Please use this identifier to cite or link to this item: http://repositorio.unicamp.br/jspui/handle/REPOSIP/338493
Full metadata record
DC FieldValueLanguage
dc.contributor.CRUESPUNIVERSIDADE ESTADUAL DE CAMPINASpt_BR
dc.contributor.authorunicampKuhn, Kátia Regina-
dc.contributor.authorunicampSilva, Fernanda Guimarães Drummond e-
dc.contributor.authorunicampNetto, Flavia Maria-
dc.contributor.authorunicampCunha, Rosiane Lopes da-
dc.typeArtigopt_BR
dc.titleProduction of whey protein isolate – gellan microbeads for encapsulation and release of flaxseed bioactive compoundspt_BR
dc.contributor.authorKuhn, Kátia Regina-
dc.contributor.authorSilva, Fernanda Guimarães Drummond e-
dc.contributor.authorNetto, Flavia Maria-
dc.contributor.authorCunha, Rosiane Lopes da-
dc.subjectReologiapt_BR
dc.subjectDigestão in vitropt_BR
dc.subject.otherlanguageRheologypt_BR
dc.subject.otherlanguageDigestion in vitropt_BR
dc.description.abstractProduction of 1.5% (w/v) whey protein isolate (WPI) – 0.1, 0.3 or 0.5% (w/v) gellan gum microbeads from extrusion of the oil-in-water (O/W) emulsions into a 0.56% (w/v) calcium chloride (CaCl2) solution was evaluated to encapsulate flaxseed oil (15% v/v) and protein hydrolysate (FPH) (0, 0.25 or 0.5% w/v). Microgels resistance and controlled release of oil and FPH were also investigated. Microscopic images showed few free oil droplets and a prevailing presence of gellan on the external surface of the microbeads, indicating that oil and FPH were encapsulated. Microbeads produced at higher gellan concentrations (0.3 or 0.5% w/v) showed a more regular and spherical morphology. However a significant decrease in microbeads size (from ∼55 μm to ∼50 μm) and an increase in the polydispersity were observed with the FPH addition, which can be a consequence of the formation of a more dense biopolymers network. FPH presence (0.25% w/v) decreased the viscosity and shear thinning behavior of microbeads suspensions (10–90% w/v), which could be partly attributed to the smaller size of particles. The microbeads suspensions were stable at different salt concentrations (0.56, 1.11 or 2.22% w/v) regarding their shape, not releasing the encapsulated oil. 1.5% (w/v) WPI – 0.3% (w/v) gellan microbeads were resistant to simulated gastric conditions, but did not resist to intestinal conditions. Our results show that these microgels are adequate to encapsulate bioactive compounds to be released in the small intestine, passing intact in the stomach, which makes the process attractive in order to maintain the bioavailability and functionality of such compoundspt_BR
dc.relation.ispartofJournal of food engineeringpt_BR
dc.relation.ispartofabbreviationJ. food eng.pt_BR
dc.publisher.cityLondonpt_BR
dc.publisher.countryReino Unidopt_BR
dc.publisherElsevierpt_BR
dc.date.issued2019-04-
dc.date.monthofcirculationApr.pt_BR
dc.language.isoengpt_BR
dc.description.volume247pt_BR
dc.description.firstpage104pt_BR
dc.description.lastpage114pt_BR
dc.rightsFechadopt_BR
dc.sourceWOSpt_BR
dc.identifier.issn0260-8774pt_BR
dc.identifier.eissn1873-5770pt_BR
dc.identifier.doi10.1016/j.jfoodeng.2018.12.002pt_BR
dc.identifier.urlhttps://www.sciencedirect.com/science/article/pii/S0260877418305132#!pt_BR
dc.description.sponsorshipCONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQpt_BR
dc.description.sponsorshipCOORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIOR - CAPESpt_BR
dc.description.sponsorshipFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESPpt_BR
dc.description.sponsordocumentnumber140287/2009-4; 573913/2008-0pt_BR
dc.description.sponsordocumentnumberNão tempt_BR
dc.description.sponsordocumentnumberEMU 09/54137-1; 08/57906-3pt_BR
dc.date.available2020-04-03T13:09:15Z-
dc.date.accessioned2020-04-03T13:09:15Z-
dc.description.provenanceSubmitted by Susilene Barbosa da Silva (susilene@unicamp.br) on 2020-04-03T13:09:15Z No. of bitstreams: 0. Added 1 bitstream(s) on 2020-07-30T19:32:37Z : No. of bitstreams: 1 000456758300012.pdf: 4291670 bytes, checksum: e6342ab77099cb7163d75ac649768dea (MD5)en
dc.description.provenanceMade available in DSpace on 2020-04-03T13:09:15Z (GMT). No. of bitstreams: 0 Previous issue date: 2019-04en
dc.identifier.urihttp://repositorio.unicamp.br/jspui/handle/REPOSIP/338493-
dc.contributor.departmentSem informaçãopt_BR
dc.contributor.departmentSem informaçãopt_BR
dc.contributor.departmentDepartamento de Alimentos e Nutriçãopt_BR
dc.contributor.departmentDepartamento de Engenharia de Alimentospt_BR
dc.contributor.unidadeFaculdade de Engenharia de Alimentospt_BR
dc.contributor.unidadeFaculdade de Engenharia de Alimentospt_BR
dc.contributor.unidadeFaculdade de Engenharia de Alimentospt_BR
dc.contributor.unidadeFaculdade de Engenharia de Alimentospt_BR
dc.subject.keywordExtrusionpt_BR
dc.subject.keywordFlaxseed protein hydrolysatept_BR
dc.subject.keywordFlaxseed oilpt_BR
dc.subject.keywordRheologypt_BR
dc.identifier.source000456758300012pt_BR
dc.creator.orcidSem informaçãopt_BR
dc.creator.orcidSem informaçãopt_BR
dc.creator.orcid0000-0002-0289-6424pt_BR
dc.creator.orcid0000-0003-2228-5492pt_BR
dc.type.formArtigopt_BR
dc.description.sponsorNoteThe authors are grateful to CNPq (140287/2009-4), CAPES and FAPESP (EMU 09/54137-1) for their financial support and to Professor Valdemiro Carlos Sgarbieri (DEPAN/UNICAMP) for the donation of whey protein isolate. The authors also thank the access to equipment and assistance provided by the National Institute of Science and Technology on Photonics Applied to Cell Biology (INFABIC) at the University of Campinas; INFABIC is co-funded by FAPESP (08/57906-3) and CNPq (573913/2008-0)pt_BR
Appears in Collections:FEA - Artigos e Outros Documentos

Files in This Item:
File Description SizeFormat 
000456758300012.pdf4.19 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.