Please use this identifier to cite or link to this item: http://repositorio.unicamp.br/jspui/handle/REPOSIP/331035
Type: TESE DIGITAL
Degree Level: Doutorado
Title: LinkedScales = multiscaling a dataspace = LinkedScales: bases de dados em multiescala
Title Alternative: LinkedScales : bases de dados em multiescala
Author: Mota, Matheus Silva, 1986-
Advisor: Santanchè, André, 1968-
Abstract: Resumo: As ciências biológicas e médicas precisam cada vez mais de abordagens unificadas para a análise de dados, permitindo a exploração da rede de relacionamentos e interações entre elementos. No entanto, dados essenciais estão frequentemente espalhados por um conjunto cada vez maior de fontes com múltiplos níveis de heterogeneidade entre si, tornando a integração cada vez mais complexa. Abordagens de integração existentes geralmente adotam estratégias especializadas e custosas, exigindo a produção de soluções monolíticas para lidar com formatos e esquemas específicos. Para resolver questões de complexidade, essas abordagens adotam soluções pontuais que combinam ferramentas e algoritmos, exigindo adaptações manuais. Abordagens não sistemáticas dificultam a reutilização de tarefas comuns e resultados intermediários, mesmo que esses possam ser úteis em análises futuras. Além disso, é difícil o rastreamento de transformações e demais informações de proveniência, que costumam ser negligenciadas. Este trabalho propõe LinkedScales, um dataspace baseado em múltiplos níveis, projetado para suportar a construção progressiva de visões unificadas de fontes heterogêneas. LinkedScales sistematiza as múltiplas etapas de integração em escalas, partindo de representações brutas (escalas mais baixas), indo gradualmente para estruturas semelhantes a ontologias (escalas mais altas). LinkedScales define um modelo de dados e um processo de integração sistemático e sob demanda, através de transformações em um banco de dados de grafos. Resultados intermediários são encapsulados em escalas reutilizáveis e transformações entre escalas são rastreadas em um grafo de proveniência ortogonal, que conecta objetos entre escalas. Posteriormente, consultas ao dataspace podem considerar objetos nas escalas e o grafo de proveniência ortogonal. Aplicações práticas de LinkedScales são tratadas através de dois estudos de caso, um no domínio da biologia -- abordando um cenário de análise centrada em organismos -- e outro no domínio médico -- com foco em dados de medicina baseada em evidências

Abstract: Biological and medical sciences increasingly need a unified, network-driven approach for exploring relationships and interactions among data elements. Nevertheless, essential data is frequently scattered across sources with multiple levels of heterogeneity. Existing data integration approaches usually adopt specialized, heavyweight strategies, requiring a costly upfront effort to produce monolithic solutions for handling specific formats and schemas. Furthermore, such ad-hoc strategies hamper the reuse of intermediary integration tasks and outcomes. This work proposes LinkedScales, a multiscale-based dataspace designed to support the progressive construction of a unified view of heterogeneous sources. It departs from raw representations (lower scales) and goes towards ontology-like structures (higher scales). LinkedScales defines a data model and a systematic, gradual integration process via operations over a graph database. Intermediary outcomes are encapsulated as reusable scales, tracking the provenance of inter-scale operations. Later, queries can combine both scale data and orthogonal provenance information. Practical applications of LinkedScales are discussed through two case studies on the biology domain -- addressing an organism-centric analysis scenario -- and the medical domain -- focusing on evidence-based medicine data
Subject: Integração de dados (Computação)
Banco de dados
Banco de dados - Gerência
Multiescala
Language: Inglês
Editor: [s.n.]
Date Issue: 2017
Appears in Collections:IC - Tese e Dissertação

Files in This Item:
File SizeFormat 
Mota_MatheusSilva_D.pdf8.25 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.