Please use this identifier to cite or link to this item:
Type: Artigo
Title: Electroencephalogram signal classification based on shearlet and contourlet transforms
Author: Amorim, Paulo
Moraes, Thiago
Fazanaro, Dalton
Silva, Jorge
Pedrini, Helio
Abstract: Epilepsy is a disorder that affects approximately 50 million people of all ages, according to World Health Organization (2016), which makes it one of the most common neurological diseases worldwide. Electroencephalogram (EEG) signals have been widely used
Subject: Epilepsia
Processamento de sinais
Imagem de ressonância magnética
Country: Reino Unido
Editor: Elsevier
Citation: Expert Systems With Applications. Pergamon-elsevier Science Ltd , v. 67, p. 140 - 147, 2017.
Rights: Fechado
Identifier DOI: 10.1016/j.eswa.2016.09.037
Date Issue: 2017
Appears in Collections:IC - Artigos e Outros Documentos

Files in This Item:
File SizeFormat 
000386861600013.pdf1.17 MBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.