Magnetic field dependence of the Curie–Weiss paramagnetism in CrV alloys
A. J. A. de Oliveira, W. A. Ortiz, O. F. de Lima, and P. C. de Camargo

Citation: Journal of Applied Physics 81, 4209 (1997); doi: 10.1063/1.364694
View online: http://dx.doi.org/10.1063/1.364694
View Table of Contents: http://scitation.aip.org/content/aip/journal/jap/81/8?ver=pdfcov
Published by the AIP Publishing

Articles you may be interested in
Quantum critical behaviour in the (Cr97.8Si2.2)100− y Mo y alloy system

Field-dependent low-field enhancement in effective paramagnetic moment with nanoscaled Co 3 O 4

Resonance properties of the quasi-one-dimensional Ising magnet [(CH 3) 3 NH] CoCl 3 ·2 H 2 O in the paramagnetic and magnetically ordered phases
Low Temp. Phys. 28, 889 (2002); 10.1063/1.1531393

Kondo effect in the paramagnetic phase of CrFe alloy with the spin-density-wave suppressed by pressure or V doping
J. Appl. Phys. 81, 4176 (1997); 10.1063/1.365111

Dependence of Curie-Weiss Temperature on Mn Concentration in Dilute ZnMn Alloys
AIP Conf. Proc. 18, 975 (1974); 10.1063/1.3141865
Magnetic field dependence of the Curie–Weiss paramagnetism in CrV alloys

A. J. A. de Oliveira and W. A. Ortiz
Departamento de Física, Universidade Federal de São Carlos, CP 676-13565-905 São Carlos, SP, Brazil

O. F. de Lima
Instituto de Física, Universidade Estadual de Campinas, 13083-970 Campinas, SP, Brazil

P. C. de Camargo
Departamento de Física, Universidade Federal do Paraná, CP 19081-81531-970 Curitiba, PR, Brazil

The determination of the magnetic properties of antiferromagnetic Cr alloys requires careful consideration of the influence of the applied magnetic field. In this work we show that alloys of Cr-x at. % V present a Curie–Weiss paramagnetism above the Néel temperature, which is suppressed by a characteristic field H_L. Samples with $x=0.1$, 0.2, and 0.4 were investigated through measurements of the magnetic susceptibility as a function of temperature, for different values of the magnetic field. A magnetic phase diagram showing the characteristic line H_L vs x at. % V is proposed. © 1997 American Institute of Physics. [S0021-8979(97)27108-2]

I. INTRODUCTION

Chromium is an itinerant antiferromagnet below its Néel temperature (T_N), this phase being well described by spin-density waves (SDW). Dilute alloys of Cr with ferromagnetic (Fe and Co)$^{1-2}$ and antiferromagnetic (Mn)3 metals, exhibit local magnetic moments. When one introduces these impurities in Cr, the temperature dependence of the magnetic susceptibility shows a Curie–Weiss (CW) behavior below and above T_N. However, for alloys with V,$^{3-6}$ Si,7 Rh,8 Mo and W,9 this behavior is present only above T_N. In particular for dilute CrV alloys, the magnetic susceptibility develops a CW component only above T_{CW}, a temperature previously defined,5 which is somewhat higher than T_N. The nature of the magnetic moment responsible for this behavior is not known yet. It is possible that the CW paramagnetism above T_{CW} could be associated with the formation of local spin-density waves around V impurities.5,10,11

It has been previously reported6 that the CW paramagnetism is absent for impurity concentrations greater than 0.4 at. % V, and that a magnetic field of 20 kOe is enough to inhibit this behavior for Cr-0.2 at. % V. This article presents the temperature dependence of the dc magnetic susceptibility, $\chi_{DC}(T)$, of antiferromagnetic Cr-x at. % V ($x=0.1$, 0.2, 0.4) samples measured under different magnetic fields, which allowed the determination of the critical field (H_L) above which the CW behavior is suppressed in these alloys. A magnetic phase diagram (H_L vs x at. % V) is proposed for these alloys, with the critical line $H_L(x)$ enclosing the CW phase.

II. EXPERIMENTAL DETAILS

The CrV samples studied are highly homogeneous polycrystals prepared by arc melting, which has been thoroughly characterized in several previous experiments.6,12,13

The $\chi_{DC}(T)$ measurements were made in a Quantum Design SQUID magnetometer, model MPMS5. In each run the sample temperature was decreased through T_N in zero field. The magnetic field was then applied and the measurements taken as a function of increasing temperature. Each $\chi_{DC}(T)$ point results from an average of two scans taken over a 3 cm length excursion of the sample through the SQUID sensor.

III. RESULTS AND DISCUSSION

Figure 1 shows the temperature dependence of $\chi_{DC}(T)$ for the Cr-0.1 at. % V sample, at fields (a) $H=0.1$ kOe, (b) 1.0 kOe, (c) 2.0 kOe, and (d) 20.0 kOe. For curve (a) the CW behavior is clearly seen above $T_{CW}=298$ K, in agreement with previous results,6 as well as a characteristic jump around $T_N=296$ K. In (b) the jump around T_N is smaller, however the CW paramagnetism is still present. In (c) the CW response is no longer observed suggesting that the applied field is sufficient to inhibit the appearance of local moments in this alloy. The curve resembles that obtained for pure Cr.4 Curve (d) shows $\chi_{DC}(T)$ increasing with temperature, a dependence similar to that previously reported for Cr-0.2 at. % V6 at the same field. The inset exhibits the reciprocal of $\chi_{DC}(T)$, showing the occurrence of CW paramag-

![FIG. 1. Temperature dependence of magnetic susceptibility of (a) Cr-0.1 at. % V; (b) $H=0.1$ kOe, (c) $H=1.0$ kOe (d) $H=2.0$ kOe; $H=20.0$ kOe. $T_N=296$ K and $T_{CW}=298$ K. Inset: reciprocal of $\chi_{DC}(T)$ showing the occurrence of CW paramagnetism above T_{CW} for $H=1.0$ kOe.]
paramagnetism above \(T_{\text{CW}}\) for fields \(H \leq 1.0\) kOe. The straight lines represent the Curie–Weiss law and are plotted here only as a guide to the eye. The slope of these lines is positive when \(H < \mu_0 T_N\), showing the CW behavior above \(T_N\), with a transition to the paramagnetic phase at some higher temperature \(T_L\). In the local SDW phase between \(T_N\) and \(T_L\), the moment at the impurity site would then appear at \(T_{\text{CW}}\).

One might say that the magnetic field would cause a decrease in \(T_L\), which would then collapse onto \(T_N\). According to Tugushev,\(^6\) \(T_L\) for these materials would occur around 500 K, neglecting magnetic field effects. Unfortunately \(T_L\) has not been observed so far, even at 1 kOe for temperatures up to 400 K for Cr-0.2 at. % V and Cr-0.4 at. % V.\(^4\) From what has been presented here, one may conclude that the magnetic field does not affect \(T_L\), but affects the local magnetic moment density. Magnetic fields sufficiently strong may inhibit the formation of local moments. For lower fields the jump in \(\chi_{\text{DC}}(T)\) is pronounced, i.e., there is a higher density of local moments (or local SDW) around the V atoms. As the field is enhanced, the jump decreases as a consequence of lower moment densities.

The appearance of local magnetic moments depends both on the V concentration and on the magnetic field. Therefore, one can sketch a phase diagram where a critical line \(H_L(x)\) separates the CW phase from the ordinary paramagnetic phase. Figure 4 is a proposition of such phase diagram. As previously reported,\(^6\) local moments do not manifest for \(x \geq 0.67\), even for very low fields (7 Oe), suggesting that \(H_L(x)\) vanishes within the interval \(0.4 < x \leq 0.67\).

One may then conclude that the appearance and the suppression of local moments in Cr-x at. % V alloys are strongly influenced by the applied magnetic field. Studies of other Cr
antiferromagnetic alloys with transition metals might reveal
other aspects of the problem, especially when one uses high
sensitivity techniques like SQUID magnetometry and ac sus-
ceptometry.

ACKNOWLEDGMENTS

This work was performed with the support of Fundação
de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
and Conselho Nacional de Desenvolvimento Científico e
Tecnológico (CNPq).

(1985).
4 P. Hill, N. Ali, A. J. A. de Oliveira, W. A. Ortiz, P. C. de Camargo, and
5 A. J. A. de Oliveira, W. A. Ortiz, P. C. de Camargo, and V. Yu. Galkin,
6 A. J. A. de Oliveira, O. F. de Lima, P. C. de Camargo, W. A. Ortiz, and
1439 (1982).
11 V. V. Tugushev, Modulated and Localized Structures of the Spin-Density
Wave in Itinerant Antiferromagnets in Electronic Phase Transitions, ed-
12 A. J. A. de Oliveira, O. F. de Lima, W. A. Ortiz, and P. C. de Camargo,
13 A. J. A. de Oliveira, PhD. thesis, Universidade Federal de São Carlos,
1996.