Please use this identifier to cite or link to this item: http://repositorio.unicamp.br/jspui/handle/REPOSIP/347489
Type: TESE DIGITAL
Degree Level: Doutorado
Title: On stability conditions for Filippov and hamiltonian systems : Sobre condições de estabilidade para sistemas de Filippov e sistemas hamiltonianos
Title Alternative: Sobre condições de estabilidade para sistemas de Filippov e sistemas hamiltonianos
Author: Gomide, Otávio Marçal Leandro, 1991-
Advisor: Teixeira, Marco Antonio, 1944-
Abstract: Resumo: Neste trabalho, abordamos aspectos qualitativos de vários fenômenos em sistemas de Filippov e em sistemas Hamiltonianos. No contexto de sistemas dinâmicos suaves por partes, concentramos nossa atenção em problemas em dimensões 2 e 3. No caso planar, desenvolvemos um mecanismo para analisar o desdobramento de policiclos que passam por certas singularidades de sistemas de Filippov (conhecidas como ?-singularidades) em uma configuração típica, e o utilizamos para descrever completamente o diagrama de bifurcação de sistemas de Filippov em torno de alguns policiclos elementares. No caso tridimensional, obtivemos uma caracterização completa dos sistemas que são localmente estruturalmente estáveis em um ponto ???? da variedade de descontinuidade. Mais ainda, caracterizamos completamente os sistemas de Filippov robustos em uma vizinhança da variedade de descontinuidade, os quais são chamados de sistemas semi-localmente estruturalmente estáveis. Além disso, estudamos alguns fenômenos globais em sistemas de Filippov 3????. Primeiramente, descrevemos o diagrama de bifurcação de um sistema em torno de um laço ("loop") do tipo homoclínico de codimensão um em uma singularidade genérica denominada dobra-regular, o qual não possui contrapartida no contexto suave. Em seguida, analisamos uma classe de sistemas que apresenta conexões robustas entre certas singularidades típicas, conhecidas como ????-singularidades, as quais garantiram a existência de um comportamento caótico nas folheações associadas a tais sistemas de Filippov. Em relação aos sistemas Hamiltonianos, estudamos alguns problemas que apresentam fenômenos exponencialmente pequenos. Mais especificamente, consideramos um modelo de interação kink-defect dado por um Hamiltoniano singularmente perturbado ???????? (???? ? 0 representa o parâmetro perturbativo) com dois graus de liberdade, e determinamos condições sobre a energia do sistema para a existência de certas conexões heteroclínicas que surgem da quebra (???? > 0) de uma órbita heteroclínica contida no nível de energia zero do sistema limite ????0. Finalmente, investigamos a existência de soluções breather de equações diferenciais parciais reversíveis do tipo Klein-Gordon, as quais podem ser vistas como órbitas homoclínicas de um sistema Hamiltoniano de dimensão infinita

Abstract: In this work, we discussed qualitative aspects of several phenomena in Filippov and Hamiltonian systems. In the context of piecewise smooth dynamical systems, we have focused on problems in dimensions 2 and 3. In the planar case, we have provided a mechanism to analyze the unfolding of polycycles passing through certain singularities of Filippov systems (known as ?-singularities) in a typical scenario and we have used it to completely describe the bifurcation diagram of Filippov systems around some elementary polycycles. In the three-dimensional case, we have obtained a complete characterization of the systems which are locally structurally stable at a point ???? in the switching manifold ?. Moreover, we have completely characterized the Filippov systems which are robust in a neighborhood of the whole switching manifold, named semi-local structurally stable systems. In addition, we have studied some global phenomena in 3???? Filippov systems. First we described the bifurcation diagram of a system around a codimension one homoclinic-like loop at a generic singularity named fold-regular singularity, which has no counterpart in the smooth context. Second, we analyzed a class of systems presenting robust connections between certain typical singularities, known as ????-singularities, which have lead us to the existence of a chaotic behavior in the foliations associated to such Filippov systems. Concerning to Hamiltonian Systems, we have studied some problems exhibiting exponentially small phenomena. More specifically, we considered a model of kink-defect interaction given by a singularly perturbed 2-dof Hamiltonian ???????? (???? ? 0 stands for the perturbation parameter) and we have provided conditions on the energy of the system for the existence of certain heteroclinic connections arising from the breakdown (???? > 0) of a heteroclinic orbit lying in the zero energy level of the limit system ????0. Finally, we have investigated the existence of breathers of reversible Klein-Gordon partial differential equations, which can be seen as homoclinic orbits of an infinite-dimensional Hamiltonian system
Subject: Sistemas de Filippov
Teoria da bifurcação
Estabilidade estrutural
Sistemas hamiltonianos
Singularidades (Matemática)
Language: Inglês
Editor: [s.n.]
Citation: GOMIDE, Otávio Marçal Leandro. On stability conditions for Filippov and hamiltonian systems: Sobre condições de estabilidade para sistemas de Filippov e sistemas hamiltonianos. 2019. 1 recurso online (302 p.) Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação Científica, Campinas, SP.
Date Issue: 2019
Appears in Collections:IMECC - Tese e Dissertação

Files in This Item:
File SizeFormat 
Gomide_OtavioMarcalLeandro_D.pdf2.62 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.