Please use this identifier to cite or link to this item: http://repositorio.unicamp.br/jspui/handle/REPOSIP/343926
Full metadata record
DC FieldValueLanguage
dc.contributor.CRUESPUNIVERSIDADE ESTADUAL DE CAMPINASpt_BR
dc.contributor.authorunicampCruz, Adriano Gomes da-
dc.contributor.authorunicampCadena, Rafael Silva-
dc.contributor.authorunicampFaria, José de Assis Fonseca-
dc.contributor.authorunicampCavalcanti, Rodrigo Nunes-
dc.contributor.authorunicampBolini, Helena Maria André-
dc.contributor.authorunicampSilva, Maria Aparecida Azevedo Pereira da-
dc.typeArtigopt_BR
dc.titleConsumer acceptability and purchase intent of probiotic yoghurt with added glucose oxidase using sensometrics, artificial neural networks and logistic regressionpt_BR
dc.contributor.authorCruz, Adriano G.-
dc.contributor.authorCadena, Rafael S.-
dc.contributor.authorFaria, José A. F.-
dc.contributor.authorOliveira, Carlos A. F.-
dc.contributor.authorCavalcanti, Rodrigo N.-
dc.contributor.authorBona, Evandro-
dc.contributor.authorBolini, Helena M. A.-
dc.contributor.authorSilva, Maria Aparecida A. P. da-
dc.subjectGlicose oxidasept_BR
dc.subject.otherlanguageGlucose oxidasept_BR
dc.description.abstractThis research aimed to identify the drivers of acceptance and purchase intent of a probiotic (Bifidobacterium longum BL05) nonflavoured yoghurt supplemented with glucose oxidase, and to model the consumers’ acceptability using sensometrics and artificial neural networks (ANN). Consumers (n  = 100) evaluated the degree of liking of yoghurt assays in respect of appearance, aroma, taste, texture and overall linking. Sensometric techniques – multiple linear regression (MLR), partial least squares regression (PLS), principal component regression (PCR) – and ANN were used to model the overall liking. Sensory drivers of global acceptance and purchase intent were also determined using logistic regression (LR). Hierarchical cluster analysis (HCA) identified three consumer segments that presented differences in all sensory attributes evaluated (P  < 0.05). The ANN model showed the best performance to predict overall liking, followed by the MLR, PLS and PCR, indicating that taste and texture were the most significant attributes impacting the yoghurts overall liking. In accordance with the logistic models, overall acceptance and purchase intent could be predicted with 81.94 and 85.49% accuracy, respectively. The logistic regression indicated that taste was the attribute that contributed significantly (P  < 0.0001) to higher scores for purchase intent and was considered the driver of acceptancept_BR
dc.relation.ispartofInternational Journal of dairy technologypt_BR
dc.relation.ispartofabbreviationInt. j. dairy technol.pt_BR
dc.publisher.cityChichesterpt_BR
dc.publisher.countryReino Unidopt_BR
dc.publisherWileypt_BR
dc.date.issued2011-
dc.date.monthofcirculationNov.pt_BR
dc.language.isoengpt_BR
dc.description.volume64pt_BR
dc.description.issuenumber4pt_BR
dc.description.firstpage549pt_BR
dc.description.lastpage556pt_BR
dc.rightsFechadopt_BR
dc.sourceWOSpt_BR
dc.identifier.issn1364-727Xpt_BR
dc.identifier.eissn1471-0307pt_BR
dc.identifier.doi10.1111/j.1471-0307.2011.00722.xpt_BR
dc.identifier.urlhttps://onlinelibrary.wiley.com/doi/10.1111/j.1471-0307.2011.00722.xpt_BR
dc.description.sponsorshipFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESPpt_BR
dc.description.sponsordocumentnumber2009 ⁄ 14302-3pt_BR
dc.date.available2020-06-29T23:49:56Z-
dc.date.accessioned2020-06-29T23:49:56Z-
dc.description.provenanceSubmitted by Thais de Brito Barroso (tbrito@unicamp.br) on 2020-06-29T23:49:56Z No. of bitstreams: 0en
dc.description.provenanceMade available in DSpace on 2020-06-29T23:49:56Z (GMT). No. of bitstreams: 0 Previous issue date: 2011en
dc.identifier.urihttp://repositorio.unicamp.br/jspui/handle/REPOSIP/343926-
dc.contributor.departmentSem informaçãopt_BR
dc.contributor.departmentSem informaçãopt_BR
dc.contributor.departmentDepartamento de Tecnologia de Alimentospt_BR
dc.contributor.departmentSem informaçãopt_BR
dc.contributor.departmentDepartamento de Alimentos e Nutriçãopt_BR
dc.contributor.departmentDepartamento de Alimentos e Nutriçãopt_BR
dc.contributor.unidadeFaculdade de Engenharia de Alimentospt_BR
dc.contributor.unidadeFaculdade de Engenharia de Alimentospt_BR
dc.contributor.unidadeFaculdade de Engenharia de Alimentospt_BR
dc.contributor.unidadeFaculdade de Engenharia de Alimentospt_BR
dc.contributor.unidadeFaculdade de Engenharia de Alimentospt_BR
dc.contributor.unidadeFaculdade de Engenharia de Alimentospt_BR
dc.subject.keywordProbiotic yoghurtpt_BR
dc.subject.keywordSensorial acceptancept_BR
dc.subject.keywordOxygenpt_BR
dc.identifier.source000296393200013pt_BR
dc.creator.orcid0000-0002-9285-9669pt_BR
dc.creator.orcidSem informaçãopt_BR
dc.creator.orcidSem informaçãopt_BR
dc.creator.orcidSem informaçãopt_BR
dc.creator.orcid0000-0001-9841-4479pt_BR
dc.creator.orcidSem informaçãopt_BR
dc.type.formArtigo originalpt_BR
Appears in Collections:FEA - Artigos e Outros Documentos

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.