
<td>1,26±0,04</td>
<td>0,22±0,004</td>
<td>79,80±0,73</td>
<td>1,07±0,02</td>
</tr>
</tbody>
</table>
Conforme descrito na metodologia, carboidratos totais foram dosados através do método de Dubois et alii (1956). Este método não quantifica polióis, e as preparações baseadas na tecnologia do surimi contêm sorbitol, além da sacarose (Figura 1), por esta razão a composição centesimal destas preparações não totaliza 100%. O tratamento com etanol arrasta parte do sorbitol da preparação surimi/etanol.

O rendimento, calculado em termos de proteína, e a remoção de gordura obtidos nas diferentes preparações, aparecem na Tabela 4.

<table>
<thead>
<tr>
<th>Concentrados</th>
<th>Rendimento (%)</th>
<th>Remoção gordura (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fosfatos (F)</td>
<td>76,2</td>
<td>32,25</td>
</tr>
<tr>
<td>Fosfatos/Etanol (FE)</td>
<td>73,38</td>
<td>46,48</td>
</tr>
<tr>
<td>Etanol a frio (E)</td>
<td>73,23</td>
<td>54,59</td>
</tr>
<tr>
<td>Etanol/Hexano (EH)</td>
<td>71,18</td>
<td>80,00</td>
</tr>
<tr>
<td>Surimi (S)</td>
<td>67,46</td>
<td>27,56</td>
</tr>
<tr>
<td>Surimi/Etanol (SE)</td>
<td>66,89</td>
<td>33,14</td>
</tr>
<tr>
<td>Etanol à Quente (EQ)</td>
<td>68,69</td>
<td>87,70</td>
</tr>
<tr>
<td>Proteínas totais (PT)</td>
<td>77,95</td>
<td>73,97</td>
</tr>
</tbody>
</table>

Se considerarmos as especificações FAO/OMS/UNICEF-1961 para concentrados proteicos de pescado (Brody, 1965; Halliday & Disney, 1971), referentes ao teor de lipídeos, constantes na Tabela 1, nenhum destes concentrados pode ser considerado do tipo A, pois o teor deveria ser inferior a 0,75%. Trabalhos de armazenamento reportam valores tão baixos como 0,2% de gorduras para que o produto mantenha a qualidade organoléptica e completa estabilidade (Spinelli et alii, 1972). Os concentrados tratados com etanol a quente (PT e EQ) e o tratado com mistura de solventes (EH) podem ser classificados como do tipo B (menos de 3,0%). Os demais, seriam categorizados como concentrados do tipo C (até 10%). O tratamento a quente compromete a funcionalidade das proteínas, e o uso de solventes como hexano pode não ser a melhor opção para um produto que possa ter indicação clínica.

A partir da análise da Tabela 4, verifica-se que o sistema mais eficiente para remoção de gordura foi o tratamento com etanol a quente (EQ), mas este foi um processo conduzido em duas etapas: na primeira utilizando etanol a frio e na segunda, a extração com etanol a quente. Esta etapa adicional de tratamento com etanol a quente foi eficiente porque extraiu cerca de 30% a
mais da gordura que o concentrado obtido com extração etanólica a frio. A remoção foi mais elevada também porque se coletou, com o auxílio de escumadeiras, a gordura na superfície da solução da primeira lavagem da polpa. O maior rendimento na extração de proteína, foi obtido com o extrato alcoólico (PT), pois extraiu boa parte das proteínas sarcoplasmáticas.

Shenouda & Pigott (1974) constataram que o envelhecimento da miosina, ou a desnaturação por agitação ou aquecimento ocasionou um aumento na interação entre lipídios e a miosina através de aumento na interação hidrofóbica e ligações iônicas. Estes complexos são de difícil separação e comprometem as propriedades funcionais da proteína. Esta é uma das razões para que o processamento do concentrado seja efetuado da forma mais branda possível, mas que elimine a maior quantidade de gordura no processo.

Todos os concentrados apresentaram cor clara, que variou do gelo (EH), ao bege (S), e com odor brando, remínescente a peixe, sendo que o concentrado de proteínas totais praticamente não apresentou odor a peixe. A coloração do concentrado preparado com a tecnologia do surimi, que inicialmente era clara como dos demais concentrados, sofreu profundas alterações, transformando-se em salmon (Figura 8), após três meses de armazenamento à temperatura de geladeira, possivelmente devido a reações oxidativas. O concentrado S apresentou teor de gordura superior ao dos demais. Os demais concentrados não sofreram alterações de cor que fossem perceptíveis visualmente. Esta alteração de cor pode ser devida à reação de produtos carbonílicos provenientes da oxidação lipídica (Hoyle & Merritt, 1994), ou a reações de escurecimento não enzimático entre produtos de hidrólise da proteína e a mistura de crioprotetores (Kelleher et alii, 1994).

A oxidação é a principal causa de deterioração na qualidade de produtos carneiros. A susceptibilidade do tecido muscular à oxidação se deve à sua alta concentração de catalisadores (ferro e mioglobina) e lipídios. Em produtos obtidos por continuação ocorre o aumento de superfície de exposição ao oxigênio. Lipídios oxidados reagem com outros componentes do alimento como proteínas, carboidratos e vitaminas. Além do comprometimento nutricional, afeta a funcionalidade das proteínas. Malonaldeído e outros produtos de oxidação possuem ação carcinogênica e ou mutagênica (Shahidi et alii, 1987; Xiong & Decker, 1995).
Figura 8. **Concentrados protêicos de tilápia do Nilo**

A estabilidade dos concentrados pode ser confirmada pelo teste de substâncias reativas ao ácido tiobarbitúrico (TBARS), conforme registra a **Tabela 5**. Após 1 ano de armazenamento não foi possível perceber alterações organolépticas. Valores de TBARS de 6 a 10 μmoles/kg são acompanhados de odor desagradável, mas odores de rancidez ocorrem quando valores de TBARS são superiores a 10 (Kelleher et alii, 1994). Por outro lado, Kurade & Baranowski (1987) afirmam que valores de TBARS superiores a 18 μmoles/kg indicam rancidez, o que significa que mesmo após 2 anos de armazenamento os concentrados não apresentaram rancidez, talvez por serem mantidos sob congelamento. Nas eventuais retiradas de alíquotas para as análises e determinações de propriedades funcionais, os concentrados permaneceram a temperatura ambiente apenas o tempo necessário à retirada de amostra. Para evitar congelamentos e descongelamentos desnecessários quando estas retiradas eram mais frequentes as amostras permaneciam em geladeira, ou se retiravam alíquotas (sub-amostras).
Tabela 5. Número de TBARS de concentrados protêicos de tilápia do Nilo

<table>
<thead>
<tr>
<th>Concentrado</th>
<th>Nº de TBARS a (a)</th>
<th>Nº de TBARS a (b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proteínas totais (PT)</td>
<td>5,19 ± 0,42 ab</td>
<td>7,79 ± 0,16 ab</td>
</tr>
<tr>
<td>Fosforilada/Etanol (FE)</td>
<td>1,66 ± 0,25 a</td>
<td>2,84 ± 0,10 a</td>
</tr>
<tr>
<td>Fosfatos</td>
<td>3,08 ± 0,28 ab</td>
<td>4,07 ± 0,45 ab</td>
</tr>
<tr>
<td>Etanol a frio (E)</td>
<td>7,27 ± 0,78 b</td>
<td>8,56 ± 0,30 b</td>
</tr>
<tr>
<td>Etanol Hexano (EH)</td>
<td>2,44 ± 0,24 ab</td>
<td>3,70 ± 0,14 ab</td>
</tr>
</tbody>
</table>

a = após 13 meses de armazenamento a -20°C
* = µmoles/kg
b = após 20 meses de armazenamento a -20°C
Médias seguidas de mesma letra (colunas) não diferem estatisticamente entre si (p<0,05), pelo teste de DMS (diferenças mínimas significativas).

Para o peixe “in natura”, após armazenamento por 15 dias a -20°C, o valor encontrado foi de 4,32 µmoles/kg. Para o concentrado de proteínas miofibrilares tratado com etanol a quente (EQ), foram observados valores de TBARS de 2,07 µmoles/kg após 6 meses, e de 5,43 µmoles/kg quando mantido a -20°C. Não foi possível determinar TBARS nos extratos S e SE devido à interação dos carboidratos adicionados com o ácido tiobarbitúrico. A presença de ácido ascórbico e de tripolifosfato em todas as etapas das preparações confere proteção contra oxidação lipídica (Kelleher et alii, 1992, 1994, Xiong & Decker, 1995), mas se atribuíram a alteração de cor ao concentrado S a processo oxidativo, não se conseguiu a proteção desejada nesta preparação. O número de peróxidos das diferentes preparações estava abaixo dos limites detectáveis pelo método utilizado (Association of Official Analytical Chemists, 1990), mesmo quando refeito após 15 meses de armazenamento a -20°C.

A análise estatística foi realizada através de variância não paramétrica (Cruskkal-Wallis) devido ao pequeno número de dados (3 repetições). Verifica-se que tanto na primeira avaliação quanto na segunda, E e FE diferiram significativamente. O incremento no valor de TBARS da primeira para segunda determinação foi analisado através de teste t para dados pareados (p<0,05), revelando diferenças estatisticamente significativas após 7 meses adicionais de armazenamento, para todos os concentrados, quando se considerou as amostras simultaneamente.
Análise de minerais dos concentrados proteicos de tilápia do Nilo

A Tabela 6 mostra o teor de minerais dos concentrados proteicos de tilápia do Nilo. Furr et alii (1974) analisaram a composição de minerais de concentrados proteicos de pescado a partir de diferentes espécies de peixe, a saber: Merluccius bilinearis; Xiphaus gladius; e de uma média de várias espécies marinhos. A variação para um mesmo mineral foi muito acentuada. Apenas para exemplificar, para sódio são reportados valores, expressos em mg/100g, oscilando entre 76,5 e 459,4, para cálcio 172,2 a 3710 (este valor para espécies marinhos); ferro 8,5 a 154,3; magnésio 42,14 e 131,35, zinco 3,5 a 9,5, e cobre 0,93 a 2,6. Esta variação pode ser observada também nos dados apresentados por Venugopal & Shahidi (1996).

Tabela 6. Minerais dos concentrados proteicos de tilápia do Nilo

<table>
<thead>
<tr>
<th>Mineral*</th>
<th>F</th>
<th>FE</th>
<th>E</th>
<th>EH</th>
<th>S</th>
<th>SE</th>
<th>PT***</th>
<th>Peixe**</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fosforo</td>
<td>3768,43</td>
<td>1953,08</td>
<td>232,92</td>
<td>235,00</td>
<td>656,21</td>
<td>484,07</td>
<td>764,64</td>
<td>960,83</td>
</tr>
<tr>
<td>Sódio</td>
<td>2412,27</td>
<td>1195,49</td>
<td>314,36</td>
<td>458,61</td>
<td>760,88</td>
<td>604,38</td>
<td>106,82</td>
<td>298,83</td>
</tr>
<tr>
<td>Potássio</td>
<td>211,58</td>
<td>102,06</td>
<td>210,14</td>
<td>226,77</td>
<td>271,62</td>
<td>249,44</td>
<td>725,60</td>
<td>1635,65</td>
</tr>
<tr>
<td>Cálcio</td>
<td>47,51</td>
<td>72,61</td>
<td>83,87</td>
<td>89,16</td>
<td>58,56</td>
<td>98,74</td>
<td>462,76</td>
<td>67,71</td>
</tr>
<tr>
<td>Magnésio</td>
<td>45,33</td>
<td>52,02</td>
<td>64,81</td>
<td>62,16</td>
<td>44,38</td>
<td>42,14</td>
<td>131,35</td>
<td>121,28</td>
</tr>
<tr>
<td>Alumínio</td>
<td>9,42</td>
<td>6,62</td>
<td>1,65</td>
<td>3,82</td>
<td>4,13</td>
<td>1,08</td>
<td>3,87</td>
<td>10,18</td>
</tr>
<tr>
<td>Ferro</td>
<td>3,56</td>
<td>2,40</td>
<td>1,57</td>
<td>2,10</td>
<td>1,36</td>
<td>0,96</td>
<td>5,48</td>
<td>4,14</td>
</tr>
<tr>
<td>Zinco</td>
<td>1,98</td>
<td>2,46</td>
<td>2,36</td>
<td>3,39</td>
<td>1,64</td>
<td>1,95</td>
<td>3,51</td>
<td>3,26</td>
</tr>
<tr>
<td>Cobre</td>
<td>0,41</td>
<td>0,73</td>
<td>0,57</td>
<td>0,94</td>
<td>0,29</td>
<td>1,07</td>
<td>0,27</td>
<td>0,71</td>
</tr>
<tr>
<td>Lítio</td>
<td>0,13</td>
<td>0,10</td>
<td>0,94</td>
<td>0,13</td>
<td>0,86</td>
<td>0,46</td>
<td>0,04</td>
<td>0,77</td>
</tr>
<tr>
<td>Bário</td>
<td>0,39</td>
<td>0,65</td>
<td>0,21</td>
<td>0,70</td>
<td>0,07</td>
<td>0,09</td>
<td>3,04</td>
<td>0,17</td>
</tr>
<tr>
<td>Cromo</td>
<td>0,14</td>
<td>0,12</td>
<td>0,04</td>
<td>0,04</td>
<td>0,06</td>
<td>0,04</td>
<td>0,39</td>
<td>0,17</td>
</tr>
<tr>
<td>Manganês</td>
<td>0,07</td>
<td>0,17</td>
<td>0,18</td>
<td>0,18</td>
<td>0,11</td>
<td>0,20</td>
<td>0,09</td>
<td>0,16</td>
</tr>
<tr>
<td>Vanádio</td>
<td>0,01</td>
<td>0,01</td>
<td>0,003</td>
<td>0,005</td>
<td>0,003</td>
<td>0,004</td>
<td>0,01</td>
<td>0,01</td>
</tr>
<tr>
<td>Cobalto</td>
<td>0,004</td>
<td>0,005</td>
<td>0,003</td>
<td>0,003</td>
<td>0,003</td>
<td>0,004</td>
<td>0,002</td>
<td>0,01</td>
</tr>
</tbody>
</table>

* mg/100g de amostra em termos de peso seco
**File de peixe="in natura"
***Preparado a partir de matéria-prima de mesma procedência, mas em outra oportunidade
F=Fosforilada; FE=Fosforilada/Etanol; E=Etnol; EH=Etnol/Hexano;
S=Sururu; SE=Sururu/Etanol; PT=Proteinas Totais.

Os concentrados analisados em nosso trabalho são todos provenientes de uma mesma espécie de peixe, mas preparados de forma muito diversificada. Algumas das variações que se observa podem ser decorrentes da adição de elementos provenientes dos diferentes aditivos que se utilizou nas diferentes preparações. O teor mais elevado de cálcio presente no concentrado de proteínas totais (PT), deve-se ao fato que o produto foi submetido à desossia mecânica, enquanto que para as outras preparações utilizou-se apenas o file. Os elevados valores de sódio e fósforo dos concentrados fosforilados são provenientes do hexametafosfato de sódio (Figura 1).
Observa-se que houve perda por lixiviação de minerais durante o processamento quando se compararam os valores dos concentrados aos do peixe “in natura”. Minerais como ferro, zinco e cobre podem ser provenientes do álcool e do hexano empregados para eliminação das gorduras. O concentrado de proteínas totais (PT), que não passou por processo de três etapas de lavagem como os demais concentrados, apresentou teores mais elevados de potássio, cálcio, magnésio, ferro, zinco, cromo e manganês.

O NRC (National Research Council) classifica como minerais o cálcio, potássio e magnésio, e como oligoelementos o ferro, zinco, iodo, selênio, cobre, manganês, fluor, cromo e molibdênio. O sódio, potássio e o cloro são classificados como eletrólitos, juntamente com a água. O NRC apresenta uma revisão sobre os requerimentos destes elementos, ocorrência, mecanismo de absorção, toxicidade e ingestão excessiva (National Research Council, 1989). Para homens de 72 kg os valores de ingestão diária recomendados pelo NRC são: cálcio, 1200 mg; cromo, 50-200 µg; cobre 1,5 - 3,0 mg; ferro, 10 mg; potássio, 2000 mg; magnésio, 350 mg; manganês, 2,5 - 5,0 mg; sódio, 500 mg; fósforo, 1200 mg; e zinco, 15 mg.

Ao se comparar, de forma global, o conteúdo de minerais dos concentrados às exigências nutricionais, verificou-se que seria necessário ingerir mais de 500g do concentrado por dia para atender a estes exigências, ou seja, este prato não poderia ser a única fonte de minerais na dieta. No caso da incorporação em produtos para fins médicos teria que se fazer a suplementação mineral.

Lisina quimicamente disponível

Pelo fato da lisina se constituir em um aminoácido reativo, a determinação de sua disponibilidade pode ser um indicador de efeito de processamento. A Tabela 7 apresenta os resultados da análise de lisina disponível através do método de Kakade & Liener (1969). Lisina total foi determinada através de HPLC, conforme descrito para análise de aminoácidos.
Tabela 7. Lisina disponível de concentrados protêicos de tilápia do Nilo

<table>
<thead>
<tr>
<th>Concentrados</th>
<th>Lisina disponível (g/100 g proteína)</th>
<th>Lisina total (g/100 g proteína)</th>
<th>Lisina disponível (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proteínas totais</td>
<td>6,16 ± 0,13 a</td>
<td>9,85</td>
<td>62,54</td>
</tr>
<tr>
<td>Etanol a frio</td>
<td>8,57 ± 0,38 c</td>
<td>10,24</td>
<td>83,69</td>
</tr>
<tr>
<td>Etanol/Hexano</td>
<td>6,94 ± 0,36 b</td>
<td>9,00</td>
<td>77,11</td>
</tr>
<tr>
<td>Surimi</td>
<td>7,63 ± 0,25 b</td>
<td>10,24</td>
<td>74,51</td>
</tr>
<tr>
<td>Surimi/Eтанол</td>
<td>7,28 ± 0,26 ab</td>
<td>9,92</td>
<td>73,39</td>
</tr>
<tr>
<td>Fosfatos</td>
<td>8,46 ± 0,16 c</td>
<td>10,11</td>
<td>83,68</td>
</tr>
<tr>
<td>Fosfatos/Eтанол</td>
<td>6,89 ± 0,07 b</td>
<td>9,68</td>
<td>71,18</td>
</tr>
</tbody>
</table>

Medias seguidas de mesma letra não diferem estatisticamente pelo teste de Tukey (p<0,05)

A retenção da disponibilidade de lisina foi superior a 70% em todos os concentrados, exceto para o concentrado de proteínas totais (PT), o que é perfeitamente aceitável uma vez que foi submetido a vários tratamentos com etanol a quente para redução da gordura. O concentrado tratado com etanol a frio (E) e aquele acrescido de fosfatos se mostraram estatisticamente diferentes ao tratado com etanol/hexano, ou dos obtidos com a tecnologia do surimi, mas os valores foram muito próximos.

4.1.2 Caracterização química dos resíduos de processamento

Dados de composição centesimal dos dois subprodutos de processamento descritos na metodologia foram analisados e são apresentados na Tabela 8. O teor proteico destes resíduos justificou o estudo de suas propriedades nutricionais. Os resultados de ensaios “in vivo” com o resíduo da desossa mecânica constam da Tabela 29 e se verificou que o produto apresentava baixa digestibilidade, comparativamente aos demais concentrados, e por esta razão optou-se por preparar um hidrolisado deste resíduo com 25% de grau de hidrólise. Ao se tratar da avaliação nutricional dos concentrados e hidrolisados, (item 4.4) serão abordados aspectos da avaliação nutricional destes sub-produtos, incluindo a digestibilidade para peixes. A Tabela 9 mostra a composição de minerais destas frações.

O objetivo foi o de verificar a potencialidade do uso destes sub-produtos na alimentação animal, e mais objetivamente, para alimentação de peixes. A garantia da alta produtividade e ótimo crescimento dos peixes dependem de que sejam atendidas suas necessidades proteico-energéticas e de demais nutrientes essenciais, nas proporções requeridas. Por outro lado, se estas
necessidades podem ser supridas por fontes mais baratas de nutrientes, os resultados passam a ser mais atraentes do ponto de vista econômico.

Tabela 8. Composição centesimal de sub-produtos de tilápia do Nilo

<table>
<thead>
<tr>
<th>Material</th>
<th>Resíduo desossa mecânica</th>
<th>Resíduo hidrolisado</th>
<th>Proteína sarcoplasmática</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proteínas</td>
<td>61,62</td>
<td>65,70</td>
<td>69,87</td>
</tr>
<tr>
<td>Gordura</td>
<td>13,55</td>
<td>11,00</td>
<td>1,67</td>
</tr>
<tr>
<td>Umidade</td>
<td>3,00</td>
<td>4,68</td>
<td>10,30</td>
</tr>
<tr>
<td>Cinzas</td>
<td>20,33</td>
<td>18,19</td>
<td>18,14</td>
</tr>
<tr>
<td>Carboidratos</td>
<td>0,31</td>
<td>0,30</td>
<td>nd*</td>
</tr>
<tr>
<td>Total</td>
<td>98,81</td>
<td>99,87</td>
<td>99,98</td>
</tr>
</tbody>
</table>

*nd = não determinado
**Grau de hidrólise = 25%*

Tabela 9. Composição mineral dos sub-produtos de processamento de tilápia do Nilo

<table>
<thead>
<tr>
<th>Minerais</th>
<th>Resíduo desossa (mg/100g)</th>
<th>P. Sarcoplasmáticas (mg/100g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cálcio</td>
<td>6091</td>
<td>78</td>
</tr>
<tr>
<td>Fósforo</td>
<td>2913</td>
<td>1731</td>
</tr>
<tr>
<td>Magnésio</td>
<td>1035</td>
<td>77</td>
</tr>
<tr>
<td>Potássio</td>
<td>3782</td>
<td>3121</td>
</tr>
<tr>
<td>Sódio</td>
<td>2140</td>
<td>2228</td>
</tr>
<tr>
<td>Alumínio</td>
<td>1,86</td>
<td>7</td>
</tr>
<tr>
<td>Bário</td>
<td>3,04</td>
<td>nd</td>
</tr>
<tr>
<td>Berílio</td>
<td>0,01</td>
<td>nd</td>
</tr>
<tr>
<td>Cobre</td>
<td>0,88</td>
<td>11</td>
</tr>
<tr>
<td>Cromo</td>
<td>0,31</td>
<td>3</td>
</tr>
<tr>
<td>Ferro</td>
<td>8,27</td>
<td>58</td>
</tr>
<tr>
<td>Litio</td>
<td>0,06</td>
<td>0,01</td>
</tr>
<tr>
<td>Manganês</td>
<td>0,28</td>
<td>1</td>
</tr>
<tr>
<td>Vanádio</td>
<td>0,11</td>
<td>0,02</td>
</tr>
<tr>
<td>Zinco</td>
<td>1,56</td>
<td>2</td>
</tr>
</tbody>
</table>

*nd = não determinado

Não foi possível determinar alguns dos micronutrientes minerais da fração sarcoplasmática, devido à presença de excesso de sódio na amostra decorrente do tratamento com solução salina.
4.1.3 Eletroforese dos concentrados protêicos de tilápia do Nilo

Quando se submete a miosina a eletroforese com SDS observa-se uma cadeia pesada (200 kDa) e três leves, cujos pesos moleculares para tilápia seriam: 25 kDa, 17,5 kDa e 14 kDa. Para actina o peso molecular estaría em torno de 43k Da. O peso molecular da tropomiosina é de 68 kDa, e está formada por duas cadeias. A troponina tem três componentes: troponina T 37 kDa, ou 30 kDa; troponina C 21 kDa e troponina I, 19 kDa (Suzuki, 1987; Chang & Regenstein, 1997).

A troponina e a tropomiosina juntas constituem mais de 10% das proteínas do tecido muscular. A troponina está associada aos filamentos finos cimentando a longa cadeia de tropomiosina no encaixe da actina (Morrisey et alii, 1987). Penny & Ferguson-Pryce (1979) demonstraram que a troponina T é a proteína mais sensível à proteólise e que portanto pode ser utilizada como marcadora para controle da proteólise pós-mortem. A presença dos peptídeos resultantes da hidrólise da troponina T, sugeridos por Penny & Ferguson-Pryce (1979), como sendo de 34 kDa, 30 kDa, e 27 kDa é difícil de detectar porque os pesos moleculares destes peptídeos se confundem com os das demais frações de troponina e aquelas das cadeias leves de miosina. Foram encontrados peptídeos com peso molecular de 27 kDa e 30 kDa, em todas as preparações, mas podem corresponder às sub-unidades da β-actina (Hultin, 1993).

Os concentrados referidos no fluxograma da Figura 1 foram analisados por eletroforese em gel de poliacrilamida a 12,5%. Conforme se verifica na Figura 9, as preparações contendo fosfato (F, e FE) apresentam a banda de troponina T (37 kDa), logo abaixo da actina (43 kDa). Nas demais preparações, esta banda está ausente. Isto poderia sugerir algum efeito protetor dos fosfatos, eventualmente diminuindo a susceptibilidade da proteína à autólise. Efeito semelhante foi observado por Chang & Regenstein (1997), quando estudavam o efeito de fosfatos sobre as propriedades funcionais de bacalhau (Gadus morhua). Embora não fosse o objetivo do trabalho, verificaram que quando se utilizava polifosfato, e especialmente hexametafosfato de sódio, a banda correspondente a subunidade da troponina aparecia com maior intensidade que na amostra controle. O hexametafosfato de sódio é o componente majoritário na mistura de polifosfatos empregada neste trabalho (Figura 3).
Figura 9. **Eletroforese em gel de poliacrilamida de concentrados protécicos de tilápia do Nilo**

1 - Padrão Sigma M3788: (miosina 205 kDa); β galactosidase (116 kDa); fosfodiesterase (97 kDa); frutose-6-fosfato-desidrogenase (84 kDa); soro albumina bovina (66 kDa); desidrogenase glutâmica (55 kDa), ovoglobina (45 kDa) e glicose-3-fosfato desidrogenase (36 kDa).

2 - Etanol (E)
3 - Tratada com polifosfato e etanol (FE)

4 - Tratada com polifosfato (F)
5 - Surimi (S)

6 - Surimi-ethanol (SE)
7 - Etanol-hexano (EH)

8 - Proteínas totais (PT)

Na **Figura 9** pode-se observar proteólise das cadeias pesadas de miosina, caracterizada pelo aparecimento de linhas finas. Normalmente esta é uma banda bem intensa quando se procede a eletroforese de amostras recém preparadas. Outra evidência da proteólise da miosina são as bandas na região intermediária entre 70 kDa e 140 kDa (Cheng et alii, 1979; Penny & Ferguson-Pryce, 1979; An et alii, 1994; Xiong & Decker, 1995; Benjakul, 1997; Jiang et alii, 1997). A proteólise sempre foi uma preocupação na manufatura de surimi de pescado, devido à atividade autolítica, pois provoca deformações no gel e alterações nas demais propriedades funcionais (Benjakul, 1997; Jiang et alii, 1997). Jiang et alii (1997) estudaram o efeito da degradação do surimi de cavala (*Scomber australasicus*), devido à ação das catépsinas B e L, presentes nos lisossomos, sobre a miosina. Verificaram que após a retirada da polpa, lavagem com NaCl, água e NaHCO₃ 0,4%, que foi semelhante às etapas iniciais empregadas neste trabalho para todos os
concentrados (Figura 1), ainda encontraram 87% da atividade das catепсинсas B e L. A temperatura ótima de atividade destas enzimas é de 50-55°C. An et alii (1994) reportaram que entre as proteínas de pescada, a miosina foi a mais extensivamente hidrolisada, seguida pela troponina T e tropomiosina. A proteólise dos concentrados não parece ter contribuído favoravelmente para o aumento da solubilidade dos concentrados, pois são todos de baixa solubilidade. A catепsina L, pode se associar com as miofibrilas através de interações hidrofóbicas, tornando-a menos solúvel em água (Lin et alii, 1995). Por outro lado, não temos como avaliar o efeito sobre as propriedades funcionais porque a proteólise ocorre nas primeiras etapas do processamento, mesmo quando se trabalha a baixas temperaturas (4°C).

A oxidação de lipídios em presença da miosina também pode contribuir para o seu desaparecimento, e neste caso desapareceriam também as bandas correspondentes às cadeias leves (Xiong & Decker, 1995), mas foi difícil verificar este efeito devido à presença de produtos de proteólise cujo peso molecular se confunde com o das cadeias leves (25 kDa e 18 kDa). Por outro lado, como se verificou, o número de TBARS dos concentrados estava bem abaixo do valor em que as alterações começariam a aparecer.

4.1.4 Propriedades funcionais dos concentrados protéicos

Conforme mencionado anteriormente, o concentrado de proteínas totais foi o primeiro a ser produzido. Obteve-se um produto com aparente estabilidade química, ausência de odor e estabilidade microbiológica (mesófilos 5400 UFC/g; coliformes totais <0,3 NMP/g, bolores e leveduras < 10 UFC/g), mas desprovido de funcionalidade.

Foram preparadas formas alternativas de concentrados para se tentar melhorar a funcionalidade do concentrado e procedeu-se ao estudo das propriedades funcionais destes concentrados de forma sumária apenas para se detectar qual a melhor forma de preparo. O concentrado que apresentou melhor funcionalidade foi preparado em maior quantidade para o estudo mais detalhado de suas propriedades funcionais. Desta forma, o aprofundamento das discussões se fará com relação ao concentrado CP, concentrado EQ, que serviu de matéria prima para os hidrolisados, e para os hidrolisados (item 4.3).
O tratamento com solventes foi uma forma de eliminar gordura, mas se tentou fazer o processo a frio (etanol, e etanol/hexano) para minimizar a perda de funcionalidade decorrente do tratamento térmico.

A adoção da tecnologia de preparo do surimi neste trabalho, partiu do pressuposto que, do ponto de vista bioquímico, o surimi é um concentrado de proteínas miofibrilares de pescado, estabilizado por crioprotetores como sacarose, políois (sorbitol, Palatinit, lactitol), ou polidextrose e fosfatos complexos (Syeh et alii, 1991; Lee, 1986). Uma das causas da perda de funcionalidade das proteínas miofibrilares é a desnaturação causada pelo congelamento ou por ação do calor. As condições brandas do preparo do surimi garantem a obtenção de um produto com melhores propriedades funcionais, especialmente no que se refere à formação de gel (Reppond et alii, 1995).

A opção pelo concentrado tratado com polifosfatos considerou que a natureza e concentração de íons têm efeito significativo sobre aspectos importantes da funcionalidade das proteínas como: absorção de água, inchamento e solubilidade. O modo de ação dos fosfatos em carnes não está totalmente esclarecido, mas sabe-se que promovem a extração de proteínas, a dissociação da actomiosina e a solubilidade da miosina, elevam o pH, aumentam a força iônica e sequestram metais alcalino-terrosos (Kinsella, 1976; Morrissey et alii, 1987; Borderias & Montero, 1988; Cheftel et alii, 1989; Hall & Ahmad, 1992; Panyam & Kilara, 1996).

Solubilidade e capacidade de absorção de água e de gordura

A Figura 10 mostra o efeito do pH sobre a solubilidade dos concentrados em solução de cloreto de sódio 0,5 M, porque se verificou preliminarmente que a solubilidade era superior nesta concentração salina. O pH de minima solubilidade para todos os concentrados ficou na região de 4,5, aumentando à medida que o pH atingiu a faixa alcalina como ocorre com a maioria das proteínas. A pH 7,0 os concentrados com menor solubilidade foram os de proteínas totais (PT) e o obtido com etanol/hexano (EH). O primeiro devido, possivelmente à desnaturação protéica acarretada pelo processamento com etanol a quente, e o segundo, em decorrência do caráter hidrofóbico do tratamento com solventes. Os mais solúveis foram os tratados com polifosfatos (F) e obtidos através da tecnologia do surimi (S), respectivamente. O tratamento adicional com etanol para eliminar a gordura promoveu a diminuição da solubilidade para ambos os concentrados, eventualmente pela mesma razão considerada para o concentrado EH.
Figura 10. **Solubilidade de concentrados protéicos de tilápia do Nilo em função do pH em cloreto de sódio 0,5M**

As proteínas miofibrilares de pescado são mais sensíveis à desnaturação que as dos mamíferos. As alterações bioquímicas que ocorrem no músculo durante o "rigor mortis" e aquelas decorrentes do processamento afetam significativamente as propriedades funcionais das proteínas musculares. Existe muita controvérsia na definição de desnaturação. O processo de desnaturação geralmente envolve alterações na estrutura ordenada da proteína nativa, sem a ruptura de ligações covalentes. Pode envolver inicialmente o desenovelamento da proteína sem perda na solubilidade. Esta etapa é seguida geralmente por agregação. Esta sequência e as velocidades relativas variam de uma proteína para outra. A diminuição da solubilidade é usada frequentemente como um índice de desnaturação. A falta de funcionalidade de concentrados protéicos de pescado, com vistas à obtenção de um produto com baixo teor de lipídios, dificultou por muitos anos a utilização dos concentrados protéicos de pescado (Kinsella, 1976).

Os processos de secagem, e especially no caso das proteínas de pescado, a liofilização, afetam negativamente as propriedades funcionais. Venugopal et alii (1996), prepararam dois concentrados de pescado, tratando a polpa cominuada com ácido acético glacial
para promover a geleificação. Compararam o efeito de dois processos de secagem: o primeiro foi seco ao ar (temperatura ambiente) e outro seco por “spray drying”. O produto seco ao ar apresentou menor solubilidade, em água ou frente a variáveis concentrações de NaCl, e menor capacidade emulsificante. O concentrado seco por “spray drying” foi quase totalmente solúvel em presença de tripolifosfato de sódio. A composição foi semelhante à obtida para os concentrados aqui reportados, mas o valor nutricional do concentrado seco por “spray drying” foi superior ao seco ao ar.

A capacidade de absorção de água é um fenômeno importante na tecnologia de alimentos, pois a água absorvida em pequenas quantidades não atua como solvente, mas contribui para dar corpo e aumentar a viscosidade. A capacidade de absorção de água e de óleo dos concentrados pode ser verificada nas Figuras 11 e 12, respectivamente. Como este é um ensaio preliminar apenas para detectar qual a forma de concentrado com melhor funcionalidade não se fez estudo do efeito de pH, sendo a análise conduzida no pH final de processamento dos concentrados, ou seja, em torno de 6,5.

Analisando-se a Figura 11 constata-se que todos os concentrados apresentaram alta capacidade de absorção de água, à exceção do concentrado de proteínas totais (PT), obtido por extração alcoólica a quente. Possivelmente este tratamento promoveu a agregação irreversível da proteína, dificultando a interação com a água. A maioria dos concentrados apresentou rápida absorção, atingindo o máximo em torno de 10 segundos. O concentrado preparado com a tecnologia do surimi (S), também apresentou elevada capacidade de absorção de água, mas com perfil de absorção diferente dos demais. Aparentemente o tratamento com etanol e a utilização do sistema etanol/hexano contribuíram para melhorar a capacidade de absorção de água, ao contrário do que ocorreu com a solubilidade da proteína. De acordo com Cheftel et alii (1989) não existe relação entre solubilidade e capacidade de absorção de água.

Proteínas nativas têm menor capacidade de absorção de água que as mais desnaturadas, porque a alta hidrofobicidade de superfície da proteína mais desnaturada promove a formação de uma matriz protéica (estabilizada por interações hidrofóbicas) capaz de reter apreciável quantidade de água em sua estrutura (Wagner & Añon, 1990).
Figura 11. Capacidade de absorção de água de concentrados protéicos de tilápia do Nilo (pH ≈ 6,5)

Figura 12. Capacidade de absorção de óleo de concentrados protéicos de tilápia do Nilo (pH ≈ 6,5)
O concentrado de proteínas totais apresentou a menor capacidade de absorção de óleo. O concentrado fosforilado (F) e o produzido de acordo com a metodologia empregada para o preparo do surimi (S) apresentaram os valores mais elevados. De acordo com Kinsella (1976), a preparação de complexos proteína-fosfato a partir de concentrados de pescado origina produtos com boa funcionalidade, entretanto estas propriedades podem se deteriorar durante o armazenamento. Quando estas preparações são adicionadas de carboidratos durante o processamento, as propriedades funcionais podem ser ainda melhores, e a estabilidade funcional mantida por armazenamento refrigerado. Aparentemente o tratamento posterior com etanol reduziu esta propriedade, conforme se verifica na Figura 12 para os respectivos extratos. Valores da ordem de 1,30 a 1,40 g água/g proteína, e de 0,85 a 0,95 g de óleo/g proteína foram verificados por Moharram et alii (1989) em isolados proteicos de pescado.

Formação de espumas e emulsões

A Tabela 10 registra os valores de capacidade emulsificante, índice de atividade emulsificante e de estabilidade de emulsão dos diferentes concentrados. A proteína adicionada de polifosfatos apresentou a maior capacidade emulsificante, superior, inclusive, à preparada por Spinelli et alii (1972b), que variou de 145 a 224 g óleo/g de proteína. O valor para o surimi foi próximo ao da proteína contendo fosfatos. Ambos os concentrados apresentaram também elevada capacidade de absorção de gordura, o que justifica este resultado. A capacidade emulsificante do concentrado de etanol/hexano preparado por Cobb III & Hyder (1972) foi de 155 mL de óleo/g de proteína a pH 2,0 e de 60 mL a pH 5. Valores mais baixos, em torno de 50 a 60 mL de óleo/g proteína, foram reportados para pequenos peixes pelágicos (Moharram et alii, 1989).

Tabela 10. Capacidade emulsificante de concentrados proteicos de tilápia do Nilo

<table>
<thead>
<tr>
<th>Concentrados</th>
<th>CEM</th>
<th>EE</th>
<th>IAE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fosfatos (F)</td>
<td>278,92 ± 21,30 d</td>
<td>70,88 ± 0,35 b</td>
<td>31,54 ± 1,43 c</td>
</tr>
<tr>
<td>Fosfatos/etanol (FE)</td>
<td>244,78 ± 13,20 c</td>
<td>67,85 ± 0,06 ab</td>
<td>27,50 ± 0,32 b</td>
</tr>
<tr>
<td>Etanol a frio (E)</td>
<td>não formou</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Etanol/hexano (EH)</td>
<td>211,11 ± 5,09 b</td>
<td>75,16 ± 1,08 c</td>
<td>27,81 ± 0,85 b</td>
</tr>
<tr>
<td>Surimi (S)</td>
<td>226,00 ± 2,65 bc</td>
<td>73,29 ± 0,29 bc</td>
<td>31,36 ± 2,50 c</td>
</tr>
<tr>
<td>Surimi/etanol (SE)</td>
<td>130,33 ± 2,02 a</td>
<td>63,04 ± 0,16 a</td>
<td>16,09 ± 0,63 a</td>
</tr>
<tr>
<td>Proteínas totais (PT)</td>
<td>não formou</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Medias seguidas de mesma letra (colunas) não diferem estatisticamente.

CEM = Capacidade emulsificante (mL óleo/g proteína)

IAE = Índice de atividade emulsificante (m²/g)

EE = Estabilidade da emulsão (%)
Os ensaios preliminares referentes à capacidade de formação de espuma dos extratos, encontram-se resumidos na Tabela 11. Os concentrados que apresentaram maior capacidade formadora de espuma foram aqueles tratados com fosfatos, seguidos das preparações do surimi. Para o caso dos concentrados tratados com fosfato, o etanol não diminuiu a capacidade formadora de espuma ou sua estabilidade, o que não ocorreu com as preparações baseadas no surimi. Para avaliação da estabilidade da espuma devem ser considerados dois aspectos: a drenagem de líquido e o colapso da espuma. A estabilidade de espuma mostrada na Tabela 11 refere-se ao colapso da espuma, e o concentrado contendo fosfatos foi o mais estável, seguido da preparação do surimi. A menor drenagem de líquido foi observada com as preparações de surimi, para as quais o processo de batimento originou um produto de alta viscosidade, semelhante a um gel aerado. O concentrado de proteínas totais não originou espuma.

Tabela 11. Capacidade de formação de espuma de concentrados protéicos de tilápia do Nilo

<table>
<thead>
<tr>
<th>Concentrado</th>
<th>CESP (%)</th>
<th>EESP (%)</th>
<th>LD (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fosfatos (F)</td>
<td>220,00</td>
<td>26,36</td>
<td>94,00</td>
</tr>
<tr>
<td>Fosfatos/etanol (FE)</td>
<td>254,00</td>
<td>45,67</td>
<td>96,00</td>
</tr>
<tr>
<td>Etanol (E)</td>
<td>140,00</td>
<td>1,43</td>
<td>98,00</td>
</tr>
<tr>
<td>Etanol/hexano (EH)</td>
<td>150,00</td>
<td>6,67</td>
<td>100,00</td>
</tr>
<tr>
<td>Surimi (S)</td>
<td>211,82</td>
<td>34,33</td>
<td>89,09</td>
</tr>
<tr>
<td>Surimi/etanol (SE)</td>
<td>155,56</td>
<td>1,43</td>
<td>90,00</td>
</tr>
<tr>
<td>Proteínas totais (PT)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

CESP = Capacidade de formação de espuma
EESP = Estabilidade da espuma após 10 min
LD = Líquido drenado após 10 min

Flexibilidade

Na literatura científica são inúmeros os trabalhos que procuram correlacionar funcionalidade e estrutura de proteínas, especialmente no que se refere às propriedades de superfície. Atuam, além dos fatores ambientais, a hidrofobicidade e tensão interfacial das proteínas. As proteínas são susceptíveis à desnaturação na interface ar/água e óleo/água. Esta desnaturação promove aumento da hidrofobicidade e da capacidade emulsificante e de formação de espuma (Voutsinas et alii, 1983; Li-Chan et alii, 1984; Townsend & Nakai, 1985; Medina et alii, 1992; Lee et alii, 1992; Kato et alii, 1985).
De acordo com Kato et alii (1985), moléculas proteicas mais flexíveis seriam mais
susceptíveis à desnaturação de superfície que as moléculas mais rígidas. O autor sugere que a
susceptibilidade a proteases poderia ser um método para avaliar a flexibilidade da proteína, uma
vez que esta susceptibilidade depende muito mais da conformação da proteína que de sua
estrutura primária. As transições de proteína nativa para proteína desnaturada podem ser
avaliadas através de calorimetria associada a espectrometria no ultravioleta, mas é necessário que
a proteína seja solúvel, e preferencialmente purificada, mas pequenas alterações na conformação
aumentam a susceptibilidade à digestão proteolítica e consequentemente à flexibilidade (Imoto et
alii, 1976). O método para determinação de flexibilidade ainda não está estabelecido. Tonsend &

Modificações químicas nas proteínas como acetilação aumentam a flexibilidade e
melhoram as propriedades de superfície. O coeficiente de correlação para capacidade
emulsificante de quatro proteínas acetalizadas: lisozima, ovomalumina, ovotransferrina e globulina
11S foi de 0,91 (p<0,01) para capacidade de formação de espumas e de 0,87 (p<0,01) (Kato et
alii, 1985).

Na Tabela 12 estão apresentados os resultados da determinação de flexibilidade nos
concentrados proteicos de tilápia do Nilo, expressos em % proteína hidrolisada/min. Os valores
mais elevados foram obtidos com os concentrados baseados na tecnologia do surimi (S), aqueles
adicionados de fosfatos (F) e o tratado com etanol/hexano (EH), que coincide com os valores
mais elevados de capacidade emulsificante. O concentrado tratado com etanol a frio (E)
apresentou alto valor de flexibilidade, mas não apresentou capacidade emulsificante e nem de
formação de espuma. Segundo Medina et alii (1992), a fosforilação compromete a flexibilidade
da proteína, especialmente na região de pH próxima ao ponto isoeletrostático. Eventualmente a
interação dos polifosfatos com as proteínas miofibrilares poderia ter contribuído para baixar o
valor da flexibilidade nos concentrados F e FF, que apresentaram bom desempenho em termos de
propriedades funcionais.
Tabela 12. Flexibilidade de concentrados protêicos de tilápia do Nilo

<table>
<thead>
<tr>
<th>Proteína</th>
<th>Flexibilidade (%/min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Albumina</td>
<td>15,07±0,73 f</td>
</tr>
<tr>
<td>Etanol a Frio</td>
<td>11,26±0,31 d</td>
</tr>
<tr>
<td>Surimi</td>
<td>13,32±0,53 e</td>
</tr>
<tr>
<td>Proteínas Totais</td>
<td>7,98±0,21 b</td>
</tr>
<tr>
<td>Etanol a Quente</td>
<td>6,30±0,55 a</td>
</tr>
<tr>
<td>Fosfatos/Etanol</td>
<td>7,94±0,68 a</td>
</tr>
<tr>
<td>Fosfatos</td>
<td>9,78±0,46 c</td>
</tr>
<tr>
<td>Surimi/Etanol</td>
<td>10,94±0,27 cd</td>
</tr>
<tr>
<td>Etanol/Hexano</td>
<td>10,11±0,23 cd</td>
</tr>
</tbody>
</table>

Média seguidas de mesma letra não diferem estatisticamente pelo teste de Tukey (p<0,05)

Quando todos os concentrados foram considerados na análise da relação entre a capacidade de formação de espuma e a flexibilidade, o coeficiente de correlação (r) foi de 0,10 (p<0,05). A exclusão dos concentrados contendo fosfato fez com que o valor se elevasse para 0,97 (p<0,05). Eventualmente, a capacidade de formação de espuma foi muito mais afetada pela adição dos fosfatos do que poderia ser explicado pela flexibilidade. Kato & Nakai (1985) obtiveram coeficiente de correlação de 0,91 (p<0,01) entre a flexibilidade e a capacidade de formação de espuma de várias proteínas. Embora, a flexibilidade da proteína seja um dos fatores determinantes na formação de espuma, outros fatores também devem ser considerados (Kato et alii, 1985; Tonsend & Nakai, 1983). Para formar espuma, a proteína precisa se difundir na interface ar/água e se orientar de forma a abaixar a tensão interfacial e se polimerizar. Neste processo devem ser considerados, a tensão interfacial, a viscosidade, a solubilidade e a hidrofobicidade da proteína. A complexidade das reações envolvidas na funcionalidade das proteínas não permite que se façam previsões a respeito da funcionalidade partindo de um único indicativo, mas a flexibilidade deve ser um dos parâmetros a ser introduzido na análise global das propriedades funcionais das proteínas.

A maioria dos estudos que apresentam alta correlação entre funcionalidade e flexibilidade são realizados em proteínas purificadas e não em sistemas complexos como um concentrado protêico. Além de tudo, tais proteínas não foram afetadas adversamente por processamento que poderia induzir desnaturação.
4.1.5 Concentrado protéico tratado com polifosfatos (CP)

Concentrados protéicos com excelente funcionalidade têm sido desenvolvido a partir de várias espécies de peixes (Venugopal & Shahidi, 1995). De um modo geral o concentrado tratado com fosfatos e o obtido com a tecnologia do surimi apresentaram as melhores características em termos de propriedades funcionais, mas especialmente no caso do surimi se faz necessário um tratamento adicional para eliminação da gordura e consequente estabilidade do produto. Devido à presença de carboidratos não foi possível determinar o número de TBARS neste concentrado, e avaliação da oxidação através do número de peróxidos, tal como preconizado pela AOAC, requer uma quantidade de material da qual não se dispunha, e com a técnica reduzida, não houve formação de cor em presença de iodo. Contudo, verificou-se alteração de cor mesmo no armazenamento refrigerado deste concentrado. Por outro lado, as preparações Surimi (S) e Surimi/Etanol (SE) mostraram os menores rendimentos. A desvantagem da presença de carboidratos e a obtenção de um produto de menor teor de proteínas, como é o caso das preparações S e SE restringe sua aplicação comercial.

Do ponto de vista nutricional não houve diferença estatisticamente significativa entre os concentrados Surimi/Etanol (SE) e Fosfatos/Etanol (FE) comparativamente à caseína, no que se refere à digestibilidade e valor biológico (Tabela 29). Com base nestas considerações e devido ao maior rendimento do concentrado com Fosfatos/Etanol optou-se por produzi-lo em maior quantidade para o estudo mais detalhado das propriedades funcionais. A partir daí, para evitar confusões com o concentrado FE, este concentrado será designado CP. O processo foi conduzido de acordo com o fluxograma da Figura 3.

A determinação de substâncias reativas ao ácido tiobarbitúrico (TBARS) foram realizadas 6 meses após a produção do concentrado, obtendo-se o valor de 1,24 μmole/kg. Onze meses após, encontrou-se o valor de 1,97 μmole/kg. Segundo, Molins et alii (1987), os fosfatos previnem a rancidez oxidativa, partindo da observação de que pasteis de carne adicionados de diversos tipos de fosfatos, apresentaram valores de TBARS menores. Há também a possibilidade de interferência dos fosfatos na determinação do valor de TBARS. Shahidi et alii (1987) verificaram o efeito de combinações de antioxidantes com ascorbato de sódio e tripolifosfato de sódio ou EDTA. Observaram um forte sinergismo entre ascorbato e polifosfatos, especialmente com hexametafosfato de sódio. O estudo das propriedades funcionais deste concentrado será apresentado comparativamente com as propriedades funcionais dos hidrolisados (Item 4.3).
4.2 PREPARO E CARACTERIZAÇÃO DOS HIDROLISADOS

4.2.1 Otimização das condições de hidrólise

Foram feitos ensaios preliminares com enzimas como Alcalase®, Flavourzyme® e Esperase® (Novo Nordisk) para estabelecer metodologia para elaboração dos hidrolisados e avaliação do grau de hidrólise.

A opção recai sobre a Flavourzyme®, que é uma preparação composta de várias endoproteases e exopeptidases (amino e carboxi terminal), que hidrolisa proteínas extensivamente (Pommer & BFA Protein, 1995). Uma das vantagens da utilização de Flavourzyme® em relação a Alcalase® é o menor conteúdo de sal formado no hidrolisado, porque no primeiro caso o pH é mantido em 7,0 no decurso da reação, e no caso da Alcalase®, em 8,0. Por outro lado, pode-se preparar hidrolisado com Flavourzyme® sem adição de soda pois a queda do pH pode ser uma vantagem porque sendo uma mistura de proteases, novas enzimas exercerão sua ação. Tem-se verificado que a hidrólise de vários substratos com Flavourzyme a pH 5,0 propicia hidrolisado com excelente sabor (Pommer & BFA Protein, 1995). Outra vantagem é que Flavourzyme® é mais termolábil que as demais enzimas citadas, sendo possível inativá-la ao término da hidrólise por tratamento térmico (5 min a 85°C a pH 7,0). Quanto menor o tempo e a temperatura para inativação da enzima, menores os efeitos deletérios sobre as propriedades funcionais e nutricionais dos hidrolisados (Novo Nordisk, 1995c).

O concentrado de proteínas miofibrilares (EQ) serviu de base para o preparo dos hidrolisados. A Figura 13 apresenta o efeito da concentração da enzima sobre a velocidade e extensão da hidrólise, quando se utiliza 12% de concentração de substrato, pH 7,0 e 50°C. Esta concentração de substrato permite a obtenção de uma suspensão proteica que possibilite uma boa homogeneização durante o período de hidrólise e bom rendimento na produção de hidrolisado. Apesar de inicialmente espessa, a suspensão fluidifica à medida que a hidrólise progride, efeito que se verifica logo nos primeiros minutos. A concentração de substrato recomendada pelo fabricante da enzima é de 8-12% e a dosagem de enzima na faixa de 0,5 a 2,0g/100g de proteína a ser hidrolisada.
Figura 13. Efeito da relação ES sobre o grau de hidrólise de concentrado protéico (EQ) de tilápia do Nilo ([S = 12%])

O estudo cinético do processo é complexo devido aos vários tipos de ligações peptídicas envolvidas e suas diferentes vulnerabilidades ao ataque enzimático durante o processo hidrolítico. Estes efeitos tornam difícil interpretar os resultados experimentais através de equações cinéticas e reduz o significado dos parâmetros obtidos. Como muito destes processos têm importância econômica e são protegidos por patentes, todos os trabalhos publicados tendem a estudar estas características em termos de grau de hidrólise. O decréscimo observado na velocidade de hidrólise pode ser atribuído a três fatores: a) decréscimo na concentração de ligações peptídicas susceptíveis à hidrólise; b) possível inibição da enzima pelos produtos de reação; e c) desnaturação da enzima (Gonzáles-Tello et alii, 1994b).

A determinação do grau de hidrólise no caso deste experimento foi efetuada mediante a quantificação do consumo de uma solução de hidróxido de sódio 1 N. O método do pHstat foi utilizado durante o preparo do hidrolisado para acompanhar o curso da reação. O método recomendado pelo fabricante da enzima é o do TNBS, mas não se pode empregá-lo para acompanhamento da hidrólise, pois após retirada da alíquota para análise, além do tempo requerido para pipetagem, o método requer 1 hora de incubação a 50°C e 30 min à temperatura ambiente após parar a reação, para proceder à leitura no espectrofotômetro. Detalhes sobre estes métodos estão apresentados na parte de Revisão da Literatura (item 2.6.2).
Procurou-se estabelecer a correlação dos resultados obtidos pelos dois métodos. O critério foi realizar a determinação pelo TNBS retirando uma aliquota, colendo-a em TCA 10%, e realizar a determinação do grau de hidrólise no material filtrado através de papel de filtro Whatmann 42. Foram analisadas comparativamente 103 amostras. Os resultados aparecem no diagrama de dispersão da Figura 14. A equação que representa a relação e que pode ser utilizada para prever o grau de hidrólise determinado pelo método do TNBS, a partir do pHstat, para estes experimentos, é: \(\text{TNBS} = 2.243 \text{ pHstat} - 2.0848 \). O coeficiente de determinação foi bastante elevado, 0,9178, ou seja, 92% da variância é explicada pela relação entre os dois métodos, além, é claro, dos fatores aleatórios. O modelo proposto foi: \(y = \beta_0 + \beta_1 X + \varepsilon \). Através da Análise de Regressão (p<0,05) verifica-se que o modelo proposto diminui bastante a variância residual (de 506,84 para 41,61).

Figura 14. Correlação de metodologia para determinação de grau de hidrólise

Webster et alii (1982) estabeleceram equações semelhantes para correlacionar os valores de grau de hidrólise pelo TNBS a partir da adição de base. As equações diferiram em função da enzima (Alcalase® ou Neutrase®) e em função do tecido hidrolisado (rumen, pulmão). Nas equações de regressão encontradas por estes autores para Alcalase® o valor do coeficiente de inclinação da reta era muito próximo de 1, valor este que também observamos nestes experimentos.
Figura 15. *Intervalos de confiança e de predição da relação TNBS/pHstat*

A partir do intervalo de confiança (Figura 15) pode-se calcular com 95% de certeza o valor do TNBS a partir do pHstat. Este modelo serve apenas para as condições aqui testadas: pH 7,0; 50°C; α = 0,44 e tendo como substrato o concentrado de proteínas miofibrilares de tilápia do Nilo, e como enzima Flavourzyme®.

4.2.2 Composição centesimal dos hidrolisados

Foram preparados hidrolisados com baixo grau de hidrólise para estudar o efeito sobre as propriedades funcionais. Hidrolisados com grau de hidrólise elevado poderão ser destinados à formulação de alimentos para fins especiais.

A Tabela 13 apresenta a composição centesimal dos hidrolisados com diferentes graus de hidrólise, comparativamente à do concentrado que lhe deu origem (EQ). O teor de proteínas de todos os hidrolisados está ao redor de 90%. A diferença no teor de cinzas decorre da adição do hidróxido de sódio durante a hidrólise, devido à utilização do método do pHstat. A gordura se distribui de forma aleatória entre o sobrenadante e o precipitado durante a centrifugação. Um hidrolisado de pescado típico contém de 75 a 90% de proteína, 10 a 20% de minerais, 0,05 a 0,8% de lipídios e até 8% de água. O produto deverá mostrar ausência de odor em dispersões aquosas de até 4%, e estabilidade no armazenamento. Deve ser seguro do ponto de vista
microbiológico (microorganismos viáveis inferior a 10^4 UFC/g, ausência de microflora patogênica) e ausência de toxinas orgânicas e de resíduos de metal pesado (Sikorski & Naczk, 1981).

Tabela 13. Composição centesimal dos hidrolisados do concentrado protéico de tilápia do Nilo*

<table>
<thead>
<tr>
<th>Grau de hidrólise</th>
<th>Proteínas (%)</th>
<th>Lipídios (%)</th>
<th>Umidade (%)</th>
<th>Cinzas (%)</th>
<th>Total (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HT 2,5</td>
<td>92,31</td>
<td>2,71</td>
<td>5,49</td>
<td>2,65</td>
<td>103,16</td>
</tr>
<tr>
<td>HS</td>
<td>86,33</td>
<td>1,91</td>
<td>7,38</td>
<td>7,01</td>
<td>102,63</td>
</tr>
<tr>
<td>HI</td>
<td>90,53</td>
<td>1,94</td>
<td>5,77</td>
<td>2,79</td>
<td>101,03</td>
</tr>
<tr>
<td>HT 3,5</td>
<td>89,06</td>
<td>2,71</td>
<td>7,09</td>
<td>2,78</td>
<td>101,63</td>
</tr>
<tr>
<td>HS</td>
<td>88,26</td>
<td>0,82</td>
<td>3,81</td>
<td>7,63</td>
<td>100,52</td>
</tr>
<tr>
<td>HI</td>
<td>89,91</td>
<td>2,38</td>
<td>3,83</td>
<td>2,96</td>
<td>99,08</td>
</tr>
<tr>
<td>HT 7,0</td>
<td>88,96</td>
<td>2,71</td>
<td>7,03</td>
<td>2,43</td>
<td>101,13</td>
</tr>
<tr>
<td>HS</td>
<td>88,62</td>
<td>1,57</td>
<td>2,69</td>
<td>6,67</td>
<td>99,55</td>
</tr>
<tr>
<td>HI</td>
<td>88,24</td>
<td>2,00</td>
<td>7,07</td>
<td>3,18</td>
<td>100,49</td>
</tr>
<tr>
<td>HT 7,5</td>
<td>88,47</td>
<td>2,71</td>
<td>7,01</td>
<td>3,54</td>
<td>101,73</td>
</tr>
<tr>
<td>HS</td>
<td>91,21</td>
<td>1,61</td>
<td>2,54</td>
<td>7,00</td>
<td>102,36</td>
</tr>
<tr>
<td>HI</td>
<td>91,04</td>
<td>2,22</td>
<td>4,25</td>
<td>3,33</td>
<td>100,84</td>
</tr>
<tr>
<td>HT 9,0</td>
<td>91,99</td>
<td>2,71</td>
<td>5,84</td>
<td>3,31</td>
<td>103,86</td>
</tr>
<tr>
<td>HS</td>
<td>87,36</td>
<td>0,79</td>
<td>7,13</td>
<td>6,02</td>
<td>101,30</td>
</tr>
<tr>
<td>HI</td>
<td>89,30</td>
<td>2,34</td>
<td>6,88</td>
<td>3,37</td>
<td>101,89</td>
</tr>
<tr>
<td>HT 14,0</td>
<td>92,00</td>
<td>2,71</td>
<td>3,73</td>
<td>4,30</td>
<td>102,74</td>
</tr>
<tr>
<td>HS</td>
<td>88,69</td>
<td>0,96</td>
<td>6,89</td>
<td>4,59</td>
<td>101,13</td>
</tr>
<tr>
<td>HI</td>
<td>90,96</td>
<td>2,43</td>
<td>2,54</td>
<td>3,87</td>
<td>99,80</td>
</tr>
<tr>
<td>HT 22,0</td>
<td>87,72</td>
<td>2,71</td>
<td>4,22</td>
<td>4,39</td>
<td>99,04</td>
</tr>
<tr>
<td>HS</td>
<td>91,69</td>
<td>0,90</td>
<td>2,65</td>
<td>5,57</td>
<td>100,60</td>
</tr>
<tr>
<td>HI</td>
<td>88,07</td>
<td>3,61</td>
<td>4,64</td>
<td>3,87</td>
<td>100,19</td>
</tr>
<tr>
<td>HT 25,0</td>
<td>89,72</td>
<td>2,71</td>
<td>3,87</td>
<td>4,28</td>
<td>100,58</td>
</tr>
<tr>
<td>HS</td>
<td>90,20</td>
<td>1,77</td>
<td>2,01</td>
<td>7,37</td>
<td>101,36</td>
</tr>
<tr>
<td>HI</td>
<td>89,54</td>
<td>4,04</td>
<td>2,80</td>
<td>4,74</td>
<td>101,12</td>
</tr>
<tr>
<td>Concentrado</td>
<td>82,34</td>
<td>2,71</td>
<td>8,38</td>
<td>2,73</td>
<td>96,16</td>
</tr>
</tbody>
</table>

* O teor de carboidratos não foi considerado porque na matéria prima sua concentração é da ordem de 0,45%.

HT = hidrolisado total; **HS** = sobrenadante após centrifugação; **HI** = sedimento, após centrifugação, conforme descrito no item Metodologia.

Apesar de provenientes de uma mesma matéria prima as diversas frações de hidrolisados não apresentam idêntica composição. Influem aqui alguns fatores, que podem atuar de forma isolada ou aditivamente: (a) a adição de hidróxido de sódio durante a produção do hidrolisado (pHstat) origina produtos com diferentes teores de cinzas; (b) apesar da tentativa de padronização no processo de liofilização não foi possível obter produz com idênticos teores de umidade; e (c)
não é possível controlar a partição da gordura durante a centrifugação dos hidrolisados para obtenção das frações III e HS, o que faz com que o teor de lipídios seja diferente nas diferentes preparações. Além destes, fatores aleatórios associados à qualidade das medidas podem justificar as diferenças verificadas, apesar do uso de no mínimo três repetições em todas estas determinações.

4.2.3 Determinação de peso molecular dos hidrolisados

A Figura 16 apresenta os perfis de eluição de hidrolisados proteicos de tilápia do Nilo em HPLC. Em função de não ser possível a obtenção de picos definidos com este tipo de material, trabalhou-se com os tempos de retenção fornecidos pelo “software” do aparelho. A partir da padronização da coluna, empregando-se os padrões citados na Metodologia, foi possível traçar um gráfico da recíproca do logaritmo do peso molecular (ordenada), contra tempos de retenção (abscissa). Através de análise de regressão linear chegou-se à equação da reta: \(y = 0,0037x + 0,1462 \), a qual forneceu os valores de peso molecular para os hidrolisados que aparecem na Tabela 14.

Tabela 14. Pesos moleculares de hidrolisados proteicos de tilápia do Nilo (HPLC)

<table>
<thead>
<tr>
<th>Grau de hidrólise</th>
<th>Pesos moleculares (Da)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>2,5%</td>
<td>16187</td>
</tr>
<tr>
<td>3,5%</td>
<td>13649</td>
</tr>
<tr>
<td>7%</td>
<td>15993</td>
</tr>
<tr>
<td>9%</td>
<td>15660</td>
</tr>
<tr>
<td>14%</td>
<td>13809</td>
</tr>
<tr>
<td>22%</td>
<td>13689</td>
</tr>
<tr>
<td>25%</td>
<td>16211</td>
</tr>
<tr>
<td>45%</td>
<td>11368</td>
</tr>
</tbody>
</table>

Conforme já especificado na metodologia estes hidrolisados foram obtidos com Flavourzyme®, uma preparação comercial composta de exo e endoproteases. Talvez por esta razão, não exista uma separação mais nítida de pesos moleculares, uma vez que foram encontrados valores semelhantes em termos de tamanho molecular para peptídeos com diferentes graus de hidrólise. Além da natureza da preparação enzimática, a utilização do sistema em “batch” contribui para distribuição não uniforme do peso molecular e para o teor elevado de aminoácidos livres (Figura 19).
Figura 16. **Perfil de eluição de peptídeos de hidrolisados proteicos de tilápia do Nilo (HPLC)**

A coluna empregada (Waters Protein Pak 60) tinha como limites de exclusão 1 a 20 kDa, e como padrões: inibidor da enzima conversora de angiotensina (1101,3 Da; angiotensina I, 1296,5 Da; aprotinina, 6500 Da; citocromo C 12327 Da; e β-lactoglobulina 18400 Da).

Por outro lado, não foi possível determinar a proporção relativa destes peptídeos, exceto se se proceder a etapas de purificação adicionais, uma vez que conforme mostra a Figura 16, ocorre sobreposição, formando zonas de separação e não picos como é comum encontrar em sistemas proteicos purificados. O perfil de separação obtido neste trabalho é semelhante aos obtidos por outros autores para este tipo de material (Hernández & Asenjo, 1982; Nakajima etalii, 1992; Mannheim & Cheryan, 1993; Gallagher et alii, 1994; Breen et alii, 1995). Em algumas regiões da Figura 16 verificam-se os mesmos picos, mas com intensidade crescente, o que pode sugerir a existência de sitios de clivagem específicos (Haque & Mozaffar, 1992).

A eletroforese dos hidrolisados em gel de tricina a 16% (Schagger & von Jagow, 1987), aparece na Figura 17. De acordo com estes autores o limite de peso molecular possível de ser avaliado por este método é da ordem de 1 kDa, mas não foi possível obter esta resolução. Quando se compararam os resultados obtidos por HPLC (Tabela 14) e eletroforese (Tabela 15), verifica-se que aparentemente as duas técnicas são complementares porque a resolução para eletroforese, é melhor para peptídeos com peso molecular superior a 10 kDa, e a partir daí a determinação por HPLC fornece resultados melhores. Por outro lado, a coluna Protein Pak tem
seus limites de exclusão entre 1 e 20 kDa o que explica os resultados. Utilizando-se uma coluna com limite superior não se obteria uma boa separação dos peptídos de baixo peso molecular. Para hidrolisados com grau de hidrólise 14% e 22% a eletroforese não foi o método indicado para identificação porque se formam manchas e não bandas características de eletroforese. As medidas dos Rf foram efetuadas por densitometria.

Figura 17. Eletroforese em gel de poliacrilamida de hidrolisados protêicos de tilápia do Nilo
Seqüência dos hidrolisados no gel (grau de hidrólise - GH):
1 - EQ - Concentrado protéico não hidrolisado
2 - GH = 3,5% (Flavourzime)
3 - GH = 7,0% (Flavourzime)
4 - GH = 9,0% (Flavourzime)
5 - GH = 14% (Flavourzime)
6 - GH = 21% (Flavourzime)
7 - GH = 25% (Alcalase)
8 - Marcadores de peso molecular (Sigma M3913): soro albumina bovina (66 kDa); ovoalbumina (45 kDa); glicose-3-fosfato desidrogenase (36 kDa); anidrase carbônica (29 kDa); tripsinogênio (24 kDa); inibidor de tripsina (20 kDa); α-lantibumina (14,2 kDa); e aprotinina (6,5 kDa).
Pode-se verificar a eficiência do processo hidrolítico, pelo decréscimo do peso molecular das proteínas, apesar de não ter sido possível se obter resolução equivalente com a técnica de HPLC. O perfil de pesos moleculares, com valores aleatórios, é consequência do fato que a preparação de Flavourzyme® é uma mistura de proteases, incluindo exo e endo-enzimas (Novo Nordisk, 1995c).

4.2.4 Aminoácidos dos hidrolisados

Foram testados quatro sistemas para a análise de aminoácidos livres dos hidrolisados: extração com água, com HCl 10%, com TCA 10%, lavando-se com etér para retirar o excesso de TCA, e em mistura hídrico-alcoólica. O perfil foi bastante semelhante quando se extraiu os aminoácidos com HCl 10%, água, ou TCA 10% para a maioria dos aminoácidos de um hidrolisado com 25% de grau de hidrólise, e consideravelmente menor quando a extração foi conduzida com mistura de etanol/água exceto para serina, que os outros sistemas não conseguiam extrair (Figura 18).

A Figura 19 apresenta a relação entre aminoácidos livres de todos os hidrolisados relativamente aos aminoácidos presentes no concentrado EQ (etanol a quente) sem hidrólise. Com grau de hidrólise de 40%, conseguiu-se liberação de 100% de prolina e de metionina. Para os demais a liberação foi menor. As análises foram conduzidas na fração HS (sobrenadante).
Figura 18. Efeito do sistema de extração sobre o perfil de aminoácidos de hidrolisado de tilápia do Nilo com grau de hidrólise de 25%.

Figura 19. Aminoácidos livres de hidrolisados de tilápia do Nilo em função do grau de hidrólise e em relação aos aminoácidos totais do concentrado (EQ).
A Figura 20 mostra a relação entre grau de hidrólise e liberação de aminoácidos. A relação parece ser logarítmica, e o coeficiente de correlação foi de 98%. Desta forma, a equação apresentada na Figura 20 ($y = 1,9591e^{0,0797x}$) poderia servir para prever, nas condições em que os experimentos foram conduzidos, a fração de aminoácidos livres ($p<0,05$).

Figura 20. Relação entre grau de hidrólise e liberação de aminoácidos em hidrolisados de tilápia do Nilo

$$y = 1,9591e^{0,0797x}$$
$$R^2 = 0,9555$$

4.2.5 Isotermas de sorção de água

O controle da umidade é crítico para garantir a qualidade de alimentos. Se por um lado, alguns alimentos sofrem deterioração pela perda de umidade, a maioria se deteriora por absorver umidade. O aumento de atividade de água leva à perda de qualidade em decorrência de favorecer o crescimento microbiano, a oxidação, escurecimento, especialmente não enzimático, e à ocorrência de "caking" (Mannheim et alii, 1994).

A Figura 21 mostra as isotermas de sorção de água para hidrolisados, a 25°C, em função do grau de hidrólise, e comparativamente ao concentrado EQ (sem hidrólise). Verifica-se que as isotermas estão muito próximas, independente do grau de hidrólise, contrariamente ao esperado,
isto é, que houvesse aumento na sorção de água porque a hidrólise altera a conformação das proteínas, produzindo peptídeos de cadeia curta, aumentando a disponibilidade de sítios polares, e como consequência, o aumento na absorção de água. Este aumento torna o hidrolisado mais suscetível à deterioração (Puski, 1975). De acordo com o esperado, para o concentrado EQ a absorção de água foi inferior a dos hidrolisados. No caso dos hidrolisados é necessário cuidado na elaboração de produtos como misturas em pó, com outros ingredientes de elevada atividade de água.

Os ensaios foram conduzidos em umidades relativas de 11,3%, 21,7%, 32,78%, 43,16%, 57,57% e 69,99%. Para umidade relativa de 11,3%, houve absorção de água de cerca de 6%, para os hidrolisados e de 2,5% para o concentrado EQ, e em 69,99% de umidade, a absorção se elevou a 25% para os hidrolisados e assumiu valor de 14% para EQ. O valor obtido para o concentrado EQ é semelhante aos obtidos por Rasekh et alii (1971) com concentrado de pescado: para 11% de umidade relativa, a absorção foi de 5% e para 86% de umidade relativa, 16% de absorção. Trabalhando com hidrolisado de proteína de soja, Deeslie & Cheryan (1988) encontraram perfil de sorção de umidade muito semelhante para diferentes tempos de hidrólise, mas os autores não determinaram o grau de hidrólise da proteína. Igualmente no caso destes autores, a amostra não hidrolisada mostrou comportamento de absorção diferente das demais.

A partir de 57% de umidade relativa ocorreu aglomeração do produto. Para alimentos como banana liofilizada a aglomeração se inicia a 30-35% de umidade, e em produtos como gelatina, café e cacau, ocorre entre 75% e 80% de umidade (Teixeira Neto & Quast, 1977).

Devido à impossibilidade de realizar análise de variância de cada curva para verificar se existe diferença estatística, entre os hidrolisados foi efetuada a análise hierárquica de “cluster” (Figura 22). Verifica-se que o hidrolisado a 45% de hidrólise mostrou menor similaridade que os demais hidrolisados entre si, o que concorda com a diferença apontada na Figura 21, especialmente para teores mais baixos de umidade relativa de equilíbrio. A localização do concentrado não hidrolisado (EQ) no dendograma, caracteriza sua dissimilaridade em relação aos hidrolisados.
Figura 21. Isotermas de sorção de água de hidrolisados de tilápia do Nilo e do concentrado EQ

Figura 22. Análise hierárquica de “cluster” das isotermas de sorção de água dos hidrolisados protécios de tilápia do Nilo, e do concentrado EQ
4.3 PROPRIEDADES FUNCIONAIS DE CONCENTRADOS E HIDROLISADOS

No preparo do concentrado EQ uma parte do material foi retirado e tratado com polifosfatos, originando o concentrado CP (Figura 3), o qual, na etapa de seleção se mostrou um dos melhores concentrados em termos de funcionalidade. Como um dos objetivo deste trabalho é verificar como as modificações operadas nas proteínas afetam as propriedades funcionais, optou-se por analisar comparativamente os dois concentrados e os hidrolisados, uma vez que os hidrolisados são provenientes de EQ.

4.3.1 Solubilidade

O termo solubilidade deve ser usado com cautela quando aplicado à proteínas porque a proteína solubilizada constitui um sistema coloidal. Para proteínas musculares podem ser encontrados os termos dispersibilidade e capacidade de permanecer em suspensão. Na literatura científica relacionada a carnes os termos solubilidade e extratibilidade são usados indiferentemente, assumindo que uma vez que a proteína foi solubilizada pode ser facilmente extraída das fibras musculares (Xiong, 1994).

Os resultados da determinação de solubilidade podem refletir efeitos operacionais. Desta forma, a intensidade do método de dispersão e as técnicas para remover a fração insolúvel podem afetar expressivamente os resultados. A forma de preparar a dispersão, adicionando o sólido à água ou vice-versa também influencia o resultado. O tempo de agitação, o tamanho do recipiente, tamanho da barra agitadora e a velocidade de agitação irão determinar o valor final da solubilidade (Patel & Fry, 1987). Estas condições foram cuidadosamente observadas na determinação desta propriedade neste trabalho.

A Tabela 16 resume os resultados das propriedades de hidratação dos hidrolisados e concentrados proteicos de tilápia do Nilo. Estas propriedades serão discutidas separadamente.
Tabela 16. Propriedades de hidratação de hidrolisados provenientes de EQ e concentrados protêicos de tilápia do Nilo

<table>
<thead>
<tr>
<th>Solubilidade*(%)</th>
<th>CRA</th>
<th>CAA</th>
<th>CAO</th>
</tr>
</thead>
<tbody>
<tr>
<td>GH 2.5%</td>
<td>26.43 ± 1.69 c</td>
<td>3.67 ± 0.05 a</td>
<td>2.01 ± 0.08 a</td>
</tr>
<tr>
<td>GH 3.5%</td>
<td>28.20 ± 0.78 c</td>
<td>3.58 ± 0.14 a</td>
<td>2.23 ± 0.02 b</td>
</tr>
<tr>
<td>GH 7%</td>
<td>42.43 ± 1.43 d</td>
<td>3.58 ± 0.07 a</td>
<td>2.60 ± 0.03 c</td>
</tr>
<tr>
<td>GH 9%</td>
<td>46.16 ± 1.94 e</td>
<td>3.58 ± 0.13 a</td>
<td>2.24 ± 0.05 b</td>
</tr>
<tr>
<td>GH** 14%</td>
<td>55.74 ± 1.03 f</td>
<td>3.59 ± 0.18 a</td>
<td>2.00 ± 0.05 a</td>
</tr>
<tr>
<td>EQ****</td>
<td>3.22 ± 0.09 a</td>
<td>6.68 ± 0.15 b</td>
<td>3.55 ± 0.03 d</td>
</tr>
<tr>
<td>CP*****</td>
<td>7.58 ± 0.15 b</td>
<td>12.50 ± 0.99 e</td>
<td>4.95 ± 0.03 e</td>
</tr>
</tbody>
</table>

*Solubilidade pH 7,0 e NaCl 0,5M
EQ*** = Etanol a quente
GH** = Grau de hidrólise (%)
CP ***** = concentrado polifosfatos
CRA = capacidade de retenção de água - g água retida / g proteína
CAA = capacidade de absorção de água - g água absorvida / g proteína
CAO = capacidade de absorção de oleo - g oleo absorvido / g proteína
Medias seguidas de mesmas letras (colunas) não diferem estatisticamente(p<0,05)

As Figuras 23 e 24 mostram, respectivamente, o efeito do pH e da força iônica sobre a solubilidade do concentrado contendo fosfatos, comparativamente ao concentrado obtido com etanol a quente (EQ) e dos hidrolisados com diferentes graus de hidrólise. Em ambas as figuras pode-se observar solubilidade aumentou expressivamente com o aumento no grau de hidrólise. A solubilidade dos hidrolisados e concentrados mostrou-se mais dependente do pH que da força iônica, na faixa de concentração estudada.

Na Figura 23 verifica-se aumento de solubilidade, à medida que o pH se eleva, como ocorre com a maioria das proteínas, com um mínimo na região correspondente ao ponto isoelettrico. Todos os ensaios de efeito de pH foram efetuados em presença de cloreto de sódio 0,5 M. Hidrolisados com menor GH, mostraram-se mais sensíveis às variações de pH. Estes perfis são semelhantes aos apresentados por Petersen (1981) para hidrolisado de soja.

Na Figura 24 não se observa efeito marcante da concentração salina sobre a solubilidade dos hidrolisados, talvez devido à adição de base durante a elaboração do hidrolisado (pHstat) e a formação de grandes quantidades de sais. Contudo parece haver um efeito predominante quando se utiliza solução de cloreto de sódio 0,5 M. O pH foi mantido em 7,0 para realização desta avaliação.
Figura 23. **Efeito do pH sobre a solubilidade de hidrolisados e concentrados (CP e EQ) protécicos de tilápia do Nilo em presença de cloreto de sódio 0,5 M**

(CP)= concentrado tratado com polifosfatos; **EQ**= tratado com etanol a quente (sem hidrólise)

Para a maioria das proteínas, a presença de baixas concentrações salinas, contribui para sua solubilização, devido à estabilização de cargas decorrente do aumento da constante dielétrica da solução (“salting in”). Talvez pela mesma razão, a presença de polifosfatos conferiu maior solubilidade à proteína. **O tratamento com polifosfato (CP)** promoveu um aumento de solubilidade da ordem de 100%, relativamente ao concentrado **EQ**. A **pH 6,0** os valores de solubilidade foram de 7,09% e 3,32% para **CP** e **EQ** respectivamente.
Figura 24. Efeito da concentração salina sobre a solubilidade de hidrolisados e concentrados (CP e EQ) protécios de tilápia do Nilo, a pH 7,0

(CP) = concentrado tratado com polifosfatos; EQ = tratado com etanol a quente (sem hidrólise)

O concentrado de pescado produzido por Hermansson et alii (1971) também apresentou perfil de solubilidade muito semelhante e de mesma ordem de grandeza que os obtidos em nosso trabalho. O tratamento com enzimas proteolíticas (Alcalase®, tripsina e proteinase) aumentou expressivamente a solubilidade, mas o grau de hidrólise muito elevado afetou negativamente as propriedades espumantes do produto. Mediante adição de NaCl 0,05 M, houve um discreto aumento na solubilidade, seguido de decréscimo até NaCl 0,5 M e com ligeira elevação para NaCl 1 M. concentrações superiores a 1 M, o efeito normalmente verificado é a precipitação da

Uma das primeiras consequências da hidrólise enzimática é o aumento da solubilidade, e este aumento normalmente está associado ao aumento do grau de hidrólise. O aumento da solubilidade dos hidrolisados é provavelmente devido à diminuição no tamanho da molécula e correspondente aumento da exposição de grupos amino e carboxil ionizáveis (Quaglia & Orban, 1987a,b; Hall & Ahmad, 1992; Shahidi et al., 1994, 1995; Yu & Fazidah, 1994; Panyam & Kilara, 1996). Na Figura 25 pode-se verificar que a relação entre o aumento da solubilidade e o grau de hidrólise foi linear (R² = 0,9918) para os hidrolisados de tilápia do Nilo.

![Figura 25. Influência do grau de hidrólise na solubilidade de hidrolisados protéicos de tilápia do Nilo.](image)

O efeito da concentração de proteína sobre a solubilidade dos concentrados EQ e CP pode ser verificado na Tabela 17. Para baixas concentrações de proteínas a solubilidade é proporcionalmente maior para ambos os concentrados. Este é um efeito comum à maioria das proteínas.
Tabela 17. Efeito da concentração de proteína sobre a solubilidade de concentrados proteicos de tilápia do Nilo

<table>
<thead>
<tr>
<th>Concentração de proteína (%)</th>
<th>EQ</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3,4</td>
<td>7,24</td>
</tr>
<tr>
<td>2</td>
<td>2,4</td>
<td>6,89</td>
</tr>
<tr>
<td>3</td>
<td>2,09</td>
<td>6,56</td>
</tr>
<tr>
<td>4</td>
<td>1,96</td>
<td>6,22</td>
</tr>
</tbody>
</table>

CP = tratado com polifosfatos
EQ = tratado com etanol a quente

A esterilização, normalmente aplicada aos hidrolisados, ou o tratamento térmico para encerrar a reação afetam a solubilidade. A termoestabilidade, que pode ser considerada como a habilidade da proteína permanecer solúvel sem formar agregados que precipitem, é um fator determinante na solubilidade de hidrolisados. A solubilidade da maior parte das proteínas é afetada pelo aquecimento de forma irreversível. A adição de minerais aos hidrolisados destinados à suplementação nutricional, também modifica a solubilidade do produto (Mahamoud, 1994).

A solubilidade em sistemas aquosos é um pré-requisito para a maioria das propriedades funcionais, mas por si só não garante esta funcionalidade. A solubilidade é uma propriedade fundamental para formação e estabilidade de espumas e emulsões, bem como para a formação de gel. Spinelli et alii (1972a,b) verificaram que a solubilidade de proteínas miofibrilares recentemente preparadas era de 70 a 80%, mas após liofilização a solubilidade caiu a valores inferiores a 15%, indicando severa desnaturação da proteína. Verificaram também que a capacidade emulsificante da proteína recém preparada era de 185 g óleo por g de proteína. O tratamento com solvente fez com que este valor caísse para 136 g óleo/g de proteína. A hidrólise da proteína, seguida do tratamento com hexametafosfato de sódio e extração dos lipídios com isopropanol originou um produto mais solúvel, e cuja capacidade emulsificante chegou a 225 g de óleo/g de proteína para 30 minutos de hidrólise.
4.3.2 Capacidade de retenção de água (CRA)

A semelhança do que ocorreu com a solubilidade, a capacidade de retenção de água diminuiu com o aumento da concentração de proteína (Tabela 18), sendo ótima a 1%. Isto pode ser devido ao maior número de sitos de interação de moléculas proteicas para uma mesma quantidade de água.

Tabela 18. Efeito da concentração de proteína sobre a capacidade de retenção de água de concentrados protécicos de tilápia do Nilo

<table>
<thead>
<tr>
<th>Concentração de proteína (%)</th>
<th>EQ</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,5</td>
<td>3,5</td>
<td>8,3</td>
</tr>
<tr>
<td>1</td>
<td>2,7</td>
<td>12,35</td>
</tr>
<tr>
<td>2</td>
<td>2,6</td>
<td>7,7</td>
</tr>
</tbody>
</table>

CP = tratado com polifosfatos EQ = tratado com etanol a quente

Neste estudo verificou-se que a capacidade de retenção de água foi afetada pelo pH e pela concentração salina, mas em todas as situações o tratamento com fosfatos melhorou esta propriedade funcional. Os gráficos de efeito de pH e concentração salina não são comparáveis, devido à interferência do tampão, cujos valores são um pouco mais baixos que com NaCl isoladamente. Não é possível acertar o pH durante o experimento, por isso, optou-se por utilizar o tampão universal, porque apesar de existir, a interferência sobre a CRA é menor que quando se utiliza tampão imidazol, ou fosfato.
As Figuras 26 e 27 mostram, respectivamente, o efeito do pH e da concentração salina sobre a capacidade de retenção de água de 3 dos hidrolisados e dos concentrados (EQ e CP). Na Figura 26, observa-se que o mínimo de retenção de água ocorreu em pH 4,0 para todos os hidrolisados e concentrados testados, valor que coincide, também com o pH de menor solubilidade destes hidrolisados. Verifica-se que hidrólise diminuiu a capacidade de retenção de água do concentrado EQ. A natureza da modificação na capacidade de retenção de água depende da enzima hidrolítica, da temperatura e do pH durante a hidrólise. A hidrólise de proteínas do leite com Alcalase® ou Neutrase® resultou em hidrolisados com capacidade de retenção de água relativamente baixa (Panyam & Kilara, 1996).

As variações de pH modificam a ionização e a carga líquida da molécula proteica, alterando as forças atrativas e repulsivas entre as proteínas e a sua capacidade de interagir com a água. O pH da solução de proteína tem influência sobre a solubilidade e a capacidade de retenção de água. Esta propriedade é em grande parte dependente da presença de grupos hidrofílicos na proteína. No ponto isoeletrico as interações proteína-proteína são máximas, fazendo com que as proteínas apresentem mínima capacidade de hidratação. Este fenômeno se verifica durante o processo de rígidez cadavérica, quando o aumento do teor de ácido lático provoca o decréscimo do pH da carne para valores próximos do ponto isoeletrico das proteínas miofibrilares (pH 5,5) (Morrisshey et alii, 1987; Borderías & Montero, 1988; Cheftel et alii, 1989). Isto foi verdadeiro para os concentrados (Figura 26), mas não para os hidrolisados, cuja capacidade de retenção de água aumentou ligeiramente com o aumento do pH.

O concentrado tratado com polifosfatos apresentou melhor capacidade de retenção de água. Esta é uma das razões pelas quais os fosfatos são adicionados aos produtos cárneos. Entre os eventos mais importantes associados ao fato estão: o aumento da força iônica, que promove a solubilização da proteína, a ligação dos fosfatos às proteínas da carne, e a dissociação de actomiosina em actina e miosina (Chang & Regenstein, 1997). O hexametafosfato de sódio (HMF) que é o componente presente em maior concentração na mistura adicionada ao concentrado (Figura 3), pode se ligar diretamente a grupos carregados positivamente nas proteínas miofibrilares.
Figura 26. Efeito do pH sobre a capacidade de retenção de água dos concentrados CP e EQ e dos hidrolisados proteicos de tilápia do Nilo. CP=tratado com polifosfatos, EQ=tratado com etanol a quente.

Figura 27. Efeito da concentração salina sobre a capacidade de retenção de água dos hidrolisados e dos concentrados protéicos EQ e CP de tilápia do Nilo. CP=tratado com polifosfatos; EQ=tratado com etanol a quente.
O hexametafosfato de sódio liga-se mais fortemente a actomiosina que outros polifosfatos, através de grupos positivamente carregados das proteínas miofibrilares. A ligação do hexametafosfato a sitos da miosina próximos da ligação com a actina, interrompe a ligação com a actina. A actina e miosina permanecem dissociadas uma da outra, permitindo o aumento de espaçamento da rede de filamentos. As ligações cruzadas entre os filamentos finos e grossos podem atuar como uma força que restringe este espaçamento. Esta restrição não existiria se estas ligações fossem suprimidas. Como os ánions polifosfato se ligam às cargas positivas restantes dos filamentos, acima do ponto isoeletrico, a repulsão eletrostática entre os filamentos aumenta e como consequência aumenta a retenção de água. Outro mecanismo de ação dos polifosfatos seria a elevação do pH (Chang & Regenstein, 1997; Regenstein et alii, 1984). O aumento da capacidade de retenção de água a pH superiores a 7,0 pode ser atribuído à ionização dos grupos fosfato, o que permitiria maior interação com a água e a proteina, fazendo com que mais água fique na estrutura. A presença de cloreto de sódio interferiu negativamente na ação dos polifosfatos (Figura 27). Em geral ocorrem ligações competitivas entre água, sais e cadeias laterais de aminoácidos. Frente a concentrações salinas elevadas predominam as interações água-sal em detrimento das interações proteína-água, o que pode acarretar a desidratação da proteína (Cheftel et alii, 1989).

Para ambos os concentrados ocorreu diminuição da capacidade de retenção de água em presença de cloreto de sódio. Este fenômeno tem sido observado para diferentes proteínas. O sal interfere ao mesmo tempo com a constante dieletrica do meio, formando uma barreira ao redor da proteína, interferindo com a interação desta com a água (Wagner et alii, 1992). No caso dos hidrolisados, a presença de expressivas quantidades de sal, decorrentes do processamento (pHstat), podem ser superiores às quantidades empregadas neste estudo, e desta forma a propriedade já estararia comprometida. Por outro lado, a hidrólise acarreta importantes modificações na conformação da proteína, e os peptídeos formados não apresentam o grau de estruturação necessário para que a água possa ficar retida.
4.3.3 Capacidade de absorção de água e de óleo

O método que utiliza o aparelho de Baumann, empregado neste trabalho para avaliar a capacidade de absorção de água tem sido utilizado por vários autores (Torgensen & Toledo, 1977; Elizalde et alii, 1988, 1996; De Kanterewicz et alii, 1989), mas a crítica é que o método não apresenta reproduibilidade. De fato a crítica é pertinente, pois para obtermos resultados confiáveis foram necessárias cinco ou mais repetições.

A capacidade de absorção reflete a habilidade da proteína de captar água sem sofrer dissolução. Uma série de fatores afetam as propriedades de hidratação e as interações proteína-proteína e proteína-agua: pH, força iônica e tipo de ions, concentração de proteína, composição de aminoácidos, tempo/temperatura e a presença de componentes não proteicos, notadamente carboidratos. O equilíbrio entre estes fatores determinará as propriedades funcionais das proteínas e as propriedades reológicas do sistema (Morrissey et alii, 1987; Patel & Fry, 1987; Borderías & Montero, 1988).

As Figuras 28 e 29 mostram o perfil de absorção de água e óleo dos hidrolisados e concentrados em estudo. A análise destas figuras mostra que os concentrados protécicos apresentaram maiores valores de absorção de óleo e de água que os hidrolisados. No caso da capacidade de absorção de óleo estas relações foram igualmente intrigantes. A confiança nos valores registrados reside no fato de que foram confirmados por exauxtivas repetições. Por outro lado, apesar da significância estatística (Tabela 16), verifica-se que as diferenças do maior para o menor valor para absorção de água (2,60 para 2,00 mL óleo/g proteína) e de óleo (1,28 para 1,06 mL óleo/g proteína) talvez sejam muito pequenas. Também não foi possível se obter uma relação direta entre a absorção de água ou de óleo e grau de hidrólise, apesar das médias apresentarem diferenças estatisticamente significativas (Tabela 16). Este fato, associado à ausência de uma relação direta entre grau de hidrólise e capacidade de absorção, não permite que se consiga uma explicação em nível molecular ou estrutural. A hidrólise altera a conformação da proteína e produz pepptídeos de cadeia curta, aumentando a disponibilidade de sítios polares, concorrendo para uma maior absorção de água. Contudo, o efeito da hidrólise sobre esta propriedade depende do tratamento térmico, pH e da especificidade enzimática (Deeslie & Cheryan, 1988; Panyam & Kilara, 1996).
Figura 28. Capacidade de absorção de água de hidrolisados e dos concentrados protéicos EQ e CP de tilápia do Nilo
CP=tratado com polifosfatos; EQ= tratado com etanol a quente

Figura 29. Capacidade de absorção de óleo de hidrolisados e dos concentrados protéicos EQ e CP de tilápia do Nilo
CP=tratado com polifosfatos; EQ= tratado com etanol a quente
A cinética de absorção de água dos concentrados e dos hidrolisados apresenta perfil bastante diferenciado. No caso dos concentrados é rápida e em poucos minutos atinge o equilíbrio. No caso dos hidrolisados é lenta e requer cerca de 30 minutos para atingir o equilíbrio. A capacidade de absorção de água de isolados proteicos (± 90% proteína) de soja, feijão e ervilha foi, respectivamente, de 7,81, 3,30 e 2,04 g água/g amostra. Para gelatina o valor elevou-se para 11,59 g água/g amostra (Pilosof et alii, 1985). Valores de mesma ordem de grandeza foram encontrados para os concentrados de tilápia-do-Nilo. Contudo, o concentrado CP apresentou valores ainda mais elevados que o concentrado EQ.

Nas Figuras 30 e 31 verifica-se o efeito do pH sobre a capacidade de absorção de água e de óleo do concentrado tratado com polifosfatos.

Figura 30. Efeito do pH sobre a capacidade de absorção de água dos concentrados proteicos EQ e CP de tilápia do Nilo

CP = tratado com polifosfatos; EQ = tratado com etanol a quente.

O tratamento com polifosfato aumentou a hidrofílicidade do concentrado, uma vez que se verifica que sua capacidade de absorção de água é superior à do concentrado EQ, mas por outro lado, aumentou também a sua capacidade de absorção de óleo. Estes efeitos são também determinados pelo pH. A diferença na capacidade de absorção de óleo não foi muito diferente à medida que se elevou o pH.
Tal como ocorreu com o concentrados de soja, a capacidade absorção de água foi menor na região próxima ao ponto isoeletrônico (Elizalde et alii, 1996), aumentando para pH em torno de 9,0. A absorção de água foi bem mais expressiva em pH 9,0, o que coincide também com o aumento da solubilidade (Figura 24). Em nosso trabalho, a capacidade absorção de água e de óleo dos hidrolisados foi inferior à do concentrado que lhes deu origem. O tratamento com polifosfato elevou a capacidade de absorção de água e de óleo do concentrado tratado com etanol a quente (EQ).

![Graph showing effect of pH on oil absorption capacity of protein concentrates EQ and CP tilapia Nile](image)

Figura 31. Efeito do pH sobre a capacidade de absorção de óleo dos concentrados protéicos EQ e CP de tilápia do Nilo

CP=tratado com polifosfatos; EQ= tratado com etanol a quente

As Figuras 32 e 33 mostram como o pH pode afetar a capacidade de absorção de água e de óleo do hidrolisado com 7% de hidrólise e como este tratamento modificou a capacidade de absorção de água e de óleo em relação ao que se obtinha com o concentrado tratado com etanol a quente (EQ), a pH 7,0.
Figura 32. Efeito do pH sobre absorção de água de hidrolisado com 7% de grau de hidrólise

Figura 33. Efeito do pH sobre a capacidade de absorção de óleo de hidrolisado de EQ com 7% de grau de hidrólise
A capacidade de absorção de óleo foi máxima em meio ácido. Não foi possível comparar estes resultados com os de outros trabalhos, mas possivelmente, em pH 3,0, parte da carga positiva do meio é neutralizada pelos grupos fosfato, diminuindo a carga líquida e favorecendo a absorção de óleo. Por outro lado, em pH 5,0, nas proximidades do ponto isoeelétrico, seria mais fácil entender a maior absorção de óleo, pela ausência de forças de atração e repulsão, e situação de maior hidrofobicidade.

4.3.4 Formação de emulsões

As características de uma emulsão são afetadas por uma série de fatores: tipo e geometria do equipamento utilizado, intensidade de energia, velocidade de adição do óleo, volume da fase oleosa, temperatura, pH, força iônica, solubilidade e hidrofobicidade da proteína, presença de açúcares e agentes de superfície de baixo peso molecular, exposição ao oxigênio, tipo de gordura, concentração de proteínas solúveis e da capacidade emulsionante da proteína. O processo de emulsificação requer alta demanda de energia, e é um processo dinâmico que envolve a criação de interfaces óleo/água, a adsorção de surfactantes para estabilizar a interface e a coalescência das gotículas não estabilizadas. Uma vez formada, a emulsão é termodinamicamente instável (Kinsella, 1981; Parker, 1987; Borderías & Montejano, 1988; Sherman, 1995; Panyam & Kilara, 1996).

As propriedades emulsionantes da proteína podem ser expressas como: (a) capacidade emulsificante; (b) índice de atividade emulsificante, e (c) estabilidade da emulsão. Capacidade emulsificante representa a quantidade máxima de óleo absorvida por unidade de peso de proteína (mL óleo/g proteína); o índice de atividade emulsificante (IAE) refere-se a máxima área interfacial por unidade de peso de proteína de solução estabilizada; e a estabilidade da emulsão representa a habilidade de uma proteína de formar um emulsão que permaneça invariável durante um certo período de tempo, a uma dada temperatura e campo gravitacional. O processo de determinação do ponto de inversão para a capacidade emulsificante envolve a criação contínua de área interfacial, em velocidade tal que o sistema nunca está em equilíbrio. O volume de óleo no ponto de inversão para um dado conjunto de condições dependerá da habilidade da proteína formar rapidamente uma camada interfacial e prevenir a coalescência das gotículas formadas, ou seja, principalmente da velocidade de adsorção e da quantidade de proteína na fase aquosa que está disponível para cobrir o excesso de área interfacial a cada momento (Dagorn-Scaviner et alii, 1987).
O método de Pearce & Kinsella (1978), para medida do índice de atividade emulsificante (IAE), fornece informação sobre a habilidade da proteína dispersar na fase oleosa e proporcionar cobertura suficiente na área interfacial para evitar imediata coalescência. Assim, uma alta área interfacial implica em gotículas de pequeno diâmetro, o que provavelmente está associado a alta estabilidade da emulsão. A emulsão é bloqueada no estágio inicial pela adição de SDS, não havendo tempo para penetração e rearranjo na interface. A hidrofobicidade desempenha papel muito importante na capacidade emulsificante, mas no caso dos hidrolisados, normalmente a hidrofobicidade é baixa, diminuindo à medida que aumenta o grau de hidrólise, devido ao aumento da densidade de carga produzida pela hidrólise. Na etapa inicial de hidrólise pode haver um aumento da hidrofobicidade (Mahmoud et alii, 1992).

Através da análise da Tabela 19 constata-se um aumento na capacidade emulsificante, (expressa em termos de mL de óleo/g de proteína) à medida que aumenta o grau de hidrólise até 7,0%, decrescendo para graus de hidrólise superiores. O concentrado EQ praticamente não apresentou capacidade de formação de emulsão. A capacidade emulsificante de hidrolisados de soja mostrou valores máximos para DH = 5%, em torno de 4000 mL óleo/g proteína (Petersen, 1981). O tratamento de caseina com tripsina, quimotripsina e Rhozyme-41 (mistura de enzimas proteolíticas), promoveu um aumento do IAE para todas as enzimas para graus de hidrólise de 2 a 4%. A estabilidade da emulsão foi igual ou inferior à da proteína não hidrolisada. Para a capacidade de retenção de óleo foram observados aumentos de até 600%. A proteólise parcial contribuiu para o aumento da hidrofobicidade, e consequente tendência à associação molecular (Haque & Mozaffar, 1992). Os valores de índice de atividade emulsificante obtidos neste experimento (inferiores a 50 m²/g de proteína) são muito baixos se comparados aos obtidos por Pearce e Kinsella (1978) para soro albumina bovina (197 m²/g de proteína), ou caseína de sódio (166 m²/g de proteína).

A estabilidade da emulsão e a capacidade de emulsificação em função do grau de hidrólise podem ser ilustrados conjuntamente através do gráfico da Figura 34.
Tabela 19. Propriedades emulsificantes de hidrolisados de EQ, em função do grau de hidrólise, e dos concentrados EQ e CP

<table>
<thead>
<tr>
<th></th>
<th>Capacidade emulsificante (mL óleo/g proteína)</th>
<th>Índice de atividade emulsificante (m²/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GH = 2,5%</td>
<td>192,36 ± 7,50 b</td>
<td>26,85 ± 0,37 bc</td>
</tr>
<tr>
<td>GH = 3,5%</td>
<td>185,83 ± 9,46 b</td>
<td>25,54 ± 0,30 b</td>
</tr>
<tr>
<td>GH = 7%</td>
<td>287,17 ± 11,14 c</td>
<td>30,49 ± 0,11 c</td>
</tr>
<tr>
<td>GH = 9%</td>
<td>194,29 ± 0,67 b</td>
<td>33,97 ± 1,55 d</td>
</tr>
<tr>
<td>GH = 14%</td>
<td>212,96 ± 7,52 b</td>
<td>29,23 ± 1,59 c</td>
</tr>
<tr>
<td>EQ</td>
<td>23,46 ± 1,45 a</td>
<td>3,98 ± 0,30 a</td>
</tr>
<tr>
<td>CP</td>
<td>297,33 ± 3,79 c</td>
<td>34,76 ± 1,63 d</td>
</tr>
<tr>
<td>Soja</td>
<td>185,43 ± 0,40 b</td>
<td></td>
</tr>
</tbody>
</table>

Médias seguidas de letras diferentes (colunas) diferem estatisticamente (p<0,05)

Figura 34. Efeito do grau hidrólise sobre a capacidade emulsificante e estabilidade da emulsão dos hidrolisados e do concentrado tratado com polifosfatos (CP)

A hidrólise enzimática controlada pode melhorar a capacidade emulsificante da maioria das proteínas, pois aumenta o número de moléculas na interface óleo-água capazes de interagir com o lipídio. Em alguns casos ocorre também o aumento da estabilidade da emulsão, mas geralmente há um decréscimo, pois os peptídeos sendo moléculas menores formam uma envoltura mais fraca e fina sobre o glóbulo de gordura, na qual intervém principalmente a estrutura primária (Kilara, 1985). Por outro lado, durante a formação da emulsão, sob condições ideais, as proteínas solúveis se difundem e se concentram na interface óleo/água, transpondo a barreira eletrostática

Para elevados graus de hidrólise, normalmente o efeito é a diminuição da capacidade emulsificante (Spinelli et alii, 1972b; Hall & Ahmad, 1992). Mahmoud et alii (1992) desenvolveram hidrolisados protécicos de caseína para alimentação hipoalergênica infantil e mostraram que a atividade emulsificante diminui linearmente com o aumento no grau de hidrólise ($R^2 = 0.89$, $p<0.01$), constatando que esta perda decorre da diminuição da hidrofobicidade. Quaglia e Orban (1990) verificaram que para baixos graus de hidrólise (5%) a capacidade emulsificante de proteínas de sardinha, hidrolisada por Alcalase®, era mais elevada que para elevados graus de hidrólise (20%), sugerindo que deva existir um tamanho ótimo de peptídeos para o aumento da capacidade emulsificante. A redução na CEM, medida pela titulação com óleo, foi de de 1,5 vezes em decorrência do aumento do grau de hidrólise de 5 a 20%. A CEM foi mínima próximo ao pl, e a estabilidade diminuiu com o aumento do pH. Verificaram uma diminuição na hidrofobicidade de superfície com o aumento do grau de hidrólise. Os autores não mostraram a capacidade emulsificante do produto não hidrolisado. Chobert et alii (1989) trabalharam com hidrolisado de β-caseína com tripsina e constataram que o índice de atividade emulsificante (IAE) dos hidrolisados parciais (GH=3,2%; 5,0%; 5,8%; e 7,4%) foi maior que da proteína nativa, mas todas as emulsões obtidas com hidrolisados foram menos estáveis que com β-caseína. Resultados semelhantes foram obtidos por Haque & Mozafar (1992). Por outro lado, a proteólise parcial expõe grupos hidrofóbicos do interior da proteína, que melhora a adsortão na interface, formando um filme interfacial mais coeso (Mahmoud, 1994). Em nosso trabalho, o hidrolisado com grau de hidrólise de 7% apresentou não só a maior capacidade emulsificante, como uma das mais elevadas estabilidades de emulsão, sendo considerado estatisticamente diferente dos demais hidrolisados. Conforme mostram as Tabelas 14 e 15, que apresentam resultados referentes aos pesos moleculares dos hidrolisados, para 9% de grau de hidrólise apareceram peptídeos com peso molecular variando entre 3 kDa e 34 kDa, para grau de hidrólise de 14%, os pesos moleculares variaram entre 1 kDa e 13 kDa, mas a capacidade emulsificante foi estatisticamente igual. De acordo com Lee et alii (1987), os peptídeos devem ter um tamanho mínimo de 20 resíduos para possuir boas propriedades emulsificantes, ou não apresentar peso
molecular inferior a 2 kDa (Turgeon et alii, 1992) ou 5 kDa (Chobert et alii, 1988). Para hidrolisado de Mallotus villosus, a capacidade emulsificante foi de 50,9 mL de óleo/g proteína e a estabilidade da emulsão de 92,0% (Shahidi et alii, 1995).

Proteólise extensiva como a utilizada na fabricação de hidrolisados hipoalergênicos resulta na perda das propriedades emulsificantes. Foi o que ocorreu neste trabalho, com o hidrolisado com 25% de grau de hidrólise, para o qual a capacidade emulsificante foi de 62,27±2,28 mL óleo/g de proteína. É importante considerar o método que foi utilizado para determinar o grau de hidrólise, quando se comparam dados de literatura, pois como foi visto no item 4.2.1, o valor obtido pelo TNBS para Flavourzyme® é quase o dobro do obtido pelo pHstat. Em testes preliminares com Alcalase®, os valores obtidos pelos dois métodos foram muito próximos.

O concentrado tratado com polifosfatos apresentou valores ainda mais elevados de estabilidade e capacidade emulsificante, mas estatisticamente semelhantes ao hidrolisado com 7% de grau de hidrólise. Trabalhos anteriores têm mostrado que as interações hidrofílicas entre as proteínas são o fator mais importante para explicar a funcionalidade, outros asseveram que nem sempre CEM e solubilidade estão correlacionados. Boas correlações têm sido obtidas com a hidrofobicidade. A introdução de grupos carregados, como os polifosfatos, aumentam a hidrofobicidade, melhorando as propriedades funcionais. Acredita-se que exista um ótimo de hidrofobicidade para uma dada propriedade funcional, mais do que a simples relação entre elas (Akita & Nakai, 1990).

De acordo com De Kanterewicz et alii (1987), a capacidade emulsificante poderia ser predita pela relação entre a capacidade de absorção de óleo e de água. Estes valores constam da Tabela 20. Para EQ esta relação foi de 2,64 e para CP, de 1,73. A elevada hidrofobicidade do concentrado EQ faz com que apresente reduzida capacidade emulsificante.

Em uma análise preliminar não é possível fazer a mesma correlação para o material em análise, uma vez que esta razão foi semelhante para todos os hidrolisados. O concentrado EQ praticamente não formou emulsão. Proteínas com IAAO (razão absorção de água/ absorção de óleo) superior a 2,0 (absorvem duas vezes mais água que óleo) apresentam características hidrofílicas, e inferior a 2,0 mostram características lipofílicas. Elizalde et alii (1991) concluíram que proteínas com baixa capacidade de absorção de água e baixo IAAO não formam emulsões
estáveis. Em seu trabalho, a máxima capacidade emulsificante foi verificada quando IAAO era próximo de 2. Não foi observada correlação entre CEM e IAAO para os concentrados e hidrolisados aqui analisados. O coeficiente de correlação (r) foi de 0,59 (p<0,05).

Tabela 20. Relação entre a capacidade de absorção de água e óleo de hidrolisados de EQ e dos concentrados EQ e CP

<table>
<thead>
<tr>
<th>GH (%)</th>
<th>2,5</th>
<th>3,5</th>
<th>7</th>
<th>9</th>
<th>14</th>
<th>CP</th>
<th>EQ*</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA</td>
<td>2,01</td>
<td>2,23</td>
<td>2,60</td>
<td>2,24</td>
<td>2,00</td>
<td>4,95</td>
<td>3,53</td>
</tr>
<tr>
<td>AO</td>
<td>1,23</td>
<td>1,06</td>
<td>1,20</td>
<td>1,07</td>
<td>1,28</td>
<td>2,81</td>
<td>1,40</td>
</tr>
<tr>
<td>IAAO</td>
<td>1,63</td>
<td>2,10</td>
<td>2,17</td>
<td>2,09</td>
<td>1,56</td>
<td>1,76</td>
<td>2,52</td>
</tr>
<tr>
<td>CEM</td>
<td>182,36b</td>
<td>185,83b</td>
<td>287,17c</td>
<td>194,29b</td>
<td>212,96b</td>
<td>290,33c</td>
<td>23,46*a</td>
</tr>
</tbody>
</table>

CAA - capacidade de absorção de água
IAAO - razão absorção de água/absorção de óleo
CEM - Capacidade emulsificante (Tabela 24)

CAO - capacidade de absorção de óleo

Praticamente não forma emulsão*

* Conforme se verifica na Tabela 19 há um aumento no IAE à medida que aumenta o grau de hidrólise, com um máximo para 9%, decaindo a seguir. Resultado semelhante foi obtido por Saito et alii (1993) para hidrolisado tríptico de albumina de soro bovino. Um peptídio hidrofóbico de 24 kDa foi isolado da superfície do glóbulo de gordura, juntamente com peptídeos hidrofílicos de 2 a 8 kDa. Para os autores é razoável assumir que o peptídio maior tenha propriedades de adsorção e os menores, hidrofílicos, atuam impedindo a agregação das gotículas de gordura, e que esta interação aumente a capacidade emulsificante. Os resultados de trabalhos semelhantes reportam resultados conflitantes, talvez devido às diferentes condições de hidrólise, tipo de enzima e de substrato e do grau de hidrólise.

O critério adotado neste trabalho foi estudar mais detalhadamente o hidrolisado que apresentasse melhores propriedades funcionais, e neste caso, o detalhamento das propriedades emulsificantes se fará com o hidrolisado a 7% de hidrólise.

As Figuras 35 a 37 expressam o resultado da avaliação do efeito da adição de cloreto de sódio e da variação de pH sobre o índice de atividade emulsificante. A adição de cloreto de sódio diminuiu a área interfacial coberta pela proteína, independente da concentração salina. Apesar de evidências de literatura sugerirem que ocorre um aumento da capacidade emulsificante em presença de cloreto de sódio a baixas concentrações (Kinsella, 1987), tal fato não foi observado para o índice de atividade emulsificante do concentrado tratado com polifosfatos. No caso dos
hidrolisados praticamente não houve alteração, eventualmente devido à adição de soda para manter o pH do hidrolisado, o que gerou a presença de sal no produto.

Figura 35. Efeito da adição de cloreto de sódio no índice de atividade emulsificante do concentrado tratado com fosfato (CP) e de hidrolisado de EQ com 7% de hidrólise

Figura 36. Efeito da variação de pH no índice de atividade emulsificante de concentrado tratado com fosfato (CP)

O IAE se elevou linearmente ($r=0,97$) quando o pH também se elevou. Perfil bem semelhante foi obtido por Shimizu et alii (1985), trabalhando com β-lactoglobulina. Geralmente a
capacidade emulsificante de carnes comínuidas aumenta com o aumento do pH. Aluko & Yada (1995) verificaram que para isolado de globulina de ervilha, o IAE era elevado a baixo pH, em presença de sal, e decrescia com o aumento do pH. A estabilidade também era baixa a baixos valores de pH e concentração de cloreto de sódio.

![Gráfico de IAE em função do pH](image)

Figura 37. Efeito da variação do pH sobre o índice de atividade emulsificante de hidrolisado de EQ (GH 7%)

Para o hidrolisado com 7% de hidrólise o efeito foi diferente (Figura 37). O perfil deste efeito para o hidrolisado de tilápia do Nilo foi muito semelhante ao observado por Chobert et alii (1988,1989) para hidrolisado de soro de leite e para caseína, com diferentes graus de hidrólise. A forma da curva foi comparável aos do efeito do pH sobre a solubilidade (Figura 23), mas com diferenças menos acentuadas.

A estabilidade da emulsão é medida comumente em termos da quantidade de óleo e ou creme que separa da emulsão durante um certo período de tempo, a uma dada temperatura e campo gravitacional. O tempo requerido para um grau específico de ruptura também é uma forma de avaliar a estabilidade da emulsão (Pearce & Kinsella, 1978). O teste de estabilidade de emulsão proposto por LiChan et alii, 1985, mede mais o fenômeno de "creaming" que coalescência. A natureza do filme interfacial e a hidrofobicidade das proteínas envolvidas na interface pode não ser importante neste mecanismo de desestabilização (Arteaga et alii, 1993).

A velocidade de adsorção também é avaliada por este método, uma vez que, se a coalescência deve ser evitada, torna-se necessário que a superfície interfacial seja completamente coberta pela proteína. Quando a estabilidade é determinada por centrifugação, avalia-se a resistência mecânica do filme. (Parker, 1987; Patel & Fry, 1987; Arteaga et alii, 1993; Petruccelli & Añón, 1994; Elizalde et alii, 1996; Dalgleish, 1997). Embora os termos floculação e agregação sejam usados quase como sinônimos a floculação é considerada como sendo mais fraca que agregação, porque na floculação as partículas podem ainda ser separadas por agitação (reversível). Estes efeitos são mostrados de forma esquemática por Dalgleish (1997). A melhor forma de avaliar estas transformações é através da medida do diâmetro das partículas. O perfil do gráfico do tamanho das partículas em relação ao tempo, apresentado por Dalgleish (1997), mostra que o processo é formado por uma série de reações de primeira ordem, semelhante ao apresentado na Figura 38 para o concentrado tratado com polifosfatos (CP).
Figura 38. Cinética de desestabilização de emulsão de concentrado tratado com polifosfatos (CP) em água e pH 7,0

\(vt = \) volume da fase aquosa no tempo \(t \) e \(ve = \) volume da fase aquosa no equilíbrio

Colocando-se na ordenada de um gráfico os dados de \(\ln Ve / (Ve - Vt) \) e na abcissa o tempo \((t) \), observa-se que a quebra da emulsão pode ser ajustada como uma sucessão de processos de primeira ordem. Cada fase cinética é caracterizada por sua constante de velocidade \(K \) (coeficiente de inclinação da reta) e sua duração \(\Delta t \). O valor de \(\Delta t \) escolhido variou de 5 a 30 minutos para o cálculo de \(K \) (após análise dos gráficos obtidos), porque nos primeiros minutos não era possível obter leituras confiáveis de volume em provetas de 10 mL.

Uma reação de ordem zero indica que a coalescência na interface entre o óleo e a emulsão é a etapa determinante do processo. Uma reação de primeira ordem indica que a velocidade intrínseca de coalescência entre gotas de óleo e a emulsão é a etapa mais lenta. (Elizalde et alii, 1989). Para a determinação dos valores da constante de desestabilização (Figuras 39, 40, 41 e 42), foi selecionada a reta correspondente aos 30 primeiros minutos para o concentrado CP (mais estável) e 20 primeiros minutos para o hidrolisado a 7% de hidrólise.

O efeito negativo do cloreto de sódio sobre a estabilidade da emulsão, se deve à redução que ocasiona da carga de superfície e por remover a água na superfície da gota de óleo (Voutsinas et alii, 1983). O efeito do pH na estabilidade da emulsão foi inverso do verificado para atividade emulsificante. Próximo ao ponto isoeletrico as interações estéricas e eletrostáticas diminuem, favorecendo a aproximação das gotículas de gordura. O efeito do pH na estabilidade
da emulsão mostrou correlação com a capacidade de absorção de água, indicando que a alta hidratação do filme interfacial é necessária para prevenir “creaming” e floculação.

Figura 39. Efeito da adição de cloreto de sódio na estabilidade da emulsão de concentrado protéico tratado com polifosfatos (CP)
\(t = \) volume da fase aquosa no tempo \(t \) e \(v_e = \) volume da fase aquosa no equilíbrio

Figura 40. Efeito da variação de pH na estabilidade da emulsão de concentrado protéico tratado com polifosfatos (CP)
\(vt = \) volume da fase aquosa no tempo \(t \) e \(v_e = \) volume da fase aquosa no equilíbrio
A baixa estabilidade em pH próximo ao ponto isoeletônico (5,0), pode ser explicada considerando-se que a carga da proteína é praticamente nula e conseqüentemente as repulsões eletrostáticas e estéricas diminuem, fazendo com que as gotículas de gordura se aproximem, acelerando a coalescência (Elizalde et alii, 1996). Em pH 3,0, parte da carga positiva do meio é neutralizada pelos grupos fosfato, diminuindo a carga líquida e desestabilizando a emulsão. Em pH 9,0, os grupos polifosfatos carregados negativamente são repelidos pelas cargas negativas da proteína a pH 9,0, prevenindo a agregação (Chang et alii, 1970). Neste pH, após 30 minutos de repouso não foi possível detectar a drenagem da emulsão (Figura 41). O esperado era que em pH 9,0 a viscosidade da solução fosse a mais elevada, mas isto não foi o que ocorreu (Figura 49), porque com alta viscosidade diminui o movimento Browniano e a probabilidade de colisão entre as gotículas diminui, diminuindo a velocidade de "creaming" (Elizalde et alii, 1988).

Figura 41. Efeito da adição de cloreto de sódio sobre estabilidade da emulsão de hidrolisado de EQ (GH 7%)

\(v_t = \) volume da fase aquosa no tempo \(t \) e \(v_e = \) volume da fase aquosa no equilíbrio

Figura 42. Efeito da variação de pH na estabilidade da emulsão de hidrolisado de EQ (GH 7%)

\(v_t = \) volume da fase aquosa no tempo \(t \) e \(v_e = \) volume da fase aquosa no equilíbrio
Quando se compararam as constantes de desestabilização da emulsão a pH 7,0 em água do concentrado tratado com polifosfatos ($k = 0,0038 \text{ min}^{-1}$) com a do hidrolisado com GH = 7% (0,0396 min$^{-1}$), verifica-se que a emulsão com o concentrado foi muito mais estável mostrando valor 10 vezes superior (Figura 42). Contudo a capacidade emulsificante não diferiu significativamente ($p < 0,05$). Por outro lado, o IAE do concentrado foi ligeiramente superior, mas a diferença foi significativa ($p < 0,05$). Os peptídeos de menor peso molecular presentes nos hidrolisados migram mais rapidamente que as proteínas e peptídeos maiores presentes no concentrado, e se adsorvem na interface, o que justifica a elevada CEM, mas não conseguem estabilizar a emulsão por não formarem filmes suficientemente resistentes, nem estruturas que resistam às forças de deformação. A maior velocidade de difusão dos peptídeos de baixo peso molecular não é um fator crítico que afeta sua atividade de superfície (Petruccieli & Alonso, 1994).

Torna-se difícil comparar as propriedades emulsificantes dos hidrolisados com a dos concentrados, porque o hidrolisado é formado por peptídeos de diferentes tamanhos (Tabelas 14 e 15) e carga líquida, modificando a relação entre propriedades emulsificantes e estrutura da proteína. As propriedades do hidrolisado muito provavelmente representam a média, ou a ação cooperativa dos efeitos dos diferentes peptídeos.

4.3.5 Formação de espumas

As propriedades espumantes das proteínas incluem: capacidade de formação de espuma, que mede a quantidade de espuma formada num tempo determinado, e a estabilidade que deve ser analisada sob dois aspectos, isto é, a drenagem de líquido da espuma devido à gravidade e baixa tensão superficial, e o colapso da espuma, que depende da resistência do filme e do tamanho da bolha. Uma série de eventos determinam o colapso da espuma: ruptura do filme de proteína adsorvido na interface ar/espuma; ruptura da lâmina aquosa que separa as bolhas, o aumento do tamanho da bolha por coalescência, e a velocidade de transporte de bolhas maiores através da espuma até a interface com o ar (Kinsella, 1976; Borderías & Montero, 1988; Cheftel et alii, 1989; German & Phillips, 1993; Bombara et alii, 1994; Giese, 1994; Panyam & Kilara, 1996).

A capacidade espumante é afetada por fatores como: tipo de proteína, método de obtenção da espuma, pH, concentração, solubilidade e características antipáticas da proteína, flexibilidade, disposição de grupos carregados e polares para prevenir aproximação das bolhas e
permitir a hidratação, temperatura, força iônica, e a presença de carboidratos e lipídios (Patel & Fry, 1987; Panyam & Kilara, 1996).

A Tabela 21 resume os resultados das determinações das propriedades espumantes dos concentrados e hidrolisados. A otimização da metodologia foi efetuada utilizando-se albumina de ovo. A espuma de albumina mostrou-se praticamente inalterada após 1 hora de observação, em termos do colapso da espuma. A estabilidade da espuma do concentrado EQ foi em torno de 3%, quando se considerou o colapso da espuma após 10 min. A espuma de CP no mesmo período de tempo mostrou maior estabilidade, conforme se verifica na Tabela 21. Talvez a maior capacidade de retenção de água do concentrado com polifosfato (Figura 27) possa ser responsável pela maior resistência do filme proteico. Elijalde et alii (1991) propuseram um modelo matemático para cinética de drenagem de espuma, considerando o tempo necessário para drenagem de metade do volume de líquido, a constante de velocidade de drenagem e a velocidade inicial de drenagem. Como as espumas preparadas com os concentrados e hidrolisados de tilápia do Nilo foram pouco estáveis (Tabela 21), achamos que não seria conveniente aplicar este modelo.

Tabela 21. Propriedades espumantes de concentrados e hidrolisados de tilápia do Nilo

<table>
<thead>
<tr>
<th>Material</th>
<th>GH (%)</th>
<th>CESP (%)</th>
<th>EE (%)</th>
<th>LD (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EQ</td>
<td>0</td>
<td>109,00 a</td>
<td>3,65</td>
<td>96,00</td>
</tr>
<tr>
<td>HT</td>
<td>2,5</td>
<td>147,00 b</td>
<td>10,62</td>
<td>97,00</td>
</tr>
<tr>
<td>HT</td>
<td>3,5</td>
<td>147,00 b</td>
<td>12,00</td>
<td>95,00</td>
</tr>
<tr>
<td>HT</td>
<td>7</td>
<td>177,33 c</td>
<td>26,79</td>
<td>89,33</td>
</tr>
<tr>
<td>HT</td>
<td>14</td>
<td>175,33 c</td>
<td>20,59</td>
<td>96,00</td>
</tr>
<tr>
<td>HT</td>
<td>22</td>
<td>167,33 c</td>
<td>75,76</td>
<td>93,67</td>
</tr>
<tr>
<td>HT</td>
<td>25</td>
<td>173,00 c</td>
<td>73,23</td>
<td>94,00</td>
</tr>
<tr>
<td>HS*</td>
<td>18</td>
<td>200,40 d</td>
<td>65,50</td>
<td>79,20</td>
</tr>
<tr>
<td>CP</td>
<td></td>
<td>170,00 c</td>
<td>26,35</td>
<td>96,67</td>
</tr>
<tr>
<td>Albumina de ovo</td>
<td>251,00 e</td>
<td>100,00 e</td>
<td></td>
<td>47,50</td>
</tr>
</tbody>
</table>

* Sobrenadante do hidrolisado com GH = 7%
CESP = formação de espuma
EE = estabilidade de espuma
LD = líquido drenado
EQ = concentrado etanol a quente
CP = concentrado tratado com polifosfatos

* Medidas seguidas de mesma letra não diferem estatisticamente (p<0,05)

O tratamento do concentrado com polifosfato (CP) originou produto com melhor capacidade de formação de espuma que EQ. O aumento de volume observado com EQ, a 3% de proteína foi de apenas 9%, enquanto que com CP este aumento foi de 66%, como pode ser visualizado na Tabela 21. Com albumina de ovo a 3% de concentração o aumento de volume foi de 151%.
A proteólise parcial melhora a capacidade espumante, mas diminui a estabilidade da espuma (Kilara, 1985), mas no caso das proteínas de tilápia do Nilo não foi o que ocorreu. A hidrolise afetou positivamente as propriedades espumantes. Um dos fatores determinantes foi o aumento da solubilidade (Figura 23). O hidrolisado total com 7% de grau de hidrolise apresentou melhor capacidade espumante que os demais, mas a estabilidade da espuma dos hidrolisados com 22% e 25% de hidrolise foi superior.

Com base nos resultados apresentados na Tabela 21 pode-se concluir que o sobrenadante do hidrolisado (HS) possui melhores propriedades espumantes que o hidrolisado total, razão pela qual será empregado nas análises que avaliarão o efeito de pH e concentração salina sobre suas propriedades espumantes. Este sobrenadante foi obtido por centrifugação do hidrolisado total a 7% de hidrolise. Quando se determina o grau de hidrolise do sobrenadante em separado, o valor se eleva para 18%. Pode-se constatar que quando se testou separadamente o sobrenadante do hidrolisado, melhorou a capacidade espumante e a estabilidade da espuma. Foi a preparação que mostrou a menor drenagem de líquido. A drenagem resulta da ação da gravidade sobre o líquido retido na espuma. A estrutura da rede da espuma e as propriedades de fluxo do líquido influenciam o perfil de drenagem (Britten & Lavoie, 1992).

Para o sobrenadante de hidrolisado de Mallotus villosus. Shahidi et alii (1995) obtiveram capacidade de formação de espuma de 90%, mas que após 10 minutos reteve apenas 10% da espuma formada.

Em hidrolisado de soja, obtido com Alcalase®, obteve-se expansão de mais de 1000% com cerca de 4% de grau de hidrolise, decaindo a seguir (Petersen, 1981). Com hidrolisado de gluten, houve um aumento linear da capacidade de formação de espuma com o aumento no grau de hidrolise, mas a estabilidade caiu progressivamente, mostrando que a proteólise foi necessária para aumentar o volume da espuma, mas é necessário um grau de estruturação elevado do gluten para a estabilidade (Bombara et alii, 1994). Townsend & Nakai (1983) hidrolisaram 6 amostras de proteínas, nas quais a solubilidade aumentou de 5% para 27 a 40%. Os autores relataram que a hidrolise resultou no aumento da dispersibilidade da proteína, e no decréscimo da hidrofobicidade. A capacidade de formação de espuma aumentou, mas a estabilidade diminuiu. Segundo eles, a proteína deve ser flexível, estruturalmente menos ordenada e acima de tudo hidrofóbica. As proteínas sofrem modificações conformacionais na superfície, que facilita a associação dos

O tamanho das bolhas também tem efeito sobre a estabilidade da espuma. Estas tendem a ser menores próximo ao ponto isoelétrico da proteína. Neste trabalho foi observado que HS apresentou bolhas bem menores que HT com grau de hidrólise de 22% ou 25%. Os hidrolisados que apresentaram bolhas maiores foram mais estáveis quanto ao colapso da espuma, mas HS apresentou menor drenagem de líquido no mesmo período de tempo (10 min). Drenagem e colapso são aspectos diferentes da estabilidade da espuma. Talvez a presença de proteína insolúvel nos HT promovê este estabilidade.

Ostrander et alii (1977) testaram a substituição de 30%, 60% e 100% de albumina em sobremesa, por isolado protéico de peixe. Verificaram que além do produto não apresentar odor a peixe, a textura, tamanho da célula de ar e a sensação tátil bucal melhoraram a medida que aumentou a concentração do isolado.
A capacidade espumante do hidrolisado de zeina preparado por Mannheim & Cheryan (1993) aumentou expressivamente quando o grau de hidrólise aumentou de 10 para 20%, e mais ainda quando estas frações foram separadas por ultrafiltração (10 e 30 kDa). A estabilidade da espuma, contudo, foi baixa, desaparecendo em menos de 30 minutos. Para os autores peptídeos de 5,4 kDa são capazes de formar o filme na interface ar/água, mas não têm a força necessária para manter a espuma. As espumas dos hidrolisados de tilápia do Nilo também não foram estáveis e desapareceram em cerca de 15 minutos. Esta foi a razão pela qual optou-se por não estudar a cinética de desestabilização da espuma.

Efeito semelhante foi obtido por Althouse et alii (1995) com hidrolisados de isolados protéicos de soro de leite, com GH de 2,0 a 3,0%. O hidrolisado com melhor capacidade espumante foi o permeato de 10 kDa, originário da hidrólise com Alcalase®, que apresentou capacidade espumante de 3169%. A proteólise não aumentou necessariamente a estabilidade da espuma (drenagem entre 15 e 30 min). O fato dos permeatos dos hidrolisados mostrarem melhor capacidade espumante está relacionado à rápida migração dos peptídeos à interface ar/água.

A espuma se desintegra devido à drenagem capilar das lamelas e devido ao colapso das bolhas. A resistência a estes dois fatores determina a estabilidade da espuma, e é dependente das propriedades adesivas e reológicas dos filmes interfaciais. A retenção da estrutura terciária e secundária da proteína na interface ajuda a estabilidade da espuma. A natureza dos peptídeos e a facilidade com que migram à superfície determina a capacidade espumante. O resíduo da estrutura terciária e as interações com outras sub-unidades ou peptídeos afeta a estabilidade. A proteólise controlada origina uma série de peptídeos com diferentes propriedades funcionais (German & Phillips, 1994; Althouse et alii, 1995).
Tabela 22. Efeito da concentração de proteína sobre as propriedades espumantes do sobrenadante do hidrolisado de EQ (GH = 18%)

<table>
<thead>
<tr>
<th>Material</th>
<th>Proteína (%)</th>
<th>FE (%)</th>
<th>EE (%)</th>
<th>LD(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HS</td>
<td>2</td>
<td>200,00</td>
<td>60,00</td>
<td>84,00</td>
</tr>
<tr>
<td>HS</td>
<td>3</td>
<td>200,40</td>
<td>65,50</td>
<td>79,20</td>
</tr>
<tr>
<td>HS</td>
<td>5</td>
<td>212,00</td>
<td>69,64</td>
<td>68,00</td>
</tr>
</tbody>
</table>

FE = Formação de espuma
EE = Estabilidade da espuma
LD = Líquido drenado
HS = Sobrenadante do hidrolisado com GH = 7%

Existem controvérsias na literatura sobre o efeito da concentração de proteína sobre as propriedades espumantes, mas, em geral, depende do tipo de proteína, uma vez que a relação entre concentração e viscosidade determina o efeito final. A força da espuma aumenta de forma sigmoidal relativamente à concentração de proteína. À medida que aumenta a concentração de proteínas a espuma torna-se mais densa e com bolhas mais uniformes (Kinsella, 1976). Viscosidade mais elevada previne a deformação do filme por ação da gravidade. Verifica-se, também, que o aumento na concentração de proteína promoveu uma diminuição na drenagem de líquido porque filmes mais espessos permitem que mais água fique retida na estrutura. Em geral, membranas mais espessas resultantes de soluções de proteínas mais concentradas são mais estáveis (Halling, 1981; Britten & Lavoie, 1992). A solubilidade tende a decrescer com o aumento da concentração de proteínas, mas este hidrolisado é altamente solúvel.

As Figuras 43 e 44 mostram como as propriedades espumantes de hidrolisados e concentrados foram afetadas pela variação de pH. A maior parte dos trabalhos indica que a capacidade espumante é máxima em pH próximo ao ponto isoeletrico. Isto é explicado pela ausência de forças repulsivas que tenderiam a enfraquecer a força e a espessura do filme (proteína desnaturada) na interface entre bolhas de ar e água, permitindo interações por ligações hidrofóbicas. Para alguns autores, como a expansão da espuma e a sua estabilidade dependem da solubilidade, formam-se espumas mais fracas ao redor do pl (Vojdani & Whitaker, 1994).
Figura 43. **Efeito da variação de pH sobre a formação e estabilidade de espuma do sobrenadante do hidrolisado de EQ (GH = 18%)**

Figura 44. **Efeito da variação de pH sobre a formação e estabilidade de espuma de concentrado tratado com polifosfato (CP)**
O sobrenadante do hidrolisado apresentou boa capacidade espumante, e a mais elevada estabilidade próxima ao ponto isoeletroico (Figura 43), o que ocorreu também com o concentrado tratado com polifosfatos: a máxima formação de espuma se deu a pH 5,0, valor que coincidiu também com a máxima estabilidade (Figura 44). A presença de fosfato, embora não covalentemente ligado à proteína poderia atuar aumentando a estabilidade da espuma do concentrado CP. Este fato, comum a muitas proteínas, pode ser explicado porque as atrações eletrostáticas intermoleculares promovem o esessamento e aumentam a resistência do filme de proteínas na interface ar/liquido. A neutralização de cargas positivas em pH 3,0 pelos grupamentos de fosfato podem ter concorrido para aumentar a estabilidade da espuma, pela mesma razão que no ponto isoeletroico, ou seja, a redução de forças repulsivas.

Hermanson et alii (1971) não encontraram correlação entre a solubilidade do concentrado de peixe e a capacidade espumante, e mostraram que o volume e a densidade de espuma de concentrado protético de pescado, em sistema bifásico, foi constante na faixa de pH de 2 a 11. A adição de cloreto de sódio 0,5 M aumentou a expansão da espuma de 400 para 600 mL. Para os autores, a proteína solúvel, representada por 2% do total, foi responsável pela formação de espuma e a fração insolúvel (98%), por sua estabilidade. Contudo, é possível que a fração insolúvel do concentrado possa ter mascarado o resultado (Borderías & Montero, 1988).

Townsend & Nakai (1983) avaliaram o efeito do pH sobre a capacidade de formação de espuma de várias proteínas: a) para ribonuclease, conalbumina, ß-caseina, ß-lactoglobulina e lisozima, o valor foi máximo a pH 9,0; b) para ovomucoíde, pepsina, ovoalbumina, foi máxima a pH 3,0; c) para BSA e ß-caseina, foi máxima a pH 7,0. Kinsella (1976) sugeriu que estas discrepâncias se devem à presença de proteínas insolúveis. Durante a formação de espuma as moléculas são adsorvidas na interface ar-água, onde interagem para formar um filme que estabiliza a bolha de ar. A solubilidade da proteína é importante neste processo. A estabilidade da espuma depende da magnitude relativa das interações proteína-proteína e proteína-água, o que depende, por outro lado, da presença de íons no meio. O aumento da atividade espumante a pH alcalino pode estar relacionada ao aumento da solubilidade da proteína (Dench et alii, 1981).

O efeito da adição de cloreto de sódio sobre as propriedades espumantes do hidrolisado e do concentrado CP pode ser avaliado através da análise das Figuras 45 e 46.
Figura 45. Influência da concentração de cloreto de sódio sobre a formação e estabilidade de espuma de hidrolisado de EQ (GH = 18%)

Figura 46. Influência da concentração de cloreto de sódio sobre a formação e estabilidade de espuma de concentrado tratado com polifosfato (CP)

O cloreto de sódio aparentemente exerce efeitos variáveis sobre as propriedades espumantes de diferentes proteínas: melhorou a capacidade espumante de proteína de soja e de concentrado proteico de peixe, diminuiu a estabilidade de proteínas de soja, ovo, e trigo. Dependendo da concentração, o mecanismo de ação primário seria o aumento da solubilidade (“salting in”), e desta forma, reduz a energia necessária para a entrada da proteína na área interfacial (Kinsella, 1976).

A presença do sal contribui para aumentar a perda de líquido e consequentemente diminui a estabilidade da espuma (Cheftel et alii, 1989). Por outro lado o aumento na capacidade de formação de espuma observado frente a concentração de NaCl 0,25 M poderia ser explicado pelo aumento da taxa de difusão acarretada pelo sal (Kinsella, 1981), o que contribui para formação de espumas mais volumosas e com grandes bolhas, como ocorreu com o CP. O efeito da adição de cloreto de sódio sobre a capacidade de formação de espuma do concentrado tratado com polifosfatos foi mais benéfico à concentração de 0,1M e a estabilidade foi aumentada quando a concentração empregada foi 0,25M. Contudo, nas duas situações o cloreto de sódio atuou favoravelmente. De acordo com Kinsella (1971, 1981), à medida que estes ions aumentam a solubilidade da proteína, também retardam a desnaturação por retardar o grau crítico de desnaturação de superfície requerido para estabilização. A força iônica pode afetar as propriedades espumantes porque os ions podem reduzir as forças eletrostáticas entre as cadeias de polipeptídeos e modificar a estabilidade. O cloreto de sódio reduz a viscosidade de superfície e a rigidez do filme de proteína, mas reduz a atração entre os peptídeos e para certas proteínas aumenta o volume de espuma. Para muitas proteínas o aumento na força iônica tende a resultar em melhores espumas, e com bolhas mais finas. Devido à presença de sal no hidrolisado, não foi possível perceber o efeito do cloreto de sódio sobre as propriedades espumantes.
Dados experimentais de literatura sugerem que a formação e a estabilidade da espuma são propriedades diferentes. A formação de espuma requer a difusão das proteínas solúveis até a interface ar/água, onde deverá se desenvolver, concentrar-se e estender-se rapidamente para baixar a tensão superficial. Moléculas flexíveis com pouca estrutura secundária e terciária (β-caseína) são eficazes agentes de superfície. O desenvolvimento prévio das proteínas globulares mediante aquecimento moderado, a exposição a agentes desnaturalizantes, ou a proteólise parcial melhoram a orientação na interface, proporcionando à proteína uma maior capacidade espumante. Esta não é uma característica intrínseca das proteínas miofibrilares, o que justifica a tentativa de hidrólise para melhorar esta propriedade.

A variabilidade dos métodos empregados para avaliação das propriedades espumantes das proteínas torna difícil fazer generalizações, uma vez que a interdependência dos fatores determinantes, e suas magnitudes relativas não podem ser avaliadas comparativamente partindo de sistemas tão distintos.

4.3.6 Tensão superficial (TS) e interfacial (TI)

O método de du Nouy para determinação de tensão superficial e interfacial é um método dinâmico para medir as complexas interações moleculares na superfície. O valor obtido para água para Halpin & Richardson (1985) foi de 73,6±0,7 din/cm e a diminuição da TS para β-lactoglobulina esterificada foi de 32% em relação à da água e da proteína nativa foi de 12%. Distúrbios na carga de superfície da proteína pode levar ao desenvolvimento e a efeitos secundários na atividade de superfície. O concentrado tratado com fosfato apresentou diminuição da TS em 25% em relação à água, enquanto que a adição do concentrado EQ, promoveu uma diminuição da ordem de 20%, e para o hidrolisado com grau de hidrólise de 14%, a redução foi em torno de 15%, todas tomadas em relação à água. O valor obtido para água neste trabalho foi de 72,17 ± 2,65 din/cm. O valor de literatura de TS para água 20°C é de 72,75 din/cm e a 25°C, de 72 din/cm (Atkins, 1994).

Para TI, Halpin & Richardson (1985) encontraram 33,2±0,9 com óleo de milho, redução de 56% da proteína esterificada em relação à água. O valor que obtivemos foi 31,40 ± 1,22 din/cm com óleo de milho em relação à água, mas em presença de proteína este valor foi mais elevado, diminuindo com a hidrólise. O tempo interfere na formação da interface. Parker (1987) apresenta graficamente a comparação do efeito do tempo sobre a medida da tensão interfacial.
Para uma interface água/hidrocarboneto, o decréscimo no valor da tensão interfacial se acentuou nos primeiros minutos para lisozima e BSA, estabilizando antes de 10 min. Para β-caseína foram necessários mais de 20 minutos para que o valor começasse a decrescer mais lentamente, tendendo a estabilizar após 60 minutos. Lisozima e β-caseína foram escolhidas por representar extremos em termos estruturais porque a molécula de lisozima é rígida e globular, enquanto a β-caseína é flexível, formando uma cadeia enrolada ao acaso. Talvez estes valores não sejam verdadeiros para uma interface água/triacilgliceróis, e talvez o tempo que esperamos para o equilíbrio da interface não foi o mais adequado.

A Tabela 23 apresenta os resultados da determinação de TS e TI para os hidrolisados e concentrados estudados.

<table>
<thead>
<tr>
<th>Material</th>
<th>Tensão interfacial (dina/cm)</th>
<th>Tensão superficial (dina/cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GH = 2,5</td>
<td>32,95 ± 2,37 b</td>
<td>54,79 ± 0,33 b</td>
</tr>
<tr>
<td>GH = 3,5</td>
<td>29,33 ± 2,56 b</td>
<td>54,34 ± 0,52 b</td>
</tr>
<tr>
<td>GH = 7</td>
<td>23,78 ± 2,00 a</td>
<td>52,43 ± 0,08 a</td>
</tr>
<tr>
<td>GH = 9</td>
<td>22,50 ± 0,87 a</td>
<td>51,65 ± 1,48 a</td>
</tr>
<tr>
<td>GH = 14</td>
<td>20,98 ± 0,44 a</td>
<td>50,89 ± 0,57 a</td>
</tr>
<tr>
<td>EQ</td>
<td>45,26 ± 2,23 c</td>
<td>58,68 ± 0,03 c</td>
</tr>
<tr>
<td>CP</td>
<td>40,91 ± 1,04 b</td>
<td>54,72 ± 0,74 c</td>
</tr>
<tr>
<td>Água</td>
<td>31,40 ± 1,22 b</td>
<td>72,17 ± 2,65 d</td>
</tr>
</tbody>
</table>

O abaixamento da TS com o aumento do grau de hidrólise foi linear e apresentou elevada correlação ($r = 0,93$), sendo descrito pela equação: $TS = -0,3185GH + 55,39$. Da mesma forma, para TI o abaixamento foi linear e apresentou alta correlação ($r = 0,92$), obedecendo à equação: $TI = -0,938GH + 33,119$

Sob emulsificação, as proteínas são adsorvidas sobre a superfície do glóbulo de gordura. Este processo é na maioria dos casos acompanhado de mudanças estruturais, principalmente desnaturação de superfície. A proteína adsorvida no glóbulo é mais suscetível à hidrólise enzimática. A menor resistência à proteólise ou susceptibilidade (flexibilidade) afeta a propriedade emulsificante. Tensão superficial mais elevada sugere que a conformação é mais rígida, e um menor valor, que é mais flexível (Shimizu et alii, 1985).
Devido à sua natureza anfífila as proteínas forçosamente se adsorvem na interface entre óleo e água, causando uma redução pronunciada da tensão interfacial, que facilita a emulsificação (Kato & Nakai, 1980). A tensão superficial para hidrolisado protéico de soro de leite diminuiu de 70 mN/m do isolado para valores compreendidos entre 54,98 e 69,82 dependendo da protease empregada e da fração de ultrafiltração considerada. A redução da tensão superficial indica a presença de peptídios tensoativos. A capacidade de formar espumas ou emulsões está relacionada à habilidade da proteína de baixar a tensão superficial e interfacial respectivamente. Contudo, uma solução de proteína ou peptídios com alta atividade de superfície pode não necessariamente apresentar elevada capacidade espumante ou estabilidade de espuma (Althouse et alii, 1995). German & Philippa (1994) também relataram que não foi possível verificar uma relação direta entre redução na tensão superficial e capacidade espumante ou estabilidade da espuma.

Os peptídios responsáveis pela melhora das propriedades interfaciais devem se agrupar em distintas zonas de resíduos hidrofílicos e hidrofóbicos e apresentar um mínimo de peso molecular (Turgeon et alii, 1992), pois como se verificou da análise da Tabela 23, o hidrolisado com maior grau de hidrólise apresentou a menor tensão interfacial.

4.3.7 Viscosidade

A viscosidade é a medida da deformação de camadas de um fluido, movendo-se laminarmente quando submetido à ação de uma força aplicada tangencialmente (tensão de cisalhamento). Quando um fluido apresenta relação linear entre taxa de deformação e tensão de cisalhamento (viscosidade constante), é chamado newtoniano, ou seja, a viscosidade é independente da taxa de deformação. A maioria dos alimentos fluidos não apresentam este tipo de comportamento, e nestes a relação entre a taxa de deformação e tensão de cisalhamento não é constante. Os fatores que afetam as propriedades de fluxo podem ser de natureza física ou química: temperatura, teor de sólidos, tamanho de partícula, umidade, e pH (Gonçalves, 1989). Trataremos apenas da determinação do concentrado CP porque a viscosidade dos hidrolisados tende a diminuir com o grau de hidrólise, e valores muito baixos não são mediados com precisão no sistema que foi utilizado.

A maioria dos alimentos líquidos exibe comportamento pseudoplástico. Este comportamento pode ser atribuído à presença de substâncias de alto peso molecular em solução.
e/ou aos sólidos dispersos na fase líquida. As partículas podem permanecer em suspensão ou sedimentar dependendo de seu tamanho e concentração (Rao, 1977).

Muitas proteínas absorvem água e incham, o que ocasiona variações nas propriedades hidrodinâmicas, que se refletem no espessamento de suas soluções. O conhecimento deste comportamento é importante em processamentos como bombeamento, "spray drying", trocaadores de calor, filtração e outros. A viscosidade é influenciada pela solubilidade e a capacidade de entumecimento das proteínas (Kinsella, 1987).

As Figuras 47 a 49 mostram o efeito da concentração de proteína e da variação de pH sobre a viscosidade do concentrado contendo polifosfatos. Em baixas concentrações de proteínas (4%) o concentrado apresentou comportamento de fluido newtoniano e a concentrações mais elevadas seu comportamento foi pseudoplástico. O objetivo inicial era comparar o efeito do pH sobre as características reológicas do concentrado a 4 e 8%. Contudo, a 8%, dependendo do pH e da velocidade de cisalhamento, o valor superava o limite de medida nas condições definidas para esta determinação.

Os diferentes tipos de fosfatos melhoram as propriedades funcionais na seguinte ordem: pirofosfato>tripolifosfato>tetrapolifosfato>hexametafosfato>ortofosfato (Trout & Schmidt, 1986). A atividade do pirofosfato é maior por sua habilidade de dissociar a actomiosina em actina e miosina. Os resultados dos trabalhos de Trout & Schmidt (1986) indicam que os fosfatos não melhoram a funcionalidade só por aumentar a força iônica e o pH. Segundo os autores, os fosfatos melhoram a funcionalidade por alterar interações hidrofóbicas. A viscosidade de uma solução de proteína é função do peso molecular, forma, flexibilidade, grau de hidratação e interações intermoleculares. O concentrado tratado com polifosfatos (CP) apresentou capacidade de absorção de água mais elevada que os demais concentrados e hidrolisados (4,95 mL água/g proteína). Efeito semelhante foi observado por Elizalde et alii (1988) para isolado de proteína de soja.
Figura 47. Efeito da concentração de proteínas sobre a viscosidade do concentrado com polifosfatos

Figura 48. Correlação entre concentração de proteínas e viscosidade aparente de concentrado tratado com polifosfatos (CP)
Analisando a capacidade de absorção de óleo, a solubilidade, e a viscosidade de tecido muscular de frango e peixe, Borderías et alii (1985) encontraram correlação superior a 90% entre viscosidade e teor de proteínas do material e entre viscosidade e capacidade de absorção de óleo. Alta correlação entre concentração de proteínas e aumento exponencial na viscosidade foi observada por Ma (1993) e Hermansson (1975). Para o concentrado tratado com polifosfatos (CP), a correlação entre viscosidade e concentração de proteína foi bastante elevada, e de caráter exponencial, independente da velocidade de cisalhamento. Os coeficientes de determinação ficaram próximos a 1,0 (Figura 48). Kinsella (1987) constatou que a viscosidade de dispersões de caseina aumentam de forma logarítmica com a concentração de proteínas, mas não conseguiu verificar este efeito com proteínas de soja.

Na Figura 49 verifica-se que a máxima viscosidade foi obtida próximo ao ponto isoeletroico das proteínas miofibrilares, seguido de pH 3,0 e 9,0 dependendo da velocidade de cisalhamento. Quando se utiliza concentração protéica de 4%, e pH 7,0 e 9,0, verifica-se que o concentrado apresentou comportamento de fluido newtoniano, mas em meio ácido (mais amplamente utilizado no processamento de alimentos) comporta-se como fluido pseudoplástico. Venugopal et alii (1994b) prepararam um concentrado protéico de forma semelhante aos desenvolvidos neste trabalho, e as viscosidades de sua solução a 1% foram muito semelhantes às aqui obtidas, decaindo com o aumento na velocidade de cisalhamento, caracterizando comportamento newtoniano.

A viscosidade de superfície que é atribuída a interação de grupos polares (eletrostática e iônica) de moléculas vizinhas, é maior próximo ao ponto isoeletroico. No caso de espumas de proteínas, é comum observar que a viscosidade máxima e a estabilidade da espuma são máximas no mesmo valor de pH (para uma mesma proteína). Isto normalmente ocorre nas proximidades do ponto isoeletroico. As interações proteína-proteína de proteínas solúveis é facilitada nestas, condições facilitando a formação de um filme coeso (Kinsella, 1976).
Figura 49. **Efeito da variação do pH sobre a viscosidade do concentrado com polifosfatos (CP)**

O concentrado tratado com polifosfatos (CP) apresentou elevada capacidade de retenção de água (12,5g água retida por g de proteína) e a mais elevada capacidade de absorção de água (4,95 mL água/g de proteína) de todos os preparações analisadas, cujos valores foram máximos em pH 9,0. Em soluções proteicas de pH > pl, a ligação com fosfatos aumenta a carga líquida da proteína. As forças de repulsão resultantes acarretam uma estrutura mais aberta e consequentemente com maior viscosidade. Isto é o que ocorre com a maioria das proteínas globulares, e o que se esperava que ocorresse com CP. Por outro lado, proteínas de estrutura mais compacta, ou enroladas em hélices, expondo grupos carregados, estes se ionizam com o aumento do pH, levando a uma maior compactação da molécula de proteína, e consequentemente, promovendo a diminuição da viscosidade. Possivelmente a redução da viscosidade observada na **Figura 50** pode ser o resultado do efeito cooperativo destes dois efeitos (Borderías & Montero, 1988; Medina et alii, 1992).

Além destes efeitos é importante salientar que a viscosidade das soluções de proteína é negativamente influenciada pela presença de cloreto de sódio, apesar deste efeito não ter sido testado aqui. O sal interferiu negativamente na viscosidade de globulina de aveia, até a
concentração de 0,5 M. A concentrações superiores de NaCl houve um aumento na viscosidade (Ma, 1993). Para caseína e proteínas de soro de leite, o efeito do NaCl foi dependente do pH da amostra e da concentração do sal. Eventualmente, a presença de sal para modificar o pH das soluções tenha alguma influência nos resultados.

Devido à dificuldade na interpretação dos eventos relacionados à determinação de propriedades funcionais, diretamente ou através de confronto com a literatura científica, concluimos que é importante a disponibilidade de mais informações sobre as relações entre composição e estrutura das proteínas e suas propriedades físicas, ou seja, estudar mais sistematicamente as relações de causa e efeito em sistemas modelo, para transportar este conhecimentos para sistemas mais complexos como um alimento. O passo inicial seria a utilização de metodologia padronizada, através de estudos colaborativos, cobrindo diferentes proteínas, para que os resultados possam ser comparados, e para que se possa achar explicação para os resultados encontrados. Esta foi uma das grandes dificuldades observadas no decurso deste trabalho.

4.3.8 Avaliação sensorial: odor e sabor a peixe, gosto umami e gosto amargo

A homogeneidade dos provadores foi testada através de análise de variância, com Teste de Tukey a 95% de confiança. Para os atributos amargor, gosto umami, e gosto de peixe não houve diferença estatisticamente significativa entre as médias dos provadores, revelando que o grupo era bem homogêneo. No atributo odor a peixe foram definidos três grupos de média:

a para o provador 2,
b para os provadores 6, 7, 8, e 10,
ab para os demais provadores, ou seja só o provador 2 diferiu dos demais.

A Tabela 24 mostra os resultados obtidos para análise multivariada dos atributos estudados em dois hidrolisados, com 21% de grau de hidrólise, obtidos respectivamente com Flavourzyme® e Alcalase®. Para efeito de gosto amargor o padrão de cafeína a 0,02% foi considerado como valor médio da escala não estruturada. O gosto umami foi representado pelo padrão de glutamato de sódio (Ajinomoto) a 0,2%. Apesar do hidrolisado com Flavourzyme® apresentar média um pouco mais elevada para gosto umami, a diferença não foi considerada significativa. Foram observadas diferenças estatisticamente significativas para amargor ($p=0,000111$), e para sabor a peixe ($p=0,035412$). No caso do sabor, a mudança no nível de
confiança (p <0,01) daria diferença não significativa. Para amargor a diferença foi altamente significativa.

Quando se aplicou os testes dos intervalos de Bonferroni, os resultados foram os seguintes intervalos:

amargor [-2,6624 -0,3030] (indica diferença significativa entre os hidrolisados
odor [-1,2317 1,4548] (não existe diferença significativa)
sabor [-0,6020 1,8905] (não existe diferença significativa)
gosto umami [-0,692 1,200] (não existe diferença significativa)

O intervalo que não contém o valor zero indica que existem diferenças significativas entre os tratamentos, é o caso do atributo amargor. Cabe salientar que MANOVA é uma técnica estatística robusta, mesmo que exista algum afastamento das suposições básicas da técnica (independência das amostras, homocedasticidade das variâncias, populações com distribuição normal multivariada), ainda se tem bons resultados.

O amargor proporcionado pela Alcalase® foi correspondente ao de uma solução de cafeína a 0,02%. Um dos argumentos do fabricante destas enzimas é que o hidrolisado com Flavourzyme® não seria amargo. Apesar de que obtivemos um hidrolisado menos amargor que o da Alcalase®, o produto ainda apresentou amargor. Este amargor foi ainda mais intenso quando se preparou um hidrolisado com 45% de grau de hidrólise, com Flavourzyme®, deixando o pH variar livremente conforme sugere o fabricante da enzima (Novo Nordisk, 1995c; Pommer & BFA Protein, 1995).

Tabela 24. Comparação dos atributos de gosto, odor e sabor a peixe dos hidrolisados de EQ (GH = 21%), obtidos através de hidrolise com Flavourzyme® e com Alcalase®

<table>
<thead>
<tr>
<th>Atributo</th>
<th>Flavourzyme®</th>
<th>Alcalase®</th>
</tr>
</thead>
<tbody>
<tr>
<td>Odor a peixe</td>
<td>4,11 ± 1,75 a</td>
<td>4,00 ± 1,36 a</td>
</tr>
<tr>
<td>Sabor a peixe</td>
<td>4,43 ± 1,70 a</td>
<td>3,80 ± 1,31 b</td>
</tr>
<tr>
<td>Gosto umami</td>
<td>4,28 ± 1,42 a</td>
<td>4,03 ± 1,32 a</td>
</tr>
<tr>
<td>Gosto amargo</td>
<td>3,52 ± 1,40 a</td>
<td>5,00 ± 1,65 b</td>
</tr>
</tbody>
</table>

Médias seguidas de letras iguais (nas linhas) não diferem estatisticamente (p<0,05)

Hoyle & Merritt (1994) compararam hidrolisado de arenque obtido com Alcalase® e com papain, obtendo escores mais elevados para amargor com papain. Para odor a peixe não encontraram diferença significativa entre os dois hidrolisados.
A intensidade do amargor depende do número de aminoácidos alifáticos na proteína. Hidrolisados amargos contêm alta porcentagem de peptídeos com leucina na posição terminal. O odor e gosto de glutamato é causado por peptídeos acídicos, contendo ácido glutâmico. O gosto e odor de peixe é ocasionado por vários produtos da degradação de lipídeos e aminoácidos, que podem ser removidos mediante a utilização de solventes orgânicos não polares (Sikorski & Naczak, 1981).

Shahidi *et alii* (1994) prepararam hidrolisado de carne de foca utilizando Alcalase®. Obtiveram hidrolisados com 9,6%, 12,1%, 15,0% e 19,0% de grau de hidrólise. Este último apresentou leve sabor amargo. Como estes autores consideram hidrolisado como sendo o sobrenadante da mistura de reação, o valor seria um pouco mais baixo se fosse considerado como em nosso trabalho o hidrolisado total. Até este valor, o autor sugere a utilização do produto para incorporação em produtos caseiros sem comprometimento do sabor.

4.3.9 Análise de cor dos hidrolisados

O sistema L,a,b (HunterLab) para análise de cor tem sido preconizado para análise de cor do surimi, (Young Kelleher *et alii*, 1994; Park *et alii*, 1994; Reppond *et alii*, 1995). O objetivo da introdução desta análise neste trabalho foi verificar o efeito do armazenamento na cor do concentrado (EQ) e dos hidrolisados, devido à interferência com o ácido tiobarbitúrico, na determinação do número de TBARS. As medidas aparecem na Tabela 25. Nesta tabela aparece também um índice de brancura, calculado pela equação:

\[
\text{Brancura} = 100 - \{(100-L)^2 + a^2 + b^3\}^{1/2} \quad (\text{Park, 1994})
\]

que pode ser utilizado para caracterizar a cor dos hidrolisados. Os valores de Branco foram medidos pelo espectrofotômetro.

Shahidi *et alii* (1994) verificaram um aumento no valor de L à medida que o grau de hidrólise de carne de foca se elevou de 9,6 para 19,0%, acompanhado de uma significativa diminuição de a e b, o que significou um hidrolisado mais claro e com menor comprometimento devido à presença do radical heme. Variações na região do vermelho, e mudanças espectrais na região de 500 nm se devem à oxidação do grupo heme. Diminuição de b, oxidação de heme devido à presença de radicais livres. A presença do radical heme pode ser detectada pelo menor valor de L e maior de a (vermelho) (Kelleher *et alii*, 1994).
Tabela 25. Análise de cor dos hidrolisados de EQ (GH 3,5 a 25%)

Loga após o processamento

<table>
<thead>
<tr>
<th>Amostra</th>
<th>L</th>
<th>a</th>
<th>b</th>
<th>Branco</th>
<th>Brancura</th>
</tr>
</thead>
<tbody>
<tr>
<td>EQ</td>
<td>74.47</td>
<td>-1.23</td>
<td>12.74</td>
<td>43.07</td>
<td>71.44</td>
</tr>
<tr>
<td>HT 3.5%</td>
<td>78.31</td>
<td>-1.03</td>
<td>11.34</td>
<td>49.78</td>
<td>75.50</td>
</tr>
<tr>
<td>HI 3.5%</td>
<td>74.12</td>
<td>-1.04</td>
<td>13.14</td>
<td>42.24</td>
<td>70.96</td>
</tr>
<tr>
<td>HS 3.5%</td>
<td>86.40</td>
<td>-0.62</td>
<td>9.24</td>
<td>64.19</td>
<td>83.55</td>
</tr>
<tr>
<td>HT 14%</td>
<td>81.70</td>
<td>-1.01</td>
<td>9.30</td>
<td>56.90</td>
<td>79.45</td>
</tr>
<tr>
<td>HI 14%</td>
<td>76.23</td>
<td>-1.00</td>
<td>11.29</td>
<td>46.90</td>
<td>73.67</td>
</tr>
<tr>
<td>HS 14%</td>
<td>88.96</td>
<td>-0.99</td>
<td>7.36</td>
<td>70.71</td>
<td>86.69</td>
</tr>
<tr>
<td>HT 25%</td>
<td>82.06</td>
<td>-0.96</td>
<td>8.93</td>
<td>57.84</td>
<td>79.94</td>
</tr>
<tr>
<td>HI 25%</td>
<td>70.86</td>
<td>-0.88</td>
<td>12.11</td>
<td>39.00</td>
<td>68.43</td>
</tr>
<tr>
<td>HS 25%</td>
<td>88.33</td>
<td>-1.13</td>
<td>8.64</td>
<td>68.14</td>
<td>85.44</td>
</tr>
</tbody>
</table>

Após 6 meses de armazenamento a -20°C:

<table>
<thead>
<tr>
<th>Amostra</th>
<th>L</th>
<th>a</th>
<th>b</th>
<th>Branco</th>
<th>Brancura</th>
</tr>
</thead>
<tbody>
<tr>
<td>EQ</td>
<td>75.01</td>
<td>-1.20</td>
<td>12.43</td>
<td>44.07</td>
<td>72.06</td>
</tr>
<tr>
<td>HT 3.5%</td>
<td>77.80</td>
<td>-1.09</td>
<td>11.82</td>
<td>48.56</td>
<td>74.83</td>
</tr>
<tr>
<td>HI 3.5%</td>
<td>74.02</td>
<td>-1.03</td>
<td>12.99</td>
<td>42.25</td>
<td>70.64</td>
</tr>
<tr>
<td>HS 3.5%</td>
<td>87.11</td>
<td>-0.66</td>
<td>8.88</td>
<td>65.77</td>
<td>84.33</td>
</tr>
<tr>
<td>HT 14%</td>
<td>81.06</td>
<td>-1.08</td>
<td>9.61</td>
<td>55.62</td>
<td>78.73</td>
</tr>
<tr>
<td>HI 14%</td>
<td>75.31</td>
<td>-1.08</td>
<td>11.97</td>
<td>44.97</td>
<td>72.54</td>
</tr>
<tr>
<td>HS 14%</td>
<td>89.03</td>
<td>-0.97</td>
<td>7.30</td>
<td>70.90</td>
<td>86.79</td>
</tr>
<tr>
<td>HT 25%</td>
<td>81.50</td>
<td>-0.98</td>
<td>8.71</td>
<td>57.23</td>
<td>79.53</td>
</tr>
<tr>
<td>HI 25%</td>
<td>71.38</td>
<td>-0.89</td>
<td>11.84</td>
<td>39.92</td>
<td>69.01</td>
</tr>
<tr>
<td>HS 25%</td>
<td>88.68</td>
<td>-1.17</td>
<td>8.70</td>
<td>68.66</td>
<td>85.68</td>
</tr>
</tbody>
</table>

A diminuição no valor de L e aumento de b indica escurecimento do produto. O escurecimento está associado à reações de condensação aldólica por oxidação ou interação de açúcares com aminoácidos Hoyle & Merritt (1994). Contudo, o teor de açúcar dos hidrolisados é muito baixo (menos de 0,5%). Pode haver deslocamento para o vermelho, como ocorreu com o concentrado S (Figura 8), o que se caracterizaria por um aumento de a (tendência ao vermelho).

No caso dos hidrolisados tal fato não ocorreu, sugerindo a ausência de reações de escurecimento não enzimático, a qual comprometeria o valor nutritivo. Se por um lado, a formação de aldeídos origina pigmentos, a oxidação promove a diminuição de cor.

Não foram verificadas diferenças estatisticamente significativas (p<0,05) após 6 meses de armazenamento para os indicadores L, b e Branco, apenas para a, através de um teste t para diferenças entre médias de dados pareados (não paramétrico). Valores similares de a correspondem a mesmo grau de tonalidade esverdeada.
A preparação enzimática comercial é um pó de cor marron esquero. Quando se comparam os valores de luminosidade (L) e a brancura das três frações (HI, HS e HT) de todos os hidrolisados com EQ, verifica-se que as frações HT e HS são mais claras e HI mais escuras (menor valor de L). Este fato pode estar relacionado à presença de pigmentos da pele do peixe, ou à presença de produtos provenientes do oxidação do sangue. Quando se procede à despolpa do peixe, estes pigmentos aderem ao tecido muscular branco, e não são totalmente removidos mesmo com todas as etapas de lavagem que são conduzidas no processamento dos concentrados. A separação da polpa de pescado não é perfeita e em qualquer dos tipos de máquinas, pequenos pedaços de ossos e peles são encontrados na polpa, em tamanho e quantidade dependentes do diâmetro dos orifícios no cilindro, das condições de operação das máquinas e da natureza da matéria-prima. Este é um problema que aparece em diversos produtos à base de carne comumida de peixe, e podem comprometer o valor comercial (Morais & Martins, 1981; Young & White, 1985). Arteaga et alii (1993) alertam para que se tenha cuidado com a medida de cor, devido às interações dos diferentes componentes que absorvem luz.

4.3.10 Análise estatística das propriedades funcionais - MANOVA

A Tabela 26 apresenta de forma sumária a análise de variância das propriedades funcionais dos hidrolisados e concentrados estudados neste trabalho, na qual se verificam como as propriedades diferiram significativamente entre si (p< 0,05). As correlações entre as variáveis aparecem na Figura 50.

Correlações superiores a 0,7 são consideradas elevadas, e são assinaladas em vermelho pelo programa Statistica (StatSoft). Quando o sinal for negativo, a correlação é com a recíproca da propriedade, ou seja, uma se eleva à medida que a outra diminui. As correlações mais elevadas foram observadas entre capacidade de retenção de água e capacidade de absorção de água e de óleo, e destas duas propriedades entre si. Houve também uma elevada correlação entre tensão interfacial e solubilidade (de sinal negativo), e capacidade de absorção de água.
Figura 50. **Matriz de correlação entre as propriedades funcionais de concentrados e hidrolisados de tilápia do Nilo**

* As abreviaturas são as mesmas utilizadas na Tabela 26

Verificou-se também correlação elevada entre a capacidade de formação de espuma e a tensão superficial (de sinal negativo), mas não com a tensão interfacial. Foram igualmente elevadas as correlações entre a capacidade de formação de espuma, capacidade emulsificante e índice de atividade emulsificante tensão superficial e solubilidade, mostrando que a solubilidade é um fator determinante destas propriedades funcionais, e que seriam governadas pelas mesmas características físico-químicas e talvez estruturais da proteína, mesmo em se tratando de materiais tão diferentes.
Tabela 26. Sumário das propriedades funcionais de concentrados e hidrolisados protéicos de tilápia do Nilo

<table>
<thead>
<tr>
<th></th>
<th>GH = 2,5</th>
<th>GH = 3,5</th>
<th>GH = 7,0</th>
<th>GH = 9,0</th>
<th>GH = 14</th>
<th>EQ</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>CESP</td>
<td>147,00 ± 9,00 b</td>
<td>148,00 ± 3,46 b</td>
<td>177,00 ± 1,00 c</td>
<td>169,00 ± 1,00 c</td>
<td>173,00 ± 3,00 c</td>
<td>109,00 ± 1,00 a</td>
<td>171,67 ± 7,64 c</td>
</tr>
<tr>
<td>CEM</td>
<td>192,36 ± 7,50 b</td>
<td>185,83 ± 9,46 b</td>
<td>287,17 ± 11,14 c</td>
<td>194,29 ± 0,67 b</td>
<td>212,96 ± 7,52 b</td>
<td>23,46 ± 1,45 a</td>
<td>297,33 ± 3,79 c</td>
</tr>
<tr>
<td>IAE</td>
<td>26,85 ± 0,37 bc</td>
<td>25,54 ± 0,30 b</td>
<td>30,49 ± 0,11 c</td>
<td>33,97 ± 1,55 d</td>
<td>29,23 ± 1,59 c</td>
<td>3,98 ± 0,30 a</td>
<td>34,76 ± 1,63 d</td>
</tr>
<tr>
<td>SOL</td>
<td>26,43 ± 1,69 c</td>
<td>28,20 ± 0,78 c</td>
<td>42,43 ± 1,43 d</td>
<td>46,16 ± 1,94 e</td>
<td>55,74 ± 1,03 f</td>
<td>3,22 ± 0,09 a</td>
<td>7,58 ± 0,15 b</td>
</tr>
<tr>
<td>CRA</td>
<td>3,67 ± 0,05 a</td>
<td>3,58 ± 0,14 a</td>
<td>3,58 ± 0,07 a</td>
<td>3,58 ± 0,13 a</td>
<td>3,59 ± 0,18 a</td>
<td>6,68 ± 0,15 b</td>
<td>12,50 ± 0,99 c</td>
</tr>
<tr>
<td>CAO</td>
<td>1,23 ± 0,06 b</td>
<td>1,06 ± 0,05 a</td>
<td>1,20 ± 0,05 ab</td>
<td>1,07 ± 0,03 a</td>
<td>1,28 ± 0,06 bc</td>
<td>1,40 ± 0,05 c</td>
<td>2,81 ± 0,07 d</td>
</tr>
<tr>
<td>CAA</td>
<td>2,01 ± 0,08 a</td>
<td>2,23 ± 0,02 b</td>
<td>2,60 ± 0,03 c</td>
<td>2,24 ± 0,05 b</td>
<td>2,00 ± 0,05 a</td>
<td>3,55 ± 0,03 d</td>
<td>4,95 ± 0,03 a</td>
</tr>
<tr>
<td>TS</td>
<td>54,79 ± 0,33 b</td>
<td>54,34 ± 0,52 b</td>
<td>51,46 ± 0,93 a</td>
<td>51,65 ± 1,48 a</td>
<td>50,89 ± 0,57 a</td>
<td>58,68 ± 0,03 c</td>
<td>54,72 ± 0,74 b</td>
</tr>
<tr>
<td>TI</td>
<td>32,95 ± 2,37 b</td>
<td>29,33 ± 2,56 b</td>
<td>23,78 ± 2,00 a</td>
<td>22,50 ± 0,87 a</td>
<td>20,98 ± 0,44 a</td>
<td>45,26 ± 2,23 c</td>
<td>40,91 ± 1,04 c</td>
</tr>
</tbody>
</table>

SOL = Solubilidade pH 7,0 e NaCl 0,5M (%)
CRA = capacidade de retenção de água - g água retida / g proteína
CAA = capacidade de absorção de água - g água absorvida / g proteína
CAO = capacidade de absorção de óleo - g óleo absorvido / g proteína
CEM = capacidade emulsificante - mL óleol/g proteína
IAE = índice de atividade emulsificante - mL/g proteína
CESP = capacidade espumante - expansão de volume (%)
TI = tensão interfacial - dina/cm
TS = tensão superficial - dina/cm

Medias seguidas de mesmas letras (linhas) não diferem estatisticamente(p<0,05)
Uma forma de visualizar melhor estas interações é usando os recursos gráficos da análise multivariada. Trabalhos anteriores (Jackman & Yada, 1989; Martinez, 1989) mostraram que a análise multivariada é uma técnica apropriada para o estudo das covariações entre diferentes qualidades de medidas. A análise de componentes principais (ACP) estuda as principais tendências de variação entre as variáveis testadas. Tenta agrupar variáveis que estão altamente correlacionadas numa variável denominada componente principal. ACP é uma técnica usada para examinar interrelações entre variáveis ou explorar a estrutura “underlying” das variáveis. O objetivo é obter um fator (componente principal) ou uma série de fatores a partir de variáveis originais. Cada componente é uma combinação linear das variáveis originais. Apesar de todos os componentes serem necessários para reproduzir toda a estrutura dos dados, a poucos deles pode estar associada a variância total dos dados. Estes componentes representam as principais variâncias sistemáticas em um conjunto de dados. Cada componente é caracterizado em termos de “loadings” (Figura 52A) para todas as variáveis e “scores” (Figura 52B) para todas as amostras. “Loadings” são os coeficientes de regressão para cada variável a cada componente. Assim, “loadings” elevados significam que a variável é altamente relacionada ao componente. O sinal diz se a relação é positiva ou negativa. “Scores” (Figura 52B) indicam a contribuição das amostras para o fator. “Scores” positivos significam valores superiores à média. Neste estudo, 58% da variância das amostras foi explicada pelo primeiro componente e a variância acumulada para o segundo componente foi de 94,81%. O fator 2 parece ser melhor explicado pelas variáveis relacionadas à capacidade de retenção de água, e capacidade de absorção de água e de óleo (Figura 52B), tal como foi obtido por Martinez et alii (1989) para o surimi. As principais contribuições na componente 1 foram a solubilidade, e a tensão superficial e interfacial. Propriedades como capacidade emulsificante, índice de atividade emulsificante e capacidade espumante mantiveram relação direta com a solubilidade e inversa com a tensão interfacial (Figura 52B).

Na análise de “cluster” são agrupadas as variáveis ou amostras com atributos semelhantes. Os resultados aparecem na forma de dendogramas onde se pode visualizar as correlações entre amostras ou variáveis. Quanto menor a distância no dendograma, maior a similaridade (Figuras 51A e 51B).
Figura 51. Análise hierárquica de “cluster” para concentrados e hidrolisados (A) e para as propriedades funcionais (B)
Figura 52. Análises de componentes principais: "loadings" (A) e "scores"(B) para propriedades funcionais de concentrados e hidrolisados protéicos de tilápia do Nilo

Hidrolisados: GH 2,5 GH 3,5 GH 7,0 GH 9,0 GH 14,0
Concentrados: EQ CP
Através da análise da Figura 52A ("loadings"), que coincide com o dendrograma da Figura 51A, verifica-se que as amostras ficaram agrupadas de acordo com características semelhantes. Assim, como mostra a Figura 51A as amostras foram divididas em quatro classes: na primeira ficou CP, na segunda os hidrolisados com 7%, 9% e 14% de hidrólise, na terceira os hidrolisados com 2.5 e 3.5% de hidrólise e o concentrado EQ numa classe isolada. Quando se comparam as Figuras 52A e 52B constata-se que CP foi caracterizado por apresentar elevada propriedades hidrofílicas e de superfície, que os hidrolisados se caracterizaram pela solubilidade e que para EQ as propriedades mais relacionadas foram a elevada tensão superficial e interfacial, a baixa solubilidade e ausência de propriedades de superfície, e alguma correlação com as propriedades de hidratação, o que é consistente com a análise da Tabela 26 e Figura 50.

A análise de variância multivariada permitiu demonstrar que as determinações de propriedades funcionais realizadas neste trabalho forneceram dados consistentes, e resultados coerentes.

4.4 AVALIAÇÃO NUTRICIONAL DE CONCENTRADOS E HIDROLISADOS PROTÉICOS

4.4.1 Ensaios “in vivo” e in “in vitro”

O perfil de aminoácidos dos concentrados, das diferentes frações do hidrolisado com 25% de hidrólise e do resíduo da desossagem mecânica aparecem na Tabela 27 e Figura 53.

Tabela 27. Aminoácidos (mg/g proteína) dos concentrados e hidrolisados protéicos, e do resíduo da desossagem mecânica de tilápias do Nilo

<table>
<thead>
<tr>
<th>Material</th>
<th>Hys</th>
<th>Lys</th>
<th>Met</th>
<th>Cys</th>
<th>Met+Cys</th>
<th>Phe</th>
<th>Tyr</th>
<th>Phe+</th>
<th>Leu</th>
<th>Ile</th>
<th>Val</th>
<th>Thr</th>
<th>Trp</th>
</tr>
</thead>
<tbody>
<tr>
<td>(F)</td>
<td>2,38</td>
<td>10,11</td>
<td>2,80</td>
<td>0,89</td>
<td>3,69</td>
<td>4,47</td>
<td>3,66</td>
<td>7,32</td>
<td>8,83</td>
<td>4,61</td>
<td>5,07</td>
<td>4,96</td>
<td>1,33</td>
</tr>
<tr>
<td>(FE)</td>
<td>2,63</td>
<td>11,12</td>
<td>1,68</td>
<td>0,66</td>
<td>2,34</td>
<td>4,50</td>
<td>3,49</td>
<td>7,99</td>
<td>8,47</td>
<td>4,91</td>
<td>5,10</td>
<td>4,77</td>
<td>1,27</td>
</tr>
<tr>
<td>(E)</td>
<td>2,27</td>
<td>10,24</td>
<td>1,25</td>
<td>0,74</td>
<td>1,99</td>
<td>4,16</td>
<td>3,71</td>
<td>7,87</td>
<td>8,78</td>
<td>4,86</td>
<td>5,02</td>
<td>5,10</td>
<td>1,27</td>
</tr>
<tr>
<td>(EH)</td>
<td>1,84</td>
<td>9,00</td>
<td>2,62</td>
<td>0,72</td>
<td>3,34</td>
<td>3,94</td>
<td>3,51</td>
<td>7,45</td>
<td>8,31</td>
<td>4,63</td>
<td>4,93</td>
<td>5,34</td>
<td>1,20</td>
</tr>
<tr>
<td>(S)</td>
<td>2,33</td>
<td>10,24</td>
<td>0,84</td>
<td>0,46</td>
<td>1,30</td>
<td>4,28</td>
<td>3,37</td>
<td>7,64</td>
<td>9,06</td>
<td>5,19</td>
<td>5,38</td>
<td>5,06</td>
<td>1,03</td>
</tr>
<tr>
<td>(SE)</td>
<td>2,16</td>
<td>9,92</td>
<td>2,53</td>
<td>0,61</td>
<td>3,14</td>
<td>4,00</td>
<td>3,54</td>
<td>7,54</td>
<td>8,71</td>
<td>4,96</td>
<td>5,12</td>
<td>5,01</td>
<td>0,99</td>
</tr>
<tr>
<td>(PT)</td>
<td>3,16</td>
<td>9,85</td>
<td>1,36</td>
<td>0,74</td>
<td>2,10</td>
<td>4,40</td>
<td>3,39</td>
<td>7,79</td>
<td>8,40</td>
<td>4,45</td>
<td>4,94</td>
<td>4,73</td>
<td>1,04</td>
</tr>
<tr>
<td>HT</td>
<td>2,29</td>
<td>9,21</td>
<td>2,46</td>
<td>0,81</td>
<td>3,26</td>
<td>4,39</td>
<td>3,51</td>
<td>7,91</td>
<td>8,39</td>
<td>4,87</td>
<td>5,28</td>
<td>5,16</td>
<td>1,40</td>
</tr>
<tr>
<td>HS</td>
<td>1,93</td>
<td>9,45</td>
<td>2,20</td>
<td>0,49</td>
<td>2,69</td>
<td>3,56</td>
<td>2,62</td>
<td>6,18</td>
<td>8,23</td>
<td>4,29</td>
<td>4,83</td>
<td>4,88</td>
<td>0,79</td>
</tr>
<tr>
<td>HI</td>
<td>2,35</td>
<td>8,55</td>
<td>2,26</td>
<td>0,95</td>
<td>3,21</td>
<td>5,17</td>
<td>4,25</td>
<td>9,42</td>
<td>8,60</td>
<td>5,41</td>
<td>5,63</td>
<td>5,63</td>
<td>1,29</td>
</tr>
<tr>
<td>Resíduo</td>
<td>3,17</td>
<td>7,35</td>
<td>0,68</td>
<td>0,24</td>
<td>0,93</td>
<td>3,18</td>
<td>1,97</td>
<td>5,15</td>
<td>5,38</td>
<td>1,84</td>
<td>3,40</td>
<td>3,63</td>
<td>0,44</td>
</tr>
<tr>
<td>Cascaina</td>
<td>2,83</td>
<td>8,28</td>
<td>1,91</td>
<td>0,0</td>
<td>1,91</td>
<td>5,05</td>
<td>5,45</td>
<td>10,48</td>
<td>9,00</td>
<td>4,64</td>
<td>5,68</td>
<td>4,10</td>
<td>1,51</td>
</tr>
</tbody>
</table>

* mg/g prot.
Figura 53. Perfil de aminoácidos essenciais de produtos de tilápia do Nilo e da caseína, comparativamente ao padrão FAO/WHO.

CAS = caseína
SE = surimi etanol
FE = fosforilada/etanol
HI = Sedimento do hidrolisado
FAO/WHO = padrão de perfil de aminoácidos da Organização Mundial de Saúde para crianças de 2 a 5 anos de idade, utilizado como referência para o cálculo de PDCAAS.

RES = resíduo da desossaa mecânica
HT = hidrolisado total (Grau de hidrólise=25%)
HS = sobrenadante hidrolisado
PT = proteínas totais

Tabela 28. Índices químicos para avaliação nutricional de concentrados protêicos de tilápia do Nilo e de um hidrolisado com 25% de grau de hidrolise

<table>
<thead>
<tr>
<th>Concentrados</th>
<th>Digestibilidade “in vitro” (%)</th>
<th>Digestibilidade “in vivo”</th>
<th>Escoré Químico</th>
<th>PDCAAS****</th>
</tr>
</thead>
<tbody>
<tr>
<td>(F)</td>
<td>88,66</td>
<td>99,41</td>
<td>69,70</td>
<td>0,88</td>
</tr>
<tr>
<td>(FE)</td>
<td>91,85</td>
<td>100,00</td>
<td>44,15</td>
<td>0,88</td>
</tr>
<tr>
<td>(E)</td>
<td>86,93</td>
<td>97,93</td>
<td>37,55</td>
<td></td>
</tr>
<tr>
<td>(EH)</td>
<td>90,17</td>
<td>98,61</td>
<td>63,06</td>
<td>0,87</td>
</tr>
<tr>
<td>(S)</td>
<td>93,17</td>
<td>97,82</td>
<td>24,53</td>
<td>0,83-Trp</td>
</tr>
<tr>
<td>(SE)</td>
<td>92,83</td>
<td>99,21</td>
<td>59,25</td>
<td>0,85</td>
</tr>
<tr>
<td>(PT)</td>
<td>94,91</td>
<td>97,72</td>
<td>40,00</td>
<td>1,18</td>
</tr>
<tr>
<td>(HT)</td>
<td>85,78</td>
<td>88,32</td>
<td>61,53</td>
<td>0,69-Trp</td>
</tr>
<tr>
<td>(HS)</td>
<td>58,38***</td>
<td>82,98</td>
<td>50,75</td>
<td>1,10</td>
</tr>
<tr>
<td>(HI)</td>
<td>88,29</td>
<td>93,79</td>
<td>60,64</td>
<td>0,32</td>
</tr>
<tr>
<td>Resíduo</td>
<td>83,90</td>
<td>89,35</td>
<td>17,49</td>
<td>0,73</td>
</tr>
<tr>
<td>Caseína</td>
<td>95,72</td>
<td>95,84</td>
<td>59,69</td>
<td></td>
</tr>
</tbody>
</table>

** Foram limitantes os aminoácidos sulfuados (metionina + cistina), inclusive para o cálculo de PDCAAS. Quando indicado, foi limitante o triptofano.
*** Digestibilidade baixa devido ao alto teor de nitrogênio solúvel (descontado no cálculo).
**** PDCAAS = Protein Digestibility-Corrected Amino Acid Scoring (Henley & Kuster,1994), com base na digestibilidade “in vivo”

A digestibilidade “in vitro” foi determinada comparativamente pelo método de McDonough et alii (1990) e Akeson & Stahmann (1964). Os primeiros autores relataram um estudo comparativo entre seis laboratórios que analisaram 17 diferentes proteínas. O método é muito mais rápido que o de Akeson & Stahmann (1964), que inclui uma série de operações, além de incubação por 24 horas. Foram testadas 19 preparações de concentrados proteicos de tilápia do Nilo, e os resultados foram em média 4,0% superiores. Para caseína, o método de Akeson & Stahmann (1964) forneceu o valor de 95,72% e o de McDonough et alii (1990), de 95,84%. A única amostra que apresentou diferença expressiva, foi o sobrenadante do hidrolisado cujos valores foram: 58,38% e 82,92%, respectivamente. O resultado obtido pelo método de McDonough et alii (1990) foi muito mais próximo do valor que obtemos na determinação da digestibilidade “in vivo” que foi de 95,39% El & Kavas (1996) sugeriram a utilização do método...
do pHstat na determinação da digestibilidade para o cálculo de PDCAAS em substituição à digestibilidade "in vivo".

Existe uma aparente semelhança entre os resultados da digestibilidade determinados através de ensaios "in vivo" e "in vitro". Este fato foi observado por McDonough et alii (1990) em relação às 17 proteínas que fizeram parte do estudo colaborativo do método.

Os aminoácidos sulfurados (Metionina + Cistina) foram os limitantes quando se calculou o escore químico para todos os concentrados, para o hidrolisado, e inclusive para caseína. No caso específico da caseína não foi possível quantificar a cistina, razão pela qual, obteve-se escore químico um pouco mais baixo (59,69%), quando o valor encontrado na literatura é de 62% (Sheffener, 1967).

O PDCAAS (Protein Digestibility-Corrected Amino Acid Scoring) é um índice que correlaciona o perfil de aminoácidos de uma proteína com digestibilidade determinada através de ensaio biológico com ratos. A FDA (Food and Drug Administration) recomenda a utilização deste índice para determinar a qualidade nutricional de alimentos infantis, razão pela qual, adota como referência o padrão FAO/WHO de requerimentos para aminoácidos para crianças de 2 a 5 anos, por ser o grupo de maior demanda, uma vez que os requerimentos nutricionais variam com a idade. Este índice varia de 0 a 1. Todas as proteínas com PDCAAS igual a 1 são proteínas de alta qualidade e nutricionalmente equivalentes. Para caseína, o PDCAAS também é igual a 1. Devido à dificuldade de determinar cistina na amostra analisada, em nosso caso, este valor foi expressivamente menor (0,728). Para os concentrados o valor foi superior a 0,8, alcançando valores elevados como 1 no caso do hidrolisado total e do sedimento do hidrolisado. Verifica-se, contudo, que para a preparação de surimi-etanol e para o sobrenadante do hidrolisado, o aminoácido limitante passou a ser o triptofano (Madi,1993, Henley & Kuster, 1994, Sarwar,1990).

Os índices químicos fornecem uma estimativa da qualidade da proteína e uma avaliação de efeito de processamento. Resultados mais conclusivos foram obtidos mediante ensaios biológicos com ratos. Estes resultados aparecem na Tabela 29.
<table>
<thead>
<tr>
<th>Fontes proteicas</th>
<th>N ingerido (mg)</th>
<th>N fecal (mg)</th>
<th>N urinário (mg)</th>
<th>Balanço de N (%)</th>
<th>Digestibilidade (%)</th>
<th>Valor biológico (%)</th>
<th>NPU(%)</th>
<th>NPR</th>
<th>PER</th>
</tr>
</thead>
<tbody>
<tr>
<td>*proteica</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Média</td>
<td>1731,37^A</td>
<td>80,27^C</td>
<td>114,83^B</td>
<td>1,54^AB</td>
<td>95,34^A</td>
<td>93,13^A</td>
<td>88,79^A</td>
<td>4,35^A</td>
<td>3,50^A</td>
</tr>
<tr>
<td>Dpad</td>
<td>109,55</td>
<td>15,47</td>
<td>66,23</td>
<td>0,10</td>
<td>1,01</td>
<td>3,58</td>
<td>3,47</td>
<td>0,19</td>
<td>0,19</td>
</tr>
<tr>
<td>Proteinas totais</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Med</td>
<td>1854,06^A</td>
<td>88,85^BC</td>
<td>116,38^B</td>
<td>1,65^AB</td>
<td>95,22^A</td>
<td>93,36^A</td>
<td>88,90^A</td>
<td>4,56^A</td>
<td>3,74^A</td>
</tr>
<tr>
<td>Dpad</td>
<td>112,39</td>
<td>14,64</td>
<td>28,01</td>
<td>0,12</td>
<td>0,62</td>
<td>1,77</td>
<td>1,87</td>
<td>0,31</td>
<td>0,34</td>
</tr>
<tr>
<td>Surimi Etanol</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Med</td>
<td>2013,44^A</td>
<td>149,74^B</td>
<td>109,13^B</td>
<td>1,75^A</td>
<td>92,53^A</td>
<td>94,31^A</td>
<td>87,24^A</td>
<td>4,44^A</td>
<td>3,69^A</td>
</tr>
<tr>
<td>Dpad</td>
<td>212,44</td>
<td>36,32</td>
<td>53,78</td>
<td>0,17</td>
<td>1,82</td>
<td>2,52</td>
<td>2,17</td>
<td>0,36</td>
<td>0,36</td>
</tr>
<tr>
<td>Fosforilada etanol</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Med</td>
<td>1959,46^A</td>
<td>115,78^BC</td>
<td>95,67^B</td>
<td>1,75^A</td>
<td>94,20^A</td>
<td>94,71^A</td>
<td>89,20^A</td>
<td>4,16^B</td>
<td>3,38^A</td>
</tr>
<tr>
<td>Dpad</td>
<td>346,11</td>
<td>43,18</td>
<td>25,51</td>
<td>0,31</td>
<td>1,18</td>
<td>1,59</td>
<td>0,57</td>
<td>0,17</td>
<td>0,16</td>
</tr>
<tr>
<td>Resíduo Desossa Mecânica</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Med</td>
<td>1684,57^A</td>
<td>227,07^A</td>
<td>197,31^A</td>
<td>1,26^C</td>
<td>86,62^B</td>
<td>86,61^B</td>
<td>75,01^C</td>
<td>3,07^C</td>
<td>2,22^C</td>
</tr>
<tr>
<td>Dpad</td>
<td>126,89</td>
<td>76,11</td>
<td>53,86</td>
<td>0,06</td>
<td>3,76^A</td>
<td>2,88</td>
<td>3,88</td>
<td>0,30</td>
<td>0,24</td>
</tr>
<tr>
<td>Hidrolisado Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Med</td>
<td>1878,37^A</td>
<td>109,03^BC</td>
<td>130,28^B</td>
<td>1,64^AB</td>
<td>94,29^A</td>
<td>92,64^A</td>
<td>87,34^A</td>
<td>4,51^A</td>
<td>3,72^A</td>
</tr>
<tr>
<td>Dpad</td>
<td>171,39</td>
<td>33,48</td>
<td>35,42</td>
<td>0,14</td>
<td>1,28</td>
<td>1,89</td>
<td>1,76</td>
<td>0,23</td>
<td>0,21</td>
</tr>
<tr>
<td>Hidrolisado Sobrenadante</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Med</td>
<td>1722,51^A</td>
<td>80,93^C</td>
<td>256,55^A</td>
<td>1,39^BC</td>
<td>95,39^A</td>
<td>84,22^B</td>
<td>80,35^B</td>
<td>3,68^B</td>
<td>2,82^B</td>
</tr>
<tr>
<td>Dpad</td>
<td>276,82</td>
<td>34,52</td>
<td>55,17</td>
<td>0,24</td>
<td>1,54</td>
<td>3,52</td>
<td>3,83</td>
<td>0,35</td>
<td>0,41</td>
</tr>
<tr>
<td>Hidrolisado Sedimento</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Med</td>
<td>1765,19^A</td>
<td>109,70^BC</td>
<td>113,95^A</td>
<td>1,54^AB</td>
<td>93,79^A</td>
<td>93,11^A</td>
<td>87,33^A</td>
<td>4,39^A</td>
<td>3,30^AB</td>
</tr>
<tr>
<td>Dpad</td>
<td>90,44</td>
<td>34,12</td>
<td>20,05</td>
<td>0,09</td>
<td>1,88</td>
<td>1,16</td>
<td>1,81</td>
<td>0,31</td>
<td>0,30</td>
</tr>
</tbody>
</table>

* Foram descontados valores referentes a N excretado nas fezes e urina de um grupo em dieta aprotéica
 Médias seguidas da mesma letra não diferem estatisticamente pelo teste de Tukey a nível de 5%.
A opção pelo método do NPR baseou-se num estudo colaborativo realizado por Sarwar *et alii* (1984) para verificar a variabilidade dos métodos biológicos para determinação da qualidade nutricional das proteínas. Foram testados os seguintes métodos: **PER**, **PER** relativo, **NPR**, **NPR** relativo (**NPRR**) e utilização de N. O método **NPR** relativo foi o método recomendado por apresentar menor variabilidade (7%). A variabilidade foi ainda menor para **NPRR** (4,7%). O **NPRR** relativo considera o **NPR** da proteína teste sobre o **NPR** da caseína suplementada com metionina. Para caseína o valor foi 4,6 ± 0,09; caseína + met, 5,34 ± 0,08. Neste trabalho o **NPR** para caseína foi de 4,35 ± 0,19.

Os indicadores de avaliação nutricional para os produtos de tilápia do Nilo, mostraram valores mais elevados que a caseína, e não diferiram estatisticamente em função do tratamento, exceto no caso do hidrolisado. A semelhança do que ocorreu com os índices químicos, somente o resíduo da desossa mecânica se mostrou nutricionalmente inferior, conforme já era previsto. Uma vez que este trabalho correlaciona propriedades nutricionais e funcionais, só foram considerados para ensaio biológico aqueles concentrados que, em uma avaliação preliminar, mostraram-se promissores em relação à propriedades funcionais, e o hidrolisado que é o objeto de estudo final deste trabalho. O elevado valor nutricional dos concentrados analisados, incluindo sua alta digestibilidade, os quais podem servir como ingredientes na fortificação de alimentos apontam para a necessidade de investir em modificações que otimizem as propriedades funcionais.

O valor nutritivo do “marinbeef”, obtido a partir do surimi, é semelhante ao dos peixes de origem, atingindo valores como 98% de digestibilidade, **NPU** de 88-90%, **PER** 3,5 a 3,7 (superior ao da caseína = 2,8), e valor biológico de 89 a 92% (Suzuki, 1987).

Sikka *et alii* (1979) avaliaram nutricionalmente concentrado protéico de várias espécies de peixe, disponíveis na costa da Índia, em termos de **PER** (protein efficiency ratio), **NPR** (net protein ratio), **BV** (biological value), aminoácidos, índice químico, composição centesimal, além de avaliação organoléptica. O **PER** foi significativamente superior ao da caseína, o **NPR** foi de 3,53 a 3,96 e para a caseína de 4,6; os aminoácidos limitantes foram os sulfuros: metionina + cisteína, e o valor biológico em média 63% o da caseína. Os valores obtidos neste trabalho foram semelhantes aos obtidos pelos autores supra citados.
Na tecnologia de obtenção de hidrolisados com suplementos nutricionais, devido principalmente à solubilidade, é usual considerar como hidrolisado a fração que corresponde ao sobrenadante (HS) (Thankamma et alii, 1979; Mackie, 1982; Quaglia & Orban, 1987a; Hoyle, & Merritt, 1994; Althouse et alii, 1995; Shahidi et alii, 1995). No presente estudo optamos pela aplicação da fração de hidrolisado total (HT) para a elaboração de suplemento para atletas, e para usos clínicos. A principal razão é que a fração HS é incompleta do ponto de vista nutricional porque não contém todos os aminoácidos presentes na proteína original. A consequência é uma qualidade nutricional inferior, conforme ficou demonstrado através de índices químicos e biológicos (Tabelas 23 a 25). O valor de 2,82 para o PER para HS é muito semelhante ao obtido por Shahidi et alii (1995), cujos valores variaram entre 2,61 e 3,25, inferior portanto ao da caseína (3,5).

A Figura 54 apresenta o perfil de aminoácidos totais na fração HS de hidrolisados submetidos a diferentes graus de hidrólise, e a Figura 55 mostra como esta composição afeta o PDCAAS. Verifica-se que mesmo para 40% de grau de hidrólise o valor é inferior ao do concentrado sem hidrólise, cujo valor é 1,0. À medida que se avança no grau de hidrólise, o PDCAAS se aproxima daquele do concentrado, numa relação linear (R² = 0,9905), que pode ser descrita pela equação: y = 0,0143x + 0,0969. O aminoácido limitante é o Trp.

4.4.2 Avaliação bioquímica dos soros sanguíneos dos ratos

Decorrido o prazo do ensaio biológico, o sangue dos ratos foi obtido por punção venosa e analisados para os diferentes componentes bioquímicos citados na Tabela 30, a qual apresenta também os resultados da análise de variância (MANOVA) dos resultados obtidos. As Figuras 56A e 56B apresentam de forma gráfica os resultados de média e desvios padrão dos componentes analisados. Na Figura 57 aparece graficamente o resultado do teste de intervalos de Bonferroni, mostrando como estes componentes bioquímicos diferiram entre si. A análise de variância mostrou que existe diferença estatisticamente significativa entre os componentes séricos (Tabela 30).
Figura 54. Aminoácidos indispensáveis da fração sobrenadante de hidrolisados de tilápia do Nilo com diferentes graus de hidrólise, comparados ao concentrado EQ.

Figura 55. Relação entre PDCAAS e grau de hidrólise da fração sobrenadante de hidrolisados de tilápia do Nilo.

$y = 0,0143x + 0,0969$

$R^2 = 0,9905$
Tabela 30. Determinações bioquímicas em soro de ratos

<table>
<thead>
<tr>
<th>Fontes protéicas</th>
<th>Glicose mg/dL</th>
<th>Ureia mg/dL</th>
<th>P.Tot** g/dL</th>
<th>Albumina g/dL</th>
<th>Globulina g/dL</th>
<th>A/G****</th>
<th>Triac.*** mg/dL</th>
<th>HDL-Col.* mg/dL</th>
<th>Colesterol mg/dL</th>
<th>LDL-Col.* mg/dL</th>
<th>Lipídios mg/dL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caseína</td>
<td>60,28<sup>B</sup></td>
<td>21,03<sup>A</sup></td>
<td>7,07<sup>C</sup></td>
<td>3,95<sup>B</sup></td>
<td>1,30<sup>B</sup></td>
<td>3,12<sup>A</sup></td>
<td>77,91<sup>CD</sup></td>
<td>28,73<sup>B</sup></td>
<td>42,91<sup>A</sup></td>
<td>3,54<sup>A</sup></td>
<td>452,53<sup>BC</sup></td>
</tr>
<tr>
<td>Proteínas totais</td>
<td>86,29<sup>D</sup></td>
<td>19,50<sup>A</sup></td>
<td>6,37<sup>BC</sup></td>
<td>3,80<sup>BC</sup></td>
<td>1,61<sup>AB</sup></td>
<td>2,57<sup>A</sup></td>
<td>75,55<sup>CD</sup></td>
<td>26,33<sup>B</sup></td>
<td>48,70<sup>AB</sup></td>
<td>7,20<sup>AB</sup></td>
<td>433,52<sup>BC</sup></td>
</tr>
<tr>
<td>Surimi etanol</td>
<td>86,83<sup>D</sup></td>
<td>18,44<sup>C</sup></td>
<td>6,82<sup>C</sup></td>
<td>4,01<sup>C</sup></td>
<td>1,45<sup>AB</sup></td>
<td>2,81<sup>A</sup></td>
<td>89,43<sup>D</sup></td>
<td>27,88<sup>B</sup></td>
<td>53,91<sup>AB</sup></td>
<td>7,21<sup>AB</sup></td>
<td>448,02<sup>BC</sup></td>
</tr>
<tr>
<td>Fosforilada etanol</td>
<td>55,24<sup>ABCD</sup></td>
<td>23,11<sup>AB</sup></td>
<td>6,98<sup>C</sup></td>
<td>4,18<sup>C</sup></td>
<td>1,53<sup>AB</sup></td>
<td>2,80<sup>A</sup></td>
<td>36,85<sup>A</sup></td>
<td>30,35<sup>CD</sup></td>
<td>54,89<sup>AB</sup></td>
<td>17,17<sup>B</sup></td>
<td>409,04<sup>ABC</sup></td>
</tr>
<tr>
<td>Resíduo desossas</td>
<td>14,84<sup>A</sup></td>
<td>20,65<sup>A</sup></td>
<td>5,96<sup>B</sup></td>
<td>3,42<sup>AB</sup></td>
<td>1,36<sup>AB</sup></td>
<td>2,54<sup>A</sup></td>
<td>49,47<sup>ABC</sup></td>
<td>27,81<sup>B</sup></td>
<td>68,33<sup>C</sup></td>
<td>30,62<sup>D</sup></td>
<td>506,36<sup>C</sup></td>
</tr>
<tr>
<td>Hidrolisado total</td>
<td>61,37<sup>CD</sup></td>
<td>22,32<sup>AB</sup></td>
<td>6,71<sup>BC</sup></td>
<td>3,85<sup>RC</sup></td>
<td>1,39<sup>AB</sup></td>
<td>2,85<sup>A</sup></td>
<td>49,34<sup>AB</sup></td>
<td>24,40<sup>AB</sup></td>
<td>52,23<sup>AB</sup></td>
<td>17,97<sup>BC</sup></td>
<td>410,68<sup>ABC</sup></td>
</tr>
<tr>
<td>Hidrolisado sobrenadante</td>
<td>19,09<sup>ABC</sup></td>
<td>22,75<sup>AB</sup></td>
<td>6,68<sup>BC</sup></td>
<td>4,15<sup>C</sup></td>
<td>1,85<sup>AB</sup></td>
<td>2,53<sup>A</sup></td>
<td>50,36<sup>ABC</sup></td>
<td>22,01<sup>A</sup></td>
<td>47,98<sup>A</sup></td>
<td>15,90<sup>BC</sup></td>
<td>440,67<sup>BC</sup></td>
</tr>
<tr>
<td>Aprotéica</td>
<td>18,59<sup>AB</sup></td>
<td>47,08<sup>C</sup></td>
<td>5,01<sup>A</sup></td>
<td>2,88<sup>A</sup></td>
<td>1,37<sup>A</sup></td>
<td>2,13<sup>A</sup></td>
<td>32,75<sup>A</sup></td>
<td>32,37<sup>D</sup></td>
<td>51,98<sup>AB</sup></td>
<td>13,06<sup>ABC</sup></td>
<td>382,66<sup>AB</sup></td>
</tr>
<tr>
<td>Hidrolisado precipitado</td>
<td>25,12<sup>ABC</sup></td>
<td>21,22<sup>A</sup></td>
<td>6,65<sup>BC</sup></td>
<td>3,77<sup>RC</sup></td>
<td>1,33<sup>AB</sup></td>
<td>2,88<sup>A</sup></td>
<td>51,60<sup>ABC</sup></td>
<td>26,65<sup>ABC</sup></td>
<td>60,79<sup>BC</sup></td>
<td>23,81<sup>CD</sup></td>
<td>404,53<sup>AB</sup></td>
</tr>
<tr>
<td>Comercial</td>
<td>31,35<sup>ABC</sup></td>
<td>30,03<sup>B</sup></td>
<td>6,64<sup>BC</sup></td>
<td>3,67<sup>BC</sup></td>
<td>1,32<sup>AB</sup></td>
<td>2,96<sup>A</sup></td>
<td>34,86<sup>A</sup></td>
<td>28,49<sup>B</sup></td>
<td>56,67<sup>ABC</sup></td>
<td>21,20<sup>CD</sup></td>
<td>314,82<sup>A</sup></td>
</tr>
</tbody>
</table>

* Colesterol
** Proteínas totais
*** Triacilgliceróis
**** Relação Albumina/Globulina

 Médias seguidas de mesma letra não diferem estatisticamente pelo teste de Tukey a nível de 5%
Figura 56A. Médias e desvios padrão dos componentes séricos de soro de ratos alimentados com dietas à base de proteínas de tilápia do Nilo.

1 - Caseina
2 - Proteínas totais
3 - Surimi Etanol
4 - Fosforilada/Etanol
5 - Resíduo desossa
6 - Hidrolisado total
7 - Hidrolisado sobrenadante
8 - Aprotéica
9 - Hidrolisado sedimento
10 - Ração para roedores
Figura 56B. Médias e desvios padrão dos componentes séricos de soro de ratos alimentados com dietas à base de proteínas de tilápia do Nilo

1 - Caseina
4 - Fosforilada/Etanol
7 - Hidrolisado sobrenadante
9 - Hidrolisado sedimento
2 - Proteínas totais
5 - Resíduo desossada
8 - Aprotéica
10 - Ração para roedores
3 - Surimi Etanol
6 - Hidrolisado total
A Figura 57 mostra o resumo das comparações múltiplas entre as dietas, ou seja, comparando as dietas entre si, indica que componentes séricos apresentaram diferenças significativas (p<0,05). Os quadros em azul indicam que a comparação se repete. Os quadros em branco significam que não houve diferença estatisticamente significativa entre as dietas comparadas. Os componentes séricos que variaram estão descritos nos quadros correspondentes. Assim, quando se comparam, a dieta de caseina com a dieta FE, verifica-se que houve diferença estatisticamente significativa em relação ao teor de triacilgliceróis (TAG).

<table>
<thead>
<tr>
<th></th>
<th>CAS</th>
<th>PT</th>
<th>SE</th>
<th>FE</th>
<th>RES</th>
<th>HT</th>
<th>HS</th>
<th>APRT</th>
<th>HI</th>
<th>COM</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAS</td>
<td></td>
</tr>
<tr>
<td>PT</td>
<td></td>
</tr>
<tr>
<td>SE</td>
<td></td>
</tr>
<tr>
<td>FE</td>
<td></td>
</tr>
<tr>
<td>RES</td>
<td></td>
</tr>
<tr>
<td>HT</td>
<td></td>
</tr>
<tr>
<td>HS</td>
<td></td>
</tr>
<tr>
<td>APRT</td>
<td></td>
</tr>
<tr>
<td>HI</td>
<td></td>
</tr>
<tr>
<td>COM</td>
<td></td>
</tr>
</tbody>
</table>

Figura 57. Análise de variância multivariada (MANOVA) do perfil bioquímico e Intervalos de Bonferroni (p<0,05)

Dietas: CAS = Caseina
FE = Fosfatos/Etanol
HS = Sobrenadante do hidrolisado
RES = Resíduo desossosa mecânica

Indicadores bioquímicos:
HDL = Colesterol HDL
GLU = Glucose
ALB = Albumina
URE = Uréia
AG = Triacilgliceróis
COL = Colesterol Total

**SE = Surimi/Etanol
HT = Hidrolisado total
HI = Sedimento do hidrolisado
COM = comercial
APRT = Aprotéica
LIP = Lipídios Totais
PRT = Proteínas Totais**
Na Tabela 31 são apresentados valores de referência para alguns dos componentes bioquímicos de soro de ratos oriundos da literatura.

Tabela 31. Componentes bioquímicos de animais de laboratório

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Glicose (mg/dL)</td>
<td>70,0</td>
<td>119,0-279,0**</td>
<td>50,0-135,0</td>
</tr>
<tr>
<td>Uréia (mg/dL)</td>
<td>35,3-38,3</td>
<td>15,1-36,0</td>
<td>15,0-21,0</td>
</tr>
<tr>
<td>Colesterol (mg/dL)</td>
<td>91,0-142,0</td>
<td>28,0-151,1</td>
<td>40,0-130,0</td>
</tr>
<tr>
<td>Triácilgliceróis (mg/dL)</td>
<td>26,0-145,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lipídios totais (mg/dL)</td>
<td>395,0-590,0</td>
<td>70,0-415,0</td>
<td></td>
</tr>
<tr>
<td>Proteínas totais (g/dL)</td>
<td>4,5-8,2</td>
<td></td>
<td>5,6-7,6</td>
</tr>
<tr>
<td>Albumina (g/dL)</td>
<td>3,1-3,4</td>
<td>2,7-4,3</td>
<td>3,8-4,8</td>
</tr>
<tr>
<td>Globulina (g/dL)</td>
<td>1,0</td>
<td>1,5-4,1</td>
<td>1,8-3,0</td>
</tr>
</tbody>
</table>

* valores para camundongo
** valor influenciado pelo sexo e pela linhagem

Como se verifica a partir da análise da Tabela 31, os valores de referência apresentam faixas muito amplas. Quando se compara os perfis séricos da maioria das dietas fornecidas (Tabela 28), as seguintes observações poderão ser feitas: para glicose os valores variaram de 14,84 mg/dL para dieta contendo resíduo da desossada a 86,83 para dieta com o concentrado proteico SE (surimi-etanol). Os resultados mais baixos de glicemia (resultados abaixo do limite inferior da literatura) foram para: resíduo da desossada, dieta aprotéica, sobrenadante do hidrolisado (HS), sedimento do hidrolisado (HI) e dieta comercial (NUVITAL). Não temos ao momento nenhuma explicação para o que aparenta ser uma baixa glicemia decorrente destas dietas experimentais. Para as demais dietas fornecidas os valores de glicose estão dentro da faixa apresentada na literatura.

Para uréia, o único valor encontrado um pouco acima dos limites da literatura foi para a dieta aprotéica (47,08 mg/dL), e isso é compreensível pelo fato da dieta aprotéica estimular o catabolismo proteico e a síntese da uréia.

Para proteínas séricas, proteínas totais variaram de 5,01 para a dieta aprotéica a 7,07 g/dL para a caseína; para albumina de 2,88 na dieta aprotéica a 4,15 para o hidrolisado solúvel (HS) e para globulina a faixa de variação foi de 1,32 para a dieta comercial a 1,85 para o HS. Todos os valores de proteína variaram dentro da faixa de referência para ratos (Tabela 31).
Com relação às frações lipídicas, lipídios totais variaram na faixa 314,82 - 506,36 mg/dL; triacilgliceróis, 34,86 - 89,43 mg/dL e colesterol 42,91 - 68,33 mg/dL. Essas faixas de valores estão perfeitamente dentro dos extremos encontrados na literatura e tomados como referência. A relação HDL/LDL-colesterol apresentou a seguinte variação, 0,9 - 8,4, sendo o valor mais baixo para dieta contendo resíduo da desossa e o mais alto para a dieta de caseina. Os valores de HDL-colesterol apresentaram pequena variação 22,01 - 30,35 mg/dL enquanto que os LDL-colesterol foram bastante variáveis, 3,54 - 30,62 mg/dL, o valor mais baixo para a caseina e o mais elevado para resíduo da desossa. De um modo geral as dietas contendo proteínas de peixe originaram valores bem mais elevados de LDL-colesterol. Embora as consequências dessa tendência não seja aparente, poderia estar indicando que as dietas contendo proteínas de peixe poderiam ser mais aterogênicas que a de caseina, sendo que o resíduo de tilápia do Nilo seria o mais aterogênico.

Vázquez & Muniz (1994) revisaram cerca de 60 trabalhos referentes ao metabolismo de colesterol relacionando à proteína de pescado. Em ensaios realizados em coelhos, ratos e humanos ficou evidenciado o efeito benéfico da proteína de pescado sobre o metabolismo de colesterol. Em humanos, a proteína de pescado elevou os níveis de HDL colesterol. Os autores mencionaram trabalhos que afirmam que o teor de lisina determina a aterogenicidade da dieta. Quanto menor o teor de lisina, menor a aterogenicidade da dieta. Posteriormente se verificou que a relação arginina/lisina seria determinante. Nos dados apresentados pelos autores, o valor da relação para caseina foi de 1,9 e da proteína de pescado, 1,4. Nos concentrados que foram empregados nos ensaios biológicos neste trabalho, as relações foram de 4,21 para caseina e de 2,51 ± 0,08 para a média dos concentrados FE, SE e PT. Outros aminoácidos que intervêm no metabolismo de colesterol são: metionina, cistina, tirosina e glicina. Quanto mais elevados seus níveis, maior a aterogenicidade.

Ainda com referência ao metabolismo de lipídios, as dietas contendo o concentrado de proteínas totais (PT) e surimi etanol (SE) mostraram valores estatisticamente iguais aos obtidos com a caseina. A proteína trata da com fosfatos proporcionou um dos menores índices para triacilgliceróis, mas difere estatisticamente da caseina, para LDL-colesterol e um dos mais elevados para HDL-colesterol. Para lipídios totais, exceto os ratos alimentados com dieta comercial (ração para roedores), os valores são estatisticamente iguais aos da caseina. Os resultados do trabalho de Sugiyama et alii (1991b), mostram que ratos alimentados com hidrolisado proteico de tilápia do Nilo apresentavam componentes sanguíneos normais.
Outra constatação é permitida pela análise das Figuras 56A e 56B, nas quais se verifica que os desvios padrão para alguns dos componentes do soro foram um pouco elevados, apesar dos resultados serem confirmados por consistentes repetições, e respeitando-se os prazos de determinação destes componentes após a extração do soro. É provável que isto tenha relação com o fato dos ratos serem muito heterogêneos. Para diminuir esta heterogeneidade, após o sorteio dos ratos, para compor os grupos experimentais, e antes de iniciar o ensaio biológico, foi necessário fazer uma criteriosa redistribuição para que todos os grupos tivessem o mesmo peso médio e com o menor desvio padrão.

4.4.3 Aspectos nutricionais de sub-produtos do processamento

O resíduo de pele e ossos produzido nos processos de separação corresponde a mais de 50% na separação mecânica; e mais de 70% na filetagem. Normalmente este resíduo é destinado a ensilagem, ou é simplesmente descartado, mas existem trabalhos sugerindo o aproveitamento deste resíduo. Tarky et alii (1973) prepararam hidrolisado de resíduo sólido da indústria pesqueira com pepsina. O produto apresentou PER de 1,65 (caseina = 3,33). Quando adicionado de caseína (rica em triptofano) em proporções iguais, o PER elevou-se para 3,39. Montecalvo et alii (1984), testaram várias formas de recuperar a proteína que sobra do resíduo da filetagem de linguado, avaliando variáveis como pH do meio de extração, tempo e temperatura do processo, precipitação isoelétrica, relação proteína/solvente, e na forma de complexos de fosfato as proteínas solúveis resultantes da precipitação isoelétrica. O rendimento foi de cerca de 70%.

No preparo de produtos como o surimi, ou o “marinbeef” (Suzuki, 1987), o resíduo é líquido e corresponde às diversas frações de lavagem com solução salina, bicarbonato e água e contém cerca de 20 - 36% de proteína. (Lee, 1984; Wu et alii, 1991; Hall & Ahmad, 1992; Yean et alii, 1994). Em algumas plantas existem sistemas de microfiltração e ultrafiltração para reutilização da água na etapa seguinte, mas muitas vezes este material é descartado. Parte dos sólidos solúveis perdidos nestas frações podem representar proteínas miofibrilares de alta funcionalidade e que devem ser recuperados, caracterizados e reutilizados para agregar valor, ao mesmo tempo que com a recirculação pode-se poupar água (Lin et alii, 1995). Spinelly & Koury (1970) compararam 4 tipos de fosfatos complexos, sob condições ácidas, para precipitação das proteínas sarcoplasmáticas. O hexametafosfato de sódio (HMP) foi o que proporcionou maior recuperação. Foram comparados os indicadores desta proteína e com tratamento posterior com
isopropanol (IP). O PER foi 4,0 para a proteína complexada com HMP (caseína 3,11), e de 3,82 para a amostra HMP/IP. O teor de lisina disponível foi de 6,7% e 6,5% respectivamente.

<table>
<thead>
<tr>
<th>Dieta referência</th>
<th>DAPD (%)</th>
<th>DAPI (%)</th>
<th>DV (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dieta referência</td>
<td>87,92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resíduo</td>
<td>83,40</td>
<td>72,87</td>
<td>83,90</td>
</tr>
<tr>
<td>Resíduo hidrolisado</td>
<td>84,31</td>
<td>75,82</td>
<td>89,43</td>
</tr>
<tr>
<td>Sarcoplasmática</td>
<td>87,64</td>
<td>86,91</td>
<td>91,98</td>
</tr>
</tbody>
</table>

Verifica-se que a digestibilidade é visivelmente melhor na fração sarcoplasmática, cujos valores estão bem próximos da dieta de referência, que é uma dieta bem balanceada quanto à qualidade. Para os peixes em geral, a digestibilidade de alimentos proteicos situa-se na faixa de 75 a 95% (NRC, 1989). Trabalhando com pacu, Carneiro (1990) determinou a digestibilidade aparente da proteína de várias dietas experimentais obtendo valores médios de 75,03% a 90,87%, valores entre os quais se incluem os obtidos com os sub-produtos de processamento de tilápia do Nilo, aqui estudados.

Vieira et alii (1995) prepararam hidrolisado de cefalotórax de lagosta (Pandalus ssp), utilizando papaina, pepsina e uma protease fúngica, contendo 63 a 78% de proteína, 7 a 10% de lipídios, umidade de 2,7 a 6,0%, e cinzas variando em torno de 7% para pepsina e protease fúngica e 27% para pepsina. Os autores não realizaram ensaios para avaliar a qualidade nutricional dos hidrolisados.
Tabela 33. Composição de aminoácidos indispensáveis de sub-produtos de tilápia do Nilo

<table>
<thead>
<tr>
<th>Aminoácidos (g/100g prot)</th>
<th>Sarcoplasmática</th>
<th>Resíduo desossa</th>
<th>Padrão FAO/WHO 2 - 5 anos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Histidina</td>
<td>3,85</td>
<td>3,17</td>
<td>1,90</td>
</tr>
<tr>
<td>Lisina</td>
<td>6,56</td>
<td>7,35</td>
<td>5,80</td>
</tr>
<tr>
<td>Metionina + Cisteina</td>
<td>2,31</td>
<td>0,92*</td>
<td>2,50</td>
</tr>
<tr>
<td>Fenilalanina + Tirosina</td>
<td>7,44</td>
<td>5,15*</td>
<td>6,30</td>
</tr>
<tr>
<td>Leucina</td>
<td>6,36</td>
<td>5,38</td>
<td>6,60</td>
</tr>
<tr>
<td>Isóteucina</td>
<td>3,71</td>
<td>1,84*</td>
<td>2,80</td>
</tr>
<tr>
<td>Valina</td>
<td>4,18</td>
<td>3,40</td>
<td>3,50</td>
</tr>
<tr>
<td>Treonina</td>
<td>4,68</td>
<td>3,63</td>
<td>3,40</td>
</tr>
<tr>
<td>Triptofano</td>
<td>0,57</td>
<td>0,44*</td>
<td>1,10</td>
</tr>
</tbody>
</table>

* Aminoácidos limitantes

O valor biológico do resíduo da desossa foi obtido através de ensaio biológico com ratos, e correspondeu a 86,61%. Para proteínas sarcoplasmáticas os aminoácidos limitantes foram metionina + cisteína (escore químico = 43,58). O PDCAAS para o resíduo foi de 0,32, tendo como aminoácidos limitantes metionina e cisteína, calculado sobre o valor da digestibilidade "in vivo", que foi de 86,62%. A fração sarcoplasmática mostrou valor um pouco maior para o PDCAAS (0,475), tendo como aminoácido limitante o triptofano. Estes sub-produtos podem ser indicados como componentes protêicos para ração animal.

4.4.4 Aplicação dos hidrolisados em alimentos para fins especiais

Foi preparado um hidrolisado de alto grau de hidrólise (45%), a partir do concentrado obtido com etanol a quente (EQ), e contendo 88% de proteína (teor de aminoácidos livres superior a 30% e perfil de peptídos que podem ser verificados na Tabela 14 e Figura 16). O perfil de aminoácidos totais e livres aparece na Tabela 34. Os teores de minerais aparecem na Tabela 35. Esta preparação serviu de base para o desenvolvimento de um produto para ser incluído em alimentos para fins especiais.

A principal limitação é o sabor amargo e remanescente a peixe. Testes preliminares com preparações líquidas contra-indicaram esta forma de uso do hidrolisado. Mas o produto pode servir de base proteica para produtos para alimentação enteral, uma vez que a dieta é administrada através de sondas. O encapsulamento, conforme mostra a Figura 58, pode ser uma forma de administração do hidrolisado. O incoveniente é que o número de cápsulas a serem
ingeridas diariamente seria muito grande porque em cada cápsula foi possível acondicionar apenas 700 mg de proteínas. Por outro lado, foram obtidos bons resultados preliminares mediante adição em produtos de panificação como tortas salgadas e biscoitos.

Figura 58. Cápsulas de hidrolisado protéico de tilápia do Nilo
Tabela 34. Perfil de aminoácidos livres e totais de hidrolisado protéico de tilápia do Nilo com 45% de grau de hidrólise

<table>
<thead>
<tr>
<th>Aminoácidos (g/100g prot)</th>
<th>Aminoácidos totais</th>
<th>Aminoácidos livres</th>
<th>Padrão FAO*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Histidina</td>
<td>4,19</td>
<td>0,29</td>
<td>1,90</td>
</tr>
<tr>
<td>Lisina</td>
<td>10,17</td>
<td>3,93</td>
<td>5,80</td>
</tr>
<tr>
<td>Metionina</td>
<td>2,76</td>
<td>2,82</td>
<td>2,50**</td>
</tr>
<tr>
<td>Cistina</td>
<td>0,83</td>
<td>0,45</td>
<td></td>
</tr>
<tr>
<td>Fenilalanina</td>
<td>3,88</td>
<td>2,17</td>
<td>6,30***</td>
</tr>
<tr>
<td>Tiro sina</td>
<td>3,54</td>
<td>1,44</td>
<td></td>
</tr>
<tr>
<td>Leucina</td>
<td>8,36</td>
<td>6,26</td>
<td>6,60</td>
</tr>
<tr>
<td>Isoleucina</td>
<td>4,71</td>
<td>2,16</td>
<td>2,80</td>
</tr>
<tr>
<td>Valina</td>
<td>5,08</td>
<td>2,70</td>
<td>3,50</td>
</tr>
<tr>
<td>Treonina</td>
<td>5,10</td>
<td>0,00</td>
<td>3,40</td>
</tr>
<tr>
<td>Triptofano</td>
<td>0,40</td>
<td>0,30</td>
<td>1,10</td>
</tr>
</tbody>
</table>

* Padrão FAO/WHO para crianças de 2 a 5 anos
** Metionina + Cistina
*** Fenilalanina + Triptofano

Tabela 35. Minerais em hidrolisado de tilápia do Nilo com 45% de grau de hidrólise

<table>
<thead>
<tr>
<th>Mineral</th>
<th>Teor (mg/kg)</th>
<th>Valores recomendados*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alumínio</td>
<td>8,14 ± 0,15</td>
<td></td>
</tr>
<tr>
<td>Bário</td>
<td>0,35 ± 0,008</td>
<td></td>
</tr>
<tr>
<td>Cálculo</td>
<td>2524,39 ± 33,13</td>
<td>1200 mg</td>
</tr>
<tr>
<td>Cobalto</td>
<td>2,29 ± 0,05</td>
<td></td>
</tr>
<tr>
<td>Cromo</td>
<td>5,29 ± 0,21</td>
<td>50-200 ug</td>
</tr>
<tr>
<td>Cobre</td>
<td>2,91 ± 0,05</td>
<td>1,5-3,0 mg</td>
</tr>
<tr>
<td>Ferro</td>
<td>42,42 ± 0,26</td>
<td>10 mg</td>
</tr>
<tr>
<td>Potássio</td>
<td>1316,97 ± 6,33</td>
<td>2000 mg</td>
</tr>
<tr>
<td>Lítio</td>
<td>0,8265 ± 0,003</td>
<td></td>
</tr>
<tr>
<td>Magnésio</td>
<td>484,43 ± 2,98</td>
<td>350 mg</td>
</tr>
<tr>
<td>Manganês</td>
<td>0,83 ± 0,003</td>
<td>2,5-5,0 mg</td>
</tr>
<tr>
<td>Sódio</td>
<td>3703,98 ± 8,19</td>
<td>500 mg</td>
</tr>
<tr>
<td>Fósforo</td>
<td>2361,49 ± 20,75</td>
<td>1200 mg</td>
</tr>
<tr>
<td>Zinco</td>
<td>45,99 ± 0,66</td>
<td>15 mg</td>
</tr>
</tbody>
</table>

* NRC para homens de 72 kg (National Research Council, 1989).

O resultado da análise microbiológica deste hidrolisado aparece na Tabela 36.
Tabela 36. Análise microbiológica de hidrolisado protêico de tilápia do Nilo

<table>
<thead>
<tr>
<th>Determinação</th>
<th>Resultado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salmonella (em 25g)</td>
<td>Ausente</td>
</tr>
<tr>
<td>Coliformes totais (NMP/g)*</td>
<td>< 0,3</td>
</tr>
<tr>
<td>Coliformes fecais (NMP/g)</td>
<td>< 0,3</td>
</tr>
<tr>
<td>Staphylococcus aureus (UFC/g)**</td>
<td><10²</td>
</tr>
<tr>
<td>Bacillus cereus (UFC/g)</td>
<td><10²</td>
</tr>
<tr>
<td>Clostrídios sulfito redutores (UFC/g)</td>
<td><10</td>
</tr>
<tr>
<td>Contagem de bolores e leveduras (UFC/g)</td>
<td>4 x 10</td>
</tr>
</tbody>
</table>

* Número Maior Provável/g
** Unidades Formadoras de Colônias/g

Foram desenvolvidas formulações de biscoito doce e salgado, nos quais parte da gordura foi substituída por substitutos de gordura de base protéica, ou seja Dairo-Lo® para o biscoito doce e Siplesse® para o biscoito salgado. A composição centesimal dos biscoitos aparece na Tabela 37 e sua aparência na Figura 59.

Tabela 37. Composição centesimal dos biscoitos preparados com hidrolisado de tilápia do Nilo

<table>
<thead>
<tr>
<th>Componente (g%)</th>
<th>Biscoito doce</th>
<th>Biscoito salgado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proteínas</td>
<td>19,86 ± 0,05</td>
<td>20,31 ± 0,20</td>
</tr>
<tr>
<td></td>
<td>50,05</td>
<td>58,35</td>
</tr>
<tr>
<td>Carboidratos *</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lipídios</td>
<td>10,84 ± 0,35</td>
<td>9,19 ± 0,52</td>
</tr>
<tr>
<td>Umidade</td>
<td>11,10 ± 0,11</td>
<td>7,58 ± 0,07</td>
</tr>
<tr>
<td>Cinzas</td>
<td>3,35 ± 0,07</td>
<td>2,17 ± 0,05</td>
</tr>
<tr>
<td>Fibras</td>
<td>4,80 ±</td>
<td>2,40 ±</td>
</tr>
</tbody>
</table>

* por diferença, excluindo as fibras

O teor de proteínas de um biscoito doce comercial, semelhante ao desenvolvido neste trabalho, foi de 7,31 ± 0,05, e de gordura, 11,16 ± 0,28. Para o biscoito salgado, os valores foram 7,84 ± 0,17 e 14,97 ± 0,34, para proteínas e gordura, respectivamente.
Figura 59. **Biscoitos para atletas enriquecidos com hidrolisado de tilápia do Nilo**

O teste de aceitação foi realizado com 100 atletas (50 do sexo feminino e 50 do sexo masculino), com idade cuja média e mediana eram de 15 anos, das seguintes modalidades esportivas: natação, “handball”, voleibol, e futebol de salão. Os atributos avaliados foram: cor, odor, sabor, intensidade de sabor doce/salgado (para cada caso), crocância, dureza e aceitação global. Através do teste de Wilcoxon para dados pareados (estatística não paramétrica), houve diferença estatisticamente significativa (p≤0,05) em relação a cor, sabor, crocância, dureza e aceitação global. O biscoito salgado foi o preferido independentemente do sexo dos provadores. O biscoito salgado recebeu as melhores médias para quase todos os atributos, exceto dureza (porque foi considerado mais duro que o doce) e odor (remínescente à pizza). Como o objetivo era a obtenção de um produto natural, o biscoito salgado foi adicionado de queijo provolone e orégano, o que fez com que seu odor fosse mais acentuado, mas sem comprometer a qualidade do produto. Independente da modalidade esportiva, no atributo aceitação global, para o biscoito doce, 14% assinalou que gostou muito e 36% que gostou. Para o biscoito salgado, os percentuais foram 11% e 66% respectivamente. Considerando a aceitação dos biscoitos, acreditamos que esta seja uma das aplicações para o produto e eventualmente em usos clínicos para portadores de síndromes de má-absorção, de alergias alimentares, pacientes que sofreram queimaduras, e para outras aplicações, bastando otimizar a formulação para a aplicação específica.
4.4.5 Peptídios com atividade fisiológica: inibidor de enzima conversora de angiotensina (ACE)

Em ensaios preliminares foi detectada a presença de peptídio(s) com ação inibidora sobre a enzima conversora da angiotensina (ACE-peptidildepeptidio hidrolase - EC 3.4.15.1). Os ensaios foram realizados comparando-se hidrolisados obtidos com Alcalase® e Flavourzyme®. De uma forma geral estes peptídios são encontrados em hidrolisados alcalinos, e neste caso, verificou-se que a atividade inibidora do hidrolisado obtido com Alcalase® (pH 8,0) foi maior que o obtido com Flavourzyme® (pH 7,0), conforme mostra a Tabela 38. Inicialmente foram analisadas as frações com peso molecular inferior a 5 kDa, com base na informação de Ariyoshi (1993) de que este inibidor teria PM inferior a 2 kDa de peso molecular.

O método espectrofotométrico para determinação da atividade da enzima se baseia no aumento da absorção a 340 nm decorrente da clivagem do substrato sintético N-[3-(2-furil)acriloi]L-fenilalanil-glicil-glicina (FAPGG), a N-[3-(2-furil)acriloi] - L-fenilalanil (FAP), conforme descrito por Harjanne (1984). A unidade enzimática foi definida como quantidade de enzima que catalisa a formação de 1 micromol de N-[3-(2-furil)acriloi] - L-fenilalanil por minuto a 37°C. O sistema de incubação continha 33,5 U/L, sobre as quais se efetuaram os ensaios de inibição, avaliando-se a quantidade de proteína responsável por inibir 50% da atividade enzimática (IC\textsubscript{50}).

Tabela 38. Inibição de enzima conversora de angiotensina (ACE) por hidrolisados de tilápio do Nilo

<table>
<thead>
<tr>
<th>Material</th>
<th>mg proteína para 50% inibição (IC\textsubscript{50})</th>
</tr>
</thead>
<tbody>
<tr>
<td>HS Flavourzyme 25% hidrolise</td>
<td>0,087</td>
</tr>
<tr>
<td>HS Alcalase 25% hidrolise</td>
<td>0,064</td>
</tr>
<tr>
<td>Flavourzyme ultrafiltrado <5 kDa</td>
<td>0,074</td>
</tr>
<tr>
<td>Alcalase ultrafiltrado <5 kDa</td>
<td>0,057</td>
</tr>
<tr>
<td>Fração purificada por HPLC (Alcalase)</td>
<td>0,0048</td>
</tr>
</tbody>
</table>

Verifica-se que houve uma concentração da atividade inibidora da enzima quando se tentou separar os peptídios com esta atividade. Para o inibidor de ACE da Sigma, o IC\textsubscript{50} foi de 0,0015 mg. Como o hidrolisado de Alcalase® se mostrou um pouco mais ativo que o de Flavourzyme®, optou-se por tentar, através dele, separar o peptídio por HPLC. As condições para HPLC foram as mesmas que para determinação do perfil de peptídios dos hidrolisados. O peso molecular aproximado do peptídio isolado de tilápio do Nilo foi de 1,3 kDa, que corresponderia a
um nonapeptídio (9,4 resíduos), baseando-se no fato de que o inibidor Sigma é um octapeptídio com peso molecular de 1,10 kDa, com a seguinte sequência de aminoácidos: glu-trp-arg-pro-gln-ile-pro. Este resultado deve ser considerado com reservas porque a coluna disponível (Protein Pak 60 - Waters) não apresentava alta resolução nesta região. Este resultado apenas confirma a presença de um peptídio com atividade inibidora da enzima conversora de angiotensina I em angiotensina II.

Em sardinha foram encontrados peptídios contendo 3, 5, 6 e 8 resíduos de aminoácidos, e em bonito, peptídios com 3 e 6 resíduos com atividade inibidora de ACE. Nos dois casos, o tripeptídio apresentou atividade inibidora mais elevada, e o hidrolisado com pepsina foi mais ativo que os de tripsina e quimiotripsina. Hidrólise de caseina com tripsina levou ao aparecimento de um dodecapéptídio com elevada atividade inibidora de ACE (Ariyoshi, 1993).

Quando se tentou verificar o efeito da concentração do hidrolisado sobre a atividade inibidora na fração inferior a 5 kDa do ultrafiltrado do hidrolisado a 25% de hidrólise com Alcalase® (HS), encontrou-se uma relação linear e de alta correlação (0,96) entre o teor de proteína e a atividade inibidora.

Figura 60. Efeito da concentração de proteínas sobre a inibição da enzima conversora de angiotensina I em angiotensina II (ACE)
Peptídeos com atividade inibidora de ACE foram detectados em várias espécies de peixe de água salgada, como atum, sardinha, bonito e em ostra (Ariyoshi, 1993; Astawan et alii, 1995; Matsui et alii, 1993; Matsumoto et alii, 1994; Matsumura et alii, 1993; Seki et alii, 1993; Sugiyama et alii, 1991a). A maioria dos trabalhos nesta área são recentes e foram conduzidos no Japão.

Deeslie & Cheryan (1981) discutiram a utilização de um método simples e rápido para monitorar o produto de hidrólise a partir de um reator de fluxo contínuo. Compararam os resultados obtidos por leitura espectrofotométrica direta a 280, 215, e 225 nm com os resultados obtidos pelo método do biureto. Nas três situações os valores foram superestimados. A medida da diferença da absorbância a 215 e 225 mostrou resultados mais próximos ao do biureto. Nenhum dos métodos detecta aminoácidos livres, mas a concentração de ligações peptídicas. O cromatógrafo utilizado para HPLC emprega detector de UV e as leituras foram feitas a 220 nm, razão pela qual utilizamos a mesma medida para determinar o teor de proteína das frações purificadas contendo o inibidor de enzima conversora de angiotensina I em angiotensina II, tendo como padrão o inibidor de ACE da Sigma.
5. CONCLUSÕES

1. No preparo de concentrados proteicos de pescado ocorre o comprometimento das propriedades funcionais. O tratamento de proteínas miofibrilares de tilápia do Nilo com polifosfatos (CP) melhorou significativamente as propriedades funcionais das proteínas comparativamente ao concentrado obtido com etanol a quente (EQ). O sabor suave, a qualidade nutricional e as propriedades funcionais apresentadas pelo concentrado CP indicam seu uso em alimentos sólidos enriquecidos, especialmente aqueles formulados à base de cereais.

2. A hidrólise enzimática teve efeito marcante na melhoria das propriedades funcionais do concentrado preparado mediante tratamento com etanol a quente (EQ). Foi considerado hidrolisado total a mistura de reação (HT) sem separação da fração solúvel (IIS) e insolúvel (HI). A solubilidade aumentou de 3,22 ± 0,09% no concentrado com etanol a quente (EQ) para 55,74 ± 1,03% no seu hidrolisado com GH de 14%. O hidrolisado que apresentou melhores características para propriedades como capacidade emulsificante e estabilidade de emulsão foi aquele com GH de 7%. O sobrenadante do hidrolisado a 7% foi a melhor fração em relação às propriedades de formação e estabilidade de espuma. Para o índice de atividade emulsificante o hidrolisado com GH 9% apresentou os melhores valores. A capacidade de absorção de água e de óleo do concentrado EQ foram superiores às dos hidrolisados. As tensões superficial e interfacial dos hidrolisados foram inferiores às dos concentrados. O amargor do produto com 25% de hidrólise com Alcalase® foi estatisticamente superior ao do produto obtido com Flavourzyme®. A avaliação conjunta das propriedades funcionais através de Análise de Variância Multivariada permitiu demonstrar que as determinações de propriedades funcionais realizadas neste trabalho forneceram dados consistentes, e resultados coerentes.

3. A hidrólise controlada não afetou o valor nutritivo dos diversos concentrados e hidrolisados preparados, comparativamente ao da caseina. Os valores foram mais próximos aos da caseina quando se empregou o hidrolisado total do que quando foram testados separadamente as frações solúveis e insolúveis dos hidrolisados. Foi constatada a ocorrência de peptídos com atividade inibidora da enzima que converte angiotensina I em angiotensina II (ACE), e portanto com atividade hipotensora.
4. O processamento dos concentrados originou dois sub-produtos: o resíduo da desossa mecânica e o concentrado de proteínas sarcoplasmáticas. Ambos foram avaliados nutricionalmente e mostraram-se potencialmente promissores na alimentação de peixes e de outros animais.

5. Quando se analisam conjuntamente os objetivos propostos e os resultados obtidos, verifica-se que o trabalho foi bem sucedido porque obtemos concentrados e hidrolisados de boa funcionalidade, e alto valor nutritivo. Um hidrolisado de alto grau de hidrólise (45%) foi empregado como suplemento protéico na elaboração de biscoitos nutricionalmente modificados para atletas, com boa aceitação.

6. Foi possível sugerir o aproveitamento total da matéria prima, sem perda dos sub-produtos de processamento. Ambos foram avaliados nutricionalmente e mostraram-se promissores na alimentação de peixes e outros animais.
REFERENCES BIBLIOGRÁFICAS

