UNIVERSIDADE ESTADUAL DE CAMPINAS

IMOBILIZAÇÃO DE HORSE RADISH PEROXIDASE EM DIFERENTES POLIANILINAS: APLICAÇÕES ANALÍTICAS

TESE DE DOUTORADO

Kátia Flávia Fernandes Silva

Professora Orientadora: Dra. Carol H. Collins

Campinas
2000
Lembre sempre que sua vontade de triunfar é mais importante que qualquer outra coisa. (E mais forte!)

Abraham Lincoln (1809-1865).
• Aos meus filhos Ana Clara e Caio César.

• Aos meus alunos e estagiários.
AGRADECIMENTOS

O final de um trabalho traz consigo o momento de resgatar a contribuição de todos que participaram da sua execução. Nesse momento, a reflexão sobre o longo caminho percorrido até aqui, me permite afirmar que, apesar de todos os percalços, houve sempre uma mão estendida, um ombro, um conselho, uma palavra amiga... É com muita alegria que manifesto minha gratidão a todos que participaram comigo dessa jornada, e em especial:

- A Deus, pela vida e pela fé;

- A meus pais, por me terem ensinado o amor ao estudo e o valor da perseverança;

- A meus filhos, por sempre compreenderem as ausências, o cansaço e a falta de tempo;

- À minha orientadora, Dra. Carol Collins, minha querida Professora, que sempre teve um sorriso amigo, uma palavra de estímulo, o olhar confiante, a certeza do sucesso, a resposta clara e inequívoca. Ela foi
o exemplo com que aprendi muito mais do que como fazer um trabalho: aprendi como encarar a vida sem medo, o valor do trabalho persistente e do otimismo. Tive também muita sorte pela oportunidade de conhecer e conviver com ela, pois minha orientadora é o retrato vivo de uma história de amor à profissão e de dedicação ao trabalho, sem perder de vista os valores mais importantes da vida: a família e os amigos.

- Ao mestre querido, Dr. Luiz B. Carvalho Jr., meu Professor nos primeiros e despretensiosos passos no aprendizado da arte de imobilizar. Sua presença é facilmente percebida ao longo deste trabalho. Tive muita sorte em conhecê-lo, em ser sua aluna e, embora brevemente, sua estagiária. Com ele aprendi bem mais do que há nos livros, aprendi que criatividade é um bem muito precioso, que em pesquisa não há departamento de controle de qualidade e que o responsável pelo seu futuro acadêmico é você. Aprendi que tudo pode ser feito com bom humor, que os amigos devem sempre vir primeiro, e que a genialidade desse Pernambucano não tem limites.

- De modo muito especial, ao meu companheiro de profissão, de laboratório e de vida, meu marido Claudinei. Ele esteve presente em todos os momentos deste trabalho, fosse comigo no laboratório, fosse em casa, fazendo as vezes de mãe, para que eu pudesse ser
pesquisadora. Não há como dividir com ele os créditos, pois são dele tanto quanto meus. A ele devo agradecer por mim e por nossos filhos, que assistiram tranquiilamente a mãe fazer doutorado, sem nunca chegar a saber o que era uma tese, sem traumas e sem carências, por que tiveram no pai o substituto à altura e, muitas vezes, até melhor. Ao Prof. Claudinei S. Lima minha eterna gratidão.

• À minha queridíssima amiga Roseli B. Silva. Vivemos juntas os primeiros passos desse doutorado, tateamos e achamos nosso caminho. Ela sempre à frente me servindo de guia. Seu carinho e amizade naqueles dias de idas e vindas foram o abrigo para viajante cansada.

• Ao Prof. Dr. Wilson Botter Jr, por estar sempre por perto, sempre disposto a ajudar, por sempre saber a solução mais simples, rápida e eficiente. Sua participação neste trabalho é imensa: reagentes, equipamentos, conselhos, revisão da redação, sugestões preciosas. Mas acima de tudo, quero agradecer por sua confiança, por que mesmo quando eu duvidei, lá estava ele acreditando em mim e me estimulando a seguir em frente. Ao Prof. Wilson devo agradecer por ter sido, acima de tudo, meu grande amigo.

• Ao amigo, Prof. Luiz Arthur M. Bataus, o eterno relator, pela paciência com meus relatórios de Pós-Graduação e pelo estímulo nos
momentos em que as coisas saíam dos trilhos.

- Aos meus estagiários, os “meninos do LQP”, em particular Henry de Pinho, Karini Bellório e Flávio Marques pela participação efetiva neste trabalho, Samantha M. M. Catein e Samantha S. Caramori pela amizade, e aos “meninos do LBQ”, especialmente Iderval S. Jr. e Christian Hoffman pela tardes despendidas à frente do computador. Quero agradecer a todos os “meninos” com quem tive o imenso prazer de conviver durante a elaboração deste trabalho, por torcerem tanto por meu sucesso.

- Aos queridos amigos do LABCROM: Carla, Dania, Edivan, Joseane, Lúcio, Priscila, Sônia e Zahra pela força que sempre me deram e pelo carinho com que sempre me receberam.

- Por fim, aos demais Professores e funcionários do IQ-UNICAMP, ICB-UFG, à Dra. Márcia Dezzoti pelos reagentes e equipamentos cedidos no início deste trabalho e à CAPES pela bolsa concedida.
Lista de Abreviaturas

HRP - Enzima Peroxidase (Horseradish) tipo IV - EC 1.11.1.7
PANI 1 a 3 - Polianilinas
PANIG - Polianilina ativada pela ligação de glutaraldeído
PANIG-HRP - Polianilina ativada contendo peroxidase ligada
NADH – Nicotinamida adenina dinucleotídeo
ELISA – “Enzyme-linked immunosorbent assay”
APTES ou APTS – Aminopropil trietoxi silano
IMI – Íon metálico imobilizado
TGA - Análise Termogravimétrica
S₀ – Sobrenadante obtido no processo de imobilização
S₁, S₂ e S₃ – Águas de lavagem obtidas no processo de imobilização
UE - Unidades de enzima
BSA – Albumina sérico bovina
AE – Atividade específica (UE/mg de proteína)
UV / VIS – Ultravioleta / Visível
GOD – Enzima Glicose Oxidase
FTIR – Infra-vermelho de transmissão
PVA – Poli(vinil álcool)
RSF – Fibra de seda regenerada
FMP – 2-fluor-1-metilpiridina
CPG – Vidro de poro controlado
TCNQ - Tetracianquinodimetano
Km – Constante de Michaelis-Menten
Km(ap) – Constante de Michaelis-Menten aparente
Vmax – Velocidade máxima
v – Velocidade da reação
S – Substrato
[S] – Concentração de substrato
z – razão molar entre agente oxidante e anilina
r – coeficiente de linearidade
n_an – número de moles de anilina
n_ox – número de moles de agente oxidante
Tris – Tris(hidroximetil)aminometano
RESUMO

IMOBILIZAÇÃO DE HORSERADISH PEROXIDASE EM DIFERENTES POLIANILINAS: APLICAÇÕES ANALÍTICAS

Kátia Flávia Fernandes Silva

Palavras-chave: imobilização, peroxidase, polianilina, mini-reator, análise por injeção em fluxo.

Este trabalho descreve a imobilização da enzima peroxidase em polianilinas quimicamente sintetizadas e ativadas com poligluturaldeído. Foram sintetizadas e caracterizadas cinco polianilinas que diferiam quanto ao grau de oxidação, ao tipo de contra-íon e ao grau de substituição do anel. Esses polímeros foram ativados com poligluturaldeído, para que a imobilização se desse por ligação química. Na ausência desse tipo de ativação, ocorre apenas a adsorção da enzima. Dos polímeros testados, observamos que aqueles com graus de oxidação intermediários (PANIG3, PANIG5 e PANIG7) possuíam maior capacidade de retenção da enzima.
A PANIG® foi utilizada nos experimentos que visavam à otimização dos parâmetros de imobilização. O rendimento máximo (25%) foi obtido quando a imobilização se deu pela adição de 1,0 mL de solução de peroxidase (10 μg mL⁻¹), preparada em tampão fosfato (0,1 mol L⁻¹, pH 6,0), a 5,0 mg de PANIG®. A reação foi realizada durante 2h a 4 °C, sob leve agitação.

A avaliação dos parâmetros cinéticos revelou que a imobilização não resultou em alterações no pH ótimo (faixa 6-8) ou no K_m (7,07 mmol L⁻¹) da enzima imobilizada. Entretanto, há aumento nos parâmetros de estabilidade – na térmica, frente a solventes orgânicos e durante o armazenamento em temperaturas ambiente e a 4 °C.

O sistema PANIG®-HRP foi utilizado na montagem de um mini-reactor para análise por injeção em fluxo, que foi utilizado na determinação analítica de peróxido de hidrogênio (faixa linear 3,3 a 163,3 mmol L⁻¹) e glicose (faixa linear 2,0 a 3,0 mmol L⁻¹). A alta estabilidade e reprodutibilidade do sistema permitiu sua reutilização por cerca de 1500 análises, o que nos leva a concluir que a PANIG® é um suporte bastante adequado para a imobilização de peroxidase.
ABSTRACT

HORSERADISH PEROXIDASE IMMOBILIZATION IN DIFFERENT POLYANILINES: ANALYTICAL APPLICATIONS

Kátia Flávia Fernandes Silva

Advisor: Professor Dra. Carol H. Collins

Key-words: immobilization, peroxidase, polyanilines, mini-reactor, flow injection analyse.

This work describes peroxidase immobilization on chemically synthesized polyaniline activated with polyglutaraldehyde. Five polyanilines with different ranges of oxidation, counter-ions and levels of ring substitution were synthesized and characterized. The polymers were then activated with polyglutaraldehyde to chemically bind the peroxidase. The best enzyme retention capacities were observed in those polymers with intermediate oxidation levels (PANiG®, PANiG® e PANiG®).

The polymer designated PANiG® was used in immobilization optimization experiments. The highest retentions (25%) were obtained when the immobilization was made by adding 1,0 mL of 10μg mL⁻¹ peroxidase solution prepared in 0,1 mol
L⁻¹ phosphate buffer, pH 6.0, to 5.0 mg of PANIG³, and allowing the reaction to proceed for 2h at 4°C.

The kinetic parameters reveal that immobilization does not modify either the optimum pH (6-8 range) or the K_m of the immobilized enzyme. However, immobilization increased thermal stability, stability in organic solvents and stability during storage at room temperature and 4°C.

The system PANIG³-HRP was used to construct a mini-reactor for flow injection analysis which was used for determination of hydrogen peroxide (linear range from 3.3 to 163.3 mmol L⁻¹) and glucose (linear range from 2.0 to 3.0 mmol L⁻¹). System stability and reproducibility allowed its use for 1500 analysis. This leads to the conclusion that PANIG³ is a very good suppor for peroxidase immobilization.
CURRÍCULO

A - IDENTIFICAÇÃO

Nome: Kátia Flávia Fernandes Silva

Filiação: Eduardo Geraldo de Almeida Silva
 Maria Nair Fernandes Silva

Data do Nascimento: 19 de Abril de 1962

Naturalidade: Pouso Alegre – MG

Nacionalidade: Brasileira

Carteira de Identidade: 011157992 - 6 Min. Ex.

CPF: 289.644.893 - 49

Título de Eleitor: 20.389.907/36, 2ª zona, sec. 0063

Carteira do CRF: 1447 - CRF-2

Estado Civil: Casada

2 - FORMAÇÃO:

2.1 - Universitária

• Farmacêutica pela Universidade Federal do Ceará, em 1987.

2.2 - Mestrado

• Mestre em Bioquímica pelo Departamento de Bioquímica e Biologia Molecular do Centro de Ciências da Universidade Federal do Ceará, em 1991.
3 - ATIVIDADES DIDÁTICAS:

- Professora da disciplina de Bioquímica do Departamento de Ciências Fisiológicas, do Instituto de Ciências Biológicas - UFG, desde 21 de janeiro de 1992.
- Ministrante de Mini-curso "Novos Suportes para Imobilização de Anticorpos", durante o XXXIX Congresso Brasileiro de Química 26 a 30 de setembro de 1999 – Goiânia – GO.

4 - PRODUÇÃO CIENTÍFICA:

4.1 - Dissertação de Mestrado

- Inibidores de Papaina em Sementes de A. Pavonina.

4.2 - Contribuições a Congressos

- Utilização de Polianilina como Suporte para Imobilização de Peroxidase – Anais da 18ª Reunião Anual da Sociedade Brasileira de Química – 30 de maio a 02 de junho de 1995 – Caxambu – MG.
- Increasing of Thermal Stability of Horseradish Peroxidase After Immobilization - Anais da XXVI Reunião Anual da Sociedade Brasileira de Bioquímica e Biologia Molecular - 3 a 6 de maio de 1997 – Caxambu - MG.
• Imobilização de Horseradish peroxidase em Diferentes Polianilinas – Anais do 4º Seminário Brasileiro de Tecnologia Enzimática (ENZITEC), 6 a 8 de outubro de 1999 – Rio de Janeiro – RJ.

4.3 – Artigo publicado

ÍNDICE

AGRADECIMENTOS IV
LISTA DE ABBREVIAÇÕES VIII
RESUMO IX
ABSTRACT XI
CURRÍCULO XIII
LISTA DE FIGURAS XIX
LISTA DE TABELAS XX

1. INTRODUÇÃO 1

1.1– Considerações Gerais 1

1.2– Imobilização de Enzimas 8
 1.2.1– Métodos para imobilização de Enzimas – Classificação 9
 I – Métodos para preparação de enzimas solúveis 10
 I.1 – Imobilização sem modificação química da enzima 10
 I.2 – Imobilização com modificação química da enzima 11
 II – Métodos para preparação de enzimas insolúveis 11
 II.1 – Aproximation 11
 II.2 – Ligação ao suporte 12
 II.2.1 – Adsorção 12
 II.2.2 – Ligação Iônica 13
 II.2.3 – Quelação ou Ligação com Metal 14
 II.2.4 – Ligação Covalente 15
 II.3 – Ligação Cruzada 16
 1.2.2 – A Escolha do Método de Imobilização 18

1.3– Suportes para Imobilização de Enzimas 19
 1.3.1 – O suporte ideal 24

1.4– As Polianilinas 25

1.5– As Peroxidases 30

2. OBJETIVOS 37

3. MATERIAIS E MÉTODOS 39

3.1– Reagentes 39

3.2– Sínteses das Polianilinas 41
3.3 – Ativação dos Polímeros

3.4 – Caracterização das Polianilinas e Polianilinas Ativadas
 3.4.1 – Análise Elementar
 3.4.2 – Análise Termogravimétrica (TGA)
 3.4.3 – Análise de Infravermelho de Transmissão

3.5 – Imobilização de Peroxidase em Polianilinas e Polianilinas Ativadas

3.6 – Ensaios de Atividade Enzimática
 3.6.1 – Usando Pirogalol como Substrato
 3.6.2 – Usando Fenol como Substrato
 3.6.3 – Usando orto-Dianisidina como Substrato
 3.6.4 – Usando Catecol como Substrato
 3.6.5 – Usando Guaiacol como Substrato
 3.6.6 – Usando Hidroquinona como Substrato
 3.6.7 – Usando Resorcínol como Substrato

3.7 – Dosagem de Proteína

3.8 – Parâmetros de Imobilização para PANIG®-HRP
 3.8.1 – Efeito do pH sobre o processo de imobilização
 3.8.2 – Otimização do tempo de imobilização
 3.8.3 – Otimização da relação de concentração da PANIG® com relação à HRP

3.9 – Parâmetros Cinéticos do Sistema PANIG®-HRP
 3.9.1 – Temperatura Ótima da Enzima Livre e Imobilizada
 3.9.2 – pH Ótimo da Enzima Livre e Imobilizada
 3.9.3 – Reatividade Relativa
 3.9.4 – Determinação da constante de Michaelis-Menten (Km)

3.10 – Parâmetros de Estabilidade
 3.10.1 – Termoestabilidade a 55°C
 3.10.2 – Estabilidade Enzimática Usando Diferentes Solventes Orgânicos
 3.10.3 – Estabilidade Durante o Armazenamento

3.11 – Sistema para Injeção em Fluxo
 3.11.1 – O Mini-reactor
 3.11.2 – Determinação da Faixa Operacional

3.12 – Aplicações Analíticas do Sistema para Injeção em Fluxo
 3.12.1 – Determinação de Peroxídio de Hidrogênio

4. RESULTADOS E DISCUSSÃO

4.1 – Síntese das Polianilinas
4.2 – Caracterização
 4.2.1 – Análise Termogravimétrica (TGA)
 4.2.2 – Análise Elemental
 4.2.3 – Análise de Infra-Vermelho de Transmissão

4.3 – Ativação de Polímero

4.4 – Imobilização de Peroxidase nos Diferentes Polímeros

4.5 – Otimização dos Parâmetros de Imobilização em PANIG®
 4.5.1 – pH ótimo de imobilização
 4.5.2 – Otimização do Tempo de Imobilização
 4.5.3 – Otimização da Relação de Concentração da PANIG® com Relação à HRP
 UE imobilizadas
 4.5.4 – Medida da Retenção de HRP (Eficiência)

4.6 – Parâmetros Cinéticos do Sistema PANIG®-HRP
 4.6.1 – Temperatura ótima da HRP livre e imobilizada
 4.6.3 – Reatividade Relativa
 4.6.4 – Constante de Michaelis-Menten (Km)

4.7 – Parâmetros de Estabilidade
 4.7.1 – Termoestabilidade
 4.7.2 – Estabilidade Durante Armazenamento
 4.7.3 – Ensaio de Atividade Enzimática Usando Diferentes Solventes Orgânicos

4.8 – Sistema para Injeção em Fluxo
 4.8.1 – Faixa Operacional para o Substrato Pirogalol

4.9 – Aplicações Analíticas
 4.9.1 – Determinação de H_2O_2

5. CONCLUSÕES

6. PERSPECTIVAS

7. REFERÊNCIAS BIBLIOGRÁFICAS

8. ANEXOS
1. INTRODUÇÃO

1.1– Considerações Gerais

A história da enzimologia, a ciência que estuda as enzimas, se confunde com a história da bioquímica. Ambas tiveram seu início no século dezenove, com as investigações pioneiras sobre os processos de fermentação e digestão. A primeira “Teoria Geral da Catálise Química” foi postulada pelo químico Jacob J. Berzelius, em 1835, partindo da observação de que extratos de malte, chamados à época de ‘diastase’ e que hoje sabe-se contêm uma mistura de amilases, catalisava a hidrólise de amido mais eficientemente do que o ácido sulfúrico (Voet & Voet, 1995).

Quase dois séculos depois, a química continua a ser o sustentáculo para a elucidação dos mecanismos envolvidos na catálise enzimática. Por outro lado, a complexidade e grande número de reações ocorrendo simultaneamente nos sistemas vivos fazem da bioquímica instrumento essencial para a compreensão das implicações biológicas dessas reações. A expansão do conhecimento e aplicações desse tipo de catálise nos dias atuais, com todas as vantagens que lhe são inerentes, tem convocado a participação cada vez mais efetiva daqueles que detêm o conhecimento das ciências química e bioquímica, para a solução de alguns problemas. Neste trabalho esse chamamento fecha um ciclo, e esperamos dê início a outro, de colaboração entre essas duas ciências (Figura 1).
Figura 1 – Genealogia Acadêmica – Primeiro Ciclo.

Por definição, enzimas são proteínas que tem por característica funcional a capacidade de catalisar reações. Esses chamados biocatalisadores diferem em alguns aspectos dos catalisadores químicos ordinários, tais como os ácidos, bases, metais pesados e óxidos metálicos. Dentre as principais características da catálise enzimática, podemos destacar as seguintes:
- sua capacidade catalítica é excepcional, sendo a velocidade das reações catalisadas por enzimas tipicamente um fator de 10^6 a 10^{12} vezes maior do que a velocidade da reação não catalisada correspondente;

- reações enzimaticamente catalisadas ocorrem em condições suaves, tais como temperatura inferior a 100°C, pressão atmosférica, pH próximo à neutralidade, contrapondo-se à catálise química que normalmente requer altas temperaturas, pressão e extremos de pH para obter alta eficiência;

- enzimas apresentam especificidade por seus substratos (reagentes) e produtos em escala bem maior do que os catalisadores químicos, de forma que numa reação catalisada por enzimas não há formação de produtos laterais;

- a atividade catalítica de muitas enzimas pode ser variada em resposta a alteração na concentração de substâncias chamadas de moduladores, que diferem em sua natureza dos substratos e produtos da reação (Bugg, 1997; Voet & Voet, 1995).

Tais aspectos logo atraíram a atenção daqueles que atuam na indústria biotecnológica, de forma que enzimas vêm sendo utilizadas como catalisadores em processos industriais há mais de 50 anos, pois representam uma considerável economia de tempo, energia e investimentos em equipamentos resistentes à corrosão e a altas pressões e temperaturas. O mercado mundial desses catalisadores está avaliado atualmente em US$ 1,5 bilhão, com perspectiva de considerável ampliação com o desenvolvimento de alguns setores industriais no sentido de atender às normas ISO9000 e ISO14000, que estabelecem padrões para a qualidade de produtos e norteiam as características dos processos de produção,
dando ênfase ao menor consumo energético e baixo impacto ambiental (Bon, 1999; Bugg, 1997).

Alguns exemplos das indústrias onde enzimas são utilizadas em alguma etapa dos processos estão mostrados na Tabela 1 (Bon, 1999).

Tabela 1 – Setores industriais que utilizam enzimas em seus processos (Bon, 1999).

<table>
<thead>
<tr>
<th>INDÚSTRIA</th>
<th>ENZIMA</th>
<th>AÇÃO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panificação e Biscoitaria</td>
<td>Alpha-amilase</td>
<td>Hidrólise parcial do amido</td>
</tr>
<tr>
<td></td>
<td>Proteases</td>
<td>Alteração na elasticidade e textura do glúten</td>
</tr>
<tr>
<td></td>
<td>Lactase (no leite)</td>
<td>Aumenta o volume, melhora o sabor e a cor</td>
</tr>
<tr>
<td>Produção de Cervejas</td>
<td>Alpha-amilase</td>
<td>Auxilia na hidrólise do amido</td>
</tr>
<tr>
<td></td>
<td>Beta-glucanases</td>
<td>Auxiliam na filtração</td>
</tr>
<tr>
<td></td>
<td>Proteases cisteínicas</td>
<td>Prevenir ou dissolver a turvação</td>
</tr>
<tr>
<td>Tratamento de Couro</td>
<td>Lipases</td>
<td>Desengorduramento</td>
</tr>
<tr>
<td></td>
<td>Proteases</td>
<td>Várias etapas do processamento</td>
</tr>
<tr>
<td>Detergentes</td>
<td>Proteases</td>
<td>Remoção de manchas protécias</td>
</tr>
<tr>
<td></td>
<td>Lipases</td>
<td>Remoção de manchas de gordura</td>
</tr>
<tr>
<td>Produção de Laticínios</td>
<td>Catalase</td>
<td>Remoção da H$_2$O$_2$ adicionada para pasteurização</td>
</tr>
<tr>
<td></td>
<td>Lизозима</td>
<td>Adequação ao consumo infantil</td>
</tr>
<tr>
<td></td>
<td>Quimosina</td>
<td>Coagulação do leite</td>
</tr>
<tr>
<td></td>
<td>Lipases e Proteases</td>
<td>Maturação de queijos e melhora no sabor</td>
</tr>
<tr>
<td></td>
<td>Lactase</td>
<td>Melhora na textura e conservação</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Produção de leites "livres de lactose"</td>
</tr>
<tr>
<td>Processamento De Carnes e Peixes</td>
<td>Proteases cisteínicas (papaína, ficina e bromelaina)</td>
<td>Tenderização de peixes</td>
</tr>
<tr>
<td></td>
<td>Proteases</td>
<td>Pré-tenderização de animais antes do abate</td>
</tr>
<tr>
<td></td>
<td>Lipases</td>
<td>Preparo de carnes curadas, conservas, embutidos</td>
</tr>
<tr>
<td></td>
<td>Celulas, Amilases</td>
<td>Desengorduramento de ossos para produção de gelatina</td>
</tr>
<tr>
<td></td>
<td>Quitinas, Proteases</td>
<td>Limpeza de moluscos e descasca de camarões</td>
</tr>
</tbody>
</table>
| Processamento de Frutas e Sucos | Pectinases
| Polgalacturonase
| Naringinase
| Pectinase, Celulase e Protease
| Redução da viscosidade e turbidez de frutas processadas
| Redução da turbidez de sucos ácidos
| Redução do sabor amargo de sucos cítricos
| Aceleração no processo de cristalização de frutas
| Produção De Vinhos | Pectinase
| Celulase, Pectinase, Hemicelulase
| Redução na viscosidade facilitando a filtração
| Facilitam o processo de prensagem
| Refino e Processamento de Açúcares | Alfa-amilases
| termoestáveis
| Dextranases
| Remoção de amido
| Degradação de dextranas
| Hidrólise de Amido | Alfa-amilase e glicoamilase
| Glicose isomerase
| Hidrólise total de amido à glicose
| Isomerização de glicose a frutose
| Indústria | Amilases
| Celulases e amilases
| Celulases
| Catalase
| Proteases
| Celulases
| Redução de substâncias amiláceas
| Maior brilho e maciez
| Obtenção do aspecto envelhecido
| Remoção de H₂O₂
| Remoção de escamas da lã
| Evitar encolhimento após lavagem
| Acabamento de tecidos sintéticos como o “Lyocell”
| Têxtil | Indústria de Papel e Celulose | Lacases, Manganês e Lignina Peroxidases
| Xilanases
| Celulases
| Lipases
| Biodeslignificação
| Biobranqueamento
| Descoloração de papeis usados
| Redução nos depósitos de piche
| Indústria de Óleos e Gorduras | Lipases
| Fosfolipase A₂
| Hidrólise de óleos para anufatura de sabão
| Produção de margarina
| Degomagem (remoção de fosfolípide)
| Tecnologia Ambiental | Lignina Peroxidase
| Lactase
| Redução da borra oleosa da indústria de petróleo
| Redução na Demanda Bioquímica de Oxigênio dos efluentes das indústrias de laticínios
| 5 |
A alta especificidade das enzimas por seus substratos fez desses biocatalizadores ferramentas importantes na área analítica, particularmente nas Análises Clínicas, onde mudanças sutis na concentração de alguns metabólitos são indicativos importantes de alterações sérias no funcionamento normal do organismo. Algumas das enzimas usadas corriqueiramente nos laboratórios estão listadas na Tabela 2 (Manual de Técnicas – Merck Diagnostica).

<table>
<thead>
<tr>
<th>Composto Dosado</th>
<th>Enzimas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ácido Úrico</td>
<td>Uricase, Catalase</td>
</tr>
<tr>
<td>Colesterol</td>
<td>Colesterol esterase, Colesterol oxidase</td>
</tr>
<tr>
<td>Glicose</td>
<td>Glicose oxidase, Peroxidase</td>
</tr>
<tr>
<td>Transaminase glutâmica oxaloacética</td>
<td>Malato desidrogenase</td>
</tr>
<tr>
<td>Transaminase glutamica pirúvica</td>
<td>Lactato desidrogenase</td>
</tr>
<tr>
<td>Uréia</td>
<td>Urease,</td>
</tr>
<tr>
<td>Creatinino quinase</td>
<td>Hexoquinase, glucose 6 – fosfato – desidrogenase</td>
</tr>
</tbody>
</table>

Outra área analítica onde o uso de enzimas tem se consagrado diz respeito às técnicas de separação por meios cromatográficos, na chamada cromatografia de
bioafinidade. Por definição a cromatografia de bioafinidade é um processo de separação baseado em propriedades específicas de biomoléculas (Mohr & Pommerening, 1985), em que o princípio envolvido é o isolamento seletivo, utilizando a propriedade dessas substâncias de se unirem reversivelmente a ligantes específicos (Collins et alii, 1995). Então, as interações altamente específicas das enzimas com seus substratos, moduladores ou inibidores são ferramentas poderosas dessa técnica de separação. Atualmente, muitas são as resinas disponíveis comercialmente para esse tipo de cromatografia, em que a molécula ligante retida na fase estacionária é uma enzima modificada quimicamente.

Por fim, um grande avanço na Química Analítica foi obtido com o desenvolvimento dos eletrodos enzimáticos, os chamados biossensores. Esses dispositivos combinam a seletividade e sensibilidade das enzimas por seus substratos, com a rapidez e simplicidade das medidas feitas em eletrodos ion- seletivos. O princípio de funcionamento dos eletrodos enzimáticos é simples: uma enzima reage com a substância que está sendo monitorada (substrato) e o aparecimento de um produto, ou o desaparecimento de um dos reagentes, é medido por um eletrodo ión-seletivo, através do consumo ou produção de espécies eletróativas que geram um potencial ou corrente (Guilbault, 1977). Tais eletrodos são especialmente importantes para o monitoramento de componentes cujas concentrações são extremamente baixas para serem detectadas pelos métodos convencionais, e que carecem de serem continuamente medidas, seja no ambiente que nos cerca, seja nos nossos próprios fluidos corporais.
Apesar de suas admiráveis características, a ampliação do uso de enzimas tem se deparado com a barreira econômica. O custo de purificação, mesmo que parcial, ou ainda da produção desses catalisadores tem barrado seu uso disseminado e, algumas vezes, tornado seu uso proibitivo em processos industriais. Foi neste contexto que os esforços de várias áreas de pesquisa se somaram, resultando no surgimento de uma nova área de estudo e pesquisa, a Tecnologia Enzimática.

A Tecnologia Enzimática pode ser considerada como sendo a união de esforços na tentativa de se alcançar o equilíbrio entre as vantagens da catálise enzimática, tais como especificidade e alto poder catalítico, e suas desvantagens, tais como a estabilidade reduzida e o alto custo dos processos de isolamento e purificação (Cheetam, 1986). Dentre as abordagens utilizadas na Tecnologia Enzimática na tentativa de solucionar esses problemas, a Imobilização de Enzimas desponta como uma das ferramentas mais versáteis.

1.2- Imobilização de Enzimas

Uma das definições mais abrangentes de enzimas imobilizadas é a que considera imobilizadas “enzimas que estão fisicamente confinadas, ou localizadas em uma certa região definida do espaço, com retenção de suas atividades catalíticas, e que podem ser usadas repetidamente e continuamente” (Chibata et alii, 1978).
Imobilização de Horseradish Peroxidase em Diferentes Poliálias: Aplicações Analíticas

Desde que Nelson e Griffin, em 1916, (APUD Kennedy & White, 1986), verificaram que invertase adsorvida em carvão ativado mantinha sua atividade e não era retirada com as lavagens, vários métodos de imobilização foram desenvolvidos.

1.2.1 – Métodos para Imobilização de Enzimas – Classificação

Há vários meios de se classificar os métodos atualmente utilizados para imobilizar enzimas. Kennedy & White (1986) propuseram uma classificação que combina a natureza da interação responsável pela imobilização com a natureza do suporte utilizado (Figura 2).

![Diagrama de Classificação de Métodos de Imobilização](image)

Figura 2 – Fluxograma de classificação dos métodos de imobilização segundo...
Kennedy e White (1986).

É preciso ter em mente o sistema onde a enzima imobilizada vai ser utilizado no momento da escolha do método de imobilização, uma vez que cada método traz em si limitações que precisam ser consideradas. A ligação de enzimas a suportes insolúveis é o método mais antigo e mais utilizado para imobilização (Kennedy & White, 1986) e, apesar de existir atualmente uma diversidade muito grande de métodos, apenas os mais clássicos serão descritos aqui.

1 – Métodos para preparação de enzimas solúveis

Nestes métodos, as enzimas mantêm sua solubilidade inalterada e são separadas do restante da solução por membranas semipermeáveis, fibras porosas ou membranas de ultrafiltração. Deste modo, é possível utilizar continuamente a enzima, na sua forma nativa, por períodos prolongados de tempo.

1.1 – Imobilização sem modificação química da enzima

Neste método a enzima nativa é aprisionada em uma câmara por uma membrana ou fibra, que são impermeáveis à molécula de enzima, mas são amplamente permeáveis às moléculas de substrato ou produto (Kennedy & White,
1.2 - Imobilização com modificação química da enzima

Este método consiste primariamente em modificar quimicamente a molécula de enzima, através da ligação de compostos de massa molar variada sem, no entanto, alterar a solubilidade da enzima nativa. Deste modo, a enzima modificada adquire massa molar maior e permite o uso de membranas com porosidade elevada, as quais facilitam o processo de difusão entre os ambientes, seja do substrato, seja do produto.

II - Métodos para preparação de enzimas insolúveis

Aqui estão reunidos os métodos em que a enzima sofrerá modificação em sua solubilidade, passando a operar em fase diferente daquela do solvente. Nestes métodos a molécula de enzima sofre tanto modificação química como no seu microambiente.

II.1 - Apirationamento

O método de apirationamento consiste em apirationar ou enclausurar a
molécula de enzima dentro de uma matriz polimérica, de forma que seja possível a entrada do substrato e saída do produto, mas não da enzima. O método se subdivide de acordo com o material utilizado, em aprisionamento em gel, onde são usados materiais tais como o alginato, ágar, agarose e poliacrilamida, e aprisionamento em fibra em que o acetato de celulose é um exemplo típico. Uma terceira subdivisão, diz respeito ao aprisionamento em microcápsulas, onde as enzimas são retidas dentro de membranas poliméricas esféricas, preparadas à partir de material semi-permeável que permitem a difusão do substrato e produto.

II.2 – Ligação ao suporte

O método consiste na ligação da enzima a suportes insolúveis, gerando assim uma segunda fase diferente do meio reacional, onde a enzima se encontra fixada, e pode ser subclassificado de acordo com o tipo de ligação da enzima com o suporte.

II.2.1 – Adsorção

Neste método de imobilização, grupos superficiais do suporte interagem com grupos de superfície da enzima, através de atrações eletrostáticas ou dipolares (forças de van der Waals) ou ainda pontes de hidrogênio (Collins et alii, 1995). O tipo

Considerando as forças envolvidas no processo de adsorção, podemos inferir que a eficiência deste método depende de variáveis tais como pH, força iônica do meio, natureza do solvente empregado, bem como da relação entre a concentração da enzima e do suporte. Assim sendo, após imobilização é necessário um cuidado especial para que as condições ótimas de imobilização sejam mantidas, para que o sistema se mantenha inalterado, o que, de certa forma, limita a aplicação destes sistemas (Kennedy & White, 1986).

Apesar disto, a simplicidade e rapidez desta técnica preserva seu uso nos dias atuais e exemplos de enzimas imobilizadas por adsorção são vastos, podendo-se destacar os trabalhos de Yang & Mu (1977), Ruzgas et alii (1995), Tatsuma et alii (1996) e Silva et alii (1996), em que a enzima peroxidase foi imobilizada em diferentes suportes por adsorção.

II.2.2 - Ligeção Iônica

No método de imobilização por troca iônica, o suporte possui grupos
funcionais ionizáveis característicos, os quais irão interagir especificamente com grupos da enzima. No processo, é possível que algum tipo de adsorção ocorra simultaneamente. Entretanto, a força da interação iônica é maior do que a de adsorção e, portanto, prevalece.

Para se obter o máximo de eficiência neste método, é necessário cuidado na escolha da solução iônica com propriedades tamponantes que será o meio para a enzima a ser ligada, de forma que seja compatível com o suporte e favoreça a substituição dos íons deste pelos grupos ionizados da enzima (Collins et alii, 1995).

De modo semelhante ao que ocorre com as preparações de enzimas imobilizadas por adsorção, as condições ótimas de imobilização devem ser continuamente monitoradas afim de se preservar a integridade do sistema, em especial o pH e força iônica do meio onde a preparação será utilizada, o que, de certa forma, também serve como limitante para a aplicação destes sistemas.

2.3 – Quelação ou Ligação com Metal

Este método baseia-se na propriedade de quelação dos metais de transição, particularmente do titânio e zircônio, em função da não toxicidade dos seus óxidos, podendo também serem utilizados vanádio, ferro e estanho (Kennedy & Cabral, 1987). O sal mais utilizado nesta técnica é o cloreto de titânio (IV), sendo o processo, como todo, desenvolvido em duas etapas. Na primeira, o polímero sofre ativação
com o sal do metal de transição, e na segunda a enzima sofre ligação ao polímero ativado (Zaborski, 1974).

Numa visualização superficial, o processo de quebração pode ser ilustrado considerando-se o cloreto de titânio (IV). Em solução, o titânio se apresenta octaédricamente coordenado com espécies iônicas, que serão então os ligantes do complexo iônico. Tais ligantes poderão ser substituídos por espécies ou moléculas contendo grupos doadores de elétrons, tais como hidroxilas. A força da coordenação ligante-titânio depende do caráter químico do ligante (Kennedy & Cabral, 1987).

Um dos aspectos a serem observados no desenvolvimento desta técnica é a necessidade estrita de que suporte e solução contendo o metal de transição devem estar completamente secos no momento da reação para que se forme uma camada estável do metal sobre o suporte; caso contrário esta será removida durante os processos de lavagem (Kennedy & Cabral, 1987). Outro ponto a ser considerado é o fato de que o pH das soluções de titânio e cloreto de titânio é bastante ácido, o que, por vezes, limita sua aplicação na ativação de suportes susceptíveis à degradação nesta faixa de pH (Zaborski, 1974).

11.2.4 – Ligação Covalente

A imobilização de enzimas através da formação de ligações covalentes entre um grupo ligante da enzima e o suporte insolúvel é um dos métodos mais largamente
utilizados e investigados (Kennedy & Cabral, 1987; Zaborski, 1974). Este método emprega os mais variados tipos de ligação, sendo possível imobilizar uma enzima através de qualquer um de seus grupos superficiais reativos. Assim sendo, há uma gama imensa de reações que podem ser utilizadas para imobilização via ligação covalente.

Cuidado especial deve ser tomado para que grupos importantes para o desempenho da atividade catalítica não sejam envolvidos na formação da ligação covalente entre enzima e suporte, o que teria como conseqüência uma enzima retida desprovida de atividade.

Inconvenientes desta técnica incluem as condições mais drásticas e maior número de etapas de reação e, consequentemente, mais tempo para sua realização. No entanto, uma vez imobilizada adequadamente, essas preparações apresentam grande estabilidade, de forma que somente alterações muito drásticas no meio serão capazes de interferir nesta tipo de ligação (Kennedy & White, 1986).

II.3 – Ligação Cruzada

A insolubilização de enzimas por este método envolve a formação de ligação covalente entre moléculas de enzima e reagentes bifuncionais de baixa massa molar, formando agregados unidos por ligações intermoleculares. Vários meios distintos são disponíveis para o preparo de derivados insolúveis de enzimas por ligação cruzada,
das condições experimentais e varia de acordo com a enzima e o reagente escolhido. Dentre os diversos reagentes bifuncionais existentes, os mostrados nas Figuras 3 e 4 foram utilizados com muita frequência e, dentre eles, destacamos o glutaraldeído como o reagente de primeira escolha, que continua a ser frequentemente utilizado nos dias atuais.

Figura 3 - Reagentes bifuncionais mais utilizados em processos de imobilização

(Zaborski, 1974).
Glutaraldeído Carboxiimida Hexametilenodiisocianato

Figura 4 - Reagentes bifuncionais mais utilizados em processos de imobilização (Zaborski, 1974).

O caráter reversível ou não das reações de imobilização por ligação cruzada e, portanto, a estabilidade da ligação obtida, depende do tipo de reagente bifuncional utilizado, sendo que aqueles descritos na Figura 3 produzem agregados irreversíveis de grande estabilidade (Zaborski, 1974).

1.2.2 – A Escolha do Método de Imobilização

A escolha do método de imobilização a ser utilizado para a imobilização de uma determinada enzima passa, necessariamente, por uma análise da aplicação a que se destina o sistema contendo a enzima imobilizada. Uma vez definida a aplicação e, portanto, as condições operacionais onde a enzima deverá atuar, pode-se então avaliar, dentre as técnicas disponíveis, aquela que melhor se adeque às necessidades exigidas. Isso posto, é importante avaliar o tempo e os custos necessários para se viabilizar o método de imobilização escolhido, uma vez que tais parâmetros irão se refletir no processo e, portanto, nos custos do produto final.

Na Tabela 3 estão apresentados, de modo resumido e comparativo, alguns
parâmetros a serem observados quando da escolha do método de imobilização.

Tabela 3 – Comparação entre os atributos de alguns métodos de Imobilização (Kennedy & White, 1986).

<table>
<thead>
<tr>
<th>Característica</th>
<th>Ligação Cruzada</th>
<th>Adsorção Física</th>
<th>Ligação Iônica</th>
<th>Quelação com metal</th>
<th>Ligação Covalente</th>
<th>Aprisionamento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preparação</td>
<td>Média</td>
<td>Simples</td>
<td>Simples</td>
<td>Simples</td>
<td>Difícil</td>
<td>Difícil</td>
</tr>
<tr>
<td>Força da ligação</td>
<td>Forte</td>
<td>Fraca</td>
<td>Média</td>
<td>Média</td>
<td>Forte</td>
<td>Média</td>
</tr>
<tr>
<td>Atividade Enzimática</td>
<td>Baixa</td>
<td>Média</td>
<td>Alta</td>
<td>Alta</td>
<td>Baixa</td>
<td>Baixa</td>
</tr>
<tr>
<td>Regeneração do suporte</td>
<td>Impossível</td>
<td>Possível</td>
<td>Possível</td>
<td>Possível</td>
<td>Rara</td>
<td>Impossível</td>
</tr>
<tr>
<td>Custo da imobilização</td>
<td>Médio</td>
<td>Baixo</td>
<td>Baixo</td>
<td>Me’dio</td>
<td>Alto</td>
<td>Médio</td>
</tr>
<tr>
<td>Estabilidade</td>
<td>Alta</td>
<td>Baixa</td>
<td>Média</td>
<td>Média</td>
<td>Alta</td>
<td>Alta</td>
</tr>
<tr>
<td>Aplicação</td>
<td>Não</td>
<td>Sim</td>
<td>Sim</td>
<td>Sim</td>
<td>Não</td>
<td>Sim</td>
</tr>
<tr>
<td>Generalizada</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proteção contra</td>
<td>Possível</td>
<td>Não</td>
<td>Não</td>
<td>Não</td>
<td>Não</td>
<td>Sim</td>
</tr>
<tr>
<td>Ataque Microbiano</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1.3. Suportes para Imobilização de Enzimas

Há atualmente uma imensa variedade de suportes que tem sido utilizados
para a imobilização de enzimas e, de modo geral, podemos classificá-los de acordo com a sua natureza química, em suportes orgânicos ou inorgânicos, sendo possível apontar uma série de vantagens e desvantagens associadas a cada um desses tipos de suportes.

Muitos suportes orgânicos, sejam naturais ou sintéticos, têm sido propostos para a imobilização de enzimas e a predominância do uso desses sobre os inorgânicos deve-se, principalmente, à versatilidade que esses materiais tem de participarem de um grande número de diferentes reações, o que favorece sua ativação. Por outro lado, sua aplicação em muitas áreas é limitada por sua pobre estabilidade dimensional, bem como a dificuldade de recuperação do catalisador do meio de reação por métodos simples (Kennedy & White, 1986). Outro inconveniente associado aos suportes orgânicos, particularmente os naturais e seus derivados, é a susceptibilidade ao ataque de microorganismos.

Os suportes inorgânicos tem a sílica e vidros de poro controlado como seus principais representantes, com um grande volume de trabalhos publicados utilizando-se esses materiais (Zaborski, 1974; Kennedy & White, 1986; Cheethan, 1986). A possibilidade de obtenção de materiais com propriedades morfológicas variadas, tais como diâmetros do poro, área superficial e forma das partículas, somada às propriedades mecânicas, particularmente, a baixa compressibilidade, tornou tais suportes os elementos de escolha para montagem de reatores para aplicações industriais (Kennedy & White, 1986; Cheetan, 1986). A principal desvantagem do uso desse tipo de suporte, além de um número limitado de reações de ativação, é
principalmente a baixa estabilidade em faixas alcalinas de pH. Esta última desvantagem poderia estar superada, uma vez que recentemente foi reportado que o recobrimento de sílica com óxido de zircônio ou óxido de titânio conferiu ao material estabilidade em pH na faixa de 10 a 12 (Silva et alii, 2000; Melo et alii, 2000), ampliando assim as possibilidades de aplicação desse material. Na Tabela 4 são apresentados alguns exemplos de suportes orgânicos e inorgânicos utilizados em processos de imobilização.

Tabela 4 - Exemplos de Suportes Insolúveis Para Imobilização de Enzimas

<table>
<thead>
<tr>
<th>Orgânicos naturais</th>
<th>Orgânicos sintéticos</th>
<th>Inorgânicos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agar / Agarose</td>
<td>Copolímeros de acrilato / metacrilato</td>
<td>Alumina</td>
</tr>
<tr>
<td>Carbono ativado</td>
<td>Polí(amilida)</td>
<td>Celite</td>
</tr>
<tr>
<td>Celulose</td>
<td>Polí(anilina)</td>
<td>Hidroapatita</td>
</tr>
<tr>
<td>Colágeno</td>
<td>Polí(estireno)</td>
<td>Óxidos metálicos</td>
</tr>
<tr>
<td>Dextranas</td>
<td>Polí(pirrol)</td>
<td>Sílica</td>
</tr>
<tr>
<td>Gelatinas</td>
<td>Polí(vinilálcool)</td>
<td>Titânia</td>
</tr>
<tr>
<td>Quitina / Quitosana</td>
<td>Polí(vinilcloreto)</td>
<td>Vidro poroso</td>
</tr>
<tr>
<td>Seda</td>
<td>Polímeros de acrilamida</td>
<td>Zircônio</td>
</tr>
</tbody>
</table>

A escolha do suporte é tão importante quanto a escolha do método de
imobilização a ser utilizado em um determinado sistema. Alguns cuidados devem ser
tomados nessa escolha, uma vez que, após a imobilização, o suporte será o principal
constituínte do microambiente em que a enzima estará imobilizada. Neste sentido, é
aconselhável que sejam avaliadas algumas características do sistema, que servirão
de guia no processo de escolha do material mais adequado.

Em primeiro lugar, devemos considerar novamente a aplicação e portanto as
condições em que o par suporte-enzima deverão atuar. Suportes com limitações de
estabilidade em extremos de pH jamais poderão ser utilizados em faixas de pH
próximas àquelas em que se tornam susceptíveis à degradação, pois
comprometerão o sistema. Do mesmo modo, a estabilidade térmica do material é
importante, quando as condições de atuação requerem altas temperaturas. Portanto,
devemos em primeiro lugar analisar as características do material e sua
adequabilidade às condições operacionais.

Em seguida, devemos lembrar que tão logo se dê a imobilização, o suporte
será o material mais próximo da enzima e, portanto, o fator mais importante na
constituição do microambiente onde a catálise ocorrerá. Neste sentido, é importante
avaliar as características físico-químicas desse material e sua relação com os
substratos e produtos da reação, de modo a prevenir interações indesejadas entre
eles, tais como alteração no pH ótimo da enzima, adsorção de substrato ou produto,
alteração na afinidade da enzima pelos substratos, resistência à transferência de
massa e difusão de solutos, entre outras.

Na Tabela 5, apresentamos um guia para a escolha do suporte proposto por

Tabela 5 – Guia para escolha do suporte (Eaton, 1974).

<table>
<thead>
<tr>
<th>Antes de imobilizar, verifique, para o suporte e a enzima:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• A morfologia do suporte (ou do poro) permite a entrada da enzima?</td>
</tr>
<tr>
<td>• A enzima pode ser imobilizada no suporte, isto é, existem grupos reativos disponíveis?</td>
</tr>
<tr>
<td>• A enzima a ser imobilizada tem estabilidade em (1) ácido, (2) base, (3) altas concentrações de sal? E o suporte?</td>
</tr>
<tr>
<td>• O material pode ser convenientemente manuseado?</td>
</tr>
<tr>
<td>• O suporte resiste à compressão?</td>
</tr>
<tr>
<td>• Como a pressão tolerável afeta o tamanho e a forma da partícula e a vazão do sistema?</td>
</tr>
<tr>
<td>• A carga máxima de enzima é adequada ao sistema?</td>
</tr>
<tr>
<td>• Qual a vida média operacional do sistema?</td>
</tr>
<tr>
<td>• Como a vida média é afetada pela temperatura, pH e outras condições?</td>
</tr>
<tr>
<td>• Sob que condições e por quanto tempo o material pode ser armazenado?</td>
</tr>
</tbody>
</table>

Respondendo estas questões, podemos determinar se o suporte é adequado para a enzima em questão.
1.3.1 – O suporte ideal

A busca pelo suporte ideal para imobilização continua a ser um dos campos mais estudados da Tecnologia Enzimática. Kennedy & White (1986) destacam as seguintes características para se considerar um suporte ideal:

De modo geral:

- deve favorecer a ligação do substrato;
- diminuir a inibição pelo produto;
- alterar o pH ótimo para o valor desejado;
- impedir o crescimento bacteriano;
- ser rapidamente recuperável do meio reacional;
- ser estável nas condições de reação.

No caso de aplicações em colunas de concentração ou reação, destaca ainda:

- ser mecanicamente rígido;
- apresentar pequena compactação na presença de altas vazões.

A essas podemos somar ainda, como características do suporte ideal:

- a mínima interferência sobre a estrutura protéica e sobre a atividade catalítica;
- um longo período de vida útil;
- alta estabilidade ambiental, a extremos de pH e de temperatura;
- resistência ao ataque de solventes orgânicos;
- alta capacidade de retenção de enzimas.
1.4 — As Polianilinas

Em 1840, Fritzschte obteve um óleo incolor a partir do índigo, ao qual designou anilina, e ao produto de oxidação deste óleo de polianilina (PANI), provavelmente o polímero orgânico sintético mais antigo (Wudl et alii, 1987). Entre 1907-1912, após extensivas investigações, a PANI foi descrita como um octâmero que existia em quatro estados de oxidação diferentes, correspondentes a polímeros de coloração diferentes, dependendo do número de unidades quinonaiminina presentes no esqueleto carbônico (Wudl et alii, 1987; MacDiarmid & Epstein, 1989).

No entanto, somente na década de 80, com o advento das técnicas modernas de caracterização de materiais, é que estudos físico-químicos tornaram possível a completa elucidação das estruturas químicas desses polímeros (Wudl et alii, 1987; Wei & Hsued, 1989; MacDiarmid & Epstein, 1989; Chiang & MacDiarmid, 1986; Ray et alii, 1989).

Ao mesmo tempo, a fascinação da comunidade de pesquisadores de polímeros condutores por essa família de polímeros em particular pode ser avaliada pelo fato de que entre 1986 e 1989, foram gerados mais de 450 publicações e patentes envolvendo polianilinas (MacDiarmid & Epstein, 1989).

O termo polianilina, como empregado nos dias atuais, refere-se a uma família ou classe de polímeros consistindo de 1000 ou mais unidades repetitivas, cuja forma básica tem a composição generalizada mostrada na Figura 5, obtida pela
polimerização química ou eletroquímica da anilina (MacDiarmid & Epstein, 1989; Ray et alii, 1989).

Forma básica da polianilina ou Esmeraldina

Figura 5 – Forma básica da polianilina ou p-poli(fenilenoaminaimina)

As propriedades de polianilinas descritas por essa fórmula geral podem ser variadas, na dependência de dois fatores: o grau de oxidação e o grau de protonação do polímero em questão (Ray et alii, 1989). O estado de oxidação da polianilina pode, em princípio, ser variado continuamente desde o valor de \(y = 1 \), dando origem ao polímero completamente reduzido, até o valor de \(y = 0 \), quando se obtém o polímero totalmente oxidado. Os termos leucoesmeraldina, esmeraldina e permigranilina referem-se a polímeros cujos estados de oxidação são definidos por valores de \(y \) iguais a 1; 0,5 e 0, respectivamente (Figura 6).
Polímero completamente reduzido
Leucoesmeralda

Polímero completamente oxidado
Pernigranilina

Hidrocloroeto de esmeraldina

Figura 6 – Polianilinas com variados graus de oxidação e dopagem.

O átomo de nitrogênio imina de qualquer uma dessas espécies pode ser totalmente ou parcialmente protonado, dando origem aos sais correspondentes, sendo que o grau de protonação do polímero básico depende de seu estado de oxidação e do pH do ácido empregado no processo. (MacDiarmid & Epstein, 1989; Chiang e MacDiarmid, 1986). As polianilinas são os únicos entre os polímeros condutores cujas propriedades elétricas podem ser reversivelmente controladas e
alteradas, tanto por alteração no estado de oxidação, quanto pelo grau de dopagem ou protonação (Javadi et alii, 1989; MacDiarmid et alii, 1985).

Métodos químicos e eletroquímicos têm sido utilizados para a síntese de polianilinas. Na polimerização química vários ácidos protônicos, tais como ácido clorídrico, sulfúrico, tolueno sulfônico, entre outros, tem sido usados em combinação com diversos agentes oxidantes, como o dicromato de potássio, peróxido de hidrogênio e persulfato de amônio (Palaniappan, 1995; Pron et alii, 1988; Maia et alii, 2000). A síntese eletroquímica se dá pela oxidação eletroquímica da anilina em meio ácido, sob a aplicação de uma certa corrente ou potencial elétrico. Polianilinas com substituições no anel ou no átomo de nitrogênio amina podem ser facilmente sintetizadas e dopadas em uma grande variedade de níveis, com conseqüente variação nas suas propriedades elétricas e físico-químicas (MacDiarmid & Epstein, 1989).

Tal versatilidade tem despertado enorme atração na comunidade científica, uma vez que as polianilinas detêm características únicas, como a simplicidade no processo de dopagem, sua excelente reciclabilidade redox e suas propriedades ópticas, elétricas e eletroquímicas. Além disso, a alta estabilidade ambiental e facilidade na preparação candidatam fortemente as polianilinas a aplicações na área da engenharia bioquímica, como um suporte potencialmente atrativo para imobilização de enzimas (Leite et alii, 1994; Thangarathinavelu et alii, 1994; Maia et alii, 2000), visto que apresentam propriedades semelhantes às aquelas esperadas do suporte ideal.
Adicione-se a tais características o fato de que as polianilinas são polímeros de síntese extremamente barata e com excepcional rendimento. Na Tabela 6 são mostrados, para efeito de comparação, os preços de alguns polímeros orgânicos naturais e sintéticos largamente usados para imobilização.

Tabela 6 – Preços de alguns polímeros orgânicos utilizados para imobilização de enzimas (Fonte: Catálogo Sigma 1999).

<table>
<thead>
<tr>
<th>Polímero</th>
<th>Preço (R$/100g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sephadex</td>
<td>293,00</td>
</tr>
<tr>
<td>Poliacrilamida</td>
<td>292,00</td>
</tr>
<tr>
<td>Celulose</td>
<td>13,50</td>
</tr>
<tr>
<td>Polianilina</td>
<td>7,20</td>
</tr>
</tbody>
</table>

Não é sem razão, então, que vimos nos últimos anos um número de publicações utilizando polianilinas para imobilização de enzimas e construção de eletrodos enzimáticos (Scott, 1997; Parente et alii, 1992; Leite et alii, 1994; Nadruz Jr et alii, 1996), particularmente polianilinas sintetizadas eletroquimicamente. Uma busca na base de dados do "web of science" (http://webofscience.fapesp.br), combinando as palavras-chave "polianilina", "imobilização" e "enzimas" resultaram em 26 trabalhos entre 1990-1999.

No entanto, apesar do grande volume de publicações, o uso de polianilinas
quimicamente sintetizadas, visando explorar suas propriedades como suporte, em função das características de estabilidade ambiental e reatividade nos processos de ativação, tem sido mais restrito, surgindo a necessidade de um estudo sistemático sobre as características e propriedades das polianilinas quimicamente sintetizadas, bem como a sua aplicação como suporte para imobilização de enzimas.

1.5 — As Peroxídases

Em 1855, Schoenbein observou que extratos de cogumelos e tecidos animais desenvolviam uma cor azul na presença de solução de guaiaca do mesmo modo que água clorada, ácido nitroso, permanganato e hipoclorito. Os extratos podiam utilizar peróxidos na oxidação da tintura de guaiaca. Schoenbein concluiu que esses extratos eram hábeis em ativar o oxigênio atmosférico (ozonizar). Linossier, em 1898, obteve uma preparação de peroxidas livre de oxidases a partir de leucócitos e considerou as peroxidas como sendo uma classe separada, hábil a reagir apenas com peróxidos. Em 1903, Chodat e Bach, propuseram que oxidases eram misturas de oxigenases capazes de ativar o oxigênio a peróxidos e peroxidas enzimas que utilizavam os peróxidos. Tais observações resultaram na divisão dessa família de oxidoreduktases em três classes: protoheme peroxidas; verdoperoxidas e flavoprotéinas peroxidas (Paul, 1963).

Posteriormente, Dunford e Stillman propuseram uma classificação das
peroxidases, em função da espécie reativa que elas utilizavam, em superóxido dismutases, capazes de utilizar o ânion superóxido; catalases, que utilizam o ion peróxido com consequente produção de água; e peroxidases, que utilizam os peróxidos para oxidação de compostos reduzidos, sendo que todas as três classes de peroxidases tem em comum o fato de conterem ferro ou cobre e serem geralmente hemoproteínas (Dunford & Stillman, 1976).

O fato de que uma das classes de peroxidases tem o nome da família dessas enzimas gera em algumas ocasiões certa controvérsia, que se agrava pelo fato de que os membros da classe das peroxidases são ubiquitamente distribuídas na natureza, com uma lista extensa de fontes dessas enzimas (Dunford & Stillman, 1976; Ruzgas et alii, 1995; Goodwin et alii, 1995). De tão extensa, essa classe de enzimas tem sido subdividida em:

Classe I – enzimas intraceulares (por ex. citocromo c e ascorbato peroxidase);

Classe II – enzimas secretórias de origem fúngica (por ex. lignina e manganês peroxidase) e;

Classe III – enzimas secretórias de plantas (por ex. peroxidase de raiz forte e de amendoim) (Jones et alii, 1998).

A larga distribuição dessas enzimas sugere que elas sejam de grande importância biológica. Estas enzimas em plantas estão envolvidas em uma grande variedade de processos fisiológicos, tais como a biossíntese e degradação de lignina, resposta de defesa e reparo contra injúria, biossíntese e polimerização de extensinas e no metabolismo de auxinas (Riqueime & Cardemil, 1995). No entanto, o
exato papel que elas desempenham no metabolismo não está claro, devido ao grande número de reações que elas catalisam e o considerável número de isoenzimas existentes (Padiglia et alii, 1995).

Comum entre elas é o fato de catalisarem a oxidação, pelo peróxido de hidrogênio ou compostos relacionados, de uma variedade de compostos orgânicos e inorgânicos, bem como possuírem como grupo prostético a Hemina ou Ferriprotoporfirina IX (Figura 7) (Dunford & Stillman, 1976; Goodwin et alii, 1995).

![Image of Ferriprotoporfirina IX or Hemina](image)

Figura 7 – Ferriprotoporfirina IX ou Hemina (1,3,5,8-tretametil-2,4-divinilpofirina-6,6-ácido dipropriônico).

Uma das fontes vegetais mais ricas em peroxidases é o tubérculo de
Armorrhia rusticana, conhecida pelo nome usual de “horseradish” e que se assemelha bastante à chamada “raiz forte” dos estados do sul do Brasil ou ainda ao “rábano picante” e o “rabanete”. A enzima de Armorrhia rusticana (HRP) foi a quarta hemoproteína a ser cristalizada (Paul, 1963).

A HRP, definida pela Comissão de Enzimas como “Peroxidase (doador: peróxido de hidrogênio-oxidoredutase, E. C. 1.11.1.7)”, é uma glicoproteína com massa molar média de 44 000 Daltons (Chen & Nobe, 1993) e é, na realidade, uma mistura de mais de 30 isoenzimas, usualmente classificadas como ácidas, neutras e básicas (Fujiyama et alii, 1988), entre as quais várias isoformas já foram isoladas, e algumas destas tiveram sua sequência de aminoácidos determinada e seus genes sequenciados (Fujiyama et alii, 1988; Phelps et alii, 1971).

O mecanismo das reações catalisadas pela HRP tem sido largamente estudado e já está bem estabelecido, podendo ser dividido em 3 etapas, representadas pelas Equações 1 a 3.

\[
\begin{align*}
\text{HRP (Fe}^{3+}\text{)} + \text{H}_2\text{O}_2 & \rightarrow \text{Composto I + H}_2\text{O} \\
\text{Composto I + AH}_2 & \rightarrow \text{Composto II + AH}^* \\
\text{Composto II + AH}_2 & \rightarrow \text{HRP (Fe}^{3+}\text{)} + \text{AH}^* + \text{H}_2\text{O}
\end{align*}
\]

(Eq. 1) (Eq. 2) (Eq. 3)

Na primeira etapa (Eq. 1), o grupo prostético heme da HRP [HRP(Fe3+)] sofre oxidação pela H\textsubscript{2}O\textsubscript{2} (ou peróxidos orgânicos), perdendo dois elétrons, e resultando na formação de um intermediário instável, chamado Composto I, que consiste em um
complexo ferro-oxiferril (Fe$^{4+}$ =O) com um radical cátion π porfirina.

Na segunda etapa (Eq. 2), o radical cátion π porfirina recebe um elétron de um substrato orgânico reduzido (AH$_2$), produzindo um radical livre do substrato correspondente (AH$^+$) e um intermediário heme-oxiferril conhecido como Composto II.

Na última etapa (Eq. 3), ocorre uma subsequente redução por um elétron do Composto II por uma segunda molécula de substrato reduzido (AH$_2$), resultando na recuperação da enzima nativa [HRP(Fe$^{3+}$)] (Ruzgas et alii, 1995; Goodwin et alii, 1995)

Há varias rotas de reações possíveis para os radicais livres formados a partir do substrato reduzido, dependendo de suas características químicas e reatividade, representadas pelas Equações 4 a 6 (Ruzgas et alii, 1995)

\[
\begin{align*}
AH^+ + AH^+ & \rightarrow HA - AH & \text{(Eq. 4)} \\
AH^+ + AH^+ & \rightarrow A + AH_2 & \text{(Eq. 5)} \\
AH^+ + O_2 & \rightarrow AH + O_2 & \text{(Eq. 6)}
\end{align*}
\]

A HRP catalisa uma larga variedade de reações orgânicas de oxidoredução, tais como desmetilação, descarboxilação, halogenação, hidroxilação e polimerização por condensação (Chen & Nobe, 1993). Os principais substratos doadores de elétrons para essa enzima são da classe dos fenóis e naftóis (pirogalol, resorcinol, hidroquinona, etc...) e aminas aromáticas (anilina, benzidina, orto-dianidina, etc...).

A detecção sensível e seletiva de compostos das classes dos fenóis e das aminas aromáticas é de grande importância ambiental, devido à sua alta toxicidade,
assim como pelo fato deles serem gerados em processos industriais de larga escala e descartados na forma de efluentes das indústrias de plástico, farmacêutica, têxtil, refinarias de óleo e mineração de carvão. Tais compostos são de alta toxicidade e figuram entre os mais recalcitrantes aos tratamentos convencionais de efluentes, sendo, portanto, extremamente importante o controle de suas concentrações nos corpos aquáticos (Klibanov et alii, 1983; Pandey & Weetall, 1995; Sawahata & Neal, 1982).

Não menos importante, o peróxido de hidrogênio é utilizado em vários campos industriais em função de seu alto poder oxidante, particularmente nas indústrias de alimentos, têxtil ou ainda na área de tratamento de efluentes, onde atua como esterilizante, alvejante e oxidante (Aizawa et alii, 1974; Cosgrove et alii, 1988). O monitoramento da concentração desse reagente nos processos citados, que é extremamente importante para o controle de qualidade e eficiência dos métodos, é feito nas indústrias geralmente por métodos titrimétricos, espectrofotometria e de quimiiluminescência (Cosgrove et alii, 1988). Recentemente, a sensibilidade da HRP por esse substrato tem sido utilizada para construção de sensores eletroquímicos com alta seletividade e especificidade (Aizawa et alii, 1974; Cosgrove et alii, 1988; Yang et alii, 1995).

Ainda devido ao fato desta enzima utilizar como substrato o peróxido de hidrogênio, que é produto da reação de outras oxidoredutases, a peroxidase tem sido utilizada em conjunto com estas enzimas para dosagem de compostos de importância clínica, dentre os quais podemos destacar a dosagem de glicose.
(Pandey & Weetall, 1995), colesterol (Charpentier & Mur, 1995), algumas bases nitrogenadas como a guanina, hipoxantina e xantina (Kito et alii, 1990), algumas aminas como histamina, putrescina e cadaverina (Male et alii, 1996), NADH (Halliwell & De Ricker, 1978), rafinose, galactose e outros açúcares (Kiba et alii, 1993), ácidos graxos livres (Kawasaki et alii, 1990), aminoácidos como o glutamato e L-lactato (Ruzgas et alii, 1995), entre outros. Outra área em que o uso desta enzima se destaca é a imunologia, onde a peroxidase é a enzima ligada ao anticorpo secundário e produz o cromóforo revelador dos ensaios de ELISA ("Enzyme-linked immunosorbent assay") (Nilsson, 1989; Brynda et alii, 1998; Paek & Schramm, 1997).

Considerando tal versatilidade, é fácil compreender o grande interesse e vultuoso número de trabalhos publicados com essa enzima. HRP vem sendo imobilizada em uma grande variedade de suportes, e sua aplicação na construção de eletrodos enzimáticos ganhou grande impulso nos últimos anos. A imobilização de HRP sobre polímeros condutores eletroquimicamente sintetizados tem sido noticiada com certa frequência. No entanto, um estudo sistemático sobre as propriedades HRP-poliamilina quimicamente sintetizada constituem ainda uma lacuna que este trabalho pretende preencher.
2. OBJETIVOS

- Sintetizar e caracterizar polímeros da família das polianilinas que apresentem diferenças no que diz respeito ao estado de oxidação, à presença ou não de grupo substituinte na cadeia polimérica, assim como, à ausência ou presença de diferentes contra-ions dopantes.

- Avaliar a necessidade de ativação dos polímeros, visando a sua utilização na imobilização de peroxidase, bem como a capacidade de retenção dessa enzima pelos diferentes polímeros.

- Buscar a otimização dos parâmetros que apresentarem interferência sobre o processo de imobilização, de modo a se obter a maior quantidade possível de enzima ativa imobilizada.

- Comparar o desempenho do sistema contendo a enzima imobilizada com o da enzima livre em solução, através de parâmetros cinéticos e de estabilidade.

- Utilizar o sistema contendo a enzima imobilizada na construção de um mini-reator de leito preenchido, para análise por injeção em fluxo, onde serão avaliados os
parâmetros de estabilidade e reprodutibilidade do sistema, visando a sua aplicação na detecção seletiva de compostos de interesse.

- Avaliar a possibilidade da aplicação desse mini-reactor como sistema de derivatização pós-coluna em Cromatografia Líquida de Alta Eficiência (CLAE).
3. MATERIAIS E MÉTODOS

3.1 – Reagentes:

Tabela 7 – Relação de reagentes utilizados.

<table>
<thead>
<tr>
<th>Nome</th>
<th>Marca</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetona</td>
<td>ISOFAR</td>
</tr>
<tr>
<td>Acetonitrila</td>
<td>VETEC</td>
</tr>
<tr>
<td>Ácido Acético</td>
<td>VETEC</td>
</tr>
<tr>
<td>Ácido Cítrico</td>
<td>ISOFAR</td>
</tr>
<tr>
<td>Ácido Clorídrico</td>
<td>MERCK</td>
</tr>
<tr>
<td>Ácido orto-Fosfórico</td>
<td>MERCK</td>
</tr>
<tr>
<td>Albumina Sérico Bovina (Fração V)</td>
<td>SIGMA</td>
</tr>
<tr>
<td>4-Aminoantipirina</td>
<td>SIGMA</td>
</tr>
<tr>
<td>Anilina</td>
<td>MERCK</td>
</tr>
<tr>
<td>Biftalato de Potássio</td>
<td>NUCLEAR</td>
</tr>
<tr>
<td>Borato de sódio</td>
<td>ECIBRA</td>
</tr>
<tr>
<td>Catecol</td>
<td>SIGMA</td>
</tr>
<tr>
<td>Comassie Brilhante-Blue G</td>
<td>ALDRICH</td>
</tr>
<tr>
<td>orto-Dianisidina</td>
<td>ALDRICH</td>
</tr>
<tr>
<td>---------------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Etanol</td>
<td>MERCK</td>
</tr>
<tr>
<td>Fenol</td>
<td>SIGMA</td>
</tr>
<tr>
<td>Fosfato de Sódio Dibásico</td>
<td>VETEC</td>
</tr>
<tr>
<td>Fosfato de Sódio Monobásico</td>
<td>SYNTH</td>
</tr>
<tr>
<td>Glicose</td>
<td>NUCLEAR</td>
</tr>
<tr>
<td>Glicose Oxidase</td>
<td>DOLES</td>
</tr>
<tr>
<td>Glutaraldeído</td>
<td>VETEC</td>
</tr>
<tr>
<td>Guaiacol</td>
<td>SIGMA</td>
</tr>
<tr>
<td>Hidroquinona</td>
<td>SIGMA</td>
</tr>
<tr>
<td>Hidróxido de Amônio</td>
<td>MERCK</td>
</tr>
<tr>
<td>Hidróxido de Sódio</td>
<td>VETEC</td>
</tr>
<tr>
<td>Peroxidase de Armoracia rusticana (HRP)</td>
<td>SIGMA</td>
</tr>
<tr>
<td>Permanganato de Potássio</td>
<td>MERCK</td>
</tr>
<tr>
<td>Peróxido de Hidrogênio</td>
<td>MERCK</td>
</tr>
<tr>
<td>Persulfato de Amônio</td>
<td>NUCLEAR</td>
</tr>
<tr>
<td>Pirogalol</td>
<td>SIGMA</td>
</tr>
<tr>
<td>Purpurogalina</td>
<td>SIGMA</td>
</tr>
<tr>
<td>Resorcinol</td>
<td>SIGMA</td>
</tr>
<tr>
<td>Tris(hidroximetil)aminometano</td>
<td>CALBIOCHEM</td>
</tr>
</tbody>
</table>

40
3.2 - Sínteses das Polianilinas

No intuito de se avaliar a capacidade de reter a enzima HRP, foram sintetizadas cinco polianilinas. A escolha destes polímeros baseou-se em dados teóricos e experimentais que indicavam diferenças no estado de oxidação, a presença ou ausência de grupos substituintes na cadeia polimérica, bem como na natureza ou ausência do contra-ión dopante. Os métodos utilizados para os processos de síntese são descritos à seguir.

3.2.1. PANI®

A síntese da PANI® foi feita seguindo metodologia descrita por Pron et alii (1988), adicionando-se, volume a volume, uma solução 0,61 mol L\(^{-1}\) do agente oxidante persulfato de amônio (\((\text{NH}_4)_2\text{S}_2\text{O}_8\)) a uma solução 0,44 mol L\(^{-1}\) de anilina (\(\text{C}_6\text{H}_5\text{NH}_2\)), ambas preparadas em HCl 2,0 mol L\(^{-1}\), de forma a manter uma razão entre o agente oxidante e a anilina (\(z\)) igual a 0,9, calculada segundo a Equação 7:

\[
z = \frac{2,5 \cdot n_{\text{an}}}{n_e \cdot n_{\text{ox}}} \quad \text{(Eq. 7)}
\]

Onde:
Imobilização de Horseradish Peroxidase em Diferentes Polianilinas: Aplicações Analíticas

\[n_{en} = \text{número de mol da anilina} \]
\[n_{ox} = \text{número de mol de persulfato de amônio} \]
\[n_e = \text{número de elétrons necessários para reduzir uma molécula do agente oxidante} \]
\[= 2. \]

A reação de polimerização se processou pela adição gota-a-gota da solução de persulfato de amônio sobre a solução de anilina, com leve agitação, por um período mínimo de 2 h, mantendo-se as soluções numa faixa de temperatura que variava entre -5 e -10°C. Finda a adição do agente oxidante, a mistura obtida permanecia sob agitação por 30 min, seguidos por 2 h de repouso finalização da reação.

O precipitado foi separado da mistura por filtração à vácuo em funil de Büchner e então lavado exaustivamente com HCl 2,0 mol L\(^{-1}\). Finalmente, o polímero obtido foi seco em dessecador sob vácuo contínuo, à temperatura ambiente, até se alcançar massa constante.

3.2.2. PANI\(^0\)

PANI\(^0\) foi obtida pela desdopagem de PANI\(^\circ\) feita seguindo método descrito por Wei & Hsueh (1989), deixando-se PANI\(^\circ\) em contato com uma solução de
NH₄OH 0,1 mol L⁻¹ por 3 h. A PANI¹² foi separada da solução por filtração à vácuo em funil de Büchner e então lavada com H₂O deionizada e metanol. Finalmente, o polímero obtido foi seco em dessecador sob vácuo contínuo, à temperatura ambiente, até se alcançar massa constante.

3.2.3. PANI³

PANI³ foi obtida através do tratamento da PANI¹² com HNO₃ 1,0 mol L⁻¹ durante 2 h, à temperatura ambiente, sob agitação, seguida por filtração à vácuo em funil de Büchner, lavagem com ácido nítrico e metanol e secagem em dessecador à temperatura ambiente, sob vácuo contínuo, até que se alcançasse massa constante.

3.2.4. PANI⁴

Uma alíquota de PANI³ foi deixada em contato com uma solução de ácido cítrico 0,1 mol L⁻¹ durante 30 min e em seguida seco em dessecador à temperatura ambiente, sob vácuo contínuo, até que se alcançasse massa constante.
3.2.5. PANI®

A síntese da PANI® foi feita seguindo metodologia de Nadruz et alii (1996) modificada, adicionando-se volume a volume uma solução 0,1 mol L⁻¹ do agente oxidante permanganato de potássio (KMnO₄) a uma solução 0,5 mol L⁻¹ de anilina (C₆H₅NH₂), ambas preparadas em HNO₃ 0,1 mol L⁻¹. A reação se processou pela adição lenta da solução de agente oxidante à solução de anilina, sob lenta agitação, à temperatura ambiente. Finda a adição do agente oxidante, a mistura foi deixada em agitação por um período de 30 min, seguido por período igual de repouso, para finalização da reação. O precipitado obtido foi separado da mistura por filtração em funil de Büchner, lavado com HNO₃ 0,1 mol L⁻¹ e água deionizada, para em seguida ser deixado em contato com uma solução de ácido cítrico 0,1 mol L⁻¹ por 30 min, filtrado novamente e por fim, seco em dessecador sob vácuo contínuo até atingir massa constante.

3.3 – Ativação dos Polímeros

A ativação das PANI ¹ a ⁶ foi feita pela ligação de poliglutaraldeído segundo modificação da metodologia de Olsson & Ögren (1983). A reação se processou adicionando-se aos polímeros uma solução 2,5% (v/v) de poliglutaraldeído preparada em tampão fosfato 0,1 mol L⁻¹, pH 6,0 na proporção de 10mL/mg de PANI ¹ a ⁶. A
mistura foi deixada reagir por 2 h, sob refluxo, seguida de lavagem exaustiva dos polímeros com tampão, até que todo o poligluturaldeído não ligado fosse retirado, sendo o processo monitorado em espectrofotômetro de UV/Vis Pharmacia modelo U 2000, pela absorvância das águas de lavagem a 310nm.

A fim de se determinar o pH da solução de poligluturaldeído em que a ligação ao polímero se desse com maior eficiência, PANI ₁ foi ativada com soluções de poligluturaldeído 2,5% preparadas em tampão fosfato de sódio 0,1 mol L⁻¹, pH 6,0, 7,0 e 8,0 e tampão borato de sódio 0,1 mol L⁻¹ pH 9,0. Provas em branco foram feitas usando-se solução de poligluturaldeído preparada em água.

Os polímeros ativados, designados PANIG ₁ a ₅, foram secos em dessecador sob vácuo contínuo até que alcançassem massa constante, guardados em recipientes hermeticamente fechados, a temperatura ambiente, até sua utilização.

3.4 – Caracterização das Polianilinas e Polianilinas Ativadas

3.4.1 – Análise Elementar

A análise elementar de C, H e N foi feita com amostras das PANI (₁ a ₅) e PANIG (₁ a ₅) recém-preparadas, sem secagem adicional, em Analisador Elementar
Imobilização de Horseradish Peroxidase em Diferentes Pollanilinas: Aplicações Analíticas

Perkin Elmer modelo-2400. A porcentagem de oxigênio foi calculada à partir da concentração de água obtida nas análises de termogravimetria (TGA) conforme metodologia descrita por Wei & Hsueh (1989). A porcentagem de cloro de PANI foi calculada conforme metodologia descrita por Ray et alii (1989), que estabelece uma razão molar entre o cloro e o nitrogênio igual a 0,5.

3.4.2 – Análise Termogravimétrica (TGA)

A análise termogravimétrica foi feita em analisador DuPont 2.000 modelo General V4.1C com amostras de PANI a recém sintetizadas, usando argônio como gás de purga. As amostras foram aquecidas até 1000°C numa velocidade de 10°C min⁻¹.

3.4.3 – Análise de Infravermelho de Transmissão

A análise de Infravermelho foi feita em espectrofotômetro Perkin Elmer, utilizando-se amostras recém sintetizadas, na forma de pastilhas de KBr, na faixa de comprimento de onda que vai de 500 a 4000cm⁻¹.
3.5 – Imobilização de Peroxidase em Polianilinas e Polianilinas Ativadas

A reação de imobilização da HRP nas diferentes PANIG foi feita adicionando-se a 5,0 mg de polímero ou polímero ativado com poliglutalaraldeído, a 1,0 mL de solução contendo 10 μg de HRP (162 UE) preparada em tampão fosfato de sódio 0,1 mol L\(^{-1}\), pH 6,0, deixando-se a mistura reagir sob agitação lenta, por 2 h, a 4°C. A reação foi interrompida pela separação da enzima não ligada ao polímero por centrifugação a 3500 g. O polímero obtido, designado PANIG-HRP, foi lavado três vezes com o mesmo tampão para completa retirada da HRP não ligada. Todos os sobrenadantes foram reservados para medida de atividade enzimática remanescente e intitulados respectivamente S₀, S₁, S₂ e S₃. Seguindo a mesma metodologia foram feitos testes de imobilização de HRP em PANI\(^{©}\) não ativada.

3.6 – Ensaios de Atividade Enzimática

A atividade catalítica de HRP livre e imobilizada foi testada frente a diversos substratos. Os espectros de UV/Vis dos substratos e produtos da reação enzimática são apresentados em Anexo 1.
3.6.1 – Usando Pirogalol como Substrato

A atividade enzimática da HRP livre e imobilizada foi medida seguindo metodologia descrita por Halpin et alii (1989), com modificações. Após retirada completa de toda enzima não ligada, as diferentes PANIG-HRP recebiam 1,4 mL de tampão fosfato de sódio 0,1 mol L\(^{-1}\), pH 6,0, e 1,0 mL de solução 0,013 mol L\(^{-1}\) de pirogalol. A reação foi iniciada pela adição de 0,5 mL de uma solução 0,05 mol L\(^{-1}\) de H\(_2\)O\(_2\) deixada proceder por 1 min e interrompida por filtração à vácuo em funil de placa porosa. Nos tubos de enzima livre, onde PANIG-HRP foi substituída por 0,1 mL de solução de HRP (162 UE mL\(^{-1}\)), a reação se processava em cubeta e a leitura do produto formado registrada no tempo de 1 min de reação. A quantidade de produto formado era medida em espectrofotômetro UV/VIS Pharmacia modelo U2000 a 420 nm. Provas em branco foram feitas na ausência de HRP e na ausência de H\(_2\)O\(_2\). Uma unidade de enzima (UE) foi definida como a quantidade de enzima capaz de produzir um aumento de 0,1 na absorbância a 420 nm após um minuto de ensaio (Halpin et alii, 1989).

3.6.2 – Usando Fenol como Substrato

As medidas de atividade enzimática usando fenol como substrato foram feitas usando a metodologia descrita por Weng et alii (1991) com modificações. Num
ensaio típico, após retirada completa de toda enzima não ligada, a PANIG®-HRP recebia 1,4 mL de tampão fosfato de sódio 0,1 mol L⁻¹, pH 7,0, e 1,0 mL de solução contendo 82,1 mmol L⁻¹ de fenol e 1,2 mmol L⁻¹ de 4-aminoantipirina. A reação procedia conforme descrito no item 3.6.1. Uma unidade de enzima (UE) foi definida como a quantidade de enzima capaz de produzir um aumento de 0,1 na absorvância a 510 nm após um minuto de ensaio.

3.6.3 – Usando orto-Dianisidina como Substrato

A metodologia utilizada para medição de atividade usando o-dianizidina como substrato baseou-se em modificações do procedimento descrito por Padiglia et alii (1995). O substrato foi dissolvido em pequeno volume de HCl 0,1 mol L⁻¹ e em seguida tinha o volume completado com tampão acetato 0,1 mol L⁻¹, pH 5,0, afim de se obter uma concentração final de o-dianizidina de 2,2 mmol L⁻¹. A reação procedia conforme descrito no item 3.6.1, sendo uma unidade de enzima (UE) definida como a quantidade de enzima capaz de produzir um aumento de 0,1 na absorvância a 470 nm após um minuto de ensaio.
3.6.4 – Usando Catecol como Substrato

Os ensaios de atividade usando catecol foram feitos seguindo metodologia de Halpin & Lee (1987). Em um ensaio padrão 2,4 mL de solução substrato contendo 0,05 mol L\(^{-1}\) de catecol preparado em tampão fosfato 0,1 mol L\(^{-1}\), pH 6,0, foi adicionado a PANIG\(\text{®}\)-HRP ou a 0,1 mL de HRP livre. O ensaio prosseguia conforme descrito no item 3.6.1, sendo uma unidade de enzima (UE) definida como a quantidade de enzima capaz de produzir um aumento de 0,1 na absorvância a 380 nm após um minuto de ensaio.

3.6.5 – Usando Guaiacol como Substrato

Os ensaios usando guaiacol como substrato foram feitos segundo método descrito por Yemenicioglu et alii (1998), adicionando-se à PANIG\(\text{®}\)-HRP ou alternativamente a 0,1 mL de HRP livre, 2,4 mL de solução substrato contendo tampão fosfato 0,1 mol L\(^{-1}\), pH 6,8, e guaiacol 1% (v/v), preparado em etanol 50% (v/v). A reação prosseguia como descrito no item 3.6.1, sendo uma unidade de enzima (UE) definida como a quantidade de enzima capaz de produzir um aumento de 0,1 na absorvância a 410 nm após um minuto de ensaio.
3.6.6 – Usando Hidroquinona como Substrato

As medidas de atividade de HRP livre e PANIG10-HRP usando hidroquinona como substrato foram feitos adicionando-se a 0,1mL de enzima livre ou PANIG10-HRP, 2,4 mL de uma solução substrato preparada em tampão fosfato 0,1 mol L-1, pH 6,0, contendo hidroquinona 0,1 mol L-1 e 4-aminoantipirina 0,013 mol L-1. A reação foi iniciada pela adição de 0,5 mL de uma solução 0,05 mol L-1 de H\textsubscript{2}O\textsubscript{2}, deixada proceder por 1 min e interrompida por filtração à vácuo em funil de placa porosa. Nos tubos de enzima livre, onde a PANIG10-HRP foi substituída por 0,1 mL de solução de HRP, a reação se processava em cubeta e a leitura do produto formado registrada no tempo de 1 min de reação. Provas em branco foram feitas na ausência de HRP e na ausência de H\textsubscript{2}O\textsubscript{2}. Uma unidade de enzima (UE) foi definida como a quantidade de enzima capaz de produzir um aumento de 0,1 na absorbância a 480 nm.

3.6.7 – Usando Resorcinol como Substrato

Os ensaios de atividade usando resorcinol como substrato foram feitos conforme descrito no item 3.6.6.
3.7 - Dosagem de Proteína

Análises de teor de proteínas foram feitas pelo método de Bradford (1976), usando como padrão BSA. Aliquotas de 0,1 mL da solução estoque de HRP usada nos ensaios de imobilização foram adicionadas a 5,0 mL do reativo de Bradford. A solução foi deixada em repouso para desenvolvimento de cor e o ensaio lido em espectrofotômetro a 595 nm. Afim de se determinar a quantidade de proteína retida ao polímero, os sobrenadantes das imobilizações foram reunidos, dializados contra água deionizada e liofilizados. O material seco foi ressuspensido em tampão fosfato 0,1 mol L⁻¹, pH 6,0, e submetido ao ensaio de Bradford, sendo o teor de proteína retida calculado por subtração do total ofertado.

A eficiência do processo de imobilização foi medida pela atividade específica (AE) do material imobilizado, sendo AE definido como UE por mg de proteínas.

3.8 - Parâmetros de Imobilização para PANIG®-HRP

Uma vez definido o melhor sistema polímero-enzima como sendo PANIG®-HRP, conforme discutido no item 4.4, os experimentos se dedicaram no sentido de se otimizar as condições de imobilização. Para tanto, foram feitos os testes que seguem.
3.8.1 – Efeito do pH sobre o processo de imobilização

Foram feitos testes no intuito de se verificar o efeito do pH sobre os grupos ligantes tanto da enzima como da PANIG®. Nestes testes 10 μg da enzima HRP foram dissolvidas em tampão fitalato de potássio 0,1 mol L⁻¹, pH 2,0 e 3,0; tampão fosfato de sódio 0,1 mol L⁻¹, pH 4,0, 5,0, 6,0, 7,0 e 8,0; e tampão Tris 0,1 mol L⁻¹, pH 9,0, 10,0, 11,0 e 12,0. Aliquotas de 1,0 mL da solução de HRP foram adicionadas a 5,0 mg de PANIG® e a mistura deixada reagir sob lenta agitação, a 4°C, por 2 h. A eficiência do processo foi medida através de ensaios de atividade enzimática.

Afim de se determinar possível efeito da natureza do sal tamponante sobre a imobilização foram testados na faixa ácida os tampões acetato de sódio e fitalato de sódio 0,1 mol L⁻¹ e na faixa alcalina, os tampões borato de sódio e Tris 0,1 mol L⁻¹.

3.8.2 – Otimização do tempo de imobilização

Foram feitos testes afim de se determinar o tempo necessário para que toda a enzima disponível para imobilização se ligasse à PANIG®. Ensaio de atividade enzimática foram feitos após 10, 30, 60, 120, 240 e 360 min de imobilização, conforme descrito no item 3.6.1.
3.8.3 – Otimização da relação de concentração da PANIG\(^\circ\) com relação à HRP

Afim de se testar a concentração de PANIG\(^\circ\) capaz de reter completamente 1,0 mL de solução contendo 10 \(\mu\text{g}\) de HRP (162 UE mL\(^{-1}\)), foram feitos ensaios de imobilização usando 2, 5, 10, 15 e 20 mg de PANIG\(^\circ\). A mistura foi deixada reagir por 2 h, a 4\(^\circ\)C, sob lenta agitação e em seguida foram feitos ensaios de atividade enzimática, conforme descrito no item 3.6.1.

3.9 – Parâmetros Cinéticos do Sistema PANIG\(^\circ\)-HRP

3.9.1 – Temperatura Ótima da Enzima Livre e Imobilizada

Afim de se verificar se a imobilização exercia algum efeito sobre a estabilidade térmica da enzima foram feitos ensaios em que a PANIG\(^\circ\)-HRP era submetida a aquecimento em banho-maria em temperaturas que variavam de 30 a 90 \(^\circ\)C. Nestes ensaios a mistura reacional contendo PANIG\(^\circ\)-HRP, tampão fosfato e \(\text{H}_2\text{O}_2\) foi colocada durante um minuto em banho-maria previamente estabilizado na temperatura desejada. A seguir, foi adicionado o pirogalol também previamente equilibrado na temperatura em teste e a reação se processava durante um minuto, sendo interrompida pela separação da enzima imobilizada por filtração à vácuo da
mistura reacional. O produto formado era monitorado em espectrofotômetro a 420 nm.

3.9.2 – pH Ótimo da Enzima Livre e Imobilizada

A fim de se verificar se a imobilização teria causado alterações no comportamento da HRP, foram realizados experimentos para se determinar o pH ótimo da HRP livre e imobilizada. Nestes experimentos as imobilizações foram feitas conforme procedimento descrito no item 3.5. Em seguida a PANIG®-HRP foi lavada com tampões variados a serem testados nos ensaios de atividade enzimática, até completa retirada do tampão de imobilização. Os ensaios de atividade enzimática foram feitos conforme descrito no item 3.6.1, variando-se os tampões das reações, tendo sido testados os seguintes: tampão fitalato de potássio 0,1 mol L\(^{-1}\), pH 3,0; tampão fosfato de sódio 0,1 mol L\(^{-1}\), pH 4,0, 5,0, 6,0, 7,0 e 8,0; e tampão Tris 0,1 mol L\(^{-1}\), pH 9,0 e 10,0.

Afim de se determinar possível efeito da natureza do sal tamponante sobre a imobilização foram testados na faixa ácida os tampões acetato de sódio e fitalato de sódio 0,1 mol L\(^{-1}\) e na faixa alcalina, os tampões borato de sódio e Tris 0,1 mol L\(^{-1}\).
3.9.3 – Reatividade Relativa

A fim de se verificar se a imobilização interferia na reatividade da enzima, foram feitos ensaios em que se comparou a atividade catalítica da enzima livre com a imobilizada frente a diversos substratos. Os procedimentos usados nos ensaios foram os mesmos descritos no item 3.6, mantendo-se a concentração de H₂O₂ fixa em 0,05 mol L⁻¹ e variando-se as concentrações dos substratos usados, que foram: Guaiacol 0,01 mol L⁻¹, Catecol 0,05 mol L⁻¹, Hidroquinona 0,1 mol L⁻¹ + 4-Aminoantipirina 0,01 mol L⁻¹, Resorcinol 0,1 mol L⁻¹ + 4-Aminoantipirina 0,01 mol L⁻¹, Fenol 0,04 mol L⁻¹ + 4-Aminoantipirina 0,01 mol L⁻¹, o-Dianizidina 2,2 mmol L⁻¹. A quantidade de produto formado pelo sistema PANIG®-HRP foi comparada àquela formada pela enzima livre e a reatividade relativa expressa em porcentagem de atividade, levando-se em consideração a diferença na quantidade de enzima imobilizada em comparação a quantidade de enzima livre.

3.9.4 – Determinação da constante de Michaelis-Menten (Km)

A determinação de Km foi feita usando-se concentrações do substrato pirogalol que variavam de 9,0 x 10⁻⁴ a 2,5 x 10⁻² mol L⁻¹. Nestes testes as imobilizações foram feitas com 2,0 mg de PANIG® e 400μL de solução de HRP, conforme descrito no item 3.5. Os ensaios foram feitos como descrito no item 3.6.1 e
os valores de Km determinados com a ajuda de um microcomputador empregando-se o programa aplicativo “Microcal Origin 3.5” (Microcal Software, Inc.).

3.10 – Parâmetros de Estabilidade

3.10.1 – Termoestabilidade a 55°C

Os ensaios de termoestabilidade foram feitos mantendo-se a enzima livre e imobilizada em banho-maria previamente aquecido a 55°C, por 30, 40, 60 e 120 min. Decorrido este tempo, as enzimas foram transferidas para banho de gelo até que atingissem a temperatura ambiente, para em seguida serem testadas quanto à atividade enzimática usando pirogalol, conforme descrito no item 3.6.1.

3.10.2 – Estabilidade Enzimática Usando Diferentes Solventes Orgânicos

Também visando testar a estabilidade do sistema foram feitos ensaios de atividade de enzima livre e imobilizada na presença de solventes orgânicos. Os solventes usados foram acetona, etanol e acetonitrila e a concentração deles no volume final do ensaio variou entre 5, 10, 20 e 50% (v/v). Os ensaios foram feitos
segundo metodologia descrita no item 3.6.1 com provas em branco feitas na ausência de enzima.

3.10.3 – Estabilidade Durante o Armazenamento

A fim de se estabelecer a melhor forma de armazenamento, bem como a estabilidade do sistema com o decorrer do tempo, amostras de PANIG®-HRP e HRP livre foram armazenadas nas condições discriminadas na Tabela 8. A atividade enzimática foi testada conforme descrito no item 3.6.1, em diferentes intervalos de tempo.

Tabela 8. Condições de Armazenamento de PANIG®-HRP

<table>
<thead>
<tr>
<th>Condições de Armazenamento</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Seco</td>
</tr>
<tr>
<td>Em Tampão Fosfato</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Temperatura</td>
</tr>
<tr>
<td>Liofilizada (-40 °C)</td>
</tr>
<tr>
<td>ambiente</td>
</tr>
<tr>
<td>Temperatura</td>
</tr>
<tr>
<td>ambiente</td>
</tr>
<tr>
<td>Em geladeira (4 °C)</td>
</tr>
<tr>
<td>Com CaCl₂</td>
</tr>
<tr>
<td>Sem CaCl₂</td>
</tr>
</tbody>
</table>
3.11 – Sistema para Injeção em Fluxo

3.11.1 – O Mini-reator

A construção do mini-reator foi feita preenchendo-se uma coluna de vidro de 5,0 mm de diâmetro por 30,0 mm de comprimento, fechada em uma das extremidades por camada dupla de nylon, com 15 mg de PANIG®-HRP. O preenchimento foi feito com auxílio de uma bomba peristáltica Tecnal usando uma vazão de 15 mL h⁻¹ e foi completada pela passagem de tampão fosfato de sódio 0,1 mol L⁻¹, pH 6,0, para completa remoção das possíveis moléculas de enzima não imobilizadas e equilíbrio do ambiente do mini-reator. As injeções de todos os substratos aqui testados foram feitas com o auxílio de comutador manual (Figura 8), com um volume de injeção fixo em 0,1 mL, numa vazão de 3,0 mL min⁻¹. O produto formado foi monitorado continuamente em espectrofotômetro a 420 nm usando célula de vidro de 0,02 mL. O registro das absorbâncias foi feito a cada 5 segundos. Após a injeção, o mini-reator foi lavado com volumes de tampão fosfato suficientes para total remoção do produto e em seguida o ciclo se reiniciava com nova injeção de solução de substrato.
Figura 8 – Sistema para utilização do mini-reactor, onde I = bomba peristáltica; II = comutador manual; III = mini-reactor; IV = espectrofotômetro e V = registrador.

3.11.2 – Determinação da Faixa Operacional

Foram feitos testes afim de se determinar a faixa de concentração em que o mini-reactor apresenta resposta linear, bem como para determinar os limites de detecção superior e inferior para o substrato pirogalol. Neste intuito, foram preparadas soluções contendo tampão fosfato 0,1 mol L⁻¹, pH 6,0, H₂O₂ 0,05 mol L⁻¹ e pirogalol em volumes proporcionais ao do ensaio descrito no item 3.6.1, porém variando-se a concentração de pirogalol de 1,3 μmol L⁻¹ até 162,4 μmol L⁻¹. A
detecção do produto formado se fez a 420 nm. Para determinação do limite inferior de detecção foi estabelecida uma razão sinal / ruído igual a 3, sendo considerado ruído o valor de absorvância obtida pela passagem através do mini-reator de solução contendo pirogalol e tampão fosfato, na ausência de H₂O₂.

3.12 – Aplicações Analíticas do Sistema para Injeção em Fluxo

3.12.1 – Determinação do Peróxido de Hidrogênio

Para determinação de peróxido de hidrogênio foram feitas injeções de soluções em que a concentração de pirogalol era mantida fixa em 0,013 mol L⁻¹ e se variava a concentração de H₂O₂ de 3,26 mmol L⁻¹ até 326,5 mmol L⁻¹, com detecção de produto formado a 420 nm. Como limite superior de detecção foi considerado o ponto anterior àquele que causasse queda na atividade enzimática devido à inibição. A mesma razão sinal / ruído estabelecida no item 3.11.2 foi considerada para determinação do limite inferior de detecção.
4. RESULTADOS E DISCUSSÃO

4.1 – Síntese das Polianilinas

Na síntese da PANI obtivemos um pó fino de coloração negro esverdeado com um rendimento médio de 93,8%. As PANI 2, 3 e 4 apresentaram rendimentos um pouco inferiores em decorrência dos processos de manejo. Já a PANI 5 apresentou um rendimento de síntese de apenas 22%. Além disso, o polímero obtido apresentou-se como um pó finíssimo, de difícil manuseio nos processos de imobilização.

4.2 – Caracterização

4.2.1 – Análise Termogravimétrica (TGA)

Os resultados obtidos na TGA dos polímeros sintetizados revelaram
termogramas com características bastante similares às descritas na literatura para as polianilinas (Wei & Hsueh, 1989; Palaniappan, 1995), e portanto compatíveis com os compostos propostos.

Como pode ser observado nos anexos 1 a 5, com exceção de PANI®2, os todos os polímeros apresentam três estágios de perda de massa, sendo o primeiro entre 40 – 110°C, relacionados às moléculas de água associadas à estrutura da polianilina, o segundo, entre 110 – 300 °C, relacionado às moléculas do contra-ion dopante e o terceiro, acima de 400°C, relacionado à degradação do esqueleto carbônico. PANI® apresentou um termograma de dois estágios característico, com perdas na faixa de temperatura relativa às moléculas de água e na faixa relativa à degradação estrutural, visto que neste polímero o tratamento com NH₄OH retirou o contra-ion dopante.

Os três polímeros tratados com ácido nítrico (PANI 3, 4 e 5) apresentaram termogramas similares, independente da rota de síntese utilizada em sua preparação.

Na Tabela 9 estão demonstradas as perdas percentuais de massa dos polímeros em função do aumento da temperatura.
Tabela 9 – Porcentagem de perda de massa em função do aumento da temperatura.

<table>
<thead>
<tr>
<th>Faixa de Temperatura</th>
<th>% Perda de massa</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PANI₁</td>
</tr>
<tr>
<td>Abaixo de 100</td>
<td>10,9</td>
</tr>
<tr>
<td>100-300</td>
<td>9,0</td>
</tr>
<tr>
<td>Acima de 400</td>
<td>75,6</td>
</tr>
</tbody>
</table>

* Neste Polímero o contra-ion foi retirado por tratamento com NH₄OH.

É interessante salientar que as perdas de massa na região de 200°C são diferentes de um dopante para outro, sendo levemente crescente à medida que a massa do dopante cresce (HCl, HNO₃, HNO₃/C₆H₅O₇). A perda a 400°C para PANI₁ e PANI₂ é quantitativamente consistente com os valores calculados nas análises elementares para as fórmulas propostas.

4.2.2 – Análise Elementar

A análise elementar dos polímeros resultou em fórmulas empíricas consistentes com os processos de síntese utilizados. Na Tabela 10 estão demonstrados os valores calculados e os obtidos para as polianilinas sintetizadas.
Tabela 10 – Análise Elementar das Polianilinas.

<table>
<thead>
<tr>
<th>Polímero</th>
<th>C</th>
<th>N</th>
<th>H</th>
<th>O*</th>
<th>Fórmula</th>
</tr>
</thead>
<tbody>
<tr>
<td>PANI®</td>
<td>61,1</td>
<td>11,9</td>
<td>5,1</td>
<td>-</td>
<td>$C_{24}H_{18}N_4(HCl)_2.H_2O$</td>
</tr>
<tr>
<td>Calculado</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PANI®</td>
<td>66,2</td>
<td>12,9</td>
<td>4,1</td>
<td>9,5</td>
<td>$C_{24}H_{18}N_4(HCl)_2.(H_2O)_3$</td>
</tr>
<tr>
<td>PANI®</td>
<td>68,0</td>
<td>12,8</td>
<td>5,3</td>
<td>5,8</td>
<td>$C_{24}H_{18}N_4(H_2O)_2$</td>
</tr>
<tr>
<td>PANI®</td>
<td>63,3</td>
<td>15,4</td>
<td>6,1</td>
<td>7,3</td>
<td>$C_{24}H_{18}N_4(NO_2).(H_2O)_2$</td>
</tr>
<tr>
<td>PANI®</td>
<td>58,6</td>
<td>13,2</td>
<td>5,0</td>
<td>4,7</td>
<td>$C_{24}H_{20}N_4(NO_2)_2.C_6H_5O_7$</td>
</tr>
<tr>
<td>PANI®</td>
<td>65,7</td>
<td>11,1</td>
<td>5,0</td>
<td>2,5</td>
<td>$C_{24}H_{20}N_4(NO_2){0,8}.(C_6H_5O_7){1,2}$</td>
</tr>
</tbody>
</table>

* - Porcentagem de oxigênio referente às moléculas de água associadas ao polímero, calculada a partir dos resultados de TGA.

A fração de oxigênio presente nas amostras de polianilinas refere-se exclusivamente ao teor de oxigênio das moléculas de água associadas aos polímeros, obtida por análise de TGA.

Como pode ser observado, os valores de C, H e N estão bem próximos para PANI®. As análises elementares das outras PANI estão muito próximas àquelas correspondentes ao contra-ion dopante, segundo as análises de TGA. (Tabela 9)

4.2.3 – Análise de Infra-Vermelho de Transmissão

Nas Figuras 9 a 13 são mostrados os espectros de infravermelho obtidos para
os polímeros estudados. Como pode ser observado, há absoluta correspondência entre as bandas obtidas, com alguma variação nas suas intensidades, permitindo-nos confirmar a presença de polímeros da família das polianilinas.

Tang et alii (1988), Wei & Hsued (1989) e Hagiwara et alii (1988), analisando espectros de infravermelho desses polímeros, destacam as bandas a 3444 cm\(^{-1}\) referente ao estiramento N-H, a 1588 cm\(^{-1}\) relacionada a estrutura quinóide, a 1544 cm\(^{-1}\) relacionada ao estiramento de anel benzóide e a banda a 1140 cm\(^{-1}\) relacionada ao grau de protonação. Os espectros dos polímeros tratados com ácido nítrico (PANI\(^{®}\), PANI\(^{®}\) e PANI\(^{®}\)) revelam a presença de banda forte próximo a 1400 cm\(^{-1}\) referente ao estiramento de grupo NO\(_2\).

Figura 9 – Espectro de infravermelho típico de amostras de PANI\(^{®}\)
Figura 10 – Espectro de infravermelho típico de amostras de PANI®

Figura 11 – Espectro de infravermelho típico de amostras de PANI®
Figura 12 – Espectro de infravermelho típico de amostras de PANI®

Figura 13 – Espectro de infravermelho típico de amostras de PANI®.
Segundo Wudi et alii (1987) as intensidades relativas das bandas a 1600-1588cm\(^{-1}\) e a 1550-1500 cm\(^{-1}\) caracterizam o estado de oxidação do polímero, tendo em vista que as estruturas benzóides predominam nos estados reduzidos e, à medida que o polímero vai sendo oxidado, aparecem as estruturas quinóides. Nossos resultados nos permitem classificar os polímeros sintetizados segundo as intensidades relativas das bandas citadas em oxidado (PANI\(^{\circledR}\)), reduzido (PANI\(^{\circledast}\)) e em estados de oxidação intermediários (PANI\(^{\circledR}\), PANI\(^{\circledast}\) e PANI\(^{\circledast\circ}\)).

Dos resultados obtidos até aqui, no que diz respeito à caracterização dos polímeros sintetizados, podemos tecer alguns comentários. A PANI\(^{\circledR}\) apresenta todas as características do composto p-polifenilenoaminaimina, na sua forma de sal, amplamente conhecida como hidrocloroeto de poliesmeraldina. Este composto teria a estrutura básica mostrada na Figura 6, e a unidade repetitiva seria aproximadamente 50% oxidada e 50% reduzida (MacDiarmid & Epstein, 1989).

O segundo polímero, PANI\(^{\circledast}\), também apresenta características típicas do composto p-polifenilenoaminaimina, neste caso em sua forma básica, também conhecida como esmeraldina (Figura 5). Este composto é caracteristicamente desdopado e apresenta-se predominantemente no estado oxidado. (MacDiarmid & Epstein, 1989).

Na PANI\(^{\circledast\circ}\), o tratamento com ácido nítrico causou a inserção de grupo NO\(_2\) no esqueleto polimérico, evidenciado pelo espectro de infravermelho (Figura 11), bem como levou o estado de oxidação para um grau intermediário entre o totalmente oxidado e o totalmente reduzido. Pouca alteração foi obtida pelo tratamento.
subsequente com ácido cítrico, de forma que para PANI® temos um polímero muito similar em suas características à PANI®.

No caso da PANI®, a síntese na presença de ácido nítrico resultou em um polímero com características de infravermelho bastante similares às de PANI®, exceto pela presença da banda relativa a estiramento de grupamento NO na região de 1400 cm⁻¹ (Figura 13) e pelo fato deste polímero apresentar-se característicamente desprotonado, conforme pode ser observado pela desaparecimento da banda na região de 1140 cm⁻¹. Outro ponto a ser ressaltado é o fato das bandas relativas ao estiramento de grupo quinóide (1600 cm⁻¹) e benzoíde (1500 cm⁻¹), que caracterizam o estado de oxidação do polímero, serem típicas de polímero em estado reduzido.

4.3 - Ativação de Polímero

A natureza da reação envolvida na ativação de suportes usando poliglutaraldeído vem sendo objeto de estudo desde 1968, quando Richard & Knowles noticiaram a existência de espécies α, β-insaturadas e poliméricas em soluções de glutaraldeído comercial. Desde então, muitos esforços tem sido empreendidos no sentido de se desvendar as estruturas presentes neste composto na sua forma comercial, purificada por destilação ou em soluções aquosas (Hardy et alii, 1969; Kirkeby et alii, 1987; Margel & Rembaum, 1980). De comum entre os achados destes autores está o fato de que, em preparações comerciais e em
soluções aquosas neutras ou alcalinas, o glutaraldeído sofre polimerização e surgem em maior ou menor escala espécies α,β-insaturadas. Não é possível ainda, no entanto, se descrever o mecanismo de reação envolvido na ativação de suportes e imobilização de enzimas através deste reagente bifuncional. Alguns autores fazem alusão à formação de base de Schiff, uma vez que a ligação pode ser estabilizada por tratamento com NaBH₄ (Makino et alii, 1988), outros refutam essa ideia exatamente pelo mesmo motivo: o tratamento com NaBH₄ não resultou em melhoria da estabilidade da ligação (Tatsuma et alii, 1989). Há ainda aqueles que atribuem à forma monomérica a capacidade de formar tramas cruzadas de polímero e enzimas (Kuwabata et alii, 1995). Prevalece, no entanto, a ideia de que a ligação ao glutaraldeído se dá em pH neutro ou levemente alcalino (Trevan, 1980; Zaborski, 1974), e que a forma envolvida na reação seja predominantemente polimérica, ou seja, o poligluteraldeído. Recentemente, Melo et alii, (1999) trabalhando com polianilina eletroquimicamente polimerizada e ativada com soluções de poligluteraldeído, concluíram que ocorre uma deposição do poligluteraldeído sobre a superfície ou no interior do suporte que está sendo ativado.

A eficiência da ligação do poligluteraldeído à PANI³ foi estimada pela análise elementar da PANIG⁴, obtida das diferentes soluções de poligluteraldeído, bem como pela análise dos espectros de infravermelho de PANI³ e PANI⁴. A Tabela 11 mostra os resultados obtidos na análise elementar de PANIG⁴, assim como as relações C/N e (C+H)/N :
Imobilização de Horseradish Peroxidase em Diferentes Polianilinas: Aplicações Analíticas

Tabela 11 – Análise Elementar de PANIG\(^\circ\) obtida pela ativação de PANI\(^\circ\) em diferentes soluções de glutaraldeído

<table>
<thead>
<tr>
<th>pH da solução de glutaraldeído</th>
<th>%C</th>
<th>%H</th>
<th>%N</th>
<th>Relação C/N</th>
<th>Relação (C+H)/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>6,0</td>
<td>54,9</td>
<td>4,9</td>
<td>9,6</td>
<td>5,7</td>
<td>6,2</td>
</tr>
<tr>
<td>7,0</td>
<td>57,2</td>
<td>5,0</td>
<td>9,9</td>
<td>5,8</td>
<td>6,3</td>
</tr>
<tr>
<td>8,0</td>
<td>58,7</td>
<td>5,0</td>
<td>10,1</td>
<td>5,8</td>
<td>6,3</td>
</tr>
<tr>
<td>H(_2)O</td>
<td>59,1</td>
<td>5,4</td>
<td>10,3</td>
<td>5,7</td>
<td>6,3</td>
</tr>
<tr>
<td>PANI(^\circ)</td>
<td>66,2</td>
<td>4,1</td>
<td>12,9</td>
<td>5,1</td>
<td>5,4</td>
</tr>
</tbody>
</table>

Aparentemente a deposição de poliglutaraldeído não causou diferença significativa na relação C/N e C+H/N em função dos diferentes pH's de ativação. Há no entanto, uma diferença significativa na relação C/N e C+H/N da PANI\(^\circ\) com relação à PANIG\(^\circ\), independente do pH de ativação, o que indica a ligação do poliglutaraldeído.

Os espectros obtidos por FTIR de PANIG\(^\circ\) e PANI\(^\circ\) (Figuras 14 e 15) ativadas com poliglutaraldeído em pH 6,0, mostram o aparecimento de uma banda por volta de 1700 cm\(^{-1}\). Melo et alii (1999) trabalhando com polianilina eletroquimicamente sintetizada, observaram também o aparecimento de banda em 1700cm\(^{-1}\) em polímeros tratados com poliglutaraldeído sob refluxo em pH 8,0, à qual relacionaram ao estiramento de carbonila aldeídica, indicativa da presença deste composto na estrutura do polímero.
Figura 14 – Espectros de infravermelho de amostras de PANIG obtidas pela ativação com poliglutaraldeído em pH 6,0.

Figura 15 – Espectros de infravermelho de amostras de PANIG obtidas pela ativação com poliglutaraldeído em pH 6,0.
4.4 – Imobilização de Peroxidase nos Diferentes Polímeros

A capacidade de retenção de enzima dos diferentes polímeros ativados está apresentada na Tabela 12.

<table>
<thead>
<tr>
<th>Polímero</th>
<th>Atividade (UE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PANIG₁</td>
<td>24,5 ± 3,6</td>
</tr>
<tr>
<td>PANIG₂</td>
<td>15,5 ± 2,6</td>
</tr>
<tr>
<td>PANIG₃</td>
<td>21,8 ± 1,3</td>
</tr>
<tr>
<td>PANIG₄</td>
<td>22,9 ± 0,4</td>
</tr>
<tr>
<td>PANIG₅</td>
<td>12,2 ± 2,0</td>
</tr>
</tbody>
</table>

Tabela 12 – Capacidade de retenção de HRP das polianilinas testadas.

Resultado expresso em termos de UE retidos em 5,0 mg de PANIG.

Estes resultados nos permitem classificar os polímeros em dois grupos em função da sua capacidade de retenção. No primeiro grupo estão os polímeros com capacidade de retenção superior a 20% e no segundo, polímeros com capacidade inferior a 20%. Analisando as características dos polímeros do primeiro grupo, isto é, PANI₁, PANI₃ e PANI₄, chama-nos a atenção o fato de todos os três terem em comum estado de oxidação intermediário, em contraposição àqueles do segundo grupo, PANI₂ e PANI₅, cujos estados de oxidação são predominantemente oxidado ou reduzido.

Assim sendo, podemos deduzir que, mais do que o contra-ión dopante ou a
estrutura da cadeia polimérica, o estado de oxidação original do polímero é importante para sua capacidade de imobilização, já que tanto o polímero oxidado (PANI²) como aquele reduzido (PANI₃) foram menos eficientes do que os demais em imobilizar a enzima.

Independente do tipo de reação envolvida, a necessidade de ativação da polianilina com poliglutaraaldeído para se obter uma imobilização eficiente foi comprovada nos testes de imobilização de HRP em PANI⁴. Neste caso a HRP não ficou retida no polímero, grande parte dela aparecendo no primeiro sobrenadante do processo de imobilização (S₀), sendo ainda levemente detectada nas águas de lavagem posteriores (Figura 16). Sem a ativação com glutaraldeído a enzima adsorve levemente à superfície da polianilina e é lentamente retirada durante as lavagens. Yang & Mu (1997), trabalhando com eletrodos de polianilina eletropolimerizada e não tratada com glutaraldeído, observaram o mesmo efeito de dessorção da HRP, que no período de 23 h levou a um decréscimo na corrente resposta da ordem de 84%.

Em função destes testes, tendo em vista nosso objetivo de caracterizar o melhor sistema polímero-enzima, escolhemos PANIG⁵ para dar continuidade ao trabalho, uma vez que sua síntese é mais rápida e com maior rendimento.
Figura 16 - Imobilização de HRP em PANI10 sem ativação. Atividade enzimática presente no sobrenadante (S\textsubscript{0}), águas de lavagem (S\textsubscript{1}-S\textsubscript{9}) e PANI10-HRP (5,0 mg); atividade catalítica do polímero PANI10 (5,0 mg).

4.5 - Otimização dos Parâmetros de Imobilização em PANI10
4.5.1 – pH ótimo de imobilização

Os resultados apontam a faixa entre 6,0 e 8,0 como sendo a mais indicada para a imobilização, sendo o pH 6,0 onde se obtém maior eficiência (Figura 17). Resultados semelhantes foram obtidos por Thibault et alii (1981), estudando o pH ótimo para imobilização de HRP sobre sílica ativada com poliglutaraldeído.

De modo semelhante ao que acontece com a polianilina, a reação entre o poliglutaraldeído e a enzima permanece ainda objeto de muitos estudos e especulações. Kirkeby et alii (1987), estudando a reação entre poliglutaraldeído e diversos aminoácidos, sugere que as reações entre o polímero e grupos sulfdril, aromáticos, básicos ou ácidos dos aminoácidos sejam menos importantes do que aquela que ocorre com grupos α- ou ε-amino. Trevan (1980), por outro lado, reunindo os resultados obtidos da análise de aminoácidos de proteínas após imobilização, sugere que tais grupos possam estar tão envolvidos quanto os amino grupos, e sugere que a reação se dá por adição do tipo Michael. Conforme já afirmamos, este tipo de ligação carece ainda de maiores estudos para sua completa elucidação.
Figura 17 – Estudo de pH ótimo para imobilização de HRP em PANIG.
Enzima preparada em tampão ftalato de potássio 0,1 mol L⁻¹, pH 2,0 e 3,0; tampão fosfato de sódio 0,1 mol L⁻¹, pH 4,0, 5,0, 6,0, 7,0 e 8,0; e tampão Tris 0,1 mol L⁻¹, pH 9,0, 10,0, 11,0 e 12,0. Imobilização com 1,0 mL de HRP (162 UE) e 5,0 mg de PANIG.

4.5.2 - Otimização do Tempo de Imobilização

Na Figura 18 podemos observar a influência do tempo de contato da HRP com
a PANIGâ sobre a eficiência da imobilização. À medida que aumentamos o tempo de imobilização há um aumento na atividade da PANIGâ-HP com concomitante decréscimo da atividade enzimática remanescente em So, que atinge um máximo em 60 minutos de contato. No entanto, a PANIGâ-HP obtida com 60 minutos de imobilização demanda um grande número de lavagens para retirada de moléculas de enzima ativa, mas não retida pelo polímero. Após 120 minutos não há mais enzima ativa disponível na solução e o material obtido pode ser usado após três lavagens, reduzindo bastante o tempo da operação, além de eventuais perdas por manuseio.

Figura 18 – Relação entre tempo e eficiência de imobilização de HRP em PANIGâ. Imobilização com 1,0 mL de HRP (162 UE) e 5,0 mg de PANIGâ. ——— UE no sobrenadante (So); ——— UE em PANIGâ-HP.
Makino et alii (1988), estudando o tempo necessário para imobilização de BSA e Pronase em géis para cromatografia do tipo Toyo pearl e G600PW ativados com poliglutaraldeído, relatam a necessidade de 4 h para a completa imobilização. Os nossos resultados sugerem que 60 min são suficientes para atingir o limite de imobilização, sendo que 120 min representam o tempo mais conveniente, considerando as etapas subsequentes.

4.5.3 - Otimização da Relação de Concentração de PANIG® com Relação à HRP

Na Tabela 13 estão demonstrados os resultados obtidos na eficiência da imobilização à medida que variamos a quantidade de enzima ofertada por mg de PANIG®. Podemos observar que a eficiência da imobilização cresce à medida que aumenta a proporção de enzima ofertada por mg de PANIG®, sendo que, na faixa testada, o máximo de eficiência é alcançada quando 10 μg de HRP são ofertadas a 5,0 mg de PANIG®.
Tabela 13 - Relação entre µg de enzima ofertada por mg de PANIG© e eficiência da imobilização

<table>
<thead>
<tr>
<th>µg de HRP/mg PANIG©</th>
<th>UE imobilizadas</th>
<th>UE imobilizadas/ mg PANIG©</th>
</tr>
</thead>
<tbody>
<tr>
<td>5,00</td>
<td>24,6 ± 0,3</td>
<td>12,3</td>
</tr>
<tr>
<td>2,00</td>
<td>57,0 ± 3,5</td>
<td>7,2</td>
</tr>
<tr>
<td>1,00</td>
<td>33,9 ± 1,2</td>
<td>2,8</td>
</tr>
<tr>
<td>0,67</td>
<td>26,9 ± 0,1</td>
<td>1,5</td>
</tr>
<tr>
<td>0,50</td>
<td>22,3 ± 0,9</td>
<td>0,9</td>
</tr>
</tbody>
</table>

Na Figura 19 notamos uma relação linear (r=0,9998) crescente entre a quantidade de enzima imobilizada e a quantidade de enzima ofertada por mg de PANIG©, no intervalo entre 0,5 a 2,0 µg de HRP ofertada por mg de polímero. A partir desse ponto, aparentemente ocorre a saturação do polímero, e a relação que se estabelece deixa de ser linear.
Figura 19 – Relação entre a quantidade de HRP ofertada por mg de PANI® e a quantidade immobilizada (UE).

4.5.4 – Medida da Retenção de HRP (Eficiência)

Alguns aspectos devem ser levados em conta quando se avalia a eficiência de um processo de immobilização. Dentre eles devemos dispensar maior atenção à immobilização através de grupos funcionais relacionados com a atividade enzimática, que traz, como consequência, a immobilização da proteína desprovida de atividade,
assim como o chamado “overloading” ou sobrecarga, que ocorre quando várias camadas de enzima depositam-se uma sobre as outras, resultando em excessiva proximidade entre os sítios, o que pode levar a impedimento estéreo ao substrato.

Uma forma de se avaliar a eficiência da imobilização, considerando tais possibilidades, é a medida da quantidade de proteína imobilizada, sendo então a eficiência definida como Atividade Específica (AE).

A eficiência do método foi medida pela razão entre a eficiência de retenção de atividade enzimática e a quantidade de proteína retida. Os resultados obtidos (Tabela 14) indicam que a imobilização foi feita de maneira adequada, de forma que toda enzima imobilizada manteve sua atividade enzimática.

Tabela 14 – Eficiência da PANIG® na retenção de HRP ativa.

<table>
<thead>
<tr>
<th>Enzima ofertada</th>
<th>Enzima imobilizada</th>
<th>Proteína ofertada</th>
<th>Proteína retida</th>
<th>UE/μg Prot.</th>
<th>Eficiência %UE</th>
</tr>
</thead>
<tbody>
<tr>
<td>UE 162 ± 2,1</td>
<td>40,8 % 0,3</td>
<td>25,2 % 0,4</td>
<td>100 % 0,2</td>
<td>68 % 24,3</td>
<td>1,03</td>
</tr>
</tbody>
</table>

Na Tabela 15 estão relacionados para fins de comparação, os resultados obtidos por outros autores na imobilização de HRP em suportes variados, utilizando
métodos químicos e físicos de imobilização.

Tabela 15 – Porcentagem de imobilização em diferentes suportes

<table>
<thead>
<tr>
<th>Suporte</th>
<th>Tipo de imobilização</th>
<th>% de imobilização</th>
<th>Referência</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carboximetilcelulose</td>
<td>Iônica</td>
<td>7</td>
<td>Weliky et alii (1969)</td>
</tr>
<tr>
<td>Poliaminoestireno – Diazotizado</td>
<td>Covalente</td>
<td>4</td>
<td>Miller et alii (1976)</td>
</tr>
<tr>
<td>Sílica – Glutaraldeído</td>
<td>Covalente</td>
<td>3</td>
<td>Thibault et alii (1981)</td>
</tr>
<tr>
<td>Vidro poroso – Glutaraldeído</td>
<td>Covalente</td>
<td>22</td>
<td>Gorton e Ogren (1981)</td>
</tr>
<tr>
<td>Vidro poroso – Diazotizado</td>
<td>Covalente</td>
<td>33</td>
<td>Olsson & Ögren (1983)</td>
</tr>
<tr>
<td>Látex</td>
<td>Covalente</td>
<td>40</td>
<td>Kawaguchi et alii (1988)</td>
</tr>
<tr>
<td>Vidro poroso – Glutaraldeído</td>
<td>Covalente</td>
<td>48</td>
<td>Weng et alii (1991)</td>
</tr>
<tr>
<td>Montmorillonite – Glutaraldeído</td>
<td>Covalente</td>
<td>43</td>
<td>Gianfreda & Bollag (1994)</td>
</tr>
<tr>
<td>Fractogel-2-fluor-1-metilpiridina</td>
<td>Adsorção</td>
<td>0.06</td>
<td>Narinesingh et alii (1991)</td>
</tr>
<tr>
<td>Agarose-ácido imido acético-Cu(II)</td>
<td>Adsorção</td>
<td>78</td>
<td>Chaga (1994)</td>
</tr>
<tr>
<td>Magnetita-APTS*-Glutaraldeído</td>
<td>Adsorção</td>
<td>9</td>
<td>Tatsumi et alii (1996)</td>
</tr>
<tr>
<td>Celulose – óxido de titânio</td>
<td>Adsorção</td>
<td>17</td>
<td>Silva et alii (1996)</td>
</tr>
</tbody>
</table>

*APTS – Aminopropil-trietoxsilano

Como podemos observar, há uma grande variação na porcentagem de HRP imobilizada, mesmo considerando apenas os polímeros ativados via
poliglutaraldeído. Weng et al. (1991) e Gorton & Ogren (1981) trabalhando com vidro poroso, relatam resultados tão distantes como 48 e 22%, respectivamente. Não obstante, nosso resultado de 25% de HRP imobilizada localiza-se em uma faixa intermediária entre os resultados aqui demonstrados e, tendo em vista que a ativação de polímeros via poliglutaraldeído está entre os métodos mais simples e que conferem maior estabilidade aos sistemas, podemos considerar o sistema PANiG® bastante eficiente. Além disso, devemos destacar o fato de que 100% das moléculas de enzima que foram imobilizadas mantiveram sua atividade.

4.6 – Parâmetros Cinéticos do Sistema PANiG®-HRP

4.6.1 – Temperatura ótima da HRP livre e imobilizada

Os testes de temperatura ótima da HRP livre e imobilizada revelam um comportamento bastante diferente para as duas formas da enzima. A HRP livre apresenta uma curva de desnaturação típica, com máximo de atividade a 45 ºC e, à partir daí, perdas acentuadas de atividade, à medida que a temperatura aumenta, tendo apenas cerca de 20% de atividade remanescente a 65ºC, após 2 min de incubação. Já a HRP imobilizada apresenta uma curva de desnaturação térmica com um platô de atividade máxima entre 30 e 60 ºC e só a partir daí a atividade começa a
decair, sendo que a 80 ºC ainda resta cerca de 20% da atividade enzimática, após 2 min de incubação. É relevante salientar que, enquanto a enzima livre mantém apenas cerca de 30% da atividade a 60 ºC, a enzima imobilizada não apresenta qualquer perda de atividade até essa temperatura.

Yang & Mu (1997), trabalhando com HRP adsorvida sobre polianilina observaram máxima atividade a 39 ºC, enquanto Liu et alii (1996), observaram máxima atividade a 40 ºC para a mesma enzima imobilizada por aprisionamento com compósito de polivinil álcool (PVA) / fibra de seda regenerada (RSF). Estes resultados ressaltam muito mais as características do suporte e método de imobilização utilizados do que características da enzima, uma vez que a estabilidade térmica de HRP é largamente conhecida (Yemenicioglu et alii, 1998; Chang et alii, 1988). Parece que no sistema em que HRP está adsorvida em polianilina, o efeito observado seja mais devido à dessorção da enzima em função do aumento da temperatura do que inativação térmica propriamente dita. Por outro lado, no caso de HRP aprisionada em PVA/RSF os autores relatam a degeneração do PVA em temperaturas superiores a 45 ºC.

Aparentemente, a estabilidade térmica da PANI®, assim como as ligações estabelecidas via poliglutaraldeído com a HRP, são responsáveis pela ampliação da faixa térmica operacional no sistema PANIG®-HRP, propiciando seu uso em temperaturas significativamente elevadas, considerando-se a catálise enzimática em geral.

86
Figura 20 – Temperatura ótima da HRP livre e imobilizada. Imobilização com 1,0 mL da HRP (162 UE) e 5,0 mg de PANI-GO. ——— PANI-GO-HRP ; ——— HRP livre. Tempo de incubação nas diferentes temperaturas 1 min seguido de 1 min de ensaio.

4.6.2 – pH de Trabalho da Enzima Livre e Enzima Imobilizada

Os resultados dos testes de pH revelaram comportamentos bastante similares entre a enzima livre e imobilizada, conforme pode ser visto na Figura 21. Na faixa ácida, ambas enzimas têm comportamento semelhante, sendo que em pH 5,0 o
desempenho da enzima livre é levemente superior ao da imobilizada. Por outro lado, a imobilização causa um aumento na estabilidade da enzima quando submetida aos extremos da faixa alcalina. Nesta região a enzima imobilizada mantém o dobro da atividade em pH 10 (60%), quando comparada à livre (30%). É possível que prótons presentes no polímero sejam mobilizados para o microambiente que cerca a enzima, minimizando assim as alterações estruturais que ela sofreria em decorrência das mudanças no pH do meio, uma vez que após o tratamento com poli glutaraldeído a polianilina continua dopada, conforme pode ser visto no espectro de infra-vermelho (Figura 9). Tal habilidade do polímero deixaria de existir na faixa de pH ácida, onde seria necessário acolher prótons vindos do meio.

Outro aspecto interessante é a ampliação e deslocamento do pH ótimo da enzima imobilizada que passa de pH 8,0 na livre para entre 6,0 e 7,0 na imobilizada.

![Gráfico pH de trabalho para ensaio de atividade de HRP livre e imobilizada. Imobilização com 1,0 mL da HRP (162 UE) e 5,0 mg de PANIG©. ---●-- PANIG©-HRP; ---■--- HRP livre.](image)
4.6.3 - Reatividade Relativa

Em primeiro lugar este ensaio revelou que a PANIG@-HRP manteve sua capacidade de reagir com todos os substratos testados. Entretanto, sua reatividade foi bastante diferenciada em relação aos sete substratos em questão, quando comparada com a enzima livre, de forma que para apenas três substratos (pirogalol, catecol e fenol) a resposta obtida foi igual ou próxima àquela correspondente à quantidade de enzima imobilizada (Figura 22).

Figura 22 – Reatividade Relativa de PANIG@-HRP usando diferentes substratos. Imobilização com 1,0 mL da HRP (162 UE) e 5,0 mg de PANIG@. Absorvâncias: pirogalol 420nm, catecol 380nm, fenol 510nm, guaiacol 410nm, hidroquinona 480nm, o-dianisidina 480nm; resorcinol 480nm.

Para os substratos de reação lenta, resorcinol e hidroquinona (Thibault et alii, 1981), a reatividade da enzima imobilizada foi muito baixa no intervalo de tempo testado, sendo respectivamente 10 e 15% da resposta obtida para o pirogalol. Além disso, no caso da hidroquinona observamos a formação de produto mesmo antes da reação ter sido iniciada pela adição de H₂O₂, levando-nos a considerar algum tipo de interação inespecífica entre o polímero e este substrato.

Rosatto et alii (1999), trabalhando com HRP imobilizada em sílica modificada com óxido de titânio, observaram também grande variação na resposta relativa da HRP a diferentes substratos fenólicos, sendo que no caso, a melhor resposta foi obtida usando catecol.
Um dos parâmetros cinéticos mais importantes a serem determinados é a constante de Michaelis-Menten (Km) de uma enzima para um determinado substrato. Por definição, Km representa a quantidade de substrato em que a velocidade da reação catalisada é igual à metade da velocidade máxima (\(v = \frac{1}{2} V_{\text{máx}} \)), sendo o relacionamento entre estas grandezas estabelecido pela equação de Michaelis-Menten (Equação 8) (Lehninger, 1995):

\[
v = \frac{V_{\text{máx}} [S]}{K_m + [S]} \quad \text{(Eq. 8)}
\]

\(v \) = velocidade da reação,
\(V_{\text{máx}} \) = velocidade máxima alcançada quando a enzima se encontra saturada com o substrato,
\([S] \) = concentração de substrato.

Em termos práticos, Km nos dá a medida inversa da afinidade da enzima por
um determinado substrato. Evidentemente, a comparação entre a afinidade de uma
enzima solúvel e sua contrapartida imobilizada é de grande relevância quando se
quer avaliar a eficiência de um processo de imobilização.

No entanto, a validade matemática da equação de Michaelis-Menten se apóia
no princípio de que a enzima e o substrato são solúveis e estão homogeneamente
misturados, o que não ocorre em sistemas com enzimas imobilizadas. Uma
variedade de componentes podem estar presentes nestes sistemas, além dos já
bastante conhecidos efeitos de difusão e partição, os quais podem interferir nas
medidas de Km, de forma que a constante de Michaelis determinada para enzimas
imobilizadas é necessariamente uma medida aparente (Kmₐp) e deve ser distinguida
daquela normalmente determinada para a enzima livre (Zaborski, 1974; Trevan,
1980; Cheetan, 1986).

Os resultados obtidos nos testes de determinação de Km usando pirogalol
como substrato são mostrados na Figura 23. A relação entre a velocidade de reação
(formação de purpurogalina) e concentração de substrato para ambas as formas da
enzima descreve uma hipérbole quadrática típica, com as curvas de enzima livre e
imobilizada praticamente superpostas. O valor estimado de Km para enzima livre e
imobilizada está demonstrado na Tabela 16.
Figura 23 – Relação entre concentração de pirogalol e velocidade de reação.

Imobilização com 2,0 mg de PANIG\(^{1}\) e 400\(\mu\)L de HRP (solução contendo 162 UE mL\(^{-1}\)). Concentração de pirogalol variando de \(9,0 \times 10^{-4}\) mol L\(^{-1}\) a \(2,5 \times 10^{-2}\) mol L\(^{-1}\). -- ■ --- PANIG\(^{1}\)-HRP; --- ○ --- HRP livre.

Tabela 16 – Valor estimado de \(K_m\) e \(K_m_{ap}\)

<table>
<thead>
<tr>
<th>Enzima</th>
<th>(K_m) e (K_m_{ap})</th>
</tr>
</thead>
<tbody>
<tr>
<td>HRP</td>
<td>(6,67 \times 10^{-3}) mol L(^{-1}) ± 8 \times 10^{-5})</td>
</tr>
<tr>
<td>PANIG(^{1})-HRP</td>
<td>(7,07 \times 10^{-3}) mol L(^{-1}) ± 2 \times 10^{-5})</td>
</tr>
</tbody>
</table>

Como pode ser observado, os valores obtidos estão muito próximos, nos
sendo permitido considerá-los iguais, levando-se em conta os erros experimentais. É importante lembrar, no entanto, que tais medidas foram feitas em pH 6,0, portanto fora do pH ótimo para a enzima livre, que deve então apresentar melhor desempenho em pH 8,0. Por outro lado, nas condições experimentais, é extremamente interessante o fato de que, apesar das restrições ao movimento causadas pela imobilização, bem como a provável presença de um ou mais fatores interferentes sobre o desempenho da enzima imobilizada já citados, esta aparentemente manteve sua afinidade quase inalterada para esse substrato. Este resultado nos permite afirmar que a PANIG® é um suporte bastante adequado para imobilização de HRP, uma vez que preenche o requisito de causar mínima influência sobre a afinidade dessa enzima pelo substrato testado.

4.7 - Parâmetros de Estabilidade

4.7.1 - Termoestabilidade

A termoestabilidade da HRP livre é bem conhecida, sendo a resistência à desnaturação térmica associada à sua estrutura terciária característica que resulta em uma alta capacidade de renaturação (Hemeda & Klein, 1991), bem como à presença de uma fração termoestável, particularmente em preparações comerciais.
(Weng et alii, 1991). Alguns autores (Yemenicioglu et alii, 1998) relatam que a desnaturação térmica de HRP ocorre de modo bifásico, visto que em preparações comerciais há uma multiplicidade de isoenzimas com termoestabilidades variadas, sendo que algumas delas apresentam alta estabilidade térmica. Os resultados obtidos neste teste (Figura 24) confirmam estas propriedades da enzima livre e imobilizada, uma vez que as curvas de desnaturação térmica de ambas as formas da enzima são bastante similares. Há, no entanto, uma leve superioridade no desempenho da enzima imobilizada, conforme pode ser observado na Figura 22. Para explicar essa superioridade de desempenho devemos considerar não apenas uma, mas algumas hipóteses.

Uma das hipóteses mais recorrentes levantadas para explicar o aumento aparente na estabilidade térmica de preparações de enzimas imobilizadas é a que propõe que a ligação da enzima ao suporte se dê através de ligação covalente em múltiplos pontos, o que confere à enzima uma âncora à qual a estrutura ficaria presa através de ligações fortes, capazes de resistir e estabilizar a estrutura terciária frente a processos desnaturantes, tais como o aquecimento (Messing, 1975).

É preciso, no entanto, considerar outros aspectos envolvidos no processo de imobilização que podem atuar de modo sinergístico com a estabilização por ligação em múltiplos pontos. Em primeiro lugar, devemos considerar o fato de que preparações enzimáticas muito diluídas são altamente instáveis. Uma das conseqüências da imobilização é o aumento na densidade de moléculas de enzima na superfície da partícula de suporte, que passa então a se comportar como uma
solução concentrada, podendo ter como resultado um aumento na estabilidade da preparação enzimática. Outro efeito observado em preparações de enzimas immobilizadas é o chamado efeito Zulu. Neste caso, moléculas de enzima dispostas no interior da partícula não conseguem atuar sobre o substrato, uma vez que moléculas superficiais fazem a catálise em velocidade maior do que a que seria necessária para difusão do substrato até o interior da partícula, e portanto não são contabilizadas no processo de immobilização. No entanto, à medida que as moléculas de enzima da superfície sofrem desnaturação, aquelas do interior assumem seu lugar, não sendo então possível detectar declínio na atividade da preparação enzimática. (Treven, 1980). Embora bastante comum, o efeito Zulu não se aplica neste caso, uma vez que 100% das enzimas immobilizadas foram contabilizadas e mantiveram sua atividade.

Figura 24 – Termoestabilidade de HRP livre e immobilizada a 55°C.
Imobilização com 1,0 mL da HRP (162 UE) e 5,0 mg de PANIG©. ---•--- UE em PANIG©-HRP; ---■--- UE livre.
4.7.2 – Estabilidade Durante Armazenamento

A estabilidade de sistemas contendo enzimas imobilizadas varia consideravelmente em função do método usado para imobilização, assim como pelas condições utilizadas para o armazenamento. Na Tabela 10 estão relacionados alguns resultados de estabilidade durante o armazenamento de HRP imobilizadas em diferentes suportes. Como pode ser observado, há uma alta variabilidade na estabilidade dos sistemas, que vão desde 5 dias até 6 meses.

Tabela 17 – Estabilidade ao armazenamento da HRP imobilizada em vários suportes.

<table>
<thead>
<tr>
<th>Suporte</th>
<th>Tempo (dias)</th>
<th>Temperatura (°C)</th>
<th>Meio</th>
<th>Referência</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silica -diazotizada</td>
<td>180</td>
<td>4</td>
<td>tampão</td>
<td>Olson & Ögren, 1983</td>
</tr>
<tr>
<td>FMP-Fractogel</td>
<td>60</td>
<td>4</td>
<td>tampão</td>
<td>Narinesing, 1991</td>
</tr>
<tr>
<td>Montmorillonite, Kaolinite / glutaraldeído, solos</td>
<td>120</td>
<td>4</td>
<td>tampão</td>
<td>Gianfreda e Bollag, 1994</td>
</tr>
<tr>
<td>IMI</td>
<td>5</td>
<td>ambiente</td>
<td>tampão</td>
<td>Chaga, 1994</td>
</tr>
<tr>
<td>CPG silanizada/glutaraldeído</td>
<td>21</td>
<td>4</td>
<td>tampão</td>
<td>Pandey & Weetall, 1995</td>
</tr>
<tr>
<td>Aproisionamento em Polipirrol</td>
<td>15</td>
<td>-18°C</td>
<td>seco</td>
<td>Coche-Guerrante et alii, 1995</td>
</tr>
<tr>
<td>Aminopropil/silica/glutaraldeído</td>
<td>45</td>
<td>5</td>
<td>tampão</td>
<td>Raba, 1995</td>
</tr>
<tr>
<td>Grafite/TCNQ</td>
<td>30</td>
<td>4</td>
<td>tampão</td>
<td>Pandey & Weetall, 1995</td>
</tr>
<tr>
<td>Aproisionamento em RSF-PVA</td>
<td>30</td>
<td>4</td>
<td>seco</td>
<td>Liu, 1996</td>
</tr>
</tbody>
</table>

97
Na Tabela 18 são mostradas as porcentagens de atividade enzimática remanescentes após armazenamento do sistema PANIG³-HRP e da enzima livre nas condições discriminadas. O uso de cloreto de cálcio não resultou em melhora na estabilidade da enzima durante o armazenamento.

Após armazenamento a seco por 24 h, o sistema PANIG³-HRP foi submetido a reidratação em água deionizada por intervalo de tempo que variou de 1 a 15 dias, sendo que o máximo de atividade recuperada foi cerca de 20% da atividade inicial após 15 dias.

Tabela 18 – Estabilidade da HRP livre e imobilizada (PANIG³-HRP) em diferentes condições de armazenamento.

<table>
<thead>
<tr>
<th>Forma Enzimática</th>
<th>Armazenamento</th>
<th>Tampão</th>
<th>Seco</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Temperatura ambiente</td>
<td>Geladeira</td>
</tr>
<tr>
<td>HRP livre</td>
<td></td>
<td>Inativa (após 5 dias)</td>
<td>44% ativa (após 70 dias)</td>
</tr>
<tr>
<td>PANIG³-HRP</td>
<td></td>
<td>50% ativa (após 70 dias)</td>
<td>100% ativa (após 70 dias)</td>
</tr>
</tbody>
</table>

Comparativamente, o sistema PANIG³-HRP encontra-se entre aqueles sistemas de estabilidade média a alta, sendo que através de correções, podemos estender seu uso por mais tempo.
4.7.3 – Ensaio de Atividade Enzimática Usando Diferentes Solventes Orgânicos

A estabilidade da HRP frente a alguns solventes orgânicos tem sido reportada (Thibault et alii, 1981; Ryu & Dordick, 1992), sendo esta uma característica bastante peculiar desta enzima. (Figura 25)

Os testes de estabilidade frente ao etanol e acetona demonstraram um comportamento diferenciado entre as duas formas enzimáticas, em função da concentração destes solventes. Em baixas concentrações (abaixo de 10%), quando a camada de solvatação ainda não sofre alterações significativas, as duas formas apresentam comportamento bastante similares. No entanto, à medida que a concentração dos solventes vai aumentando, observa-se uma maior estabilidade da enzima immobilizada. Provavelmente esse efeito se deva à capacidade do polímero em manter-se hidratado e, portanto, ao microambiente enzimático, frente aos solventes testados.

No que se refere à acetonitrila, a estabilidade da PANIG○-HRP é relativamente menor comparada aos outros dois solventes, embora ainda se mostre levemente superior àquela apresentada pela enzima livre. Tatsuma et alii (1996) e Guo & Dong (1997) relatam comportamentos similares para essa enzima immobilizada respectivamente em politiofeno e organohidrogel em presença de acetonitrila.
Figura 25 - Estabilidade em presença de solventes orgânicos (20%).

livre; PANIG®-HRP.

4.8. - Sistema para Injeção em Fluxo

4.8.1 - Faixa Operacional para o Substrato Pirogaloí

O sistema PANIG®-HRP mostrou grande sensibilidade para esse substrato.
Na Figura 26 estão mostradas injeções em triplicata no sistema e, como pode ser observado, há uma excelente reprodutibilidade de resposta em todas as concentrações examinadas. A média das absorvâncias em função das concentrações de pirogalol revelaram que, em condições de reator, o sistema opera em cinética Michaeliana, sendo que em concentrações superiores a 81,2 μmol L⁻¹ observamos o efeito de saturação da enzima e o sistema passa a operar em velocidade máxima (Figura 27).

Figura 26 – Resposta espectrofotométrica para as injeções de substrato no mini-reator. Mini-reator preenchido com 15 mg PANIG®-HRP de vazão = 3,0 mL min⁻¹; injeções de 100 μL. Concentração de H₂O₂ fixa em 0,05 mol L⁻¹.
Figura 27 – Formação de produto em função da variação da concentração de pirogaliol. Mini-reator preenchido com 15 mg de PANIG-HRP; vazão = 3,0 mL h\(^{-1}\); injeções de 100 µL. Concentração de pirogaliol variando de 0,634 µmol a 162,4 µmol. Concentração de H\(_2\)O\(_2\) fixa em 0,05 mol L\(^{-1}\).

Na determinação da faixa linear de operação obtivemos como limite inferior de detecção a concentração de 1,3 µmol L\(^{-1}\) e como limite superior avaliado 10,1 µmol L\(^{-1}\). É importante salientar que essa faixa pode ser estendida para uma faixa dinâmica com limite superior de 40,6 µmol L\(^{-1}\), e que o limite inferior de detecção está
circunscreto pelas limitações da aparelhagem utilizada (Figura 28).

Figura 28 – Faixa linear de detecção do sistema de injeção em fluxo. Limite inferior de detecção = 1,3 µmol; Limite superior de detecção avaliado = 10,2 µmol \((r = 0,9987)\). Mini-reator preenchido com 15 mg PANIG©-HRP de vazão = 3,0 mL min\(^{-1}\); injeções de 100 µL. Concentração de H\(_2\)O\(_2\) fixa em 0,05 mol L\(^{-1}\).
4.9 – Aplicações Analíticas

4.9.1 – Determinação de H₂O₂

A determinação do teor de H₂O₂ é muito importante, uma vez que este composto é largamente utilizado em processos industriais na área de alimentos, indústria têxtil e de tingimento, onde atua como agente oxidante, no branqueamento e esterilização (Aizawa et alii, 1974). Neste sentido, era nosso interesse verificar a capacidade de detecção do reator de PANIG⁰-HRP para este composto.

Nas condições do reator a faixa operacional linear para o H₂O₂ ficou estabelecida entre 3,3 a 163,3 mmol L⁻¹, respectivamente, como limites inferior e superior de detecção (Figura 29). Em concentrações superiores a 244,8 mmol L⁻¹ observamos o efeito de inibição sobre a HRP. Semelhante ao ocorrido com o substrato pirogalol, o limite inferior é limitado pelos equipamentos utilizados.

Tatsuma et alii (1992) e Wollenberger et alii (1990), trabalhando com sensores amperométricos para detecção de peróxido de hidrogênio, relataram como limite inferior 10⁻⁶ mol L⁻¹. Por outro lado, Yang & Mu (1997), trabalhando com um eletrodo de HRP imobilizada em polianilina, relataram como limite inferior 10⁻⁵ mol L⁻¹. Comparado a estes trabalhos, nosso reator revelou excelente desempenho, com limite de detecção em 10⁻⁶ mol L⁻¹, superior em desempenho ao eletrodo descrito por Yang & Mu (1997) (Figura 30).
Figura 29 – Determinação da Concentração de H₂O₂. Mini-reactor preenchido com 15 mg de PANIG@-HRP; vazão = 3,0 mL h⁻¹; injeções de 100µL. Concentração de H₂O₂ variando de 3,3 µmol L⁻¹ a 326,5 µmol L⁻¹. Concentração de pirogalol fixa em 0,013 mol L⁻¹.

Figura 30 – Faixa linear de detecção do sistema de injeção em fluxo para H₂O₂ (3,3 a 163,3 µmol L⁻¹). Mini-reactor preenchido com 15 mg de PANIG@-HRP; vazão = 3,0 mL.h⁻¹; injeções de 100µL (r = 0,998). Concentração de pirogalol fixa em 0,013 mol L⁻¹.
5. CONCLUSÕES

Dos Polímeros

- As rotas de síntese propostas foram adequadas para a obtenção de polímeros da família das polianilinas com as características desejadas.

- A obtenção de ligação química entre as polianilinas e a enzima ocorre quando os polímeros são ativados com uso de poliglutaraldeído. Na ausência de ativação ocorre somente a adsorção reversível da enzima e sua consequente retirada durante os processos de lavagem.

- A análise da capacidade de retenção de peroxidase nos polímeros estudados, revelou que o parâmetro que apresentou maior efeito sobre a imobilização foi o grau de oxidação. Os polímeros com grau de oxidação intermediário apresentaram maior capacidade de imobilização, independente da rota de síntese utilizada. Os polímeros que apresentaram menor capacidade de imobilização foram aqueles cujo estado de oxidação se encontrava deslocado aos extremos de oxidação ou redução.
Da imobilização

- Obtém-se um rendimento de 25% de enzima imobilizada (8,2 UE mg\(^{-1}\) de PANIG\(^{©}\)), quando as condições experimentais foram: temperatura de 4°C; duas horas de agitação; em meio tamponado com fosfato de sódio 0,1 mol L\(^{-1}\), pH 6,0; com uma razão de 2,0 µg de enzima ofertada para cada mg de polímero.

- A eficiência da imobilização alcançou a casa dos 100%, uma vez que toda enzima imobilizada retêve sua atividade catalítica.

Dos parâmetros cinéticos

- A imobilização de peroxidase em PANIG\(^{©}\) resultou em aumento na estabilidade térmica da enzima, bem como ampliação da faixa térmica operacional.

- A imobilização resultou em alteração no pH de trabalho da peroxidase, que passou a exibir um ótimo na faixa entre 6,0 e 7,0.

- Após imobilização a enzima manteve a capacidade de reconhecer seus
substratos, apresentando, contudo, reatividade diferente da enzima livre, frente a quatro dos sete substratos testados.

- Com relação ao substrato pirogalol, as medidas de constante de Michaelis-Menten (Kₘ e Kₘₛₚ) revelaram que a imobilização causou mínima interferência sobre a afinidade da enzima por esse substrato.

Dos parâmetros de estabilidade

- Após imobilização a enzima adquire maior estabilidade em solução, sendo máxima quando o armazenamento da enzima imobilizada é feito a 4ºC, em solução tampão fosfato de sódio 0,1 mol L⁻¹, pH 6,0. Neste caso o sistema PANIG®-HRP mantém-se 100% ativo após 70 dias.

- O processo de imobilização confere maior estabilidade para a enzima imobilizada frente aos solventes etanol, acetona e acetonitrila, em concentrações superiores a 10%.
O sistema PANIG®-HRP é adequado para montagem de mini-reator de leito preenchido, sendo capaz de suportar vazão de 3,0 mL min⁻¹.

O mini-reator mostrou excelente reprodutibilidade nas respostas frente à variação na concentração dos substratos testados.

A faixa linear de operação do mini-reator para o substrato pirogalol ficou estabelecida entre 1,3 e 10,1 µmol L⁻¹, com um coeficiente de linearidade de 0,9987.

O mini-reator mostrou-se bastante eficaz na detecção analítica de peróxido de hidrogênio, sendo a faixa linear operacional estabelecida entre 3,3 e 163,3 mmol L⁻¹, com um coeficiente de linearidade de 0,998.

A estabilidade do sistema PANIG®-HRP também ficou estabelecida nas condições do mini-reator, sendo possível a reutilização da resina-enzima por 1500 análises (injeções) sem variação na atividade enzimática.
6. PERSPECTIVAS

Os estudos desenvolvidos ao longo desses anos, com o sistema PANIG1-
HRP, nos abriram perspectivas para novas aplicações desse sistema, bem como
despertaram nossa curiosidade com relação às propriedades desse polímero como
suporte para imobilização de outras enzimas. Dentre as possibilidades de expansão
futura deste estudo, destacamos as seguintes:

- Usar o polímero ativado (PANIG1) para imobilização de peroxidases de outras
 fontes vegetais, particularmente de plantas de cerrado, e a comparação do
desempenho do novo sistema PANIG1-enzima com o sistema aqui descrito.
Neste aspecto, a busca por enzimas que tenham características diferentes da
HRP é extremamente interessante, uma vez que tais enzimas podem nos dar
uma visão do desempenho do sistema em condições diferentes das aqui
testadas.

- Ainda com relação ao polímero, testar o desempenho de outros representantes
da família das polianilinas, particularmente aquelas sintetizadas
Imobilização de Horseradish Peroxidase em Diferentes Polianilinas: Aplicações Analíticas

eletroquimicamente, assim como compósitos de polianilina e outros polímeros, tais como o poli(etilenotereftalato), poli(estireno), poli(amida), poli(vinil álcool) e poli(cloroeto de vinila).

- No sistema PANIG®, imobilizar outras enzimas com características de pH ótimo na faixa ácida e alcalina como, por exemplo, proteases tipo pepsina ou tripsina.

- Expandir o leque de atuação do sistema, no campo das aplicações clínicas, para outros conjuntos de enzimas, tais como colesterol oxidase, xantina oxidase, entre outras.

- Co-imobilizar as enzimas do sistema oxi-reductases como, por exemplo, a glicose oxidase e peroxidase.

- Utilizar o sistema PANIG®-HRP na construção de eletrodos para detecção eletroquímica de compostos de interesse, bem como avaliar o desempenho do sistema em função da corrente aplicada.
7. REFERÊNCIAS BIBLIOGRÁFICAS

15. Coche – Guerente, L.; Cosnier, S.; Innocent, C.; and Mailley, P. – Development of

24. Halliwell, B. and De Rycker, J. - Superoxide and Peroxidase- Catalised Reactions,

32. Kawasaki, H.; Maeda, N. and Yuki, H. – Chemiluminescence detection of free fatty acids by high-performance liquid chromatography with immobilized enzymes – *J.

96. Yenemicioglu, A.; Özkam, M. and Cemeoglu, B. - Thermal Stabilities of

Anexo 1 – Tga PANI ①.

125
Anexo 2 - Tga PANI 2.
Anexo 3 – Tga PANI 3.
Anexo 4 – Tga PANI ④
Anexo 5 – Tga PANI ".
Peak	Abs
378 | 6.846
242 | 3.621

Varredura UV/Vis de 190 a 700 nm
Aminoantipirina
Varredura UV/Vis de 190 a 700 nm
Produto da Reação com Aminoantipirina
Peak	Abs
448 | 2.078
378 | 1.601
224 | 4.881

Varradura UV/Vis de 190 a 700 nm
Produto da reação com pirogalol