Please use this identifier to cite or link to this item:
Type: Artigo de periódico
Title: Existence of periodic solutions for a nonautonomous differential equation
Author: de Araujo, ALA
Martins, RM
Abstract: We consider the nonautonomous differential equation of second order x '' + a(t)x - b(t)x' + c(t)x(2k+1) = 0, where a(t), b(t), c(t) are T-periodic functions and 2 <= l < 2k + 1. This is a generalization of a biomathematical model of an aneurysm in the circle of Willis. We prove the existence of a T-periodic solution for this equation, using a saddle-point theorem.
Country: Bélgica
Editor: Belgian Mathematical Soc Triomphe
Citation: Bulletin Of The Belgian Mathematical Society-simon Stevin. Belgian Mathematical Soc Triomphe, v. 19, n. 2, n. 305, n. 310, 2012.
Rights: fechado
Date Issue: 2012
Appears in Collections:Unicamp - Artigos e Outros Documentos

Files in This Item:
File Description SizeFormat 
WOS000305873600008.pdf82.99 kBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.