Por favor, use este identificador para citar o enlazar este ítem: http://repositorio.unicamp.br/jspui/handle/REPOSIP/321797
Type: TESE DIGITAL
Título : The problem of sorting permutations by prefix and suffix rearrangements = O problema da ordenação de permutações usando rearranjos de prefixos e sufixos
Otros títulos : O problema da ordenação de permutações usando rearranjos de prefixos e sufixos
Autor : Lintzmayer, Carla Negri, 1990
Advisor: Dias, Zanoni, 1975-
Resumen : Resumo: O Problema das Panquecas tem como objetivo ordenar uma pilha de panquecas que possuem tamanhos distintos realizando o menor número possível de operações. A operação permitida é chamada reversão de prefixo e, quando aplicada, inverte o topo da pilha de panquecas. Tal problema é interessante do ponto de vista combinatório por si só, mas ele também possui algumas aplicações em biologia computacional. Dados dois genomas que compartilham o mesmo número de genes, e assumindo que cada gene aparece apenas uma vez por genoma, podemos representá-los como permutações (pilhas de panquecas também são representadas por permutações). Então, podemos comparar os genomas tentando descobrir como um foi transformado no outro por meio da aplicação de rearranjos de genoma, que são eventos de mutação de grande escala. Reversões e transposições são os tipos mais comumente estudados de rearranjo de genomas e uma reversão de prefixo (ou transposição de prefixo) é um tipo de reversão (ou transposição) que é restrita ao início da permutação. Quando o rearranjo é restrito ao final da permutação, dizemos que ele é um rearranjo de sufixo. Um problema de ordenação de permutações por rearranjos é, portanto, o problema de encontrar uma sequência de rearranjos de custo mínimo que ordene a permutação dada. A abordagem tradicional considera que todos os rearranjos têm o mesmo custo unitário, de forma que o objetivo é tentar encontrar o menor número de rearranjos necessários para ordenar a permutação. Vários esforços foram feitos nos últimos anos considerando essa abordagem. Por outro lado, um rearranjo muito longo (que na verdade é uma mutação) tem mais probabilidade de perturbar o organismo. Portanto, pesos baseados no comprimento do segmento envolvido podem ter um papel importante no processo evolutivo. Dizemos que essa abordagem é ponderada por comprimento e o objetivo nela é tentar encontrar uma sequência de rearranjos cujo custo total (que é a soma do custo de cada rearranjo, que por sua vez depende de seu comprimento) seja mínimo. Nessa tese nós apresentamos os primeiros resultados que envolvem problemas de ordenação de permutações por reversões e transposições de prefixo e sufixo considerando ambas abordagens tradicional e ponderada por comprimento. Na abordagem tradicional, consideramos um total de 10 problemas e desenvolvemos novos resultados para 6 deles. Na abordagem ponderada por comprimento, consideramos um total de 13 problemas e desenvolvemos novos resultados para todos eles

Abstract: The goal of the Pancake Flipping problem is to sort a stack of pancakes that have different sizes by performing as few operations as possible. The operation allowed is called prefix reversal and, when applied, flips the top of the stack of pancakes. Such problem is an interesting combinatorial problem by itself, but it has some applications in computational biology. Given two genomes that share the same genes and assuming that each gene appears only once per genome, we can represent them as permutations (stacks of pancakes are also represented by permutations). Then, we can compare the genomes by figuring out how one was transformed into the other through the application of genome rearrangements, which are large scale mutations. Reversals and transpositions are the most commonly studied types of genome rearrangements and a prefix reversal (or prefix transposition) is a type of reversal (or transposition) which is restricted to the beginning of the permutation. When the rearrangement is restricted to the end of the permutation, we say it is a suffix rearrangement. A problem of sorting permutations by rearrangements is, therefore, the problem to find a sequence of rearrangements with minimum cost that sorts a given permutation. The traditional approach considers that all rearrangements have the same unitary cost, in which case the goal is trying to find the minimum number of rearrangements that are needed to sort the permutation. Numerous efforts have been made over the past years regarding this approach. On the other hand, a long rearrangement (which is in fact a mutation) is more likely to disturb the organism. Therefore, weights based on the length of the segment involved may have an important role in the evolutionary process. We say this is the length-weighted approach and the goal is trying to find a sequence of rearrangements whose total cost (the sum of the cost of each rearrangement, which depends on its length) is minimum. In this thesis we present the first results regarding problems of sorting permutations by prefix and suffix reversals and transpositions considering both the traditional and the length-weighted approach. For the traditional approach, we considered a total of 10 problems and developed new results for 6 of them. For the length-weighted approach, we considered a total of 13 problems and developed new results for all of them
Palabras clave : Rearranjo de genomas
Biologia computacional
Ordenação (Computadores)
Permutações (Matemática)
Algoritmos de aproximação
Language: Inglês
Editorial : [s.n.]
Citación : LINTZMAYER, Carla Negri. The problem of sorting permutations by prefix and suffix rearrangements = O problema da ordenação de permutações usando rearranjos de prefixos e sufixos. 2016. 1 recurso online ( 137 p.). Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Computação, Campinas, SP.
Fecha de publicación : 2016
Aparece en las colecciones: IC - Dissertação e Tese

Ficheros en este ítem:
Fichero Tamaño Formato  
Lintzmayer_CarlaNegri_D.pdf1.62 MBAdobe PDFVisualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.