ESTRUTURA E COMPOSIÇÃO DA VEGETAÇÃO E CHUVA DE SEMENTES EM SUB-BOSQUE, CLAREIRAS NATURAIS E ÁREA PERTURBADA POR FOGO EM FLORESTA TROPICAL NO SUL DA BAHIA

Adriana Maria Zanforlin Martini

Orientador: Flavio Antonio Maës dos Santos

Este exemplar corresponde à redação final da tese defendida pelo(a) candidato (a)
Adriana Maria Zanforlin Martini

Tese apresentada ao Instituto de Biologia da Universidade Estadual de Campinas para a obtenção do título de Doutor em Ecologia
FICHA CATALOGRÁFICA ELABORADA PELA
BIBLIOTECA DO INSTITUTO DE BIOLOGIA – UNICAMP

Martini, Adriana Maria Zanforlin
Estrutura e composição da vegetação e chuva de sementes em
sub-bosque, clareiras naturais e área perturbada por fogo em
floresta tropical no sul da bahia/Adriana Maria Zanforlin Martini.--
Campinas, SP: [s.n.], 2002.

Orientador: Flávio Antonio Maës dos Santos
Tese (Doutorado) – Universidade Estadual de Campinas.
Instituto de Biologia.

1.Mata atlântica. 2.Comunidades vegetais. 3.Ecologia vegetal.
I. Santos, Flavio Antonio Maës. II. Universidade Estadual de
Campinas.Instituto de Biologia. III.Título.
Banca Examinadora:

Dr. Flavio Antonio Maës dos Santos

Dr. George John Shepherd

Dra. Luciana Ferreira Alves

Dr. Marcelo Trindade Nascimento

Dr. Alexandre Adalardo Oliveira

Dr. João Semir

Dr. Carlos Alfredo Joly

Data da defesa: 12/12/2002
Dedico esta tese ao Edmilson professor
(in memoriam) e ao “seu” Caçulo
(Raimundo S. Pinheiro, in memoriam),
que olhavam para aquelas florestas
com um brilho nos olhos que eu jamais
havia visto...
AGRADECIMENTOS

Inicialmente, agradeço ao Instituto de Estudos Sócio-ambientais do Sul da Bahia (IESB), pelo auxílio financeiro e logístico dado ao projeto desde o início, que foram imprescindíveis para a elaboração desta tese. Em especial, aos pesquisadores Marcelo Araújo, Carlos Alberto Mesquita e Gabriel Santos por me apresentarem o Sul da Bahia, com toda sua complexidade e beleza.

Aos financiadores WWF (Fundo Mundial para a Natureza) e Fundação Ford, pelo essencial apoio financeiro para a elaboração deste estudo.

À CAPES, pela bolsa de Doutorado concedida durante os três primeiros anos.

À Universidade Estadual de Santa Cruz (UESC) pelo apoio financeiro ao projeto e, em especial, ao Departamento de Biologia (DCB) pela concessão do afastamento neste período final de redação da tese e à Gerência de Laboratórios (GERLAB) pelo apoio logístico.

Ao Herbário CEPEC/CEPLAC, em especial à André Mauricio Carvalho, por facilitar o acesso à coleção e por permitir o armazenamento do material coletado. Aos funcionários do Herbário, agradeço pela paciência, cuidado e dedicação aos materiais coletados e depositados.

Ao Diretor da Reserva Biológica de Una, Sr. Saturnino Neto de F. Souza, pelo apoio durante todo o tempo e por facilitar a realização do estudo na reserva. Aos guardas da reserva, pela atenção e apoio no longo tempo de convivência.

À Universidade Estadual de Campinas e à SCPG – Ecologia, pelo apoio à realização desta tese.

Aos membros da Pré-banca, George John Shepherd, Fernando Roberto Martins e Marcelo Trindade Nascimento, pela leitura cuidadosa e crítica e pelas importantes sugestões.

Ao Flavião (que fica até difícil agradecer) pela enorme dedicação e atenção durante absolutamente todas as etapas deste trabalho, pelas ótimas discussões sobre a tese, ecologia e ciência e por me permitir conviver com suas opiniões e idéias brilhantes. Além disso, agradeço ao amigo Flavião pelo apoio e paciência nos momentos de crise e pela ótima convivência. Sigamos...

A Jomar Gomes Jardim, botânico brilhante, pela dedicação à identificação das plantas, pelo apoio dentro do herbário e no campo e pelas ótimas discussões sobre a flora da região, que me ajudaram a compreender um pouco melhor a área de estudo. Também agradeço pela amizade e carinho nas terras baianas.

A André Márcio Amorim, por disponibilizar os dados do “checklist” da Reserva Biológica de Una, antes de sua publicação, pelas inúmeras correções nos nomes de plantas e autoridades (com todos aqueles pontinhos e abreviaturas) e pelas discussões sobre os hábitos de crescimento e, além disso tudo, pela amizade e pela força desde o início em Ilhéus.

A Gilvan Alves dos Santos e Rubens, meus incansáveis ajudantes de campo, pelo trabalho difícil e muitas vezes aborrecido e também pelas ótimas horas de convivência na Reserva.

Aos estagiários da UESC (por ordem de chegada), Vivian, Mariana, Michael, Joeline e Sérgio, pelo enorme cuidado na triagem das sementes, pela paciência com as infinitas revisões, pelas boas
conversas no laboratório e pela força nos momentos de correria. Em especial agradeço à Vivian, pela coordenação da triagem por um período além da sua bolsa e ao Sérgio, por segurar todas as barras neste último ano, com muita dedicação e competência e por sempre me ajudar a acreditar que ia dar tempo.

A Solange Farias, pelo auxílio com as fotografias das sementes e pelo incentivo e amizade na UESC.

A Alessandro Marques, pela elaboração da figura da área de amostragem e por muitos outros “mapinhas”, que ele sempre produz com a maior paciência e competência.

Aos casais de amigos que ganhei na REBIO-Unu, Damião e dona Valdelice e Seu Manoel e Dona Maria, que, além da ótima companhia nas noites silenciosas da REBIO-Unu, cuidaram de mim com muito carinho.

Aos amigos do IESB, que sempre acompanharam todo o processo e sempre me apoiaram nos momentos difíceis, e pelas intermináveis reuniões de segunda-feira que, apesar de muitas vezes cansativas, me permitiram ter uma visão da região muito além da biologia/ecologia, graças ao conhecimento profundo que estes profissionais têm do sul da Bahia. Obrigada a todos, pelo convívio maravilhoso e pelo carinho.

Aos amigos da UESC, pela paciência em compreender os vários “- não posso!” durante todo esse tempo de tese, pelo apoio em todos os momentos e pela boa convivência que faz com que nossos dias sejam melhores.

Aos queridos amigos de Ilhéus, Alexandre Schiavetti, Ana Amélia L. Wanderley, Ana Schilling, Lúcio Rezende, Talita Fontoura, Valério Melo e Zeneide Martins, pela presença constante ao meu lado, pelas infinitas ajudas logísticas e psicológicas e pela certeza de um colo a qualquer hora.

Aos queridíssimos de Olivença, em especial a Helder, Elizete, Silvia e Paulo, meus amigos que nunca me deixaram sem companhia naquelas terras e praias.

A Raquelzinha, minha querida companheira de casa, por tanto tempo, em Olivença. Te agradeço, de todo coração, pelos ótimos dias de convivência, pela imensa dedicação de amiga, por me ensinar a importância das horas de folga e pelo ombro amigo sempre a apoiar.

A família Prado, pelo apoio, carinho e pela força o tempo todo. Obrigada a todos, que nos momentos mais difíceis sempre me fizeram acreditar que valia a pena seguir em frente.

A minha família querida, Mãe, Cau, Ninha, Kali e Celso, peço desculpas pelas ausências e correrias e agradeço pelo aconchego, pela sensação de estar protegida de tudo, simplesmente por poder contar com vocês sempre! Também agradeço por vocês estarem acompanhando de perto e estarem tão envolvidos com todo este processo. Esta tese também é dedicada a vocês!!!

Ao Paulo, que dividiu dia-a-dia (por telefone ou pessoalmente) todas as alegrias e agonias deste trabalho, que me deu colo, coragem e apoio e que me ajudou em absolutamente todos os aspectos dessa tese. Paulim, fica difícil expressar minha imensa admiração pelo teu universo, mas eu te agradeço por me permitir vivê-lo. A vida faz sentido ao teu lado.
SUMÁRIO

RESUMO GERAL ... xi

ABSTRACT ... xii

INTRODUÇÃO GERAL .. 1

ÁREA DE ESTUDO ... 7

CAPÍTULO 1 - Composição florística e hábitos de crescimento de plantas em sub-bosque, clareiras naturais e área perturbada por fogo em uma floresta tropical no sul da Bahia............. 15
 Resumo .. 17
 Introdução .. 18
 Área de estudo ... 22
 Metodologia .. 22
 Resultados ... 26
 Discussão ... 36
 Agradecimentos .. 42
 Referências bibliográficas ... 43
 Anexo ... 47

CAPÍTULO 2 - Estrutura da vegetação de pequeno e médio porte em sub-bosque, clareiras naturais e área perturbada por fogo e relações com o ambiente de luz ... 53
 Resumo .. 55
 Introdução .. 57
 Metodologia .. 60
 Área de estudo ... 60
 Caracterização da vegetação ... 60
 Caracterização de luz .. 61
 Análise dos dados .. 62
 Resultados ... 68
 Discussão ... 85
Agradecimentos .. 92
Referências bibliográficas .. 93
Anexos .. 98

CAPÍTULO 3 - Chuva de sementes em sub-bosque, clareiras naturais e área perturbada por fogo em floresta tropical no sul da Bahia, Brasil ... 101
Resumo ... 103
Introdução .. 104
Área de estudo .. 108
Metodologia ... 108
Resultados .. 113
Discussão .. 124
Agradecimentos ... 130
Referências bibliográficas ... 131
Anexo .. 134

CONSIDERAÇÕES FINAIS .. 135
RESUMO GERAL

Entre os diversos fatores que podem afetar o processo de estabelecimento de plantas após diferentes tipos de perturbações em florestas tropicais, a composição local de espécies, a chegada de sementes e as características de luz podem desempenhar um importante papel. No presente estudo, foram amostradas todas as plantas vasculares abaixo de 5 metros de altura em 6 sub-parcelas de 1m² dentro de 6 clareiras naturais, 6 parcelas no sub-bosque adjacente às clareiras, 6 parcelas em uma área de floresta queimada e 6 parcelas no sub-bosque de uma mata próxima à área queimada. Em cada parcela, foi analisado o ambiente de luz utilizando-se fotografias hemisféricas. Durante um ano foi acompanhada a chuva de sementes, com coletores de 0,25 m² instalados ao lado de cada sub-parcela. Em um total de 1228 indivíduos amostrados, foram encontradas 291 espécies, confirmando a altíssima riqueza de espécies na região sul da Bahia. A inclusão de todas as plantas vasculares neste estudo revelou que, para cada espécie arbórea amostrada, foram encontradas 2 espécies pertencentes a outros hábitos de crescimento, o que destaca a importância de considerar os hábitos não-arbóreos na caracterização florística de uma região. O ambiente sujeito a perturbação antrópica (Área Queimada) diferiu dos outros ambientes em termos de composição florística e estrutura da vegetação, apresentando uma grande proporção de espécies que ocorrem exclusivamente nesta área, forte dominância de espécies de crescimento rápido, menor proporção de indivíduos e espécies de hemiepipítitas e maior abundância de indivíduos de trepadeiras e plantas escandentes. Na área queimada foi observado o maior número de sementes (2,25 sementes/m²/dia), porém o menor número de espécies na chuva de sementes, apresentando forte dominância de sementes das espécies Cecropia pachystachya e Miconia mirabilis. Somente na área queimada as espécies mais abundantes na chuva de sementes também ocorreram em abundância na vegetação estabelecida. As clareiras não diferiram das áreas de sub-bosque em termos de densidade de indivíduos, riqueza de espécies e composição de espécies, tanto para o conjunto de todos os hábitos de crescimento, como somente para as espécies arbóreas. Estes resultados sugerem que as plantas presentes em uma clareira estão fortemente relacionadas à composição local de espécies. As clareiras não diferiram dos demais ambientes (excluindo-se a área queimada) em relação à porcentagem de abertura no dossel, entretanto, quando outros índices de luminosidade foram analisados, as clareiras se diferenciaram das áreas de sub-bosque por apresentarem maior quantidade e maior concentração de luz. Em relação à chuva de sementes, apesar das duas áreas de sub-bosque apresentarem o maior número de espécies em comum, quando a abundância das sementes na chuva de sementes foi considerada, somente o sub-bosque da mata próxima à área queimada e as clareiras não foram significativamente diferentes. Os resultados apresentados neste estudo destacam a alta riqueza de espécies na região, a importância de avaliar todos os hábitos de crescimento, o importante papel da composição local de espécies no estabelecimento de plantas em perturbações naturais (clareiras), as grandes modificações estruturais e florísticas em uma área com perturbação antrópica (área queimada) e a forte relação entre a chuva de sementes e as plantas estabelecidas na área queimada.
ABSTRACT

Among several factors that can affect the establishment of plants in tropical forests after disturbance, there are three of high potential importance, namely, composition of the local plant assemblage, arrival of seeds, and light conditions. In this study all vascular plants between 0.2 and 5 m tall were sampled in six 1 m² sub-plots in each of 6 recent treefall gaps, 6 plots in a burned area, and 6 plots in each understory area close to these disturbed environments. The light environment in each plot was analyzed through hemispheric photographs. Seed rain was followed throughout one year using 0.25 m² collectors, placed next to each quadrat. A total of 1288 individuals were identified, distributed among 291 species, confirming the very high species diversity attributed previously to south Bahia. Due the inclusion of all vascular plants in the sample, for every tree species, 2 non-tree species were observed, highlighting the need to include other growth habits in floristic surveys. The anthropogenic environment (burned area) had marked differences in floristic composition and structure of the vegetation. This area had a higher proportion of exclusive species, high dominance of fast-growing species, a smaller proportion of individuals and species of hemi-epiphytes, and more individuals of vines and scandent shrubs. Seed rain in the burned area had the highest number of propagules (2.25 seeds/m² . day), but the lowest species richness, due the strong prevalence of seeds of Cecropia pahystachya and Miconia mirabilis. The commonest species in the seed rain were also abundant among the sampled plant assemblage only in the burned area. Tree-fall gaps did not differ from the understory. Plant density, species richness, and assemblage composition in tree-fall gaps did not differ from those of adjacent understory plots. These results hold both when all growth-forms were considered, and also for tree species only, and suggest that the species assemblage present in gaps is strongly related to the local species composition. There was no difference in percent canopy opening among gaps and the other environments, but other indexes of illumination showed that gaps have a higher amount and concentration of light than the understory. The two areas of understory had the highest number of common species in the seed rain, but when abundance is taken into account, only the assemblages of tree fall gaps and the understory near the burned area did not differ significantly. The results presented here stress the high plant diversity in the region studied as well the significance of a complete survey of all growth-forms, the importance of local plant species composition for the colonization of naturally disturbed environments (tree-fall gaps), the marked structural and floristic alterations in an anthropogenic environment (burned area), and also the strong correlation between seed rain and established plants in a burned area.
INTRODUÇÃO GERAL

A maior riqueza de espécies de plantas vasculares é encontrada nas formações florestais tropicais (Gentry & Dodson 1987) e, apesar de as mais altas densidades de espécies ocorrerem em florestas tropicais úmidas (Wright, 1992), pouco se sabe sobre os processos ecológicos que permitem que números extremamente altos de espécies coexistam nessas florestas.

Várias hipóteses têm sido elaboradas para explicar tanto os processos responsáveis pela existência de um número tão grande de espécies (ver Rohde, 1992) quanto os processos responsáveis pela manutenção dessas espécies (ver Wright, 2002) nas regiões tropicais.

Tilman & Pacala (1993) citaram que alguns modelos clássicos de ecologia previam que um ambiente deveria ser dominado por apenas uma ou poucas espécies. Os modelos ligados à teoria de exclusão competitiva sugeriam que a competição poderia limitar a diversidade de espécies à medida que espécies competitivamente superiores aumentassem em abundância e outras espécies fossem excluídas do ambiente (Wright, 2002).

Hipóteses para explicar os mecanismos que poderiam impedir a ocorrência de exclusão competitiva, possibilitando a coexistência, em uma escala local, de números tão grandes de espécies, foram elaboradas e o papel das perturbações naturais, principalmente considerando as clareiras formadas pela queda de árvores, tem sido frequentemente abordado.

De acordo com a hipótese de mortalidade compensatória (Connell et al. 1984), as espécies mais raras poderiam apresentar taxas de sobrevivência e de crescimento maiores que as espécies mais abundantes, permitindo que as espécies mais raras permanecessem na comunidade por mais tempo. Espécie raras poderiam estar associadas à ocorrência de microhabitats específicos, onde estas espécies teriam melhores performances, como por exemplo, as espécies pioneiras, que são raras na floresta não perturbada, mas sobrevivem e crescem melhor em clareiras (Wright, 2002). Por outro lado, espécies mais abundantes estariam mais fortemente sujeitas aos processos dependentes da densidade, dependentes da freqüência e dependentes da distância, além dos processos de interferência direta, como a alelopata (Connell et al., 1994).
As hipóteses de nicho de regeneração (Grubb, 1977) e partilha de nicho em clareiras (Denslow, 1980) têm como base a ideia de que clareiras com diferentes características, como, por exemplo, tamanho, poderiam permitir que algumas espécies fossem especializadas em clareiras grandes, enquanto outras seriam especializadas em clareiras pequenas.

De acordo com a hipótese da perturbação intermediária (Connell, 1978), ambientes sujeitos a perturbações com intensidade, frequência e tamanho intermediários, poderiam conter tanto espécies dos estádios iniciais de sucessão quanto espécies da floresta madura. Em ambientes frequentemente sujeitos a grandes perturbações, espécies da floresta madura não conseguem se estabelecer, enquanto em ambientes sem perturbações algumas espécies podem aumentar em abundância, excluindo outras, além de não permitir o estabelecimento de espécies pioneiras.

A hipótese de limitação de recrutamento (Tilman & Pacala, 1993), que é definida como a ineficiência de uma espécie em ocupar todos os locais favoráveis ao seu crescimento e sobrevivência, estabelece que espécies competitivamente inferiores podem se estabelecer em locais onde as melhores competidoras estão ausentes, em função, por exemplo, de deficiência na dispersão. Desta forma, espécies competitivamente inferiores poderiam ser mantidas por períodos mais longos na comunidade, mantendo a diversidade de espécies. Também em relação a esta hipótese, a ocorrência de uma clareira natural pode ser importante, pois, se no local e no momento onde a clareira foi formada, as espécies competitivamente superiores estiverem ausentes, uma espécie competitivamente inferior pode se estabelecer. De acordo com Hubbell et al. (1999) uma forte limitação de recrutamento não descarta definitivamente a exclusão competitiva nos modelos de comunidade, mas pode diminuir a taxa de exclusão, adiantando quase infinitamente a eliminação das espécies competitivamente inferiores. De acordo com Hurtt & Pacala (1995), os processos de limitação de recrutamento e o acaso, por exemplo pela imprevisibilidade na formação de clareiras, podem agir simultaneamente na manutenção da diversidade de espécies em florestas tropicais.

Todas essas hipóteses acima, consideram que a competição é um importante processo na definição do conjunto de espécies em comunidades. De acordo com Hubbell & Foster (1986), a competição poderia não ter um papel importante na manutenção da diversidade de espécies em florestas tropicais. As espécies poderiam ser divididas em poucas guildas e, dentro de cada g珪a, teriam amplos nichos de regeneração,
pois a imprevisibilidade dos possíveis competidores ao redor de cada planta não permitiria uma especialização. Os autores sugeriram que o sucesso de estabelecimento de uma espécie decorreria simplesmente do acaso, pois, considerando que as clareiras ocorrem de forma imprevisível no espaço e no tempo, as plantas presentes no local e no período da formação de uma clareira teriam as maiores chances de estabelecimento (Hipótese do Acaso).

Vários estudos têm procurado testar diretamente algumas dessas hipóteses (Barton, 1984; Brokaw, 1985; Duncan et al., 1998 (Hipótese da partilha de nicho); Terborgh et al., 1996 (Hipótese do acaso); Hubbell et al., 1999; Harms et al., 2000 (Hipótese de limitação de recrutamento); Molino & Sabatier, 2001 (Hipótese da perturbação intermediária); Connell et al., 1994 (Hipótese da mortalidade compensatória)), e a maioria dos estudos sobre composição, estrutura e regeneração natural de comunidades de plantas em florestas tropicais tem discutido os resultados encontrados com base nessas hipóteses.

Em grande parte desses estudos são analisadas apenas espécies de plantas lenhosas (principalmente árvores e lianas lenhosas) e nas maiores classes de tamanho, geralmente com diâmetros (DAP) acima de 10 cm (Galeano et al., 1998). A predominância e importância do componente arbóreo na estrutura das florestas tropicais justifica, em parte, o maior número de estudos de regeneração natural apenas com indivíduos jovens e plântulas de espécies com este hábito de crescimento. Entretanto, a exclusão de indivíduos e espécies de todos os outros hábitos de crescimento, pode obscurecer possíveis padrões, ou ainda, revelar falsas tendências, principalmente no estrato inferior da floresta, onde os indivíduos jovens de espécies arbóreas poderiam sofrer os efeitos da competição com indivíduos de espécies com outros hábitos de crescimento (Gilliam et al., 1995).

Em ambientes perturbados naturalmente, como as clareiras, a liberação de luz e nutrientes (Brokaw, 1986) pode propiciar a germinação de sementes ou o crescimento de indivíduos jovens tanto de espécies arbóreas, quanto de outros hábitos de crescimento que, possivelmente, irão competir nas fases iniciais do estabelecimento.

Os indivíduos estabelecidos nestes ambientes perturbados podem ser provenientes da chuva de sementes recente ou do banco de sementes acumuladas no solo, ou representam indivíduos que sobreviveram à perturbação ou que rebrotaram após serem danificados. Com exceção das plantas com reprodução
vegetativa, todas as possibilidades apresentadas acima são dependentes da chuva de sementes em curto, médio ou longo prazo. Conseqüentemente, conhecer a relação entre a chuva de sementes e a vegetação estabelecida em ambientes perturbados e não perturbados pode permitir uma melhor compreensão do processo de regeneração natural nas florestas tropicais.

As perturbações naturais podem desempenhar um importante papel na manutenção da diversidade de espécies em florestas tropicais e a comparação da vegetação estabelecida após perturbações naturais com a vegetação estabelecida após perturbações antrópicas permite estimar como a atividade humana pode alterar o processo de regeneração natural e, consequentemente, os processos de manutenção da diversidade de espécies nestes locais.

O presente estudo foi estruturado em três capítulos, com o objetivo de verificar a relação de perturbações naturais (clareiras) e antrópicas (fogo) com a estrutura e a composição da comunidade de plantas vasculares no estrato inferior (definido como o conjunto de plantas abaixo de 5 metros de altura) incluindo todos os hábitos de crescimento, em uma floresta tropical pluvial. Para uma melhor compreensão destas relações, foi também caracterizado como estas perturbações afetam o ambiente de luz e a chegada de sementes.

No primeiro capítulo foi realizada uma descrição da composição da comunidade de plantas no estrato inferior (abaixo de 5 metros de altura) em quatro ambientes: clareiras naturais, sub-bosque adjacente às clareiras, área queimada (cerca de 5 anos antes do início do estudo) e sub-bosque de uma mata próxima à área queimada. Procurou-se verificar se o tipo de perturbação afetou o número de indivíduos e espécies dos diferentes hábitos de crescimento e também se a relação entre espécies arbóreas e as outras formas de crescimento foi similar em todos os ambientes.

No segundo capítulo foi descrita a estrutura de riqueza e abundância da comunidade de plantas no estrato inferior nos diferentes ambientes e a relação entre características de luminosidade, estimadas com o uso de fotografias hemisféricas, e a composição de espécies nestes ambientes.

O terceiro capítulo apresentou uma caracterização da chuva de sementes no período de um ano, nos quatro ambientes estudados, em relação à riqueza de espécies, estrutura de abundâncias relativas e dominância de espécies, ocorrência das espécies nos diferentes ambientes e características das espécies
em relação ao modo de dispersão e tamanho das sementes. Finalmente, foi testada a existência de relação entre a diversidade de espécies que chegam através da chuva de sementes e a diversidade de plantas estabelecidas nos quatro ambientes.

Referências bibliográficas

Hurt, G. C. & S. W. Pacala. 1995. The consequences of recruitment limitation: reconciling chance, history

ÁREA DE ESTUDO

A Mata Atlântica é reconhecida mundialmente como uma das 25 áreas mais ricas em biodiversidade, porém mais ameaçadas em todo o mundo, de acordo com o conceito de "hot-spots" (Mittermeier et al., 1999). Este bioma, que ocupava aproximadamente 1.360.000 Km², encontra-se reduzido a menos de 8% de sua área original, distribuído entre os 17 estados brasileiros em que ocorre (MMA, 2000).

No estado da Bahia, acredita-se que restam apenas 6,21% dos 203.545 Km² originais da Mata Atlântica (MMA, 2000), sendo a maior parte dos remanescentes encontrada em pequenos fragmentos ou áreas já perturbadas anteriormente (Thomas et al., 1998) e localizada principalmente na região sul da Bahia.

A região sul da Bahia, em conjunto com o Norte do Espírito Santo, é considerada um dos três centros de endemismo da Mata Atlântica (Thomas et al., 1998), apresentando vários gêneros (Harleyodendron, Santosia, Alvimia, Sucrea, entre outros) e espécies (Attalea funifera, Arapatiella psilophylla, Hirtella santosii, Tibouchina bahiensis, entre outros) de plantas com distribuição restrita a esta região, além de ser considerada um refúgio de gramíneas bambusóides herbáceas, a partir do qual ocorreu a migração para outras áreas (Soderstrom & Calderón, 1974).

Outros grupos de organismos também possuem espécies endêmicas na região sul da Bahia, como, por exemplo, primatas (Leontopithecus chrysomelas - Mico leão da cara dourada; e Cebus apella xanthosternos - Macaco prego do peito amarelo), roedores (Echiomys pictus) e aves, como Pyrgilena atra e Scytalopus psychopompus (Thomas et al., 1997; IBAMA/MMA, 1998), com destaque para um novo gênero de ave descrito recentemente na região, Acrobatornis fonsecai (Pacheco et al. 1996).

Além da presença de espécies endêmicas, a região sul da Bahia caracteriza-se por uma alta diversidade de espécies vegetais, o que pode ser evidenciado por um estudo em que foram encontradas cerca de 450 espécies arbóreas (acima de 5 cm de diâmetro a altura do peito) em uma área de apenas 1 hectare ao norte do município de Ilhéus (Thomas et al, inédito).

Apesar da evidente importância biológica da região sul da Bahia, a atividade agrícola esteve presente na região desde o início da colonização, representando um longo histórico de exploração, iniciado com as extensas plantações de cana-de-açúcar, que foram responsáveis pela remoção de grande parte da
cobertura vegetal na região (Veloso, 1946; Mori & al., 1983). Desde então, várias culturas se sucederam e no final do século XVIII, iniciou-se o cultivo de Cacau (*Theobroma cacao*), que atingiu seu ápice por volta do ano de 1920.

O plantio de Cacau era desenvolvido em um sistema denominado "Cabraçu", no qual o sub-bosque da floresta é raleado e as árvores de Cacau são plantadas embaixo da copa das árvores da floresta. Neste sistema, apesar da eliminação das plantas do sub-bosque (cujas consequências não foram avaliadas até o momento), parte da estrutura florestal é mantida, auxiliando na preservação de algumas espécies da flora e mesmo da fauna, além de causar menores impactos sobre o clima e sobre o ciclo hidrológico (Mori & al., 1983).

Entretanto, a partir da metade do século passado, o surgimento de uma doença nos cacauíneiros, denominada Vassoura-de-Bruxa (provocada pelo fungo *Crinipellis perniciosa*), e o declínio do preço do cacau no mercado internacional, provocaram uma grave crise econômica na região, levando vários agricultores a retirarem enorme quantidade de madeira das áreas de cabruca e de remanescentes florestais nas propriedades, ou transformarem áreas de cabruca em pastagens. Esse processo, associado à escassez de Unidades de Conservação na região, levou a uma degradação muito rápida da cobertura vegetal, restando pequenos fragmentos florestais inseridos em uma matrizes de plantios de cacau abandonados, outros cultivos como seringa, coco, cravo-da-índia, etc., além de pastagens e capoeiras.

Uma das poucas Unidades de Conservação da região é a Reserva Biológica de Una (REBIO-Una), onde o presente estudo foi realizado (figura 1). A REBIO-Una localiza-se no município de Una, BA, entre as coordenadas latitudinais 15º 00' e 15º 15' S e longitudinais 30º 00' e 30º 15' W, em uma área com relevo de topos concordantes, pouco elevados, sob a influência de um clima tipo Af de acordo com a classificação de Köppen, que caracteriza-se por uma precipitação anual superior a 1300 mm e pela ausência de um período seco definido (IBAMA/MMA, 1998). De acordo com Mori & al. (1983), as plantas nesta região nunca sofrem estresse por déficit hídrico e não existe uma estação seca confiável para que as plantas usem como indício para suas atividades fenológicas.

Na REBIO-Una são encontrados dois tipos de florestas, ocorrendo sobre diferentes tipos de solo. Na porção leste da REBIO-Una, sobre um solo pobre e bastante arenoso - Podzólico vermelho amarelo
(variação Cururupe) (IBAMA/MMA, 1998) - encontram-se as florestas de restinga, caracterizadas por uma vegetação mais baixa, com uma grande incidência de arvoretas, arbustos e lianas mas com baixa representatividade de epífitas (Amorim et al., inédito). Nesta porção leste destaca-se a abundância da palmeira endêmica Attalea funifera, conhecida localmente como piaçava.

O presente estudo foi desenvolvido especificamente na porção centro-oeste da Reserva (figura 1), onde ocorre uma vegetação mais alta e exuberante, com destaque para a riqueza de epífitas e uma estratificação mais definida (Amorim et al., inédito), estabelecida sobre um solo um pouco mais rico e profundo - Latossolo vermelho amarelo (Variação Colônia) (IBAMA/MMA, 1998).

A porção oeste da Reserva, possivelmente em função dos melhores solos, sofreu uma grande pressão antrópica no período entre a aquisição das terras em 1976, e o decreto oficial, que ocorreu somente em
1980. Neste período, grupos de agricultores invadiram as terras e implantaram cultivos agrícolas de subsistência. Somente por volta de 1993, uma grande parte da situação fundiária da Reserva foi regularizada, delimitando 7.022 ha, porém os 4.378 ha restantes em relação ao decreto oficial de 11.400 ha até hoje não foram regularizados. Em função desta grande pressão antrópica dentro e fora dos limites da Reserva, esta porção oeste encontra-se bastante fragmentada, com áreas de regeneração em diferentes estágios (figura 2). Em fevereiro de 1995, um incêndio proveniente de uma área agrícola vizinha à Reserva atingiu cerca de 600 ha de floresta.

Figura 2: Fotografia aérea do local de estudo, dentro da Reserva Biológica de Una (BA), indicando as três áreas amostradas. Na área 1 foram instaladas as parcelas das clareiras (C) e do sub-bosque adjacente a elas (SB), na área 2, as parcelas da área queimada (F), e na área 3, as parcelas da mata próxima à área queimada (MP).
Considerando que um dos objetivos do presente estudo foi analisar a vegetação do estrato inferior em ambientes perturbados antropicamente, ambientes perturbados naturalmente e ambientes sem indícios recentes de perturbação, as áreas amostrais foram estabelecidas nesta parte da Reserva.
Inicialmente, foram mapeadas todas as clareiras em um trecho de 3 hectares de floresta em uma área sem indícios recentes de perturbação antrópica, fortemente conectada ao grande bloco florestal da REBIO-Una, que também não apresenta indícios de perturbações recentes (figura 2 – Área 1). Foram encontradas 43 clareiras, com área média de 87,3 m² (d.p. 54,7), estimada utilizando-se a fórmula de uma elipse (figura 3A). Dentre as clareiras amostradas, 72% apresentou área inferior a 100m². Para a instalação das parcelas de amostragem foram escolhidas as seis clareiras mais recentes e de maior tamanho (figura 3B). Detalhes sobre a definição de clareiras serão encontrados nos capítulos subsequentes. Neste mesmo trecho de 3 hectares (Área 1) foram instaladas as 6 parcelas de amostragem do sub-bosque com dossel intacto, adjacentes às clareiras selecionadas (figura 3B).
Na área queimada, que aparece na figura 2 com uma coloração acinzentada, foi selecionado um trecho de 3 hectares (figura 2 - Área 2), onde foram instaladas 6 parcelas (figura 3C) seguindo-se a distribuição espacial e os tamanhos das clareiras da Área 1.
Em uma área de floresta remanescente, próxima à área queimada, foi selecionado um trecho de 3 hectares (figura 2 - Área 3), em que foram instaladas 6 parcelas no sub-bosque com dossel intacto (Figura 3D). também de acordo com a distribuição espacial e os tamanhos das clareiras da Área 1. Esta área, apesar de não apresentar indícios recentes de perturbação no trecho amostrado, poderia estar sendo influenciada pela proximidade com a área queimada, sofrendo alguns efeitos decorrentes da perturbação como, por exemplo, a invasão de espécies de crescimento rápido e problemas com dispersão de sementes em função de certos grupos de animais que evitam áreas perturbadas.
É importante ressaltar que as áreas 2 e 3 (figura 2) encontram-se circundadas por uma paisagem bastante fragmentada, enquanto a Área 1 tem, a oeste, áreas perturbadas, mas a leste conecta-se com o principal bloco florestal contínuo da REBIO-Una.
Figura 3: Esquema de amostragem das parcelas. A) Mapeamento de todas as clareiras em uma área de 3 hectares de floresta sem indícios recentes de perturbação (Área 1, na figura 2). B) Escolha das 6 clareiras mais recentes e de maior tamanho e instalação das parcelas de sub-bosque. C) Instalação das parcelas na área queimada (Área 2, na figura 2). D) Instalação das parcelas na área de mata próxima (Área 3, na figura 2).
Referências bibliográficas

CAPÍTULO 1

COMPOSIÇÃO FLORÍSTICA E HÁBITOS DE CRESCEMEN TO DE PLANTAS EM SUB-BOSQUE, CLAREIRAS NATURAIS E ÁREA PERTURBADA POR FOGO EM UMA FLORESTA TROPICAL NO SUL DA BAHIA
Composição florística e hábitos de crescimento de plantas em sub-bosque, clareiras naturais e área perturbada por fogo em uma floresta tropical no Sul da Bahia

Adriana M. Z. Martini
PPG - Ecologia - Unicamp - Caixa postal 6109, Campinas, SP, 13081-970
Universidade Estadual de Santa Cruz, Depto. de Ciências Biológicas. Rodovia Ibirapuera, Km 16, Ibirapuera, BA, 45650-000.

Jomar Gomes Jardim
Herbário CEPEC, CEPLAC, Caixa Postal 7, Itabuna, 45600-000, Bahia.

Flavio A. M. Santos
Universidade Estadual de Campinas, Departamento de Botânica, Caixa postal 6109, Campinas, SP, 13081-970.

Resumo
Apesar do crescente número de trabalhos realizados com toda a comunidade de plantas incluindo todos os hábitos de crescimento, em florestas tropicais, poucos estudos têm considerado os diferentes hábitos de crescimento em ambientes com diferentes graus de perturbação. No presente estudo foram amostradas 6 clareiras naturais, 6 áreas de sub-bosque adjacentes a estas clareiras, 6 parcelas em uma área queimada há cerca de 5 anos e 6 parcelas no sub-bosque de uma área de floresta próxima à área queimada, na Reserva Biológica de Una, região Sul do estado da Bahia, Brasil. Em cada parcela, todos os indivíduos de plantas vasculares entre 20 cm e 5 m de altura foram amostrados em 6 sub-parcelas de 1 m². Estes indivíduos foram identificados e classificados quanto ao hábito de crescimento. Foram classificados 1288 indivíduos, pertencentes a 291 espécies, 165 gêneros e 69 famílias. Nas áreas de clareiras e nos sub-bosques as famílias mais ricas foram Myrtaceae, Rubiaceae e Fabaceae. Na área queimada, as famílias Melastomataceae e Asteraceae apresentaram maior número de espécies. Psychotria purpurascens, Evodianthus funifer e Philodendron surinamense, estiveram entre as espécies mais abundantes nas áreas de clareiras e sub-bosque. Na área queimada 50,5% das espécies observadas foram exclusivas daquele ambiente, indicando uma composição florística bastante diferenciada neste ambiente. Além disso, as três espécies mais abundantes na área queimada, Scleria secans, Pteridium aquilinum e Miconia mirabilis, ocorreram apenas neste ambiente. Em relação aos 10 hábitos de crescimento analisados, as espécies arbóreas representaram 27% dos indivíduos e 33,6% das espécies amostradas. Foi observado que para cada indivíduo de espécie arbórea amostrado, outros 2,7 indivíduos dos outros hábitos de crescimento estavam presente e para cada espécie arbórea amostrada, 2 espécies não-arbóreas foram observadas. Estas relações foram aparentemente similares nos quatro ambientes analisados. Entretanto, a área queimada apresentou uma distribuição de indivíduos e espécies por hábito de crescimento bastante diferenciada dos demais ambientes, tendo sido observado neste ambiente um número significativamente menor de indivíduos de hemiepipfitas e significativamente maior de indivíduos de plantas escandentes e trepadeiras herbáceas. Em relação ao número de espécies foi observado na área queimada um número significativamente menor de espécies arbóreas, trepadeiras herbáceas, plantas escandentes e herbáceas, do que seria esperado ao acaso. Por outro lado, as hemiepipfitas foram muito abundantes nas áreas de clareiras e de sub-bosque adjacente a estas. Os resultados apresentados confirmam a altíssima riqueza de espécies na região estudada e destacam a importância de incluir espécies de hábitos não-arbóreos na caracterização florística de uma região e na compreensão do processo de sucessão em ambientes perturbados.

Palavras-chave: Mata Atlântica, sub-bosque, clareiras naturais, fogo, formas de vida, hábitos de crescimento.
Introdução

A maioria das florestas pluviais tropicais não apresenta descontinuidades nítidas em sua estrutura vertical (Richards, 1996) em função da presença das espécies arbóreas em todas as classes de tamanho e pelo fato de que a floresta é dinâmica, com manchas em diferentes estádios de desenvolvimento ocorrendo simultaneamente (Whitmore, 1998).

A divisão da floresta em estratos, apesar de representar uma simplificação ou uma abstração (Whitmore, 1998), pode ser útil para descrever ou analisar a estrutura da floresta, além de possibilitar a comparação entre diferentes ambientes, desde que a definição dos estratos seja clara e inequívoca.

A comunidade de plantas no estrato inferior em florestas tropicais vem recebendo mais atenção nas últimas décadas, quando foram iniciados levantamentos específicos da vegetação herbáceo-arbustiva (Gentry & Dodson, 1987; Poulsen & Balslev, 1991; Dirzo et al., 1992; Poulsen, 1996; Laska, 1997), estudos sobre as interações entre as plantas dentro deste estrato (Davis et al., 1998; Becker et al., 1999) e estudos relacionando plantas do estrato inferior e plantas do estrato superior da floresta (Gilliam et al., 1995; Galeano et al., 1998; Webb & Peart, 2000).

No estrato inferior, uma grande variedade de hábitos de crescimento pode ser observada e as espécies presentes podem ser divididas em dois grupos, de acordo com Gilliam et al. (1995). Um grupo é formado pelas espécies "residentes", como plantas herbáceas, rastejantes e arbustos, cujas características de história de vida as obrigam a permanecer durante toda sua vida neste estrato e outro, formado por espécies "transitórias" que têm o potencial de, eventualmente, emergir para os estratos superiores como as árvores, arvoretas, trepadeiras, e as hemiepipítas que têm início no solo.

A partir de estudos específicos sobre as plantas residentes, foi possível verificar que a vegetação herbáceo-arbustiva pode representar até 50% do total de espécies encontrado em uma área de floresta tropical (Gentry & Dodson, 1987; Schnitzer & Carson, 2000) e que algumas regiões, já conhecidas por sua alta riqueza de espécies arbóreas, vêm mostrando um padrão similar de riqueza nos estratos inferiores (Gentry & Dodson, 1987; Galeano et al., 1998), chegando, portanto, a dobrar o número de espécies previamente registrado.
Além da importância das espécies herbáceas e arbustivas na estrutura e composição das florestas, Gentry & Emmons (1987) destacaram que estas espécies são também muito importantes na alimentação da fauna existente no sub-bosque das florestas. Entretanto, aspectos da biologia e ecologia destas plantas ainda são pouco conhecidos, com estudos esparsos sobre reprodução (Greig, 1993; Nicotra, 1999; Villegas, 2001), arquitetura de raízes (Poulsen, 1996; Becker et al., 1999) e herbivoria (Marquis, 1992; Marquis et al., 1997).

Em geral, estes estudos são realizados em ambientes com pouca ou nenhuma perturbação, e estudos sobre as respostas da comunidade de plantas residentes a perturbações naturais (Denslow et al., 1990; Dirzo et al., 1992) ou antrópicas (Rico-Gray & García-Franco, 1992) ainda são escassos. Perturbações naturais podem atuar mais diretamente as espécies transitórias, que podem aproveitar rapidamente a formação de clareiras para chegarem ao dossel. As plantas residentes no sub-bosque passam toda a sua vida na sombra, sendo menos dependentes de clareiras. As relações entre as espécies residentes e transitórias em situações de perturbação podem ser de natureza distinta daquelas que ocorrem em ambientes não perturbados, sendo muito pouco conhecidas.

No estrato inferior da floresta, as espécies “transitórias”, que compõem o segundo grupo definido por Gilliam et al. (1995), interagem fortemente com as espécies “residentes”, competindo por espaço aéreo, por luz, por espaço no solo através das raízes (Becker et al., 1999) e também por nutrientes (Bigelow, 1993; Davis et al., 1998). Em florestas tropicais, estas interações possivelmente vêm moldando as características das espécies de ambos os grupos, de forma a permitir a coexistência de um número tão grande de espécies.

As interações que ocorrem no estrato inferior da floresta são fundamentais na definição do conjunto de espécies, dentre as transitórias, que irão compor o estoque natural das espécies arbóreas componentes do dossel e subdossel. No caso de perturbações naturais no dossel da floresta, as espécies deste grupo possivelmente substituirão árvores caídas. Uhl et al. (1988) observaram que as plantas com maiores chances de ocupar o espaço liberado no dossel devido à queda de uma árvore são as plantas presentes na regeneração avançada, ou seja, plantas acima de 1 m de altura, que sobreviveram ou rebrotaram após a queda da árvore.
Outros estudos considerando apenas a flora de arbóreas, especificamente os indivíduos jovens, têm encontrado composições similares entre clareiras e sub-bosque (Barton, 1984; Brokaw & Busing, 2000a), com exceção de algumas espécies de árvores pioneiras (Brokaw & Busing, 2000b).

A discussão sobre a influência da formação de clareiras na composição e diversidade de espécies das florestas tropicais tem sido baseada essencialmente em levantamentos da flora arbórea. De acordo com Schnitzer & Carson (2000), as conclusões ainda são bastante prematuras, se considerarmos que são escassos os estudos caracterizando a comunidade de plantas do estrato herbáceo-arbustivo e outras formas de vida em clareiras naturais. Para alguns grupos, como trepadeiras, existem fortes indícios de uma utilização diferencial do ambiente de clareiras (Putz, 1984; Schnitzer et al., 2000).

Perturbações de maior intensidade, como a ocorrência de fogo, podem alterar mais profundamente a estrutura e a composição da vegetação, principalmente do estrato inferior da floresta, que, em geral, é totalmente eliminado pela ação do fogo. É importante considerar que a ocorrência de fogo não é um componente natural dos ambientes de florestas úmidas, como aparenta ser em outros ambientes como o cerrado, por exemplo. Nestas florestas, o potencial de combustão é relativamente baixo, em função do microclima do sub-bosque, que apresenta alta umidade relativa do ar e temperaturas mais amenas (Uhl et al., 1990). Consequentemente, seria esperado que a maior parte das espécies destas florestas úmidas não apresentassem características que lhes permitissem resistir ao fogo.

Após um evento de fogo, além da liberação de espaço, ocorre grande entrada de nutrientes em forma disponível no solo devido à queima de matéria orgânica (Vinha et al., 1983, Uhl & Jordan, 1984), o que pode beneficiar as primeiras espécies que colonizam este ambiente. Características como a quebra de dormência das sementes facilitada pelo calor, a propagação vegetativa e a capacidade de rebrotamento podem favorecer a colonização inicial destes ambientes por determinados grupos de plantas, sendo esperado que as espécies dominantes nestes ambientes sejam diferentes das espécies observadas em áreas não perturbadas.

Além de alterações na composição florística, em áreas onde o fogo atinge a floresta acidentalmente, ocorre um acúmulo de estruturas lenhosas mortas no chão, provenientes da queda de cascas, galhos e troncos de árvores mortas. Este acúmulo pode beneficiar determinados hábitos de crescimento que necessitam de
suporte para atingir a luz, como trepadeiras, plantas escandentes e hemiepipfitas, sendo esperado um maior número de espécies e indivíduos de espécies destes hábitos nestas condições.

Também a predominância de espécies herbáceas em estádios iniciais de sucessão secundária após perturbações intensas tem sido documentada nas regiões tropicais (Stroomgaard, 1986; Rico-Gray & Garcia-Franco, 1992; Guariguata & Ostertag, 2001), assim como sua substituição gradual por espécies lenhosas e por trepadeiras (Castellani & Stubblebine, 1993).

Um importante fator a ser considerado nos modelos de sucessão após a ocorrência de fogo é a matriz de paisagens em que a área alterada se encontra inserida (Rico-Gray & García Franco, 1992). A proximidade de áreas naturais intactas que funcionem como fonte de dispersão de propágulos pode acelerar o processo de regeneração (Guariguata & Ostertag, 2001), enquanto a ausência destas fontes pode provocar a estagnação do processo de sucessão, permitindo que as primeiras plantas a colonizarem o local dominem o ambiente por um longo período.

Na região sul da Bahia, a utilização de fogo no manejo de áreas agrícolas ainda é uma prática bastante comum. Devido ao mosaico ambiental observado nesta região, onde áreas com intensa atividade agrícola se intercalam com fragmentos florestais, a entrada acidental de fogo nestes fragmentos constitui um sério risco para sua conservação.

O componente arbóreo da vegetação da região tem sido estudado mais detalhadamente, através de inventários (Veloso, 1946 a,b,c; Gouvêa et al., 1976; Mori et al., 1983a; Thomas et al.; inédito), mas são raros os estudos caracterizando a vegetação herbácea-arbustiva e as plantas dependentes de suporte (Amorim et al., inédito). Neste contexto, são ainda mais escassos os estudos quantificando os efeitos de perturbações naturais ou antrópicas (Vinha et al., 1983) sobre esta vegetação.

O presente estudo teve como objetivo geral caracterizar a vegetação do estrato inferior em ambientes não perturbados, em ambientes perturbados naturalmente (clareiras naturais) e em ambientes com perturbação antrópica (fogo) em uma região de floresta tropical pluvial. Neste estudo, o estrato inferior da floresta foi definido como o conjunto de plantas encontrado abaixo de 5 metros de altura, incluindo tanto os indivíduos jovens de espécies arbóreas quanto indivíduos de todos os outros hábitos de crescimento de plantas vasculares que ocorrem nesta faixa da vegetação.
Os objetivos específicos foram: i) Produzir uma lista das espécies encontradas no estrato inferior da vegetação em ambientes não perturbados, em clareiras naturais e em ambientes perturbados por fogo e verificar se as principais famílias e espécies diferem entre estes ambientes; ii) Verificar se a proporção de indivíduos e espécies de cada hábito de crescimento difere entre os ambientes estudados; iii) Verificar se a proporção de indivíduos e espécies pertencentes aos grupos das “transitórias” e das “residentes” difere entre os ambientes.

Área de Estudo

O presente estudo foi realizado na Reserva Biológica de Una (REBIO-Una), localizada no município de Una, BA (15º 10'S, 39º 03'W). A REBIO-Una é uma unidade de conservação federal de uso indireto, e possui uma área de 7022 ha, com cerca de 78% de sua área em bom estado de conservação (Marques et al., 2000). O restante é composto de áreas perturbadas recentemente ou em regeneração.

A região apresenta clima do tipo Af na classificação de Köppen, caracterizando-se pela ausência de período seco definido e pela precipitação anual superior a 1300 mm (Mori et al., 1983a).

Na área de estudo, o solo predominante é o Latossolo Vermelho-Amarelo variação Colônia (Typic Haplortox), pobre em nutrientes, com boas condições físicas (IBAMA/MMA, 1998).

A vegetação da REBIO-Una, situada no Domínio da Mata Atlântica, é composta predominantemente por Floresta Ombrófila Densa, com altura média de dossel em torno de 35 metros de altura, tendo sido classificada por Gouvêa et al. (1976) como Mata Higrófila Sul-Baiana.

Metodologia

Em um trecho de três hectares (Área 1) do maior bloco de floresta da reserva, foram mapeadas todas as clareiras naturais. Dentre estas, foram escolhidas as 6 clareiras mais recentes (definidas pela presença de ramificações terminais ou ainda folhas secas presas aos ramos da principal árvore causadora) e de maior tamanho, variando de 65,4 a 260,9 m².

Clareiras foram definidas como uma área aberta no dossel, que apresentasse uma descontinuidade no gradiente vertical da floresta, em geral associada à queda de árvores. Foram consideradas clareiras as áreas em que a vegetação apresentava no máximo 5 metros de altura e/ou 8 cm de diâmetro de caule à
altura do solo (DAS). Foi definido visualmente o ponto central da clareira e medido o maior diâmetro entre o tronco de duas árvores com diâmetro maior que 8 cm em direções opostas e o diâmetro perpendicular a este. A área da clareira foi estimada utilizando-se a fórmula de uma elipse, entretanto, para a parcela de amostragem foi considerada a área formada por um losango, definido pelos diâmetros citados acima. Adjacentes a cada uma destas clareiras foram estabelecidas parcelas (6) no sub-bosque com dossel intacto, de tamanho igual ao das clareiras. Estas áreas de sub-bosque estavam distantes das bordas das clareiras por, no mínimo, uma distância equivalente ao diâmetro da clareira na direção determinada.

Em três hectares de um trecho de floresta queimado por um incêndio acidental em fevereiro de 1995, foram instaladas 6 parcelas com distribuição espacial e tamanhos equivalentes aos das clareiras. Esta área queimada está localizada a cerca de 1 km da Área 1 descrita acima.

Em um trecho da mata mais próxima à área queimada (distante aproximadamente 200 m), foram instaladas 6 parcelas no sub-bosque, também com distribuição espacial e tamanhos equivalentes aos das clareiras na Área 1.

Os ambientes acima definidos serão denominados, a partir deste ponto como: Clareiras (C), Sub-bosque adjacente às clareiras (SB), Área queimada (F) e Sub-bosque da mata próxima à área queimada (MP).

Dentro de cada parcela foi sorteada a localização de 6 sub-parcelas de 1 m², onde todas as plantas entre 0,20 e 5 metros de altura foram amostradas, totalizando 36 sub-parcelas de 1 m² em cada ambiente.

Considerando que nas áreas de clareiras, por definição, não existiam plantas acima de 5 metros e acima de 8 cm de DAS, também nas áreas de sub-bosque e fogo, as parcelas que continham plantas acima destes limites foram desprezadas e foi sorteada uma nova localização. Também foram desprezadas as parcelas, principalmente em função da área queimada, que apresentassem mais de 10% de sua área ocupada por troncos ou galhos caídos. Esta amostragem foi realizada de janeiro a maio de 2000.

As plantas foram identificadas por comparação através da coleção do herbário CEPEC, seguindo-se o sistema de classificação de Cronquist (1981), com modificações por APG (1998 apud Amorim et al. inédito). A identificação do material foi realizada por Jomar Gomes Jardim. O material testemunho encontra-se depositado em um armário específico do projeto, no herbário CEPEC.

Os hábitos de crescimento foram determinados seguindo a definição adotada por Amorim et al. (inédito).

Segundo A. Amorim (comunic. pessoal) os hábitos de crescimento foram definidos a partir de observações
de campo e baseados essencialmente nos hábitos observados para as plantas na região estudada. Foram incluídos neste estudo, 10 hábitos de crescimento, sendo eles:

TR - Árvores - Plantas lenhosas, cujos indivíduos reprodutivos são encontrados com diâmetro do caule à altura do peito (DAP) acima de 15 cm e com altura superior a 6 metros.

TL - Arvoretas - Plantas lenhosas cujos indivíduos reprodutivos são encontrados com DAP, no máximo, de 15 cm e altura entre 4 e 10 metros.

SH - Arbustos - Plantas lenhosas de médio porte com ramificações próximas à base do caule.

SS - Sub-arbustos - Plantas lenhosas de pequeno porte, com ramificações no caule imediatamente acima da altura do solo.

HE - Herbáceas - Plantas terrestres de pequeno porte, sem estruturas lenhosas.

WV - Trepadeiras lenhosas - Plantas trepadeiras de grande porte, com caule lenhoso e geralmente com estruturas anômalas.

VI - Trepadeiras herbáceas - Plantas trepadeiras sem caule lenhoso.

HP - Hemiepífitas - Adaptação de algumas ervas, que sobem pelos suportes. Em geral com raízes grampíformes e emitindo raízes aéreas secundariamente. Não têm a capacidade de permanecer longos períodos desligadas do solo.

SC - Plantas escandentes - Plantas com porte arbustivo que lançam ramos longos completamente desprovidos de sustentação.

EP - Epífitas - Plantas dependentes de suporte, sem conexão com o solo.

Análise dos dados

O número de indivíduos dentro de cada grupo taxonômico (Monocotiledôneas, Dicotiledôneas e Pteridófitas) foi comparado entre os quatro ambientes utilizando-se um teste de qui-quadrado, para verificar se a distribuição de indivíduos dentro de cada grupo foi igual.

Uma tabela de contingência do número de indivíduos por ambiente e por hábito de crescimento foi comparada, pelo teste do Qui-quadrado, com os números esperados caso não existissem associações entre hábito e ambiente. Os desvios dos valores esperados em relação aos valores observados para cada célula da tabela de contingência foram classificados em ordem decrescente e os dez maiores desvios foram usados para identificar as associações mais importantes.

Para verificar se o número de espécies de cada hábito de crescimento variou entre os diferentes ambientes, foi construída, a partir do total de espécies de cada hábito e suas respectivas abundâncias, uma
curva média de acúmulo de espécies. Esta curva foi construída com as médias do número de espécies obtidas em 1000 repetições para números pré-determinados de indivíduos (10, 20, 30, etc.). Foi utilizado o método de amostragem com reposição ("Independent sampling"), no programa EcoSim - versão 6.0 (Gotelli & Entsminger, 2001).

Através deste método, é possível estimar o número de espécies e a variação esperada (Intervalos de Confiança) pelo acaso, para cada número pré-determinado de indivíduos. Se o número real de espécies observado, dentro de cada hábito, para um determinado número de indivíduos em algum dos ambientes estiver abaixo dos limites do intervalo de confiança, é possível que esse ambiente esteja impondo limitações ao estabelecimento de algumas espécies deste hábito de crescimento. Desta forma, é possível testar se o número de espécies dentro de um hábito encontrado em um ambiente difere significativamente dos valores esperados pelo acaso e independentemente do número de indivíduos amostrados.

Os hábitos de crescimento foram agregados em dois grupos, conforme sugerido por Gilliam et al. (1995), com o grupo das "residentes" sendo composto pelas herbáceas (HE), pelos arbustos (SH), sub-arbustos (SS) e plantas escandentes (SC). O grupo das "transitórias" foi composto pelas árvores (TR), arvoretas (TL), trepadeiras herbáceas(VI) trepadeiras lenhosas (WV), hemiepipfitas (HP) e epífitas (EP).

Para cada ambiente, foi verificado se a proporção de indivíduos e de espécies diferiu entre estes dois grupos. Foi utilizado um teste de Qui-quadrado com correção de Yates, de acordo com Zar (1999).

As espécies arbóreas foram separadas dos outros hábitos de crescimento e a proporção de indivíduos e espécies dentro destes conjuntos foi comparada dentro de cada ambiente, também utilizando-se o teste de Qui-quadrado com correção de Yates.
Resultados

No total, foram amostrados 1312 indivíduos, dos quais apenas 24 não puderam ser identificados ou separados em morfoespécies em função do estado da planta no momento da coleta. Os resultados apresentados daqui por diante são referentes aos 1288 indivíduos que foram identificados.

Do total de indivíduos, 755 (58,6%) pertenciam ao grupo das Dicotiledôneas, seguidos de 474 (36,8%) Monocotiledôneas e 59 (4,6%) Pteridófitas. Estas proporções foram similares entre os quatro ambientes ($\chi^2 = 6,726, gl = 6, p = 0,347$).

Considerando os quatro ambientes em conjunto, foram encontradas 291 espécies, distribuídas em 165 gêneros e 69 famílias (tabela 1). Entre as espécies encontradas, 238 (81,8%) pertenciam às Dicotiledôneas, 44 (15,1%) eram Monocotiledôneas e 9 (5,1%) Pteridófitas, e estas proporções foram aparentemente mantidas entre os ambientes.

Estes resultados indicam que as Monocotiledôneas, apesar de representarem uma pequena porção das espécies, apresentam um número grande de indivíduos, possivelmente relacionado às altas abundâncias de algumas espécies. O inverso é observado para as Dicotiledôneas.

Dentre as 291 espécies encontradas, 186 (64%) foram identificadas até espécie, 86 (30%) até gênero e 19 (6%) até família (ver anexo 1).

Entre os ambientes o número de famílias variou pouco, porém o número observado de gêneros e espécies foi relativamente maior nos ambientes de clareiras e menor na área queimada. Entretanto, isto pode estar simplesmente refletindo as diferenças observadas no número de indivíduos entre os ambientes (tabela 1).

Tabela 1: Caracterização geral dos ambientes amostrados na Reserva Biológica de Una, em relação ao número de indivíduos observados e aos diferentes níveis taxonômicos (Legenda para Ambientes: C = Clareiras, SB = Sub-bosque adjacente às clareiras, F = Área queimada, MP = Sub-bosque da mata próxima à área queimada).

<table>
<thead>
<tr>
<th>AMBIENTES</th>
<th>Indivíduos</th>
<th>Ind. não identificados</th>
<th>Famílias</th>
<th>Gêneros</th>
<th>Espécies</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>353</td>
<td>8</td>
<td>52</td>
<td>100</td>
<td>138</td>
</tr>
<tr>
<td>SB</td>
<td>330</td>
<td>6</td>
<td>49</td>
<td>92</td>
<td>129</td>
</tr>
<tr>
<td>F</td>
<td>293</td>
<td>2</td>
<td>46</td>
<td>75</td>
<td>103</td>
</tr>
<tr>
<td>MP</td>
<td>312</td>
<td>8</td>
<td>49</td>
<td>80</td>
<td>113</td>
</tr>
<tr>
<td>TOTAL</td>
<td>1288</td>
<td>24</td>
<td>69</td>
<td>165</td>
<td>291</td>
</tr>
</tbody>
</table>
As famílias mais ricas no total foram Myrtaceae (31 espécies), Rubiaceae (21), Fabaceae (14), Melastomataceae (13) e Asteraceae (10). Porém, entre os diferentes ambientes, as principais famílias e o número de espécies observadas variaram, principalmente na área queimada, onde ocorreu um predomínio de espécies das famílias Melastomataceae e Asteraceae, que foram ausentes ou apresentaram baixa riqueza nos demais ambientes (tabela 2). Também a família Clusiaceae apresentou um maior número de espécies na área queimada e menor nos demais ambientes. Por outro lado, a família Fabaceae esteve representada na área queimada por apenas duas espécies. Nos demais ambientes, as três famílias com maior número de espécies foram Myrtaceae, Rubiaceae e Fabaceae, apenas invertendo-se a ordem entre os ambientes. Em clareiras, destacou-se a família Moraceae, com cinco das seis espécies amostradas ocorrendo nestes ambientes (tabela 2).

Tabela 2: Número de espécies das famílias mais ricas no total e nos quatro ambientes estudados na Reserva Biológica de Una (entre parênteses, a posição da família no “ranking” dentro de cada ambiente).

<table>
<thead>
<tr>
<th>FAMÍLIA</th>
<th>TOTAL</th>
<th>CLAREIRAS</th>
<th>SUB-BOSQUE</th>
<th>ÁREA QUEIMADA</th>
<th>MATA PRÓXIMA</th>
</tr>
</thead>
<tbody>
<tr>
<td>MYRTACEAE</td>
<td>31 (1)</td>
<td>12 (1)</td>
<td>12 (2)</td>
<td>6 (3)</td>
<td>17 (1)</td>
</tr>
<tr>
<td>RUBIACEAE</td>
<td>21 (2)</td>
<td>10 (2)</td>
<td>13 (1)</td>
<td>6 (3)</td>
<td>11 (2)</td>
</tr>
<tr>
<td>FABACEAE</td>
<td>14 (3)</td>
<td>8 (3)</td>
<td>6 (3)</td>
<td>2 (7)</td>
<td>4 (3)</td>
</tr>
<tr>
<td>MELASTOMATACEAE</td>
<td>13 (4)</td>
<td>3 (7)</td>
<td>1 (8)</td>
<td>11 (1)</td>
<td>3 (4)</td>
</tr>
<tr>
<td>ASTERACEAE</td>
<td>10 (5)</td>
<td>0</td>
<td>2 (7)</td>
<td>9 (2)</td>
<td>0</td>
</tr>
<tr>
<td>EUPHORBIACEAE</td>
<td>9 (6)</td>
<td>5 (5)</td>
<td>2 (7)</td>
<td>4 (5)</td>
<td>2 (5)</td>
</tr>
<tr>
<td>BROMELIACEAE</td>
<td>9 (6)</td>
<td>3 (7)</td>
<td>4 (5)</td>
<td>1 (8)</td>
<td>4 (3)</td>
</tr>
<tr>
<td>ARACÉEAE</td>
<td>8 (7)</td>
<td>5 (5)</td>
<td>5 (4)</td>
<td>2 (7)</td>
<td>4 (3)</td>
</tr>
<tr>
<td>SAPOTACEAE</td>
<td>8 (7)</td>
<td>5 (5)</td>
<td>6 (3)</td>
<td>1 (8)</td>
<td>4 (3)</td>
</tr>
<tr>
<td>APOCYNACEAE</td>
<td>8 (7)</td>
<td>2 (8)</td>
<td>2 (7)</td>
<td>4 (5)</td>
<td>2 (5)</td>
</tr>
<tr>
<td>CHRYSOBALANACEAE</td>
<td>7 (8)</td>
<td>6 (4)</td>
<td>4 (5)</td>
<td>1 (8)</td>
<td>3 (4)</td>
</tr>
<tr>
<td>POACEAE</td>
<td>7 (8)</td>
<td>5 (5)</td>
<td>1 (8)</td>
<td>2 (7)</td>
<td>4 (3)</td>
</tr>
<tr>
<td>CLUSIACEAE</td>
<td>5 (10)</td>
<td>1 (9)</td>
<td>1 (8)</td>
<td>5 (4)</td>
<td>2 (5)</td>
</tr>
</tbody>
</table>

Do total de espécies analisadas, apenas 11 (3,8%) foram encontradas nos quatro ambientes estudados, representando espécies com maiores limites de tolerância ou ainda espécies que estão conseguindo colonizar ambientes como as clareiras e a área queimada. Algumas destas espécies estão entre as mais abundantes, como Psychotria purpurascens, Euterpe edulis e Becquerelía cymosa (tabela 3).

Por outro lado, o número de espécies exclusivas de cada ambiente foi relativamente alto, representando 33,3%, 27,1% e 26,5% das espécies encontradas respectivamente nos ambientes de Clareiras, Sub-
bosque e Mata próxima. Entretanto, uma grande parte destas espécies está representada por apenas um indivíduo, não sendo possível fazer qualquer análise sobre preferência.

Tabela 3: Número de indivíduos das espécies mais abundantes nos quatro ambientes estudados na Reserva Biológica de Una.

<table>
<thead>
<tr>
<th>ESPÉCIE</th>
<th>TOTAL</th>
<th>CLAREIRAS</th>
<th>SUB-BOSQUE</th>
<th>ÁREA QUEIMADA</th>
<th>MATA PRÓXIMA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Psychotria purpurascens</td>
<td>73</td>
<td>23</td>
<td>6</td>
<td>7</td>
<td>37</td>
</tr>
<tr>
<td>Evodianthus funifer</td>
<td>57</td>
<td>35</td>
<td>15</td>
<td>--</td>
<td>7</td>
</tr>
<tr>
<td>Scleria secans</td>
<td>46</td>
<td>--</td>
<td>--</td>
<td>46</td>
<td>--</td>
</tr>
<tr>
<td>Euterpe edulis</td>
<td>42</td>
<td>16</td>
<td>11</td>
<td>3</td>
<td>12</td>
</tr>
<tr>
<td>Merostachys sp</td>
<td>42</td>
<td>17</td>
<td>2</td>
<td>--</td>
<td>23</td>
</tr>
<tr>
<td>Philodendron surinamense</td>
<td>40</td>
<td>6</td>
<td>20</td>
<td>--</td>
<td>14</td>
</tr>
<tr>
<td>Rhodospatha latifolia</td>
<td>31</td>
<td>11</td>
<td>19</td>
<td>1</td>
<td>--</td>
</tr>
<tr>
<td>Becquerelia cymosa</td>
<td>29</td>
<td>4</td>
<td>7</td>
<td>12</td>
<td>6</td>
</tr>
<tr>
<td>Calathea sp1</td>
<td>24</td>
<td>--</td>
<td>2</td>
<td>12</td>
<td>10</td>
</tr>
<tr>
<td>Paypayrola blanchetiana</td>
<td>23</td>
<td>9</td>
<td>11</td>
<td>--</td>
<td>3</td>
</tr>
<tr>
<td>Calathea sciurioides</td>
<td>20</td>
<td>3</td>
<td>10</td>
<td>--</td>
<td>7</td>
</tr>
<tr>
<td>Geonoma pauciflora</td>
<td>19</td>
<td>--</td>
<td>6</td>
<td>1</td>
<td>12</td>
</tr>
<tr>
<td>Philodendron fragantissimum</td>
<td>17</td>
<td>9</td>
<td>7</td>
<td>--</td>
<td>1</td>
</tr>
<tr>
<td>Psychotria minutiflora</td>
<td>16</td>
<td>4</td>
<td>3</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>Miconia mirabilis</td>
<td>16</td>
<td>--</td>
<td>--</td>
<td>16</td>
<td>--</td>
</tr>
<tr>
<td>Pteridium aquilinum</td>
<td>15</td>
<td>--</td>
<td>--</td>
<td>15</td>
<td>--</td>
</tr>
<tr>
<td>Lomagramma guianensis</td>
<td>14</td>
<td>1</td>
<td>7</td>
<td>--</td>
<td>6</td>
</tr>
<tr>
<td>Ecclinusa ramiflora</td>
<td>13</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Becquerelia clarkei</td>
<td>13</td>
<td>--</td>
<td>--</td>
<td>9</td>
<td>4</td>
</tr>
<tr>
<td>Protium aracouchini</td>
<td>13</td>
<td>2</td>
<td>9</td>
<td>--</td>
<td>2</td>
</tr>
</tbody>
</table>

Na área queimada, 50,5% das espécies observadas foram exclusivas e entre estas encontram-se as três espécies mais abundantes deste ambiente. Estas espécies, Scleria secans, Pteridium aquilinum e Miconia mirabilis, corresponderam a 26,3% do total de indivíduos amostrados na área queimada.

Nos outros três ambientes, a maior parte das espécies mais abundantes (tabela 3) foi encontrada em dois ou três ambientes, como Evodianthus funifer e Philodendron surinamense. Duas espécies muito abundantes, Euterpe edulis e Psychotria purpurascens, foram encontradas nos quatro ambientes, mas em pequena abundância na área queimada. A espécie Merostachys sp, um bambu com hábito escandente, foi
muito abundante na área de mata próxima à área queimada e também esteve presente em abundância nas clareiras, entretanto poucos indivíduos foram observados no sub-bosque adjacente às clareiras.

A caracterização dos hábitos de crescimento foi realizada para 1220 (93%) dos 1288 indivíduos amostrados, em função da falta de informações sobre algumas espécies.

Do total de indivíduos, as árvores constituíram o hábito predominante (27% dos indivíduos), sendo seguidas por um grupo com números equivalentes de indivíduos, constituído pelas hemiepífitas, subarbustos, herbáceas e plantas escandentes. Foram pouco abundantes nesta amostra as epífitas e as trepadeiras lenhosas (figura 1).

Figura 1: Distribuição do número de indivíduos dentro dos hábitos de crescimento entre os quatro ambientes analisados. C - Clareiras naturais; SB - Sub-bosque adjacente às clareiras; F = Área queimada; MP = Sub-bosque da área de mata próxima à área queimada. (Hábitos de crescimento: TR = árvores, TL = arvoretas, SH = arbustos, SS = sub-arbustos, HE = herbáceas, WV = trepadeiras lenhosas, VI = trepadeiras herbáceas, HP = hemiepífitas, SC = plantas escandentes, EP = epífitas).
Foram observadas associações significativas entre os hábitos de crescimento (considerando o número de indivíduos) e os ambientes (\(\chi^2 = 205,01, \, gl = 27, \, p < 0,0001 \)). Os três maiores desvios foram observados na área queimada, que apresentou forte associação negativa com as hemiepipfitas e positiva com plantas escandentes e trepadeiras herbáceas (tabela 4; figura 1). O sub-bosque adjacente às clareiras (SB), ao contrário, apresentou forte associação positiva com indivíduos de hemiepipfitas e associação negativa com plantas escandentes e sub-arbustos. Nas clareiras, parece haver uma leve associação positiva com hemiepipfitas e negativa com trepadeiras herbáceas. O sub-bosque adjacente à área queimada (MP), apresentou associação positiva apenas com sub-arbustos.

Tabela 4: Principais desvios calculados através da tabela de contingência para o número de indivíduos entre ambientes e hábitos de crescimento. Estão representados abaixo apenas os 10 maiores valores.

<table>
<thead>
<tr>
<th>HÁBITO</th>
<th>AMBIENTE</th>
<th>VALORES OBSERVADOS</th>
<th>VALORES ESPERADOS</th>
<th>ASSOCIAÇÃO</th>
<th>DESVIOS</th>
<th>DESVIO*</th>
<th>ACUMULADA</th>
</tr>
</thead>
<tbody>
<tr>
<td>HP</td>
<td>F</td>
<td>1</td>
<td>42,45</td>
<td>-</td>
<td>40,470</td>
<td>19,74</td>
<td>19,74</td>
</tr>
<tr>
<td>SC</td>
<td>F</td>
<td>59</td>
<td>30,06</td>
<td>+</td>
<td>27,871</td>
<td>13,59</td>
<td>33,33</td>
</tr>
<tr>
<td>VI</td>
<td>F</td>
<td>38</td>
<td>16,98</td>
<td>+</td>
<td>26,027</td>
<td>12,69</td>
<td>46,03</td>
</tr>
<tr>
<td>HP</td>
<td>SB</td>
<td>82</td>
<td>48,08</td>
<td>+</td>
<td>23,939</td>
<td>11,68</td>
<td>57,71</td>
</tr>
<tr>
<td>SS</td>
<td>MP</td>
<td>62</td>
<td>38,54</td>
<td>+</td>
<td>14,287</td>
<td>6,97</td>
<td>64,67</td>
</tr>
<tr>
<td>SS</td>
<td>SB</td>
<td>22</td>
<td>42,88</td>
<td>-</td>
<td>10,166</td>
<td>4,96</td>
<td>69,63</td>
</tr>
<tr>
<td>HP</td>
<td>C</td>
<td>71</td>
<td>51,27</td>
<td>+</td>
<td>7,592</td>
<td>3,70</td>
<td>73,34</td>
</tr>
<tr>
<td>SC</td>
<td>SB</td>
<td>19</td>
<td>34,04</td>
<td>-</td>
<td>6,647</td>
<td>3,24</td>
<td>76,58</td>
</tr>
<tr>
<td>VI</td>
<td>C</td>
<td>9</td>
<td>20,51</td>
<td>-</td>
<td>6,458</td>
<td>3,15</td>
<td>79,73</td>
</tr>
<tr>
<td>TL</td>
<td>SB</td>
<td>31</td>
<td>21,05</td>
<td>+</td>
<td>4,704</td>
<td>2,29</td>
<td>82,02</td>
</tr>
</tbody>
</table>

* Contribuição percentual do desvio para o valor total do \(\chi^2 \).

De um modo geral, a distribuição do número de indivíduos entre os hábitos de crescimento foi similar entre as áreas de clareiras e as áreas de sub-bosque adjacente (figura 1), porém o sub-bosque da área de mata próxima à área queimada (MP) parece diferir tanto das clareiras quanto do sub-bosque adjacente às clareiras. A área queimada apresentou uma distribuição bastante diferenciada de todos os outros ambientes (figura 1).

Em relação à distribuição do número de espécies dentro dos hábitos de crescimento, foi observado um número significativamente menor de espécies de árvores, plantas escandentes e herbáceas na área queimada e na mata próxima. Também foi significativamente menor o número de espécies de trepadeiras herbáceas na área queimada e o número de espécies de sub-arbustos na mata próxima à área queimada (tabela 5).
Em clareiras, apenas o número de espécies de sub-arbustos foi menor que o esperado, e no sub-bosque adjacente às clareiras somente as herbáceas apresentaram um número significativamente menor de espécies (tabela 5). As epífitas e as trepadeiras lenhosas não foram analisadas em função do pequeno número de representantes.

Tabela 5: Resultados das aleatorizações (1000 repetições), indicando os números de espécies esperados ao acaso para cada número de indivíduos observado dentro dos hábitos de crescimento e os respectivos intervalos de confiança (IC). Em destaque, as situações onde o número observado de espécies esteve significativamente abaixo dos valores definidos pelos intervalos de confiança (ver códigos de ambientes e hábitos na figura 1).

<table>
<thead>
<tr>
<th>HÁBITO</th>
<th>AMBIENTE</th>
<th>Nº INDIVÍDUOS OBSERVADO</th>
<th>Nº ESPÉCIES OBSERVADO</th>
<th>Nº ESPÉCIES ESTIMADO</th>
<th>IC INFERIOR</th>
<th>IC SUPERIOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>TR</td>
<td>C</td>
<td>108</td>
<td>48</td>
<td>51,3</td>
<td>45,2</td>
<td>57,4</td>
</tr>
<tr>
<td>TR</td>
<td>SB</td>
<td>91</td>
<td>41</td>
<td>46,79</td>
<td>40,53</td>
<td>53,05</td>
</tr>
<tr>
<td>TR</td>
<td>F</td>
<td>60</td>
<td>26</td>
<td>36,41</td>
<td>31,03</td>
<td>41,79 (-)</td>
</tr>
<tr>
<td>TR</td>
<td>MP</td>
<td>68</td>
<td>32</td>
<td>39,25</td>
<td>33,75</td>
<td>44,75 (-)</td>
</tr>
<tr>
<td>TL</td>
<td>C</td>
<td>22</td>
<td>11</td>
<td>12,31</td>
<td>9,18</td>
<td>15,44</td>
</tr>
<tr>
<td>TL</td>
<td>SB</td>
<td>31</td>
<td>15</td>
<td>15,21</td>
<td>12,12</td>
<td>18,31</td>
</tr>
<tr>
<td>TL</td>
<td>F</td>
<td>12</td>
<td>6</td>
<td>8,12</td>
<td>5,35</td>
<td>10,89</td>
</tr>
<tr>
<td>TL</td>
<td>MP</td>
<td>16</td>
<td>9</td>
<td>9,95</td>
<td>7,01</td>
<td>12,88</td>
</tr>
<tr>
<td>SH</td>
<td>C</td>
<td>17</td>
<td>13</td>
<td>11,46</td>
<td>8,67</td>
<td>14,24</td>
</tr>
<tr>
<td>SH</td>
<td>SB</td>
<td>17</td>
<td>11</td>
<td>11,46</td>
<td>8,67</td>
<td>14,24</td>
</tr>
<tr>
<td>SH</td>
<td>F</td>
<td>15</td>
<td>9</td>
<td>10,6</td>
<td>7,75</td>
<td>13,44</td>
</tr>
<tr>
<td>SH</td>
<td>MP</td>
<td>10</td>
<td>6</td>
<td>7,78</td>
<td>5,5</td>
<td>10,05</td>
</tr>
<tr>
<td>SS</td>
<td>C</td>
<td>38</td>
<td>7</td>
<td>10,44</td>
<td>7,65</td>
<td>13,22 (-)</td>
</tr>
<tr>
<td>SS</td>
<td>SB</td>
<td>22</td>
<td>7</td>
<td>8,12</td>
<td>5,29</td>
<td>10,94</td>
</tr>
<tr>
<td>SS</td>
<td>F</td>
<td>43</td>
<td>10</td>
<td>10,96</td>
<td>8,11</td>
<td>13,81</td>
</tr>
<tr>
<td>SS</td>
<td>MP</td>
<td>62</td>
<td>9</td>
<td>12,52</td>
<td>9,96</td>
<td>15,08 (-)</td>
</tr>
<tr>
<td>HE</td>
<td>C</td>
<td>37</td>
<td>16</td>
<td>15,26</td>
<td>11,64</td>
<td>18,88</td>
</tr>
<tr>
<td>HE</td>
<td>SB</td>
<td>32</td>
<td>10</td>
<td>14,12</td>
<td>10,46</td>
<td>17,77 (-)</td>
</tr>
<tr>
<td>HE</td>
<td>F</td>
<td>45</td>
<td>11</td>
<td>16,86</td>
<td>13,23</td>
<td>20,49 (-)</td>
</tr>
<tr>
<td>HE</td>
<td>MP</td>
<td>42</td>
<td>10</td>
<td>16,23</td>
<td>12,62</td>
<td>19,84 (-)</td>
</tr>
<tr>
<td>VI</td>
<td>C</td>
<td>9</td>
<td>8</td>
<td>7,86</td>
<td>6,09</td>
<td>9,63</td>
</tr>
<tr>
<td>VI</td>
<td>SB</td>
<td>15</td>
<td>11</td>
<td>11,85</td>
<td>9,27</td>
<td>14,43</td>
</tr>
<tr>
<td>VI</td>
<td>F</td>
<td>38</td>
<td>18</td>
<td>22,15</td>
<td>18,83</td>
<td>25,48 (-)</td>
</tr>
<tr>
<td>VI</td>
<td>MP</td>
<td>12</td>
<td>9</td>
<td>9,98</td>
<td>7,83</td>
<td>12,12</td>
</tr>
<tr>
<td>HP</td>
<td>C</td>
<td>71</td>
<td>9</td>
<td>8,53</td>
<td>7,44</td>
<td>9,62</td>
</tr>
<tr>
<td>HP</td>
<td>SB</td>
<td>82</td>
<td>8</td>
<td>8,67</td>
<td>7,72</td>
<td>9,63</td>
</tr>
<tr>
<td>HP</td>
<td>F</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>HP</td>
<td>MP</td>
<td>31</td>
<td>6</td>
<td>7,52</td>
<td>5,79</td>
<td>9,26</td>
</tr>
<tr>
<td>SC</td>
<td>C</td>
<td>25</td>
<td>7</td>
<td>8,35</td>
<td>5,13</td>
<td>11,58</td>
</tr>
<tr>
<td>SC</td>
<td>SB</td>
<td>19</td>
<td>10</td>
<td>7,15</td>
<td>4,18</td>
<td>10,12</td>
</tr>
<tr>
<td>SC</td>
<td>F</td>
<td>59</td>
<td>9</td>
<td>13,56</td>
<td>10,31</td>
<td>16,81 (-)</td>
</tr>
<tr>
<td>SC</td>
<td>MP</td>
<td>28</td>
<td>5</td>
<td>8,99</td>
<td>5,77</td>
<td>12,21 (-)</td>
</tr>
</tbody>
</table>
Para nenhum hábito de crescimento, o número observado de espécies nos ambientes esteve acima dos valores estimados (tabela 5), sugerindo que nenhum ambiente está favorecendo a ocorrência de um maior número de espécies de um determinado hábito de crescimento.

Ao analisar o conjunto total de espécies (figura 2) e indivíduos (figura 1) dentro de cada hábito de crescimento, é possível observar que ocorreram poucos indivíduos de trepadeiras herbáceas, porém o número de espécies foi alto (31). Por outro lado, as hemiepipfitas ocorreram com um alto número de indivíduos, sendo o segundo hábito de crescimento mais abundante no total, mas com apenas 10 espécies. Algumas espécies de hemiepipfitas estão entre as espécies mais abundantes encontradas neste estudo, como por exemplo, *Evodianthus funifer*, *Philodendron surinamense* e *Rhodospha latifolia* (tabela 3).

![Gráfico](https://example.com/figure2.png)

Figura 2: Número total de espécies observado em cada hábito de crescimento (ver legenda figura 1).

Agrupando-se os indivíduos e espécies pertencentes aos hábitos de crescimento em dois grupos, foram encontrados, no total, 511 indivíduos e 89 espécies no grupo das residentes e 705 indivíduos e 161 espécies no grupo das transitórias. Somente na área queimada o número de indivíduos do grupo das residentes foi maior ($\chi^2 = 6,94; p = 0,008$) que das transitórias (figura 3a). Entretanto, na área queimada, o número de espécies não foi diferente ($\chi^2 = 2,11; p = 0,147$) entre os dois grupos (figura 3b). Essa diferença observada na área queimada pode ser atribuída à alta abundância de indivíduos de *Scleria secans*, *Pteridium aquilinum* e *Becquerelia cymosa* no grupo das residentes. A similaridade no número de
indivíduos entre os dois grupos observada na área de mata próxima à área queimada poderia ser explicada pela grande abundância de *Psychotria purpurascens*, um sub-arbusto da família Rubiaceae, e por um menor número de hemiepífitas. Nas outras áreas o número de indivíduos no grupo das transitórias foi significativamente maior (Clareiras: $\chi^2 = 30,87; p < 0,001$; Sub-bosque adjacente às clareiras: $\chi^2 = 57,67; p < 0,001$).

Figura 3: Número de indivíduos (A) e número de espécies (B) pertencentes aos grupos de plantas residentes e transitórias, no estrato inferior dos quatro ambientes analisados.
O número de espécies foi significativamente maior no grupo das transitórias no ambiente de Mata próxima à área queimada ($\chi^2 = 11,59; p < 0,001$) de Clareiras ($\chi^2 = 11,04; p < 0,001$) e de Sub-bosque adjacente às clareiras ($\chi^2 = 14,25; p < 0,001$).

Em todos os ambientes, o número de indivíduos e espécies arbóreas diferiu significativamente ($p < 0,05$) do conjunto de indivíduos e espécies dos outros hábitos de crescimento.

Figura 4: Número de indivíduos (A) e espécies (B) de árvores nos quatro ambientes, comparados com as outras classes de hábito de crescimento.
Quando as espécies arbóreas são comparadas com os outros hábitos de crescimento torna-se evidente que os levantamentos considerando apenas a vegetação arbórea, ainda que considerando os indivíduos jovens, subestimam a densidade e a riqueza dos ambientes florestais. No total, para cada indivíduo arbóreo amostrado, outros 2,7 indivíduos não-arbóreos foram encontrados neste estrato inferior da floresta. Além disso, para cada espécie de árvore amostrada, 2 espécies não-arbóreas foram encontradas.

O maior número de indivíduos de arbóreas foi observado nas clareiras (108 indivíduos) e o menor número foi observado na área queimada (60 indivíduos). O grupo dos outros hábitos de crescimento apresentou diferenças pequenas no número de indivíduos entre os ambientes (figura 4). A distribuição do número de espécies entre os ambientes foi similar à distribuição observada para o número de indivíduos.
Discussão

A proporção de espécies nos grandes grupos taxonômicos foi similar à observada no estudo de Galeano et al. (1998), em que 70% das espécies pertencem ao grupo das Dicotiledôneas e de Gentry & Dodson (1987), em que 69,6% das espécies foram Dicotiledôneas, 21,1% Monocotiledôneas e 9% Pteridófitas. Esta distribuição de espécies nos grandes grupos taxonômicos pode estar simplesmente refletindo a distribuição do total de espécies de plantas no mundo, pois segundo Tiffney & Mazer (1995), existem 170.149 (73,6%) espécies de Dicotiledôneas, 50.862 (22%) espécies de Monocotiledôneas e 10.000 (4,3%) espécies de Pteridófitas. Parece interessante investigar se em outras formações vegetais do mundo estas proporções também são mantidas.

Considerando que alguns estudos indicam um aumento da presença de espécies herbáceas em estádios iniciais de sucessão secundária em florestas tropicais (Guariguata & Ostertag, 2001) e que a maior parte das espécies de Monocotiledôneas é herbácea (Kremer & Van Andel, 1995; Tiffney & Mazer, 1995) seria esperado um aumento na proporção de Monocotiledôneas na área queimada. Entretanto, no presente estudo, mesmo os ambientes sujeitos a perturbações mantiveram distribuições similares entre os grupos taxonômicos, sendo interessante testar se estas distribuições seriam mantidas ao longo do processo de sucessão após diferentes tipos de perturbação e em diferentes formações vegetais.

A família Myrtaceae apresentou a mais alta riqueza de espécies, concordando com a observação de Mori et al. (1983b), que a indicaram como uma das famílias mais importantes nas florestas da costa leste do Brasil e sugeriram que esta região seria o centro de diversificação das Myrtaceae. Neste estudo, grande parte das espécies desta família pertenceu a indivíduos jovens de espécies arbóreas ou arvoretas.

A família Rubiaceae destacou-se à medida que neste estudo foram incluídos indivíduos arbustivos e subarbustivos. O mesmo resultado foi observado por Salis et al. (1996) ao analisarem o sub-bosque de uma floresta semidecidua no sudeste do Brasil. Laska (1997) e Nebel et al. (2001), também destacaram a importância da família Rubiaceae para arbustos e pequenas árvores em florestas tropicais. Possivelmente, muitas espécies desta família encontrem condições adequadas para o estabelecimento sob baixa intensidade de luz, no sub-bosque das florestas. Por outro lado, a espécie mais abundante neste estudo, *Psychotria purpurascens*, da família Rubiaceae, foi encontrada tanto em áreas de sub-bosque quanto em
áreas perturbadas. Segundo Canham (1989), uma grande dificuldade para as plantas que se estabelecem no sub-bosque de florestas é encontrar um equilíbrio entre manter baixas taxas respiratórias no sub-bosque e responder rapidamente, e de modo eficiente, a ambientes mais iluminados. Talvez, por este motivo um número tão pequeno de espécies (11) foi observado ocorrendo nos quatro ambientes.

As comparações de valores de riqueza de espécies obtidos em estudos que usam diferentes desenhos amostrais podem ser afetadas pela distribuição das unidades amostrais. O fato de as sub-parcelas neste estudo terem sido distribuídas de maneira esparsa entre os diferentes ambientes em comparação com a maioria dos estudos já realizados, em que as unidades amostrais são dispostas de forma contígua, pode ter aumentado as chances de amostrar um maior número de espécies, considerando o padrão espacial agregado típico da maioria das espécies tropicais (Hubbell, 1979; Poulsen, 1996 - para herbáceas; Hubbel et al., 1999).

Apesar dos problemas relacionados a diferentes metodologias e sistemas de classificação, é evidente a alta riqueza de espécies encontrada neste estudo, considerando que em um total de 1288 indivíduos ou em uma área total de 144 m², foram encontradas 291 espécies.

Dentro de cada ambiente, os valores de 103 a 138 espécies, em um total de 36 sub-parcelas de 1m² espalhadas em três hectares, são bastante altos se compararmos, por exemplo, com os resultados de Gentry & Dodson (1987) que encontraram 153, 163 e 339 espécies (excluindo-se as árvores maiores que 10 cm de diâmetro) em três áreas de 1000 m², no Equador. Os valores observados também são altos se compararmos com os resultados de Duivenvoorden (1994) que amostrou 10 áreas de 1000 m², encontrando de 40 a 313 espécies, sendo que 40% das áreas estudadas apresentaram riqueza menor que 138 espécies, o valor mais alto observado no presente estudo. Galeano et al. (1998), na Colômbia, avaliaram três áreas de 1000 m², encontrando 191, 240 e 403 espécies, excluindo-se todas as plantas acima de 10 cm de diâmetro.

Considerando que nos estudos citados acima, a área amostrada foi cerca de 7 vezes maior que a amostragem total (144 m²) do presente estudo e cerca de 28 vezes maior que a área amostrada em cada ambiente (36 m²), a existência de valores similares ou superiores de riqueza observada no presente estudo indica uma altíssima riqueza de espécies na região amostrada. Estes resultados, associados aos estudos prévios sobre a vegetação arbórea na região (Thomas et al., inédito; Veloso, 1946a), estão de acordo com
a ideia de Gentry & Dodson (1987) de que a alta riqueza de espécies arbóreas nas regiões de florestas tropicais é acompanhada por uma alta riqueza de espécies de outras formas de vida.

As 291 espécies, 165 gêneros e 69 famílias amostradas correspondem respectivamente a 29,7%, 35,4% e 54,8%, do total encontrado até o momento para a Reserva Biológica de Una, segundo o "checklist" apresentado por Amorim *et al.* (inédito). Certamente ainda existe um grande número de espécies não catalogadas para a Reserva Biológica de Una, enquanto o número de famílias não catalogadas deve ser pequeno e, além disso, possivelmente também existam diferenças nas proporções de espécies já catalogadas entre os hábitos de crescimento. Entretanto, estes resultados são bastante expressivos se for considerado que a área amostrada foi concentrada em apenas uma parte da Reserva e que a área total amostrada representa menos de 0,5% da área total da Reserva, tendo sido quantificada mais da metade das famílias e quase um terço das espécies catalogadas.

Ainda que estudos considerando todos os hábitos de crescimento tenham sido realizados em ambientes não perturbados de florestas tropicais, para ambientes perturbados antropicamente por fogo ou naturalmente através da formação de clareiras, este tipo de abordagem praticamente não existe. A literatura sobre perturações naturais é fortemente concentrada nos efeitos das clareiras sobre as espécies arbóreas, apresentando uma imensa quantidade de trabalhos publicados. Alguns estudos foram realizados abordando os efeitos das clareiras sobre determinadas espécies arbustivas (Denslow *et al.*, 1990; Ellison *et al.*, 1993), sobre a comunidade de trepadeiras (Putz, 1984) e sobre a comunidade de herbáceas (Dirzo *et al.*, 1992). Brokaw (1986) citou vários exemplos de estudos analisando uma ou poucas espécies não-arbóreas apresentando maiores taxas de crescimento e/ou reprodução em clareiras, entretanto, estudos sobre a comunidade total de espécies não-arbóreas não são citados.

A comunidade de espécies herbáceas tem sido mais estudada, permitindo algumas comparações com outras florestas tropicais, apesar das diferentes definições para o grupo de herbáceas. Poulsen (1996) encontrou 73 espécies de herbáceas estritamente terrestres em uma área de 1 ha, em Borneo. Poulsen & Balslev (1991) encontraram 96 espécies herbáceas em 1 ha, no Equador, sendo a média observada em sub-parcelas de 100m² de 14 espécies herbáceas estritamente terrestres. Duivenvoorden (1994) encontrou de 7 a 29 espécies herbáceas nas 10 áreas de 1000m² amostradas. No presente estudo, foram amostradas 28 espécies herbáceas estritamente terrestres em 144 sub-parcelas de 1m², o que parece representar uma
alta riqueza de espécies herbáceas, quando comparada a estes estudos que amostraram áreas bem maiores.

Dirzo et al. (1992) estudaram as espécies herbáceas em clareiras no México, e encontraram 52 espécies em 124 parcelas de 1 m². Os autores incluíram as hemiepipítas e as trepadeiras (não lenhosas) dentro deste hábito de crescimento. Considerando apenas as 36 sub-parcelas de 1 m² nas clareiras analisadas no presente estudo, foram encontradas 33 espécies referentes aos três hábitos de crescimento.

A baixa abundância e riqueza de epífitas possivelmente esteja relacionada com o método de amostragem, que não inclui árvores acima de 5 metros de altura ou 8 cm de diâmetro, acima dos quais a maior parte das epífitas é encontrada. Migenis & Ackerman (1993) encontraram maior parte das orquídeas epífitas em árvores com diâmetro acima de 16,5 cm e Fontoura (2001) observou que indivíduos e espécies de epífitas foram encontrados mais frequentemente em troncos entre 10 e 20 cm de diâmetro. Outros estudos (Gentry & Dodson, 1987; Galeano et al., 1998) registraram uma altíssima riqueza de epífitas. Os resultados do presente estudo confirmam que, no estrato inferior da floresta, este hábito de crescimento não se encontra bem representado.

Ao avaliar as relações de densidade, de riqueza e de distribuição dos hábitos de crescimento entre os ambientes, observamos que a área queimada se distinguia das demais tanto pela alta proporção de espécies exclusivas quanto pelo fato de que as espécies mais abundantas pertencem ao grupo das exclusivas.

Algumas destas espécies mais abundantes (Scleria secans, Pteridium aquilinum e Becquerelia cymosa) são residentes do estrato inferior, por permanecerem toda a sua vida neste estrato. Entretanto, à medida que espécies do grupo das transitórias (como por exemplo as arbóreas Miconia mirabilis, Eschweilera alvimii e Cecropia pachystachya) conseguirem se estabelecer, o ambiente de luz provavelmente será modificado. Segundo Gilliam et al. (1995), à medida que a luz se torna mais limitante, as condições favorecem o sucesso de plântulas e o rebrotamento das espécies lenhosas, que aumentam em importância no estrato inferior.

Apesar de uma forte dominância de algumas espécies, a riqueza observada na área queimada é relativamente alta, estando de acordo com as previsões de Connell (1978) de que a riqueza de espécies
pode ser alta logo no início da sucessão após uma perturbação, ainda que a composição de espécies seja
diferente da composição anterior à perturbação.

Vinte e nove por cento das espécies (considerando todos os hábitos de crescimento) encontradas na área
queimada foram encontradas também no sub-bosque, o que sugere que espécies do interior da floresta
estejam se estabelecendo nesta área. Esta situação provavelmente se deve ao fato de haver ocorrido
apenas um evento de fogo, sem corte preliminar da floresta e sem históricos anteriores de grandes
perturbações, o que permite que a floresta se recupere mais rapidamente (Woods, 1989; Uhl & Kauffman,
1990; Finegan, 1996). Além disso, o fato de a área queimada estar inserida em uma matriz de paisagem
com vários fragmentos florestais razoavelmente bem conservados no entorno, pode auxiliar o processo de
recuperação deste ambiente.

Ainda que um número razoável de espécies do sub-bosque esteja conseguindo se estabelecer na área
queimada, o número de espécies arbóreas é significativamente menor neste local, possivelmente por uma
limitação do ambiente que esteja impedindo o estabelecimento de algumas espécies. No sub-bosque da
mata próxima (MP) à área queimada, também existe um menor número de espécies arbóreas, o que pode
sugerir problemas na dispersão de algumas espécies para estas áreas, uma vez que ambas estão
próximas entre si, porém mais distantes da outra área estudada (onde estão localizadas as Clareiras e as
parcelas do sub-bosque adjacente a elas) e do maior bloco florestal da região. O fato de outros três hábitos
de crescimento estarem sub-representados na área queimada e na área adjacente, pode ajudar a
corroborar esta hipótese. Estudos avaliando as características das espécies não encontradas nestas áreas
e dos possíveis fatores limitantes à dispersão e ao estabelecimento destas espécies poderiam auxiliar na
compreensão da estrutura destas comunidades.

Em relação à distribuição dos hábitos de crescimento, a área queimada se mostra bastante diferenciada
dos demais ambientes, confirmando parcialmente a hipótese de que a presença de suportes beneficiaria os
hábitos dependentes. O aumento na proporção de trepadeiras e plantas escandentes confirma a hipótese,
porém as hemiepífitas praticamente não são encontradas neste ambiente. Possivelmente, essa ausência
de hemiepífitas se deva ao fato de estas plantas não conseguirem se estabelecer no ambiente hostil da
área queimada, uma vez que a maioria das espécies de Araceae, família predominante entre as
hemiepipfitas, preferem condições úmidas (Ribeiro et al., 1999). A maior quantidade de hemiepipfitas no sub-bosque parece confirmar esta hipótese.

As clareiras, que são ambientes mais iluminados, também apresentaram alta abundância de hemiepipfitas, entretanto este fato pode estar relacionado à presença destas plantas anteriormente à formação das clareiras, sugerindo que elas resistem a pequenas perturbações, mas não conseguem se estabelecer em ambientes muito perturbados.

A menor abundância de trepadeiras em clareiras parece discordar dos trabalhos de Putz (1984), Brokaw (1986) e Schnitzer et al. (2000) que sugeriram uma preferência de trepadeiras por este tipo de ambiente, em função do aumento da luminosidade e da disponibilidade de suportes. De um modo geral, a abertura de clareiras não parece estar beneficiando especificamente nenhum hábito de crescimento, uma vez que não foram encontradas diferenças entre as clareiras e o sub-bosque adjacente a elas.

Gentry (1986 apud Galeano et al. 1998), sugeri que na região do Chocó, na costa pacífica da Colômbia, onde a riqueza de trepadeiras é baixa, as trepadeiras estariam sendo substituídas ecologicamente por espécies hemiepipfitas. A baixa abundância e riqueza de trepadeiras e a alta abundância de hemiepipfitas no sub-bosque e clareiras obtidas no presente estudo, bem como a relação inversa observada na área queimada, com uma alta abundância de trepadeiras e baixa abundância de hemiepipfitas parecem estar de acordo com a hipótese sugerida por Gentry.

A maioria dos trabalhos em que foi comparada a composição de espécies entre clareiras e sub-bosque avaliou apenas as espécies arbóreas (Barton, 1984; Brokaw, 1985; Uhl et al., 1988; Brokaw & Scheiner, 1989, Tabarelli & Mantovani, 2000, entre outros), sendo amostrados essencialmente os indivíduos jovens e acima de 1 metro de altura. O número de indivíduos e espécies desprezados nestas análises é extremamente alto, considerando que, neste estudo, para cada indivíduo arbóreo amostrado, outros 2,7 indivíduos pertencentes a outros hábitos estão presentes na mesma área. Estes valores alteram profundamente as relações de competição em ambientes de clareiras discutidas até o momento e concordam com a afirmação de Schnitzer & Carson (2000), de que ainda são bastante prematuras quaisquer conclusões sobre a importância ou não de clareiras para a manutenção da diversidade de espécies em florestas tropicais.
Ainda que o objetivo da maioria dos estudos sobre clareiras esteja relacionado a compreender quais espécies arbóreas irão ocupar o espaço liberado, é importante considerar que as espécies das diferentes formas de vida presentes no estrato inferior da floresta, tanto residentes quanto transitórias, desempenham um papel importante ao iniciarem o processo de competição entre as potenciais colonizadoras (Gilliam et al., 1995).

Estudos acompanhando os processos iniciais de estabelecimento, tanto sob perturbações naturais quanto sob perturbações antrópicas, incluindo todas as formas de vida, podem produzir resultados esclarecedores acerca da dinâmica de florestas tropicais.

Agradecimentos

Este trabalho contou com o apoio logístico e financeiro do Instituto de Estudos Sócio-Ambientais do Sul da Bahia (IESB) e da Universidade Estadual de Santa Cruz (UESC), além de receber apoio financeiro das instituições WWF (Fundo Mundial para a Natureza), Fundação Ford e CAPES (Fundação Coordenação de Aperfeiçoamento de Pessoal de Nível Superior). Os autores agradecem ao Sr. Saturnino Neto F. de Souza, Diretor da Reserva Biológica de Una, por facilitar a realização do trabalho nesta unidade de Conservação, ao Dr. André M. Carvalho, por facilitar o acesso à coleção do Herbário CEPEC, ao Dr. André M. Amorim, por disponibilizar o “checklist” e outras informações inéditas sobre a flora da REBIO-Unah e ao Dr. Paulo Inácio K. L. Prado pelo auxílio nas análises estatísticas.
Referências bibliográficas

Velasco, H. P. 1946b. A vegetação no município de Ilhéus, Estado da Bahia. II - Observações e ligeiras considerações acerca de espécies que ocorrem na região. Chave analítica das espécies arbóreas. Memórias do Instituto Oswaldo Cruz 44: 221-293.

ANEXO I

<table>
<thead>
<tr>
<th>FAMÍLIA</th>
<th>ESPECIE</th>
<th>Hábito</th>
<th>C</th>
<th>F</th>
<th>MP</th>
<th>SB</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACANTHACEAE</td>
<td>Justicia sp</td>
<td>HE</td>
<td>3</td>
<td>3</td>
<td></td>
<td>6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Justicia symphyanta Lindau</td>
<td>HE</td>
<td>2</td>
<td></td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ruellia affinis (Nees) Lindau</td>
<td>SC</td>
<td>1</td>
<td>2</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ANACARDIACEAE</td>
<td>Thysodium spruceanum Benth.</td>
<td>TL</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANNONACEAE</td>
<td>ANNONACEAE sp1</td>
<td>X</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ANNONACEAE sp2</td>
<td>X</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Guatteria oigocarpa Mart.</td>
<td>TL</td>
<td>2</td>
<td>1</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Guatteria sp</td>
<td>TR</td>
<td>1</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Xylopias sp</td>
<td>TR</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>APOCYNACEAE</td>
<td>APOCYNACEAE sp3</td>
<td>X</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>APOCYNACEAE sp4</td>
<td>X</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Blepharodon nitidum (Vell.) J. F. Macbr.</td>
<td>VI</td>
<td>2</td>
<td>1</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Condyllocarpum cf. intermedium Mull. Arg.</td>
<td>VI</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Goniaanthela niedelli (E. Fourn.) Malme</td>
<td>VI</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Himantanthus phagedaenicus (Mart.) Woodson</td>
<td>TR</td>
<td>1</td>
<td>1</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lacmellea aculeata (Ducke) Monach.</td>
<td>SC</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tabernaemontana saizmannii A. DC.</td>
<td>TL</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>ARACEAE</td>
<td>Anthurium pentaphyllum (Aubl.) G. Don.</td>
<td>HP</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Anthurium sp</td>
<td>HE</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ARACEAE ni</td>
<td>X</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Heteropsis oblongifolia H. B. K.</td>
<td>HP</td>
<td>2</td>
<td>3</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Philodendron fragantissimum (Hook.) H. B. K.</td>
<td>HP</td>
<td>9</td>
<td>1</td>
<td>7</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Philodendron insigne Schott</td>
<td>HE</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Philodendron rudgeanum Schott</td>
<td>HP</td>
<td>2</td>
<td></td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Philodendron surinamense (Miq.) Engl.</td>
<td>HP</td>
<td>6</td>
<td>14</td>
<td>20</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rhodospatha latifolia Poepp.</td>
<td>HP</td>
<td>11</td>
<td>1</td>
<td>19</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td>ARALIACEAE</td>
<td>Schefflera morototoni (Aubl.) Maquire, Steyerm. & Frodin</td>
<td>TL</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARECACEAE</td>
<td>Bactris cf. ferruginea Burret.</td>
<td>TR</td>
<td>3</td>
<td>2</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bactris hirta Mart.</td>
<td>SS</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Euterpe edulis Mart.</td>
<td>TR</td>
<td>16</td>
<td>3</td>
<td>12</td>
<td>11</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>Geonoma elegans Mart.</td>
<td>SS</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Geonoma ni</td>
<td>HE</td>
<td>2</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Geonoma pauciflora Mart.</td>
<td>SS</td>
<td>1</td>
<td>12</td>
<td>6</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>ASTERACEAE</td>
<td>Bacchans calveccens DC.</td>
<td>SS</td>
<td>2</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Conoclinopsis prasifolia (DC.) R. M. King & H. Rob</td>
<td>HE</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cyrtocimira scropiodes (Lam.) H. Rob.</td>
<td>SS</td>
<td>4</td>
<td></td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mikania argyrea DC.</td>
<td>VI</td>
<td>3</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mikania cf. nigricans Gardner</td>
<td>VI</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mikania sp1</td>
<td>VI</td>
<td>4</td>
<td></td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mikania sp2</td>
<td>VI</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mikania sp3</td>
<td>VI</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Piptocarpa afl. pyrifolia Baker</td>
<td>VI</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Piptocarpa sp</td>
<td>SC</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIGNONIACEAE</td>
<td>Adenocalyymma cf. coriaceum DC.</td>
<td>WV</td>
<td>4</td>
<td>2</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Adenocalyymma sp1</td>
<td>Vi</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Adenocalyymma sp2</td>
<td>Vi</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BIGNONIACEAE sp3</td>
<td>X</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Memora sp</td>
<td>Vi</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tabebeia stenocalyx Sprague & Stapt</td>
<td>TR</td>
<td>2</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BOMBACACEAE</td>
<td>Eriothea macrophylla (K. Schum.) A. Robyns</td>
<td>TR</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>FAMÍLIA</td>
<td>ESPECIE</td>
<td>Hábito</td>
<td>C</td>
<td>F</td>
<td>MP</td>
<td>SB</td>
<td>TOTAL</td>
</tr>
<tr>
<td>-------------------</td>
<td>-----------------------------------</td>
<td>--------</td>
<td>---</td>
<td>---</td>
<td>----</td>
<td>----</td>
<td>-------</td>
</tr>
<tr>
<td>BORAGINACEAE</td>
<td>Cordia cf. magnoliifolia Cham.</td>
<td>TR</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cordia polypepha (Lam.) Johnst.</td>
<td>SH</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cordia sp1</td>
<td>SH</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cordia sp2</td>
<td>TR</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cordia trachyphylla Mart.</td>
<td>SH</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tournefortia sp</td>
<td>SC</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BROMELIACEAE</td>
<td>Aechmea cf. lingulata (L.) Baker</td>
<td>HE</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Aechmea mollis L. B. Sm.</td>
<td>HE</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Aechmea sp1</td>
<td>EP</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cryptanthus pseudopotatoriatus Philcox</td>
<td>HE</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lymania smithii Read</td>
<td>EP</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ronnbergia brasiliensis E. Pereira & I. A. Penna</td>
<td>EP</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sreptocalyx currantii L. B. Sm.</td>
<td>EP</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vriesea cf. platynema Gaudich.</td>
<td>EP</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vriesea sp</td>
<td>EP</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BURSERACEAE</td>
<td>Protium aracouchni (Aubl.) Marchand</td>
<td>TR</td>
<td>2</td>
<td>2</td>
<td>9</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Protium aff. heptaphyllosum (Aubl.) Marchand</td>
<td>TR</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Protium heptaphyllosum (Aubl.) Marchand</td>
<td>TR</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CECROPIACEAE</td>
<td>Cecropia cf. pachystachya Trécui</td>
<td>TL</td>
<td>6</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pouroma mollis Trécui</td>
<td>TR</td>
<td>6</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pouroma velutina Mart. Ex Miq.</td>
<td>TR</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CHRYSOBALANACEAE</td>
<td>CHRYSTOBALANACEAE ni</td>
<td>X</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Coupeia belemii Prance</td>
<td>TR</td>
<td>2</td>
<td>1</td>
<td>5</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hirtella sp</td>
<td>TR</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Licania belemii Prance</td>
<td>TR</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Licania cf. hoehnei Pillg.</td>
<td>TR</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Licania hoehnei Pillg.</td>
<td>TR</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Licania hypoleuca Benth.</td>
<td>TR</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Licania lampiona Prance</td>
<td>TR</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Licania littoralis Warm.</td>
<td>TR</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>CLUSIACEAE</td>
<td>Pheedia sp</td>
<td>TR</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tovomita bahiensis Engl.</td>
<td>TL</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tovomita longifolia (Rich.) Hochr.</td>
<td>TL</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vismia guanenais (Aubl.) Choisy</td>
<td>SH</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vismia macrophylla H. B. K.</td>
<td>TR</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMMELINACEAE</td>
<td>Dichorisandra thyrsiflora J. C. Mikan</td>
<td>SS</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>CONNARACEAE</td>
<td>Connarbas blanchetti Planch.</td>
<td>SC</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pourea discolor Baker</td>
<td>WV</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CYATHEACEAE</td>
<td>Cyathea sp</td>
<td>TL</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>CYCLANTHACEAE</td>
<td>Evodianthus funifer (Poir.) Lindman</td>
<td>HP</td>
<td>35</td>
<td>7</td>
<td>15</td>
<td>57</td>
<td></td>
</tr>
<tr>
<td>CYPERACEAE</td>
<td>Becquerelia clarkei T. Koyama</td>
<td>HE</td>
<td>9</td>
<td>4</td>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Becquerelia cf. cymosa Brongn.</td>
<td>HE</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Becquerelia cymosa Brongn.</td>
<td>HE</td>
<td>10</td>
<td>6</td>
<td>24</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Scleria acanthocarpa Boeck.</td>
<td>HE</td>
<td>2</td>
<td></td>
<td>1</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Scleria secans (L.) Urban</td>
<td>SC</td>
<td>46</td>
<td></td>
<td>46</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Scleria sp</td>
<td>HE</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>DENNSTAEDITIACEAE</td>
<td>Pteridium aquilinum (L.) Kuhn</td>
<td>SS</td>
<td>15</td>
<td></td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DILLENIACEAE</td>
<td>Davilla lacunosa Mart.</td>
<td>VI</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Davilla macrocarpa Eichler</td>
<td>VI</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Davilla sp</td>
<td>VI</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DILLENIACEAE sp1</td>
<td>VI</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DIOSCOREACEAE</td>
<td>Dioscorea sp1</td>
<td>VI</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dioscorea sp2</td>
<td>VI</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>DRYOPTERIDACEAE</td>
<td>Cyclodium meniscioides (Willd.) Presl</td>
<td>HE</td>
<td>3</td>
<td>2</td>
<td></td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stigmateopteris guianensis (KL) C. Chr.</td>
<td>HP</td>
<td>2</td>
<td>7</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ERYTHROXYLACEAE</td>
<td>Erythroxylum martii Peyr.</td>
<td>SH</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Erythroxylum sp</td>
<td>SH</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>FAMÍLIA</td>
<td>ESPÉCIE</td>
<td>Hábito</td>
<td>C</td>
<td>F</td>
<td>MP</td>
<td>SB</td>
<td>TOTAL</td>
</tr>
<tr>
<td>----------------------</td>
<td>--</td>
<td>--------</td>
<td>---</td>
<td>---</td>
<td>----</td>
<td>----</td>
<td>-------</td>
</tr>
<tr>
<td>EUPHORBIEAEAS</td>
<td>Croton macrobotrys</td>
<td>Baill.</td>
<td>TR</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dalechampia ilheotica</td>
<td>Wawra</td>
<td>VI</td>
<td></td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Drypetes cf. sessiliflora</td>
<td>Allemão</td>
<td>TR</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mabea pinni</td>
<td>Aubl.</td>
<td>TR</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mabea sp</td>
<td></td>
<td>TR</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pera glabrata</td>
<td>(Schott) Baill.</td>
<td>TR</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pera heteranthera</td>
<td>(Schrank.) I. M. Johnst.</td>
<td>TR</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sebastania multiramea</td>
<td>(Klotzch) Mull. Arg.</td>
<td>SH</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Senecifera multiflora</td>
<td>Mull. Arg.</td>
<td>SH</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>FABACEAE</td>
<td>Andira sp</td>
<td></td>
<td>TR</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Araripiella psylliphyla</td>
<td>(Harms) R. S. Cowan</td>
<td>TR</td>
<td>9</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bauhinia angulosa</td>
<td>Vogel</td>
<td>WV</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bauhinia sp</td>
<td></td>
<td>X</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Copaifera langsdorffii</td>
<td>Desf.</td>
<td>TR</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dalbergia frutescens</td>
<td>(Vell.) Britton</td>
<td>SC</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Inga sp1</td>
<td></td>
<td>TR</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Inga sp4</td>
<td></td>
<td>TR</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Inga vera Willd.</td>
<td></td>
<td>TR</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LEG. MIMOS. ni</td>
<td></td>
<td>X</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LEG. ni</td>
<td></td>
<td>X</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LEG. PAPIL. ni</td>
<td></td>
<td>X</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LEG. PAPIL. sp1</td>
<td></td>
<td>X</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LEG. PAPIL. sp2</td>
<td></td>
<td>X</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Machaerium lanceolaturn</td>
<td>(Vell.) Macbr.</td>
<td>SC</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Moldenhawera sp</td>
<td></td>
<td>TR</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Peltogyne angstiflora</td>
<td>Ducke</td>
<td>TR</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FLACOURTIACEAE</td>
<td>Banara kuhlmannii</td>
<td>(Sleumer) Sleumer</td>
<td>TR</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Banara sp</td>
<td></td>
<td>TR</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Carpoproche brasiliensis</td>
<td>(Raddi) A. Gray</td>
<td>TR</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Casearia commersoniana</td>
<td>Cambess.</td>
<td>TL</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Casearia decandra</td>
<td>Jacq.</td>
<td>TL</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Casearia sp1</td>
<td></td>
<td>TL</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HIPPOCRATEACEAE</td>
<td>Chellocarinium cognatum</td>
<td>(Miers) A. C. Sm.</td>
<td>WV</td>
<td>4</td>
<td>2</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chellocarinium sp</td>
<td></td>
<td>WV</td>
<td>5</td>
<td>3</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Peritasia aff. laevigata</td>
<td>(Hoffmanns.) A. C. Sm.</td>
<td>WV</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ICACINACEAE</td>
<td>Discophora guianensis</td>
<td>Miers</td>
<td>TL</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LACISTEMATACEAE</td>
<td>Lacistema pubescens</td>
<td>Mart.</td>
<td>TR</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lacistema robustum</td>
<td>Schnizl.</td>
<td>TL</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lacistema sp</td>
<td></td>
<td>TR</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LAURACEAE</td>
<td>LAURACEAE sp2</td>
<td></td>
<td>TR</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Licaria bahiana</td>
<td>Kurz.</td>
<td>TR</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ocothea aff. divaricata</td>
<td>(Poiret) Mez</td>
<td>TR</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ocothea cf. pretiosa</td>
<td>(Nees et Mart. ex Nees) Benth. et Hook.</td>
<td>TR</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ocothea pretiosa</td>
<td>(Nees et Mart. ex Nees) Benth. et Hook.</td>
<td>TR</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Ocothea sp1</td>
<td></td>
<td>TR</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LECYTHIDACEAE</td>
<td>Eschweileria aivimii</td>
<td>S. A. Mori</td>
<td>TR</td>
<td>7</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Eschweileria ovata</td>
<td>(Cambess.) Miers</td>
<td>TL</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LECYTHIDACEAE ni</td>
<td></td>
<td>TR</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LECYTHIDACEAE sp1</td>
<td></td>
<td>TR</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lepthythis pisonis</td>
<td>Cambess.</td>
<td>TR</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LOGANIACEAE</td>
<td>Spigelia kleinii</td>
<td>L. B. Sm.</td>
<td>HE</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Strichocass aff. bahiensis</td>
<td>Krukoff & Barneby</td>
<td>SC</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LOMARIPSIDACEAE</td>
<td>Lomogrynum guianense</td>
<td>(Aubl.) Ching</td>
<td>HP</td>
<td>1</td>
<td>6</td>
<td>7</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>Lomariopsis marginata</td>
<td>(Mart.) J. Sm.</td>
<td>HP</td>
<td>4</td>
<td>4</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>FAMÍLIA</td>
<td>ESPÉCIE</td>
<td>Hábito</td>
<td>C</td>
<td>F</td>
<td>MP</td>
<td>SB</td>
<td>TOTAL</td>
</tr>
<tr>
<td>----------------------</td>
<td>---</td>
<td>--------</td>
<td>---</td>
<td>---</td>
<td>----</td>
<td>----</td>
<td>-------</td>
</tr>
<tr>
<td>MALPIGHIACEAE</td>
<td>Banisteropsis sp</td>
<td>VI</td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Heteropterys coleoptera A. Juss.</td>
<td>SC</td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Heteropterys sp</td>
<td>VI</td>
<td>3</td>
<td>1</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MALPIGHIACEAE sp1</td>
<td>X</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stigmaphyllum sp1 af. blanchetii C. E. Anderson</td>
<td>VI</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MALVACEAE</td>
<td>Pavonia morii Kravp.</td>
<td>SH</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MARANTACEAE</td>
<td>Calathea scirioides Peters.</td>
<td>HE</td>
<td>3</td>
<td>7</td>
<td>10</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Calathea sp1</td>
<td>HE</td>
<td>12</td>
<td>10</td>
<td>2</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Calathea sp3</td>
<td>HE</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Monotagma grallatum Hagberg</td>
<td>HE</td>
<td>3</td>
<td>1</td>
<td>5</td>
<td>2</td>
<td>11</td>
</tr>
<tr>
<td>MELASTOMATAECEA</td>
<td>Clidemia hirta (L.) D. Don</td>
<td>SS</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Henrietta succosa (Aubl.) DC.</td>
<td>TR</td>
<td>3</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Leandra rhamnifolia (Naudin) Cogn.</td>
<td>HE</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Leandra rufescens (DC.) Cogn.</td>
<td>SS</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Miconia amoena Triana</td>
<td>TR</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Miconia cf. rimalis Naudin</td>
<td>TR</td>
<td>2</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Miconia hypoleuca (Benth.) Triana</td>
<td>TR</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Miconia lurida Cogn.</td>
<td>TR</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Miconia mirabilis (Aubl.) L. O. Williams</td>
<td>TR</td>
<td>16</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Miconia octopetala Cogn.</td>
<td>TR</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Miconia ruficalyx Gleason</td>
<td>TR</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Miconia sp1</td>
<td>X</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Miconia sp2</td>
<td>X</td>
<td>5</td>
<td></td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MELIACEAE</td>
<td>Guarea sp1</td>
<td>TR</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MELIACEAE sp1</td>
<td>X</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trichilia sp1</td>
<td>TR</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trichilia sp2</td>
<td>X</td>
<td>1</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MENDONCIACEAE</td>
<td>Mendoncia blanchetiana Profice</td>
<td>VI</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MENISPERMAECEAE</td>
<td>Chondodendron microphyllum (Eichler) Moldenke</td>
<td>VI</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Orthomene cf. schomburgtii (Miers) Barneby & Krukoff</td>
<td>SC</td>
<td>2</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Orthomene sp</td>
<td>VI</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MONIMIACEAE</td>
<td>Siparuna cymosa Tolm.</td>
<td>TR</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MORACEAE</td>
<td>Brosimum rubescens Taub.</td>
<td>TR</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Brosimum sp</td>
<td>X</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dorstenia gracilis Carauta, M. Valente & D. S. Araújo</td>
<td>HE</td>
<td>2</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Helicostylis tomentosa (Poepp. & Endl.) Rusby</td>
<td>TR</td>
<td>2</td>
<td>2</td>
<td>5</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Soroea hilarrii Gaudich.</td>
<td>SH</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Soroea sp</td>
<td>X</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MYRSINACEAE</td>
<td>Mirsine sp</td>
<td>X</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MYRTACEAE</td>
<td>Calypanthes sp</td>
<td>X</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Eugenia punicfolia (H. B. K.) DC.</td>
<td>TR</td>
<td>2</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Eugenia sp1</td>
<td>X</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Eugenia sp2</td>
<td>X</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Eugenia sp3</td>
<td>X</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Eugenia sp4</td>
<td>X</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gomidesia martiana O. Berg.</td>
<td>TR</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gomidesia sp1</td>
<td>X</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gomidesia sp2</td>
<td>X</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mastiliera cf. racemosa (Vell.) Kiaersk.</td>
<td>TR</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mastiliera obversa D. Legrand</td>
<td>TL</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mastiliera sp</td>
<td>SH</td>
<td>5</td>
<td>1</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mastiliera verticillaria O. Berg.</td>
<td>SC</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Myrcia acuminatissima O. Berg.</td>
<td>TR</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Myrcia cf. fallax (Rich.) DC.</td>
<td>TL</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Myrcia gigantea (O. Berg.) Nied</td>
<td>TR</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Myrcia sp1</td>
<td>X</td>
<td>2</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Myrcia sp2</td>
<td>X</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FAMÍLIA</td>
<td>ESPECÍE</td>
<td>Hábito</td>
<td>C</td>
<td>F</td>
<td>MP</td>
<td>SB</td>
<td>TOTAL</td>
</tr>
<tr>
<td>----------------------------</td>
<td>--</td>
<td>--------</td>
<td>---</td>
<td>---</td>
<td>----</td>
<td>----</td>
<td>-------</td>
</tr>
<tr>
<td>MYRTACEAE (Contin.)</td>
<td>Myrcia sp4</td>
<td>X</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Myrcia sp5</td>
<td>SH</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Myrcia sp6</td>
<td>X</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>MYRTACEAE sp11</td>
<td>X</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>MYRTACEAE sp12</td>
<td>X</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>MYRTACEAE sp13</td>
<td>X</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>MYRTACEAE sp14</td>
<td>X</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>MYRTACEAE sp3</td>
<td>X</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>MYRTACEAE sp6</td>
<td>X</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>MYRTACEAE sp9</td>
<td>X</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Plinia cf. callosa Sobral</td>
<td>TR</td>
<td>4</td>
<td>2</td>
<td>6</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Plinia sp1</td>
<td>X</td>
<td>1</td>
<td>6</td>
<td></td>
<td></td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Plinia sp2</td>
<td>X</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>NYCTAGINACEAE</td>
<td>Guapira cf. obtusata (Jacq.) Lundell</td>
<td>TL</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Guapira opposita (Vell.) Reitz</td>
<td>SH</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>Guapira sp2</td>
<td>X</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>OLACACEAE</td>
<td>Heisteria perianthomega (Vell.) Sleumer</td>
<td>TR</td>
<td>2</td>
<td></td>
<td>1</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Heisteria sp</td>
<td>TR</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>PASSIFLORACEAE</td>
<td>Passiflora haematostigma Mart. ex Mast.</td>
<td>VI</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>PIPERACEAE</td>
<td>Peperomia sp</td>
<td>HE</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Piper arboreum Aubl.</td>
<td>SH</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Piper cf. macrophyllum H. B. K.</td>
<td>SH</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Piper sp1</td>
<td>SS</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>POACEAE</td>
<td>Criciuna aff. asymetrica Soderstr. & Londoño</td>
<td>SC</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>ichnanthus sp</td>
<td>HE</td>
<td>5</td>
<td>1</td>
<td>6</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Lasiacis ligulata Hitchc. & Chase</td>
<td>SC</td>
<td>1</td>
<td>6</td>
<td></td>
<td></td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Merostachys sp</td>
<td>SC</td>
<td>17</td>
<td>23</td>
<td>2</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Olyra latifolia L.</td>
<td>HE</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Pariana cf. lanceolata Trin.</td>
<td>HE</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Paspalum coronavdense Raddi</td>
<td>HE</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>POACEAE ni</td>
<td>HE</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>POLYGALACEAE</td>
<td>Securidaca cf. leicarpaka S. F. Blake</td>
<td>SC</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>POLYTHONACEAE</td>
<td>Coccoloba declinata (Vell.) Mart.</td>
<td>SC</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>RUBIACEAE</td>
<td>Aliertia sp</td>
<td>SH</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Amaioqua intermedia Mart.</td>
<td>TL</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Amaioqua sp2</td>
<td>X</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Cocccocyphalum lanceolatum (Ruiz & Pav.) Pers.</td>
<td>HE</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Coussarea sp1</td>
<td>SH</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Coussarea sp2</td>
<td>SH</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Faramea cf. martiana Mull. Arg.</td>
<td>SH</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Faramea sp1</td>
<td>SS</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Faramea sp2</td>
<td>SS</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Ixora grandifolia Mull. Arg.</td>
<td>TR</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Malanea cf. macrophylla Bartl. ex Griesb.</td>
<td>SC</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Psychotria cf. minutiflora Mull. Arg.</td>
<td>SS</td>
<td>4</td>
<td>7</td>
<td>2</td>
<td>3</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>Psychotria erecta (Aubl.) Standl. & Steyerm.</td>
<td>SH</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Psychotria jambosiodes Schittdl.</td>
<td>SH</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Psychotria mapouriodes DC.</td>
<td>TL</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Psychotria platypoda DC.</td>
<td>SS</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Psychotria purpurascens Mull. Arg.</td>
<td>SS</td>
<td>23</td>
<td>7</td>
<td>37</td>
<td>6</td>
<td>73</td>
</tr>
<tr>
<td></td>
<td>Psychotria sp1</td>
<td>SS</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Randia armata (Sw.) DC.</td>
<td>TR</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Simira cf. glazovii (K. Schum.) Steyerm.</td>
<td>SH</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stachyarrhena harleyi J. H. Kirkbr.</td>
<td>TR</td>
<td>3</td>
<td>2</td>
<td>5</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>RUTACEAE</td>
<td>Dictyoloma vandellianum A. Juss.</td>
<td>TR</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>RUTACEAE ni</td>
<td>X</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>FAMÍLIA</td>
<td>ESPÉCIE</td>
<td>Hábito</td>
<td>C</td>
<td>F</td>
<td>MP</td>
<td>SB</td>
<td>TOTAL</td>
</tr>
<tr>
<td>----------------</td>
<td>----------------------------------</td>
<td>--------</td>
<td>---</td>
<td>---</td>
<td>----</td>
<td>----</td>
<td>-------</td>
</tr>
<tr>
<td>SAPINDACEAE</td>
<td>Cupania rugosa Radlk.</td>
<td>TL</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Paulinia sp</td>
<td>VI</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Paulinia trigona Vell.</td>
<td>VI</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Talisia sp1</td>
<td>X</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Talisia sp2</td>
<td>X</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAPOTACEAE</td>
<td>Ecclinusa ramiflora Mart.</td>
<td>TR</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Micropholis gardneriana (A. DC.) Pierre</td>
<td>TR</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Micropholis guayanensis (A. DC.) Pierre</td>
<td>TR</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pouteria aff. bangii (Rusby) T. D. Penn.</td>
<td>TR</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pouteria sp1</td>
<td>TR</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pouteria sp2</td>
<td>TR</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pouteria sp3</td>
<td>TR</td>
<td>5</td>
<td>5</td>
<td>1</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>SIMAROUBACEAE</td>
<td>Pradosia lactescens (Vell.) Radlk.</td>
<td>TR</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Picramnia coccinea W. W. Thomas</td>
<td>TL</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Simaba cedron Planch.</td>
<td>TL</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Simarouba amara Aubl.</td>
<td>TR</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SMILACACEAE</td>
<td>Smilax sp1</td>
<td>VI</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Smilax sp2</td>
<td>VI</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOLANACEAE</td>
<td>Solanum polytrichum Moric</td>
<td>SH</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Solanum rupincola Sendtn.</td>
<td>SC</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Solanum sp1</td>
<td>X</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TECTARIACEAE</td>
<td>Trypophyllum funestum (Kunze) Holtttm</td>
<td>HE</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>THELYPTERIDACEAE</td>
<td>Thelypteris conspersa (Schrad.) A. R. Smith</td>
<td>HE</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>THYMELEIACEAE</td>
<td>Daphnopsis racemosa Griseb.</td>
<td>SH</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRIGONIACEAE</td>
<td>Trigonia nivea Cambess.</td>
<td>SC</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VERBENACEAE</td>
<td>Lantana undulata Schrank</td>
<td>SS</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VIOACEAE</td>
<td>Paypayrola blanchetiana Tul.</td>
<td>TL</td>
<td>9</td>
<td>3</td>
<td>11</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rinorea guianensis Aublet</td>
<td>TR</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>VITACEAE</td>
<td>Cissus poulhinifolia Vell.</td>
<td>VI</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VITTARIACEAE</td>
<td>Anthrophylum sp</td>
<td>EP</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>INDETERMINADAS</td>
<td>Indeterminadas</td>
<td>X</td>
<td>5</td>
<td>3</td>
<td>4</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Total Global</td>
<td></td>
<td></td>
<td>361</td>
<td>295</td>
<td>320</td>
<td>336</td>
<td>1312</td>
</tr>
</tbody>
</table>
CAPÍTULO 2

ESTRUTURA DA VEGETAÇÃO DE PEQUENO E MÉDIO PORTE EM SUB-BOSQUE, CLAREIRAS NATURAIS E ÁREA PERTURBADA POR FOGO E RELAÇÕES COM O AMBIENTE DE LUZ.
Resumo

O papel das perturbações naturais na manutenção da diversidade de espécies vegetais em florestas tropicais tem sido amplamente discutido. Esta discussão tem se baseado principalmente em estudos que quantificam e caracterizam a composição da vegetação em ambientes perturbados e não perturbados. Entretanto, a maioria destes estudos analisa apenas as espécies lenhosas, principalmente espécies arbóreas.

No presente estudo, todas as plantas vasculares abaixo de 5 metros de altura foram amostradas em 6 sub-parcelas de 1m² dentro de 6 clareiras naturais, 6 parcelas no sub-bosque adjacente às clareiras, 6 parcelas em uma área de floresta queimada e 6 parcelas no sub-bosque de uma mata próxima à área queimada. Em cada parcela, foi analisado o ambiente de luz utilizando-se fotografias hemisféricas. Foi calculada a porcentagem total de abertura no dossel, além de oito índices de luminosidade obtidos a partir da análise das fotografias.

A área de floresta queimada apresentou as maiores diferenças em relação aos demais ambientes. Considerando as plantas de todos os hábitos de crescimento, a riqueza de espécies na área queimada foi significativamente menor que nas clareiras e a composição de espécies nesta área foi significativamente diferente de todos os outros ambientes. Considerando apenas indivíduos pertencentes a espécies arbóreas, o número médio de indivíduos e a riqueza de espécies na área queimada foram menores que em clareiras. Também a composição de espécies arbóreas foi significativamente diferente em relação aos outros ambientes. Estes resultados indicam que, independentemente do conjunto de plantas considerado, as diferenças permanecem praticamente as mesmas.

Os outros três ambientes - as clareiras naturais, o sub-bosque adjacente a elas e o sub-bosque da mata próxima à área queimada - não diferiram em relação ao número de indivíduos, número de espécies, nem em composição de espécies, tanto para o conjunto de espécies de todos os hábitos de crescimento, como somente para as espécies arbóreas.

A porcentagem de abertura no dossel não foi diferente entre os quatro ambientes, embora tenha apresentado uma variância muito maior na área queimada. Considerando os outros índices de luminosidade, excluindo a área queimada, as clareiras diferiram das duas áreas de sub-bosque em relação a seis dos oito índices e, de acordo com a Análise de Componentes Principais, as clareiras se diferenciam das demais áreas por apresentarem maior quantidade total de luz e maior concentração da luz. Apesar das diferenças nas características de luz entre estes ambientes, não foi observada nenhuma relação entre as características de luz e a densidade de plantas nas parcelas, nem entre as características de luz e a composição de espécies nas parcelas.
A alta similaridade observada entre a vegetação das clareiras e do sub-bosque adjacente a elas, apesar das diferenças nas características de luminosidade entre estes dois ambientes, parece estar de acordo com as ideias recentes de que as plantas presentes em uma clareira estão diretamente relacionadas à composição da vegetação anterior à formação da clareira. Possivelmente, nestas florestas, o acaso e a composição da comunidade em uma escala local determinam o conjunto de espécies que irá ocupar a área aberta por uma clareira.

Além disso, foram observadas apenas diferenças pequenas nos resultados entre as análises considerando apenas as espécies arbóreas e as análises considerando as espécies de todos os hábitos de crescimento, sugerindo que os mesmos processos que atuam sobre as espécies arbóreas, o grupo mais bem estudado em florestas tropicais, também estão agindo sobre as outras formas de vida presentes nesta comunidade vegetal.

Palavras-chave: Mata Atlântica, clareiras naturais, sub-bosque, fogo, riqueza de espécies, fotografias hemisféricas, luz.
Introdução

A relação entre o regime de perturbações naturais e a diversidade de espécies em florestas tropicais tem sido questionada nas últimas três décadas e vem gerando uma ampla discussão sobre a importância relativa dos diferentes processos evolutivos e ecológicos na determinação da estrutura destas comunidades vegetais.

Inicialmente, Connell (1978) sugeriu que o regime de perturbação natural a que um local está submetido é um dos principais fatores determinantes da composição e diversidade de espécies em florestas tropicais e em recifes de corais. Este autor propôs que as clareiras que se abrem naturalmente nestes ambientes mantêm um regime de perturbação moderada, em termos de extensão, frequência e intensidade. Com a premissa de que a diversidade de espécies aumenta em níveis intermediários de perturbação (Hipótese da Perturbação Intermediária - Connell, 1978), sua conclusão é que as clareiras naturais são o principal mecanismo de geração e manutenção de diversidade em florestas tropicais.

Analisando especificamente as perturbações naturais provocadas pela queda de árvores, Denslow (1980) elaborou a hipótese de partilha de nicho em clareiras, que estabelece que determinados grupos de plantas apresentam características que lhes permitem colonizar mais eficientemente clareiras de diferentes tamanhos ou regiões específicas dentro das clareiras. De acordo com esta hipótese, as espécies de plantas em florestas tropicais teriam nichos de regeneração (sensu Grubb, 1977) mais estreitos, o que poderia permitir a coexistência de um maior número de espécies.

A hipótese de partilha de nicho ganhou sustentação à medida que foram analisadas espécies de árvores pioneiras, que dificilmente são encontradas no sub-bosque da floresta, mas encontram-se em abundância em clareiras grandes (Brokaw & Busing, 2000), apresentando portanto um nicho de regeneração mais estreito que a maioria das espécies arbóreas tropicais.

O estabelecimento e o crescimento das espécies tropicais seria limitado, segundo Denslow (1987), principalmente pela radiação total incidente e por sua duração. Vários estudos mostraram plantas respondendo a diferentes quantidades e qualidades de luz (Denslow et al., 1990; King, 1991; Popma & Bongers, 1991; Fraver et al., 1998; Paulilo, 2000) e outros mostraram associação de plântulas de determinadas espécies com as condições de luminosidade no local (Clark et al., 1996; MacDougall & Kellman, 1992). Entretanto, quando toda a comunidade de plântulas foi analisada, a densidade de plântulas
não esteve relacionada à quantidade ou qualidade de luz (MacDougall & Kellman, 1992; Nicotra et al., 1999; Denslow & Guzman, 2000). Portanto, apesar de as plantas individualmente apresentarem diferentes respostas às condições de luz, as relações entre as condições de luminosidade e a estrutura da comunidade ainda não são claramente definidas.

Em uma visão oposta à apresentada por Denslow (1980), Hubbell & Foster (1986) sugeriram que a maioria das espécies de florestas tropicais apresenta nichos de regeneração amplos, podendo se estabelecer em condições variadas de luminosidade e que os principais determinantes do sucesso de regeneração de uma espécie são o acaso e os fatores históricos locais.

Em um trabalho com 13 anos de acompanhamento das clareiras dentro de uma parcela permanente de 50 ha em Barro Colorado, Panamá, Hubbell et al. (1999) demonstraram que a riqueza estimada de espécies não diferiu entre áreas de clareiras e sub-bosque e que a composição de espécies em clareiras foi imprevisível. Mesmo as espécies pioneiras não ocorreram de forma previsível em clareiras de determinados tamanhos ou idades e apresentaram baixas taxas de ocupação de clareiras, sugerindo que a hipótese de partilha de nicho em clareiras não poderia explicar a diversidade de espécies no local.

Brokaw & Busing (2000) discutiram as fracas evidências de partilha de nicho de clareiras entre as espécies arbóreas tropicais e destacaram a importância do acaso na determinação da diversidade de espécies. Entretanto, Schnitzer & Carson (2000) ressaltaram que a partilha de nicho pode não ocorrer entre as espécies arbóreas tolerantes à sombra, mas ainda é cedo para descartá-la, pois praticamente não existem estudos sobre o estrato herbáceo-arbustivo e outras formas de vida.

Hubbel et al. (1999) sugeriram que a limitação de recrutamento (Tilman, 1994; Hurtt & Pacala, 1995), ou seja, a ineficiência das espécies em se estabelecer em locais possivelmente favoráveis ao seu estabelecimento, seria uma hipótese mais adequada para explicar a manutenção da diversidade na área estudada. Em comunidades onde o recrutamento é limitado, principalmente pela dispersão, as espécies que são melhores competidoras não estão presentes em todos os locais e, então, muitos locais podem ser ocupados por espécies que não são necessariamente as melhores competidoras. Este processo de limitação de recrutamento impediria que a competição ocorresse de forma intensa e poderia evitar ou adiar por um longo tempo a extinção local de espécies competitivamente inferiores e, consequentemente, manter a diversidade de espécies.
As hipóteses apresentadas até aqui buscam compreender a relação entre a diversidade de espécies e as perturbações naturais em uma escala de tempo evolutivo. Entretanto, em uma escala de tempo ecológico, a comparação da vegetação entre áreas sob o efeito de perturbações naturais e perturbações antrópicas pode ajudar a compreender os processos de estabelecimento das espécies e as formas pelas quais a atividade antrópica pode afetar a diversidade de espécies.

Entre os diferentes tipos de perturbação sofridos por uma floresta tropical, a presença de fogo representa uma perturbação exógena e infreqüente, à qual os organismos desta comunidade não estão necessariamente adaptados (Connell, 1978). Além disso, o fogo apresenta uma dinâmica particular em função, principalmente: i) da eliminação do estrato herbáceo-arbustivo e da regeneração avançada (Uhl et al. 1989), ii); da entrada abrupta de grande quantidade de nutrientes no sistema, decorrente da queima do material orgânico (Vinha et al., 1983; Uhl & Jordan, 1984), e; iii) de permitir, a depender da intensidade da queima, que as espécies mais resistentes permaneçam vivas ou rebrotem (Uhl & Jordan, 1984; Kauffman, 1991), podendo alterar completamente a composição florística e a estrutura da comunidade da área.

O presente estudo se propõe a verificar a influência dos diferentes tipos de perturbação (natural e antrópica) sobre o ambiente de luz e sobre a estrutura da comunidade de plantas vasculares de pequeno e médio porte (abaixo de 5 metros de altura), incluindo todos os hábitos de crescimento. São analisados quatro ambientes, sendo estes: Clareiras naturais, Sub-bosque adjacente a estas clareiras, Área perturbada por fogo de origem antrópica e Sub-bosque de uma mata próxima à área queimada.

Especificamente, pretende-se responder às seguintes questões: O tipo de ambiente afeta a densidade de indivíduos, a riqueza e a composição de espécies de plantas vasculares abaixo de 5 metros de altura? Os ambientes analisados diferem em relação à quantidade e distribuição da luz que atinge o solo? A densidade de indivíduos e a composição de espécies de plantas estabelecidas nestes ambientes estão relacionadas às características de luminosidade do local? O tipo de ambiente e as características de luz afetam de modo diferente as espécies arbóreas?
Metodologia

Área de estudo

O presente estudo foi realizado na Reserva Biológica de Una (REBIO-Uni), localizada no município de Una, BA (15º 10'S, 39º 10'W). A REBIO-Uni é uma unidade de conservação federal de uso indireto, com uma área adquirida de 7022 ha, dos quais cerca de 78% estão em bom estado de conservação (Marques et al., 2000). O restante é composto de áreas perturbadas recentemente ou em regeneração.

A região apresenta clima do tipo Af na classificação de Köppen, caracterizando-se pela ausência de período seco definido e pela precipitação anual superior a 1300 mm (Mori et al., 1983).

Na área de estudo, o solo predominante é o Latossolo Vermelho-Amarelo variação Colônia (Typic Haplorthox), pobre em nutrientes, com boas condições físicas (IBAMA/MMA, 1998).

A vegetação da REBIO-Uni, situada no Domínio da Mata Atlântica, é composta predominantemente por Floresta Ombrófila Densa, com altura média de dossel em torno de 35 metros, tendo sido classificada por Gouvêa et al. (1976) como Mata Higrófila Sul-Baiana.

Caracterização da Vegetação

Em um trecho de três hectares (Área 1) do maior bloco de floresta não perturbada recentemente da reserva foram mapeadas todas as clareiras naturais. Dentre estas, foram escolhidas as 6 clareiras mais recentes (definidas através da presença de ramificações terminais ou ainda folhas secas presas aos ramos da principal árvore causadora) e de maior tamanho, variando de 65,4 a 260,9 m².

Clareiras foram definidas como uma área aberta no dossel, que apresentasse uma descontinuidade no gradiente vertical da floresta, em geral associada à queda de árvores. Foram consideradas clareiras as áreas em que a vegetação apresentava no máximo 5 metros de altura e/ou 8 cm de diâmetro do caule à altura do solo (DAS). Foi definido visualmente o ponto central da clareira e medido o maior diâmetro entre o tronco de duas árvores com diâmetro maior que 8 cm em direções opostas e o diâmetro perpendicular a este. A área da clareira foi estimada utilizando-se a fórmula de uma elipse, entretanto, para a parcela de amostragem foi considerada a área formada por um losango, definido pelos diâmetros citados acima.

Adjacente a cada uma destas clareiras foram estabelecidas parcelas (6) no sub-bosque com dossel intacto, de tamanho igual ao das clareiras. Estas áreas de sub-bosque estavam distantes das bordas das clareiras
por, no mínimo, uma distância equivalente ao diâmetro da clareira.

Em três hectares de um trecho de floresta queimado por um incêndio acidental em fevereiro de 1995, foram instaladas 6 parcelas de tamanho e distribuição espacial equivalentes aos das clareiras. Esta área queimada está localizada a cerca de 1 km da Área 1 descrita anteriormente.

Em um trecho da mata mais próxima à área queimada (distante aproximadamente 200 m), foram instaladas 6 parcelas no sub-bosque, também com distribuição espacial e tamanhos equivalentes aos das clareiras na Área 1.

Os ambientes acima definidos serão denominados, a partir deste ponto como: Clareiras (C), Sub-bosque adjacente às clareiras (SB), Área queimada (F) e Sub-bosque da mata próxima à área queimada (MP).

Dentro de cada parcela ou clareira foram sorteadas as localizações de 6 sub-parcelas de 1 m², onde todas as plantas vasculares (incluindo todos os hábitos de crescimento) abaixo de 5 metros de altura foram amostradas, totalizando 144 sub-parcelas de 1 m². Esta amostragem foi realizada de janeiro a maio de 2000.

Considerando que nas áreas de clareiras, por definição, não existiam plantas acima de 5 metros e acima de 8 cm de DAS, também nas áreas de sub-bosque e na área queimada, as parcelas que continham plantas acima destes limites foram desprezadas e foi sorteada uma nova localização. Também foram desprezadas as parcelas que apresentaram mais de 10% de sua área ocupada por troncos ou galhos caídos.

As plantas foram classificadas, no campo, em cinco classes de altura, sendo: a) > 0,0 a 0,20m; b) > 0,20 a 0,50m; c) > 0,50 a 1m; d) > 1 a 3m, e; e) > 3 a 5m. A altura das plantas foi definida como a maior altura de uma parte verde da planta em relação ao solo, representando a posição vertical em que a planta se situa.

Em alguns casos de epífitas e hemiepífitas, indivíduos de tamanho pequeno foram classificados nas maiores classes de altura, por estarem fixados a suportes nas maiores classes de altura. Isso ocorreu para 3 indivíduos de epífitas e 23 indivíduos de hemiepífitas.

Caracterização de Luz

Para caracterizar o ambiente de luz nas parcelas, foram obtidas fotografias hemisféricas no centro de cada parcela. Foi utilizada uma câmera Nikon 35 mm (FM10) com uma lente hemisférica Sigma (8 mm, f:4),
montadas a 1 metro de altura do solo, sobre um tripé, com o topo da fotografia orientada para o norte magnético, determinado com uma bússola, e nivelada em relação ao solo por um nível de bolha comum, dentro da bússola. Foram utilizados filmes 400 ASA, e a abertura e a velocidade foram ajustados manualmente com o auxílio do fotômetro da própria câmera.

As fotografias foram obtidas em dias totalmente nublados ou, em poucos casos, ao final da tarde, com o sol praticamente abaixo da linha do horizonte, para evitar reflexos na lente.

Foram selecionadas as fotografias com os contornos melhor definidos. Estas fotografias, com tamanho de 10 x 15 cm, foram digitalizadas em um "scanner" de mesa A4, com resolução de 300 dpi, transformadas em formato JPEG e analisadas no programa GLA (Gap Light Analyzer - Frazer et al., 1999).

Em função da subjetividade envolvida na determinação do limiar para transformação das cores em preto e branco, necessário para a contagem dos "pixels" pelo programa, os três primeiros autores estabeleceram independentemente os valores para este limiar e foi utilizada uma média destes valores. Alguns valores variaram muito entre os três determinadores sugerindo que este ou qualquer outro procedimento de padronização deva ser sempre efetuado antes da análise de fotografias hemisféricas, como uma tentativa de minimizar a subjetividade. Outras formas de padronização podem ser encontradas em Rich et al. (1993), Clearwater et al. (1999), Engelbrecht & Herz (2001), e Frazer et al. (2001).

Análise dos dados

Relações entre a vegetação e o tipo de ambiente

Considerando que plantas de diferentes tamanhos podem sofrer os efeitos das perturbações de formas diferentes, as análises de densidade de indivíduos, riqueza e composição de espécies foram realizadas tanto para o conjunto todo de plantas, como para diferentes classes de altura.

Para realizar as análises de densidade de plantas foram utilizadas três classes de altura: I) Abaixo de 0,2 m; II) entre 0,2 e 1 m; III) entre 1 e 5 m. Foi utilizada uma análise de variância para verificar se havia diferença no número médio de indivíduos entre os ambientes, em cada uma das três classes acima.

Para as análises sobre composição da vegetação, foi eliminado o conjunto de plantas abaixo de 0,2 m em função do grande número de indivíduos não identificados.
Além disso, foram excluídas das análises de riqueza e composição da vegetação as plantas acima de 0,2 m que não puderam ser identificadas nem separadas em morfoespécies, em função do estado da planta no momento da coleta. Por este motivo, os números de indivíduos das análises de riqueza e composição não correspondem exatamente aos totais de indivíduos nas classes de altura e aos valores usados nas análises de densidade de indivíduos.

As análises de riqueza e composição da vegetação foram realizadas separadamente para os indivíduos nas classes II e III descritas acima e também para as duas classes consideradas em conjunto (ou seja, todos os indivíduos acima de 0,2 m), com a finalidade de verificar se os tipos de perturbações analisados afetam o número de espécies e a composição de espécies.

Para descrever a relação entre a densidade de indivíduos e a riqueza de espécies foram realizadas análises de regressão simples, em cada classe de altura para cada ambiente e também considerando todos os ambientes juntos.

Considerando que, de um modo geral, o número de espécies aumenta à medida que aumenta o número de indivíduos amostrados, foi construída, para cada ambiente analisado e nas diferentes classes de altura, uma curva média de acúmulo de espécies (Gotelli & Colwell, 2001). Esta curva foi construída com as médias das riquezas obtidas em 2000 reamostragens de números pré-determinados de indivíduos (10, 20, 30, etc.). Foi utilizado o método de amostragem com reposição ("Independent sampling"), no programa EcoSim - versão 6.0 (Gotelli & Entsminger, 2001). Para cada classe de altura foi estabelecido um número comum de indivíduos, para o qual o valor médio de riqueza esperado foi comparado entre os ambientes, através dos respectivos intervalos de confiança (95%). A sobreposição dos intervalos foi considerada como indicadora de ausência de diferença.

Para estimar o número total de espécies de cada ambiente analisado, foi utilizado o estimador de riqueza Chao1 (Colwell, 1997). Adicionalmente, foi calculado o índice de dominância de Berger-Parker, conforme indicado por Magurran (1988).

Foi realizada uma DCA (Detrended Correspondence Analysis) com as abundâncias das espécies encontradas em cada parcela, com a finalidade de verificar se havia uma ordenação das parcelas (em função das espécies observadas) de acordo com os ambientes em que elas foram amostradas. Para testar se a composição de espécies diferia entre os ambientes estudados, foi realizada uma análise de MRPP.
(Multiple Response Permutation Procedure - McCune & Mefford, 1999), utilizando a distância de Sorensen entre parcelas. Nesta análise é testada se a similaridade de composição de espécies é maior entre as parcelas de um mesmo grupo (no caso, cada ambiente analisado), do que seria esperado caso as parcelas se distribuíssem ao acaso entre os ambientes. O grau de similaridade é expresso pelo índice de homogeneidade corrigido em relação ao acaso ("chance-corrected within-group agreement"). Esta estatística, denominada "A", varia de zero a um, e tem valor máximo quando todas as parcelas de um grupo têm a mesma composição de espécies.

Finalmente, foi realizada uma Análise de Espécies Indicadoras (ISA - Indicator Species Analysis), para verificar se existem espécies que funcionam como indicadoras de cada um dos ambientes analisados. Este método utiliza uma combinação da frequência relativa e da abundância relativa das espécies nas parcelas de cada ambiente, para calcular um índice de Indicação, que posteriormente é testado estatisticamente. O teste é realizado com uma técnica de Monte Carlo, para verificar se o maior índice de Indicação de uma determinada espécie para um ambiente difere do esperado caso as parcelas se distribuíssem ao acaso entre os ambientes.

As análises citadas acima (DCA, MRPP e ISA) foram realizadas no programa PC-ORD - versão 4.1 (McCune & Mefford, 1999).

Espécies arbóreas

Como a maioria dos estudos sobre composição da vegetação em clareiras avalia apenas os indivíduos jovens de espécies de hábito arbóreo (ver Schnitzer & Carson, 2000), as mesmas análises citadas acima foram realizadas somente com as espécies de hábito arbóreo (árvores e arvoretas, de acordo com Amorim et al., inédito. Veja também Martini et al., inédito - Capítulo1), permitindo assim uma comparação com os dados da literatura. Entretanto, as análises não foram realizadas separadamente para classes de altura, em função do pequeno número de indivíduos em algumas classes. Dessa forma, para todas as análises de espécies arbóreas foi considerado todo o conjunto de indivíduos entre 0,2 e 5m.

Luz

O ambiente de luz foi inicialmente caracterizado através da porcentagem total de abertura do dossel (ABTOT), estimada a partir das fotografias hemisféricas com o programa Gap Light Analyzer v.2 (GLA). Foi
realizada uma análise de variância, com os valores transformados pelo arcoseno da raiz quadrada, para verificar se havia diferenças no total de abertura entre os ambientes.

A porcentagem total de abertura no dossel (ABTOT) pode expressar a luminosidade média que atinge o solo, mas não diferencia se esta luz chega de forma concentrada (uma grande abertura apenas) ou através de várias pequenas aberturas e também não avalia o período de tempo durante o qual a luz atinge o solo. Então, para complementar as informações sobre a entrada de luz nestas parcelas foram calculados outros 8 índices, a partir dos resultados produzidos pelo programa (GLA v.2), para descrever o ambiente de luz quanto à quantidade de luminosidade e sua distribuição espacial e temporal.

Para calcular alguns destes índices, as fotografias foram divididas em quatro círculos concêntricos (ver esquema no anexo 2) e em 16 setores cada, e os índices foram calculados através da combinação dos resultados dos setores e/ou dos círculos inteiros. Os índices calculados foram:

- **CV4CIR** - Coeficiente de Variação entre a porcentagem de abertura nos quatro círculos concêntricos da fotografia. Cada círculo possui a mesma área, apesar de larguras diferentes (Anexo 2A).

- **FRABCIR3** - Freqüência de setores do terceiro círculo (a partir do zênite) que contêm aberturas maiores que 1%. Total de 16 setores (Anexo 2A). Este índice caracteriza a abundância de aberturas laterais, por onde também ocorre passagem de luz na parcela analisada.

- **NUMPTL** - Número total de pontos de luz (*sunflecks*) que atingem o solo durante o ano.

- **MAXPTL** - Duração máxima dos pontos de luz (em minutos).

- **PTLAC4** - Porcentagem do total de pontos de luz que têm duração maior que 4 minutos.

- **LRTTOT** - Total de luz transmitida, que atinge o solo (Total de luz direta (LTRDIR) + Total de luz difusa (LTRDIF)). Expressa em Mols/m²/dia.

- **PCLDIR** - Porcentagem de luz direta em relação ao total de luz transmitida (LTRDIR/LRTTOT * 100).

- **PCABZEN** - Porcentagem do total de abertura (ABTOT) que se encontra no círculo do zênite, sendo a área da foto dividida em quatro círculos com larguras iguais (Anexo 2B).

Para verificar se os ambientes apresentavam diferenças nestas características de luminosidade, foram realizadas análises de variância para todos os índices entre os ambientes, com os valores de porcentagem transformados para arcoseno da raiz quadrada. Em função das variações muito grandes observadas na
área queimada, que poderiam influenciar os resultados, as mesmas análises foram repetidas excluindo-se esta área.

Dentre os nove índices calculados, seis foram utilizadas em uma análise de componentes principais (ACP), para verificar se as parcelas poderiam ser ordenadas em função das características de luz. Estas seis características foram escolhidas por representarem três características do ambiente de luz, a quantidade total de luz que atravessa o dossel (ABTOT e LTRTOT), a concentração da luz na região do zênite (PCABZEN e MAXPTL) e a dispersão da luz nas regiões periféricas da fotografia (FRABCIR3 e CV4CIR), que refletem a presença e a importância relativa das aberturas laterais nas parcelas analisadas.

Relações entre a vegetação e as características de luz

Para as análises relacionando as plantas com o ambiente de luz foram utilizadas apenas as plantas abaixo de 1 m, por estarem abaixo do plano da fotografia e, portanto, representarem as plantas sujeitas às variáveis medidas por este método.

As plantas foram divididas em duas classes de altura: a) abaixo de 0,2 m e b) entre 0,2 e 1 m e para cada classe de altura foi verificado, com uma análise de regressão linear simples, se havia relação entre a densidade de indivíduos e os escores das parcelas nos dois primeiros eixos da análise de componentes principais. Os escores foram usados como variáveis sintéticas de luz, já que os índices originais mostraram-se fortemente correlacionados.

Para verificar se a composição da comunidade de plantas presente nas parcelas está relacionada às características de luz analisadas, foi realizada uma análise de correspondência canônica, com os seis índices de luz utilizados na análise de componentes principais e as abundâncias das espécies de plantas entre 0,2 e 1 m de altura em cada parcela. Esta classe de altura foi a única usada, por serem estas as plantas que estavam identificadas com maior segurança. Foram eliminadas desta análise as plantas com menos de quatro indivíduos no total das três áreas, para evitar que as espécies raras tivessem grande influência nos valores dos eixos.

Para avaliar a significância dos primeiros eixos, seus autovalores foram comparados com os obtidos em 100 aleatorizações, nas quais os valores das variáveis de luz foram distribuídos ao acaso pelas parcelas.
Com este procedimento de Monte Carlo, estimam-se os autovalores esperados na ausência de correlação entre espécies e ambiente.

Finalmente, foram testadas as regressões lineares entre o número de indivíduos e os índices de luz em cada parcela para as cinco espécies de plantas mais abundantes.

Relações entre as espécies arbóreas e as características de luz

Foi utilizada uma análise de regressão simples para verificar se a densidade de plantas de espécies arbóreas entre 0,2 e 1 m de altura em cada parcela estava relacionada aos seus ambientes de luz, utilizando-se os escores dos dois primeiros eixos da análise de componentes principais.

Foi realizada uma análise de correspondência canônica entre as abundâncias das espécies arbóreas mais comuns (acima de três indivíduos) em cada parcela e os mesmos índices de luz utilizados na análise de componentes principais, para verificar se a estrutura da comunidade de espécies arbóreas estava relacionada a estas variáveis ambientais. Para avaliar a significância dos primeiros eixos foi realizado um teste de Monte Carlo com 100 aleatorizações, como descrito no item anterior.
Resultados

Relações entre a vegetação e o tipo de ambiente

No total foram amostrados 3001 indivíduos, sendo que 55,7% destes pertenciam à menor classe de altura (abaixo de 20 cm – tabela 1). Apesar de as clareiras (C) apresentarem o maior número absoluto de indivíduos amostrados (828 indivíduos), não foi encontrada diferença significativa entre o número médio de indivíduos por parcela dentro de cada ambiente para nenhuma das classes de altura analisadas (tabela 1). A maior variação entre parcelas foi observada na área de mata próxima à área queimada (MP), principalmente nas menores classes de altura, em função principalmente de uma parcela (MP5) que apresentou 213 indivíduos no total, muito acima do valor médio para as parcelas de todos os ambientes (125,04 ind./parc. - tabela 1). Na classe de altura entre 0,2 e 1 metro, o número de indivíduos nesta mesma parcela (84) foi maior que o dobro da média geral por parcela (38,46 ind/parc. - tabela 1).

Tabela 1: Número total e médio, por parcela, de indivíduos em classes de altura nos quatro ambientes analisados (C - Clareiras; SB - Sub-bosque adjacente às clareiras; F - Área queimada; MP - Sub-bosque da mata próxima à área queimada)

<table>
<thead>
<tr>
<th>Classes de altura (m)</th>
<th>Número de indivíduos</th>
<th>C (n=6)</th>
<th>SB (n=6)</th>
<th>F (n=6)</th>
<th>MP (n=6)</th>
<th>TOTAL (n=24)</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 0,20</td>
<td>Total</td>
<td>465</td>
<td>460</td>
<td>325</td>
<td>421</td>
<td>1671</td>
</tr>
<tr>
<td></td>
<td>Média (desvio)</td>
<td>77,5 (16,6)</td>
<td>76,7 (12,6)</td>
<td>54,2 (22,9)</td>
<td>70,2 (24,1)</td>
<td>69,7 (20,6)</td>
</tr>
<tr>
<td>0,2 a 5</td>
<td>Total</td>
<td>363</td>
<td>347</td>
<td>296</td>
<td>324</td>
<td>1330</td>
</tr>
<tr>
<td></td>
<td>Média (desvio)</td>
<td>60,5 (13,4)</td>
<td>57,8 (21,4)</td>
<td>49,3 (12,1)</td>
<td>54 (27,1)</td>
<td>55,4 (18,7)</td>
</tr>
<tr>
<td>0,2 a 1</td>
<td>Total</td>
<td>282</td>
<td>246</td>
<td>178</td>
<td>217</td>
<td>923</td>
</tr>
<tr>
<td></td>
<td>Média (desvio)</td>
<td>47,0 (15,6)</td>
<td>41,0 (15,6)</td>
<td>29,7 (9,4)</td>
<td>36,2 (25,5)</td>
<td>38,5 (17,6)</td>
</tr>
<tr>
<td>1 a 5</td>
<td>Total</td>
<td>81</td>
<td>101</td>
<td>118</td>
<td>107</td>
<td>407</td>
</tr>
<tr>
<td></td>
<td>Média (desvio)</td>
<td>13,5 (4,3)</td>
<td>16,8 (6,1)</td>
<td>19,7 (4,1)</td>
<td>17,8 (5,2)</td>
<td>17 (5,2)</td>
</tr>
<tr>
<td>TOTAL</td>
<td>Total</td>
<td>828</td>
<td>807</td>
<td>621</td>
<td>745</td>
<td>3001</td>
</tr>
<tr>
<td></td>
<td>Média (desvio)</td>
<td>138,0 (25,0)</td>
<td>134,5 (22,6)</td>
<td>103,5 (24,4)</td>
<td>124,2 (45,3)</td>
<td>125 (31,8)</td>
</tr>
</tbody>
</table>

ns - não significativo (ANOVA, p < 0,05) entre os valores da mesma linha
O número médio de indivíduos amostrados foi de 23 ind./m² para as Clareiras (C), 22,4 ind./m² para o sub-bosque (SB) adjacente às clareiras, 17,2 ind./m² para a área queimada (F) e 20,7 ind./m² para o sub-bosque da mata próxima (MP) à área queimada.

Em termos de riqueza observada (S_{OBS}) as clareiras apresentaram os maiores números de espécies, com exceção da classe de altura entre 1 e 5 metros, na qual a área de sub-bosque adjacente às clareiras apresentou maior riqueza de espécies (tabela 2). A área queimada apresentou a menor riqueza observada em todas as classes de altura.

Tabela 2: Riqueza observada e estimada de espécies de plantas nos quatro ambientes analisados, em cada classe de altura ($N =$ Número de indivíduos (com identificação segura); S_{OBS} =Riqueza observada de espécies; S_{EST} = Riqueza média estimada para o número comum de indivíduos (ver nota); $S_{\text{INF/SUP}}$ = Intervalos de confiança inferior/superior para riqueza estimada; Chao1 = Riqueza total estimada através do índice de Chao1; $C_{\text{INF/SUP}}$ = Intervalos de confiança inferior/superior para riqueza total estimada; d = Índice de dominância de Berger-Parker).

<table>
<thead>
<tr>
<th>Classes (m)</th>
<th>N</th>
<th>S_{OBS}</th>
<th>S_{EST}</th>
<th>S_{INF}</th>
<th>S_{SUP}</th>
<th>Chao1</th>
<th>C_{INF}</th>
<th>C_{SUP}</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,2 a 5*</td>
<td>C</td>
<td>354</td>
<td>137</td>
<td>96,9 a</td>
<td>89,29</td>
<td>104,59</td>
<td>222,2 c</td>
<td>217,78</td>
<td>226,68</td>
</tr>
<tr>
<td></td>
<td>SB</td>
<td>340</td>
<td>129</td>
<td>95,2 ab</td>
<td>87,74</td>
<td>102,75</td>
<td>214,6 c</td>
<td>209,74</td>
<td>219,52</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>294</td>
<td>104</td>
<td>82,3 b</td>
<td>75,57</td>
<td>88,98</td>
<td>308,8 a</td>
<td>292,50</td>
<td>325,10</td>
</tr>
<tr>
<td></td>
<td>MP</td>
<td>314</td>
<td>114</td>
<td>87,0 ab</td>
<td>80,17</td>
<td>93,81</td>
<td>242,1 b</td>
<td>233,64</td>
<td>250,60</td>
</tr>
<tr>
<td>0,2 a 1$^\circ$</td>
<td>C</td>
<td>276</td>
<td>115</td>
<td>65,8 a</td>
<td>58,23</td>
<td>73,42</td>
<td>213,0 b</td>
<td>207,07</td>
<td>218,93</td>
</tr>
<tr>
<td></td>
<td>SB</td>
<td>239</td>
<td>100</td>
<td>64,3 a</td>
<td>57,57</td>
<td>71,18</td>
<td>216,3 b</td>
<td>207,75</td>
<td>224,61</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>176</td>
<td>71</td>
<td>56,2 a</td>
<td>50,98</td>
<td>61,40</td>
<td>264,6 a</td>
<td>239,67</td>
<td>289,53</td>
</tr>
<tr>
<td></td>
<td>MP</td>
<td>209</td>
<td>78</td>
<td>56,0 a</td>
<td>50,17</td>
<td>61,88</td>
<td>159,4 c</td>
<td>151,68</td>
<td>167,08</td>
</tr>
<tr>
<td>1 a 5$^\circ$</td>
<td>C</td>
<td>78</td>
<td>53</td>
<td>40,1 a</td>
<td>36,38</td>
<td>43,74</td>
<td>179,0 ab</td>
<td>161,77</td>
<td>196,23</td>
</tr>
<tr>
<td></td>
<td>SB</td>
<td>101</td>
<td>62</td>
<td>39,8 ab</td>
<td>35,06</td>
<td>44,51</td>
<td>183,0 a</td>
<td>168,45</td>
<td>197,55</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>118</td>
<td>51</td>
<td>30,4 b</td>
<td>25,56</td>
<td>35,18</td>
<td>147,3 b</td>
<td>132,62</td>
<td>162,04</td>
</tr>
<tr>
<td></td>
<td>MP</td>
<td>105</td>
<td>58</td>
<td>36,4 ab</td>
<td>31,53</td>
<td>41,26</td>
<td>151,4 b</td>
<td>139,89</td>
<td>162,89</td>
</tr>
</tbody>
</table>

* Riqueza média estimada (S_{EST}) para 200 indivíduos; # Riqueza média estimada (S_{EST}) para 120 indivíduos; $^\circ$ Riqueza média estimada (S_{EST}) para 55 indivíduos.

Obs.: letras diferentes em sobrescrito representam diferenças significativas ($p<0,05$), apenas dentro da classe de tamanho, para cada índice separadamente.
Entretanto, a riqueza observada encontra-se diretamente relacionada com o número de indivíduos amostrados (tabela 3). Quando os quatro ambientes são considerados em conjunto, foi observada uma relação positiva e significativa entre o número de indivíduos e o número de espécies, em todas as classes de altura. Para as áreas de sub-bosque (SB e MP) as relações também foram significativas e fortes em todas as classes. Em clareiras, somente na maior classe de altura foi observada relação significativa, enquanto na área queimada não foi observada relação significativa em nenhuma classe (tabela 3).

Tabela 3: Resultados das análises de regressão simples entre densidade de indivíduos e riqueza observada de espécies por parcela.

<table>
<thead>
<tr>
<th>Ambientes</th>
<th>0,21 a 5</th>
<th>0,21 a 1</th>
<th>1 a 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(n = 6)</td>
<td>r² = 0.238</td>
<td>r² = 0.515</td>
<td>r² = 0.826</td>
</tr>
<tr>
<td></td>
<td>p = 0.326 ns</td>
<td>p = 0.109 ns</td>
<td>p = 0.012</td>
</tr>
<tr>
<td>SB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(n = 6)</td>
<td>r² = 0.995</td>
<td>r² = 0.923</td>
<td>r² = 0.975</td>
</tr>
<tr>
<td></td>
<td>p < 0.001</td>
<td>p = 0.002</td>
<td>p < 0.001</td>
</tr>
<tr>
<td>F</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(n = 6)</td>
<td>r² = 0.573</td>
<td>r² = 0.552</td>
<td>r² = 0.535</td>
</tr>
<tr>
<td></td>
<td>p = 0.081 ns</td>
<td>p = 0.091 ns</td>
<td>p = 0.098 ns</td>
</tr>
<tr>
<td>MP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(n = 6)</td>
<td>r² = 0.926</td>
<td>r² = 0.905</td>
<td>r² = 0.764</td>
</tr>
<tr>
<td></td>
<td>p = 0.002</td>
<td>p = 0.004</td>
<td>p = 0.023</td>
</tr>
<tr>
<td>TSODOS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(n = 24)</td>
<td>r² = 0.742</td>
<td>r² = 0.773</td>
<td>r² = 0.671</td>
</tr>
<tr>
<td></td>
<td>p < 0.001</td>
<td>p < 0.001</td>
<td>p < 0.001</td>
</tr>
</tbody>
</table>

Com a eliminação do efeito da densidade de indivíduos sobre a riqueza de espécies, pelo cálculo do número estimado de espécies (ver metodologia) para um número comum de indivíduos, podemos observar que a área queimada (F) apresenta um número significativamente menor de espécies (S_{EST}) em relação às clareiras (considerando que os intervalos de confiança - S_{INF} e S_{SUP} - não se sobrepõem), exceto para a classe de altura entre 0,2 e 1 metro, na qual não foram observadas diferenças. As áreas de sub-bosque (SB e MP), não diferiram entre si nem das outras áreas em nenhuma classe de altura (tabela 2).

As curvas de acúmulo médio de espécies (figura 1) mostram que, à medida que compomos números menores de indivíduos entre os ambientes, estas diferenças diminuem, ao contrário de quando compomos maiores números de indivíduos e notamos que as diferenças entre clareiras, área queimada e
Figura 1: Curva média de acumulação de espécies para os quatro ambientes analisados. A) Indivíduos entre 0,2 e 5 m de altura; B) Indivíduos entre 0,2 e 1 m; C) Indivíduos entre 1 e 5 m
mata próxima se acentuam tanto por um afastamento maior das curvas como pelo fato dos intervalos de confiança diminuírem nas extremidades das curvas (Gotteli & Colwell, 2001).

A riqueza total de espécies estimada pelo estimador Chao1 para a área queimada, tanto para o conjunto total de plantas analisadas, como para a menor classe de altura (0,2 a 1 m), foi significativamente maior do que a de todos os outros ambientes. Entretanto, na maior classe de altura (1 a 5 metros), a riqueza total estimada para a área queimada foi significativamente menor que para clareiras. A área de mata próxima à área queimada (MP) apresentou a menor riqueza total estimada na menor classe de altura, mas não apresentou diferenças em relação às clareiras e à área queimada na maior classe de altura. Em nenhuma classe de altura a riqueza total estimada para as clareiras diferiu do sub-bosque adjacente.

A comunidade de plantas da área queimada (F) apresentou os maiores valores para o índice de dominância de Berger-Parker, tanto para o conjunto todo de plantas como para a maior classe de altura. Esta forte dominância se deve a alta abundância da espécie Scleria secans - uma planta escandente, conhecida popularmente como tiririca - em todas as classes de altura (anexo 1). Já na menor classe de altura o maior índice de Berger-Parker é observado para a área de mata próxima à área queimada (MP), sendo Psychotria purpurascens - um sub-arbusto, que dificilmente atinge mais de 1 metro de altura - a espécie mais abundante. Na maior classe de altura, as clareiras apresentaram o segundo maior valor de dominância, e a espécie mais abundante nestes locais foi Merostachys sp, uma espécie de bambu escandente que atinge mais de 5 metros de altura. O sub-bosque adjacente às clareiras apresentou menor dominância em todas as situações.

Ao comparar a composição de espécies entre os quatro ambientes com a análise MRPP (Multiple Response Permutation Procedure) foi possível observar uma diferença significativa entre estes ambientes, quando considerados todos os indivíduos acima de 0,2 m (A = 0,084; p < 0,0001). Esta análise não possui teste "a posteriori", mas permite que as análises sejam feitas excluindo ambientes, possibilitando verificar qual(is) ambiente(s) difere(m) dos outros. Dessa forma, foi realizada uma nova análise excluindo as parcelas da área queimada que, pela visualização dos dois primeiros eixos da análise DCA (Detrended Correspondence Analysis), se apresentavam separadas das demais áreas (figura 2a). Esta análise ainda indicou diferenças significativas entre os três ambientes analisados (A = 0,0204; p = 0,0296), porém quando estes três ambientes (C, SB e MP) foram comparados entre si, não foram
Figura 2: Coordenadas das parcelas nos dois primeiros eixos de DCA, calculados com a abundância das espécies em cada parcela. A) Considerando todos os indivíduos acima de 0,2 m de altura; B) Indivíduos entre 0,2 e 1 m de altura; C) Indivíduos entre 1 e 5 m de altura. (▲ = Clareiras naturais; ● = Sub-bosque; ▽ = Área queimada; ● = Mata próxima à área queimada)
observadas diferenças significativas entre eles, com apenas uma fraca tendência entre clareiras e a mata próxima da área de fogo \((A = 0,0189; p = 0,0636)\).

Na análise DCA realizada com o conjunto total de plantas \((0,2 \text{ a } 5 \text{ m})\) as parcelas da mata próxima (MP) encontram-se, no eixo 1, em uma posição intermediária entre as parcelas da área queimada (F) e o conjunto das parcelas de clareiras (C) e de sub-bosque (SB) adjacente às clareiras (Figura 2a). No eixo 2, a parcela MP4 se distancia das demais parcelas da área de mata próxima. Este distanciamento se deve em grande parte à ausência de *Merostachys sp* e *Psychotria purpurascens*, e à presença de um maior número de indivíduos de *Philodendron surinamense* nesta parcela. A parcela C1 também se distancia das demais parcelas de clareiras neste eixo, em função do mesmo conjunto de espécies. Os dois eixos juntos explicam 59,6% da variância observada.

Para o conjunto de indivíduos acima de 0,2 metros de altura, a área queimada apresentou o maior número de espécies indicadoras \((10)\), de acordo com a Análise de Espécies Indicadoras (ISA), sendo as principais *Pteridium aquilinum*, umapteridófita sub-arbustiva, *Scleria secans*, uma Cyperaceae com hábito escandente e *Miconia mirabilis*, uma Melastomataceae arbórea frequentemente associada a ambientes perturbados antropicamente (tabela 4). As clareiras apresentaram três espécies indicadoras, sendo duas espécies arbóreas, *Pourouma mollis* e *Protium heptaphyllum*, e uma Cyclanthaceae hemiepipífita *Evodianthus funifer*. No sub-bosque adjacente às clareiras, duas espécies de Araceae hemiepipífitas, *Philodendron surinamensis* e *Rhodospatha latifolia*, tiveram valor significativo de indicação. No sub-bosque da área de mata próxima à área queimada somente a palmeira sub-arbustiva *Geonoma pauciflora* foi considerada uma espécie indicadora.

Quando a análise de MRPP foi realizada apenas com os indivíduos da menor classe de altura, entre os quatro ambientes, também foi observada uma diferença significativa \((A = 0,0621; p < 0,0001)\). Quando a área queimada foi excluída das análises, não foram observadas diferenças entre os três ambientes \((A = 0,0162; p = 0,0608)\). Pela análise visual dos dois primeiros eixos da DCA, observa-se que a maioria das parcelas da área queimada encontram-se agrupadas em relação ao eixo 1, com exceção da parcela F1 que se encontra mais próxima de um conjunto de parcelas da área de mata próxima à área queimada. Três parcelas da área de mata próxima à área queimada (MP) encontram-se mais perto das parcelas da área queimada (F) no eixo 1, sugerindo uma similaridade na composição de espécies entre estas parcelas,
porém, parcelas das outras áreas (SB e C) se misturam com as demais parcelas de MP (figura 2b), indicando que a similaridade com a parcela da área queimada não é uma característica do ambiente MP como um todo. Os dois primeiros eixos explicam 37,8% da variância observada.

Nesta menor classe de altura, algumas espécies listadas para o conjunto todo deixaram de ser indicadoras da área queimada, permanecendo espécies herbáceas como *Becquerelia clarkei*, sub-arbustivas, como *Cyrtocimura scorioides* e *Miconia* sp2, e uma arbórea, *Henriettea succosa*, além das espécies listadas acima, que foram indicadoras da área queimada em todas as classes de altura. Em clareiras permaneceram as mesmas espécies e no sub-bosque adjacente foi acrescentada uma espécie de pteridófito herbácea, *Stigmatopteris guianensis*. Na mata próxima à área queimada nenhuma espécie foi indicadora nesta classe de tamanho (tabela 4).

Tabela 4: Lista das espécies indicadoras dos quatro ambientes, em cada classe de altura, de acordo com a Análise de Espécies Indicadoras (ISA). Os valores entre parênteses indicam os valores da probabilidade (p), que representa a proporção de vezes que o Índice de Indicação do conjunto de dados aleatorizados (Monte Carlo) excedeu ou igualou os Índices de Indicação do conjunto real de dados (ver metodologia). As espécies estão ordenadas pelos valores de p.

<table>
<thead>
<tr>
<th>Classes de altura (m)</th>
<th>0,21 a 5</th>
<th>0,2 a 1</th>
<th>1 a 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pourorma mollis (0,008)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protium heptaphyllum (0,026)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Evodianthus funifer (0,038)</td>
<td>Protium heptaphyllum (0,021)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pourorma mollis (0,044)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Philodendron surinamensis (0,009)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rhodospatha latifolia (0,031)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Philodendron surinamensis (0,020)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rhodospatha latifolia (0,026)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stigmatopteris guianensis (0,042)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pteridium aquilinum (0,001)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scleria secans (0,001)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Miconia mirabilis (0,002)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Passiflora haematostigma (0,002)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Becquerelia clarkei (0,003)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cecropia pachystachya (0,005)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cyrtocimura scorioides (0,037)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Miconia sp2 (0,037)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Henriettea succosa (0,038)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vismia guianensis (0,043)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geonoma pauciflora (0,037)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scleria secans (0,001)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Miconia mirabilis (0,002)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Passiflora haematostigma (0,002)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cecropia pachystachya (0,039)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pteridium aquilinum (0,040)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vismia guianensis (0,040)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Para a maior classe de altura, um resultado similar foi observado, com diferença significativa ($A = 0.0751; p < 0.0001$) entre os quatro ambientes e sem diferenças ao excluir a área queimada ($A = 0.0121; p = 0.1453$). Estes resultados confirmam a análise visual dos dois primeiros eixos da DCA, onde se observa que as parcelas da área queimada encontram-se agrupadas e isoladas das parcelas das demais áreas (C, SB e MP), que parecem formar um bloco único no outro extremo do eixo1 (figura 2c). Os dois primeiros eixos explicam 39% da variância observada.

Nesta maior classe de altura, somente a área queimada apresentou espécies indicadoras, sendo que as espécies indicadoras da classe menor não permaneceram (com exceção das três espécies que foram indicadoras em todas as classes analisadas) e foram substituídas pela arbórea *Cecropia pachystachya*, pela arbustiva *Vismia guianensis* e pela liana *Passiflora haematostigma*.

Algumas espécies bastante abundantes em determinados ambientes (Anexo1) não foram consideradas indicadoras, por estarem presentes em mais de um ambiente ou por estarem concentradas em poucas parcelas, como *Psychotria purpurascens*, *Euterpe edulis*, *Merostachys sp* e *Becquerelia cymosa*.

Espécies arbóreas

Considerando apenas os indivíduos pertencentes a espécies de hábito arbóreo, incluindo as árvores e arvoretas, foram amostrados 409 indivíduos entre 0,2 e 5 m de altura, representando aproximadamente um terço dos indivíduos amostrados neste estudo.

Em relação ao número médio de indivíduos por parcela, somente a área queimada e as clareiras diferiram, com a área queimada apresentando um número significativamente menor de indivíduos de hábito arbóreo que as clareiras (ANOVA; $F = 3,498; p = 0,0035$). Os outros ambientes (MP e SB) não diferiram de clareiras, nem da área queimada em número médio de indivíduos de hábito arbóreo (tabela 5).

Da mesma forma que para a comunidade toda, foram observadas relações positivas entre o número de indivíduos e o número de espécies arbóreas, quando os quatro ambientes foram analisados em conjunto (regressão linear simples; $r^2 = 0,843; p < 0,001, n = 24$). Quando os ambientes foram comparados separadamente, a área queimada foi a única a não apresentar uma relação significativa ($r^2 = 0,569; p = 0,083; n = 6$).
Em função desta forte relação, a comparação da riqueza de espécies arbóreas entre os ambientes foi realizada observando-se as curvas de acúmulo médio de espécies e comparando os valores médios estimados para 60 indivíduos e os respectivos intervalos de confiança, mostrando que somente a área queimada apresentou um menor número de espécies arbóreas em relação às clareiras e ao sub-bosque adjacente às clareiras (tabela 5), mas não diferiu da área de mata próxima à área queimada. As clareiras não apresentaram um maior número de espécies arbóreas em relação ao sub-bosque adjacente, nem à mata próxima da área queimada.

Tabela 5: Densidade de indivíduos e Riqueza observada (S_{OBS}) e estimada (S_{EST}) para as espécies arbóreas acima de 0,2 metros de altura. S_{INF} representa o intervalo de confiança inferior e S_{SUP}, o intervalo de confiança superior.

<table>
<thead>
<tr>
<th>Ambientes</th>
<th>Nº total de indivíduos</th>
<th>Nº médio de indivíduos</th>
<th>S_{OBS}</th>
<th>S_{EST}</th>
<th>S_{INF}</th>
<th>S_{SUP}</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>130</td>
<td>21,7ª (± 5,99)</td>
<td>59</td>
<td>36,3ª</td>
<td>31,54</td>
<td>41,13</td>
</tr>
<tr>
<td>SB</td>
<td>123</td>
<td>20,5ªª (±10,62)</td>
<td>57</td>
<td>36,2ª</td>
<td>31,39</td>
<td>41,06</td>
</tr>
<tr>
<td>F</td>
<td>72</td>
<td>12,0ª (± 3,89)</td>
<td>32</td>
<td>28,5ª</td>
<td>25,74</td>
<td>31,23</td>
</tr>
<tr>
<td>MP</td>
<td>84</td>
<td>14,0ª (± 4,69)</td>
<td>41</td>
<td>33,6ªª</td>
<td>29,97</td>
<td>37,22</td>
</tr>
</tbody>
</table>

* - Riqueza média estimada para 80 indivíduos
Obs.: as letras em sobrescrito indicam diferenças significativas ($p < 0,05$) dentro da mesma coluna

Quando a composição de espécies arbóreas foi comparada entre os quatro ambientes, houve diferença significativa (MRPP; $A = 0,07118$; $p < 0,0001$) e quando a área de fogo foi excluída, nenhuma diferença ($A = 0,0079$; $p = 0,2275$) foi encontrada entre os três ambientes (C, SB e MP), resultados similares aos apresentados para a comunidade toda.
As espécies arbóreas *Miconia mirabilis* ($p = 0,001$), *Cecropia pachystachya* ($p = 0,0035$) e *Henriettea succosa* ($p = 0,0365$), foram indicadoras significativas da área queimada e *Pouroma mollis* e *Protium heptaphyllum*, indicadoras do ambiente de clareiras. Os outros ambientes não apresentaram espécies arbóreas com índices significativos de indicação.
Luz

A porcentagem total de abertura no dossel, estimada pela análise das fotografias hemisféricas, não diferiu entre os ambientes, entretanto a área queimada apresentou uma enorme variação, com algumas parcelas apresentando uma grande abertura, enquanto outras parcelas apresentaram plantas logo acima da altura da lente, cujas folhas encobriram a área da fotografia (Figura 3; Tabela 6). Ao eliminar a área queimada da análise, não foram observadas diferenças significativas entre os outros três ambientes (C, SB e MP).

![Boxplot](image)

Figura 3: Distribuição dos valores de porcentagem de abertura total do dossel (ABTOT), para os quatro ambientes. A linha central dentro da caixa representa a mediana dos dados, o limite inferior e o limite superior da caixa representam o primeiro e o terceiro quartis, respectivamente. Os limites das linhas representam a amplitude de 95% dos dados.

Em função das diferenças observadas entre as parcelas da área queimada, os valores de outros índices de luminosidade para este ambiente também apresentaram grande variação e, na maioria dos casos, os valores observados na área queimada representam os valores máximos ou mínimos observados entre todos os ambientes (figura 4). Por exemplo, no caso dos índices MAXPTL (Duração máxima dos pontos de luz - "sunflecks") e PTLAC4 (Porcentagem dos pontos de luz com duração acima de 4 minutos) as parcelas mais abertas da área queimada apresentaram valores muito acima das outras áreas, e para os índices NUMPTL (Número de pontos de luz) e PCLDIR
Figura 4: Distribuição dos valores dos Índices de luz nos diferentes ambientes (Ver metodologia para descrição dos índices). Os asteriscos indicam valores extremos ("outliers").
(Porcentagem de luz direta) as parcelas com vegetação mais fechada na área queimada apresentaram valores abaixo dos observados para as outras áreas. Para o índice LTRTOT (Luz transmitida total) a área queimada apresentou tanto os valores mais altos quanto os mais baixos observados (figura 4).

Esses valores muito altos ou muito baixos tiveram grande influência sobre os resultados das análises propostas para comparar as médias dos índices entre os ambientes. Então, considerando que quatro das seis parcelas da área queimada apresentaram valores muito altos ou muito baixos, esta área foi excluída das análises.

Além da porcentagem de abertura total (ABTOT), os três ambientes (C, SB e MP) também não apresentaram diferenças (ANOVA, tabela 6) em relação à porcentagem de luz direta que atinge o chão (PCLDIR), nem em relação à porcentagem de pontos de luz ("sunflecks") que apresentaram duração acima de quatro minutos (PTLAC4).

Tabela 6: Médias dos índices de luminosidade nos quatro ambientes (Ver metodologia para descrição dos índices). Dentro dos parênteses, o desvio padrão.

<table>
<thead>
<tr>
<th>Ambientes</th>
<th>CV4CIR</th>
<th>FRABCIR3</th>
<th>NUMPTL</th>
<th>MAXPTL</th>
<th>PTLAC4</th>
<th>PCLDIR</th>
<th>LTRTOT</th>
<th>PCABZEN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>%</td>
<td>%</td>
<td>min</td>
<td>%</td>
<td>%</td>
<td>Mols/m²/d</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>1,483</td>
<td>27,1</td>
<td>3095,6</td>
<td>141,33</td>
<td>37,5</td>
<td>59,4</td>
<td>853,50</td>
<td>39,7</td>
</tr>
<tr>
<td></td>
<td>(± 0,171)</td>
<td>(± 19,2)</td>
<td>(± 1147,29)</td>
<td>(± 29,52)</td>
<td>(± 5,1)</td>
<td>(± 3,1)</td>
<td>(± 132,31)</td>
<td>(± 8,8)</td>
</tr>
<tr>
<td>SB</td>
<td>0,954</td>
<td>68,7</td>
<td>4845,0</td>
<td>69,33</td>
<td>34,3</td>
<td>55,5</td>
<td>618,67</td>
<td>21,0</td>
</tr>
<tr>
<td></td>
<td>(± 0,114)</td>
<td>(± 18,1)</td>
<td>(± 889,7)</td>
<td>(± 25,72)</td>
<td>(± 4,3)</td>
<td>(± 5,5)</td>
<td>(± 106,47)</td>
<td>(± 6,6)</td>
</tr>
<tr>
<td>F</td>
<td>0,874</td>
<td>64,6</td>
<td>4269,0</td>
<td>132,67</td>
<td>43,7</td>
<td>54,6</td>
<td>1086,67</td>
<td>17,2</td>
</tr>
<tr>
<td></td>
<td>(± 0,257)</td>
<td>(± 18,4)</td>
<td>(± 1755,9)</td>
<td>(± 110,83)</td>
<td>(± 9,8)</td>
<td>(± 8,2)</td>
<td>(± 919,19)</td>
<td>(± 11,2)</td>
</tr>
<tr>
<td>MP</td>
<td>0,970</td>
<td>74,0</td>
<td>5560,3</td>
<td>57,00</td>
<td>32,6</td>
<td>56,5</td>
<td>614,83</td>
<td>18,6</td>
</tr>
<tr>
<td></td>
<td>(± 0,206)</td>
<td>(± 16,5)</td>
<td>(± 715,4)</td>
<td>(± 10,02)</td>
<td>(± 3,9)</td>
<td>(± 4,0)</td>
<td>(± 75,53)</td>
<td>(± 3,5)</td>
</tr>
</tbody>
</table>

Obs.: as letras diferentes em uma mesma coluna indicam médias significativamente diferentes (ANOVA e Teste a posteriori de Tukey, p < 0,05). A área queimada (F) não foi incluída nas análises.

Por outro lado, as clareiras diferiram dos outros ambientes (SB e MP) em relação aos outros índices, apresentando maior porcentagem de área aberta na região zenital (PCABZEN), maior quantidade de luz transmitida total (LTRTOT), maior tempo de duração máxima dos pontos de luz (MAXPTL) e maior variação na distribuição das aberturas no dossel, expresso pelo índice CV4CIR. Além disso, as clareiras apresentaram menor porcentagem de aberturas laterais (FRABCIR3) que os outros ambientes e menor
número de pontos de luz (NUMPTL) que a área de mata próxima à área queimada, mas não diferindo do sub-bosque adjacente. O sub-bosque adjacente às clareiras (SB) e o sub-bosque da área de mata próxima da área de fogo (MP) não diferiram em relação a nenhum dos índices analisados (tabela 6; figura 4).

Por ter sido verificado, em uma análise prévia, que as parcelas com valores muito altos ou muito baixos exerceram uma grande influência nas correlações entre as variáveis analisadas, a área queimada também foi excluída da análise de componentes principais.

Nesta análise, em que foram considerados seis índices de luminosidade, foi possível verificar uma separação entre as parcelas das clareiras e as parcelas de sub-bosque (SB e MP) no primeiro eixo (figura 5). Esta separação é definida principalmente pela maior presença de aberturas laterais (FRABCIR3) e pela menor quantidade e menor concentração de luz nas parcelas localizadas mais à direita, e consequentemente, com as clareiras (localizadas à esquerda) apresentando maior quantidade (LRTTDT, MAXPTL) e concentração de luz (CV4CIR, PCABZEN) e baixíssima freqüência de aberturas laterais (FRABCIR3) (tabela 7).

![Diagrama de Análise de Componentes Principais](image)

Figura 5: Coordenadas das parcelas nos dois primeiros eixos da Análise de Componentes Principais em função dos Índices de luminosidade.
O eixo 2 é explicado mais fortemente pela variável ABTOT, que representa a porcentagem total de abertura no dossel, indicando portanto, que as parcelas com os maiores escores apresentam mais abertura no dossel. Os dois primeiros eixos juntos explicam 91,6% da variância observada, sendo 66,9% referente ao primeiro eixo e 24,7% ao segundo eixo (tabela 7).

Tabela 7: Autovalores dos quatro primeiros eixos da análise de componentes principais dos índices de Luminosidade. As duas últimas linhas indicam os autovaleores e o percentual de variância explicada pelos eixos. Ver metodologia para descrição dos índices.

<table>
<thead>
<tr>
<th>Índices de Luminosidade</th>
<th>Eixo 1</th>
<th>Eixo 2</th>
<th>Eixo 3</th>
<th>Eixo 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABTOT</td>
<td>-0,1679</td>
<td>0,7507</td>
<td>-0,3752</td>
<td>0,2002</td>
</tr>
<tr>
<td>CV4CIR</td>
<td>-0,4347</td>
<td>-0,3425</td>
<td>-0,2221</td>
<td>-0,4760</td>
</tr>
<tr>
<td>FRABCIR3</td>
<td>0,4339</td>
<td>0,3085</td>
<td>0,5999</td>
<td>-0,1566</td>
</tr>
<tr>
<td>MAXPTL</td>
<td>-0,4602</td>
<td>0,1557</td>
<td>0,5717</td>
<td>-0,3490</td>
</tr>
<tr>
<td>LTRTOT</td>
<td>-0,4213</td>
<td>0,4050</td>
<td>-0,0054</td>
<td>-0,1718</td>
</tr>
<tr>
<td>PCABZEN</td>
<td>-0,4531</td>
<td>-0,1889</td>
<td>0,3509</td>
<td>0,7466</td>
</tr>
</tbody>
</table>

Autovalores: 4,016 1,481 0,231 0,162
Variância explicada (%): 66,9% 24,7% 3,8% 2,7%

A relação entre os escores dos primeiros eixos da análise de componentes principais e a densidade de plantas abaixo de 0,2 m, assim como para as plantas entre 0,2 e 1 m de altura não foi significativa, indicando que as características de luz analisadas não estão relacionadas com um aumento ou uma diminuição do número de indivíduos nas parcelas analisadas (tabela 8).

Considerando apenas as espécies arbóreas, foi observada uma fraca tendência de diminuição do número de indivíduos à medida que aumentam os escores do eixo 1, sugerindo que indivíduos pequenos (entre 0,2 e 1 m de altura) das espécies arbóreas ocorrem em menor número nas parcelas com menor quantidade e menor concentração de luz.

Entre as espécies mais abundantes da amostra, somente Evodianthus funifer apresentou uma relação significativa e negativa (tabela 8) com os escores do eixo 1, indicando que os indivíduos pequenos desta espécie ocorreram preferencialmente em locais com maior quantidade e concentração de luz, como as clareiras.
Tabela 8: Coeficiente de determinação e significância das regressões lineares simples entre os escores dos dois primeiros eixos da Análise de Componentes Principais, apresentada na figura 5, e a densidade de indivíduos de diferentes grupos de plantas e das cinco espécies mais abundantes (n =18).

<table>
<thead>
<tr>
<th>Classe de altura (m)</th>
<th>Eixo 1</th>
<th></th>
<th></th>
<th></th>
<th>Eixo 2</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>TODAS AS PLANTAS</td>
<td>< 0,20</td>
<td>0,002</td>
<td>0,879</td>
<td>-0,33</td>
<td>0,143</td>
<td>0,121</td>
<td>5,32</td>
<td></td>
</tr>
<tr>
<td>TODAS AS PLANTAS</td>
<td>0,21 a 1</td>
<td>0,063</td>
<td>0,315</td>
<td>-2,30</td>
<td>0,002</td>
<td>0,874</td>
<td>0,61</td>
<td></td>
</tr>
<tr>
<td>SOMENTE ARBÓREAS</td>
<td>0,21 a 1</td>
<td>0,171</td>
<td>0,088</td>
<td>-1,23</td>
<td>0,034</td>
<td>0,463</td>
<td>0,90</td>
<td></td>
</tr>
<tr>
<td>Psychotria purpurascens (RUBI)</td>
<td>0,21 a 1</td>
<td>0,000</td>
<td>0,946</td>
<td>-0,04</td>
<td>0,027</td>
<td>0,518</td>
<td>-0,64</td>
<td></td>
</tr>
<tr>
<td>Evodianthus funifer (CYCL)</td>
<td>0,21 a 1</td>
<td>0,285</td>
<td>0,023</td>
<td>-1,04</td>
<td>0,089</td>
<td>0,229</td>
<td>-0,95</td>
<td></td>
</tr>
<tr>
<td>Euterpe edulis (AREC)</td>
<td>0,21 a 1</td>
<td>0,038</td>
<td>0,440</td>
<td>-0,15</td>
<td>0,070</td>
<td>0,288</td>
<td>0,34</td>
<td></td>
</tr>
<tr>
<td>Rhodospatha latifolia (ARAC)</td>
<td>0,21 a 1</td>
<td>0,007</td>
<td>0,743</td>
<td>-0,10</td>
<td>0,010</td>
<td>0,700</td>
<td>-0,19</td>
<td></td>
</tr>
<tr>
<td>Philodendron surinamensis (ARAC)</td>
<td>0,21 a 1</td>
<td>0,029</td>
<td>0,503</td>
<td>0,15</td>
<td>0,009</td>
<td>0,708</td>
<td>0,14</td>
<td></td>
</tr>
</tbody>
</table>

* Coeficiente "b" da equação de regressão linear, que indica a inclinação da reta com melhor ajuste.

A espécie mais abundante na amostragem, *Psychotria purpurascens*, um sub-arbusto da família Rubiaceae, não apresentou nenhuma relação com os indices de luminosidade. Esta espécie foi encontrada em todos os ambientes, inclusive na área queimada (Anexo 1).

Euterpe edulis, o palmiteiro, não apresentou relações significativas com as características de luminosidade, representadas pelos escores do eixo 1 da ACP, quando foram consideradas as 18 parcelas amostradas. Entretanto, quando as cinco parcelas em que a espécie não foi encontrada, foram retiradas da análise, foi observada uma relação positiva e significativa ($r^2 = 0,329; p = 0,041$ e $n=13$) entre a densidade de indivíduos desta espécie e os escores do eixo 2 da ACP. Estes resultados sugerem que os indivíduos pequenos de *E. edulis* ocorrem em ambientes em que as aberturas no dossel (ABTOT) e a luz total transmitida (LRTTOT) são maiores, pois estas são as variáveis mais importantes para o eixo 2.

Não foi encontrada nenhuma relação entre a estrutura da comunidade de plantas mais abundantes (65 espécies com mais de quatro indivíduos) entre 0,2 e 1 metro de altura e as variáveis ambientais analisadas com a análise de correspondência canônica. Os três primeiros eixos explicam apenas 23,3% da variância observada (eixo1 = 9,8%; eixo 2 = 7,7%; eixo3 = 5,9%) e seus autovalores não diferiram significativamente
do esperado ao acaso (respectivamente p = 0,41; p = 0,49 e p = 0,71), indicando que os principais padrões de co-ocorrência de plantas desta classe de altura pelas parcelas não estão correlacionados com as características de luminosidade analisadas.

Também não foi encontrada relação da ordenação, pela ACC, das espécies arbóreas mais abundantes (27 espécies com três ou mais indivíduos) entre 0,2 e 1 m de altura com as variáveis ambientais. Os três primeiros eixos também explicam menos de 25% (eixo 1 = 9,8%; eixo 2 = 8,2%; eixo 3 = 6,9%) e seus autovalores não diferiram do esperado pelo acaso (respectivamente, p = 0,51; p = 0,52; p = 0,43).
Discussão

Até o momento, a quantificação de todos os indivíduos de pequeno e médio porte, incluindo todos os hábitos de crescimento, entre ambientes com diferentes graus de perturbação em floresta tropical não havia sido realizada, dificultando a comparação das densidades de indivíduos com outros estudos. A maior parte dos estudos similares avaliaram hábitos de crescimento específicos, principalmente espécies arbóreas e arbustivas em ambientes perturbados (Brokaw, 1985; Uhl et al., 1988; Tabarelli & Mantovani, 1998; Nicotra et al., 1999; Carvalho et al., 2000; Denslow & Guzman, 2000; Dickinson et al., 2000), ou avaliaram todos os hábitos de crescimento somente em ambientes não perturbados (Gentry & Dodson, 1987; Galeano et al., 1998).

Guariguata et al. (1997) avaliaram a estrutura da vegetação, incluindo todas as formas de vida em áreas não perturbadas e áreas de florestas secundárias. Na classe de tamanho menor que 1,22/m² em uma área secundária e 1,95/m² em uma área não perturbada, muito abaixo dos valores observados no presente estudo, que variou entre 4,9/m² para a área queimada e 7,8/m² nas clareiras na mesma classe de altura. Na classe de altura entre 1 e 5 metros, Guariguata et al. (1997) encontraram de 0,51 a 0,79 ind./m², valores inferiores aos obtidos no presente estudo, que variaram de 2,25 a 3,30 ind./m².

A maior densidade de plantas lenhosas obtida por Denslow & Guzman (2000), em áreas de floresta com 20 anos, foi 2,25 ind./m² na classe de altura entre 0,2 e 1 m e é bastante similar ao valor médio obtido na área queimada do presente estudo, estimado para as plantas lenhosas (incluindo árvores, arvoretas, arbustos, sub-arbustos e trepadeiras lenhosas) em 2,5 ind/m². Nicotra et al. (1999) também encontraram valores entre 1,25 e 2 ind/m² nesta classe de altura para plantas lenhosas em ambientes perturbados e não perturbados. Considerando que os estudos de Guariguata et al. (1997) e de Nicotra et al. (1999) foram realizados na mesma região na Costa Rica, estes resultados sugerem que o maior número de indivíduos observado no presente estudo em relação ao trabalho de Guariguata et al. (1997) se deve essencialmente às plantas não-lenhosas, que não foram analisadas por Nicotra et al. (1999).

Entre os ambientes analisados no presente estudo não houve diferença no número médio de indivíduos, contrariando a idéia de que, após uma perturbação por fogo, um maior número de indivíduos poderia se
estabelecer em função da grande entrada de nutrientes e da liberação da competição acima e abaixo do solo (Uhl & Jordan, 1984; Sundarapandian & Swamy, 1996). Ao contrário, as parcelas da área queimada analisadas somaram o menor número de indivíduos. Uma possível explicação é que a maior parte dos trabalhos com regeneração pós-fogo avaliaram áreas que sofreram corte prévio da vegetação (corte e queima), o que produz uma área pós-fogo mais limpa, ao contrário da área analisada neste estudo, em que várias árvores sobreviveram e rebrotaram, continuando a utilizar os nutrientes do solo, além de produzirem um certo grau de sombreamento, que poderia ter impedido o estabelecimento de plantas que necessitam de altos níveis de luminosidade.

Além disso, a comunidade foi amostrada 5 anos após o incêndio, quando as plantas de crescimento mais rápido já podem ter atingido tamanhos maiores, utilizando de forma assimétrica os recursos liberados e provocando um sombreamento sobre as plantas menores, podendo dificultar o estabelecimento nas menores classes de tamanho. Este parece ser o caso das espécies *Scieria secans*, *Miconia mirabilis* e *Pteridium aquilimum*, que dominam as parcelas da área queimada, nas maiores classes de altura. De fato, a área queimada apresenta o menor número absoluto de indivíduos menores que 0,2 m.

De acordo com Brokaw (1985), as perturbações naturais, como as clareiras ocasionadas pela queda de árvores, produzem um aumento local na densidade de plantas, promovido pela liberação de recursos como a luz e também por diminuir a competição exercida pela árvore de maior porte. Denslow (1995) adicionalmente sugeriu que a densidade em clareiras aumentaria como conseqüência da substituição de uma ou poucas árvores de grande porte (causadoras da clareira) por vários indivíduos pequenos que têm seu crescimento acelerado pela entrada de luz.

No presente estudo, quando todos os hábitos de crescimento foram considerados juntos, a densidade média de indivíduos em clareiras não foi significativamente diferente da obtida nos outros ambientes. Inclusive, os números de indivíduos nas clareiras e no sub-bosque adjacente a elas foram extremamente similares, tanto para as espécies arbóreas analisadas separadamente quanto para toda a comunidade.

Somente na maior classe de altura (entre 1 e 5 metros), as clareiras apresentaram menor número total de indivíduos que os outros ambientes. Isto pode ser explicado pelo grande número de indivíduos de *Merostachys* sp, um bambu de grande porte com hábito escandente, na classe de tamanho entre 1 e 5 metros, que estaria impedindo o estabelecimento das outras plantas. Tabarelli & Mantovani (1999) sugeriram que a presença de bambus afeta a regeneração de espécies arbóreas pioneiras em uma floresta montana na Mata Atlântica, de uma forma similar ao bem documentado processo pelo qual a presença de trepadeiras pode impedir o desenvolvimento de espécies arbóreas em clareiras naturais (Putz, 1980; Putz, 1984; Schnitzer et al., 2000).

A menor densidade de espécies arbóreas na área queimada possivelmente está relacionada à ocupação inicial deste ambiente predominantemente por indivíduos de espécies herbáceas, plantas escandentes e trepadeiras (Martini et al. inédito - Capítulo 1). Outros estudos sugerem que no início da recuperação de áreas perturbadas por fogo, ocorre uma predominância de espécies herbáceas e/ou arbustivas (Stroomgaard, 1986; Guariguata & Ostertag, 2001), que vão sendo substituídas aos poucos por espécies arbóreas (Castellani & Stubblebine, 1993), principalmente em ambientes onde a perturbação não é tão intensa.

Apesar de ocorrerem em menor número de indivíduos, 32 espécies arbóreas foram encontradas na área queimada, incluindo espécies comumente encontradas no sub-bosque das florestas, sugerindo que algumas espécies arbóreas estão conseguindo se estabelecer neste ambiente, possibilitando uma futura recuperação da estrutura arbórea desta área.

Além disso, quando a riqueza total de espécies foi projetada pelo estimador Chao1, a área queimada apresentou a maior riqueza total estimada, sugerindo que um grande número de espécies pode se estabelecer neste ambiente, mas, possivelmente em função da forte dominância de poucas espécies, a maior parte das espécies ainda apresenta baixos números de indivíduos.
Quando a riqueza estimada dos ambientes foi comparada considerando o mesmo número de indivíduos, a área queimada apresentou, em geral, menor número médio de espécies em relação às clareiras, mas não em relação aos outros ambientes. A ausência de diferença significativa com os outros ambientes poderia ser explicada por alguns modelos sucessionais (Connell, 1978; Roberts & Gilliam, 1995; Guariguata & Ostertag, 2001), que prevêem uma rápida recuperação da riqueza de espécies em ambientes medianamente perturbados, mas uma composição de espécies diferenciada da composição anterior à perturbação e marcada no início por espécies de ciclo de vida curto e crescimento rápido. A situação observada na área queimada foi bastante similar ao previsto por estes modelos.

Somente nos ambientes perturbados, como a área queimada e as clareiras (com exceção da maior classe de tamanho), a relação entre o número de indivíduos e o número de espécies por parcela não foi significativa, sugerindo uma grande variação no número de espécies entre parcelas com números equivalentes de indivíduos, possivelmente em função da grande estocasticiadade da colonização destes ambientes. Algumas parcelas podem estar sob forte predominância de algumas espécies, enquanto em outras parcelas, com a ausência destas espécies, uma maior diversidade de espécies poderia se estabelecer. O acaso (Hubbell & Foster, 1986) e a limitação de recrutamento (Tilman & Pacala, 1993) podem estar produzindo estes padrões.

Entretanto, quando as parcelas de todos os ambientes foram analisadas em conjunto, foi observada uma forte relação linear entre a riqueza e a densidade de indivíduos. Além disso, nas áreas de sub-bosque a relação linear é bastante pronunciada. Nicotra et al. (1999) também encontraram uma relação de dependência entre riqueza e a densidade de plantas jovens. A relação entre número de indivíduos e o número acumulado de espécies é reconhecidamente uma relação logarítmica, na qual a partir de um certo número de indivíduos, o número de espécies adicionadas se torna cada vez menor, atingindo uma assintota (Magurran, 1988; Gotelli & Colwell, 2001). Entretanto, em ambientes tropicais, em função do grande número de espécies e, principalmente, do grande número de espécies raras, as amostras dificilmente atingem uma assintota, representando, em geral, a fase ascendente da curva logarítmica, aproximando-se, nesta fase, de uma relação linear. Nestes casos, somente com o aumento do esforço amostral uma assintota pode ser atingida.
Quando a riqueza foi estimada para um mesmo número de indivíduos através das técnicas recomendadas por Colwell & Coddington (1994) Denslow (1995) e Gotelli & Colwell (2001), o número de espécies em clareiras não diferiu das áreas de sub-bosque adjacente em nenhuma das classes de altura analisadas, tanto para o conjunto de todas as plantas, quanto somente para as espécies arbóreas.

Associada a esta ausência de diferença no número de espécies, também a composição de espécies não diferiu entre clareiras e sub-bosque, com exceção de algumas espécies que ocorreram predominantemente em cada um dos ambientes analisados, não sendo observado um grande número de espécies ocorrendo especificamente em clareiras, conforme seria esperado pela hipótese de que as clareiras funcionariam como promovedoras e mantenedoras da diversidade de espécies (Denslow, 1980; 1986; 1987). Outros estudos têm demonstrado esta similaridade entre clareiras e áreas de sub-bosque próximas (Barton, 1984; Brokaw & Scheiner, 1989; Arévalo & Fernández-Palácio, 1998; Tabarelli & Mantovani, 1998; Carvalho et al., 2000 e Dickinson et al., 2000). No trabalho de Uhl et al. (1988), são apresentados resultados indicando que as espécies com maiores possibilidades de ocupar o dossel são aquelas já estabelecidas no local anteriormente à formação da clareira.

A maior parte destes estudos, entretanto, considerou apenas as espécies lenhosas ou somente as arbóreas e, de acordo com Schnitzer & Carson (2000), até o momento nenhum estudo tinha analisado a relação entre clareiras e sub-bosque, considerando todos os hábitos de crescimento. No presente estudo, onde as espécies arbóreas representaram apenas um terço dos indivíduos analisados, também não foram encontradas indicações de uma flora estritamente relacionada aos ambientes de clareiras.

Brokaw & Busing (2000) chamaram a atenção para que o papel das clareiras como promovedoras e/ou mantenedoras da diversidade nas regiões tropicais fosse reavaliado em função do grande número de trabalhos indicando que, para a maioria das espécies, não foram encontradas indicações de partilha de recursos entre clareiras de diferentes tamanhos ou de preferência por ambientes de clareiras, com exceção clara para as espécies pioneiras. Entretanto, estas espécies representam, em geral, uma pequena porcentagem das plantas na comunidade.

A ausência de diferenças entre clareiras e sub-bosque no presente estudo pode corroborar a ideia de que as plantas presentes em uma clareira estão diretamente relacionadas à composição da vegetação anterior à formação da clareira, sendo dependente, portanto, dos mesmos fatores que regulam a distribuição das
plantas em locais sem clareiras. Possivelmente, o acaso (Hubbel & Foster, 1986) e a composição de espécies em uma escala local (Duncan et al., 1998) determinam o conjunto de espécies que irão ocupar o dossel na área aberta por uma clareira.

Ainda que o acaso seja mais importante que a diferenciação em nichos de regeneração (sensu Grubb, 1977) para a manutenção da diversidade de espécies em florestas tropicais, claramente as espécies apresentam diferentes estratégias de estabelecimento e um grande número de estudos tem demonstrado que as espécies diferem em suas capacidades de estabelecimento, crescimento e sobrevivência em diferentes condições ambientais, inclusive em clareiras de diferentes tamanhos (Brokaw, 1987; Popma & Bongers, 1988, 1991; Denslow et al., 1990; King 1991; Fraver et al., 1998; Poorter, 1999; Terborgh & Matthews, 1999; Lewis & Tanner, 2000).

Em geral, a luz tem sido considerada como o fator determinante das diferenças observadas nas estratégias das plantas, e uma medida de luz bastante utilizada tem sido a porcentagem de abertura no dossel (Trichon et al., 1998; Sizer & Tanner, 1999; Carvalho et al., 2000; Beaudet & Messier, 2002), calculada através da análise de fotografias hemisféricas.

Neste estudo, os ambientes de clareiras e sub-bosque não diferiram em relação à porcentagem de abertura no dossel e duas possíveis explicações são discutidas. Primeiro, as clareiras analisadas podem ser pequenas, não representando uma grande alteração no ambiente de luz das plantas estudadas. Entretanto, cinco das seis clareiras analisadas têm área maior que 120 m², um valor similar ao tamanho médio das clareiras em outras florestas tropicais (Yavitt et al., 1995; Green, 1996; Van der Meer & Bongers, 1996). No trecho de 3 hectares onde as clareiras do presente estudo foram estudadas, foram encontradas 43 clareiras com tamanho médio de 87,3 m² (desvio padrão 54,7), sendo que 72% destas clareiras apresentaram área menor que 100 m² (Martini et al. dados não publicados).

Uma segunda explicação possível é que a medida de porcentagem de abertura total pode não caracterizar adequadamente o ambiente de luz nos locais estudados. Nicotra et al. (1999) questionaram a quantificação do ambiente de luz apenas com os valores médios de luz e abertura, e sugeriram que a variância, a freqüência e a distribuição das variáveis de luz deveriam ser levadas em consideração. Com o cálculo dos índices de Luminosidade apresentados neste estudo, procurou-se avaliar algumas destas características dentro de cada ambiente estudado.
Com o uso destes índices, o ambiente de clareiras se diferencia dos demais, por apresentar maior concentração da luz, maiores quantidades de luz, e pontos de luz ("sunflecks") com duração mais longa. Além disso, uma característica que chama a atenção é a baixa frequência de aberturas laterais nas áreas de clareiras, indicando que as bordas das clareiras são ambientes mais fechados que o sub-bosque em geral, impedindo a entrada de luz lateral. Este fato pode estar associado à presença de plantas escandentes ou trepadeiras nas bordas das clareiras (Putz, 1984; Brokaw, 1986; Denslow, 1987; Schnitzer et al., 2000).

Mesmo com a distinção entre o ambiente de luz em clareiras e no sub-bosque, indicada pelas fotografias hemisféricas, os resultados da análise de correspondência canônica indicaram que a composição das comunidades em cada parcela não esteve relacionada com as características de luz analisadas, sugerindo que não existem conjuntos de espécies respondendo positivamente ou negativamente a estas características de luz. Coomes & Grubb (2000) levantaram a questão de que, em determinadas condições climáticas, o aumento da luminosidade decorrente das clareiras pode não ser o único nem mesmo o mais importante fator atuando sobre as taxas de crescimento das plantas e sim a disponibilidade de água e nutrientes no solo. Os mesmos autores sugeriram que em ambientes com solos úmidos (ou seja, sem déficit hídrico) e pobres em nutrientes, como é exatamente o caso da região analisada, as formas de vida dominantes não dependeriam necessariamente de clareiras para se estabelecerem.

Ainda que conjuntos de espécies não estejam respondendo a estas características de luz, os indivíduos jovens de algumas espécies mais abundantes aparentemente ocorrem nos ambientes com maior concentração de luz, como é o caso da hemiepíftita Evodianthus funifer, ou em ambientes com maior quantidade de luz total atingindo o solo, como sugerem os resultados para a palmeira Euterpe edulis. Paulillo (2000) estudou o desenvolvimento de jovens de Euterpe edulis em diferentes condições de luz e observou que o crescimento de indivíduos pequenos de E. edulis é limitado pela baixa quantidade de Radiação Fotsinteticamente Ativa (RFA) que chega ao solo da floresta e que sua regeneração pode ser beneficiada pelo aparecimento de clareiras.

Além disso, os resultados da Análise de Espécies Indicadoras entre os quatro ambientes estudados, também destacaram três espécies como indicadoras do ambiente de clareiras, sendo duas espécies arbóreas (Pouroma mollis e Protium heptaphyllum) e a espécie citada acima, Evodianthus funifer. Por outro
lado, as Aráceas hemiepífitas (*Philodendron surinamense* e *Rhodospatha latifolia*) foram consideradas indicadoras da área de sub-bosque.

Em resumo, apesar de as espécies individualmente apresentarem diferentes respostas às condições ambientais, quando o conjunto de espécies presente em um local é analisado não existem relações claras com as condições ambientais. Este conjunto pode ser o resultado de: i) as condições ambientais passadas, pois, de acordo com Uhl et al. (1988), no processo de ocupação de uma área aberta no dossel, podem ser necessários vários eventos de clareiras para que uma espécie atinja o dossel e; ii) o acaso e os efeitos da limitação de recrutamento definindo a composição local de espécies (Hurtt & Pacala, 1995; Hubbell et al., 1999; Brokaw & Busing, 2000) e não a predominância das espécies competitivamente superiores neste ambiente. Estudos sobre a dispersão de sementes nestes ambientes podem ajudar a avaliar o efeito da limitação de recrutamento na composição de espécies.

Os resultados deste estudo sugerem que os mesmos processos que parecem estar agindo sobre as espécies arbóreas, o grupo mais bem estudado em florestas tropicais, também estão agindo sobre as outras formas de vida presentes nesta comunidade vegetal.

Agradecimentos

Este trabalho contou com o apoio logístico e financeiro do Instituto de Estudos Sócio-Ambientais do Sul da Bahia (IESB) e da Universidade Estadual de Santa Cruz (UESC), além de receber apoio financeiro das instituições WWF (Fundo Mundial para a Natureza), Fundação Ford e CAPES (Fundação Coordenação de Aperfeiçoamento de Pessoal de Nível Superior). Os autores agradecem ao Sr. Saturnino Neto F. de Souza, Diretor da Reserva Biológica de Una, por facilitar a realização do trabalho nesta unidade de Conservação e ao Dr. André M. Carvalho, por facilitar o acesso à coleção do Herbário CEPEC.
Referências bibliográficas

ANEXO I

Espécies mais abundantes nos diferentes ambientes (C = Clareiras naturais; SB = Sub-bosque adjacente às clareiras naturais; F = Área queimada; MP = Sub-bosque de mata próxima à área queimada) dentro das classes de altura.

CLASSE DE ALTURA: 0.2 a 5m

<table>
<thead>
<tr>
<th>C</th>
<th>SB</th>
<th>F</th>
<th>MP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evodiantus funifer (37)</td>
<td>Philodendron surinamense (27)</td>
<td>Scleria secans (45)</td>
<td>Psychotria purpurascens (36)</td>
</tr>
<tr>
<td>Psychotria purpurascens (23)</td>
<td>Rhodospaitha latifolia (21)</td>
<td>Miconia mirabilis (16)</td>
<td>Merostachys sp (23)</td>
</tr>
<tr>
<td>Merostachys sp (17)</td>
<td>Evodiantus funifer (15)</td>
<td>Pteridium aquilinum (15)</td>
<td>Philodendron surinamense (16)</td>
</tr>
<tr>
<td>Euterpe edulis (16)</td>
<td>Euterpe edulis (11)</td>
<td>Becquerelia cymosa (12)</td>
<td>Euterpe edulis (12)</td>
</tr>
<tr>
<td>Rhodospaitha latifolia (11)</td>
<td>Paypayrola blanchetiana (11)</td>
<td>Calathea sp1 (12)</td>
<td>Geonoma pauciflora (12)</td>
</tr>
<tr>
<td>Philodendron fragantissimum (10)</td>
<td>Calathea sciuroides (10)</td>
<td>Becquerelia clarkei (9)</td>
<td>Calathea sp1 (10)</td>
</tr>
<tr>
<td>Paypayrola blanchetiana (9)</td>
<td>Protium aracouchini (9)</td>
<td>Psychotria purpurascens (7)</td>
<td>Evodiantus funifer (7)</td>
</tr>
<tr>
<td>Arapatiella psylphiilla (9)</td>
<td>Philodendron fragantissimum (8)</td>
<td>Psychotria cf. minutiflora (7)</td>
<td>Calathea sciuroides (7)</td>
</tr>
<tr>
<td>Philodendron surinamense (7)</td>
<td>Becquerelia cymosa (7)</td>
<td>Eschweilera alvimii (7)</td>
<td>Becquerelia cymosa (6)</td>
</tr>
<tr>
<td>Pourioma mollis (8)</td>
<td>Lomagramma guianensis (7)</td>
<td>Lasiacis ligulata (6)</td>
<td>Plinia sp1 (6)</td>
</tr>
<tr>
<td>Pouteria sp3 (5)</td>
<td>Stigmopteris guianensis (7)</td>
<td>Cecropia pachystachya (6)</td>
<td>Lomagramma guianensis (6)</td>
</tr>
<tr>
<td>Ichnanthus sp (5)</td>
<td>Psychotria purpurascens (6)</td>
<td>Miconia sp2 (5)</td>
<td>Monotagma grallatum (5)</td>
</tr>
<tr>
<td></td>
<td>Geonoma pauciflora (6)</td>
<td>Passiflora haematostigma (5)</td>
<td>Pouteria sp3 (5)</td>
</tr>
<tr>
<td></td>
<td>Helicostylis tomentosa (5)</td>
<td>Guapira opposita (5)</td>
<td>Cheiloclinium sp (5)</td>
</tr>
<tr>
<td></td>
<td>Couepia belemi (5)</td>
<td>Couepia belemi (5)</td>
<td>Eriotheca macrophylla (5)</td>
</tr>
</tbody>
</table>

CLASSE DE ALTURA: 0.2 a 1m

<table>
<thead>
<tr>
<th>C</th>
<th>SB</th>
<th>F</th>
<th>MP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evodiantus funifer (37)</td>
<td>Philodendron surinamense (18)</td>
<td>Scleria secans (27)</td>
<td>Psychotria purpurascens (36)</td>
</tr>
<tr>
<td>Psychotria purpurascens (22)</td>
<td>Rhodospaitha latifolia (17)</td>
<td>Bequerelia clarkei (9)</td>
<td>Merostachys sp (15)</td>
</tr>
<tr>
<td>Euterpe edulis (15)</td>
<td>Evodiantus funifer (13)</td>
<td>Bequerelia cymosa (8)</td>
<td>Calathea sp1 (10)</td>
</tr>
<tr>
<td>Rhodospaitha latifolia (10)</td>
<td>Calathea sciuroides (10)</td>
<td>Calathea sp1 (7)</td>
<td>Euterpe edulis (8)</td>
</tr>
<tr>
<td>Philodendron fragantissimum (9)</td>
<td>Protium aracouchini (9)</td>
<td>Eschweilera alvimii (7)</td>
<td>Evodiantus funifer (7)</td>
</tr>
<tr>
<td>Arapatiella psylphiilla (6)</td>
<td>Paypayrola blanchetiana (6)</td>
<td>Psychotria purpurascens (6)</td>
<td>Calathea sciuroides (7)</td>
</tr>
<tr>
<td>Merostachys sp (5)</td>
<td>Euterpe edulis (7)</td>
<td>Miconia mirabilis (6)</td>
<td>Miconia sp2 (5)</td>
</tr>
<tr>
<td>Paypayrola blanchetiana (5)</td>
<td>Lomagramma guianensis (7)</td>
<td>Psychotria cf. minutiflora (4)</td>
<td>Lomagramma guianensis (6)</td>
</tr>
<tr>
<td>Pouteria sp3 (5)</td>
<td>Stigmopteris guianensis (7)</td>
<td>Lasiacis ligulata (4)</td>
<td>Geonoma pauciflora (6)</td>
</tr>
<tr>
<td>Ichnanthus sp (5)</td>
<td>Psychotria purpurascens (6)</td>
<td>Cytocimbra scorpoideae (4)</td>
<td>Philodendron surinamense (5)</td>
</tr>
<tr>
<td>Pourioma mollis (5)</td>
<td>Becquerelia cymosa (4)</td>
<td>Mikania sp1 (4)</td>
<td>Plinia sp1 (5)</td>
</tr>
<tr>
<td>Philodendron surinamense (4)</td>
<td>Philodendron fragantissimum (4)</td>
<td>Pteridium aquilinum (4)</td>
<td>Eriotheca macrophylla (5)</td>
</tr>
<tr>
<td>Lomagramma marginata (4)</td>
<td>Couepia belemi (4)</td>
<td></td>
<td>Bequerelia clarkei (4)</td>
</tr>
<tr>
<td>Protium heplathym (4)</td>
<td>Lomagramma marginata (4)</td>
<td></td>
<td>Pouteria sp3 (4)</td>
</tr>
<tr>
<td></td>
<td>Pouteria sp (4)</td>
<td></td>
<td>Monotagma grallatum (4)</td>
</tr>
</tbody>
</table>

CLASSE DE ALTURA: 1 a 5m

<table>
<thead>
<tr>
<th>C</th>
<th>SB</th>
<th>F</th>
<th>MP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Merostachys sp (12)</td>
<td>Philodendron surinamense (10)</td>
<td>Scleria secans (19)</td>
<td>Philodendron surinamense (11)</td>
</tr>
<tr>
<td>Paypayrola blanchetiana (4)</td>
<td>Geonoma pauciflora (5)</td>
<td>Pteridium aquilinum (11)</td>
<td>Merostachys sp (8)</td>
</tr>
<tr>
<td>Philodendron surinamense (3)</td>
<td>Euterpe edulis (4)</td>
<td>Miconia mirabilis (10)</td>
<td>Geonoma pauciflora (6)</td>
</tr>
<tr>
<td>Psychotria cf. minutiflora (3)</td>
<td>Philodendron fragantissimum (4)</td>
<td>Calathea sp1 (5)</td>
<td>Cheliloclinium sp (5)</td>
</tr>
<tr>
<td></td>
<td>Becquerelia cymosa (3)</td>
<td>Cecropia pachystachya (6)</td>
<td>Bequerelia cymosa (4)</td>
</tr>
<tr>
<td></td>
<td>Ppaypayrola blanchetiana (3)</td>
<td>Passiflora haematostigma (5)</td>
<td>Psychotria platipoda (4)</td>
</tr>
<tr>
<td></td>
<td>Guapira opposita (3)</td>
<td>Becquerelia cymosa (4)</td>
<td>Euterpe edulis (4)</td>
</tr>
<tr>
<td></td>
<td>Rhodospaitha latifolia (3)</td>
<td>Dalechampia ilheotica (4)</td>
<td>Mariera sp (4)</td>
</tr>
<tr>
<td></td>
<td>Condylarapum intermediurn (3)</td>
<td>Psychotria cf. minutiflora (3)</td>
<td></td>
</tr>
</tbody>
</table>
ANEXO II

Esquemas dos dois modos de divisão da área das fotografias hemisféricas utilizadas pelo programa Gap Light Analyzer (GLA v.2) para o cálculo das variáveis de luz. O programa calcula as variáveis de luz para cada uma das células.

A) Quatro círculos concêntricos com áreas iguais, ou seja, o círculo central possui a mesma área que o anel mais externo. Notar a divisão em 16 setores, pelas linhas radiais. Este modo de divisão foi utilizado para calcular as variáveis: CV4CIR (Coeficiente de variação entre a porcentagem de abertura nos quatro círculos concêntricos) e FRABCIR3 (Frequência de setores do terceiro círculo, a partir do zênite, que contêm aberturas maiores que 1%)

B) Quatro círculos concêntricos com larguras iguais, entretanto com áreas diferentes. O círculo central (zenital) possui a menor área. Notar a divisão em 16 setores. Este modo de divisão foi utilizado para calcular a variável PCABZEN (porcentagem do total de abertura que se encontra no círculo referente à região do zênite)
CAPÍTULO 3

CHUVA DE SEMENTES EM SUB-BOSQUE, CLAREIRAS NATURAIS E ÁREA PERTURBADA POR FOGO EM FLORESTA TROPICAL NO SUL DA BAHIA, BRASIL.
Chuva de sementes em sub-bosque, clareiras naturais e área perturbada por fogo em floresta tropical no sul da Bahia, Brasil.

Adriana Maria Zanforlin Martini
PPG-Ecobio-UNICAMP, Caixa Postal 6109, Campinas, SP, CEP 13081-970
DCB-Universidade Estadual de Santa Cruz. Rod. Ilhéus-Itabuna Km 16, Ilhéus, BA, Brasil. CEP 45650-000. ammartini@iesb.org.br.

Flavio Antonio Maes dos Santos
Departamento de Botânica • UNICAMP, Campinas, SP, Caixa postal 6109, CEP 13083-670

Resumo
A chegada de propágulos através da chuva de sementes e fundamental para a manutenção das populações naturais da maioria das espécies em florestas tropicais e o acompanhamento da chuva de sementes em ambientes perturbados ajuda a compreender o potencial de regeneração destes ambientes. No presente estudo, a chuva de sementes foi amostrada durante um ano em 6 clareiras naturais, em 6 parcelas no sub-bosque adjacente às clareiras, em 6 parcelas em uma área perturbada por fogo e em 6 parcelas no sub-bosque de uma mata próxima da área queimada. Em cada parcela, foram instalados 6 coletores de 0,25 m², cujo material foi mensalmente coletado durante um ano e triado em laboratório, separando-se todas as sementes saudáveis, acima de 1 mm de comprimento. Na área queimada foi observado o maior número de sementes (2,25 sementes/m²/dia) e o menor número de espécies (54), enquanto na área de mata próxima a clareiras, também foi observado um grande número de sementes (2,03 sementes/m²/dia) e o maior número de espécies registrado (85). A espécie Miconia mirabilis foi a espécie dominante, representando 44% das sementes amostradas no total e chegando a representar 52% das sementes na área de mata próxima à área queimada. A espécie Cecropia pachystachya foi a espécie mais abundante na área queimada (2421 sementes), mas Miconia mirabilis também apresentou um número similar de sementes nesta área (2212 sementes). Os ambientes de sub-bosque e as clareiras apresentaram maior número de espécies em comum, mas quando as abundâncias das sementes foram consideradas nas análises, somente as clareiras e o sub-bosque da mata próxima à área queimada foram similares em composição da chuva de sementes. Das 139 espécies amostradas, 27 (19,4%) ocorreram nos quatro ambientes, enquanto 61(44%) espécies foram registradas em apenas uma das parcelas. As espécies que apresentaram maior número de sementes possuíam sementes pequenas (menor de 5mm) e foi observada uma relação positiva e significativa entre o número de sementes apresentados por uma espécie e o número de parcelas em que elas foram encontradas, sugerindo que espécies com maior número de sementes, têm maior chance de chegar nos diferentes ambientes. A área queimada apresentou números significativamente maiores de espécies com sementes pequenas e de sementes anemocóricas. Ao contrário do sugerido na literatura, as clareiras não apresentaram maior número de espécies anemocóricas. Uma comparação entre as espécies mais abundantes estabelecidas na vegetação (plantas entre 0,2 e 5 metros de altura) e as espécies mais abundantes na chuva de sementes indicou que apenas na área queimada, algumas espécies abundantes na chuva de sementes também ocorreram em abundância na vegetação. Nas demais áreas, as espécies abundantes na chuva de sementes não coincidiram com as espécies abundantes na vegetação, com raras exceções. Entretanto, no ambiente de clareiras, os valores de riqueza e diversidade de espécies (H’) na chuva de sementes estiveram correlacionados positivamente com os valores de riqueza e diversidade de plantas de pequeno porte (0,2 a 1 metro de altura).

Palavras-chave: Chuva de sementes, Mata Atlântica, clareiras naturais, sub-bosque, fogo, Miconia mirabilis,
Introdução

A chuva de sementes e o banco de sementes podem desempenhar diferentes papéis no processo de regeneração natural em regiões de florestas tropicais, a depender do grau de perturbação do ambiente (Young et al., 1987; Garwood, 1989) e da matriz de paisagem em que o ambiente está inserido (Guariguata & Ostertag, 2001).

Uma grande quantidade de estudos vem sendo realizada sobre a importância do banco de sementes para a recuperação de áreas perturbadas (Hopkins & Graham, 1984; Putz & Appanah, 1987; Garwood, 1989; Miller 1999). Somente espécies que apresentam sementes com capacidade de permanecer dormientes por períodos mais longos podem acumular no solo, compondo o verdadeiro banco de sementes (Garwood, 1989). Entretanto, somente uma pequena fração das espécies encontradas em florestas tropicais maduras apresentam sementes dormientes (Ng, 1980). Consequentemente, de acordo com Loiselle et al. (1996), para a maioria das espécies das florestas tropicais, a entrada de sementes através da chuva de sementes é a principal fonte para sua regeneração e manutenção na floresta. Estas espécies não dependem das condições de luz no sub-bosque para germinar (Martinez-Ramos & Soto-Castro, 1993), apresentando germinação rápida ao atingir o solo (Garwood, 1989).

A grande variação espacial frequentemente observada na chuva de sementes (Martinez-Ramos & Soto-Castro, 1993; Guariguata & Pinard, 1998; Grombone-Guaratini & Rodrigues, 2002) pode produzir padrões muito distinto de regeneração e, possivelmente, em função desta grande variação espacial, a maioria dos estudos tem mostrado uma fraca relação entre as espécies que chegam através da chuva de sementes e a diversidade de plantas estabelecidas em áreas de floresta não perturbadas (Martinez-Ramos & Soto-Castro, 1993; Penhalber & Mantovani, 1997; Harms et al., 2000).

De acordo com o conceito de limitação de recrutamento (Tilman & Pacala, 1993; Tilman, 1994), espécies competitivamente inferiores (em relação à aquisição de recursos e alocação para crescimento, por exemplo) se manteriam na comunidade através da ocupação de espaços em que as melhores competidoras não estão presentes devido à deficiência na dispersão. A formação de uma clareira logo após um evento de dispersão de uma espécie competitivamente inferior e rara poderia promover o
estabelecimento de suas plantas e adiar sua extinção local, auxiliando na manutenção da riqueza de espécies nesta comunidade.

Os processos de limitação de recrutamento e o acaso (Hubbel & Foster, 1986), por exemplo pela imprevisibilidade na formação de clareiras, podem agir simultaneamente na manutenção da diversidade de espécies em florestas tropicais (Hurtt & Pacala, 1995) e o acompanhamento da chuva de sementes e do estabelecimento de plantas podem contribuir com importantes informações para a compreensão da estrutura destas florestas.

Em geral, áreas grandes, muito abertas e que sofreram intensa perturbação são mais sujeitas a deficiências na chegada de sementes (Guariguata & Pinard, 1998; Holl, 1999; Cubiña & Aide, 2001). Quando a intensidade da perturbação elimina o estoque de sementes no solo, como no caso de fogo intenso (Brinkman & Vieira, 1981 apud Whitmore, 1983) ou deslizamentos de terra (Walker & Neris, 1993), a regeneração pode ser lenta e completamente dependente das poucas espécies que conseguem chegar e se estabelecer (Willson & Crome, 1989). Em áreas sujeitas a perturbações como fogo ocasional e furacões, em que o estoque de sementes do solo não é totalmente eliminado e algumas plantas permanecem vivas, funcionando como poleiros para animais dispersores (Willson & Crome, 1989; Holl, 2002), tanto o banco de sementes no solo, quanto a chuva de sementes podem ser importantes para a regeneração natural. As espécies trazidas pela chuva de sementes provavelmente enfrentarão forte competição com as sementes recém-germinadas do banco de sementes. A presença de uma área de floresta próxima é fundamental, por funcionar como fonte de propágulos (Guariguata & Ostertag, 2001).

Uma relação mais clara entre as espécies da chuva de sementes e as espécies que se estabelecem poderia ser encontrada em ambientes com perturbações menos intensas, como clareiras naturais de tamanho pequeno a médio (Garwood, 1989). Nestes locais, as espécies recém-chegadas através da chuva de sementes poderiam ter uma grande chance de se estabelecer tanto pela liberação de recursos, por exemplo, luz e nutrientes no solo (Brokaw, 1986; Uhl et al., 1988) quanto pela menor competição com plantas provenientes do banco de sementes, que, em geral, necessitam de modificações mais intensas no ambiente físico para a quebra da dormência.

Apesar da clara importância da chuva de sementes para a regeneração natural, poucos estudos têm sido realizados em ambientes de clareiras (Augspurger & Franson, 1988; Loiselle et al., 1996), sendo a maioria

Algumas hipóteses têm sido elaboradas sobre as características da chuva de sementes em ambientes com diferentes graus de perturbação, principalmente em relação a clareiras naturais, porém ainda não existem resultados conclusivos.

Schupp et al. (1989) sugeriram que em clareiras formadas recentemente seria encontrada uma quantidade extremamente alta de sementes anemocóricas e citaram o trabalho de Augspurger & Franson (1988) para corroborar esta hipótese. Entretanto, neste estudo, o número total de sementes anemocóricas foi maior em clareiras que no sub-bosque, mas não foram encontradas diferenças significativas no número médio de sementes anemocóricas entre clareiras e sub-bosque, indicando que apenas algumas clareiras apresentaram maior número de sementes anemocóricas, o que poderia representar um efeito local relacionado à presença próxima de adultos de espécies anemocóricas reproduzindo. Loiselle et al. (1996) não encontraram diferenças significativas no número de espécies anemocóricas entre clareiras e sub-bosque, mas observaram um maior número de sementes anemocóricas em clareiras em dois dos quatro períodos analisados durante o ano.

Estudos de Burrows (1975, apud Schupp et al., 1989) e Greene & Johnson (1996) sugerem que, em função do fluxo de correntes de ar no limite entre o sub-bosque e áreas abertas e da estrutura morfológica das sementes anemocóricas, existe uma maior probabilidade de sementes de espécies anemocóricas atingirem o solo em ambientes de clareiras. Portanto, essa questão ainda permanece em aberto, necessitando de estudos adequados para testá-la.

Ainda Schupp et al. (1989) sugeriram que grandes vertebrados evitariam clareiras formadas recentemente e, como estes animais em geral são dispersores de sementes zoocóricas grandes, este tipo de semente deveria ser menos comum em clareiras e mais comum no sub-bosque, onde os animais poderiam usar as árvores do dossel como poleiros. Por outro lado, sugeriram que a densidade de sementes pequenas deveria ser maior em clareiras mais antigas, principalmente nas bordas, pois as espécies intolerantes à sombra e com frutos carnosos poderiam ter sua produtividade aumentada em clareiras (Levey, 1988) e,
com isso, poderiam atrair mais aves e morcegos, que poderiam trazer mais sementes para estes locais. Estas hipóteses ainda não foram devidamente testadas.

Algumas relações entre o tamanho das sementes e o número de sementes produzidas pelas espécies e entre o tamanho das sementes e suas distribuições espaciais e temporais foram testadas por Jackson (1981) em uma área de floresta tropical montana no Brasil. O autor observou que, quanto maior o tamanho das sementes, menor o número de sementes amostradas (relação não linear) e que as sementes menores estiveram melhor distribuídas espacialmente (ocorrendo em maior número de pontos de amostragem) e estiveram associadas a períodos mais longos de frutificação. Entretanto, estas relações ainda não foram testadas em ambientes com diferentes graus de perturbação.

De acordo com Whitmore (1983), as espécies pioneiras apresentam uma produção frequente ou contínua de grande quantidade de sementes pequenas (Foster & Janson, 1985), dispersas pelo vento ou por animais. Por outro lado, espécies de árvores tolerantes à sombra apresentam sementes grandes, dispersadas por grandes vertebrados ou que atingem o solo diretamente pela gravidade (Foster & Janson, 1985; Foster, 1986).

Se estas generalizações estiverem corretas, seria esperado que em ambientes mais fechados, como o sub-bosque da floresta, a chuva de sementes apresentasse maior número de espécies com sementes grandes e também um maior número de sementes destas espécies. Por outro lado, espécies com sementes pequenas, que podem estar distribuídas mais amplamente (Jackson, 1981), deveriam estar presentes em praticamente todos os ambientes. Porém, mesmo que a riqueza de espécies com sementes pequenas seja similar entre os ambientes, o número de sementes pequenas presentes na chuva de sementes deveria ser maior em áreas altamente perturbadas, em função de um maior número de indivíduos adultos reprodutivos de espécies de estádios sucessionais iniciais, promovendo um forte efeito local.

Com o objetivo de testar algumas destas hipóteses, foi realizado um acompanhamento da chuva de sementes em clareiras naturais, no sub-bosque adjacente a estas clareiras, em uma área perturbada por fogo cerca de 4 anos antes do estudo e no sub-bosque de uma área de mata próxima à área queimada.

Especificamente, procurou-se responder às seguintes questões: Os ambientes analisados diferem em relação ao número de sementes ou ao número de espécies presentes na chuva de sementes? Em algum dos ambientes, a proporção de espécies anemocóricas é maior? A proporção de sementes em classes de
tamanho é similar entre os ambientes? Sementes pequenas ocorrem em maior número? Existe alguma relação entre a distribuição espacial e o tamanho das sementes ou o número de sementes amostradas? A composição de espécies, a estrutura de abundância relativa das espécies amostradas e as espécies dominantes na chuva de sementes são similares entre os ambientes? A diversidade e a riqueza de espécies presentes na chuva de sementes está correlacionada com a diversidade e a riqueza de espécies de plantas de pequeno e médio porte estabelecidas nestes ambientes?

Área de estudo

O presente estudo foi realizado na Reserva Biológica de Una (REBIO-Unan), localizada no município de Una, BA (15º 10'S, 39º 10'W). A REBIO-Unan é uma unidade de conservação federal de uso indireto, com uma área adquirida de 7022 ha, com cerca de 78% de sua área em bom estado de conservação (Marques et al. 2000). O restante é composto de áreas perturbadas recentemente ou em regeneração.

A região apresenta clima do tipo Af na classificação de Köppen, caracterizando-se pela ausência de período seco definido e pela precipitação anual superior a 1300 mm (Mori et al. 1983).

Na área de estudo, o solo predominante é o Latossolo Vermelho Amarelo variação Colônia (Typic Haplortox), pobre em nutrientes, com boas condições físicas (IBAMA/MMA, 1998).

A vegetação da Reserva Biológica de Una, situada dentro do Domínio da Mata Atlântica, é composta predominantemente por Floresta Ombrófila Densa, com altura média do dossel em torno de 35 metros, tendo sido classificada por Gouvêa et al. (1976) como Mata Higrófila Sul-Baiana.

Metodologia

Em um trecho de três hectares (Área 1) do maior bloco de floresta da reserva foram mapeadas todas as clareiras naturais. Dentre estas, foram escolhidas as 6 clareiras mais recentes (definidas através da presença de ramificações terminais ou de folhas secas ainda presas aos ramos da principal árvore causadora) e de maior tamanho, variando de 65,4 a 260,9 m².

Adjacentes a cada uma destas clareiras foram estabelecidas parcelas (6) no sub-bosque com dossel intacto, de tamanho igual ao das clareiras. Estas áreas de sub-bosque estavam distantes das bordas das clareiras por, no mínimo, uma distância equivalente ao diâmetro da clareira na direção determinada.
Em três hectares de um trecho de floresta queimado por um incêndio acidental em fevereiro de 1995, foram instaladas 6 parcelas com distribuição espacial e tamanhos equivalentes aos das clareiras. Esta área queimada está localizada a cerca de 1 km da Área 1 descrita acima.

Em um trecho de mata próxima da área queimada (distante aproximadamente 200 m), foram instaladas 6 parcelas no sub-bosque, também com distribuição espacial e tamanhos equivalentes aos das clareiras na Área 1.

Os ambientes acima definidos serão denominados, a partir deste ponto como: CLAREIRAS (C), SUB-BOSQUE - Sub-bosque adjacente às clareiras (SB), ÁREA QUEIMADA (F) e MATA PRÓXIMA - Sub-bosque da mata próxima à área queimada (MP).

Dentro de cada parcela foi sorteada a localização para a instalação de 6 coletores de sementes de 0,25 m² cada (50 X 50 cm), com altura de 10 cm, totalizando 36 coletores em cada ambiente. A estrutura dos coletores foi construída com tubos de PVC (20 mm), e sobre esta estrutura era colocado um tecido fino sintético preso com braçadeiras de PVC.

Os tecidos eram removidos mensalmente, na terceira semana do mês, sendo substituídos por um novo tecido limpo. O material coletado era levado para secagem em estufa e posteriormente triado em laboratório. Na primeira parte da triagem, o material mais grosso, como galhos e folhas eram varridos com pincel, para evitar que sementes pequenas ficassem aderidas, e após cuidadosa inspeção eram removidos.

O material restante era peneirado e cada fração era inspecionada separadamente em lupa.

Todos os propágulos acima de 1mm de comprimento foram classificados, contados, medidos e armazenados em álcool 70%. Foram considerados somente os propágulos maduros e visualmente saudáveis, que não se quebravam ao apertar. Propágulos com sinais de predação, murchos ou vazios foram eliminados da amostragem.

A identificação das sementes foi realizada com base em material coletado no campo e por comparação com material do herbário CEPEC.

O período de amostragem foi de dezembro de 1998 a dezembro de 1999.

Os materiais da coleta de Outubro da área queimada (F) e da mata próxima à área queimada (MP) foram totalmente destruídos em um incêndio ocorrido na estufa de secagem.
Análise dos dados

Os dados dos seis coletores de cada parcela foram agrupados para produzir o total de cada parcela. Com estes totais, foram calculadas as médias do número de sementes e do número de espécies por parcela, em cada ambiente. Estes valores foram comparados pelo teste não paramétrico de Kruskal-Wallis, com a finalidade de verificar se os ambientes receberam quantidades médias similares de espécies ou de sementes. No caso de diferenças significativas, foram realizados os testes a posteriori definidos no programa Bioestat 2.0.

É importante destacar que todas as análises estatísticas que envolveram os totais anuais de sementes ou de espécies entre os ambientes foram realizadas excluindo-se os valores do mês de outubro das amostras de Clareiras (C) e Sub-bosque (SB), uma vez que as amostras das outras duas áreas (F e MP) foram acidentalmente destruídas pelo incêndio. Entretanto, os valores apresentados nas tabelas são os valores totais para cada ambiente.

Foi calculada a proporção de espécies e de sementes anemocóricas em relação ao total de sementes e espécies amostradas. A proporção de espécies anemocóricas em cada ambiente foi comparada com o esperado, caso as espécies ocorressem na mesma proporção em todos os ambientes. O valor de Qui-quadrado foi calculado separadamente para cada ambiente, utilizando-se a Correção de Yates, de acordo com Zar (1999). Diferenças nos números de sementes anemocóricas e não-anemocóricas nos quatro ambientes foram testadas em uma única tabela de contingência, também com Qui-quadrado. Com estes testes foi possível verificar se algum ambiente apresentou uma maior ou menor proporção de sementes ou de espécies anemocóricas.

Para as espécies não-anemocóricas, foi calculada a proporção de sementes e de espécies em três classes de tamanho, utilizando-se o comprimento do maior eixo da semente, sendo: PEQUENAS - comprimento entre 1,0 e 5,0 mm; MÉDIAS - entre 5,0 e 15 mm; GRANDES - maior que 15 mm. Posteriormente, a proporção de sementes e espécies nas três classes de tamanho nos quatro ambientes foi calculada e comparada com a proporção total. Em relação ao número de sementes foi utilizada uma tabela de contingência e o teste de Qui-quadrado. Quanto ao número de espécies, cada classe foi comparada com a proporção esperada separadamente utilizando-se o teste de Qui-quadrado com Correção de Yates. Com
estes testes procurou-se verificar se os ambientes apresentavam proporções iguais de sementes ou de espécies nas diferentes classes de tamanho.

Para testar se o número encontrado de sementes de uma espécie estava relacionado ao tamanho de suas sementes, foi realizada uma Análise de Regressão Linear, separadamente para o conjunto de sementes anemocóricas e não-anemocóricas. O número de sementes foi transformado para Logaritmo base 10, em função das discrepâncias apresentadas pelas espécies muito abundantes.

Estrutura e composição da chuva de sementes nos diferentes ambientes

O Índice de Sorensen (Valentin, 2000), baseado na presença/ausência de espécies, foi calculado para cada combinação de dois ambientes com o objetivo de verificar quais ambientes apresentaram maior similaridade de espécies na chuva de sementes.

Considerando as abundâncias das espécies em cada ambiente, foi realizada uma análise com o método não-paramétrico MRPP (Multiple Response Permutation Procedure), utilizando a distância de Sorensen entre as parcelas. Esta análise testa se as composições da chuva de sementes nas parcelas de um mesmo ambiente são mais similares entre si do que seria esperado caso as amostras de sementes estivessem distribuídas ao acaso entre todos os ambientes. O grau de similaridade é expresso pelo índice de homogeneidade corrigido em relação ao acaso (“chance-corrected within-group agreement”). Esta estatística, denominada “A”, varia de zero a um, e tem valor máximo quando todas as parcelas de um grupo têm a mesma composição de espécies na chuva de sementes. Para esta análise, foi utilizado o programa PC-ORD - versão 4.1 (McCune & Mefford 1999).

Foi verificado se o número de parcelas (freqüência) em que as espécies de sementes foram coletadas esteve relacionado: i) à abundância total das espécies (número de sementes amostradas) e ii) ao tamanho de suas sementes. Nos dois casos, foi utilizada uma análise de regressão linear, com transformação para Log10 dos valores de número de sementes. Nesta análise, foram consideradas apenas as espécies com um número de sementes maior ou igual ao número de parcelas (24) representando a possibilidade de ao menos uma semente da espécie atingir cada uma das parcelas. Foram separadas as espécies anemocóricas e não-anemocóricas.
Finalmente, foi testado se a diversidade de sementes que chega através da chuva de sementes esteve relacionada com a diversidade de plantas estabelecidas em sub-parcelas de 1x 1m, adjacentes aos coletores de sementes. Nestas sub-parcelas, foram amostradas todas as plantas vasculares entre 0,2 e 5 metros de altura. Esta amostragem foi realizada de fevereiro a maio de 2000. Da mesma forma que para a chuva de sementes, os dados das sub-parcelas foram agrupados para gerar o total de cada parcela. Para estas análises, as plantas foram subdivididas em classes de altura: i) entre 0,2 e 1 m; ii) entre 1 e 5 m, e; iii) todas (entre 0,2 e 5 m). A diversidade (Índice de Shannon - H', usando logaritmo natural) foi calculada para cada classe de altura das plantas e para as sementes encontradas na chuva de sementes, dentro de cada uma das seis parcelas de cada ambiente. Para cada uma das classes de tamanho das plantas, foi então realizada uma análise de correlação linear de Pearson entre a diversidade de sementes e a diversidade de plantas nas parcelas.

As mesmas análises foram realizadas considerando a Riqueza (S) de espécies por parcela.

A média dos valores de diversidade (H') de sementes e de plantas nas diferentes classes de altura foi comparada entre as parcelas dos diferentes ambientes, utilizando-se o teste de Kruskal-Wallis. No caso de diferenças significativas, foram realizados os testes a posteriori definidos no programa Bioestat 2.0.
Resultados

No período de um ano, nos 144 coletores, foram amostradas 19.591 sementes, pertencentes a 139 espécies. A menor quantidade total de sementes provenientes da chuva de sementes foi observada no ambiente de clareiras (2935, representando 0,89 sementes/m²/dia), enquanto o maior número de sementes foi observado na área queimada (6778, ou seja, 2,25 sementes/m²/dia). Ao comparar a média do número de sementes por parcela entre os ambientes, foi observado que os ambientes de clareiras e mata próxima apresentaram números significativamente mais baixos de sementes que o sub-bosque adjacente às clareiras e a área queimada (tabela 1).

Em relação ao número de espécies, a área queimada apresentou um número médio de espécies por parcela (22,0) significativamente inferior ao observado na mata próxima (29,17) e no sub-bosque (35,67), mas não diferiu das clareiras (26,67). A área de mata próxima apresentou um número médio de espécies intermediário entre clareiras e sub-bosque, não diferindo estatisticamente de ambos, porém no sub-bosque, o número médio de espécies provenientes da chuva de sementes foi significativamente maior que em clareiras (tabela 1).

<table>
<thead>
<tr>
<th></th>
<th>CLAREIRAS</th>
<th>SUB-BOSQUE</th>
<th>ÁREA QUEIMADA</th>
<th>MATA PRÓXIMA</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nº total de sementes</td>
<td>2935</td>
<td>6667</td>
<td>6778</td>
<td>3211</td>
<td>19591</td>
</tr>
<tr>
<td>(nº/ m²/ dia)</td>
<td>(0,89)</td>
<td>(2,03)</td>
<td>(2,25)</td>
<td>(1,08)</td>
<td></td>
</tr>
<tr>
<td>Nº médio de sementes*</td>
<td>489,17b</td>
<td>1111,17a</td>
<td>1129,67a</td>
<td>535,17b</td>
<td>--</td>
</tr>
<tr>
<td>(desvio padrão) n = 6</td>
<td>(268,80)</td>
<td>(486,27)</td>
<td>(352,94)</td>
<td>(305,88)</td>
<td></td>
</tr>
<tr>
<td>Nº total de espécies</td>
<td>69</td>
<td>85</td>
<td>54</td>
<td>70</td>
<td>139</td>
</tr>
<tr>
<td>Nº médio de espécies*</td>
<td>26,67bc</td>
<td>35,67a</td>
<td>22,00c</td>
<td>29,17ab</td>
<td>--</td>
</tr>
<tr>
<td>(desvio padrão) n = 6</td>
<td>(2,80)</td>
<td>(8,64)</td>
<td>(3,79)</td>
<td>(1,72)</td>
<td></td>
</tr>
</tbody>
</table>

- Excluindo o mês de outubro, ou seja, dividindo o total por 335 dias.
* letras diferentes indicam diferenças significativas entre os ambientes dentro de cada linha (Kruskal-Wallis, p < 0,05, n =6)

Do total de espécies amostradas, apenas 19 (13,7%) são anemocóricas, produzindo um total de 899 (4,63%) sementes de espécies anemocóricas. Entre as 19 espécies, onze pertencem a família Asteraceae,
sendo o restante pertencente às famílias Apocynaceae, Bignoniaceae, Bromeliaceae, Malpighiaceae, Poaceae e Sapindaceae.

Entre os ambientes, a área queimada apresentou uma proporção significativamente maior de sementes anemocóricas que o esperado, enquanto o sub-bosque apresentou uma proporção significativamente menor (Qui-quadrado 465, 348; gl = 3; p < 0,001; figura 1). Em relação ao número de espécies, a área queimada apresentou a maior proporção de espécies anemocóricas (24,1%), porém esta proporção não diferiu da esperada (Qui-quadrado com correção de Yates = 3,449; gl =1; p = 0,063).

A distribuição do número de espécies e de sementes em classes de tamanho (comprimento do maior eixo), indica que, apesar de o número de espécies na menor classe de tamanho (Pequenas - entre 1 e 5 mm) representar apenas pouco mais da metade das espécies (56,3%), o número de sementes amostradas nesta classe de tamanho equivale a 98,5% das sementes não-anemocóricas (tabela 2). Estes resultados estão relacionados à altíssima abundância de algumas espécies que apresentam sementes pequenas (figura 2), tendo sido observada uma relação inversa significativa entre o número de sementes observado e o tamanho (comprimento do maior eixo) das sementes das espécies não-anemocóricas (figura 2).

A análise dos resíduos desta relação mostrou uma maior amplitude na distribuição dos pontos nas menores classes de tamanho, indicando que, nas menores classes de tamanho, as espécies podem apresentar tanto números muito baixos, como números muito altos de sementes, enquanto nenhuma das espécies com sementes maiores que 5 mm apresentou mais de 50 sementes na amostra.

Tabela 2: Distribuição do número de espécies e do número de sementes não-anemocóricas nas diferentes classes de tamanho (comprimento do maior eixo da semente) entre os quatro ambientes analisados. **PEQUENAS:** 1,1 a 5,0 mm; **MÉDIAS:** 5,1 a 15,0 mm; **GRANDES:** acima de 15,0 mm.

<table>
<thead>
<tr>
<th></th>
<th>CLAREIRAS</th>
<th>SUB-BOSQUE</th>
<th>ÁREA QUEIMADA</th>
<th>MATA PRÓXIMA</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>nº de espécies</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PEQUENAS</td>
<td>36</td>
<td>46</td>
<td>34*</td>
<td>41</td>
<td>67 (56%)</td>
</tr>
<tr>
<td>MÉDIAS</td>
<td>16</td>
<td>26</td>
<td>5*</td>
<td>15</td>
<td>44 (36%)</td>
</tr>
<tr>
<td>GRANDES</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>3</td>
<td>9 (8%)</td>
</tr>
<tr>
<td>nº de sementes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PEQUENAS</td>
<td>2753*</td>
<td>6483</td>
<td>6134</td>
<td>3051</td>
<td>18421 (98,5%)</td>
</tr>
<tr>
<td>MÉDIAS</td>
<td>63*</td>
<td>93</td>
<td>32*</td>
<td>55*</td>
<td>243 (1,3%)</td>
</tr>
<tr>
<td>GRANDES</td>
<td>18*</td>
<td>5</td>
<td>2*</td>
<td>3</td>
<td>28 (0,2%)</td>
</tr>
</tbody>
</table>

* - Valores observados acima do esperado; # - Valores observados abaixo do esperado (Qui-quadrado; p<0,05)
Figura 1: Porcentagem do número de espécies e sementes anemocóricas (área preenchida) amostradas na chuva de sementes, nos diferentes ambientes estudados. * - Valor observado acima do esperado; # - Valor observado abaixo do esperado (Quí-quadrado; p < 0,05)
Entre as espécies anemocóricas, a relação foi fraca ($r^2 = 0,209; p = 0,049$), mas pode-se observar que as espécies anemocóricas estão entre as maiores sementes encontradas na amostra (figura 2).

![Gráfico](image)

Figura 2: Relação entre tamanho (comprimento do maior eixo) da semente e número de sementes amostradas na chuva de sementes na Reserva Biológica de Una, BA. (Sementes não-anemocóricas - $r^2 = 0,190; p < 0,001; n = 120$. Sementes anemocóricas - $r^2 = 0,209; p = 0,49; n = 19$)

Considerando a distribuição de sementes não-anemocóricas nas classes de tamanho entre os ambientes, a área queimada apresentou um número significativamente maior de espécies com sementes pequenas do que o esperado e um número significativamente menor de espécies com sementes de tamanho médio. Os demais ambientes não apresentaram diferenças significativas. Em relação ao número de sementes observado nas diferentes classes de tamanho, as clareiras receberam um número significativamente maior que o esperado de sementes das maiores classes de tamanho (Médias e Grandes), enquanto a área queimada recebeu um número significativamente menor de sementes destas classes de tamanho (tabela 2). A Mata próxima também recebeu um número significativamente maior de sementes de tamanho médio.
Estrutura e composição da chuva de sementes nos diferentes ambientes

As espécies amostradas na chuva de sementes apresentaram uma variação muito grande no número de sementes. Se, por um lado, cerca de 26 a 38% das espécies de cada ambiente apresentaram apenas uma semente durante todo o período de coleta (tabela 3), por outro lado, uma espécie apenas, Miconia mirabilis, contribuiu com 8681 sementes, ou seja, 44% do total de sementes coletadas representando de 32% a 55% das sementes na área queimada e na área de mata próxima, respectivamente (tabela 3).

Uma forte dominância de Miconia mirabilis ocorreu em todos os ambientes (figura 3), exceto na área queimada, onde outra espécie, Cecropia pachystachya, contribuiu com 36% das sementes amostradas.

Tabela 3: Número de sementes das espécies mais abundantes amostradas na chuva de sementes entre diferentes ambientes na Reserva Biológica de Una, BA e proporção de espécies que apresentaram apenas uma semente na amostra.

<table>
<thead>
<tr>
<th></th>
<th>CLAREIRAS</th>
<th>SUB-</th>
<th>ÁREA</th>
<th>MATA</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Miconia mirabilis (MELASTOMATACEAE)</td>
<td>1175</td>
<td>3529</td>
<td>2212</td>
<td>1765</td>
<td>8681</td>
</tr>
<tr>
<td>Cecropia pachystachya (CECROPIACEAE)</td>
<td>18</td>
<td>15</td>
<td>2421</td>
<td>161</td>
<td>2615</td>
</tr>
<tr>
<td>Evodianthus funifer (CYCLANTHACEAE)</td>
<td>581</td>
<td>911</td>
<td>4</td>
<td>54</td>
<td>1550</td>
</tr>
<tr>
<td>Henriettea succosa (MELASTOMATACEAE)</td>
<td>170</td>
<td>327</td>
<td>373</td>
<td>270</td>
<td>1140</td>
</tr>
<tr>
<td>Indeterminada 1</td>
<td>263</td>
<td>389</td>
<td>19</td>
<td>97</td>
<td>768</td>
</tr>
<tr>
<td>Solanum sp1 (SOLANACEAE)</td>
<td>--</td>
<td>--</td>
<td>605</td>
<td>--</td>
<td>605</td>
</tr>
<tr>
<td>Rinorea guianensis (VIOLACEAE)</td>
<td>32</td>
<td>273</td>
<td>1</td>
<td>133</td>
<td>439</td>
</tr>
<tr>
<td>Pogonophora schomburgkiana (EUPHORBIACEAE)</td>
<td>4</td>
<td>388</td>
<td>--</td>
<td>--</td>
<td>392</td>
</tr>
<tr>
<td>Indeterminada 2</td>
<td>203</td>
<td>28</td>
<td>5</td>
<td>34</td>
<td>270</td>
</tr>
<tr>
<td>Lepidaploa cotoneaster (ASTERACEAE)</td>
<td>5</td>
<td>3</td>
<td>235</td>
<td>3</td>
<td>246</td>
</tr>
</tbody>
</table>

Espécies com apenas uma semente (%) | 26 (38%) | 27 (32%) | 14 (28%) | 26 (37%) | 44 |

As dez espécies mais abundantes na chuva de sementes (tabela 3) representam 84% das sementes amostradas. Espécies como Evodianthus funifer, uma hemiepipífa bastante abundante nas florestas da região, e a morfo-espécie Indeterminada 1, chegaram predominantemente nas áreas de clareiras e no sub-bosque adjacente, enquanto Cecropia pachystachya, uma espécie arbórea típica de ambientes perturbados, e Lepidaploa cotoneaster, uma espécie arbustiva facilmente encontrada em ambientes
Figura 3: Curvas de abundância das espécies amostradas na chuva de sementes nos quatro ambientes analisados. Legenda para as espécies: Mm - Miconia mirabilis; Ef - Evodianthus funifer; Ind1 - Indeterminada; Ind2 - Indeterminada2; Hs - Hentrettea succosa; Ps - Pogonophora schomburgkiana; Cp - Cecropia pachystachya; So1 - Solanum sp1; Lc - Lepidaploa cotoneaster; Rg - Rinorea guianensis; ME1 - Melastomataceae sp1
abertos, foram observadas predominantemente na área queimada. A espécie arbórea *Henrietta succosa* esteve presente em abundância em todos os ambientes. A espécie *Solanum sp1* é um caso bastante peculiar, por representar apenas um fruto amostrado em apenas um coletor na área queimada, contendo 605 sementes maduras.

Os ambientes mais similares, em termos de presença/ausência de espécies amostradas na chuva de sementes, foram o sub-bosque adjacente às clareiras e o sub-bosque da mata próxima à área queimada, sendo a menor similaridade observada entre a área queimada e o sub-bosque adjacente às clareiras (Tabela 4).

Tabela 4: Comparação da composição da chuva de sementes entre os quatro ambientes estudados, utilizando dados de presença/ausência (Índice de Sorensen) e dados de abundância (MRPP, ver metodologia para descrição da estatística "A"). Legenda para os ambientes: C - Clareiras naturais; SB - Sub-bosque adjacente às clareiras; F - Área queimada; MP - sub-bosque de mata próxima à área queimada.

<table>
<thead>
<tr>
<th>Ambientes (I - II)</th>
<th>Espécies em comum</th>
<th>Espécies exclusivas (I)</th>
<th>Espécies exclusivas (II)</th>
<th>Índice de Sorensen</th>
<th>MRPP</th>
</tr>
</thead>
<tbody>
<tr>
<td>F - SB</td>
<td>35</td>
<td>19</td>
<td>50</td>
<td>0,5036</td>
<td>0,1942 0,001</td>
</tr>
<tr>
<td>F - MP</td>
<td>33</td>
<td>21</td>
<td>37</td>
<td>0,5322</td>
<td>0,1459 0,001</td>
</tr>
<tr>
<td>F - C</td>
<td>35</td>
<td>19</td>
<td>32</td>
<td>0,5785</td>
<td>0,1852 0,000</td>
</tr>
<tr>
<td>C - SB</td>
<td>44</td>
<td>23</td>
<td>41</td>
<td>0,5789</td>
<td>0,0693 0,013</td>
</tr>
<tr>
<td>C - MP</td>
<td>40</td>
<td>27</td>
<td>30</td>
<td>0,5839</td>
<td>0,0409 0,070</td>
</tr>
<tr>
<td>MP - SB</td>
<td>47</td>
<td>23</td>
<td>38</td>
<td>0,6064</td>
<td>0,0820 0,013</td>
</tr>
</tbody>
</table>

Quando os valores de abundância relativa das espécies são considerados, o resultado da análise de MRPP, considerando os quatro ambientes em conjunto, indicou que existem diferenças significativas entre os ambientes (MRPP; A = 0,1663; p < 0,001). Quando os ambientes foram analisados par a par, somente os ambientes de clareira e mata próxima não foram significativamente diferentes. Todos os outros pares de ambientes foram considerados significativamente diferentes (tabela 4). Possivelmente, as abundâncias relativas das espécies de sementes que chegam tanto nas áreas de clareiras (C) quanto na mata próxima (MP) são mais parecidas do que as abundâncias das espécies comuns aos outros pares de ambientes, ou
seja, em outros pares de ambientes, ainda que o número de espécies em comum seja maior, as abundâncias dessas espécies foram muito diferentes entre os ambientes.

O ambiente com o maior número de espécies exclusivas de sementes na chuva de sementes, ou seja, espécies que ocorreram somente naquele ambiente, foi o sub-bosque, com 26 espécies, representando 31% do total de espécies. Entre as espécies exclusivas, 23 ocorreram em apenas uma parcela do sub-

bosque, indicando uma distribuição bastante restrita para cerca de 27% das espécies que chegaram neste ambiente (tabela 5). Nos outros ambientes, a proporção de espécies que ocorreram em apenas uma parcela variou de 17 a 22% (11 a 15 espécies).

<table>
<thead>
<tr>
<th>Tabela 5: Distribuição das espécies encontradas na chuva de sementes entre os quatro ambientes analisados.</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOTAL</td>
</tr>
<tr>
<td>Nº total de espécies</td>
</tr>
<tr>
<td>Nº de espécies exclusivas de um ambiente (%)</td>
</tr>
<tr>
<td>Nº de espécies em apenas 1 parcela (%)</td>
</tr>
<tr>
<td>Nº de espécies com distribuição nos quatro ambientes (%)</td>
</tr>
<tr>
<td>Nº de espécies em apenas 1 parcela (%)</td>
</tr>
</tbody>
</table>

Do total de espécies amostradas na chuva de sementes, 27 (19,4%) ocorreram nos quatro ambientes, apresentando, portanto, uma distribuição espacial ampla. Dentre essas 27 espécies, estão as 20 espécies mais abundantes da amostra, com exceção de Solanum sp1, que, conforme citado acima, está representada na amostra apenas por um fruto com 605 sementes, que foi amostrado em um coletor na área queimada.

Foi observada uma relação significativa entre o número de sementes apresentados por uma espécie e o número de parcelas em que ela foi amostrada, tanto para espécies com sementes anemocóricas como para não-anemocóricas (figura 4). Para as sementes não-anemocóricas, foi realizada outra análise,
Figura 4: Relação entre número de sementes amostradas e frequência nas 24 parcelas amostradas. Apenas espécies com mais de 24 sementes amostradas foram consideradas nesta análise. (Sementes não anemocóricas: $r^2 = 0,351; p < 0,001; n = 30$. Sementes anemocóricas: $r^2 = 0,693; p < 0,040; n = 6$).

excluindo-se a espécie *Solanum* sp1. Desta espécie foi registrado apenas um fruto contendo 605 sementes, indicando apenas um evento e por meio de apenas uma unidade de dispersão. Por este motivo, não seria adequado considerar cada semente como um evento independente de dispersão. Nenhum outro caso tão extremo foi observado nos dados. Quando *Solanum* sp1 foi removida da análise das sementes não-anemocóricas, o ajuste dos pontos à reta foi maior ($r^2 = 0,497; p < 0,001; n = 29$).

As sementes não-anemocóricas de menor tamanho ocorreram em um maior número de parcelas (figura 5). Entretanto, apenas uma pequena porcentagem da variação do número de parcelas em que as espécies ocorreram foi explicada pelo tamanho das sementes (20,5%). Uma parte desta relação entre tamanho de sementes e frequência nas parcelas é explicada pela relação entre tamanho e número de sementes (figura 2). Para espécies anemocóricas não foi encontrada relação significativa.
Figura 5: Relação entre tamanho (comprimento do eixo maior) da semente e frequência nas 24 parcelas amostradas. Apenas espécies com mais de 24 sementes amostradas foram consideradas nesta análise. (Sementes não-anemocóricas: $r^2 = 0,205; p = 0,012; n = 30$. Sementes anemocóricas: $r^2 = 0,117; p = 0,507; n = 6$)

Quando os valores de diversidade de sementes observados por parcela foram comparados com os valores de diversidade de plantas entre 0,2 e 1 metro de altura nas mesmas parcelas, somente no ambiente de clareiras foi encontrada uma correlação significativa entre a diversidade de sementes e a diversidade de plantas (tabela 6), indicando que, nas clareiras em que uma maior diversidade de espécies de sementes chega ao solo através da chuva de sementes, existe também uma maior diversidade de plantas de pequeno porte (0,2 a 1 m) estabelecidas.

A mesma relação foi observada quando a riqueza de espécies (S) foi analisada, sendo encontrada uma correlação significativa também entre a riqueza de sementes que chegam ao solo e a riqueza de plantas entre 0,2 e 5 metros (as duas classes de tamanho em conjunto), possivelmente influenciada pela correlação com as plantas de menor porte, uma vez que a riqueza de plantas de maior porte (entre 1 e 5 metros) não esteve correlacionada com a riqueza de sementes.
Tabela 6: Correlação dos valores de Diversidade (H') - Índice de Shannon) e Riqueza (S) entre plantas em diferentes classes de tamanho e sementes encontradas na chuva de sementes. Obs.: Os dados brutos por parcela encontram-se no Apêndice I.

<table>
<thead>
<tr>
<th>AMBIENTE</th>
<th>Correlação de Pearson</th>
<th>H' PL 0,2 a 1m</th>
<th>H' PL 1 a 5m</th>
<th>H' PL 0,2 a 5m</th>
<th>S PL 0,2 a 1m</th>
<th>S PL 1 a 5m</th>
<th>S PL 0,2 a 5m</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLAREIRAS (n = 6)</td>
<td>R</td>
<td>0.862</td>
<td>0.198</td>
<td>0.807</td>
<td>0.909</td>
<td>-0.102</td>
<td>0.830</td>
</tr>
<tr>
<td></td>
<td>p</td>
<td>0.027</td>
<td>0.707</td>
<td>0.053</td>
<td>0.012</td>
<td>0.847</td>
<td>0.041</td>
</tr>
<tr>
<td>SUB-BOSQUE (n = 6)</td>
<td>R</td>
<td>-0.113</td>
<td>0.334</td>
<td>0.146</td>
<td>0.583</td>
<td>0.455</td>
<td>0.609</td>
</tr>
<tr>
<td></td>
<td>p</td>
<td>0.831</td>
<td>0.518</td>
<td>0.783</td>
<td>0.225</td>
<td>0.364</td>
<td>0.199</td>
</tr>
<tr>
<td>ÁREA QUEIMADA (n = 6)</td>
<td>R</td>
<td>0.491</td>
<td>-0.315</td>
<td>0.332</td>
<td>0.111</td>
<td>0.436</td>
<td>0.340</td>
</tr>
<tr>
<td></td>
<td>p</td>
<td>0.322</td>
<td>0.542</td>
<td>0.520</td>
<td>0.835</td>
<td>0.388</td>
<td>0.509</td>
</tr>
<tr>
<td>MATA PRÓXIMA (n = 6)</td>
<td>R</td>
<td>0.642</td>
<td>0.280</td>
<td>0.542</td>
<td>-0.222</td>
<td>-0.728</td>
<td>-0.281</td>
</tr>
<tr>
<td></td>
<td>p</td>
<td>0.169</td>
<td>0.591</td>
<td>0.266</td>
<td>0.672</td>
<td>0.101</td>
<td>0.589</td>
</tr>
</tbody>
</table>

Em negrito, as correlações significativas com probabilidade p < 0,05

Em todos os ambientes, a média do Índice de Diversidade (H'), por parcela, foi menor para a chuva de sementes que para as plantas de menor porte (0,2 a 1 m) e, consequentemente, para o conjunto de todas as plantas (0,2 a 5 m). Entretanto, não foram encontradas diferenças significativas entre a diversidade média de sementes e de plantas de maior porte, ou seja, entre 1 e 5 metros de altura (anexo I).
Discussão

A área mais perturbada (Área queimada - F) recebeu o maior número de sementes e o menor número de espécies de sementes dentre os ambientes analisados (2,25 sementes/m²/dia), e a chuva de sementes neste ambiente foi fortemente dominada por duas espécies (Cecropia pachystachya e Miconia mirabilis) que representaram 68,4% de todas as sementes amostradas.

Esta área representa uma situação bastante peculiar e com poucos estudos comparativos na literatura, pelo fato de ter sido queimada sem corte prévio da vegetação, o que permitiu que algumas árvores permanecessem vivas, e pela proximidade com blocos continuos de floresta em estádio sucessional avançado. Além disso, o tempo decorrido entre o incêndio e o início do estudo, 4 anos, permite que várias espécies tanto herbáceas e arbustivas quanto árvores pioneiras já tenham se estabelecido no local e estejam se reproduzindo. Em função da grande quantidade de luz disponível e da grande entrada de nutrientes (Vinha et al., 1983, Uhl & Jordan, 1984) decorrente da queima da vegetação, as espécies que conseguiram se estabelecer podem ter uma alta produtividade, o que poderia gerar um grande número de sementes autóctones e também atrair um maior número de dispersores (Levey, 1988), podendo explicar o grande número de sementes registradas neste ambiente.

A presença de árvores remanescentes funcionando como poleiros (Willson & Crome, 1989; Holl, 2002) pode ter favorecido a chegada e permanência de animais dispersores, trazendo propágulos da vegetação do entorno, entretanto, a menor riqueza de espécies observada na chuva de sementes pode estar relacionada ao fato de certos grupos de dispersores evitarem locais abertos ou ainda pode estar relacionada ao menor número de árvores (e consequentemente um menor número de espécies) no dossel acima das áreas de amostragem.

O outro ambiente com grande número de sementes amostradas através da chuva de sementes foi o sub-bosque adjacente às clareiras (SB), apresentando aproximadamente 2 sementes/m²/dia. Números de sementes mais baixos foram observados por Jackson (1981) em uma floresta tropical montana (0,35/m²/dia) e por Grombone-Guaratini & Rodrigues (2002) em uma floresta semidecídua (1,21/m²/dia) enquanto valores mais altos foram observados por Harms et al. (2000) em floresta tropical sazonal (2,64/m²/dia), por Holl (1999) em floresta tropical úmida (4,57/m²/dia), por Penhalber & Mantovani (1997)
em floresta semidecidual (4,94/m²/dia), além dos valores citados por Walker & Neris (1993) para alguns estudos em sub-bosque, variando de 2,5 a 8,8 sementes/m²/dia.

Uma comparação refinada é bastante dificultada devido aos diferentes métodos e esforços amostrais adotados em cada estudo, além das diferenças entre os tipos vegetacionais amostrados. Entretanto, é possível observar que o número de sementes coletadas no sub-bosque da área estudada encontra-se dentro dos limites observados para outras florestas tropicais amostradas.

Por outro lado, no sub-bosque da área de mata próxima à área queimada (MP), o número de sementes amostradas foi significativamente mais baixo (1,08 sementes/m²/dia) que no sub-bosque adjacente às clareiras (SB). Nesta área, conforme pode ser observado pela curva de abundância, houve uma queda brusca no número de sementes entre a espécie dominante (*Miconia mirabilis*, 1765 sementes) e a seguinte (*Henriettae succosa*, 270 sementes), enquanto no sub-bosque adjacente às clareiras (SB), além do número extremamente alto de sementes de *Miconia mirabilis* (3529), as outras 4 espécies mais abundantes também foram representadas por números altos de sementes, todas com mais de 270 sementes na amostra. Considerando que o maior número de espécies em comum e o maior índice de similaridade por presença/ausência foi observado entre as duas áreas de sub-bosque (SB e MP), estas diferenças em número de sementes sugerem um forte efeito local na produtividade das espécies ou na dispersão para a área de mata próxima à área queimada (MP).

De acordo com Martinez-Ramos & Soto-Castro (1993), mudanças espaciais e temporais na intensidade de frugivoria e no padrão de frutificação das plantas podem afetar a estrutura e a composição da chuva de sementes que chegam nos diferentes locais da floresta. Além disso, como a ocorrência de perturbações pode afetar a dispersão de sementes, por alterar a abundância de vertebrados ou por induzir mudanças no comportamento dos dispersores (Guariguata & Pinard, 1998), a proximidade com a área queimada pode estar afetando a chuva de sementes na área de mata próxima.

Nos resultados da análise de MRPP, que avalia também as abundâncias relativas das espécies em cada ambiente, as duas áreas foram significativamente diferentes, o que parece estar de acordo com as sugestões acima.

O menor número de sementes observado em clareiras (0,89 sementes/m²/dia) também foi observado por Devoe (1989 *apud* Walker & Neris, 1993), que encontrou 0,78 sementes/m²/dia em clareiras, e 2,55
sementes/m²/dia no sub-bosque, resultados bastante similares aos observados no presente estudo. Loiselle et al. (1996) também encontraram um número menor de plântulas germinando a partir da chuva de sementes em clareiras, em relação ao sub-bosque adjacente. Estes resultados são contrários às expectativas de que clareiras poderiam receber maior número de sementes, tanto zoocóricas (Levey, 1988; Schupp et al., 1989), quanto anemocóricas (Augspurger & Franson, 1988; Schupp et al., 1989).

Além disso, no presente estudo, as proporções de sementes ou de espécies anemocóricas registradas em clareiras não foram maiores que o esperado. Loiselle et al. (1996) encontraram, no total, uma maior proporção de sementes anemocóricas em clareiras, porém, em dois dos quatro períodos amostrados por eles, o número de sementes anemocóricas foi maior no sub-bosque. No trabalho de Augspurger & Franson (1988), geralmente citado como um exemplo da maior ocorrência de espécies anemocóricas em clareiras, o número médio de sementes anemocóricas não diferiu entre clareiras e sub-bosque. Portanto, mais estudos são necessários para verificar se realmente existe uma dispersão direcionada de sementes anemocóricas para os ambientes de clareiras.

O único ambiente a apresentar maior proporção de sementes anemocóricas foi a área queimada, em função, principalmente, do maior número de sementes de espécies da família Asteraceae (Lepidaploa cotoneaster, Baccharis spp, Piptocarpha pyrifolia e Mikania salzmannii foram as mais abundantes). Com exceção de Piptocarpha pyrifolia, as outras espécies são exclusivamente heliófilas, sendo frequentemente encontradas em ambientes perturbados na Reserva Biológica de Una (Amorim et al., inédito). A maior abundância destas espécies na chuva de sementes na área queimada certamente decorre mais da abundância destas plantas neste ambiente do que de um processo de dispersão alóctone.

Em todos os ambientes, o número de espécies com sementes pequenas (abaixo de 5mm de comprimento) foi maior que nas outras classes de tamanho e o número total de sementes nesta classe de sementes pequenas foi extremamente alto. O grande número de sementes pequenas se deve em parte ao fato de que as duas espécies mais abundantes na amostra (Miconia mirabilis e Cecropia pachystachya) apresentam sementes nesta classe de tamanho. Entretanto, a relação inversa observada entre tamanho de sementes e número de sementes amostradas e o fato de que as 20 espécies não-anemocóricas mais abundantes também têm sementes que pertencem a esta classe de tamanho sugerem que as sementes
pequenas podem ser produzidas em maior número, estando de acordo com os resultados de Jackson (1981).

O melhor ajuste dos pontos à reta da relação entre o número de sementes e a frequência nas parcelas, em contraste com um fraco ajuste dos pontos na relação entre o tamanho das sementes e a frequência nas parcelas sugere que a redução de tamanho não necessariamente implica em maior capacidade de dispersão. Para as espécies em que o menor tamanho da semente não estiver associado à produção de um maior número de sementes, a vantagem de maior capacidade de dispersão para sementes pequenas (Jackson, 1981; Foster, 1986; Thompson & Rabinovitz, 1989) pode ser reduzida.

Entre os ambientes estudados, somente a área queimada apresentou uma proporção relativa de espécies pequenas maior que a esperada, o que poderia ser explicado pela hipótese de que espécies de estádios iniciais de sucessão, que possivelmente constituem a maior parte da vegetação reprodutiva na área, apresentam sementes pequenas (Salisbury, 1974 *apud* Foster & Janson, 1985). Da mesma forma, as menores proporções relativas de espécies e de sementes das maiores classes de tamanho, que foram observadas na área queimada, podem sugerir uma deficiência na presença de dispersores de grande porte, que evitariam ambientes mais abertos (Schupp et al., 1989; Guariguata & Pinard, 1998).

Em clareiras, ao contrário do esperado, foi observada uma maior proporção relativa de sementes das maiores classes de tamanho. Entretanto, isso ocorreu em função de 4 espécies (3 com tamanho médio e 1 grande) que ocorreram em maior quantidade, mas de forma bastante concentrada, sendo registradas em apenas uma ou, no máximo, duas clareiras (e em apenas 1 a 3 coletores na parcela), o que pode simplesmente decorrer da reprodução de espécies logo acima dos coletores.

Miconia mirabilis foi registrada em todas as parcelas de todos os ambientes e com uma grande abundância, chegando a representar 55% das sementes amostradas no sub-bosque da mata próxima à área queimada e 53% no sub-bosque adjacente às clareiras. Indivíduos adultos desta espécie não são encontrados no sub-bosque da floresta e são raramente encontrados nas bordas das clareiras, entretanto uma grande abundância de adultos reprodutivos dessa espécie é encontrada nas bordas das florestas (obs. pessoal), indicando que animais dispersores estão buscando alimento nas bordas e trazendo as sementes para o interior da floresta. Um levantamento do banco de sementes nestas áreas poderia ajudar
a compreender a estratégia de regeneração desta espécie, verificando se ela apresenta a capacidade de permanecer dormente, podendo acumular no solo.

Outra espécie da família Melastomataceae, *Henrietta succosa*, também foi encontrada em um grande número de parcelas, sendo distribuída de forma relativamente uniforme entre os ambientes, porém apresentando um menor número de sementes que *Miconia mirabilis*.

Sementes de *Cecropia pachystachya* foram registradas em quase todas as parcelas (23), porém, 93% das sementes foram amostradas nas parcelas da área queimada, indicando um forte efeito da produção local. Entre os outros três ambientes analisados, a área de mata próxima à área queimada foi que recebeu a maior quantidade de sementes de *Cecropia pachystachya* (161 sementes), sugerindo uma forte influência da proximidade com a área queimada, seja pela menor distância a ser percorrida pelos dispersores que estariam trazendo sementes produzidas pelas plantas adultas da área queimada, ou pela produção de sementes por indivíduos adultos de *Cecropia pachystachya* já estabelecidos nesta área.

Apesar de as sementes destas três espécies terem sido registradas em praticamente todas as parcelas amostradas, indivíduos jovens (de 0,2 a 5 metros de altura) destas espécies somente foram encontrados em parcelas na área queimada, de acordo com o estudo realizado nas mesmas áreas por Martini et al. (inédito - Capítulo 1). Além disso, espécies como *Euterpe edulis* (Arecaceae) e *Psychotria purpurascens* (Rubiaceae), cujos indivíduos entre 0,2 e 5 metros de altura foram encontrados em todos os ambientes no mesmo estudo citado acima, não foram registradas na chuva de sementes no período, exceto por uma semente de *Euterpe edulis* em uma clareira. Entre as dez espécies mais abundantes na chuva de sementes, apenas uma, *Evodia nitida* funifer*, foi observada com uma forte correspondência com as plantas estabelecidas nas parcelas, sendo encontrado um número maior de sementes e de plantas desta espécie nas áreas de clareiras e no sub-bosque adjacente.

Estes resultados sugerem uma fraca relação entre a composição da chuva de sementes e a composição das plantas de pequeno e médio porte nas áreas de sub-bosque (MP e SB). Outros estudos têm observado uma fraca relação entre as espécies da chuva de sementes e os indivíduos jovens (Martinez-Ramos & Soto-Castro, 1993) ou os adultos da comunidade (Saulei & Swaine, 1988; Penhalber & Mantovani, 1997; Harms et al. 2000). Grande parte desta fraca relação certamente ocorre em função da amostragem da chuva de sementes durante apenas um ano, pois muitas espécies em florestas tropicais apresentam
variação nos padrões de frutificação entre anos diferentes (Schupp 1990; Davies & Ashton, 1999; Wright et al., 1999), além de espécies que apresentam padrões supra-aneais de reprodução (Newstrom et al., 1994). Análises mais completas sobre a composição de plantas estabelecidas e da chuva de sementes são necessárias para testar estas relações.

Somente na área queimada, as três espécies de sementes mais abundantes na chuva de sementes coincidiram com as espécies de plantas de pequeno e médio porte amostradas. Possivelmente, neste ambiente, tanto a chuva de sementes quanto os indivíduos pequenos estabelecidos estejam simplesmente refletindo as espécies adultas reprodutivas predominantes na área, da mesma forma que o observado por Walker & Neries (1993) e por Saulei & Swaine (1988).

Nos ambientes de clareiras, as espécies mais abundantes na chuva de sementes não coincidiram exatamente com as espécies mais abundantes de plantas estabelecidas na vegetação, entretanto, uma correlação positiva e significativa foi observada entre os valores de diversidade de espécies amostradas na chuva de sementes e de plantas de pequeno porte (0,2 a 1 metro de altura). Também a riqueza de espécies da chuva de sementes foi significativamente correlacionada com a riqueza de plantas pequenas em clareiras.

Uma possível explicação é que o fator que diferencia o ambiente de clareiras dos demais é a situação intermediária que estas representam, pois, na área queimada, apesar da grande quantidade de luz e nutrientes possivelmente disponibilizados em um primeiro momento, as espécies de crescimento rápido poderiam estar ainda determinando o padrão de ocupação, enquanto nas áreas de sub-bosque, as relações já estabelecidas deveriam permanecer com pouca alteração em função dos níveis mais baixos e mais constantes de luz, que não favoreceriam a entrada de novas espécies. Em clareiras de tamanho pequeno a intermediário, os níveis de liberação de nutrientes e de disponibilidade de luz poderiam não ser suficientes para o estabelecimento de espécies agressivas, mas poderiam permitir o estabelecimento de novas espécies. Dessa forma, em clareiras onde poucas espécies chegam através da chuva de sementes, um menor número de espécies poderia se estabelecer, ao passo que clareiras que recebessem mais espécies, teriam uma maior amplitude de possibilidades. Talvez exista um limite no número de espécies suportada por um ambiente, mas o que estes resultados sugerem é que no sub-bosque, diante de mudanças nas condições físicas, decorrentes da formação de uma clareira, este limite pode ser alterado.
em função do número de espécies que chegam através da chuva de sementes.

Uma junção das hipóteses de limitação de recrutamento (Tilman & Pacala, 1993) e dos nichos de regeneração propostos por Grubb (1977) poderia ajudar a explicar esta relação entre a diversidade de plantas estabelecidas e de sementes provenientes da chuva de sementes, pois, no sub-bosque da floresta, mesmo que um grande número de espécies chegue através da chuva de sementes, apenas as espécies com maior capacidade de sobreviver na sombra, que seriam as melhores competidoras neste ambiente (Canham, 1989), poderiam se estabelecer nestes locais. Por outro lado, nas clareiras, várias espécies poderiam se beneficiar do aumento de luz para atingirem um tamanho que lhes permita permanecer no local mesmo após o fechamento do dossel.

Como os resultados apresentados aqui se referem a apenas um ano de acompanhamento da chuva de sementes e, conforme citado anteriormente, os padrões podem variar muito entre diferentes anos, são necessários estudos de longo prazo para verificar a consistência destas relações, sendo importante ressaltar que a diversidade de espécies de plantas estabelecidas, observadas em um determinado momento, é o resultado do recrutamento de vários anos consecutivos. Harms et al. (2000) acompanharam 4 anos de chuva de sementes e de estabelecimento de plântulas e concluíram que a diversidade observada na chuva de sementes foi considerada um fraco indicador da diversidade de plântulas, porém os autores não analisaram os ambientes de clareiras separadamente e possíveis relações poderiam estar obscurecidas pela mistura de ambientes em diferentes fases do ciclo florestal.

Os menores valores de diversidade de espécies na chuva de sementes, quando comparadas com a diversidade de plantas de pequeno porte, observada para todos os ambientes no presente estudo, estão de acordo com os resultados de Harms et al. (2000), que sugeriram que, no processo de transição de sementes para plantas no sub-bosque das florestas tropicais, existem fatores que agem seletivamente eliminando sementes ou plântulas de espécies abundantes.

Agradecimentos

Este trabalho contou com o apoio logístico e financeiro do Instituto de Estudos Sócio-Ambientais do Sul da Bahia (IESB) e da Universidade Estadual de Santa Cruz (UESC), além de receber apoio financeiro das instituições WWF (Fundo Mundial para a Natureza), Fundação Ford e CAPES (Fundação Coordenação de Aperfeiçoamento de Pessoal de Nível Superior). Os autores agradecem ao Sr. Saturnino Neto F. de Souza, Diretor da Reserva Biológica de Una, por facilitar a realização do trabalho nesta unidade de Conservação, ao Dr. André M. Carvalho, por facilitar o acesso a coleção do Herbário CEPEC e ao Dr. Paulo Inácio K. L. Prado pelo auxílio nas análises estatísticas. Também agradecemos o cuidadoso trabalho dos bolsistas PROIC/UESC e IESB, no auxílio com as triagens das sementes.
Referências bibliográficas

ANEXO I

Valores de Riqueza (S) e de Diversidade (H' Índice de Shannon) de sementes amostradas na chuva de sementes e de plantas amostradas em parcelas adjacentes.

<table>
<thead>
<tr>
<th>AMBIENTE/ PARCELA</th>
<th>H' (nats)</th>
<th>H' (nats)</th>
<th>H' (nats)</th>
<th>H' (nats)</th>
<th>S (nats)</th>
<th>S (nats)</th>
<th>S (nats)</th>
<th>S (nats)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SEMENTES</td>
<td>PL 0,2 a 1m</td>
<td>PL 1 - 5m</td>
<td>PL 0,2 a 5m</td>
<td>S SEMENTES</td>
<td>PL 0,2 a 1m</td>
<td>PL 1 a 5m</td>
<td>PL 0,2 a 5m</td>
</tr>
<tr>
<td>CLAREIRAS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C1</td>
<td>2,277</td>
<td>3,383</td>
<td>2,488</td>
<td>3,535</td>
<td>30</td>
<td>32</td>
<td>13</td>
<td>40</td>
</tr>
<tr>
<td>C2</td>
<td>1,78</td>
<td>2,883</td>
<td>2,043</td>
<td>3,07</td>
<td>27</td>
<td>31</td>
<td>8</td>
<td>36</td>
</tr>
<tr>
<td>C3</td>
<td>1,856</td>
<td>2,828</td>
<td>1,907</td>
<td>3,163</td>
<td>24</td>
<td>20</td>
<td>8</td>
<td>28</td>
</tr>
<tr>
<td>C4</td>
<td>1,366</td>
<td>2,748</td>
<td>2,206</td>
<td>3,081</td>
<td>24</td>
<td>24</td>
<td>10</td>
<td>31</td>
</tr>
<tr>
<td>C5</td>
<td>1,714</td>
<td>2,911</td>
<td>2,653</td>
<td>3,272</td>
<td>23</td>
<td>22</td>
<td>16</td>
<td>34</td>
</tr>
<tr>
<td>C6</td>
<td>1,847</td>
<td>3,156</td>
<td>2,197</td>
<td>3,347</td>
<td>27</td>
<td>30</td>
<td>9</td>
<td>37</td>
</tr>
<tr>
<td>Média (Desvio)*</td>
<td>1,81(0,29)a</td>
<td>2,99(0,24)b,c</td>
<td>2,25(0,28)ab</td>
<td>3,24(0,18)c</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SUB-BOSQUE								
-------------------	-----------	-----------	-----------					
SB1	1,749	2,783	2,441	3,131	38	21	12	28
SB2	1,672	3,16	2,965	3,569	51	32	20	48
SB3	1,562	3,16	2,997	3,538	29	29	21	43
SB4	1,55	2,762	2,146	2,951	29	17	9	22
SB5	1,359	2,81	2,164	3,032	31	21	9	27
SB6	1,387	3,2	2,625	3,438	33	28	15	37
Média (Desvio)*	1,55(0,15)a	2,98(0,21)b,c	2,56(0,38)ab	3,28(0,27)c				

ÁREA QUEIMADA								
-------------------	-----------	-----------	-----------					
F1	1,671	2,819	2,471	3,107	26	21	14	31
F2	1,288	2,284	2,389	2,735	23	15	14	26
F3	1,459	2,945	2,776	3,349	24	24	18	37
F4	1,731	2,751	1,956	2,839	21	17	9	22
F5	1,303	2,471	2,156	2,639	15	19	11	26
F6	1,626	2,395	2,045	2,864	23	12	9	20
Média (Desvio)*	1,15(0,19)a	2,61(0,26)b,c	2,30(0,31)ab	2,92(0,26)c				

MATA PROXIMA								
-------------------	-----------	-----------	-----------					
MP1	1,803	2,474	2,272	3,017	32	16	10	26
MP2	1,626	2,164	2,303	2,775	30	9	11	18
MP3	1,75	2,471	2,599	3,096	29	17	14	30
MP4	1,894	2,686	2,598	3,086	27	15	16	27
MP5	2,391	3,061	2,455	3,261	29	33	14	42
MP6	1,739	3,067	2,262	3,313	28	24	11	32
Média (Desvio)*	1,87(0,27)a	2,65(0,36)b,c	2,42(0,16)ab	3,09(0,19)c				

*a letras diferentes indicam diferenças significativas entre os ambientes dentro de cada linha (Kruskal-Wallis, p < 0,05, n = 6)

Obs.: Os valores apresentados nesta tabela foram obtidos excluindo-se o mês de outubro dos ambientes de Clareiras e Sub-bosque (ver metodologia)
CONSIDERAÇÕES FINAIS

Neste conjunto de trabalhos foram apresentadas observações acerca do efeito das perturbações naturais e antrópicas sobre a estrutura e composição da comunidade de plantas e como estas perturbações afetam o ambiente de luz e a chegada de sementes no solo.

A área sujeita a perturbação antrópica (área queimada) se diferenciou das outras áreas, apresentando uma vegetação com menor riqueza de espécies, grande quantidade de espécies exclusivas e com uma forte dominância, basicamente por espécies de crescimento rápido. Além disso, considerando o número de indivíduos e espécies nos diferentes hábitos de crescimento, a área queimada apresentou uma distribuição de abundância bastante diferente das outras áreas, principalmente pela presença de maior número de indivíduos com hábitos escandentes e lianas e menor número de indivíduos de espécies arbóreas, além da ausência de hemiepipífitas.

A chegada de sementes também foi diferenciada na área queimada, onde, apesar do grande número de sementes amostradas, que foi similar ao observado em uma área de sub-bosque, a riqueza de espécies de sementes recebidas através da chuva de sementes na área queimada foi menor. A forte dominância de sementes de duas espécies de crescimento rápido (*Cecropia pachystachya* e *Miconia mirabilis*) e a abundância de espécies com sementes anemocóricas, principalmente de plantas heliófilas da família Asteraceae, estão fortemente relacionadas com a presença de indivíduos reprodutivos destas espécies nesta área (obs. pessoal), sugerindo a predominância da composição da vegetação local na chuva de sementes.

Ainda que a perturbação ocorrida, quando comparada aos sistemas de corte e queima tradicionais, tenha sido leve e tenha permitido a sobrevivência de algumas espécies arbóreas e que os blocos contínuos de florestas próximos a esta área tenham funcionado como fonte de propágulos, os efeitos desta perturbação antrópica sobre a comunidade vegetal, 5 anos depois, ainda são bastante proeminentes.

Entre os outros três ambientes analisados - clareiras naturais, sub-bosque adjacente às clareiras e sub-bosque da mata próxima à área queimada - as diferenças em estrutura e composição da vegetação foram mínimas, gerando importantes informações sobre o papel das perturbações naturais na manutenção da diversidade de espécies.
Se clareiras naturais, através do mecanismo de partilha de nicho, tivessem um papel importante na manutenção de espécies em florestas tropicais, seria esperado que elas apresentassem: i) um maior número de indivíduos, que poderia ter como conseqüência uma maior riqueza de espécies (efeito da densidade - Denslow, 1995; Brokaw & Busing, 2000); ii) uma composição de espécies diferenciada do sub-bosque adjacente e; iii) plantas respondendo à presença de luz.

Entretanto, neste estudo, as clareiras e o sub-bosque adjacente a elas foram similares em número de indivíduos, riqueza de espécies e na distribuição dos indivíduos e espécies em hábitos de crescimento. Além disso, apesar das diferenças observadas em algumas características de luminosidade, estes ambientes apresentaram uma composição de espécies bastante similar e nem o conjunto todo de espécies nem as espécies mais abundantes, parecem estar relacionados às características do ambiente de luz propiciado pelas clareiras. A única exceção foi a espécie hemiepipítica Evodiantus funifer, cujos indivíduos de menor porte ocorreram em maior densidade em clareiras com maior quantidade e concentração de luz. O sub-bosque da mata próxima à área queimada também foi bastante similar às clareiras e ao sub-bosque adjacente a elas, em estrutura e composição de espécies.

Além disso, as previsões a respeito da chegada de sementes preferencialmente em clareiras, não foram confirmadas neste período em que a chuva de sementes foi acompanhada, pois as clareiras receberam o menor número de sementes e não foi observada nenhuma predominância de espécies anemocóricas ou deficiência de sementes maiores.

Estes resultados estão de acordo com as idéias recentes de Hubbel et al. (1999) e de Brokaw & Busing (2000), de que a composição de espécies em clareiras é determinada fortemente pelos padrões de composição no sub-bosque anteriores à formação das clareiras e não por partilha de nicho entre espécies com diferentes nichos de regeneração.

Schnitzer & Carson (2000) chamaram a atenção para o fato de que as idéias de Brokaw & Busing (2000) estavam baseadas essencialmente em espécies arbóreas e que seria necessário realizar estudos com outras formas de vida. No presente estudo, em que todos os hábitos de crescimento foram avaliados em conjunto, foi observado o mesmo padrão das espécies arbóreas. Inclusive, o número de lianas em clareiras foi menor que o esperado, contradizendo as expectativas de Schnitzer & Carson (2000) de que este grupo de plantas poderia depender de clareiras para permanecer na comunidade.
Ainda que a hipótese de partilha de nicho não esteja sendo corroborada por estes resultados, as perturbações naturais, como as clareiras, podem ser importantes para a manutenção da diversidade de espécies, por permitirem que espécies raras e/ou espécies competitivamente inferiores tenham melhores performances nestes ambientes, de acordo com as hipóteses de mortalidade compensatória (Connell et al., 1984; Wright, 2002) e de limitação de recrutamento (Tilman & Pacala, 1993).

No presente estudo não foi acompanhado o crescimento nem a sobrevivência das plantas nestes ambientes, entretanto alguns estudos mostram que muitas espécies podem ter taxas de crescimento e sobrevivência aumentada em clareiras (Brokaw, 1987; Popma & Bongers, 1988; Denslow et al., 1990; King, 1991; Popma & Bongers, 1991; Fraver et al., 1998; Poorter, 1999; Terborgh & Matthews, 1999; Lewis & Tanner, 2000) e, no presente estudo, três espécies - *Evodianthus funifer*, *Pouroma mollis* e *Protium heptaphyllum* - ocorreram preferencialmente em clareiras, na escala analisada, sugerindo que, para algumas espécies, a presença de clareiras pode ser importante.

Por outro lado, considerando que as clareiras analisadas neste estudo foram formadas dois anos, ou mais, antes do início do estudo, os efeitos de diferenças em crescimento e sobrevivência entre as espécies, possivelmente já deveriam estar refletidos na composição geral da comunidade em clareiras.

As relações apresentadas acima são referentes a um tipo de formação florestal localizado em uma área com alta pluviosidade e sem período seco definido, ocorrendo em um solo pobre em nutrientes. Neste tipo de ambiente, segundo Coomes & Grubb (2000), as espécies dominantes podem não depender de clareiras para o seu estabelecimento. Portanto, seria importante conduzir estudos similares, incluindo indivíduos de todos os hábitos de crescimento, em áreas com forte sazonalidade, com a finalidade de verificar se os mesmos processos são observados.

Referências bibliográficas

