A PRÓPOLIS VERMELHA DO NORDESTE DO BRASIL E SUAS CARACTERÍSTICAS QUÍMICAS E BIOLÓGICAS

Andreas Daugsch

Prof. Yong Kun Park, PhD, MD
Orientador

Tese apresentada à Faculdade de Engenharia de Alimentos da Universidade Estadual de Campinas, para a obtenção do título de Doutor em Ciência de Alimentos.

Campinas – São Paulo

2007
Daugsch, Andreas
D265p A própolis vermelha do nordeste do Brasil e suas características químicas e biológicas / Andreas Daugsch. – Campinas, SP: [s.n.], 2007.

Orientador: Yong Kun Park
Tese (doutorado) – Universidade Estadual de Campinas. Faculdade de Engenharia de Alimentos.

(cnk/fea)

Titulo em ingles: The red propolis of the northeast of Brazil and its chemical and biological characteristics.

Palavras-chave em inglês (Keywords):
Propolis, Flavonoides, Botanical origin, Apis mellifera, Dalbergia.

Titulação: Doutor em Ciência de Alimentos

Banca examinadora: Yong Kun Park
Marcelo Alexandre Prado
Gláucia Maria Pastore
Hélia Harumi Sato
Fred Yukio Fujiwara
Flávio Vasconcelos da Silva

Programa de Pós-Graduação: Programa em Ciência de Alimentos
Tese defendida e aprovada em 16 de Fevereiro de 2007, pela banca examinadora constituída pelos professores:

Prof. Dr. Yong Kun Park
Orientador

Prof. Dr. Marcelo Alexandre Prado
Membro

Profa. Dra. Gláucia Maria Pastore
Membro

Profa. Dra. Hélia Harumi Sato
Membro

Prof. Dr. Fred Yukio Fujiwara
Membro

Prof. Dr. Flávio Vasconcelos da Silva
Membro
AGRADECIMENTOS

Ao Prof. Dr. Yong K. Park
À Profa. Gláucia Pastore
À Profa. Hélia Sato
À Profa. Helena Godoy
Ao Prof. Marcelo Prado
Ao Prof. Fred Fujiwara
Ao Prof. Flávio Vasconcelos da Silva
Ao Prof. E. Wollenweber
Ao Prof. H. Ashida
Ao Prof. M. Koo
Ao Prof. I. B. Lima
Cleber S. Moraes
Patrícia Fort
Milene Berbel
Júlio Paredes-Guzman
José Alexandre e Sheila Abreu
Juliana Galvão
Marta Duarte
Esther Bastos
Edivaldo Paccheco
A minha família e Adriana Aparecida do Amaral

À CNPq pelo auxílio financeiro.
Índice

1 Introdução.. 1
2 Objetivos.. 2
3 Revisão Bibliográfica... 2
 3.1 Origem botânica... 2
 3.2 Composição química.. 3
 3.3 Potencial alergênico... 4
 3.4 Efeitos analgésicos .. 5
 3.5 Antibiótico natural na alimentação de animais .. 6
 3.6 Atividade anti-bacteriana.. 6
 3.7 Atividade anti-fúngica... 11
 3.8 Atividade anti-inflamatória... 12
 3.9 Atividades antioxidantes e anti-radical livres ... 15
 3.10 Atividade anti-parasitária.. 17
 3.11 Atividade inseticida.. 18
 3.12 Atividade anti-tumoral.. 18
 3.13 Atividade anti-viral.. 23
 3.13.1 Atividade anti-adenovírus... 23
 3.13.2 Atividade anti-HIV... 24
 3.13.3 Atividade anti-herpes... 24
 3.13.4 Atividade anti-influenza .. 25
 3.13.5 Atividade anti-hepatite.. 25
 3.14 Cuidado dental e cáries .. 26
 3.15 Dermatite.. 29
 3.16 Potencial de detoxificação ... 30
 3.17 Tratamento de úlcera péptica ... 32
 3.18 Propriedades hepatoprotetoras .. 32
 3.19 Atividade imuno-moduladora... 34
 3.20 Efeitos regenerativos em tecidos biológicos e cura de feridas 37
 3.21 Ação hormonal.. 39
 3.22 Inibição enzimática... 40
 3.23 Proteção do DNA.. 41
 3.24 Sinergismo com quimioterapia... 42
 3.25 Uso geral.. 44
4 Material e métodos.. 46
 4.1 Própolis e reagentes.. 46
 4.2 Preparação do extrato etanólico da própolis46
 4.3 Preparação do extrato etanólico seco da própolis .. 47
 4.4 Preparação do extrato etanólico de plantas ... 47
 4.5 Preparação do extrato metanólico seco de plantas 47
 4.6 Espectrofotometria na região ultravioleta-visível.................................... 48
 4.7 Cromatografia em camada delgada de alta eficiência em fase reversa 48
 4.8 Cromatografia líquida de alta eficiência em fase reversa.......................... 49
 4.9 Determinação de flavonóides totais.. 49
 4.10 Determinação de compostos fenólicos totais.. 50
 4.11 Determinação da atividade anti-radical (DPPH).................................... 50
 4.12 Determinação da atividade anti-microbiana (Antibiograma)..................... 51
 4.13 Determinação da concentração inibitória mínima (MIC) 52
4.14 Observação microscópica de grãos de pólen e tecidos vegetais presentes em própolis ... 53
4.15 Diafanização do sedimento obtido da própolis bruta.......................... 54
4.16 Contagem e identificação dos fragmentos de epiderme diafanizados...... 55
4.17 Montagem de laminário de referência de estruturas secretoras 55
4.18 Estudo anatômico .. 55
4.19 Testes estatísticos ... 55
5 Resultados e discussão ... 56
5.1 Classificação de um novo grupo de própolis 56
5.2 Cromatografia em camada delgada de alta eficiência em fase reversa ... 59
5.3 Cromatografia líquida de alta eficiência em fase reversa com gradiente ... 62
5.4 Espectrofotometria na região ultravioleta-visível 65
5.5 Determinação da atividade anti-microbiana ... 67
5.6 Determinação da atividade anti-cáries .. 68
5.7 Determinação de flavonóides totais, comparação G3, G12, G13 69
5.8 Estudo da variabilidade da própolis vermelha do grupo 13 69
5.9 Determinação de flavonóides totais de amostras de própolis do grupo 13 72
5.10 Determinação de fenólicos totais de amostras de própolis do grupo 13 ... 73
5.11 Determinação da atividade anti-radical (DPPH) 73
5.12 Determinação da concentração inibitória mínima (MIC) 75
5.13 Otimização do método de extração de compostos bioativos de própolis .. 77
5.14 Histologia da Dalbergia ecastophyllum .. 79
5.14.1 Ocorrência e indicações medicinais ... 79
5.14.2 Análise da origem botânica .. 80
5.14.3 Estrutura anatômica da planta ... 82
6 Conclusões ... 86
7 Possíveis aplicações farmacológicas dos compostos 87
8 Referências bibliográficas ... 89
LISTA DE FIGURAS

Figura 1 Perfil cromatográfico (RPHPTLC) dos extratos etanólicos dos 13 grupos de própolis encontrados no Brasil. ... 56
Figura 2 Abelhas africanizadas produzindo a própolis vermelha. 57
Figura 3 Coleta de resina de Dalbergia ecastophyllum por abelha africanizada (Apis mellifera) para produção de própolis vermelha. .. 58
Figura 4 Perfil cromatográfico (RPHPTLC) das resinas de Dalbergia ecastophyllum e da própolis vermelha coletada em Alagoas. 59
Figura 5 Extratos etanólicos de amostras de resinas da D. ecastophyllum. 60
Figura 6 Perfil cromatográfico (RPHPTLC) de 9 amostras de plantas coletadas na área da produção da própolis vermelha. .. 61
Figura 7 Antes e depois da colheita da resina vermelhada de lacre. 62
Figura 8 Resina amarela e avermelhada da lacre. .. 62
Figura 9 Cromatograma dos extratos de própolis vermelha e da resina de Dalbergia ecastophyllum. .. 63
Figura 10 Extratos etanólicos de 10 amostras de própolis vermelha coletada no estado de Alagoas. .. 65
Figura 11 Espectro de absorção (UV-VIS) de 10 amostras de própolis vermelha de Alagoas. ... 66
Figura 12 Antibiógrafo das amostras 1 a 10 de Alagoas utilizando-se Staphylococcus aureus ATCC 25923, C = controle. .. 67
Figura 13 Antibiógrafo utilizando Staphylococcus aureus ATCC 25923 e Salmonella typhimurium ATCC 14028 e as amostras de própolis grupo 3, 12, 13 e resina de D. ecastophyllum. .. 68
Figura 14 Flavonóides totais (AlCl₃) em mg quercetina equivalente / g própolis das própolis G3 (Populus sp.), G12 (B. dracunculifolia) e G13 (D. ecastophyllum). .. 69
Figura 15 A = Cromatograma CLAE-FR de 6 amostras de própolis vermelha. B = Cromatograma CCDAE-FR de 6 amostras de própolis vermelha 70
Figura 16 Antibiógrafo de 6 amostras da própolis vermelha utilizando-se Staphylococcus aureus ATCC 25923 .. 71
Figura 17 Flavonóides totais (AlCl₃) em mg quercetina equivalente / g de amostra de própolis do grupo 13. ... 72
Figura 18 Teor de compostos fenólicos totais em mg ácido gálico equivalente / g de amostras de própolis do grupo 13. .. 73
Figura 19 Efeito antiradical da própolis vermelha amostra A a F (DPPH) 74
Figura 20 Coloração dos extratos etanólicos da própolis vermelha utilizando-se diferentes concentrações de etanol. ... 77
Figura 21 Antibiógrafo de extratos etanólicos da própolis vermelha com diferentes concentrações de etanol usando Staphylococcus aureus – ATCC 25923. 78
Figura 22 Cromatografia de camada delgada dos extratos etanólicos da própolis vermelha extraídos com diferentes concentrações de etanol. 79
Figura 23 Coleta de exudato resinoso vermelho de D. ecastophyllum por Apis mellifera. A = Folhas de D. ecastophyllum. B = Sementes de D. ecastophyllum. C = Apis mellifera coletando exudado resinoso vermelho de D. ecastophyllum. Caule de D. ecastophyllum com exudado resinoso vermelho. .. 81
Figura 24 Dalbergia ecastophyllum com resina vermelha saindo de um corte fresco. ... 82
Figura 25 a = Corte transversal de caule de *D. ecastophyllum*, evidenciando parênquima lignificado, elementos de vasos (100x); b = Parênquima lignificado planta (100x); c = Parênquima lignificado planta (400x); d = Células parênquimatosas retangulares com conteúdo avermelhado (100x).

Figura 26 Tricomas glandulares de tamanhos variados, ora íntegros, ora fragmentados, encontradas na própolis vermelha (400x).

Figura 27 Ápices vegetativos do caule de *Dalbergia ecastophyllum* (corte transversal, caule 200x e 400x).

Figura 28 Células radiais de forma oval, com abundante conteúdo avermelhado e tecido lignificado encontrado nas amostras de própolis (400x).

Figura 29 Corte transversal do caule de *Dalbergia ecastophyllum* demonstrando tricoma de cobertura (T), parênquima (P), vasos lacticíferos (LT), células radiais de forma oval (R) (200x).

Figura 30 Corte transversal de *Dalbergia ecastophyllum*, com vasos lacticíferos (LT) e células radiais (R) de forma oval semelhante a encontrada nas amostras de própolis (200x).
LISTA DE TABELAS

Tabela 1 Flavonóides e outros componentes químicos da própolis e *D. ecastophyllum*.. 64
Tabela 2 Atividade anti-microbiana dos extratos etanólicos de própolis dos grupos 3, 6, 12 e 13 contra *S. mutans*.. 68
Tabela 3 Efeito antiradical da própolis vermelha amostra A a F (DPPH)................. 74
Tabela 4 MIC (µg/mL) da própolis vermelha contra vários microorganismos patogênicos ... 75
Tabela 5 MIC (µg/mL) de própolis G3, G12 e G13 em comparação com antibióticos comerciais contra diferentes bactérias. .. 75
RESUMO

Própolis contém substâncias resinosas coletadas pelas abelhas (*Apis mellifera*) de várias plantas. Ela é usada pelas abelhas para selar buracos e proteger a colméia. Própolis é usada na medicina popular desde 300 anos antes de Cristo. Numerosas propriedades biológicas têm sido encontradas nas própolis, incluindo anti-microbiana, citotoxidade, anti-herpes, anti-tumor, anti-HIV, e efeitos supressivos da toxicidade da dioxina. Anteriormente as própolis brasileiras haviam sido classificadas em 12 grupos, baseado nas características físico-químicas. Foi também analisada as origens botânicas das principais própolis, como do grupo 3 que foi identificada sendo resina do botão floral de *Populus* (Salicaceae), do grupo 6 e 12 foi identificada sendo resina de folhas jovens de *Hyptis divaricata* (Lamiaceae) e *Baccharis dracunculifolia* (Asteraceae), respectivamente. Própolis normalmente é uma resina amarela escura ou amarronzada. Recentemente, nós encontramos uma própolis vermelha em colméias localizadas ao longo do mar e costas de rios no nordeste brasileiro que foi classificada então como própolis do grupo 13. Foi observado que as abelhas coletavam o exudato vermelho da superfície de *Dalbergia ecastophyllum* (L) Taub. (Leguminosae). Através de análises químicas e histológicas foi comprovado a existência de um novo grupo de própolis de origem botânica *Dalbergia ecastophyllum* com alta atividade anti-microbiana e anti-radical livre.
ABSTRACT

Propolis contains resinous substances of various plants gathered by the honeybee (*Apis mellifera*). It is used by the bees to seal of holes and to protect the beehive. Propolis is used as a folk medicine since 300 BC. Numerous biological properties have been found including anti-microbial, cytotoxic, anti-herpes, anti-tumor, anti-HIV and suppressive effects towards dioxin toxicity. Previously, 12 groups of Brazilian propolis have been classified based upon physiochemical characteristics. It was also analyzed the botanical origins of the main própolis. Propolis G3 was identified to contain resins of the buds of *Populus* (Salicaceae). The botanical origin of propolis of group 6 and 12 was identified as the resins on young leaves of *Hyptis divaricata* (Lamiaceae) and *Baccharis dracunculifolia* (Asteraceae), respectively. Propolis normally is a dark yellow or brownish resin. Recently, we found a red propolis in beehives along the see and river shores of northeastern Brazil that was classified as propolis group 13. It was observed that honeybees collected red exudates from the surface of *Dalbergia ecastophyllum* (L) Taub. (Leguminosae). Through chemical and histological analyses the existence of a new group of propolis with botanical origin of *Dalbergia ecastophyllum* and a high biological activity against microorganisms and free radicals was confirmed.
1 Introdução

A apicultura foi iniciada há pelo menos 4 mil anos. As abelhas melíferas se mantêm com seu mel, cera e própolis. Própolis é um material resinoso castanho de consistência cerosa coletada por abelhas melíferas (*Apis mellifera*) de vários tipos de botões florais e folhas novas de várias plantas. Esta resina é mastigada e durante a mastigação é adicionado enzimas salivares e cera. A própolis resultante é usada como um cimento na reparação de rachaduras na colméia e pode servir como proteção contra insetos intrusos ou animais que conseguiram entrar, foram picados, morreram e podem começar a se decompor. O nome própolis vem do grego “pro” “a favor” e “polis” “cidade” (Ghisalberti, 1979). Própolis possui várias atividades biológicas como anti-patotóxica, anti-tumoral, anti-viral, anti-oxidativa, antimicrobiana e propriedades anti-inflamatórias, e é então usada como um constituinte de alimentos saudáveis e como alimento funcional (Burdock, 1998).

2 Objetivos

O objetivo desta tese de doutorado foi avaliar uma nova própolis de cor avermelhada encontrada no nordeste do Brasil, identificar e quantificar as substâncias bioativas presentes.

3 Revisão Bibliográfica

3.1 Origem botânica

As abelhas melíferas pertencem a ordem Hymenoptera, a super família Apoidea e uma das espécies Apis. A própolis é coletada dos brotos das folhas de numerosas espécies de árvores (carvalho, betula, eucalipto, palmeira, álamo e salgueiro). Outros exudatos e secreções de plantas, substâncias lipofílicas nas folhas, mucilagens, gomas, resinas, etc. são também usadas (Bankova et al., 2000).

Há diferenças significativas na composição da própolis dependendo da época do ano e condições geográficas (Sforcin et al., 2001). Própolis de zonas temperadas são feitas de exudatos de botões florais principalmente de álamo e betula. Álamo é a principal origem botânica das própolis da América do Norte (Garcia-Vigueira et al., 1993), Europa (Greenaway et al., 1987) e as partes não tropicais da Ásia (Chi et al., 1996). Na região nordeste da Rússia, botões de betula (Betula verrucosa) foram identificadas como a principal origem botânica das própolis (Popravko e Sokolov, 1980).

Em relação a própolis da região tropical a situação é mais complexa. Foi demonstrado que a própolis da Venezuela contém os mesmos poliprenil benzofenonas como os encontrados nas resinas de Clusia major e Clusia minor (Guttiferae) (Tomás-Barberán et al., 1993). A planta usada para a coleta de exudatos ou resinas para a apreparação da própolis no deserto de Sonora (América do Norte)
é a *Ambrosia deltóidea* (Wollenweber *et al.*, 1997), na Austrália é a *Xanthorrhoea* sp. (Ghisalberti *et al.*, 1978) e no Brasil a *Araucária ssp* (Bankova *et al.*, 1996) e *Baccharis dracunculifolia* (Park *et al.*, 2004); esses resultados foram confirmados diretamente por observações no comportamento de abelhas melíferas e análises fitoquímicas (Kumazawa *et al.*, 2003).

3.2 Composição química

A composição química da própolis depende fortemente da estação do ano (Sforcin *et al.*, 2001) e de sua origem botânica (Bankova *et al.*, 2000). Própolis vindo de zona temperada é geralmente composto com 50% de resinas e bálsamos, 30% de cera, 10% de essência e óleos aromáticos, 5% de pólen, e 5% de outras substâncias, como ácidos alifáticos, ésteres, ácidos aromáticos, ácidos graxos, carboidratos, aldeídos, amino ácidos, cetonas, chalconas, terpenóides, vitaminas (B1, B2, B6, C e E) e minerais (alumínio, antimônio, cálcio, césio, cobre, ferro, lítio, manganês, mercúrio, níquel, prata, vanádio e zinco) (Almeida e Menezes, 2002).

Existe um tipo de própolis especial coletada por abelhas indígenas sem ferrão (*Meliponinae*) na América do Sul, que contém material resinoso de plantas misturado com cera de abelhas e terra, que é denominado de “geoprópolis” (Bankova *et al.*, 1998).

Própolis da região tropical contém flavonóides, di e triterpenos, lignina e outras substâncias fenólicas, ácido prenil-p-cumárico, acetofenonas, açúcares, açúcares-álcoois, ceras, vitaminas e minerais. Também vários compostos voláteis como monoterpenos e sesquiterpenos são achados (Bankova *et al.*, 1994).
Os flavonóides agliconas contido nas própolis do Brasil variam conforme a região (Park et al., 1997) e a composição química em geral depende da espécie de abelhas como foi demonstrado (Koo e Park, 1997). A composição química da própolis da mesma região, mas coletada de três diferentes espécies de abelhas melíferas foi comparada e significantes diferenças significativas na composição química foram relatadas (Silici e Kutluca, 2005). Uma lista de detalhes de muitos compostos identificados na resina de própolis ordenado pela estrutura básica foi publicada e avaliada (Fujimoto et al., 2001).

3.3 Potencial alergênico

Alergia ou hipersensibilidade significam resposta imune inadequada em um indivíduo por uma substância inofensiva. A própolis tem um potencial alergênico dependendo de sua origem botânica e composição química. As reações alérgicas causadas pela própolis baseada no álamo foram examinada extensivamente e ácido 1,1-dimetil cafeico éster, ácido fenil-3,4-diidroxicinâmico e ácido benzilsalicílico foram identificados como agentes causadores de alergias nesse tipo de própolis (Schuhmann e Grunow, 1991). Seiscentos e cinco pacientes foram submetidos a um teste com 10% de solução de própolis baseada no álamo e vinte e cinco pacientes (4,2%) tiveram resultado positivo de alergia a própolis (Machackova, 1988). Dezenove substâncias existentes na própolis de exudatos de botão de álamo foram testadas quanto a seu potencial alérgico. Quatro cafetatos e benzil isoferululatos foram demonstrados como sendo fortes, sete moderados e treze somente sensibilizadores. Os compostos 3-metil-2-butenil cafetato, fenil cafetato e benzil isoferululato foram identificados como principais sensibilizadores (Hausen et al., 1992). O potencial alergênico de extrato de própolis vermelha de Cuba foi estudado e os animais testados não apresentaram irificação dermatológica no teste de
toxicidade dérmico e ocular, porém o teste de alergia de contato mostrou resposta moderada (presença de eritema, porém não apresentaram edemas ou outras reações alérgicas). Em humanos as reações alérgicas causadas pela própolis de Cuba foram muito baixas (Ledón et al., 2002).

Farnesol é um composto químico presente na própolis de álamo, que possui potencial alergênico e então, foi decidido pela União Européia que produtos contendo farnesol devem ser etiquetados de acordo (Schnuch et al., 2004). Própolis causam alergias em 5% da população através de dermatites de contato (Gulbahar et al., 2005). Muitos apicultores apresentam dermatite de contato com a própolis, além disso, músicos podem também apresentar o mesmo problema devido a presença de própolis no verniz dos instrumentos musicais (Lombardi et al., 2003).

3.4 Efeitos analgésicos

Analgésicos são drogas aliviadoras da dor que não alteram as funções dos aparatados sensoriais ou bloqueio da condução do impulso nervoso (insensibilidade de dor sem perder a consciência). Eles são classificados em dois grupos de acordo com seus mecanismos de alívio de dor: os opióides, atuam como receptores na inibição de dor no cérebro, e os não opióides, inibem a síntese de prostaglandinas (NSAIDs) (de Campos et al., 1998). O efeito anti-inflamatório e analgésico da própolis parece estar relacionado principalmente com o mecanismo de síntese de prostaglandinas (de Campos et al., 1998). Os efeitos analgésicos da própolis da Bulgária, cuja fonte botânica é o álamo, foram testados em ratos e in vitro usando músculos lisos das vias aéreas ou musculatura lisa da traquéia. O ID₍₅₀₎ foram 7,4 mg/kg de indução de ácido acético para contorções abdominais. Com uma dose de 100 mg/kg de própolis houve redução significativa da sensibilidade de dor dos ratos em testes com formol. In vitro, a concentração de EEP para inibição da contração da musculatura lisa da
traquéia foram 50 µg/mL (Paulino et al., 2003). O efeito analgésico da própolis vermelha de Cuba mostraram *in vivo* uma concentração de 25 mg/kg em um modelo de indução de ácido acético. Doses de 40 mg/kg foram efetivas em testes com prato quente em ratos (Ledón et al., 1997). Extratos alcoólicos e aquosos de própolis da Coréia mostraram um forte efeito analgésico, que foi comparado com o ácido acetilsalicílico (Han et al., 2002; Park e Kahng, 1999).

3.5 Antibiótico natural na alimentação de animais

Antibióticos são usados nos gados criando uma redução do risco de epidemia. Conforme as regulamentações do comércio e com o objetivo de evitar o desenvolvimento da resistência contra os antibióticos usados, própolis foi testada para controle de infecções na produção de carne e peixe. Os resultados não foram satisfatórios (Anderson et al., 1970; Berngard, 1976).

Extratos etanólicos de própolis seca foram testados quanto ao controle de *Salmonella* em rações avícolas, porém o efeito positivo foi devido a presença de grande quantidade de álcool e não devido a própolis usada (Mazzuco et al., 1996).

A preservação de produtos da carne por própolis natural foi mostrada e os efeitos de extrato etanólico de própolis no retardamento na deteriorização de proteínas documentado (Han e Park, 1995).

3.6 Atividade anti-bacteriana

Própolis, sendo um antibiótico natural, ganhou bastante atenção com a atual volta da tendência ao uso de produtos naturais e devido ao crescimento do número de pacientes imunodeprimidos (AIDS) (Salomão et al., 2004). A atividade antimicrobiana dos extratos de própolis depende do solvente utilizado para prepará-los. Normalmente, os extratos etanólicos de própolis são usados, mas a fração aquosa
encontrado prenil benzofenonas, que tem maior atividade anti-bacteriana (Bankova, 2005).

Própolis e seus constituintes são ativos contra várias bactérias Gram-positivas (Sawaya et al., 2004):

- **Staphylococcus** sp. (Lu et al., 2005; Uzel et al., 2005), *Staphylococcus aureus* Keratitis (Oksuz et al., 2005) e cadeias antibiótico resistentes de *Staphylococcus* (Orkin, 1971). Um efeito sinérgico de EEP e antibióticos em *Staphylococcus aureus* foi demonstrado (Krol et al., 1993). A presença de EEP preveniu ou reduziu a formação de tolerância de *Staphylococci* para antibióticos (Marcucci, 1995).
- **Streptococcus** sp. As espécies gram-positivas *Streptococci* são classificadas em quatro grupos:
 - Piogênicas: Atividade in vitro contra *Streptococcus pyogenes* (Bosio et al., 2000).
 - Viridans: *Streptococcus viridans* foi completamente inhibido no crescimento em um meio de triptose (TB) com 0,15 mg/mL de própolis (Aspoy, 1977).
 - Fecal (enterococcus): Atividade bactericida de galangina em resistência múltipla contra *Enterococcus* sp. (Pepeljnjak e Kosalec, 2004; Uzel et al., 2005).
 - Lático: Atividade in vitro contra *Streptococcus latico* (Koo et al., 2000).
- **Bacillus subtilis** (Pepeljnjak et al., 1985).
- **Mycobactérias**: *M. tuberculosis* causadoras de tuberculose (Karimova e Rodionova, 1963) e *M. leprae* causadora de lepra em humanos (Rojas et al., 1993). Sinergismo entre EEP e drogas anti-tuberculose contra o crescimento de micobactérias foi demonstrado (Scheller et al., 1999). Extratos de própolis
turca mostrou efeito anti-tuberculose em porcos guinea (Yildirim et al., 2004) etc.

Própolis e seus constituintes sãoativos contra várias bactérias Gram-negativas:

- *Escherichia coli*: Crescimento inibido de *E. coli* foi demonstrado (Uzel et al., 2005).

- *Klebsiella* sp.: não houve efeitos mostrados no crescimento e virulência de *K. pneumoniae* (Grange e Davey, 1990).

- *Salmonella*: Própolis brasileira e búlgara mostraram atividade contra *Salmonella tiphimurium* (Orsi et al., 2005).

- *Helicobacter pylori*: Depois de 1989 também conhecida com o nome de *Campylobacter pylori*, é capaz de colonizar a mucosa gástrica e causar úlceras gástricas em humanos (Banskota et al., 2001; Nostro et al., 2005).

- *Prevotella* e *Porphyromonas*: Própolis foi comparada com vários agentes antimicrobianos contra *Prevotella intermédia*, *Prevotella nigrescens* e *Porphyromonas gingivalis* (Santos et al., 2002).

- *Campylobacter jejuni*: Um dos mais comuns relatados em infecções alimentares em humanos que produz diarréia e doença sistêmica (Uradzinski et al., 2002) etc.

A atividade anti-bacteriana da própolis foi revisada (Bankova, 2005).
Foram testadas a presença de efeitos de compostos da própolis, como flavonóides e ácidos fenólicos, em bactérias, fungos e vírus. Há indicações que o solvente empregado para a extração da própolis pode influenciar na força dessa atividade anti-microbiana. De fato, solução de glicerina, por exemplo, apresentou fraca inibição de bactérias Gram-positivas, enquanto soluções de etanol e propilenoglicol mostraram efetividade contra fungos (Castaldo e Capasso, 2002). Estudos com atividades antibióticas e anti-fúngicas foram testados usando soluções ou suspensões aquosas dos materiais a seguir: grãos de própolis contendo 300 mg de própolis por grama, chamado pelos autores de PG; barras de própolis de cor vermelha com 350 mg de própolis por barra, com média de peso de 1,2 g, chamado pelos autores de PR e barra amarela contendo 350 mg de grãos de pólen, com peso médio de 1,2 g, chamado PY. Penicilina, estreptomicina, tetraciclina, griseofulvina, metronidazol, fenilbutazona, flurbiprofeno e hidrocortisona acetato foram usados como controle por comparação. A avaliação da atividade das substâncias testadas foi realizada nas condições *in vitro*. Os microrganismos empregados foram cinco Gram-positivos (*Staphylococcus aureus*, *Streptococcus pyogenes*, *Streptococcus viridans*, *Diplococcus pneumoniae* e *Corynebacterium diphtheriae*) e cinco Gram-negativas (*Escherichia coli*, *Salmonella typhi*, *Salmonella paratyphi* e *Shigella flexneri*).

Muitos trabalhos recentes sobre atividade anti-bacteriana da própolis foram publicados: Própolis anatoliana foi analisada por ter uma alta atividade anti-microbiana. Os principais compostos anti-microbianos foram Pinocembrina, Pinostropina, Isalpinina, Pinobanksina, Quercetina, Naringenina, Galangina e Crisina. Os valores MIC usados no método de macro diluição foram 2 µg/mL para *Streptococcus sobrinus* e *Enterococcus faecalis*, 4 µg/mL para *Micrococcus luteus*, *Cândida albicans* e *C. krusei*, 8 µg/mL para *Streptococcus mutans*, *Staphylococcus*
aureus, Staphylococcus epidermidis e Enterobacter aerogenes, 16 µg/mL para Escherichia coli e C. tropicalis e 32 µg/mL para Salmonella typhimurium e Pseudomonas aeruginosa (Uzel et al., 2005). Foi positivamente demonstrada a utilização da própolis no tratamento de vaginites crônicas por Imhof et al., 2005.

3.7 Atividade anti-fúngica

A alta variabilidade de atividade anti-fúngica da própolis depende da diferente origem geográfica (Kujumgiev et al., 1999). A própolis turca, da região anatoliana mostrou efetividade contra Candida albicans (MIC 0,03-7,5 µg/mL), C. glabrata (MIC 0,03-7,5 µg/mL), Trichosporon sp. (MIC 0,1-0,4 µg/mL), e Rhodotorula sp. (MIC 0,01-1,0 µg/mL), sendo usado controle com Itraconazole (MIC 0,125-0,25 µg/mL; 0,5-
2,0 μg/mL; 0,125-1,0 μg/mL; 1,0 μg/mL, respectivamente). Própolis coletada por *Apis mellifera* tiveram maior atividade anti-fúngica que própolis coletada na mesma região por *Apis mellifera carnica* e *Apis mellifera anatolica* (Silici et al., 2005).

3.8 Atividade anti-inflamatória

A inflamação é ativada pela liberação de mediadores químicos iniciado pelo tecido injuriado e células migratórias (Rankin et al., 1996; Serhan e Chiang, 2004). Entre a identificação dos mediadores do processo inflamatório, estão: aminas vasoativas (histaminas e serotoninas), eicosanóides (metabolitos do ácido araquidônico, prostaglandinas e leucotrienos), fatores de agregação de plaquetas (PAF), citocinas (interleucina e TNF), quininas (bradiquinina), radicais livres de oxigênio, entre outros (Czermak et al., 1998; Ohishi, 2000). Essas substâncias são produzidas por células inflamatórias que incluem os leucócitos polimorfonucleares (neutrófilos, eosinófilos, basófilos), células endoteliais, mastócitos, macrófagos, monócitos e linfócitos (Fiala et al., 2002). Além de atividades biológicas previamente descritas, própolis e seus subprodutos que têm propriedades anti-inflamatórias são descritas em diferentes modelos de inflamação, incluindo o formaldeído induzindo artrites, edema de pata induzido por PGE2, carragenina ou radiação (Dobrowolski et al., 1991; El-Ghazaly e Khayyal, 1995; Park e Kahng, 1999; Park e Woo, 1996), como também inflamação aguda induzida por zinomazan (Ivanovska et al., 1995).

Em vários desses estudos foram observados que própolis apresenta efeito similar a drogas anti-inflamatórias usadas como controles positivos em experimentos. Além disso, o flavonóide hesperedina, presente na amostra de própolis européia, mostrou efeito similar a indometacina em indução de edemas em ratos por carragenina (Emim et al., 1994). Foi descrito na literatura que durante a fase aguda da inflamação, o principal fenômeno de ativação do processo é a produção local de
prostaglandinas (especialmente PGE2) e leucotrienos derivados do ácido araquidônico. Esses prostanóides são relativamente instáveis e notoriamente não seletivos na interação com vários subtipos de receptores prostanóides como demonstrado em amostras preparadas de tecidos isolados (Coleman et al., 1994; Hata e Breyer, 2004).

Inflamação no organismo é responsável por danos no tecido. É uma forma de nos proteger contra injúria e infecção (Gallin, 1989). Depois da danificação do tecido ocorrido pelo agente de injúria, parte do tecido danificado deve ser removido, assim o corpo pode começar o processo de cura. Se o agente de injúria não pode ser eliminado completamente a inflamação aguda pode progredir para um estágio crônico com dor, rubor e inchaço (Vane e Botting, 1996). Vários estudos têm demonstrado que a própolis é um agente anti-inflamatório potente nas inflamações, aguda e crônica (Ledón et al., 1997; Uzel et al., 2005). O ácido araquidônico é um precursor de prostaglandina. Esse ácido graxo é armazenado como um fosfoglicerídeo na membrana celular e é convertido para prostaglandinas por ciclooxigenases depois de ocorrido a danos no tecido. A prostaglandina então é responsável por iniciar a inflamação. Algumas substâncias dentro da própolis são capazes em inibir a enzima ciclooxigenase e assim a inflamação (Sigal e Ron, 1994). Há diferentes mecanismos para agentes anti-inflamatórios. Os esteróides inibem a liberação de ácido araquidônico para os fosfolipídeos da membrana da célula e assim bloqueiam a produção de eicosanóides (Mirzoeva e Calder, 1996). Drogas anti-inflamatórias não esteróides (NSAIDs) bloqueiam a enzima ciclooxigenase, assim o ácido araquidônico não pode ser transformado em prostaglandina. Crisina, uma substância isolada da própolis suprime a expressão da ciclooxigenase-2 por inibição de um fator nuclear para produção do fator nuclear interleucina 6 (NF-IL6) DNA-ligado ativo (Woo et al., 2005). Há várias vias alternativas que também devem

Asma é uma desordem crônica dos pulmões. Uma inflamação crônica das vias aéreas que causam dificuldade de respiração, respiração ofegante e tosse. A inflamação das vias aéreas, as tornam hipersensíveis, assim estímulos como pó, pólen, fumaça de cigarro, exercícios ou estresse, podem causar inchaço das vias aéreas e causar sintomas típicos da asma (Barnes, 1996). Os leucotrienos produzem enzimas que são particularmente importantes no tratamento de asma. Sabe-se que na própolis há um potente produto anti-inflamatório natural com enzimas inibidoras, que tiveram teste positivo para aplicações em pacientes com asma em comparação com glicocorticóides, que tem uma atividade anti-inflamatória geral (Barnes, 1995). A própolis vermelha de Cuba, na cocentração de 50 mg/Kg mostrou efeito anti-inflamatório em teste de granuloma com pedaços de algodão e em teste de óleo-indução de edema com doses de 2,5 µL (25%), utilizando-se ratos. A permeabilidade nos capilares peritoniais foi testado com uma dose de 10 mg/kg (Ledón et al., 1997). Células adesivas inibidoras de leucócitos endoteliais é outro mecanismo usado na terapia anti-inflamatória (Boschelli, 1995; Farsky e Mello, 1995). Foi demonstrado que o isoflavonóide ácido fenilcafeico éster (CAPE) reduz as
injúrias da inflamação do tecido pulmonar de ratos (Koksel et al., 2005; Koksel et al., 2006).

Estudos executados com preparação de pulmões de porcos mostraram que própolis apresentou efeito inibitório nas prostaglandinas, leucotrienos e histaminas liberadas, ajudando a melhorar os efeitos anti-inflamatórios em experimento *in vitro* (Khayyal et al., 1993). Similarmente, Mirzoeva e Calder demonstraram que própolis e muitos dos seus subprodutos induzem a supressão da produção de prostaglandinas, incluindo os leucotrienos, sendo CAPE o composto bioativo mais forte pra esse efeito (Mirzoeva e Calder, 1996).

Outro estudo interessante foi feito em ratos submetidos a depois de cauterização da córnea e a tratamento com extrato etanólico de própolis (Ozturk et al., 2000) ou extrato aquoso (Hepsen et al., 1999). Nesses estudos, a própolis mostrou efeito similar a dexametazona na redução dos efeitos inflamatórios associados ao processo cirúrgico. Foi também demonstrado que a própolis promoveu a inibição da enzima hialuronidase, contribuindo para os efeitos anti-inflamatórios e regenerativos no processo de cura (Ikegaki et al., 1999). Quatorze extratos de própolis comerciais brasileiros de várias áreas do país foram analisados de acordo com o modelo de edema na orelha induzido por ácido araquidônico em ratos. Uma vez testados, quatro amostras apresentaram efeitos anti-inflamatórios similares aos produzidos pela indometacina (Menezes et al., 1999) variando significativamente dependendo da procedência da amostra de própolis.

3.9 Atividades antioxidantes e anti-radicais livres

Própolis contém substâncias de alta atividade de anti-oxidação como flavonóides e outros compostos fenólicos (Burda e Oleszek, 2001). Processos oxidativos produzem radicais livres que causam muitos problemas para saúde.
humana como câncer, doenças degenerativas do coração e são relatadas como causadoras de envelhecimento (Scheller et al., 1994), diabetes (Fuliang et al., 2005; Okutan et al., 2005), cataratas, rugas, fragilidade óssea, falha nos rins (Ogeturk et al., 2005), endurecimento das artérias e imuno deficiência (Dormandy, 1989). Radicais livres provocam danos celulares devido a formação ligações cruzadas no DNA e nas proteínas essenciais. Quando uma fita de DNA é danificada nós dependemos da habilidade celular de reparo de danos sofridos (Delmaestro, 1980). Esse reparo não é feito sempre corretamente. Evitar radicais livres em primeiro momento seria o melhor, mas a fonte de radicais livres pode ser muito grande: como raios solares, radiação, pesticidas em fontes da dieta como café, álcool, batatas fritas, churrasco, etc. Para evitar o estresse fisiológico, a segunda melhor coisa a fazer, é assegurar que seu corpo seja bem suprido com antioxidantes. Antioxidantes previnem os danos causados por radicais livres (Freeman e Crapa, 1982). Ácido ascórbico (vitamina C), tocoferol (vitamina E) e β-caroteno (vitamina A) são antioxidantes muito importantes (Bisby, 1990). A primeira linha de defesa a nível molecular de radicais oxigenados no corpo humano consiste de três enzimas protetoras: superóxido dismutase (SOD), catalase e glutatonia peroxidase. Própolis e compostos fenólicos incluindo os flavonóides são conhecidos pela capacidade de eliminar radicais livres e pelas propriedades antioxidantes (Choi et al., 2006). Artepillin C, o principal componente na própolis verde de Baccharis dracunculifolia, tem uma habilidade muito grande de eliminar radicais livres (Paredes-Guzman et al., 2003; Shimizu et al., 2004). Artepillin C pode ser sintetizado industrialmente por o,o´-diprenil de p-halofenóis da água (Uto et al., 2002).

A ação antioxidante do extrato de própolis contra radicais oxigenados foi descrito e mostrado, através de análises, que extrato etanólico de própolis prolonga a vida de ratos machos e fêmeas (Pascual et al., 1994; Scheller et al., 1994). Benzil
cafetato, ácido fenil cafeico éster (CAPE) e galangina desempenham um importante papel na atividade antioxidante da própolis (Russo et al., 2002). CAPE e seus análogos são também potentes inibidores de óxido nítrico (Nagoaka et al., 2003) e reduz a peroxidação em coração de ratos diabéticos (Okutan et al., 2005). Ácido 3,4-diidroxi-5-prenilcinâmico foi isolado em própolis brasileira e demonstrou ser um potente antioxidante (Hayashi et al., 1999). Ácido cafeico amida e ésteres análogos foram testados positivamente para eliminação de radicais livres e a estrutura relacionada com sua atividade (Son e Lewis, 2002). Propol é outro potente composto eliminador de radicais isolado da própolis brasileira (Basnet et al., 1997). Kaempferol e fenil cafetato foram identificados na própolis com alta atividade antioxidante (Kumazawa et al., 2004). Própolis protege os tecidos contra reações oxigenantes mediante estresse oxidativo. Isso foi mostrado em ratos, onde danos hepáticos e renais puderam ser prevenidos por CAPE (Oktem et al., 2005). CAPE previne contra danos renais durante um longo prazo de exposição a telefones celulares com 900 MHz (Ozguuner et al., 2005) e mostrou efeitos cardioprotetores em ratos (Huang et al., 2005).

3.10 **Atividade anti-parasitária**

Protozoa ou protozoários, são unicelulares, eucarióticos, microorganismos que têm típica estrutura interna, movem-se rapidamente com seus flagelos, embora muitos protozoas fitoflagelados são produtores de fotossíntese como algas, que são classificadas como plantas. Protozoários são classificados no sub reino do reino Protista, que também incluem as algas. Na América Central e Sul os protozoários flagelados *Trypanosoma cruzi* são causadores de tripanossomia americana ou doença de Chagas. É transmitido por picada de inseto ou contato com as fezes de insetos infectados. O tempo de incubação é em média de uma semana. Depois
desse tempo os pacientes sofrem febre, edema e ampliação dos nódulos linfáticos. Pode causar a morte se o parasita se desenvolve dentro do músculo do coração causando muitas inflamações. Durante as primeiras semanas da doença o tratamento apropriado é com Nifurtimox™ ou Benznidazole™. Depois deste tempo, a doença pode entrar no estágio crônico onde o tratamento é avaliado como não mais efetivo (Webster, 1990). Avaliação sanguínea é necessária para evitar infecção por transfusão de sangue. Diferente formulações de extrato de própolis foram testados em ratos infectados com Trypanosoma cruzy e os efeitos não foram significativos na cinética parasitêmica, ratos sobreviveram com os parasitas e alguns morreram (de Castro e Higashi, 1995). A atividade anti-protozoária de extratos etanólicos da própolis foi estudado posteriormente e os resultados foram confirmados (Starzyk et al., 1997) e própolis brasileira e búlgara contendo flavonóides não mostraram atividade tripanocida (Prytzyk et al., 2003, Salomão, 2004 #296).

3.11 Atividade inseticida

Um inseticida é um pesticida usado para prevenir a multiplicação de insetos. Eles são amplamente usados na agricultura para aumentar a produtividade. Extrato de própolis foi usado como inseticida em Tenebrio molitor L. (Coleóptera: Tenebrionidae) (Garedew et al., 2002). O extrato de própolis mostrou atividade biológica contra as larvas da maioria das ceras de traça (Lepitoptera: Pyralidae) (Johnson et al., 1994).

3.12 Atividade anti-tumoral

Carcinogênese é um processo muito complexo. Há muitos fatores ambientais que podem causar a predisposição ao desenvolvimento do câncer, como fumaça de cigarros ou alimentação. Mas há também fatores internos como desequilíbrio
emocional, imunosupressão e predisposição genética que podem aumentar o risco de desenvolvimento de câncer. Mutagênese é a alteração de genes causada por substâncias genotóxicas. Dependendo de onde ocorrer a mutação celular, pode causar efeitos diferentes. Isso pode causar a morte da célula ou a replicação descontrolada, desenvolvendo assim um tumor, mas pode também não ter efeito, por haver muitos mecanismos reparatorios para corrigir essas alterações gênicas. Se ocorrer uma mutação em células germinativas como óvulos ou esperma, podendo causar defeitos nos descendentes. A toxicidade pré-natal é chamada teratogênesia e frequentemente causam a morte, retardam o crescimento ou carcinogênese em embriões ou fetos depois de a mãe ser exposta a substâncias teratogênicas.

Neoplasia é conhecida como o novo crescimento de células tumorais e usualmente, meios anormais de proliferação. Se as células proliferativas não forem capazes de fagocitar células teciduais, resultará em início de tumor; no caso disso ocorrer, o tumor é considerado maligno. Essas aberrações celulares são comumente conseqüência de mutações genéticas a fatores de risco ou secreções anormais de hormônios ou enzimas. O termo câncer usualmente implica malignidade (Thomas, 1986). Todo tipo de câncer tem potencial invasor de metástase, mas cada tipo específico tem característica clínica e biológica individual que devem ser estudados para um diagnóstico apropriado, tratamento e cura (DeVita et al., 1997). Existem quatro caminhos para o tratamento do câncer: cirurgia, quimioterapia, radioterapia e terapia biológica (National Cancer Institute, 2004).

A citotoxicidade da própolis foi comprovada tanto em animais quanto estudos *in vitro*. Foi observado que a atividade anti-tumoral da própolis de *Baccharis dracunculifolia* está intimamente relacionado com a substância Artepillin C, e a atividades citotóxicas que resultaram em apoptose de células cancerosas por fragmentação de DNA (Kimoto *et al.*, 1998). Outras hipóteses do mecanismo anti-tumoral da própolis sugerem que essa atividade podem ser associadas com a ativação na produção de limfócitos e a subsequente estimulação do sistema imune associado com a inibição da peroxidação lipídica (Kimoto *et al.*, 2001).

CAPE, ácido fenil cafeico éster, isolado de própolis do álamo, tem mostrado um efeito inibitório em leucemia celular humana HL-60 por indução de apoptose (Chen *et al.*, 2001) e preferencialmente na citotoxicidade de células tumorais (Orsolic *et al.*, 2005). CAPE e muitos análogos mostraram um efeito inibidor em células
leucêmicas humanas HL-60 por indução de apoptose (Orsolic et al., 2005). CAPE e muitos análogos da própolis de álamo holandês demonstraram responsabilidade pela atividade anti-proliferativa em linhas celulares cancerígenas (Banskota et al., 2002). Ácido cafeeolquinico da própolis brasileira, está envolvida na introdução de granulócitos diferenciados de células HL-60 (Mishima et al., 2005; Mishima et al., 2005). Os efeitos da CAPE na peroxidação lipídica e níveis de óxido nítrico em plasma de ratos depois de injúria térmica foi examinada (Hosnuter et al., 2004). Um novo método HPLC-MS foi desenvolvido para determinação de CAPE em plasma e urina de rato (Celli et al., 2004). CAPE mostrou nefrotoxicidade em ratos (Ozen et al., 2004). CAPE tem propriedades quimopreventivos e um efeito inibitório no crescimento de células gliomáticas C6 in vitro e in vivo (Kuo et al., 2005). Na própolis do álamo europeu, o CAPE foi identificado como composto responsável por atividade anti-tumoral. Foi mostrado que CAPE, ácido cafeico e a solubilizado em água derivativa de própolis, reduziriam o crescimento e potencial metastásico de carcinoma mamário transplantável em rato (Orsolic et al., 2005).

Aproximadamente 20 substâncias similares ao ester de ácido cafético (CAPE) foram testadas por Nagaoka et al., 2002, em células cancerosas de rato (carcinoma 26-L5; melanoma B16-BL6; carcinoma pulmonar Lewis LLC) e humanos (fibrosarcoma HT-1080; adenocarcinoma pulmonar A549; adenocarcinoma cervical HeLa) usando 5-fluorouracil (EC50: 0,02 e 0,03 µM). Nagaoka et al., 2003, sendo investigado os efeitos da CAPE por administração oral (5 mg/rato/dia em sete dias) antes e depois da inoculação intravenosa de suspensão de células tumorais em ratos. Depois 15 dias da inoculação da suspensão, o número de nódulos na superfície do pulmão foi contada e pesada para cada tumor. Não houve formação de supressão tumoral em ratos com administração de CAPE antes da inoculação. Nos ratos tratados com CAPE depois da inoculação, uma diminuição na formação do
tumor pulmonar foi demonstrado e em ambos o peso e o número de nódulos sofreram redução de 50%. Deste modo, o efeito anti-metastásico da CAPE deve ser devido a citotoxicidade, inibição da atividade das células tumorais, ou bloqueio do processo invasivo, passo inicial para metástase. No mesmo estudo, usando cisplatina (CDDP), uma droga que expressa efeito anti-metastásico, os autores observaram redução significativa do peso corporal, considerado como um efeito tóxico. Em contraste, CAPE teve um pequeno impacto no peso corporal, sugerindo-se que a supressão da metástase não teve efeito tóxico significativo (Nagaoka et al., 2002).

Fitzpatrick et al., 2001, avaliou a apoptose induzida pela CAPE em macrófagos de rato (NR 8383) e células humanas epiteliais (SW 620). As suspensões clúeares 100.000/mL e 150.000/mL respectivamente foram expostas a CAPE (3-30 µg/mL e veículo (0,2% DMSO) por 24 horas. A fragmentação de DNA foi medida por meio de “Detector de morte celular ELISA mais” que revelou um maior efeito indutor de apoptose em macrófagos (Fitzpatrick et al., 2001). Outros investigadores mostraram que CAPE é capaz de induzir preferencialmente a apoptose, dependendo do tipo de célula usada com esse composto, sem nenhum efeito em células normais (Chen et al., 2003).

A atividade anti-proliferativa de própolis do álamo chinês foi testada usando células tumoras e dois novos flavonóides: 2-metil butiroil pinobanksina e 6-cinamil crisina foram descritos por Usia et al., (2002).

Na própolis de Baccharis dracunculifolia brasileira ácido prenil ρ-cumárico, clerodane, diterpenos e benzofuranos foram identificados por ter atividade anti-tumoral. Propolin C induziu apoptose por ativação de caspases em melanoma celular humano (Chen et al., 2004). Baccharin e Drupanin foram isoladas de própolis.
brasileira e foi mostrado que esses compostos são potentes supressores de componentes tumorais (Mishima et al., 2005).

3.13 Atividade anti-viral

Um vírus é um agente infeccioso muito pequeno que precisa de célula viva para se multiplicar. Essa célula pode ser animal, vegetal ou bacteriana. Flavonóides encontrados abundantemente na própolis são conhecidos pela sua efetividade contra infectividade e replicação viral (Debiaggi et al., 1990). A atividade anti-viral in vitro de própolis foi demonstrada (Amoros et al., 1992) e a relação da atividade anti-viral da própolis e sua origem geográfica foram examinadas (Kujumgiev et al., 1999). Um grande número de vírus DNA e RNA causam tumores em animais. Em humanos os principais vírus conhecidos são:

- Papiloma vírus humano (HPV): Câncer genital em homens e mulheres
- Vírus Epstein-Barr (EBV): grupo das herpes vírus, causam linfoma infantil e câncer de nariz e garganta.
- Hepatite B e C: câncer hepático.

O único conhecido vírus de RNA que causa câncer em humanos é o vírus leucêmicos de células T humana (HTLV-1). Adequadamente, a atividade anti-viral de própolis é muito importante na prevenção de câncer e muitas prevenções ou tratamentos de outras doenças virais foram relatados.

3.13.1 Atividade anti-adenovírus

Os adenovírus pertencem a família dos Adenoviridae. Há aproximadamente 45 tipos que causam dor de garganta e febre em humanos, hepatite em cachorros e muitas outras doenças em outras espécies. O adenovírus tipo 5E1A mediante
transformação e expressão de transformação fenotípica foi suprimido de forma eficaz pela CAPE (Su et al., 1991). O efeito supressor do crescimento e tóxico da CAPE foi testado em 5 tipos de adenovírus transformado em células embrionárias de rato. A toxicidade seletiva da CAPE para transformação oncogênica de fibroblastos embrionários de ratos foi também examinado (Su et al., 1994; Su et al., 1995).

3.13.2 Atividade anti-HIV

3.13.3 Atividade anti-herpes

O vírus da herpes simples (HSV) é um vírus de DNA do grupo herpes viridae (incluindo o vírus Epstein-Barr, o citomegalovírus e o vírus varicela-zoster). Há dois

3.13.4 Atividade anti-influenza

Influenza é uma infecção viral aguda do trato respiratório superior ou inferior por ortomixovírus. Sintomas comuns são febre, frio, sensação de fraqueza, dores musculares, de cabeça e abdômen. Própolis tem inibido a atividade do vírus influenza (Schvchenko et al., 1972). Ácido cinâmico éster é responsável seguramente pelo efeito contra o vírus influenza (Serkedjieva et al., 1992).

3.13.5 Atividade anti-hepatite

Hepatite significa “inflamação do fígado”. Há 6 tipos conhecidos de vírus da hepatite que danificam os hepatócitos: Hepatite A é uma doença hepática causada pelo vírus da hepatite A (HAV). É transmitido por via “fecal-oral”. Condições sanitárias precárias ou contato sexual com um parceiro que tem hepatite A são conhecidos como os caminhos para a infecção. Hepatite B é uma doença séria que é causada pelo vírus da hepatite B (HBV), que ataca o fígado e causa infecção vitalícia, cirrose, câncer hepático e morte. Hepatite C é uma doença causada pelo
vírus da hepatite C (HCV). É encontrado no sangue de pessoas infectadas e pode ser transmitida pelo sangue ou seus produtos. Hepatite D é uma doença causada pelo vírus da hepatite D (HDV). É um vírus defeituoso que é encontrado no sangue e precisa do HBV para existir. Hepatite E é uma doença causada pelo vírus da hepatite E (HEV) e é transmitido similarmente ao HAV. GBV-C e HGV são relacionados ao HCV. Eles são considerados isolados diferentes do mesmo vírus, que é geralmente conhecido como HGV. Própolis tem propriedades hepatoprotetoras, evita o aumento da concentração de alanina amino transferase e malondialdeído no soro e restabelece as alterações histopatológicas do fígado. Juntos com a atividade anti-oxidante há um potencial benéfico para pacientes que sofrem de hepatite, embora se necessite de maior número de pesquisas e estudos clínicos (Rodriguez et al., 1997; Sugimoto et al., 1999).

3.14 Cuidado dental e cáries

Placas dentárias são associadas com a potogenicidade de várias doenças orais que afetam a superfície dental (cáries dentais) e tecido macio (gengivites e doença periodental); patologias orais estão entre as mais prevalecentes e caras doenças que afetam a sociedade industrializada (Bowen, 2002).

Conceitualmente, placa dentária é um biofilme; o biofilme é composto de diversos microrganismos embebidos em uma matriz e é firmemente aderido a superfície do dente (Bowen, 2002). Apesar da complexa comunidade microbiana, somente específicas espécies estão envolvidas diretamente com a patogenicidade de doenças orais.

Cáries dentais resultam de uma interação de espécies de bactérias com constituintes da dieta em uma superfície dental suscetível. Streptococcus mutans é geralmente considerado o principal microrganismo causador da cárie, embora
microrganismos adicionais possam estar envolvidos. Sacarose é considerada como o açúcar causador da cárie (Bowen, 2002). Essa patogenia oral em biofilme dental produz ácido muito rapidamente na presença de açúcares da dieta, tal como a sacarose. Uma persistência dos valores de pH baixo dentro do biofilme resulta na dissolução do esmalte da superfície dentária. Além disso, os estreptococos cariogênicos são tolerantes a ácidos, sobrevivem e metabolizam nesse ambiente altamente ácido. Estreptococos mutans são também responsáveis pela síntese de matriz de polissacarídeos, que é crítico para a estrutura e virulência do biofilme dental. Os polissacarídeos, principalmente glucanas são sintetizados por meio de enzimas extracelulares glicosiltransferases (GTFs) usando sacarose da dieta como substrato. As GTFs liberadas pelo Streptococcus mutans também são absorvidas na superfície dentária; uma grande proporção de glucanas formadas in situ são retidas na superfície formando locais para fixação de bactérias orais (Bowen, 2002). Essas observações mostraram claramente pelo menos duas rotas para intervenção terapêutica para prevenir placas dentárias relacionadas a doenças:

i) supressão do crescimento e virulência de patógenos orais, especialmente suas habilidades em produzir e tolerar ácidos, e

ii) Rompimento da síntese e estrutura dos polissacarídeos.

A própolis brasileira tem mostrado atividade antibacteriana contra muitos microrganismos orais, e exibido potente inibição da síntese de glucanas. Por exemplo, extratos etanólicos de própolis brasileira do grupo 12 inibi in vitro o crescimento de estreptococos cariogênicos, tal como S. sobrinus, e também bactérias anaeróbicas Porphyromonas gingivalis e Prevotella intermedia (Koo et al., 2000; Park et al., 1998). O extrato etanólico de própolis de grupo 12 também mostrou efeitos antibacterianos contra Candida albicans, que é responsável por uma
infecção fúngica comum(candidíase oral) que afeta o tecido mole dos usuários de dentaduras (Koo et al., 2002). Além disso, o extrato etânólico de própolis é notavelmente efetivo na inibição da síntese de glucanas; foi mostrado mais de 80% de inibição da síntese de glucanas com concentração tão baixa quanto 100 µg extrato etânólico de própolis/mL (Koo et al., 2000). Porém, foi observado que a atividade biológica da própolis brasileira contra bactérias orais mostrou alta variabilidade dependendo da origem geográfica e a diversidade da planta local. Como discutido anteriormente, a própolis brasileira foi classificada em doze grupos químicos distintos. Entre elas, somente a própolis do grupo 3 (do sul do Brasil, origem botânica *Populus* sp.), 6 (do nordeste do Brasil, origem botânica *Hyptis divaricata*), e 12 (do sudeste do Brasil, origem botânica *Baccharis dracunculifolia*) exibiram atividade significativa contra *Streptococcus mutans* e também inibição da glicosiltransferase. Porém, como descrito anteriormente *Streptococcus mutans* (biofilme) em superfície dental mostrou-se mais resistente a agentes antimicrobianos do que as células em suspensão. Assim, os exames anti-microbianos clássicos (e.g. determinação MIC/MBC, método agar difusão) não são os métodos de escolha para determinação dos agentes efetivos contra o crescimento de *Streptococcus mutans*, embora eles sejam ainda usados para determinar a atividade potencial anti-bacteriana. Outro aspecto relevante da patofisiologia de *Streptococcus mutans* está relacionado com a habilidade de tolerar ácido. Um dos mecanismos que *Streptococcus mutans* desenvolveram para diminuir a influência hostil da acidificação foi aumentar a atividade da protontranslocase F-ATPase (H⁺-ATPase) responsável pelo abaixamento do pH (Belli e Marquis, 1991). Essa enzima associada à membrana bombeia prótons (H⁺) para fora da célula, mantém o pH intracelular mais alcalino que o ambiente extracelular. Então, uma das estratégias para atenuar a virulência de bactérias cariogênicas é afetar a atividade da F-
ATPase. Própolis tem um efeito inibitório no crescimento de *Streptococcus mutans* e na atividade da glicosiltransferase (Koo *et al.*, 2002). Apigenina e tt-farnesol tem sido identificadas como compostos ativos na atividade em glicosiltransferases e viabilizados biofilmes (Koo *et al.*, 2002). Amostras de própolis do Brasil apresentaram atividade contra glicosiltransferases e inibição do crescimento e aderência de *Streptococcus mutans* (Duarte *et al.*, 2003). Foi confirmado mais tarde que apigenina e tt-farnesol inibiram a formação de biofilmes de *Streptococcus mutans* e a produção de polissacarídeos (Koo *et al.*, 2003), *in vitro* e *in vivo* (Hayacibara *et al.*, 2005).

3.15 Dermatite

Dermatite ou eczema é uma inflamação da pele com rubor, inchaço e coceira. Dermatites de contato resultam do contato da pele com uma substância irritante a qual a pessoa é sensível ou alérgica. Pode ser causado por bactérias e fungos, também por metais como níquel ou cromo ou qualquer outra substância química irritante.

aumentou de 0.5% para 1.4% (P<0.001) e bálsamo do Peru aumentou de 4.0% para 6.2% (P<0.001) (Hasan et al., 2005). Outro teste coletivo confirmou que a alergia da própolis foi mais frequente no período 1995-2001 que no período de 1988-1994 (Seidenari et al., 2005).

Um caso de contato alérgico da própolis foi informado há 35 anos atrás com uma mulher asiática que usou própolis no tratamento externo em trauma secundário em seu pé direito. Depois de duas semanas ela foi a uma clínica dermatológica. O pé estava aumentado, cheio de fluído e com coceira nas lesões (Ting e Silver, 2004). Giusti et al., (2004) relataram que 5,9% das crianças testadas apresentaram reações alérgicas para solução de 20% de própolis petrolatum. É recomendado o teste de alergia a própolis antes de começar qualquer tratamento com própolis. Isso é importante para tratamentos externos e até mesmo se a própolis for ingerida como mel enriquecido com própolis (Pasolini et al., 2004), pílulas, gotas, terapias com própolis, etc. (Garrido Fernandez et al., 2004).

3.16 Potencial de detoxificação

Flavonóides, o principal componente da própolis, pode ter estrutura complexa com íons metálicos e exercer um importante papel no processo de detoxificação de metais pesados (Havsteen, 2002). Neurotoxicidade é uma mudança adversa na função do sistema nervoso central e periférico. Pode ser causado pela exposição de agentes químicos neurotóxicos como dioxina, formaldeído, PCB, pesticidas, solventes orgânicos, metais pesados, metais orgânicos, etc. Os sintomas incluem problemas de memória, vertigem, mudança de personalidade, perturbações para dormir, perda de motivação, extrema fadiga, fadiga crônica, dor de cabeça, zumbido, distúrbios visuais, dificuldades respiratórias, dores torácicas, irregularidades no
coração e muitas outras desordens neurológicas e psiquiátricas. Além disso órgãos como fígado, cérebro, rins, podem ser afetados (Singer, 2002).

CAPE, um flavonóide encontrado na própolis G3, bloqueia a indução neurotóxica de 6-hidroxidopamina (Montpied et al., 2003) e protege contra injúrias neonatais de isquemia hipoxica no córtex, hipocampo e tálamo cerebral (Wei et al., 2004). Muitas pessoas sofrem com o desenvolvimento de intoxicações, mas muito poucos procuram um médico com experiência em neurotoxicologia, assim esses sintomas são diagnosticados como relacionado ao estresse, psicossomático ou depressão.

A supressão da dioxina mediante a transformação do receptor de aril hidrocarbono por extrato etanólico de própolis foi demonstrado por Park et al., (2004). Um novo teste baseado em southwestern ELISA foi testado para detecção de transformação de receptores aril hidrocarbono utilizando-se extrato de própolis. Isso permite uma rápida visualização dos receptores agonistas e antagonista (Fukuda et al., 2004).

Estresse oxidativo e degeneração neural foram significativamente atenuados usando-se própolis em testes com ratos. A neurotoxicidade foi induzida por injeção de ácido cainico. Os autores sugeriram que os efeitos de neuroproteção poderia ser através da via de modulação de receptores de adenose A1 no hipocampo (Kwon et al., 2004). A propriedade neuroprotetora da própolis verde brasileira foi examinada in vitro e in vivo em ratos. Própolis inibiu o estresse oxidativo e protegeu culturas de células PC12 in vitro e protegeu rato in vivo de isquemia cerebral com concentrações de 30 até 100 mg/kg (Shimazawa et al., 2005).
3.17 Tratamento de úlcera péptica

Úlcera péptica são lesões na membrana mucosa do estômago ou duodeno. Fatores externos como infecções, estresse, uma dieta rica ou a longo prazo de drogas anti-inflamatórias não esteróides (NSAIDs) pode reduzir a resistência da superfície da mucosa contra os ácidos do suco gástrico (principalmente ácido clorídrico e enzimas digestivas) e inicia uma desintegração gradual da superfície do tecido epitelial com queimação e dor (Mendoza et al., 1991). Uma infecção do trato gastrointestinal superior com bactéria *Helicobacter pylori* pode causar úlceras duodenais e gástricas. O tratamento dessas úlceras pépticas concentram-se na erradicação dessas bactérias e redução da produção do suco gástrico (Nostro et al., 2005).

3.18 Propriedades hepatoprotetoras

Danos hepáticos podem ser causados por compostos como por exemplo CCl₄, D-Ga1N ou acetoaminofenol, devido a geração de radicais livres celulares, que interagem com componentes da membrana plasmática (Banskota et al., 2001). Apoptose hepatocítica e transmigração neutrofílica podem ser em parte
responsáveis pela inflamação e também liderar a necrose do hepatócito (Banskota et al., 2001). A inoculação de paracetamol danificou o fígado de ratos examinados. Própolis vermelha cubana reduz os danos hepáticos significativamente. Danos no fígado é normalmente acompanhado por uma elevação do nível de aminotransferases no soro. A atividade da alanina aminotransferase (ALT) no soro e a concentração reduzida de glutationa (GSH), foram ambas reduzidas quando a própolis foi aplicada (Gonzalez et al., 1994). Esses resultados foram confirmados por Czarnecki et al., (1997). O efeito hepatoprotetor da própolis cubana contra tetracloreto de carbono (CCL₄) que pode induzir danos hepáticos, também foi demonstrado em ratos (Gonzales et al., 1995; Merino et al., 1996).

CAPE, isolado de própolis de álamo, mostrou proteção renal e hepática em ratos contra tetracloreto de carbono (Ogeturk et al., 2005; Shukla et al., 2004).

Kolankaya et al., (2002) demonstraram as propriedades hepatoprotetoras de extrato etanólico de própolis contra indução de danos hepáticos por álcool em ratos e indução de danos hepáticos por tetracloreto de carbono. O extrato de própolis aquoso mostrou efeito profilático contra hepatotoxidade aguda in vivo (El-Khatib et al., 2002). Quatro derivados do ácido dicafeoiquirônico com atividade hepatoprotetora significativa foi isolada da própolis verde brasileira e depois testada in vitro, a indução de injúria em cultura de células hepáticas de ratos com CCl₄ (Basnet et al., 1996). Própolis vermelha cubana mostrou atividade hepatoprotetora significativa contra a indução de hepatite D-GA1N em ratos (o aumento de ambas atividades AST e ALT foram inibidas em uma maneira dose dependente) (Rodríguez et al., 1997). Os resultados foram confirmados em própolis de álamo (Sugimoto et al., 1999). Indução de injúria hepática por álcool em ratos foi significativamente reduzida por extratos etanólicos de própolis (inibição da elevação de GOT, GPT, TG e HTG no soro) (Lin et al., 1997). Extrato etanólico de própolis mostrou atividade
hepatoprotetora na injúria hepática de ratos induzida por álcool (Ramirez et al., 1997). Foi mostrado um efeito hepatoprotetor de extrato etanólico de própolis contra indução de injúria hepática por álcool. De acordo com o autor, o efeito hepatoprotetor de extrato etanólico de própolis pode ser, pelo menos parcialmente, devido a inibição da peroxidação da membrana lipídica e formação de radicais livres (Liu et al., 2004; Seo et al., 2003). Na Europa, que possui própolis de álamo, os compostos ácido cafeico, ácido ferúlico, CAPE e seus derivados foram identificados como principais componentes com atividade hepatoprotetora. Na própolis brasileira de Baccharis dracunculifolia, os compostos ácido prenil p-cumárico, flavonóides, lignanas e ácido cafeoilquínico foram descritos como responsáveis pelas propriedades hepatoprotetoras (Bankova, 2005). Além das propriedades hepatoprotetoras, CAPE é também eficaz contra danos renais tubulares induzidos por lítio e estresse oxidativo (Oktem et al., 2005).

3.19 Atividade imuno-moduladora

Terapia biológica é uma modalidade de terapia que trabalha junto com o sistema imune. Modificações das respostas biológicas são usados pelos próprios organismos para combater por exemplo o câncer, ajudando a enfrentar os processos da doenças. As drogas quando usadas também podem causar diferenciação no padrão das células tumorais, facilitando o controle do tumor (Rosenthal, 2000). Essa modalidade terapêutica podem ajudar a combater o câncer ou controlar os efeitos colaterais provocados por outras opções de tratamento como a quimioterapia (National Cancer Institute, 2004). Terapia biológica e quimioterapia são modalidades de tratamentos que agem por diferentes caminhos. Enquanto o primeiro ajuda o sistema imune a combater o câncer, o último ataca diretamente as células tumorais (National Cancer Institute, 2004).
Própolis aumenta a resistência natural do corpo contra infecções por estimulação do sistema imune. Tétano é uma infecção aguda em humanos e animais causada por produção de toxinas pelo bacilo anaeróbico *Clostridium tetani*, que causa espasmos dos músculos voluntários. A atividade celular e humoral durante toxicidade tetânica na vacinação com e sem própolis foi examinada. Foi mostrado que própolis estimula o sistema imune do corpo, o índice imunológico foi maior quando própolis foi administrada (Budarkova, 1976). Mais adiante foi mostrado que derivados de própolis solúveis em água tem uma ação imunomodulatória e atividade profilática contra infecções de bactérias gram-negativas, *in vitro* (Dimov et al., 1992) e *in vivo* (Ivanovska et al., 1995). Própolis atua como elevador da produção de anticorpos (Sforcin et al., 2005). O crescimento e potencial de metástase do carcinoma mamário transplantável em ratos foi significativamente reduzido por compostos polifenólicos na fração de própolis. Os autores relataram a atividade anti-tumoral principalmente como propriedade imunomoduladora dos compostos, sua citotoxicidade de células tumorais, e sua habilidade em induzir a apoptose e ou necrose (Orsolic et al., 2005). Takagi et al., (2005) demonstraram mudanças nos efeitos da irradiação e ativação imune depois de administração de própolis.

A contribuição da própolis como suplemento coadjuvante nutricional no tratamento do câncer é realmente justificado devido a características funcionais provindas de muitos e intensos estudos científicos e clínicos realizados. Dentre as várias atividades biológicas da própolis pode-se citar a atuação sinérgica com outros medicamentos quimioterápicos convencionais devido a atividade anti-tumoral, proteção do DNA, eliminador de radicais livres e imunoestimulador (Banskota et al., 2001; Suzuki et al., 2002).
Sempre que o organismo está exposto a um agente patológico, ele torna-se vulnerável e qualquer estímulo adicional no sistema imune torna-se muito importante. Isso pode ser feito pela dieta, por exemplo, com ingestão de grande quantidade de produtos ricos em vitaminas como suplemento alimentar. Própolis é fortemente utilizado não só pela ação terapêutica, mas também como prevenção, uma vez que possui atividade imuno moduladora.

Ansorge et al., (2003), estudaram os efeitos da CAPE e dos flavonóides hesperedina e quercetina de diferentes extratos de própolis em diversas funções das células imunes humanas, como: síntese de DNA, produção de citocinas (IL-1, IL-12, IL-2, IL-4, IL-10 e TGF-β1) e linfócitos T. Os resultados sugeriram que substâncias são capazes, dependendo da dose, de aumentar a capacidade produtora de TGF-β1 em células T humanas. TGF-β1 causa a inibição do crescimento celular, diferenciação nos vários tipos celulares, sendo essa uma resposta imuno reguladora e um mediador inflamatório. Os resultados demonstraram que a própolis apresenta um efeito modulador direto nas atividades funcionais básicas das células imunológicas provavelmente através da via imuno moduladora de células T. Isso é conhecido como um intermediário metabólico de oxigênio que são relatados em atividades macrofágicas bactericidas. O óxido nítrico (NO) é muito importante no mecanismo de ação macrofágica de microrganismos. Porém a produção excessiva mostra efeitos tóxicos em vários órgãos, que podem levar a danificação do tecido (Ansorge et al., 2003). Orsi et al., (2000) realizou um estudo para avaliar a ativação macrofágica depois de exposição à própolis. Uma solução 10% hidroalcoólica de própolis foi administrada em ratos; o grupo controle recebeu solução fisiológica (NaCl 0,9%). Para avaliar ativação macrofágica, foi determinada a concentração de metabólicos oxigenados intermediários: H₂O₂ e NO. Os ratos foram sacrificados vinte e quatro horas depois do tratamento com própolis para a avaliação das células.
Foi observado que a própolis (5, 10 e 20 µg/mL) induziu o aumento da produção de H₂O₂. Nesse estudo, a própolis não induziu alterações significativas na produção de NO, com discreta inibição da concentração de 50 e 100 µg/mL. A conclusão desse estudo indica que a própolis tem um importante papel na ação do sistema imunológico, especialmente por resposta imune não específica responsável por ativação macrofágica (Orsi et al., 2000). Os resultados encontrados nesses estudos estão de acordo com os descritos por Than et al., (2003), que testou a inibição da produção de NO, induzida por extratos aquosos e alcoólicos da própolis verde brasileira em culturas macrofágicas J774.1 de ratos. As culturas continham lipopolissacarídeos (LPS, 10 µg/mL), um dos ativadores da produção de NO. A produção de NO foi medida pelo acúmulo de nitrito na cultura pelo reagente Griess (Than et al., 2003). Ambos, extrato aquoso e alcoólico mostraram ser potentes inibidores dependendo da dose de NO, com valores de IC₅₀ de 37,8 µg/mL e 78,9 µg/mL respectivamente, em acordo com Matsuchige et al., 1996, que usaram experimentos com extrato aquoso de própolis in vitro para testar a efetividade na síntese de NO. Os efeitos dos extratos aquosos de própolis foram medidos em várias concentrações (1000, 100, 10 µg/mL) e ficou claro a inibição da atividade da síntese de NO em células J774.1, variando de acordo com a dose aplicada (Matsushige et al., 1996).

3.20 Efeitos regenerativos em tecidos biológicos e cura de feridas

Própolis é usada no tratamento de feridas por ter propriedades anti-sépticas e cicatrizantes. Aumenta a regeneração de tecido ósseo (Stojko et al., 1978) e cicatrização em ratos, como foi descrita em testes clínicos e histológicos (Carvalho et al., 1991).
Ozturk et al., 1999, demonstrou que a acetilcolina (Ach) e a própolis facilitam a cura de ferida da córnea em ratos comparados como grupo controle, que recebeu administração de solução salina. No teste do efeito da própolis nos defeitos epiteliais da córnea, foi feito administração tópica seis vezes ao dia, durante três dias (Ozturk et al., 1999). De acordo com Peruchi et al., (2000), o processo de reparo por incisão cutânea começou com a liberação de sangue e formação de coágulo sanguíneo. A cura da ferida ou incisão da membrana da mucosa oral, dentro de um ambiente úmido e movimento constante, não permitiu a retenção do coágulo sanguíneo. Isso fez o processo de reparo ser mais lento sendo necessário o uso de medicamentos para acelerar a cura (Peruchi et al., 2000). Própolis, então pode atuar positivamente nas feridas favorecendo a cura devido ao efeito antisséptico, com propriedades curadoras e analgésicas. Desse modo, muitos autores tem verificado os efeitos histológicos da solução de própolis alcoólica nas feridas da mucosa oral em ratos e eles observaram que a própolis não cria reações inflamatórias e induz a formação epitelial como também neoformação vascular e fibroblástica do tecido conectivo. A solução alcoólica de 10% de própolis estimulou o reparo do tecido da mucosa oral de ratos. Bretz et al., 1998, usou hidróxido de cálcio e própolis na avaliação potencial de cura da própolis expondo pulpas dentais de ratos. Ambas substâncias testadas tiveram efeito em manter os agentes inflamatórios e células microbianas em baixas concentrações (Bretz et al., 1998). Os efeitos do enxágüe bucal contendo própolis no reparo tecidual depois do procedimento cirúrgico dental (sulcoplastia) em humanos foi testado (Magro-Filho e Carvalho, 1994). O enxágüe bucal usado continha 5% de solução hidroalcoólica de própolis. Avaliações clínicas e citológicas foram realizadas e foi observado que o enxágüe bucal contendo própolis ajudou na cura pós operatória e o veículo empregado teve efeitos irritantes mínimos nas feridas cirúrgicas intra-orais. Esses resultados concordam com o estudo dessas análises de
reação e reparo histológico do tecido conectivo subcutâneo de ratos, em contato com tubos de polietileno preenchido com creme de cânfora (*Symphytum tuberosum*), própolis e mel (Magro-Filho *et al.*, 1987). Dois grupos com 21 animais cada foram formados. Tubos foram implantados sem medicamentos (controle) e tubos com o creme contendo 90% da proporção com cânfora, própolis e mel, e 10% de vaselina e lanolina como veículo. Os pedaços para avaliação histológica foram obtidos depois de 2, 5, 10, 20, 30, 40 e 60 dias pós operatórios e eles consistiam de tubos e tecidos adjacentes.

Duas áreas foram analisadas: uma em contato com o tubo aberto (chamado de área A) e outro um pouco longe dele (chamado de área B). Para o quinto dia pós operatórios, um grosso grupo de fibras de colágeno foi observado nas extremidades da área A. Para o décimo dia, uma tira de fibra de colágeno quase oculta a luz do tubo, sendo mais grossa a área central; na área B houve a formação de novo tecido conectivo. Foi notado, porém, entre o vigésimo e sexagésimo dia pós-operatório, o grupo tratado apresentou pouca infiltração de neutrófilos e presença de linfócitos e células multinucleadas envoltas nos fragmentos do material, provavelmente devido ao uso de veículo, mas sem a ocorrência de várias reações. O estudo concluiu que a nova formação de tecido conectivo foi acelerada até o décimo dia pós-operatório.

3.21 Ação hormonal

Hormônios são usados no tratamento de câncer prostático e mamário, pois esses tecidos requererem hormônios para crescimento e desenvolvimento. O crescimento de tecidos como o câncer pode ser inibido, se substâncias antagonizantes a esses hormônios (andrógenos, progesteronas e estrógenos) forem administradas. Própolis pode atuar como um fitormônio antagonista com os efeitos
estrogênicos (Song et al., 2002). O extrato de álcool ou de éter de própolis mostraram um significante efeito estrogênico significativo (Song et al., 2002). Própolis foi testada com sucesso no tratamento da prevenção do câncer de próstata e mama. Própolis pode ser interessante para mulheres que entraram na menopausa através da quantidade alta de isoflavonas, que atuam como substituto terápico hormonal (Song et al., 2002) com benefícios para a densidade tecidual óssea, etc. (Stojko et al., 1978). Conhecendo os efeitos estrogênicos do extrato da própolis é necessário estudar se a própolis pode interferir no controle da fertilidade, controle de nascimento ou os efeitos da própolis em grávidas ou mulheres que amamentam.

3.22 Inibição enzimática

Inibição enzimática normalmente ocorre quando um composto inibidor interage com uma enzima, assim não podendo resultar em um produto usual. Usualmente o composto inibidor apresenta estrutura similar ao do substrato. São distinguidas duas formas de inibição: inibição competitiva e inibição não competitiva. Inibição competitiva ocorre quando o composto inibidor combina com a enzima no mesmo lugar de ligação do substrato. Inibição não competitiva ocorre quando o composto inibidor combina com a enzima em lugares diferentes e mudam a estrutura da enzima assim essa não pode sofrer a reação usual. Controle alostérico é usado por células com atividade de uma enzima reguladora. Pelo uso de uma molécula pequena reguladora uma enzima pode ser inibida ou ativada. Essas moléculas pequenas reguladoras interagem com o sítio alostérico afetando a conformação do sítio ativo. Avaliando a ocorrência inibitória é quando uma molécula reguladora inibe a enzima alostérica.

Própolis e seus constituintes são conhecidos por inibir várias enzimas causando uma variedade de efeitos diferentes que são discutidos nessa revisão. Por
exemplo atividade anti-câncer por inibição da síntese de DNA: um tipo de clerodane
diterpeno, PMS-1, foi isolado da própolis verde brasileira que mostrou citotoxidade
para carcinomas hepatocelulares humanos HuH13 celular (Matsuno, 1995). PMS-1
foi testada in vivo em ratos. Os autores demonstraram que PMS-1 reduz o número
da incidência tumoral de pele em ratos por inibição da síntese de DNA pela via de
novo. Se existir o crescimento de tumor de pele, em presença de PMS-1, causa a
supressão da síntese de DNA pela via salvadora (Mitamura et al., 1996).

Própolis mostrou inibir a divisão celular e a síntese protéica. A inibição da
expressão da telomerase pode conduzir a um longo período de vida. O
encurtamento do nível crítico do telômero resulta em uma senescência de células
normais e apoptose. Encurtamento de telômero e a ação de radicais livres são
conhecidos como responsáveis pela ação de senescência celular. Própolis pode ter
dois caminhos possíveis para prolongar o tempo de vida: Primeiro pela inibição da
expressão das telomerases e segundo por eliminar radicais livres (Gunduz et al.,
2005).

Ciclosporina A (CsA) é um imunossupressor que é usado depois de
transplantes cirúrgicos. Infelizmente, estresse oxidativo leva a cardiotoxicidade de
CsA. CAPE foi testada com sucesso na redução do estresse oxidativo e nesse
caminho reduzindo a não desejada cardiotoxicidade de CsA (Rezzani et al.,
2005).

3.23 Proteção do DNA

Fitzpatrick et al., 2001, avaliou a apoptose induzida pela CAPE em
macrófagos de rato (NR 8383) e células humanas epiteliais (SW 620). As células –
100.000/mL e 150.000/mL respectivamente- foram expostas a CAPE (3-30 µg/mL e
veículo (0,2% DMSO)) por 24 horas. A fragmentação de DNA foi medida por meio do
teste “ Detector de morte celular ELISA mais” que revelou um maior efeito indutor de
apoptose em macrófagos (Fitzpatrick et al., 2001). Outros investigadores mostraram que CAPE é capaz de induzir a apoptose preferivelmente, dependendo do tipo de célula usada com esse composto – efeito seletivo de apoptose, sem nenhum efeito em células normais (Chen et al., 2003).

3.24 Sinergismo com quimioterapia

Os efeitos biológicos também atuam em sinergismo com a quimioterapia convencional, com drogas como 5-fluorouracil (Suzuki et al., 2002). Antioxidantes tem a capacidade de aumentar os efeitos das atividades de drogas anti-cancerígenas. Esse é um fato relevante porque reduz os efeitos causados pelos medicamentos, através da diminuição da dose administrada sem nenhum detrimento dos efeitos terapêuticos (Santos e Cruz, 2001). Suzuki et al., 2002, administrou oralmente, solução aquosa de própolis (CWSP) junto subcutâneo com 5-fluorouracil (5-FU) ou mitomicina C em células de carcinoma ICR inoculadas subcutaneamente em ratos, com a meta de examinar os efeitos da CWSP na progressão tumoral, a efetividade da quimioterapia, e hematopoese na circulação sanguínea. Essa associação terapêutica com própolis e agentes quimioterápicos aumentou a regressão tumoral em ratos em fase avançada, comparado com a quimioterapia isolada, ilustrando os efeitos auxiliares de CWSP oral na regressão tumoral quando combinado com agentes quimioterápicos convencionais. Além disso, a combinação terapêutica melhorou a indução da citopenia pela 5-FU, resultando em recuperação na contagem de células brancas e vermelhas do sangue (5-FU + CWSP, p <0.05/ 5-FU isolados ou com controle com água). Nenhum efeito significativo foi observado em contagem de plaquetas com as dosagens (5-FU + CWSP, p > 0.05/ 5-FU isolados ou com controle com água), nem a redução do crescimento com administração oral de extratos aquosos isolados da própolis. Um provável mecanismo de ação da CWSP
deve ser o aumento da bioavailability da 5-FU, em outras palavras, CWSP deve atuar mantendo altos os níveis de 5-FU na corrente sanguínea (Suzuki et al., 2002).

De acordo com Santos e Cruz, 2001, quando associados a agentes quimioterápicos, os antioxidantes minimizam a toxicidade causada pelas drogas quando interagindo com radicais livres (Santos e Cruz, 2001).

Outros estudos recentes sugerem que suplementação nutricional com antioxidantes podem influenciar a resposta quimioterápica positivamente na redução dos efeitos causados pela quimioterapia. Orsolic e Basic, 2005, usaram CBA em modelo de ratos com transplante de carcinoma mamário, para investigar o potencial clínico usando própolis solubilizado em água no tratamento de várias citopenias induzidas pela radiação e quimioterapia. Também foi avaliado a eficácia antimitostática de compostos da própolis solúveis em água sozinha ou em combinação com quimioterápicos e ou radioterápicos podendo aumentar o potencial antimitostático por agentes quimioterápicos (Orsolic e Basic, 2005). Isso também sugere benefícios em potencial clínico na tentativa de usar própolis solúvel em água combinado com quimioterápicos no sentido de maximizar suas atividades antitumorais e minimizar os efeitos pós quimioterápicos ou radioterápicos, como também diminuir as células sanguíneas. Em adição, (Padmavathi et al., 2005), estudou os efeitos terapêuticos da paclitaxel e própolis (extrato etanólico) em peroxidização lipídica e sistema antioxidante em, 7,12 dimetil benzo antraceno, DMBA-indutor de câncer de mama em ratos fêmeas. Foi observado que administração de paclitaxel e própolis suprimiram efetivamente o câncer de mama, diminuindo a peroxidização lipídica e aumentando as atividades antioxidantes enzimática ou não enzimática (superóxido desmutase e vitamina C por exemplo) quando comparados com terapias isoladas de paclitaxel ou própolis. A combinação de paclitaxel e própolis ofereceram máxima proteção contra DMBA indutor de carcinogênese mamária.
3.25 Uso geral

Própolis é ativo contra bactérias, fungos e vírus. Tem atividade anti-inflamatória e antioxidante e age como ativador na regeneração de tecidos e circulação sanguínea. Estimula o sistema imune humano, pode prevenir doenças e é usado no tratamento de feridas porque regenera o tecido e tem propriedades antissépticas. Há ainda a necessidade de pesquisas científicas na identificação de substâncias benéficas e elucidar os mecanismos exatos. Própolis causa alergias em pessoas sensíveis. Antes de começar qualquer tratamento com própolis é recomendado que sejam feitos testes para verificar a ocorrência ou não de reações de componentes da própolis. Nesse caso, poderia ser necessário usar uma própolis de uma região geográfica diferente com menor potencial alérgico. Própolis pode prevenir cáries dentais desde que demonstrem atividade anti-microbiana significativa contra patógenos orais (*Streptococcus mutans*, *Streptococcus sobrinus* e *C. albicans*) e reduz a formação e aderência de placas dentais. Própolis tem efeito regenerador e analgésico de tecidos podendo trazer futuramente benefícios para uso odontológico (Sonmez *et al.*, 2005). Doenças cardiovasculares constituem um dos principais problemas de saúde humana nos tempos modernos. Própolis mostrou propriedades benéficas para problemas do coração e vasos sanguíneos (Go *et al.*, 1974) que podem ser congênitos ou adquiridos, como arterosclerose, doença reumática cardíaca e inflamação vascular. Própolis mostrou a capacidades de abaixar a pressão sanguínea e níveis de colesterol em ratos com diabetes mellitus e podem ser benéficos para pacientes que sofrem de problemas no coração e diabetes (Fuliang *et al.*, 2005).

Novas técnicas vem sendo aplicadas para processamento da própolis e trazer além disso conveniência para o consumidor, como gelatina microencapsulada por
spray-drying, para consumidores que não gostam do gosto da própolis (Bruschi et al., 2003), ou novas técnicas de extração como fracionamento supercrítico (Catchpole et al., 2004). A otimização do conhecimento de métodos analíticos (Pietta et al., 2002), como a rápida visualização de compostos polares na própolis brasileira por cromatografia de gás de alta temperatura e alta resolução, espectrometria e cromatografia de massa (Pereira et al., 2000); a otimização das condições cromatográficas em camada fina, cromatográfica de flavonóides e ácidos fenólicos; determinação do conteúdo de flavonóides por métodos colorimétricos (Chang et al., 2002), promete melhorias no controle da qualidade e pesquisa (Medic-Šaric et al., 2004). A espectrometria de massa por ionização “eletrospray fingerprinting” tem mostrado ser valioso e muito rápido método de visualização dos componentes da própolis (Sawaya et al., 2004).

Devido as atividades biológicas tem sido sugerido o uso de própolis como suplemento alimentar, além de desempenhar um importante papel nas terapias tradicionais com drogas. A própolis tem como benefício a vantagem de ser um produto natural com propriedades farmacológicas, podendo melhorar a qualidade de vida.
4 Material e métodos

4.1 Própolis e reagentes

Foram coletadas cinco amostras de própolis nos estados de Paraíba, Pernambuco, Alagoas, Sergipe e Bahia. Todas as amostras foram coletadas perto do litoral e em próximas do mangue. As própolis foram coletadas usando o CPI (coletor de própolis inteligente) que são colocadas nos lados da melgueira e facilitam a colheita da própolis. Além disso, foram coletadas 10 amostras de própolis no estado de Alagoas para a análise da varibilidade da própolis vermelha. Cada amostra foi coletada de uma colmeia. Depois da colheita o material foi armazenado no congelador (-18°C) até o momento das análises.

4.2 Preparação do extrato etanólico da própolis

A própolis bruta foi coletada dos apiários e congelada a -18°C. Os pedaços de própolis forma triturados para obtenção de um pó. Amostras de 2 g de própolis foram pesadas em tubos centrífuga e em seguida foram adicionados 25 mL de Etanol 80%. Para a extração os tubos foram incubados em banho-maria a 70°C por 30 minutos com agitação a cada 5 minutos. Em seguida as amostras foram centrífugadas a 10000 x G por 10 minutos a 5°C em centrífuga Beckman J2-21. O sobrenadante foi usado para as análises qualitativas.
4.3 **Preparação do extrato etanólico seco da própolis**

A própolis bruta foi coletada dos apiários e congelada a -18°C. Os pedaços de própolis foram quebrados para a obtenção de um pó. Uma amostra de 100 gramas de própolis foi transferido para um Erlenmeyer de 2 litros e em seguida foi adicionado 500 mL de etanol 80%. A extração foi feita em banho-maria a 70°C por 30 minutos com agitação a cada 5 minutos. A extração foi repetida mais uma vez para melhorar o rendimento e os extratos resunidos depois da centrifugação a 10000 x G por 10 minutos a 5°C em centífuga Beckman J2-21. Para a eliminação do solvente foi usado um rota-evaporador a 50°C bomba à vacuo. O extrato seco foi congelado a -18°C. Amostras de 100 mg do extrato etanólico seco foram pesadas em tubos de vidro (15 x 150 mm) com tampa de rosca e o volume ajustado para 10 mL com etanol 80%. A solução foi usada para as análises quantitativas. O tubo foi coberto com uma camada de papel de alumínio e armazenado na geladeira até o uso.

4.4 **Preparação do extrato etanólico de plantas**

Amostras da origem botânica foram coletadas e guardadas na geladeira. Foram pesados 2 g das amostras da origem botânica, e colocados em tubos centrífugas e adicionados 25 mL de metanol. A extração foi feita em banho-maria a 70°C por 30 minutos com agitação a cada 5 minutos. Em seguida as amostras foram centrifugadas a 10000 x G por 10 minutos a 5°C em centrífuga Beckman J2-21. O sobrenatante foi usado para as análises qualitativas.

4.5 **Preparação do extrato metanólico seco de plantas**

Amostras da origem botânica foram coletadas e guardadas na geladeira. Forma pesados 100 gramas das amostras e adicionadas em um Erlenmeyer de 2
litros e em seguido foi adicionado 500 mL de metanol. A extração foi feita em banho-maria a 70°C por 30 minutos com agitação a cada 5 minutos. A extração foi repetida mais uma vez para melhorar o rendimento e os extratos foram reunidos depois da centrifugação a 10000 x G por 10 minutos a 5°C em centrífuga Beckman J2-21. Para a eliminação do solvente foi usado um rota-evaporador a 50°C e bomba à vácuo. O extrato seco foi congelado a -18°C. Amostras de 100 mg do extrato metanólico seco foram pesadas em tubos de vidro (15 x 150 mm) com tampa de rosca e o volume ajustado para 10 mL com metanol. A solução foi usada para as análises quantitativas. O tubo foi coberto com uma camada de papel alumínio e a solução foi armazenada na geladeira até o momento de uso.

4.6 **Espectrofotometria na região ultravioleta-vizível**

O espectro de máxima absorção dos extratos etanólicos de própolis e dos extratos metanólicos das plantas foi determinado como descrito por Park e Ikegaki, (1998) na faixa de 200 a 600 nm utilizando-se um espectrofotômetro Beckman Coulter modelo DU-640.

4.7 **Cromatografia em camada delgada de alta eficiência em fase reversa**

Os extratos etanólicos de própolis forma analisados por cromatografia em camada delgada de alta eficiência em fase reversa (CCDAE-FR) de acordo com o método descrito por Alencar, (2002). Aliquotas de 3 μL dos EEP foram aplicadas em placas de 0,2 mm de espessura (10x10 cm) RP18F254S (Merck Co.). A fase móvel foi etanol: água (55:45, v/v) e o tempo de desenvolvimento das placas foi de aproximadamente 1 hora e 40 minutos. As placas foram expostas a luz ultravioleta no comprimento de onda de 254 e 366 nm, utilizando-se uma lâmpada UV Cole Parmer, modelo UVP-UVGL-58.
4.8 *Cromatografia líquida de alta eficiência em fase reversa*

As análises por CLAE-FR foram feitas de acordo com o método de (Park et al., 2002). Neste método 20 µL do EEP foram injetadas em uma coluna YMC-Pack ODS-A (RP-18, 250 x 4,6 mm; tamanho de partícula 5 µm) instalada em um sistema de cromatografia líquida (Shimadzu Co.) composto por duas bombas (LCD-10AD) degaseificado por hélio (DGU-2A) e forno de colunas (CTO-10AS) com temperatura de 30°C. A fase móvel utilizada foi água/ácido acético (19:1 v/v) (solvente A) e metanol grau CLAE (solvente B). A vazão foi de 1,0 mL/ min. O gradiente aplicado foi 30% do solvente B até 40% em 15 minutos, 50% do solvente B em 30 minutos, 60% do solvente B em 45 minutos, 75% do solvente B em 65 minutos, 90% do solvente B em 95 minutos e 30% do solvente B em 105 minutos. O tempo de corrida total foi 120 minutos. As substâncias foram determinadas pela comparação com os espectros dos padrões na região ultravioleta de 200 a 400 nm obtidos por meio do detector de arranjo de diodos (SPD-M10A).

4.9 *Determinação de flavonóides totais*

A determinação de flavonóides (flavonas, isoflavonas e flavonols) foi realizada pelo método colorimétrico do cloreto de alumínio (Chang et al., 2002). Amostras de 0,5 mL do extrato etanólico de própolis (1:20, v/v) foram misturadas com 1,5 mL de etanol 96%, 0,1 mL de cloreto de alumínio (10%), 0,1 mL de acetato de potássio 1 mol/L e 2,8 mL e água destilada. No tubo branco foi adicionado etanol 96% no lugar do extrato etanólico de própolis. Depois de 30 minutos, a absorbância das amostras foi medida em um espectrofotômetro Beckman Coulter modelo DU 640 a 434 nm. A concentração de flavonóides totais foi calculada como quercetina (12,5 a 200 µg/mL), diluídas em metanol absoluto. O mecanismo da formação do complexo Flavonóide-Al em solução de cloreto de alumínio foi descrito pelo (Markham, 1982).
A quantidade de flavonas, isoflavonas e flavonols pode ser determinada sem interferência de outras substâncias fenólicas, principalmente de ácidos fenólicos, mesmo que eles formem complexos com AlCl₃ devido a absorbância de luz de comprimento de onda muito inferior de 434 nm (Marcucci et al., 1998).

4.10 Determinação de compostos fenólicos totais

A determinação de compostos fenólicos totais foi feita de acordo com o método espectrofotométrico de Folin-Ciocalteau descrito por (Woisky e Salatino, 1998), usando ácido gálico como padrão. A leitura no espectrofotômetro foi feita a 740 nm. Os extratos etanólicos de própolis foram diluídos 1:100 e uma alíquota de 0,5 mL foi transferida para um tubo com tampa de rosca. Em seguida foi adicionado 2,5 mL do reagente Folin-Ciocalteau diluído em água destilada 1:10. Depois 5 minutos de repouso foram adicionados 2 mL de solução 4% de carbonato de sódio e os tubos foram deixados em repouso por 2 horas no escuro total. Uma amostra em branco foi conduzida nas mesmas condições e os resultados dos compostos fenólicos totais foram expressos como ácido gálico.

4.11 Determinação da atividade anti-radical (DPPH)

A medida da atividade sequestrante de radicais livres foi determinada utilizando-se 1,1-difenil-2-picrilidrazil (DPPH), de acordo com a metodologia descrita por Chen et al., (2003) e Yen e Wu, (1999). O DPPH é um radical livre estável que aceita um elétron ou um radical hidrogênio para tornar-se uma molécula diamagnética e desta forma, é reduzida na presença de um antioxidante. Para a avaliação da atividade sequestrante de radicais livres os extratos etanólicos da própolis reagiram com o radical estável de DPPH em uma solução de etanol P.A. Merck (96%). Na forma de radical, o DPPH possui uma absorção característica a 517 nm, a qual desaparece após a redução pelo hidrogênio retido de um composto antioxidante. Foram
adicionados 4,0 mL dos extratos etanólicos de própolis (a 200 µg/ mL) a serem
testados em tubos contendo 1,0 mL da solução do radical DPPH (0,5 mmol/L). A
redução do radical de DPPH foi medida através do monitoramento contínuo do
declínio da absorbância a 517 nm, ao abrigo da luz, até valores estáveis de
absorção. A atividade anti-radical foi determinada em termos de porcentagem de
inibição (PI), a qual foi calculada através da taxa de declínio da absorção da solução
de DPPH dos extratos etanólicos de própolis, com a absorção da solução controle
de acordo com a fórmula:

\[PI \ (\% \ inibição) = \left[\frac{A(0) - A(t)}{A(0)} \right] \cdot 100 \]

Onde:
- \(A(0) \) = Absorbância da solução referência de DPPH-etanol (96%).
- \(A(t) \) = Absorbância da solução DPPH-Extrato etanólico de própolis após o
tempo t em minutos.

4.12 Determinação da atividade antimicrobiana (Antibiograma)

A sensibilidade da própolis ao \textit{Staphylococcus aureus} ATCC 25923 foi
determinada de acordo com o método descrito na referência (Isla et al., 2005). A
cultura de \textit{S. aureus} foi inoculada em toda a superfície da placa de ágar nutriente
com swabs estéreis. Em seguida discos de papel impregnados com extratos de
própolis, foram colocados na superfície do meio de cultura e as placas foram
encubadas por uma noite a 37°C. Para a preparação dos discos de papel, amostras
de 10 µL de extratos de própolis e exudatos de plantas foram aplicados em discos (5
x 1 mm) de papel Whatman nº 3, e em seguida os discos foram secos a vácuo a
temperatura ambiente durante toda a noite e depois incubado a 60 ° C por 4 horas.
4.13 Determinação da concentração inibitória mínima (MIC)

As análises foram realizadas de acordo com a Metodologia dos Testes de Sensibilidade a Agentes Antimicrobianos (M7-A6, Vol. 23, no. 2) da CLSI (Clinical and Laboratorial Standards Institute) / ANVISA.

Amostras de própolis dos grupos G3, G12 e G13. Amostras de 1g de própolis in natura (incluindo cera) foram dissolvidas em 12,5 mL de etanol 80%.

Amostras de antibióticos: Avilamicina, Halquinol, Lincomicina, Tilosina, Virginamicina, Tiamulina e Sulfato de Colistina. Foram utilizadas soluções de antibióticos na concentração de 1 mg/mL.

Microrganismos: Pseudomonas aeruginosa ATCC 13388, Staphylococcus aureus ATCC 6538, Clostridium perfringens ATCC 1324, Salmonella thyphimurium ATCC 14028 e Escherichia coli hemolítico isolado de suíno.

Meios de cultura: Caldo Mueller-Hinton, Caldo Tioglicolato (para C. perfringens), Caldo Nutriente (para ativação da E. coli e S. thyphimurium).

Preparo de Inóculo Padronizado: O inóculo foi preparado a partir da suspensão de células de crescimento recente (24 h) em solução salina, sendo a densidade ótica acertada até turbidez correspondente a solução de Mc Farland 0,5 (625 nm, Abs entre 0,08 e 0,1). Reagente revelador: CTT - Solução de Cloreto de Trifenil Tetrazolium (Merck), 0,5%. Determinação da Concentração Mínima Inibitória (MIC) pelo Método da Microdiluição.

Em uma microplaca esterilizada de 96 poços foram depositados 100 µL de caldo Mueller-Hinton ou Caldo Tioglicolato, sendo a coluna 12 utilizada para os controles do microrganismo e de esterilidade do meio de cultura. Na coluna 1 - linha A foram acrescentados 50 µL da solução do material a ser testado, de concentração conhecida (uma substância diferente para cada número ou coluna), sendo estes referentes ao controle de esterilidade das amostras. Em seguida, 100 µL dos
mesmos materiais foram adicionados na linha B, o conteúdo dos orifícios foram homogeneizados com o meio e transferidos para o orifício da linha seguinte (C), repetindo-se este procedimento até a linha H, de modo a obter uma concentração decrescente do material. Os 100 µL finais foram desprezados. Em seguida, 100 µL do inóculo do microrganismo, cuja turvação foi comparada à escala de McFarland no 0,5 e diluídos para concentração final de 104 células/mL foram adicionados. As placas foram seladas com parafilm® e incubadas por 24 h à 36°C. Após este período as placas foram avaliadas e a MIC definida como a menor concentração do material capaz de impedir o crescimento da bactéria.

Controle referente a uma solução de etanol 80% foi também incluído no ensaio, para verificar os efeitos do mesmo sobre o crescimento microbiano, uma vez que tal solução foi utilizada para a solubilização da própolis.

Leitura dos Resultados:

Após o período de incubação, foram adicionados 50 µL da solução de CTT e as placas reincubadas por 3 h. A MIC foi definida como a menor concentração da amostra, capaz de impedir o aparecimento de coloração vermelha, conferida ao meio quando as células apresentam atividade respiratória.

4.14 Observação microscópica de grãos de pólen e tecidos vegetais presentes em própolis

O material foi preparado de acordo com o método descrito por (Warakomska e Maciejevicz, 1992). Amostras de própolis com partículas maiores que 2 mm foram tratadas com etanol 96% na proporção 1/5 (p/v). Essa mistura foi agitada e incubada por 4 dias à temperatura ambiente ou por 4h sob agitação a 40°C. O etanol foi retirado por filtração e o resíduo tratado com 20 mL de benzeno, colocado em
frascos Erlenmeyer de 250 mL e incubado em agitador a 40°C, 70 rpm por 30 minutos. Este procedimento foi repetido por mais duas vezes.

O resíduo obtido foi então tratado com 20 mL de acetona a 40°C por 15 minutos, nas mesmas condições de agitação. A acetona foi retirada por filtração e seu resíduo foi evaporado à temperatura ambiente.

A massa seca da amostra de própolis foi pesada e 2% de seu peso resuspendido em 10 mL de água glicerinada 1:1. Foram adicionadas 2 gotas de NaOH a 2%, para proporcionar coloração dos grãos de pólen presentes no sedimento. A suspensão foi filtrada em tamis para a remoção de fragmentos maiores. Foram preparadas lâminas do rendimento final e dos fragmentos retidos no tamis para observação microscópica.

Foram observados grãos de pólen e diversos tecidos vegetais não destruídos pelos solventes orgânicos, para posterior comparação com os cortes anatômicos obtidos de *Dalbergia ecastophyllum*.

4.15 Diafanização do sedimento obtido da própolis bruta

Foi pesado 2% da mesma massa seca obtida no procedimento anterior; em tubo de centrífuga de 15 mL e ressuspendido com 10 mL de hipoclorito de sódio a 10% e centrifugado a 2000 rpm por 5 minutos. Este procedimento foi repetido por mais 4 vezes. Com parte do precipitado clarificado foram confeccionadas lâminas para identificação dos fragmentos vegetais. A outra parte foi tratado com 5 mL de ácido acético 5%, lavada e corada com azul de astra e safranina (9:1), a lavagem foi repetida por mais uma vez e a partir daí foram montadas lâminas. Este procedimento de diafanização tornou-se necessário, haja visto que foram encontrados inúmeros fragmentos que necessitaram de clarificação para a sua identificação.
4.16 Contagem e identificação dos fragmentos de epiderme diafanizados

Foram contados os fragmentos diafanizados e comparados com as lâminas do laminário de referência de estruturas secretoras, para sua identificação.

4.17 Montagem de laminário de referência de estruturas secretoras

Foram estudados *Dalbergia ecastophyllum*, ocorrentes na área estudada indicadas pelos apicultores locais como possível fonte de resina para produção de própolis vermelha, no Município de Maceió, Estado da Alagoas.

4.18 Estudo anatômico

O material coletado de *D. ecastophyllum*, para o estudo das estruturas anatômicas foi fixado em FAA (formalina-álcool-ácido acético) por 24 h e transferidos para álcool 70% (Johansen, 1940).

Foram feitas dessecas epidérmicas de folhas, caule com folhas jovens, ápice vegetativo com botões florais, caules onde foram observados abelhas coletando resina, folhas com galhas, com o método de Jeffrey (Johansen, 1940), corada com fucsina e azul de astra (Reeve, 1951) e montados em gelatina glicerinada.

4.19 Testes estatísticos

O delineamento experimental utilizado foi o inteiramente casualizado. Os dados foram analisados pelo programa Statistica v.5, para a determinação da análise de variância. A separação entre as médias foi realizada usando-se o teste de “t” de student com um nível de confiança de 95%.
5 Resultados e discussão

5.1 Classificação de um novo grupo de própolis

A própolis brasileira foi classificada anteriormente em 12 grupos através de suas características físico-químicas. Entre estes 12 grupos de própolis, três grupos (grupo 3, 6 e 12) foram melhor estudados, e foi determinado que as abelhas colheram a resina dos botões florais e as resinas das folhas novas. Um novo tipo de própolis de coloração vermelha foi encontrado em colméias ao longo da praia e dos rios do nordeste do Brasil. Este tipo de própolis pode ser classificado como própolis do grupo 13, devido as características físico-químicas diferenciais. A Figura 1 ilustra o perfil cromatográfico dos extratos etanólicos dos 13 grupos de própolis encontrados no Brasil.

Figura 1 Perfil cromatográfico (RPHPTLC) dos extratos etanólicos dos 13 grupos de própolis encontrados no Brasil.
A própolis vermelha foi primeiramente encontrada em colméias de abelhas *Apis mellifera* africanizada (Figura 2), situadas dentro de manguezais do nordeste brasileiro. Foi verificado uma substância resinosa (Figura 3 A) saindo do caule da planta *Dalbergia ecastophyllum* e que abelhas coletavam essa resina (Figura 3 B) através da mastigação e deposição da resina nas patas posteriores (Figura 3 C) levando-a para a colméia. A resina retirada da *Dalbergia ecastophyllum* foi encontrada posteriormente nas colméias na forma de própolis misturada com cera e pólen.

Figura 2 Abelhas africanizadas produzindo a própolis vermelha.
Figura 3 Coleta de resina de *Dalbergia ecastophyllum* por abelhas africanizadas (*Apis mellifera*) para produção de própolis vermelha.
5.2 **Cromatografia em camada delgada de alta eficiência em fase reversa**

Foram realizadas análises cromatográficas em camada delgada de alta eficiência em fase reversa da resina (Figura 4 A) e resina da superfície (Figura 4 B) de *Dalbergia ecastophyllum*, e própolis vermelha coletada em Alagoas (Figura 4 C). Foi observado que existe muita semelhança entre as resinas de *D. ecastophyllum* e própolis vermelha de Alagoas.

Figura 4 Perfil cromatográfico (RPHPTLC) das resinas de *Dalbergia ecastophyllum* e da própolis vermelha coletada em Alagoas.
Foram preparados extratos etanólicos de amostras de própolis vermelha da Paraíba, Pernambuco, Alagoas, Sergipe e Bahia, resina avermelhada de lacre, resina amarela de lacre (não mostrada na Figura 5), casca com resina amarela de lacre (não mostrada na Figura 5) e resina de cipó de Rabo-de-Bugio (*D. ecastophyllum*) (Figura 5). Foram realizadas análises cromatográficas em camada delgada de alta eficiência em fase reversa das nove amostras coletadas e foi verificado que todas as amostras de própolis possuíram uma grande similaridade com a resina de *D. ecastophyllum*, o mesmo não acontecendo com a resina e casca de lacre.

Figura 5 Extratos etanólicos de amostras de resinas da *D. ecastophyllum*.
1 = própolis vermelha de Paraíba.
2 = própolis vermelha de Pernambuco.
3 = própolis vermelha de Alagoas.
4 = própolis vermelha de Sergipe.
5 = própolis vermelha de Bahia.
6 = resina avermelhada de lacre.
9 = cipó de Rabo-de-Bugio (*D. ecastophyllum*)
Figura 6 Perfil cromatográfico (RPHPTLC) de 9 amostras de plantas coletadas na área da produção da própolis vermelha.

1 = própolis vermelha de Paraíba. 2 = própolis vermelha de Pernambuco.
3 = própolis vermelha de Alagoas. 4 = própolis vermelha de Sergipe.
5 = própolis vermelha de Bahia. 6 = resina avermelhada de lacre.
7 = resina amarela de lacre. 8 = casca com resina amarela de lacre.
9 = cipó de Rabo-de-Bugio (*D. ecastophyllum*).

As plantas lacre, mangue e aroeira foram erradamente aceitas como sendo a origem botânica da própolis vermelha do grupo 13. Como observado na planta de lacre (Figura 7), verifica-se à esquerda uma resina vermelha, e à direita observa-se o surgimento de resina amarela depois de um corte na planta, essa resina amarela, sofreu ações ambientais e se tornou vermelha como a resina mostrada à esquerda.
Figura 7 Antes e depois da colheita da resina vermelhada de lacre.

Na Figura 8 à esquerda foi mostrado a resina amarela saindo de um galho de lacre recém cortado e à direita a modificação de cor da mesma.

Figura 8 Resina amarela e avermelhada da lacre.

Como mostrado na Figura 6 verificou-se que a resina amarela e avermelhada de lacre não estão presentes nas amostras de própolis vermelha do grupo 13.

5.3 **Cromatografia líquida de alta eficiência em fase reversa com gradiente**

A Figura 9 ilustra o perfil cromatográfico (CLAE-FR) dos flavonóides e outros constituintes químicos da própolis e exudatos resinosos de *D. ecastophyllum* para comparação qualitativa e quantitativa. A identificação dos compostos químicos foi
realizada pela comparação direta com padrão autêntico e baseada no tempo de retenção, co-cromatografia, e absorção espectrofotométrica.

A Figura 9 e Tabela 1 indicaram que o perfil cromatográfico do extrato da própolis vermelha apresenta alta similaridade com o extrato da resina de *D. ecastophyllum*.

Figura 9 Cromatograma dos extratos de própolis vermelha e da resina de *Dalbergia ecastophyllum*.
Tabela 1 Flavonóides e outros componentes químicos da própolis e D. ecastophyllum.

<table>
<thead>
<tr>
<th>Pico</th>
<th>Tempo de retenção (min)</th>
<th>Compostos</th>
<th>Quantidade (mg/g)</th>
<th>Própolis(^a)</th>
<th>Quantidade (mg/g)</th>
<th>D. ecastophyllum(^a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>13.42</td>
<td>Rutina</td>
<td>0.7</td>
<td>1.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>16.99</td>
<td>Liquiritigenina</td>
<td>1.8</td>
<td>7.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>20.63</td>
<td>Daidzeina</td>
<td>0.3</td>
<td>4.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>22.35</td>
<td>Pinobanksina</td>
<td>1.7</td>
<td>6.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>23.84</td>
<td>UV (\lambda) 251, 292 nm(^b)</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>24.59</td>
<td>Quercetina</td>
<td>0.5</td>
<td>1.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>28.40</td>
<td>Luteolina</td>
<td>1.2</td>
<td>2.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>30.46</td>
<td>UV (\lambda) 241, 272, 282 nm(^b)</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>32.15</td>
<td>Dalbergina</td>
<td>0.4</td>
<td>0.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>34.62</td>
<td>Isoliquiritigenina</td>
<td>4.8</td>
<td>12.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>36.97</td>
<td>Formononetina</td>
<td>10.2</td>
<td>19.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>39.28</td>
<td>UV (\lambda) 235, 263 nm(^b)</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>40.08</td>
<td>Pinocembrina</td>
<td>3.3</td>
<td>7.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>42.30</td>
<td>Pinobanksin-3-acetato</td>
<td>1.7</td>
<td>2.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>46.45</td>
<td>Biochanin A</td>
<td>0.5</td>
<td>1.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>55.96</td>
<td>UV (\lambda) 238, 260, 269 nm(^b)</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>60.53</td>
<td>UV (\lambda) 233, 249, 329 nm(^b)</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>63.43</td>
<td>UV (\lambda) 233, 256 nm(^b)</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^a\) Quantidade dos constituintes em mg/g de própolis e D. ecastophyllum.

Símbolos: “+” = presente, mas não quantificado.

\(^b\) Constituintes não identificados representados somente pelo espectro de absorbância máxima UV.
5.4 Espectrofotometria na região ultravioleta-visível

Para determinar a variabilidade da própolis vermelha do grupo 13, foram coletadas dez amostras de lugares diferentes do estado de Alagoas próximo à Maceió. A Figura 10 ilustra os extratos etanólicos das dez amostras de própolis vermelha e a diferença na coloração das mesmas.

Figura 10 Extratos etanólicos de 10 amostras da própolis vermelha coletada no estado de Alagoas.

Na Figura 11 foram verificados através de análises espectrofotométricas por espectro de absorção UV-VIS, que as amostras testadas apresentaram variações quanto a quantidade de flavonóides presentes. Foi verificado que as amostras que continham maior quantidade flavonóides, continham também maior quantidade de resina de *D. ecastophyllum*.
Figura 11 Espectro de absorção (UV-VIS) de 10 amostras de própolis vermelha de Alagoas.
5.5 Determinação da atividade anti-microbiana

A própolis vermelha do grupo 13 apresentou ótima atividade antimicrobiana contra Staphylococcus aureus (Figura 12), porém foi observado que houve variação quanto ao potencial de inibição, mostrando a variação de flavonóides presentes nas amostras. Foi verificado que as amostras com maior atividade antimicrobiana, continham também maior quantidade de resina de *D. ecastophyllum*.

Figura 12 Antiibiograma das amostras 1 a 10 de Alagoas utilizando-se *Staphylococcus aureus* ATCC 25923, C = controle.

Foram estudadas as inibições de *S. aureus* ATCC 25923 e *S. typhimurium* ATCC 14028 por própolis dos grupos G3, G12, G13 e resina avermelhada de *D. ecastophyllum* (Figura 13). Utilizando-se *S. aureus* foi observado que a zona inibitória da própolis G3 foi menor em relação às própolis G12, G13 e *D. ecastophyllum*. Foi observado em *S. typhimurium* somente inibição por própolis G13 e *D.ecastophyllum*. Para um estudo mais preciso foram realizadas análises MIC (concentração mínima de inibição) das própolis G3, G12 e G13.
Figura 13 Antibiograma utilizando *Staphylococcus aureus* ATCC 25923 e *Salmonella typhimurium* ATCC 14028 e as amostras de própolis grupo 3, 12, 13 e resina de *D. ecastophyllum*.

1 = Própolis de *Populus* sp., 2 = Própolis de *B. dracunculifolia*, 3 = Própolis de *D. ecastophyllum*, 4 = Resina avermelhada de *D. ecastophyllum*.

5.6 Determinação da atividade anti-cáries

A tabela 2 mostra que a própolis do grupo 13 apresentou alta atividade antimicrobiana contra *S. mutans* em relação às própolis dos grupos G3, G6 e G12.

Tabela 2 Atividade anti-microbiana dos extratos etanólicos de própolis dos grupos 3, 6, 12 e 13 contra *S. mutans*.

<table>
<thead>
<tr>
<th>Extrato etânólico de própolis</th>
<th>Streptococcus mutans MIC (µg/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>G 3</td>
<td>100</td>
</tr>
<tr>
<td>G 6</td>
<td>50</td>
</tr>
<tr>
<td>G 12</td>
<td>400</td>
</tr>
<tr>
<td>G 13</td>
<td>10</td>
</tr>
</tbody>
</table>

MIC: Concentração mínima inibitória
5.7 Determinação de flavonóides totais, comparação G3, G12, G13

A Figura 14 ilustra os teores de flavonóides totais estimados por reação com AlCl₃, usando padrão quercetina, das própolis dos grupos G3, G12 e G13 que apresentaram maior atividade biológica. As amostras de própolis G3, G12 e G13 apresentaram quantidades muito similares de flavonóides.

![Figura 14](image)

Figura 14 Flavonóides totais (AlCl₃) em mg quercetina equivalente / g própolis das própolis G3 (*Populus sp.*), G12 (*B. dracunculifolia*) e G13 (*D. ecastophyllum*).

5.8 Estudo da variabilidade da própolis vermelha do grupo 13

As amostras de própolis e exudatos resinosos foram analisadas por CLAE-FR e CCDAE-FR. Foram coletados e analisados 6 amostras de própolis vermelha da mesma região de Alagoas, como mostrado na Figura 15. As análises de CCDAE-FR e CLAE-FR demonstraram que as amostras de própolis vermelha 2, 3, 4 e 5 mostraram perfis quase idênticos. As amostras 1 e 6 também mostraram a presença dos compostos presentes nas amostras 2, 3, 4 e 5, mas em baixa concentração. As amostras 1 e 6 apresentaram picos na faixa do tempo de retenção 80-100 min, que
foram encontrados no exudato de *D. ecastophyllum*. Foi observado que as amostras de própolis 1 e 6 foram coletadas de colméias que estavam localizadas em áreas onde *D. ecastophyllum* era escassa, indicando que essas abelhas coletaram resinas de outras plantas também.

Figura 15 A = Cromatograma CLAE-FR de 6 amostras de própolis vermelha. B = Cromatograma CCDAE-FR de 6 amostras de própolis vermelha.
A atividade antimicrobiana das 6 amostras de própolis vermelha do grupo 13 contra *Staphylococcus aureus* ATCC 25923 foram medidas de acordo com o método descrito no item 4.12, e os resultados estão mostrados na Figura 16. As amostras B,C,D e E mostraram alta inibição do crescimento bacteriano quando comparado com as amostras A e F, que continham menor concentração de constituintes químicos da *D. ecastophyllum*.

Figura 16 Antibiograma de 6 amostras da própolis vermelha utilizando-se *Staphylococcus aureus* ATCC 25923.
5.9 Determinação de flavonóides totais de amostras de própolis
do grupo 13

Na Figura 17 ilustra o teor de flavonóides totais das 6 amostras de própolis vermelha que foram testadas quanto a atividade anti-microbiana utilizando S. aureus ATCC 25923 (Figura 16). Foi verificado que as amostras com maior atividade anti-microbiana (B, C, D e E) apresentaram maior quantidade flavonóides em relação às amostras A e F.

Figura 17 Flavonóides totais (AlCl₃) em mg quercetina equivalente / g de amostras de própolis do grupo 13.
5.10 **Determinação de fenólicos totais de amostras de própolis do grupo 13**

A Figura 18 ilustra o teor de compostos fenólicos totais das 6 amostras de própolis vermelha que foram testadas quanto a atividade anti-microbina utilizando-se *S. aureus* ATCC 25923 (Figura 16). Foi verificado que as amostras com maior atividade anti-microbiana (B, C, D e E) apresentaram também maior quantidade fenólicos em relação as amostras A e F.

Figura 18 Teor de fenólicos totais em mg ácido gálico equivalente / g de amostra de própolis do grupo 13.

5.11 **Determinação da atividade anti-radical (DPPH)**

A Figura 19 e Tabela 3 ilustram a atividade anti-radical das 6 amostras de própolis que foram testadas quanto a atividade anti-microbiana utilizando-se *S. aureus* ATCC 25923 (Figura 16). Foi verificado que as amostras que mostraram maior atividade anti-microbiana, números 2, 3, 4 e 5 apresentaram também maior atividade anti-radical em relação as amostras 1 e 6.
Figura 19 Efeito antiradical da própolis vermelha amostra A a F (DPPH).

Tabela 3 Efeito antiradical da própolis vermelha amostra A a F (DPPH).

<table>
<thead>
<tr>
<th>Tempo (min)</th>
<th>Amostra A</th>
<th>Amostra B</th>
<th>Amostra C</th>
<th>Amostra D</th>
<th>Amostra E</th>
<th>Amostra F</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>100,0</td>
<td>100,0</td>
<td>100,0</td>
<td>100,0</td>
<td>100,0</td>
<td>100,0</td>
</tr>
<tr>
<td>5</td>
<td>83,0</td>
<td>85,5</td>
<td>85,6</td>
<td>80,3</td>
<td>91,4</td>
<td>80,1</td>
</tr>
<tr>
<td>15</td>
<td>79,4</td>
<td>78,2</td>
<td>73,5</td>
<td>69,1</td>
<td>85,6</td>
<td>74,7</td>
</tr>
<tr>
<td>30</td>
<td>77,1</td>
<td>71,9</td>
<td>64,8</td>
<td>60,9</td>
<td>80,8</td>
<td>72,9</td>
</tr>
<tr>
<td>45</td>
<td>75,4</td>
<td>67,9</td>
<td>59,1</td>
<td>55,6</td>
<td>76,6</td>
<td>72,0</td>
</tr>
<tr>
<td>60</td>
<td>74,6</td>
<td>64,7</td>
<td>54,9</td>
<td>51,6</td>
<td>74,0</td>
<td>71,3</td>
</tr>
<tr>
<td>75</td>
<td>73,6</td>
<td>62,3</td>
<td>52,2</td>
<td>49,1</td>
<td>71,4</td>
<td>71,2</td>
</tr>
<tr>
<td>90</td>
<td>73,0</td>
<td>60,1</td>
<td>49,4</td>
<td>46,5</td>
<td>69,9</td>
<td>70,8</td>
</tr>
<tr>
<td>105</td>
<td>72,3</td>
<td>57,5</td>
<td>47,0</td>
<td>44,1</td>
<td>67,6</td>
<td>70,3</td>
</tr>
<tr>
<td>120</td>
<td>71,3</td>
<td>55,3</td>
<td>44,9</td>
<td>42,2</td>
<td>65,3</td>
<td>70,0</td>
</tr>
<tr>
<td>150</td>
<td>70,5</td>
<td>51,1</td>
<td>40,9</td>
<td>38,5</td>
<td>62,0</td>
<td>69,7</td>
</tr>
<tr>
<td>180</td>
<td>69,8</td>
<td>46,5</td>
<td>37,4</td>
<td>35,1</td>
<td>57,2</td>
<td>69,3</td>
</tr>
<tr>
<td>240</td>
<td>68,4</td>
<td>39,5</td>
<td>31,4</td>
<td>29,5</td>
<td>50,8</td>
<td>70,1</td>
</tr>
</tbody>
</table>
5.12 Determinação da concentração inibitória mínima (MIC)

A Tabela 4 ilustra as análises MIC (concentração mínima inibitória) da própolis G13 contra *Streptococcus mutans*, *Pseudomonas aeruginosa*, *Staphylococcus aureus*, *Clostridium perfringens*, *Salmonella typhimurium* e *Escherichia coli*. Foi observado que a melhor inibição foi encontrada contra *C. perfringens*, com 7 µg/mL e a menor inibição foi encontrada em *E. coli* com 1000 µg/mL.

<table>
<thead>
<tr>
<th>Microorganismo</th>
<th>MIC (µg/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Streptococcus mutans</td>
<td>10</td>
</tr>
<tr>
<td>Pseudomonas aeruginosa</td>
<td>31</td>
</tr>
<tr>
<td>Staphylococcus aureus</td>
<td>125</td>
</tr>
<tr>
<td>Clostridium perfringens</td>
<td>7</td>
</tr>
<tr>
<td>Salmonella typhimurium</td>
<td>200</td>
</tr>
<tr>
<td>Escherichia coli</td>
<td>1000</td>
</tr>
</tbody>
</table>

MIC: Concentração mínima inibitória

A Tabela 5 ilustra a inibição dos microrganismos *Pseudomonas aeruginosa*, *Staphylococcus aureus*, *Clostridium perfringens*, *Salmonella typhimurium* e *Escherichia coli* usando própolis G3, G12 e G13 em comparação com diversos antibióticos comerciais.

<table>
<thead>
<tr>
<th>Microrganismo</th>
<th>Própolis G3</th>
<th>Própolis G12</th>
<th>Própolis G13</th>
<th>Avilamicina</th>
<th>Halquinol</th>
<th>Lincomicina</th>
<th>Tiosina</th>
<th>Virginamicina</th>
<th>Tiamulina</th>
<th>Sulfato de Colistina</th>
</tr>
</thead>
<tbody>
<tr>
<td>P. aeruginosa</td>
<td>500</td>
<td>300</td>
<td>31</td>
<td>62</td>
<td>31</td>
<td>500</td>
<td>250</td>
<td>125</td>
<td>62</td>
<td>1</td>
</tr>
<tr>
<td>S. aureus</td>
<td>60</td>
<td>15</td>
<td>125</td>
<td>2</td>
<td>8</td>
<td>1</td>
<td>1</td>
<td>16</td>
<td>1</td>
<td>31</td>
</tr>
<tr>
<td>C. perfringens</td>
<td>15</td>
<td>30</td>
<td>7</td>
<td>4</td>
<td>16</td>
<td>1</td>
<td>16</td>
<td>31</td>
<td>31</td>
<td>31</td>
</tr>
<tr>
<td>S. typhimurium</td>
<td>250</td>
<td>250</td>
<td>200</td>
<td>125</td>
<td>2</td>
<td>400</td>
<td>500</td>
<td>400</td>
<td>100</td>
<td>2</td>
</tr>
<tr>
<td>E. coli</td>
<td>125</td>
<td>125</td>
<td>1000</td>
<td>62</td>
<td>8</td>
<td>600</td>
<td>16</td>
<td>62</td>
<td>31</td>
<td>2</td>
</tr>
</tbody>
</table>

Obs: Não houve inibição do crescimento bacteriano pela solução de etanol 80%.
Todas as amostras de própolis e antibióticos analisados inibiram os microrganismos na faixa de concentração estudada, sendo que a maior MIC foi observada com própolis G13 para *E. coli* isolada de suíno (1000 µg/mL), e o menor MIC com o mesmo material para *C. perfringens*.

As amostras de própolis em baixas concentrações foram capazes de inibir as bactérias, principalmente o *C. perfringens* e *S. aureus*.

Em alguns casos, a própolis apresentou melhor inibição do que alguns dos antibióticos analisados, como pode ser observado para Lincomicina, Tilosina e Virginamicina utilizando-se o microrganismo *S. thyphimurium*.

Dentre os antibióticos investigados, o sulfato de colistina foi o que apresentou melhor atividade antimicrobiana, principalmente para *P. aeruginosa*, *S. typhimurium* e *E. coli*.
5.13 **Otimização do método de extração de compostos bioativos de própolis**

A Figura 20 mostra os extratos de própolis G13 obtidos utilizando-se concentrações de etanol. Foi observado a cor amarelada nos extratos obtidos com concentração de 0 à 40% de etanol, e cor avermelhada nos extratos obtidos com concentrações de 50 à 100%.

![Figura 20 Coloração dos extratos etanólico da própolis vermelha utilizando-se diferentes concentrações de etanol.](image)

Foram realizados testes de atividade antimicrobiana com os extratos mostrados na Figura 20, e foi demonstrado maior atividade antimicrobiana, contra *S. aureus*, nos extratos obtidos com 40 à 100% de etanol. Os extratos de própolis vermelha extraídos com 50 a 70% de etanol apresentaram maior atividade antimicrobiana (Figura 21).
Figura 21 Antibiógrama de extratos etanólicos da própolis vermelha com diferentes concentrações de etanol usando Staphylococcus aureus – ATCC 25923.

A Figura 22 ilustra a cromatografia em camada delgada de alta eficiência em fase reversa (CCDAE-FR) dos extratos de própolis vermelha extraídos com diferentes concentrações de etanol e que foram testados quanto a atividade de inibição do crescimento de S. aureus ATCC 25923 na Figura 20. Verificou-se que os extratos obtidos com etanol 40-100% apresentaram maior concentração de flavonóides (Figura 22).
Nos brejos que ficam no reverso dos cordões de dunas, e que são áreas inundadas periodicamente, a verônica branca ou rabo-de-bugio (*Dalbergia ecastophyllum*) cujas raízes e cascas combatem inflamações uterinas e anemia. O ecossistema das dunas apresenta problemas para a sobrevivência das plantas, devido à escassez de nutrientes e a vários fatores que influem negativamente no balanço hídrico, como a baixa capacidade de retenção de água do solo, forte ação dos ventos marinhos, elevadas salinidade e insolação. Apesar disto, a flora das dunas apresenta elevada diversidade taxonômica com uma taxa expressiva de táxons endêmicos. Foram identificadas 410 espécies pertencentes a 283 géneros de
88 famílias. As famílias mais importantes, em termos de número de espécies, são Leguminosae, Cyperaceae, Compositae, Rubiaceae e Gramineae.

O detalhamento da composição e da estrutura do manguezal, mostrou que o mesmo é caracterizado por seis espécies: três delas exclusivas de áreas de mangue (Rhizophora mangle, Laguncularia racemosa e Conocarpus erectus) e três associadas (Annona glabra, Dalbergia ecastophyllum e Inga sp.).

5.14.2 Análise da origem botânica

A própolis vermelha foi coletada de colméias localizadas no caule de arbustos ao longo da praia e costas dos rios na região nordeste do Brasil. O exudato resinoso vermelho secretado pelos buracos feitos por insetos no caule de D. ecastophyllum é mostrado na Figura 23 D. Uma amostra de Dalbergia ecastophyllum (JPB34951) é mantida no herbário da UFPB (Universidade Federal da Paraíba).
Figura 23 Coleta de exudato resinoso vermelho de *D. ecastophyllum* por *Apis mellifera*. A = Folhas de *D. ecastophyllum*. B = Sementes de *D. ecastophyllum*. C = *Apis mellifera* coletando exudato resinoso vermelho de *D. ecastophyllum*. Caule de *D. ecastophyllum* com exudato resinoso vermelho.

Foi observado que as abelhas visitaram principalmente *D. ecastophyllum* para coletar resina na superfície dos buracos nos troncos (Figura 23 C). Amostras de exudato vermelho (Figura 23 C e 23 D) foram coletadas para análise e comparadas com amostras coletadas de colméias que estavam localizadas na mesma área. O exudato resinoso foi dissolvido em 80% de etanol. No caso da própolis, aproximadamente 50 g de própolis vermelha foi coletada de uma colméia que estava localizada na mesma área.
Figura 24 *Dalbergia ecastophyllum* com resina vermelha saindo de um corte fresco.

A Figura 24 ilustra a saída de resina dos vasos lacticíferos após corte transversal de caule de *Dalbergia ecastophyllum*.

5.14.3 Estrutura anatômica da planta

As Figura 25 a-c ilustram as estruturas anatômicas da planta tais como os parênquimas lignificados, e as células parênquimatosas retangulares com conteúdo avermelhado Figura 25 d.

![Figura 25](image)

Figura 25 a = Corte transversal de caule de *D. ecastophyllum*, evidenciando parênquima lignificado, elementos de vasos (100x); b = Parênquima lignificado planta (100x); c = Parênquima lignificado planta (400x); d = Células parênquimatosas retangulares com conteúdo avermelhado (100x).
As amostras de própolis vermelhas do grupo 13 apresentaram na análise microscópica diversos elementos que a caracterizam a planta *D. ecastophyllum*:

A Figura 26 ilustra a presença de tricomas na própolis do grupo 13 e que são encontrados na planta *D. ecastophyllum*.

Figura 26 Tricomas glandulares de tamanhos variados, ora íntegros, ora fragmentados, encontradas na própolis vermelha (400x)

A análise comparativa entre os elementos microscópicos encontrados na própolis vermelha do grupo 13 e observados no estudo realizado para *Dalbergia ecastophyllum*, como os ápices vegetativos (Figura 27), demonstraram que os elementos botânicos encontrados são idênticos.
Figura 27 Ópices vegetativos do caule de *Dalbergia ecastophyllum* (corte transversal, caule 200x e 400x).

A Figura 28 ilustra o abundante conteúdo avermelhado nas células radiais de forma oval em *D. ecastophyllum* e própolis G13.

Figura 28 Células radiais de forma oval, com abundante conteúdo avermelhado e tecido lignificado encontrado nas amostras própolis (400x)

A Figura 29 ilustra a presença de tricoma de cobertura, parênquima, vasos lactíferos com resina avermelhada e células radiais de forma oval em corte transversal do caule de *D. ecastophyllum*.
Figura 29 Corte transversal do caule de *Dalbergia ecastophyllum* demonstrando tricoma de cobertura (T), parênquima (P), vasos lacticíferos (LT), células radiais de forma oval (R) (200x).

A Figura 30 mostra em maior aumento, os vasos lacticíferos da *D. ecastophyllum* onde a resina avermelhada é produzida. Quando ocorre danos no caule a resina é liberada como um mecanismo de defesa (fitoalexina).

Figura 30 Corte transversal de *Dalbergia ecastophyllum*, com vasos lacticíferos (LT) e células radiais (R) de forma oval semelhante as encontradas nas amostras de própolis (200x).
6 Conclusões

Um novo tipo de própolis de coloração vermelha, de colméias encontradas ao longo da praia e dos rios do nordeste do Brasil, foi classificado como própolis do grupo 13 de acordo com as características físico-químicas e biológicas diferenciais.

A principal origem botânica da própolis vermelha é a planta *Dalbergia ecastophyllum*, popularmente conhecida como rabo-de-bugio, encontrada ao longo da praia e região do mangue do nordeste do Brasil.

Os extratos etanólicos da própolis do grupo 13 apresentaram atividade antibacteriana contra *Staphylococcus aureus*, *Salmonella typhimurium*, *Streptococcus mutans*, etc.

Os extratos de própolis vermelha extraídos com 50-70% de etanol apresentaram maior atividade anti-microbiana.

7 Possíveis aplicações farmacológicas dos compostos

Foi previamente demonstrado que as amostras de extrato de *D. ecastophyllum* (Leguminosae) da América do Sul, contém os flavonóides liquiritigenina, daidzeína, dalbergina, isoliquiritigenina, formononetina e biochanin A (Donnelly *et al.*, 1973).

Foi descoberto que isoliquiritigenina inibe o crescimento de câncer prostático (Kanazawa *et al.*, 2003), e a atividade da enzima xantina oxidase. A inibição da xantina oxidase foi sugerida para uso no tratamento de hepatites e tumores cerebrais, porque aumentam o nível de xantina oxidase sérica (Kong *et al.*, 2000). Isoliquiritigenina tem atividade anti-alérgica dependendo da sua concentração (Chan *et al.*, 1998).

Liquiritigenina inibe a atividade da enzima xantina oxidase causando os mesmos efeitos citados acima (Daugsch *et al.*, 2006).

Formononetina é um isoflavonóide com atividade estrogênica e anti-fúngica. Quando mamíferos consomem essa isoflavona ela é metabolizada em daidzeína, que é um dos isoflavonóides aglicos presentes na soja, que é utilizado na prevenção e tratamento dos sintomas da menopausa, e no tratamento de câncer de próstata e câncer de mama (Daugsch *et al.*, 2006).

Biochanin A é um isoflavonóide que possui atividade estrogênica e anti-fúngica. Quando essa isoflavona é consumida por mamíferos é convertida em genisteína, que é um dos isoflavonóides aglicos presentes na soja, que é utilizado na prevenção e tratamento dos sintomas da menopausa, e no tratamento de câncer de próstata e câncer de mama (Daugsch *et al.*, 2006).

Daidzeína é um isoflavonóide primeiramente encontrado na soja, e também encontrado na própolis vermelha. É conhecida pela sua atividade fito-hormonal (Daugsch *et al.*, 2006).
Dalbergina é um dos compostos que caracterizam o gênero Dalbergia, sendo encontradas em diversas espécies, tais como Dalbergia odorífera e Dalbergia ecastophyllum (Daugsch et al., 2006).

A própolis vermelha cubana pode ser utilizada como analgésico. In vivo uma concentração de 25 mg/kg a 40 mg/kg reduziu significantemente a sensibilidade de dor (Ledón et al., 1997).

Própolis vermelha reduz os danos hepáticos significantemente devido a inibição da peroxidação da membrana lipídica e da formação de radicais livres. A atividade de AST, ALT e GSH foram reduzidas quando a própolis foi aplicada (Gonzales et al., 1995; Merino et al., 1996; Rodriguez et al., 1997).
8 Referências bibliográficas

BRETZ, W.A., CHIEGO, D.J.J., MARCUCCI, M.C., CUNHA, I.B.S., CUSTODIO, A.R. e SCHNEIDER, L.G. Preliminary report on the effects of propolis on wound healing in

CASTALDO, S. e CAPASSO, F. Propolis, an old remedy used in modern medicine. *Fitoterapia*, v. 73, n. suppl. 1, p. S1-S6, 2002.

COLEMAN, R.A., SMITH, W.L. e NARUMIYA, S. International Union of Pharmacology classification of prostanoid receptors: properties, distribution, and

GULBAHAR, O., OZTURK, G., ERDEM, N., KAZANDI, A.C. e KOKULUDAG, A. Psoriasiform contact dermatitis due to propolis in a beekeeper. *Annals of allergy,*

KUROKAWA, M., BASNET, P., OHSUGI, M., HOZUMI, T., KADOTA, S., NAMBA, T.,
KAWANA, T. e SHIRATA, K. Anti-Herpes Simplex Virus Activity of Moronic Acid
Purified from Rhus javanica In Vitro and In Vivo. The Journal of pharmacology and

KWON, Y.-S., PARK, D.-H., SHIN, E.-J., KWON, M.S., KO, K.H., KIM, W.-K., JHOO,
J.H., JHOO, W.-K., WIE, M.-B., JUNG, B.D. e KIM, H.-C. Antioxidant propolis
attenuates kainate-induced neurotoxicity via adenosine A1 receptor modulation in the

LEDÓN, N., CASACÓ, A., GONZALEZ, A., BRACHO, J. e ROSADO, A. Assessment
of potential dermal and ocular toxicity and allergic properties of an extract of red

LEDÓN, N., CASACÓ, A., GONZÁLEZ, R., MERINO, N., GONZÁLEZ, A. e TOLÓN,
Z. Antipsoriatic, anti-inflammatory, and analgesic effects of an extract of red propolis.

and therapeutic effects of propolis ethanol extract on chronic alcohol induced liver

Antioxidative natural product protect against econazole-induced liver injuries.

MARCUCCI, M.C., WOISKY, R.G. e SALATINO, A. Uso de cloreto de alumínio na quantificação de flavonóides em amostras de própolis. *Mensagem Doce*, v. 46, p. 3-8, 1998.

PADMAVATHI, R., SENTHILNATHAN, P., CHODON, D. e SAKTHISEKARAN, D. Therapeutic effect of paclitaxel and propolis on lipid peroxidation and antioxidant

URADZINSKI, J., SZTEYN, J. e KAFEL, S. Investigation on the inhibition of Campylobacter jejuni growth with the applications of some preservatives, medicines,

