Please use this identifier to cite or link to this item: http://repositorio.unicamp.br/jspui/handle/REPOSIP/259921
Full metadata record
DC FieldValueLanguage
dc.contributor.CRUESPUNIVERSIDADE ESTADUAL DE CAMPINASpt_BR
dc.identifier(Broch.)pt_BR
dc.descriptionOrientador: Takaaki Ohishipt_BR
dc.descriptionDissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Eletricapt_BR
dc.format.extent140 f. : il.pt_BR
dc.format.mimetypeapplication/pdfpt_BR
dc.languagePortuguêspt_BR
dc.typeTESEpt_BR
dc.titlePrevisão de carga no periodo de demanda de ponta utilizando redes neurais artificiaispt_BR
dc.contributor.authorLima, Wagner da Silvapt_BR
dc.contributor.advisorOhishi, Takaaki, 1955-pt_BR
dc.contributor.institutionUniversidade Estadual de Campinas. Faculdade de Engenharia Elétrica e de Computaçãopt_BR
dc.contributor.nameofprogramPrograma de Pós-Graduação em Engenharia Elétricapt_BR
dc.subjectSistemas de energia elétricapt_BR
dc.subjectRedes neurais (Computação)pt_BR
dc.description.abstractResumo: A habilidade de prever precisamente a carga do sistema é vital ao planejamento e operação eficiente, econômica e segura de um sistema de potência. Este trabalho investiga a utilização de redes neurais artificiais para previsão de carga no período de demanda de ponta a curto e curtíssimo prazos. Dois algoritmos de previsão são testados e avaliados com relação a precisão e esforço computacional. Uma análise da influência de dados climáticos sobre a carga é realizada. Procurou-se encontrar uma arquitetura compacta e robusta que pudesse levar em consideração a sazonalidade da carga anual, sem comprometer a precisão da previsão. o primeiro algoritmo (MWS) utiliza os dados dos últimos dez dias típicos para previsão do perfil de maneira estática e dinâmica. O segundo algoritmo (AAS) utiliza os dados históricos do ano anterior para previsão do ano vigente (previsão estática e dinâmica). O algoritmo MWS com previsão dinâmica obteve os melhores resultados para os horizontes de dez minutos (curtíssimo prazo) à frente, uma e 24 horas à frente. Várias dificuldades foram encontradas para considerar a entrada e saída do horário de verão. Apenas a variável temperatura máxima foi a mais significativa em termos de variáveis climáticas. A escassez de dados climáticos mais consistentes no final da tarde impediram uma avaliação mais completa da influência das condições climáticas na previsão. Os resultados obtidos demonstraram um bom desempenho das redes neurais com erro médio percentual absoluto em tomo de 2% para os três horizontes previstospt
dc.description.abstractAbstract: The ability to accurately predict the system load is vital to the efficient, economic, and secure operation and planning of a power system. This work investigates the use of artificial neural networks for short and very short-term load peak demand forecasting. Two forecasting algorithms are tested and evaluated based on their precision and computational load. The influence of weather conditions on load demand is investigated. We sought a robust and compact topology which considers annual load sazonality, in order to preserve the forecast precision. The algorithm (MWS) uses data from the last 10 typical days to forecast the load peak demand profile with static and dynamic methods. The second algorithm (AAS) uses historical data from the previous year's load and weather database to forecast current year using static and dynamical methods. The MWS algorithm with dynamic forecasting yields the best 1000peak demand forecasting results for 10 minutes (very short-term forecasting), 1 and 24 hours ahead. The maximum temperature is the most significant weather variable. Scarce consistent evening weather data prevent a more complete evaluation of the influence of weather conditions on load forecasting. -The results show good performance of neural networks with around 2% mean percent absolute error for forecasts on the three horizons evaluated.en
dc.publisher[s.n.]pt_BR
dc.date.issued1996pt_BR
dc.identifier.citationLIMA, Wagner da Silva. Previsão de carga no periodo de demanda de ponta utilizando redes neurais artificiais. 1996. 140 f. Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Eletrica, Campinas, SP. Disponível em: <http://libdigi.unicamp.br/document/?code=vtls000110907>. Acesso em: 3 abr. 2017.pt_BR
dc.description.degreelevelMestradopt_BR
dc.description.degreenameMestre em Engenharia Elétricapt_BR
dc.date.defense1996-09-09T00:00:00Zpt_BR
dc.date.available2017-04-03T15:22:50Z
dc.date.available2017-07-13T19:40:29Z-
dc.date.accessioned2017-04-03T15:22:50Z
dc.date.accessioned2017-07-13T19:40:29Z-
dc.description.provenanceMade available in DSpace on 2017-04-03T15:22:50Z (GMT). No. of bitstreams: 1 Lima, Wagner da Silva.pdf: 5677949 bytes, checksum: 437946d8fba0db82e7658308303d8909 (MD5) Previous issue date: 1996en
dc.description.provenanceMade available in DSpace on 2017-07-13T19:40:29Z (GMT). No. of bitstreams: 1 Lima_WagnerdaSilva_M.pdf: 5677949 bytes, checksum: 437946d8fba0db82e7658308303d8909 (MD5) Previous issue date: 1996en
dc.identifier.urihttp://repositorio.unicamp.br/jspui/handle/REPOSIP/259921
Appears in Collections:FEEC - Tese e Dissertação

Files in This Item:
File SizeFormat 
Lima_WagnerdaSilva_M.pdf5.54 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.