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Resumo

Sistemas embarcados estdo presentes em toda a parte hoje em dia. Muitos sistemas depen-
dem de algum tipo de dispositivo eletronico programével para operar corretamente. A execugao
correta e esperada desses sistemas depende da implementagdo correta de muitos recursos ne-
cessarios diferentes, cada um dependendo de varios detalhes de implementacdo e proprieda-
des que devem ser tratadas em tempo de projeto. Contudo, lidar com todos os detalhes de
implementagdo nas fases iniciais do projeto ndo € produtivo, e muitas vezes até impossivel.
Para sistemas com reconfiguracdo em tempo de execugao, um tipo de sistema embarcado que
pode se reconfigurar em tempo de execucdo, o projeto € ainda mais desafiador devido ao pro-
cesso de reconfiguracdo, que € outro recurso a ser levado em consideracao.

Até hoje, o projeto de sistemas com reconfiguracao em tempo de execucdo €, na maioria
dos casos, feito por meio de procedimentos ad hoc, sem uma metodologia formal. Comecar
o projeto em um alto nivel de abstragdo, com modelos de aplicagdo e plataforma, e reduzindo
progressivamente a abstragdo, incorporando detalhes de implementagdo aos modelos, € uma
estratégia bem conhecida para lidar com o alto nivel de complexidade no projeto de sistemas
embarcados. Essa estratégia também poderia ser aplicada a sistemas com reconfiguracao em
tempo de execucao.

Como principal contribuicdo, esta tese fornece os primeiros passos para uma metodolo-
gia de projeto formal para sistemas com reconfiguracdo em tempo de execucdo por meio do
desenvolvimento de um sistema de classificacao, na forma de ontologias de dominio, para mo-
delos de aplicagdo e plataforma, bem como um conjunto de regras de mapeamento que mescla
modelos de aplicacdo e plataforma em um modelo virtual de implementacao. Ambas as onto-
logias de aplicacdo e plataforma sdo gerais o suficiente para serem usadas como sistemas de
classificacdo para diversos modelos de computagdo e plataformas comerciais de prateleira, res-
pectivamente. Esta tese também apresenta a modelagem de aplicacdes com reconfiguracdo em

tempo de execucao usando os modelos de computacdo sincrono e scenario-aware dataflow.

Palavras-chave: Modelos de computagdo; reconfiguragdo em tempo de execugao; metodolo-

gia de projeto; sistemas embarcados



Abstract

Embedded systems are ubiquitous in today’s life. Many systems rely on some kind of pro-
grammable electronic device to operate properly. The expected and correct execution of the
system relies on the correct implementation of many different needed features, each one de-
pending on several implementation details and properties that must be dealt with in design time.
However, dealing with all implementation details at the early stages of the design process is not
productive, sometimes not even possible. For runtime reconfigurable systems, a type of embed-
ded system that can reconfigure itself in runtime, the design process is even more challenging
due to the reconfiguration process, which is yet another feature to be taken into consideration.

Up until today, in most cases, the design of runtime reconfigurable systems is done via ad
hoc procedures, lacking a formal methodology. Starting the design in a high level of abstraction,
with application and platform models, and progressively reducing the abstraction by incorpo-
rating implementation details to the models is a well-known strategy to cope with the high level
of complexity in the design of embedded systems. Such a strategy could be also applied to
runtime reconfigurable systems.

As the main contribution, this thesis provides the first steps towards a formal design method-
ology for runtime reconfigurable systems through the development of a classification system,
in the form of domain ontologies, for both application and platform models, as well as a set
of mapping rules that merges application and platform models into a virtual implementation
model. Both application and platform domain ontologies are general enough to be used as clas-
sification systems for many different models of computation (MoCs) and commercial off-the-
shelf platforms, respectively. This thesis also presents the modeling of runtime reconfigurable

applications using the synchronous and scenario-aware dataflow MoCs.

Keywords: Models of computation; runtime reconfiguration; design methodology; embed-

ded systems
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1 INTRODUCTION

Embedded systems are present in all levels of our modern society. From small devices such as
calculators and digital watches to larger ones such as cars, airplanes and power plants. All of
these systems have some sort of embedded digital processing unit in which they rely on.

Although embedded systems exist since the *70s, in most of its history it has been viewed as
small computers with limited processing, small memory and limited power consumption (Lee
and Seshia, 2015). An embedded computational system consists in a set of processors embedded
within a larger system that communicates with the physical environment (Radojevic and Salcic,
2011). Differently from general-purpose computers, embedded systems are normally dedicated
to specific tasks and have a strong coupling between software and hardware. Concurrency
and time-related problems are also characteristics of embedded systems. When an embedded
system needs to respond to events within a well-defined time interval, this embedded system is
said real-time (Furht et al., 1991). Signal control and processing systems fall into this category.

In the design of embedded systems it is often necessary to consider key constraints such as
performance, power consumption and cost. One does not desire to connect a smart watch to a
power supply at every couple of hours, or wait a couple of seconds for it to respond commands.
The same can be said about most of the systems relying on embedded processors.

New approaches for embedded systems design become attractive, such as reconfigurable
systems, by means of reconfigurable devices such as field-programmable gate arrays (FPGAs).
One of the most important benefits of reconfigurable systems is narrowing the gap between
general-purpose processors (GPPs) and application-specific integrated circuits (ASICs) (Chat-
topadhyay, 2013). GPPs are capable to perform many functionalities, but that flexibility comes
at a cost in performance. ASICs have excellent performance but are dedicated to the task it was
designed for. With reconfigurable systems the goal is to extract the best of both concepts: the
flexibility of GPPs with the performance of ASICs, as shown in Figure 1.1.

Reconfigurable platforms contribute to the development of software simultaneously with
hardware in embedded systems design. FPGAs are widely used in the industry as a prototype
platform, in which various design concepts can be explored and tested in early stages of system
development before a final architecture can be achieved. Moreover, with the usage of a recon-
figurable hardware platform, embedded systems manufacturers can keep the system always up
to date by providing software and hardware optimizations, bug fixes, and new added features
throughout updates. This helps to reduce obsolescence, i.e. the property of a system to become

outdated with time.

Ricardo de Souza Bonna
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»
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Figure 1.1. Performance vs. flexibility of GPPs and ASICs. Reconfigurable devices, such as

FPGAs, could narrow the gab between these devices.

The aerospace industry provides good examples on the importance of reduced obsolescence.
In a typical airliner, a computational device, such as the flight management system (FMS) has
the same hardware architecture through the entire life span of the aircraft, which can easily
be more than 30 years. Reconfigurable devices could be used to keep the airplane attractive
to buyers looking for systems with modern features without the need to physically change the
hardware platform.

Within reconfigurable systems lies a class of embedded systems called runtime reconfig-
urable embedded systems. They are computing devices capable of reconfiguring its own hard-
ware in runtime without the need to halt the application running on it. To perform such feature,
the reconfigurable device should be able to change parts of their hardware area without interfer-
ing with the remaining areas. Such a feature is called partial reconfiguration. FPGAs capable
of performing partial reconfiguration have been around for more than a decade, but the concept
of a computing device that can change its hardware configuration in runtime is considerably
older.

In the *60s, Estrin published a work (Estrin, 1960) about a conceptual computer with a
fixed and a variable part. Such computer could have its hardware (the variable part) reconfig-
ured in runtime, and, at the time it was proposed, such property could provide an increase in
performance by several orders of magnitude. However, with the fast evolution of silicon elec-
tronics design following Moore’s law and Dennard scaling, the performance of general purpose
processors increased exponentially, and the concept of a fixed plus variable computer became
irrelevant for performance increase. In the beginning of the 21% century, silicon electronics
development started to experience a slowdown in Moore’s law and a breakdown of Dennard
scaling, as the size of transistors and clock frequency speeds approached physical barriers. So,
the strategy of increasing transistor density and clock frequencies to provide performance in-
crease was not sufficient anymore, and different strategies needed to be explored. Estrin’s fixed
plus variable computer is one of such strategies that could be revisited in order to increase
performance in embedded systems by exploring the flexibility vs performance advantage of

reconfigurable systems shown in Figure 1.1.

Ricardo de Souza Bonna
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Besides an increment in performance, runtime reconfigurable systems could provide an in-
teresting solution for the design of safety-critical systems. An embedded system is considered
safety-critical when it can directly or indirectly contribute to put lives at risk, damage the envi-
ronment, or cause big economical losses (Bozzano and Villafiorita, 2011). According to Bieber
et al. (2012), runtime reconfiguration is still a big challenge for future safety-critical systems,
such as integrated modular avionic systems. In the event of a hardware failure, the system could
be able to reallocate the functionalities from the faulty module into a safe module, thus limiting
the effects and propagation of a hardware failure on aircrafts. It also increases usability, since
the safe module could be used for less critical tasks before being reconfigured to assume more
critical functionalities, thus avoiding the necessity of using spare modules that are only used in
hardware fault.

The literature related to reconfigurable processors is filled with terminologies and keywords
that often make it difficult to distinguish whether a processor is reconfigurable or not. Next,
there are some definitions of key terms from (Chattopadhyay, 2013) and (Loubach, 2016), to

establish a common understanding related to this matter and used along this thesis.

* Programmable device: A device controlled by a high level language which does not in-
volve any hardware’s or device structure’s change. Here, the software has to adapt to
the hardware. Usually, that is the microprocessors class. The property of being pro-

grammable is called programmability.

* Reconfigurable device: A device that can have its hardware changed, i.e. low-level
switches, to perform a different task. Currently, this is performed by technologies such
as modern FPGAs. In this case, the hardware is generally optimzed to run a specific

functionality. The property of being reconfigurable is called reconfigurability.

e Partial reconfiguration: A reconfigurable processor or reconfigurable device supports
partial reconfiguration if it allows its programmable area to be divided into one or more
partitions, and each partition can be reconfigured, i.e. changed, independently from each

other and without stopping the other ones.

* Full reconfiguration: A reconfigurable processor or reconfigurable device supports full
reconfiguration when it considers the whole programmable area as just one reconfigura-
tion block. In this case, the functionality can be changed at the cost of stopping the entire

programmable area.

* Runtime reconfiguration (RTR): Is the possibility to change the functionality, i.e. configu-
ration, of a system in runtime without halting the execution. Although the term is widely
associated with hardware reconfiguration using partial reconfiguration, this thesis extends
the concept to consider RTR in software for programmable devices. The rationale behind
this decision is that, from the application standpoint, it does not matter if the reconfigura-

tion is done in hardware or software, as reconfiguration is represented as a change in the

Ricardo de Souza Bonna
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application’s functionality in the same way for both. This thesis considers two key ways

to perform RTR, enumerated below:

1. Mode reconfiguration: The system, or part of it, is divided into modes with only
one mode active at the same time. In each mode, the system performs different
functionalities, and the mode switching is performed by switches and selects. A
special signal is used to select the mode using switch and select processes. Can be

implemented in both software and hardware.

2. Function reconfiguration: The different functionalities of processes in a function
reconfigurable system are not implemented in the processes at the same time. In-
stead, they are stored in a memory as bitstreams and, when requested, a hardware
reconfiguration is performed in a partition of the reconfigurable area using one of the
functionalities stored in the memory. It can only be implemented in reconfigurable

devices, preferably with support for partial reconfiguration.

The complexity of current embedded systems is considered high, especially when regarding
RTR. In this sense, designing such systems is a considerable challenge. Due to the increasing
popularity of reconfigurable systems and their wide range of applications, it is necessary to
develop a formal methodology for RTR and real-time embedded systems design. In view of this,
a formal methodology that enables the design and guarantees the properties and functionality
desired for such systems is still lacking. Therefore, this PhD research work aims to provide the

first steps towards a formal methodology for RTR embedded systems design.

1.1 Research Objective

The main goal of this doctoral research work is to develop a methodology for runtime recon-
figurable embedded systems design based on the theory of formal models of computation,
aiming the reconfiguration of embedded systems in runtime and minimizing the traditional test-

ing needs.

1.2 Research Overview

According to Edwards et al. (1997), the design of embedded systems should begin at a high level
of abstraction, since it is difficult to capture implementation-level functionality, namely lower

abstraction level, at first. In this case, the process begins with an application model. Thus, the

Ricardo de Souza Bonna
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designer develops a model, written in a formal language, according to the design requirements.
The formal language has formal syntax and semantics, allowing the detection of inconsistencies
or ambiguities already in the application modeling phase. The higher the abstraction level of
the model, the less implementation details this model will have, leading to an abstraction gap
(Sander, 2003) that separates a single application model from all feasible implementations of
such model. Higher abstraction gaps leads to a higher number of feasible implementations, also
called design space. The application model is then combined with a platform model to produce
a correct and feasible virtual implementation model, a high-level model representing not only
application and platform, but also where each element from the application is implemented into
the platform.

The combination between application and platform models is performed by following a
number of defined mapping rules, i.e. a set of directives and constraints that specify where each
element of the application must be implemented in a given platform. Such mapping rules are
defined on top of a classification system, presented as a pair of domain ontologies, one for the
application and another one for the platform model. Thus, this can classify elements of each of
these models based on their common properties and definitions. Both platform and application
models must comply with the classification system so that the mapping rules can be applied to
combine them into a feasible virtual implementation model.

To illustrate such design process proposal overview, Figure 1.2 shows a design flow for RTR
systems represented as a Petri-Net!. The blue circles represent places which are pools of to-
kens representing elementary products, and the gray squares stand for transformations between
tokens. The main idea is to have an output virtual implementation model as a result of formally
defined mapping rules applied to an application model and a platform model complying with
application and platform ontologies.

For a design flow proof of concept, the application model is defined using both the syn-
chronous (SY) model of computation (MoC) and the scenario-aware dataflow (SADF) MoC.
Selecting between one of these two MoCs depends on the kind of system being modeled. For
real-time applications, the synchronous MoC is a good choice due to the timed characteristics
of such MoC. SADF is better suited for streaming applications, although it can also be used for
real-time applications, but it requires special concern when dealing with time due to the fact
that it is an untimed MoC. It is important to point out that this design flow does not limit the
application model to either the synchronous or SADF MoCs. Other models of computation can
also be used in the proposed design flow, provided they comply with the application domain

ontology.

IPetri-Net is a model of computation best suited for modeling processes in which products, represented as
tokens, are consumed to generate other kinds of products. Places represent a pool of products of a given type,
and transitions represents transformations of products. This model of computation is used in this thesis only for
modeling the overview of the design flow, and no further knowledge about it is required.
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Figure 1.2. Petri-Net diagram representing the proposed design flow. Transitions are repre-

sented by gray squares, places are represented by blue circles and tokens are repre-

sented by bullets e.

1.2.1 Research Originality

This research work’s originality is concentrated on:

1. the development of a classification system for both platform and application models;

2. the synchronous and scenario-aware dataflow model of computation (MoC) extension to

support runtime reconfiguration; and

3. the mapping rules development enabling the merge of the application and platform models

into a single virtual implementation model in a systematic way.

1.2.2 Research Challenges

The main contribution of this research work is to provide a step towards the runtime reconfig-
urable embedded systems design automation supported by a rigorous formal basis. To achieve
this, some challenges had to be overcome.

Regarding the application model, the synchronous MoC does not specify a process to rep-
resent reconfigurable devices, yet, it is general enough to allow for the definition of one. The

definition of a reconfigurable process, using the synchronous MoC semantics, that includes
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properties such as reconfiguration memory and reconfiguration time, is one of the challenges of
this thesis. The SADF MoC, on the other hand, does specify a process that represents reconfig-
urable devices. Unfortunately, SADF is only represented in terms of its extra functional prop-
erties as either structural or performance models, lacking a functional representation. Defining
a functional semantics for SADF is another one of this thesis’ challenges.

Besides the application model, a platform model must also be provided as an input to the
proposed design flow. This research work provides a possible platform model for runtime recon-
figurable embedded systems that is general enough to represent most commercial off-the-shelf
(COTS) reconfigurable devices.

The last challenge considered here concerns the definition of a minimum set of mapping
rules to combine the application and platform models without necessarily forcing the developer
to use application and platform models presented in this thesis. To overcome this challenge, the
development of a classification system is necessary to abstract away specific semantics from the
MoCs chosen for the application model (synchronous and SADF) as well as specific functional
blocks from the platform model provided in this thesis, so that mapping rules can be build on
top of such classification system, allowing any other MoC or platform model, complying with

the classification system, to use the same set of mapping rules.

1.3 Related Work

This section presents related works on the three pillars of this PhD thesis: models in system
design, design of runtime reconfigurable (RTR) systems and functional languages for system

design.

1.3.1 Models in System Design

Modeling is probably the most important tool in any engineering discipline. Models are used to
describe engineering artifacts, to validate and test them. In the development of cyber-physical
systems, a combination of computers and physical systems, models of computation are exten-
sively used along with models of physical phenomena. Lee (2015) argues, however, that such
models do not combine well in terms of determinism. The notion of time is very different
between computers and physical systems. For a computer, time is dictated by discrete clock
pulses, and computer tasks are often subjected to race conditions which may lead to different

execution orders for the same processes. For physical systems, however, time is continuous
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and there is always a global order of events in the system. As a consequence, Lee argues that
cyber-physical systems comprise a new engineering discipline which demands new models and
methods.

Following the same line of thought, Tripakis (2016) discusses the different disciplines that
together may form a science of systems design. According to him, system design, like any other
design activity, is partly an art. Among the disciplines mentioned, modeling is a significant
challenge when it comes to selecting the right modeling language, i.e. the best way to describe
cyber-physical systems. He states that modeling languages must be executable, which means,
at minimum, allowing simulation. Also, a key principle in system design is compositionality,
in which complex systems are composed of smaller and more simple systems connected with
each other following a semantics of composition.

Teich (2012) states the importance of starting system design with a functional and exe-
cutable system specification, which brings benefits to the software development process by act-
ing as a golden reference for the test environment. It also states the importance of formal models
of computation which can be used to prove important system properties such as boundedness,
timing and cost.

Sifakis (2015) presents a survey on system design automation. He presents the key aspects
of the success of electronic design automation in the circuit industry, among them building
faithful system models, and to what extent these aspects could be transposed to general system
design. He also presents the challenges and limitations that need to be overcome in order to

achieve system design automation.

1.3.2 Design of RTR Systems

Nguyen et al. (2019) quantify the benefits of runtime reconfiguration for two embedded vision
applications. Both applications are composed of many different tasks, however all tasks are not
required at the same time. The strategy used was to map only the tasks needed at a given time to
a smaller FPGA area, instead of mapping all tasks statically to a large FPGA area. Such strategy
reduced resource utilization up to 3.2 times, device cost up to 10 times and power consumption
up to 30%. This work evidences the great benefit of using runtime reconfiguration for large
applications composed of many tasks that can be scheduled over time, allowing them to be
deployed in smaller FPGA areas, thus reducing cost and power consumption.

Implementing runtime reconfigurable systems in an FPGA with dynamic partial reconfig-
uration requires floorplanning, the task which defines a region of the reconfigurable area for
each functional block in the system. Sadeghi et al. (2020) proposed a method for simultaneous
floorplanning and placement for runtime reconfigurable systems using genetic algorithm. The

application of the proposed method resulted in improvements in both wirelength and critical
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path delay over Xilinx’s early access partial reconfiguration design flow with a small increment
in used area and runtime.

Still on the subject of floorplanning, Dorflinger et al. (2017) proposes an algorithm for
assigning reconfigurable modules to reconfigurable regions at runtime. Three approaches were
proposed: fixed uniform reconfigurable region size, fixed non-uniform reconfigurable region
size and adaptive reconfigurable region size.

Runtime reconfiguration is an interesting strategy to increase fault tolerance in cyber-physical
systems. Thomas et al. (2015) presents a flight control system for multirotor unmanned aerial
vehicles that can reconfigure itself in runtime in case of a motor failure. The idea is simple: if a
motor in the multirotor presents malfunction, the system can automatically switch to a configu-
ration in which such motor is not used. Experiments were performed comparing three designs:
mode reconfiguration, function reconfiguration and function reconfiguration with PID control
to simulate a practical application. Although function reconfiguration provided a better resource
usage, the impact of the switching process was clearly observed, as it was considerably slower

than mode reconfiguration in the design with the PID control.

1.3.3 Functional Languages for System Design

The functional programming paradigm is showing to be a powerful tool for embedded systems
design due to its declarative nature. Applications can be modeled and simulated using mod-
els of computation, and platforms can be designed using functional languages as a hardware
description language (HDL).

Formal System Design (ForSyDe) is an example of functional languages used for modeling
and simulation. It is a framework for modeling applications using formal models of compu-
tation created by Sander (2003). It is implemented as an embedded domain specific language
(EDSL) in Haskell and utilizes the concept of process constructors, higher-order functions that
outputs processes, as the means to implement specific MoC semantics. It supports several mod-
els of computation including the synchronous, Synchronous Dataflow (SDF), and now, as a
contribution of this PhD thesis, scenario-aware dataflow (SADF) MoCs (Bonna et al., 2019b).
ForSyDe has a spin-off denoted ForSyDe-Atom (Ungureanu et al., 2021), also implemented as
a EDSL in Haskell, that utilizes a different approach for implementing MoC semantics and a
layered system that explores orthogonalization of concerns.

Regarding functional languages used as HDL, Baaij et al. (2010) developed a language,
named CAaSH, for describing synchronous hardware using the syntax and semantics of Haskell.
The language has a prototype compiler that translates descriptions written in CAaSH to synthe-
sizable VHDL. Similarly, Aronsson and Sheeran (2017) developed a library for programming
FPGAs using Haskell. Such library supports hardware software co-design, and the same Haskell
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code generates the software, in C, the hardware, in VHDL, and the code to support communica-
tion between software and hardware. The usage of the library is demonstrated in a cryptographic

example.

1.4 Document Structure

This document is structured as follows: Chapter 2 presents a theoretical background on the
concepts used along with the research; Chapter 3 introduces the application domain ontology as
well as the application model using both the synchronous and scenario-aware dataflow models
of computation; Chapter 4 brings the platform domain ontology, as well as a platform model
general enough to represent most COTS reconfigurable devices; Chapter 5 presents the mapping
rules used to combine both application and platform models; and Chapter 6 holds the conclusion

of this research work, as well as possible future research.
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2 THEORETICAL BACKGROUND

This chapter presents the theoretical background used throughout the thesis. First, a preliminary
section containing the common notation is presented, followed by an introduction on Models
of Computation (MoCs) with the tagged signal model. Then, a theoretical overview on Syn-
chronous (SY), Synchronous Dataflow (SDF) and Scenario-Aware Dataflow (SADF), the three
MoCs used in this thesis, is presented with comprehensive examples. Finally, a brief introduc-
tion on ForSyDe and Haskell, the MoC framework used to implement the models in this thesis,

is given.

2.1 Common Notation

This section introduces the notations adopted in this thesis.

¢ Sets of numbers:

— Natural numbers: Represented by N including 0, and N excluding 0;
— Integers: Represented by Z;

— Real numbers: Represented by RR.
e Matrices, vectors and scalars:

— Matrices: Represented by bold capital letters, e.g. A;
— Vectors: Represented by bold lowercase letters, e.g. a;

— Scalars: Represented by math style lowercase letters, e.g. a.

The finite sets of input and output ports of a process p are denoted by Z,, and O, respec-
tively, and define Z and O to be the union of all input and output ports of all processes in a

model.
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2.2 Models of Computation (MoC)

In systems design, the most powerful tools available for a designer are models. For embedded
systems design, it is no different. Designing such systems comprises understanding the physical
world, since most embedded systems interact with the physical world as part of cyber-physical
systems (CPS), as well as computational systems. Models of computation provides a way to
design embedded systems as a composition of sequential and concurrent processes, with well
defined semantics, so that models can be executed (i.e. simulated) and analysis techniques can
be used to verify relevant properties.

Models of computation are a collection of rules describing what constitutes processes, how
processes communicate with each other, and the execution and concurrency mechanisms (Ptole-
maeus, 2014). To the present days, there is no better way to describe and classify certain models

of computation than using the tagged signal model.

2.2.1 Tagged Signal Model

The tagged signal model is a denotational framework for comparing different models of com-
putation introduced by Lee and Sangiovanni-Vincentelli (1998). In such framework, signals are
defined as a set of events as in (2.1), while events are elementary unities of information com-
posed by a tag, belonging to the set of tags T, and a value, belonging to the set of values V as
in (2.2). The set of signals S of a model is the powerset of T x V (2.3). A signal, whose values
belong to a set V, C V is represented by (2.4) (called signal of V). For simplicity, (2.5) is used
to represent the value v, € V associated with the tag k € T in signal o € §.

o ={eper,...} €S @2.1)

ei = (ti,vi) €T xV (2.2)
S=P(TxV) 2.3)
S(Vo)=TxVyCS (2.4)
ol]=w eV, keT 2.5)

The purpose of the tag is to introduce order between events. When it is possible to order
every event of a model according to its tags, i.e. T is a totally ordered set, then the model
belongs to the class of timed MoCs. In such class, the tags also introduce a notion of time
instants, and sometimes are referred as time stamps. The synchronous (SY), the continuous

time and the discrete time MoCs are examples of timed MoCs. On the other hand, if it is not
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possible to establish an order for all events in a model, i.e. T is a partially ordered set, then the
model belongs to the class of untimed MoCs. Dataflows are examples of untimed MoCs since
it is only possible to order events in the same signal, but not on different signals.

In the tagged signal model, a process P is defined as a subset of SV, for some N € N defining
the number of inputs and outputs. A particular & € SV satisfies a process P when ¢ € P. In
this case, such o is called a behavior of the process. For N > 2, the process may be viewed as
a relation between the N signals of 6. A set of inputs to P is an externally imposed constraint
A C SN such that AN P is the set of acceptable behaviors. A process is determinate if, for any
set of input signals A, it has exactly one behavior or no behavior, i.e. |[ANP|=1or [ANP| =0,
and a process is functional if there is a single-valued mapping F : §" — S", with m being the
number of inputs and n being the number of outputs (m +n = N), dictating the behavior of the

process. If a model is composed by only functional processes, then the model is functional.

2.3 Synchronous (SY) MoC

In the tagged signal model, the Synchronous MoC belongs to the class of timed MoCs. Before
formally defining the synchronous model, it is important to formally define what synchronous

means in the tagged signal model.

Definition 2.1 (Synchronous). Two events are synchronous if they have the same tag. Two
signals are synchronous if, for every event in one signal, there is a synchronous event in the
other signal and vice versa. A process is synchronous when all signals in any behavior of the
process are synchronous between themselves. A model is synchronous when it is a composition

of synchronous processes.

As a consequence of Definition 2.1, for every two events in a synchronous model, they either
have the same tag, or one unambiguously precedes the other. This concept of order between
events gives the synchronous model tag system a notion of time. In fact, the synchronous MoC
is the most elementary timed MoC there is. Discrete and continuous time models are nothing
but synchronous models with respectively discrete and continuous sets of tags!. This thesis
considers only discrete time synchronous models, which are more appropriate for modeling
computational systems, as part of the research scope.

The SY MoC relies on the perfect synchrony hypothesis, which states that neither commu-
nication nor computation consumes time. Although such hypothesis is technically unfeasible in

real systems, SY MoC is very useful for modeling logically timed circuits, where time proceeds

' This notion is not common sense in the literature. Some authors do not consider continuous time models to be
a type of synchronous MoCs.
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as a sequence of discrete steps called “ticks”, provided that the tick intervals are long enough
so that all computation can be performed between two sequential ticks.

Another important property of the synchronous MoC is that the absence of an event is well
defined. In fact, the absence of an event is defined as an event with a special value L €V, called

“bottom”. The example 2.1 illustrates how a synchronous process works.

Example 2.1

Consider the synchronous process P C S°, shown in Figure 2.1, that represents a two

o1

o3
o2 P
R

Figure 2.1. Process P with two inputs and one output.

input adder.

The process P adds the values of every synchronous event between o] and G;. As a

functional process, its behavior is dictated by the function

(o] [k] if (6] [k]

=1
o3[k] = { oy [k] if o1[k] = L
o1 (k] + o2[k] otherwise

with o;[k] being the value from signal o; associated with tag k. P is also determinate

because for any input signals o7 and 6, there in only one possible 03.

2.3.1 Feedback Loops and Causality

Feedbacks are elementary compositions of processes that connect one or several outputs of a
process or a composition of processes to one or several inputs of itself. Due to the fact that
computation and communication take no time in synchronous models, causality issues may
arise when dealing with feedback loops with zero-delays. The output of a process with a time
stamp (tag) k depends on itself in the same time stamp, resulting in an algebraic loop that may
or may not have a single solution. Figure 2.2 shows two synchronous processes with feedback
connections.

Consider the model shown in Figure 2.2a. The process is an adder, similar to the one in

Example 2.1. In this model, the relation between o] and o, is given by (2.6). As one can
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(9] 03
— 5 (o2} —> Oy
+ -

(a) Algebraic loop without single solution. (b) Algebraic loop with single solution.

Figure 2.2. Synchronous models with zero-delay feedback loops.

notice, the output signal o, at an instant k is a function of itself at the same time instant. This
configures an algebraic loop that may lead to multiple behaviors. In this particular case, the
model admits many possible behaviors given by oy [k] =0, 02[k| = a,Vk € T,a € V. Since oy is

an external input, it is not possible to constrain it to O forall k € T

o, [k] = o1]k] + 02 [K] (2.6)

Consider now the model shown in Figure 2.2b, in which the process subtracts the input
events instead of adding them. The relation between 03 and 04 is given by (2.7). In this model,
the output signal 04 at an instant k is also a function of itself at the same time instant, however
the resulting algebraic loop admits a single solution that defines the behavior o4[k] = o3[k /2,
VkeT.

Oy [k] = 03 [k] — 04 [K] (2.7)

As shown in the previous examples, zero-delay feedback loops can lead to multiple behav-
iors. For functional processes, the existence of a single solution for the algebraic loop may
depend on the function associated with the processes composing the model. One conservative
approach to deal with feedback loops and guarantee a single behavior to any feedback compo-
sition of processes is to insert a delay process to all feedback channels. Such delay process is

defined as follows:

Os _1 6 0 = delay(a, Os)
%
a ifk=0 (2.8)
. O [K] =
Figure 2.3. Synchronous delay process. oslk—1] otherwise

One important remark when using this approach is that the delay process added to feedback
channels affects the behavior of the composed process, even when such composed process
admits a single behavior, i.e. has a single solution to the resulting algebraic loop. Take the model
of Figure 2.2b for instance, the behavior described by (2.7) is completely changed to o4lk] =
03[k] — 04k — 1] when a delay is added to the feedback channel. In other words, by simply
adding a delay in a feedback channel in order to avoid algebraic loops, one can lead to undesired

behavior. Therefore, the delay must be taken into account when designing a composition of
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processes with feedback loops.

One common use of delayed feedback channels in synchronous models is to store data
between different time instants, simulating a memory. Example 2.2 shows a synchronous model
of a Tustin integrator in which a feedback loop with a delay is used to store the previous output

of the integrator.

Example 2.2

The figure below represents a synchronous model of a Tustin (trapezoidal) integrator.

Oin

Oout

Figure 2.4. Synchronous model of a Tustin integrator.

The behavior of the model is represented by the equation below with 7' the sampling
period, provided that the initial condition of the first delay equals —o;,[0], and the initial
condition of the second delay (in the feedback loop) equals o,

oo when k=0

Cour[k— 1]+ %(Gin [k] + ojn[k—1])  otherwise

2.4 Synchronous Dataflow (SDF) MoC

Synchronous dataflow belongs to the family of untimed models of computation named Dataflow.
Dataflows are directed graphs where each node represents a process, called an actor, and each
arc represents a signal path behaving as a first-in first-out (FIFO) channel. Each actor, when
activated, i.e. fired, consumes a certain amount of tokens, elementary unities of information,
from its input ports and generates a certain amount of tokens for its output ports. Each input and
output ports have a positive integer associated with the number of tokens consumed by the input
ports and produced by the output ports, also called token rates. An actor can only fire if input
signal paths have enough tokens to supply the amount needed by the input ports of the actor,

meaning that no signal path can have a negative amount of tokens. In general Dataflow models,
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such as Dynamic Dataflows, the number of tokens consumed/generated by each actor port may
not be constant, however, in SDF, this number is constant and defined beforehand. The fact that
an SDF actor always consumes and generates the same amount of tokens allows efficient solu-
tions to problems like finding a static schedule for single and multi-processor implementations
and buffer size.

The formal definition of an SDF model is as follows.

Definition 2.2 (SDF model). An SDF model is a 3-tuple (P, S, §,) where:

e P is a non-empty finite set of actors. Each actor p; € P has a set of input ports Z; C Z
and output ports O; C O and each element of Z; and O; is associated with a fixed natural

number representing the token consumption/generation rate;

* Sis a finite set of signals. Each signal o; € S is defined by the 2-tuple (u;,v;), withu; € O
and v; € Z. Signals store elementary units of information called fokens and behave like
first-in first-out (FIFO) channels; and

« L, N withm=|S

stored in each signal o;.

, 1S the initial state of the model, i.e. the initial number of tokens

2.4.1 SDF Properties

Many different properties can be derived from SDF models. Among them, the most important
one is called consistency, and it serves as a necessary condition to many other properties such
as absence of deadlocks and buffer boundness. This section presents the concept of consistency
in an SDF model, and its relation to the existence of a schedule for the model.

An SDF model can be characterized by a matrix in a similar fashion to the incidence matrix
associated with directed graphs in graph theory Lee and Messerschmitt (1987b). The procedure
to construct this incidence matrix, called fopology matrix, starts by enumerating each node
(actor) and each arc (signal) and assigning a column to each actor and a row to each signal. The
element I'; ; of the topology matrix I" denotes the number of tokens produced by the actor j for
the signal i whenever fired (token rate). If the actor j consumes tokens from i, the number is
negative. If the actor j has no connection to signal 7, then the number is zero. If a signal connects
an actor to itself, i.e., a self-loop connection, only one entry in I', given by the difference
between produced and consumed tokens, describes this link.

Consider an SDF model with m signals and n actors characterized by the topology matrix
I' € Z"™*". Consider also that only one actor may fire at a time instant, and time instants are

represented by natural numbers. At an instant k the actor number / (with enough input tokens)
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fires, and this firing is represented by the vector v(k) = [v1,...,v,]7, with v; = 0, Vi # [ and
vi=1.
The state of the model, i.e. the number of tokens of each signal, before actor number !/ fires
(at instant k — 1) is given by §(k— 1) € N". Knowing v(k) and §(k — 1), the state of the model
at instant k is, then, given by
(k) =E(k—1)+Tv(k) (2.9)

A general solution to (2.9) can be found recursively, knowing the initial state §,,. Such

solution is given by
§(k) =&y +Tq(k) (2.10)

where q(k) € N" is the total firing vector, defined as the number of times each actor fired until

instant k, given by
q(k) =} v(i) (2.11)

As actors are fired in an SDF model, i.e. as k increases, so do the elements of the total
firing vector q(k), making them unbounded as k — oo. Is it possible for the actors to keep firing
indefinitely while the number of tokens in signal channels remains bounded? The answer to this

question relies on an important property called consistency, defined below.

Definition 2.3 (SDF consistency). A connected SDF model is consistent if there exists a se-
quence of actor firings q such that all actors fire at least once and the number of produced

tokens is equal to the number of consumed tokens, i.e. if there exists some q € N’ such that
I'q=0

with I € Z™*" the topology matrix of the SDF model. In other words, if there exists some
q € N N N(I), with A/(T) the null space of T.

Consider a vector q(k), representing a sequence of k actor firings satisfying the condition
presented on Definition 2.3, i.e. q(k) € N*. N A/(T). Consider also that such sequence is re-
peated o times. Then, from (2.10), the final state §(ock) is given by

§(ak) =y +Taq(k)
=y +alq(k)
=&

For an o arbitrarily big, the state §(ak) will always return to the initial condition &,. This
is an important result since it proves that the number of tokens in the signals remains bounded,
provided the SDF model is consistent and the actors are fired in a cyclic way such that, for every

cycle, each actor is fired a certain number of times defined by its equivalent element in the vector
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q, called repetition vector. Moreover, consistency is also a necessary condition for the existence
of a Periodic Admissible Sequential Schedule (PASS), which is defined as a sequence of actor
firings (schedule) that, when executed periodically, the SDF model will never deadlock, and the
signals will remain with a bounded number of tokens.

It would be extremely valuable if a simple method to check if a given SDF model is consis-
tent or not existed. Fortunately, such method exists at the form of Theorem 2.1, which provides

a necessary and sufficient condition for consistency in an SDF model.

Theorem 2.1 (SDF consistency condition (Lee and Messerschmitt, 1987a)). A connected SDF

ZM*" s consistent

model with n actors and m signals, characterized by the topology matrix I" €
if, and only if

rank(T') =n—1

With Theorem 2.1, consistency and, consequently, the existence of a repetition vector q €
N NN(T') are provable throughout a simple rank operation. Note, however, that for any
consistent SDF model, there are an infinite number of vectors that are candidates to be used
as a repetition vector. This is due to the fact that, for any repetition vector candidate q, aq,
with a € N, is also a repetition vector candidate. Gaussian elimination can be used to find a
repetition vector candidate and, by dividing all of its terms by their greatest common divisor,
the minimum repetition vector can be found. The PASS requiring the smallest buffer size for
the signals in the model is found considering the minimum repetition vector.

This section presented the property of consistency, and its importance for SDF models. A
summary of how consistency is related to other important properties in SDF models is shown

next:

» Consistency is a necessary condition for signal buffer boundness;

Consistency is a necessary condition for the existence of a PASS;

» Consistency is a necessary and sufficient condition for the existence of a repetition vector;

and

The minimum repetition vector defines the PASS that requires the minimum signal buffer

size.

Automated tools, such as SDF? (Stuijk et al., 2006), are useful to verify consistency and
other related properties of SDF models.
Example 2.3 shows the concepts presented in this section applied to a small scale SDF

model.
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Example 2.3

Consider the SDF graph given by Figure 2.5. The numbers next to the input and output

ports are the token rates of the ports.

T

Figure 2.5. SDF model adapted from Ptolemaeus (2014).

Considering that the first column of I' represents the actor A, followed by actors B and
C in the second and third columns, and the first row represents signal o7, followed by

signals 0, and o3 in the second and third rows, the topology matrix I' is, then, given by

I -1 O
r=1(2 0 -1
0 2 -1

Assume zero initial state (§, = 0) and an arbitrary firing schedule given by
(A,A,A,AB,B,C) (fire four times A, followed by two times B and one time C). Also
assume that only one actor can fire at a time, meaning that the firing of actor C is going
to occur at the instant k = 7. The total firing vector q, for k = 7, is q(7) = [4,2,1]7. The
state of the model after the firing of C is given by

§(7) =& +Tq(7)

The SDF model is consistent since rank(I’) = 2 and its minimum repetition vector is
q = [1,1,2]7. Therefore, a periodic sequence schedule for the model consists in firing A
and B once, and C twice every execution cycle. Note that the only possible schedule that
is deadlock free is (A,B,C,C).

2.5 Scenario-Aware Dataflow (SADF) MoC

As a general rule, the more expressive a model of computation is, the less analyzable it becomes

Stuijk et al. (2011). Expressing dynamic behavior using SDF is impossible for most applica-
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tions due to the restrictions imposed to the SDF MoC, i.e. fixed token rates. However, such
restrictions ensure that a number of properties can be verified through analysis tools. Many
extensions of SDF were proposed in order to increase expressiveness while trying to maintain
it analyzable to properties such as consistency and absence of deadlocks. The scenario-aware
dataflow (SADF) MoC is one of such extensions. This model of computation was firstly pre-
sented by Theelen et al. (2006) with the novelty of possessing two kinds of actors, kernels and
detectors, and a finite state machine like behavior in which on each state the model operates as
an SDF submodel.
An SADF model is defined as follows:

Definition 2.4 (SADF model (Theelen et al., 2006)). An SADF model is described by a 4-tuple
(K,D,S,§,) where:

¢ IC is the finite set of kernels;
* D is the finite set of detectors;

e §=85,US, is a set of signals (FIFO channels) with S, the set of data channels and S, the
set of control channels; and

. C 0 € NIS! is the initial state of the model, i.e. number of tokens in each channel.

A kernel (Figure 2.6a) is a reconfigurable actor whose behavior is defined by a kernel sce-
nario. It has multiple data input and output ports and a single control input port, denoted by 6.
The token consumption rate of the control port is always one, while the token consumption and
production rates of the data ports are defined by the current kernel scenario. Each kernel k € IC
has its own set of kernel scenarios ¥, and the union of all kernel scenarios in an SADF model
is denoted by .

A detector (Figure 2.6b) is an actor that represents the control part of the SADF model. It
has multiple data input ports, with fixed token consumption rates, and multiple control outputs
with variable token production rates. Its behavior is dictated by a finite-state machine (FSM),
and every time it fires, a transition of state is performed and the new state defines the scenario
the SADF model will operate. To differentiate between the kernel scenario, which defines
the behavior of a kernel, the concept of scenario referred here is going to be called detector
scenario. Each detector scenario, represented by @, can be seen as both an SDF subgraph and as
a set of control tokens outputted by the detector. Any detector d € D has a finite set of detector

scenarios @, and the set of all detector scenarios in an SADF model is denoted by ®.
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(a) Kernel with m inputs and » outputs. (b) Detector with m inputs and n outputs.

Figure 2.6. SADF actor types.

2.5.1 SADF Properties

As mentioned before, SADF was developed to preserve some SDF analysis techniques to verify
important properties. In previous sections, it was introduced the concepts of repetition vector
and consistency for SDF, and how they are connected to other important properties. SADF
possesses similar concepts, however, for SADF, the repetition vector is not constant, and con-
sistency is not a unique property, but a family of properties. This section presents the SADF
concepts of repetition vector and strong consistency, one of the forms of consistency for SADF
models.

The definition of a repetition vector for SADF is dependent on the concept of scenario

synchronous, defined below.

Definition 2.5 (Scenario Synchronous (Theelen et al., 2006)). A detector and all kernels con-
nected to it via control signals operate in the same detector scenario. They are said to be mutu-

ally scenario synchronous.

The concept of repetition vector here is similar to SDF, in which each element ¢; is the num-
ber of times the actor i must be fired within an evaluation cycle, so that all tokens produced can
be consumed. However, differently from SDF, the repetition vector for SADF is not constant,
but a function of the detector scenarios of the model. A definition of repetition vector for SADF

is provided next.

Definition 2.6 (Repetition Vector (Theelen et al., 2006)). A repetition vector for an SADF
model (IC, D, S, &) is a function q : KUD x ® — N that assigns to all processes p1,p2 € CUD
and all their detector scenarios, an element of N such that if output port o € O, is connected to

input or control port i € Zp, U 6p,:

* if p; and p; are scenario synchronous, then p(o,9)q(p1,¢) = c(i,9)q(p2, ), for all ¢ €
D;

* if p; and p, are not scenario synchronous, then p(o,¢1)q(p1,¢1) = c(i,$2)q(p2, ¢2), for
all ¢;, ¢, € ®.
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with p(0,¢) the token production rate of output port o and c(i, ¢) the token consumption rate
of input port 7, operating in detector scenario ¢.
The repetition vector q is said to be non-trivial if q(p,¢) >0 forallp € LUD and ¢ € .

Consistency is also an important property for SADF models. However, differently from
SDF, there is no unique notion of consistency for SADF. Next is the definition of strong consis-

tency, one of such notions of consistency for SADF.

Definition 2.7 (Strong Consistency (Theelen et al., 2006)). An SADF model is strongly con-
sistent if, and only if, it has a non-trivial repetition vector q such that for each detector d € D,
q(d,¢) = 1 for all detector scenarios ¢ € ®,. For a strongly consistent SADF, there is a unique
minimum non-trivial repetition vector, which is designated as the repetition vector of the SADF
model.

Weaker forms of consistency can be defined. What makes strong consistency special, how-
ever, is the fact that it avoids an undesired situation in which some detector d may fire more than
once for a given scenario. Such situation is undesired due to the fact that every time d fires, it
performs an state transition to a new state, and consequently, a new scenario, which may cause
tokens to be consumed in a scenario different from the one that generated them.

Properties such as boundedness and absence of deadlocks can be verified for strongly con-
sistent SADF models. Similar to SDF, this SADF background section will be limited to the
strong consistency property. For more information regarding boundedness, absence of dead-

locks and several other properties, refer to (Theelen et al., 2006).

2.6 Formal System Design (ForSyDe) and Haskell

Formal System Design (ForSyDe) is a philosophy for system design that aims to push design
to a higher level of abstraction by combining functional programming with models of compu-
tation Sander et al. (2017). It is implemented as an embedded domain-specific language in the
functional programming language Haskell. Several models of computation are implemented
within ForSyDe, including the synchronous and SDF models. The ForSyDe Haskell library can
be found in ForSyDe (2018).

In ForSyDe, a system is modeled as a network of concurrent processes communicating with
each other through signals, where each signal has only one process writing on it. It uses the
concept of process constructors, higher-order functions that have several arguments including
functions and values and generate processes of an specific MoC.

The basic data structure used in ForSyDe is a signal, which is defined analogous to a list,
where each element represents a value and its position represents its tag. In ForSyDe, a signal
of data type a is defined as
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data Signal a = NullS | a :- Signal a

Any signal of type a can be either empty (NullS) or a value of type a appended (:-) with
another signal of type a. The notation & (a), introduced in (2.4), will be used to represent the
Haskell Signal a data type as mathematical notation.

2.6.1 ForSyDe Synchronous Library

The ForSyDe synchronous library has several pre-defined process constructors that are used to

model synchronous processes. Some of these process constructors are presented as follows.

combmSY

The combmSY process constructor is used to build synchronous processes with m € {1,2,3,4}
inputs and one output. When m = 1, the number is omitted from the name of the process
constructor. Considering m = 2 as an example, comb2SY takes a function f :a X b — c and
returns a process of type S(a) x S(b) — S(c). Its type signature in Haskell is defined as
follows.

comb2SY :: (a -> b -> ¢) -> Signal a -> Signal b -> Signal c¢

Process constructors combSY, comb3SY and comb4SY have equivalent implementation, but for

1, 3 and 4 inputs respectively.

unzipnSY

The unzipnSY process is used to split a signal composed of n different values into n signals,
withn € {2,3,4,5,6}. When n = 2, the number is omitted from the name, resulting in unzipSY.
Considering n = 3 as an example, the process unzip3SY takes as input a composed signal
S (ax b x c) and outputs three signals S (a), S (b) and S (c). Its type signature in Haskell is
defined as follows.

unzip3SY :: Signal (a, b, c) -> (Signal a, Signal b, Signal c)

Combined with combmSY, the unzipnSY process is useful to define synchronous processes

with m inputs and n outputs.

delaySY

The delaySY process constructor is used to build delay process (z~!). It takes a value v € a and
a signal s € S (a) and returns a signal of type S (a) given by v: -s. Its type signature in Haskell
is defined as follows.
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delaySY :: a -> Signal a -> Signal a

2.6.2 ForSyDe SDF Library

Just as the synchronous library, the ForSyDe SDF library has several process constructors that
can be used to implement most SDF based models. In total, there are 16 process constructors
in the form of actormnSDF, with m,n € {1,2,3,4}, and a delaySDF with the same implemen-
tation as delaySY that is useful to define initial tokens to signals.

Taking as an example the process constructor actor11SDF, it takes two integer numbers
¢ and p (token consumption and production rates respectively) and a function f : a° — b” and

returns an SDF process of type S (a) — & (b). Its type signature in Haskell is defined as follows.

actor11SDF :: Int -> Int -> ([a] -> [b]) -> Signal a -> Signal b

Note that differently from the functions passed as arguments for the synchronous process con-
structors, the functions used as behaviors for SDF processes are of type [a] -> [b], repre-
senting a mathematical function of type a“ — b, since it consumes ¢ elements from the input
port and produces p elements in the output port every time it is fired.

For multiple inputs and outputs, the first two arguments of the process constructor becomes
tuples of integers. As an example, the type signature of process constructors actor22SDF, in
Haskell, is defined as follows.

actor22SDF :: (Int, Int) -> (Int, Int) —> ([a]l] -> [b] -> ([c], [d1))

-> Signal a -> Signal b -> (Signal c, Signal d)
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3 APPLICATION MODEL

The application model captures functional requirements for the desired system. The designer
describes the needed system behavior as a network of concurrent processes communicating
through signals on a MoC-based framework. This given framework provides extensions that
describe reconfiguration in an abstract way, thus hiding specific details about the implementa-
tion technology from the designer’s perspective. In this way, one can focus on developing a
functional executable specification without restrictions imposed by the available technology.
This chapter also presents an application domain ontology, i.e. a classification system that
provides relations between different application model elements, and the application semantics,
in which Synchronous and the scenario-aware dataflow MoCs are used to provide the execution

constraints for the application model.

3.1 Application Domain Ontology

The design flow proposed in this thesis considers two branches as starting points, as shown in
Figure 1.2, one for the platform and one for the application. The branches are connected with
each other via mapping rules. This section presents a classification system, derived from a do-
main ontology, for the application branch that serves as a meta-model in which different runtime
reconfigurable embedded systems can be built on top of it. The mapping rules defined in Chap-
ter 5 consider, as entry point, application models that are in accordance with the classification
system presented here.

To define such classification system, it is necessary to identify the basic entities that compose
a runtime reconfigurable application and explore the common properties of these entities by
grouping them into classes. As a first classification level, each entity from an application model
is classified as either a value, representing a unity of information, a procedure, representing a
process that transforms values, or a path, representing a unidirectional communication path that
allows procedures to exchange values. This first subdivision level allows the representation of
application models as directed graphs in which nodes represent procedures, and arcs represent
paths.

Procedures, paths and values are further divided into subclasses for better representation of

runtime reconfigurable systems. The domain ontology illustrated in Figure 3.1 represents the
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proposed classification system for runtime reconfigurable systems as a tree, with the applica-
tion as its root and the realizable entity classes as its leaves. There are two possible relations
between two different classes, represented by dashed and continuous arrows. The dashed arrow
represents a relation of the type is part of, meaning that a class is composed by other classes,
while the continuous arrow represents a relation of the type is a, which indicates that a class is
a sub-class of another class.

Application
X 'y <

=
T
=
~ < <
—
L

& -7

o -

) ()

[ Variable ] [ Fixed ] [Homogeneous] [ Hybrid ]

Figure 3.1. Application domain ontology. Nodes in green color represent classes with realiz-

able entities.

In terms of sets, saying that the Procedure set is part of the Application set means that the
Procedure set is one term of a Cartesian product that defines the Application set. Therefore,
the Application set is the Cartesian product of the Procedure, Path and Value sets, as described
below:

Application = Procedure x Path x Value 3.1

In a similar fashion, the is a relation stands for a sub-set operation in term of sets. Therefore,
saying that the Controller set is a Procedure set, for instance, means that the Controller set is a

sub-set of the Procedure, as described below:

Controller C Procedure 3.2)

Entities from the three main classes, i.e., procedure, path and value, as well as their sub-

classes, are described in details as follows:

1. Procedure: Entity whose purpose is to transform values. It has input ports to import

values from the exterior and output ports to export transformed values. Its main attribute
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is a behavior, which defines the rules of transformation between the input and output

values. It is divided between two different subclasses: Controller and Executor.

(a) Controller: A procedure whose behavior defines a transformation between values
from the Info domain subclass to values from the Function domain subclass (and
possibly values from the Info domain subclass as well). Controllers are entities

responsible for defining behaviors to variable executors.

(b) Executor: A procedure whose behavior defines a transformation between values
from the Info domain class to values from the Info domain class. It is divided into

two different subclasses: Variable and Fixed.

1. Variable: An executor procedure whose behavior is a meta-behavior, i.e. it
transforms values from the Info domain class using, as rules of transformation
(i.e. behaviors), values from the Function domain class. It has a unique input
port, denoted as control port, for values of the Function domain. Every variable

executor is connected to a single controller via its control port.

ii. Fixed: A executor procedure whose behavior is fixed and only operates using

values from the Info domain class.

2. Path: Entity whose purpose is to transport values between procedures. It sets a commu-

nication lane between two procedures in a single direction.

(a) Control: A path whose transported values are from the Function domain class. It

connects a controller procedure to a variable executor procedure.

(b) Data: A path whose transported values are from the Info domain class. It is divided

into two subclasses: Homogeneous and Hybrid.

1. Homogeneous: A data path that connects executor procedures among them-
selves.
ii. Hybrid: A data path that connects executor procedures and controller proce-

dures.

3. Value: Entity that is exchanged between procedures via paths. It is divided into two

domain classes: Info and Function.

(a) Info: A domain class of values that represents elementary pieces of information.

(b) Function: A domain class of values that represents a transformation, or a map, be-

tween values.

In order to define an entity as belonging to one of the realizable entity classes from the appli-
cation ontology (green nodes from Figure 3.1), the notation used throughout this thesis consid-
ers the name of each hierarchical level of the ontology separated by dots, starting from the high-

est level, e.g. the entity G is a fixed executor procedure, then G € Procedure.Executor.Fixed.
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For application models represented as directed graphs, Table 3.1 shows the defined standards of

symbols adopted throughout this thesis to represent entities from different classes.

Table 3.1. Procedure and path model symbols and subclasses.

Class Symbol Subclass
Procedure.Executor @ Variable and Fixed
7 N
Procedure.Controller L y -
Path.Data - Homogeneous and Hybrid
Path.Control _ -

Runtime reconfigurable processes belong to the Procedure .Executor.Variable applica-
tion ontology class. As such, these processes have meta-behaviors, which can be seen either as
multiple different behaviors defined by functions inputted via control paths, or as a single be-
havior defined by a function application function. The concept of function application function
acting as a behavior will be further explored when defining semantics for the application model
in the following sections.

Processes belonging to the Procedure.Controller application ontology class are also
fundamental for RTR embedded systems. Such controller processes are responsible for manag-
ing the reconfiguration of all runtime reconfigurable processes. No restrictions on the number
of controllers are imposed in the application model, however, due to contraints in the platform’s
technology, it might be necessary to impose a single controller architecture. This subject will

be further explored during the platform model definition in the next chapter.

3.2 Application Semantics

The application model needs semantics to define the rules that will dictate the execution of its
functional elements and how they communicate amongst themselves. The synchronous and
the scenario-aware dataflow semantics are used for such purpose. The synchronous model of
computation was chosen because it is the most elementary timed MoC there is and, as all timed
MoCs, can be used to model real-time systems. On the other hand, the scenario-aware dataflow
model was chosen as a representative of the untimed MoCs, which are ideal for streaming
applications. It is important to note that other MoCs can be used to define semantics for runtime

reconfigurable systems, however, they are out of scope of this thesis.
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The SADF model of computation has kernel and detector processes, which naturally classi-
fies them as entities from the Procedure.Executor.Variable and Procedure.Controller
application ontology classes. Unfortunately, the synchronous MoC has no such thing and, there-
fore, processes from both these procedure classes must be defined. In the next sections both

synchronous and SADF semantics for runtime reconfigurable applications are explored.

3.2.1 Synchronous Application Semantics

The synchronous model of computation defines rules of execution and communication between
processes communicating with each other via signal paths in a network of processes. It does not
constraint any process to a specific type of behavior, nor the kind of values that can be processed
and exchanged between processes. As such, all realizable entities from the application ontology
can be implemented using the synchronous semantics.

This section is focused on defining a general-purpose runtime reconfigurable process, from
the Procedure.Executor.Variable application ontology class, using the synchronous se-
mantics. First, a representation of a runtime reconfigurable process is defined in a high level of
abstraction using the simplest form of meta-behavior: a function application function. Then,
such process is further developed to include concepts of behavior and data storage, as well as
reconfiguration time. All those concepts are present in current reconfigurable hardwares, such
as FPGAs. The remaining classes of realizable entities from the application domain ontology
are defined according to the specific application and will not be discussed in this section. An
application example of a synchronous triple modular redundancy architecture, with runtime
reconfiguration, is shown at the end of this section.

The simplest form of meta-behavior that can be used for entities that are instances of the
Procedure.Executor.Variable application ontology class is a function application function.
To understand its concept, it is important to think of functions as common values, i.e. belonging
to the set of values V, as defined in the application domain ontology. As such, functions can be
arguments to other functions as well as returned values. With that in mind, the operator apply :
(V" — V") x V™ — V" defines a function application function for functions of m arguments

and n return values. It applies a function f: V" — V" to arguments x; € V; C V such that

apply(f,x1,. .., Xm) = f(x1,.- -, Xm) (3.3)

Languages following the functional programming paradigm have, as a basic principle, the
concept of functions as common values. They are derived from Lambda Calculus (Michaelson,
2011), a mathematical formalism that introduces the concept of lambda terms, which can be

either values, functions or function applications. As such, all lambda terms can be used in the
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same way. When John Backus coined the term algebra of programs, talking about functional
languages in his Turin Award Lecture (Backus, 1978), he was referring to programs as functions,
and functions as common data, which allows operations between programs. As an example, the
functional language Haskell defines the infix operator $ as the function apply for functions with

single argument and return values, i.e. m = n = 1. In Haskell, the operator $ is implemented as:

($) :: (a->b) >a->b
f$x=1°fx

A synchronous process whose behavior is defined by the apply function (3.3) is named
synchronous function placeholder and defines a synchronous runtime reconfigurable process in

a high level of abstraction. Such process is defined next.

Definition 3.1 (Synchronous function placeholder). A synchronous process, belonging to the
Procedure.Executor.Variable application ontology class, possessing an unique input port
responsible for inputting functions of type V" — V" representing the processes’ behavior at
instant k € T. Such input port is connected to a signal 6 : T x (V™ — V"). Figure 3.2 shows
a representation of a function placeholder and equation (3.4) shows the functional behavior of

the function placeholder.

6
Ciy ) oy m n
: : FPH: S(V" >V x [ |SWVi.) = | | S (Ve,
o | |FPH| i 4 ]1:11 (i) ]1:11 (Vo,) )
—

(601 [k]’ -5 0o, [k]) = apply(é[k],(iil [k]v -5 Oiy, [k])
Figure 3.2. Function place-

holder.

To define a synchronous function placeholder for m input data and n output data using the
concept of process constructors, one needs a synchronous process constructor for m + 1 inputs
and n outputs. Using the process constructors of ForSyDe/Haskell, a synchronous single input,

the single output function placeholder fph11 is defined as follows:

fphil :: Signal (a -> b) -> Signal a -> Signal b
fphil = comb2SY ($)

The Example 3.1 shows an encoder/decoder system model using function placeholders and
process constructors from ForSyDe/Haskell.

As previously mentioned, a synchronous function placeholder is an abstraction of a syn-
chronous runtime reconfigurable process at a high level. In such level, parts like configuration
memory, data memory and reconfiguration time are abstracted away. The configuration signal
6 carries the behaviors to be executed by the process at every time instant k, meaning that if

one wants to model a synchronous runtime reconfigurable process using a function placeholder,
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Example 3.1

a R

ery

Figure 3.3 presents an encoder/decoder system model, adapted from (Sander et al., 2017),
in which numeric keys flow through o, and are processed by both genEnc and genDec.
Each of these processes outputs encoding/decoding functions f(key,x) and f~!(key,x)
respectively. These functions are used as behaviors for the processes apg,. and app,,..

7

genEnc
\- _J

6encF

Oin ApPEnc

plemented in the following code snippet:

|

genDec

\

A\

V)

6decF

Oenc
AapPpec Oout

Figure 3.3. Encoder decoder system.

Using ForSyDe/Haskell, the encoder/decoder system model previously mentioned is im-

—

—— Process Definitions

—_
—_

s_decF

genDec s_key

2 genEnc = comb2SY (\key x -> xtkey) -- f(key,x) = x + key

3 genDec = comb2SY (\key x —-> x-key) -- f£7(-1)(key,x) = x - key
4 ap_enc = fphll -- ap_enc is a function placeholder

5 ap_dec = fphil -- ap_dec is a function placeholder

6 -- Encoder/Decoder System (eds) process network

7 eds s_key s_in = (s_enc, s_out)

8 where s_enc = ap_enc s_encF s_in

9 s_out = ap_dec s_decF s_enc

10 s_encF = genEnc s_key

for every time instant k, 6[k] must be the function to be executed at that time instant, even if it

is the same function used in the previous time instant k — 1.

Delayed feedback loops are used to include a configuration memory, to store the current be-

havior, a data memory, to store states or data, and reconfiguration time, to simulate the idle state

during reconfiguration. Figure 3.4 shows a synchronous runtime reconfigurable process (RTRP)

including three delayed feedback loops to represent a configuration memory, a data memory,

and a reconfiguration countdown, used to simulate the time it takes to perform reconfiguration.

An extra input X is used to define initial conditions for the data memory, represented by x € S,

after a reconfiguration process.
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Figure 3.4. Synchronous runtime reconfigurable process with a configuration memory repre-
sented by the delay in blue, a data memory represented by the delay in black, and a

reconfiguration countdown represented by the dashed delay in black.

The functional behavior of the RTRP, stored in the configuration memory, is represented
by a pair of functions f:Sx V"™ — S and g:S x V" — V", comprising a memory changing
operation (or the next state function) and an output function respectively. The reconfiguration
signal & transmits such functions. In any time instant k, G6[k] can be either a 3-tuple (f,g,r),
representing a reconfiguration request, or an empty value 1. When a reconfiguration request
arrives at the reconfiguration input port, two things happen: a reconfiguration countdown lasting
r cycles is started, and the functions f and g are stored in the configuration memory. Equations

(3.5) and (3.6) represent such behavior.

r—1 if 6[k| = (f,g,r)

rlk+1]= < rlk]—1 if 6[k] = L and r[k] >0 (3.5)
0 if 6[k] = L and r[k] =0
(fTk+1], glk+1]) = e %m[k] ={g) (3.6)

Stored functions f and g define a state machine behavior for the RTRP when the reconfigu-
ration is finished and no reconfiguration request arrives via control signal 6. Such behavior is

represented by equations (3.7) and (3.8).

1 if 6[k] # L orr[k] >0
x[k+1] = { apply(flk],X[k],0im[k]) elseif x[k] = L (3.7)
apply(f[k],x[k],oin[k]) otherwise
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1 if 6[k] # L or r[k] >0
Cour[k] = { apply(g[k],X[k], oin[k]) else if x[k] = L (3.8)
apply(glk],x[k], oim[k]) otherwise

Note that in the event of a reconfiguration request (6[k| # L), the data memory represented
by x is emptied, as described by the first line of equation (3.7). Whenever the reconfiguration
finishes, i.e. r[k] = 0 after r[k — 1] > 0, the input X is used as the current memory data, i.e.
current state, as represented by the second line of equations (3.7) and (3.8). This allows the
RTRP to start from any desired initial state and is particularly important for synchronization
with other devices using a shared memory.

With equations (3.5), (3.6), (3.7) and (3.8), combined with the apply operator (3.3), one can
formally define a synchronous runtime reconfigurable process’ semantics. In the next section,
an example of a triple modular architecture with runtime reconfiguration will be shown using
multiple RTRP.

Synchronous Application Example

A triple modular redundancy with runtime reconfiguration from (Bonna et al., 2019a) is used
as an example of the synchronous application semantics. This example is interesting for safety-
critical systems, exploring concepts of fault detection and fault mask, as well as synchronization
after reconfiguration. The example also presents how the model entities are classified within the
proposed application ontology.

Figure 3.5 shows a triple modular redundancy architecture model with runtime reconfig-
uration. Such model comprises j > 3 runtime reconfigurable processors (RTRPs), a voting
mechanism to detect possible faults, a control device that acts as a reconfiguration manager
when the voter detects a fault in one of the RTRPs, and a current state shared memory (CSSM)
that acts as a synchronization memory between different RTRPs after a reconfiguration event.

Although this architecture has a number j > 3 of RTRPs, only three of them are active
simultaneously. The remaining RTRPs are inactive and are either in a idle state waiting to
be reconfigured and assume an active duty, or performing different signal processing activities
they are initially configured to perform. Active RTRPs have the same inputs, internal states and
behavior, meaning they should produce the same results. In the event of a fault in one of the
three active RTRPs, the voter, a process that acts as a voting mechanism, detects a mismatch in
one of the outputs from the RTRPs. Figure 3.6 shows the voter and its input and output signals.

The voter is connected to all j RTRPs, however it is only processing the outputs of the three

active RTRPs. The Control Device keeps track of the three active RTRPs and informs the voter
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Figure 3.5. Triple modular redundancy example adapted from (Bonna et al., 2019a).

o, [k]
e 4 ~
o1 [k] ——
oalk] —— > Oould
o3[k] ——> Voter ——— Oy [k]
—— 0[]
0jlk] ——{ )

Figure 3.6. Voter input and output signals (Bonna et al., 2019a).

every cycle via signal ¢,. Equations (3.9) and (3.10) define the voter’s input signals ¢, and o;.

o,lk| = (a,b,c), a,b,ce{1,2,...,j} (3.9)
oilk] = (yilk],xi[k]), i€{1,2,...,j} (3.10)

Note that each RTRP sends to the voter both its calculated output y; and its internal state x; via
signal o;.

The output of the voter 6,,; is the RTRP output with the highest occurrence between the
three active RTRPs, and the output o, is the current state of the RTRP whose output is the one

with the highest occurrence. Equation (3.11) defines the voter’s behavior regarding outputs o,
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and oy.

(Coue[K], O:[k]) = Oalkl-xaltd)) i yalk] =plk] or yalk] = yclA G.11)

(vplk], xp[k])  if yp k] = ye[K]
In the event of a mismatch between one of the three active RTRPs, the voter informs the
Control Device (Figure 3.7) which RTRP is faulty via signal ¢,. Equation (3.12) defines such

behavior. )

or[k] =

]
} (3.12)
]

Note that in the event of a triple mismatch in the voter caused by two or more faulty active
RTRPs at the same time instant k, the voter fails to produce an output. A more robust voter
logic could be used to avoid such situation, however this is only an illustrative example of an
application model for an RTR system, and the quality of the voter’s logic is of minor importance
here.

!
I I
oM, o,k +1]
o [K] Control
Y Device
Glk] logic Ok +1]
N y,
1
0,4 —
)

Figure 3.7. Control device internal structure (Bonna et al., 2019a).

The Control Device keeps track of the current three active RTRPs via o), as well as tracks
the reconfiguration timeout, when reconfiguring a new RTRP, via 6,,. If o,,[k] = 0, then at
instant k, the Control device is in the Ready state, meaning it is ready to perform a new recon-
figuration when necessary. If 6,,[k] > 0, then at instant k, the Control Device is in the Reconf
state, meaning it is reconfiguring some RTRP and, therefore, cannot start a new reconfiguration
process until the current reconfiguration is finished.

When the Control Device receives from the voter a value different than L via signal o, and

is in Ready state, it starts a new reconfiguration process. The state is switched to the Reconf
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state and a reconfiguration timer is started lasting r cycles

r if o,[k] # L and 0,,[k] =0
Oulk+1]=1{ Guk] =1 if Gulk] >0 (3.13)
0 otherwise

The output o, carries the current three active RTRPs as a 3-tuple, such as in (3.9). The

behavior of the Control Device regarding the output o, is modeled as described in (3.14).

okt 1] = o, k] if o,[k] = L or o, [k] >0 (3.14)
' (o, [k, 0,[k]) if 6,[k] # L and Gulk] = 0 '

with i((a,b,c),x), a function that selects the next RTRP in line to be reconfigured, is given by

(max(a,b,c)+1,b,c) ifx=a
h((a,b,c),x) = { (a,max(a,b,c)+1,c) ifx=b (3.15)
(a,b,max(a,b,c)+1) ifx=c

The behavior of the Control Device, given by equations (3.13) and (3.14), is summarized in

the state chart as illustrated in Figure 3.8.

okl =1/ o[kl # L/
Omlk+1] <,
o,k + 1] < h(oy[k], or[k])

oylk+ 1] < o, [k]

Ready
(Om [k] =0)

Reconf
(omlk] > 0)

onlk] =1/ Ok > 1/
Oulk+1] 0, Onlk+1] <= owlk] -1,
oy[k+1] < o, [k] oy[k+1] o, [k]

Figure 3.8. State chart that defines the behavior of the Control Device (Bonna et al., 2019a).

Finally, the control outputs 6;, with i € {1,...,j}, behave as follows. When the transition
from Ready to Reconf is taken, i.e. o,[k] # L and o,[k] = 0, the Control Device outputs a
reconfiguration signal given by the 3-tuple (f, g, r) to the output number i = max(o,[k]) + 1 (the
next available RTRP in the line), and outputs L for the remaining RTRPs. In any other case, it
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outputs L. Such behavior is given by

f.g.r) ifo.k|# L and o,,/k| =0 and max(o,k|)+1=1i
sy | @er) IO # Land ol (6. 1k) a6
1 otherwise

The initial conditions to o,,, 6, and 6; must be provided. As a general rule, these initial
conditions are: 6,,[0] =0, 6,[0] = (1,2,3) and 6;[0] = L. These initial conditions indicate the
system starts with all RTRPs already configured and the Control Device in the Ready state.

The current state shared memory (CSSM) is implemented as a delay and receives as input
the voter’s output o, (the RTRP state whose output has higher occurrence) and outputs O,
connected to all RTRPs, even the spare ones. When a reconfiguration is finished in one RTRP,
the states stored in the CSSM are used as initial states for the newly reconfigured RTRP, as
shown in equations (3.7) and (3.8).

The triple modular redundancy with runtime reconfiguration application model presented in
this section is implemented using the process constructors of ForSyDe/Haskell. The complete
Haskell code can be found in Section A.1. For simulation purposes, the RTRP’s behavior is
defined as an accumulator. The functions f and g that define such behavior are given by equa-
tions (3.17) and (3.18). To simulate a faulty behavior, function f (3.19) is implemented in a
way that, for a specific state, the function performs a computation that differs from f. The spare
RTRPs are implemented with the negative accumulator function f given by equation (3.20),

representing a different task for the spare RTRPs.

f(x,u) =x+u (3.17)

g(x,u)=x (3.18)

o x—u ifx=3

f(x,u) = (3.19)
x+u otherwise

f(x,u) =x—u (3.20)

The implemented application model comprises 5 RTRPs (j = 5) in which RTRPs 1 and 3
are initially configured with the pair (f,g), RTRP 2 is initially configured with the pair (f,g),
while RTRPs 4 and 5 are initially configured with the pair (f,g). The reconfiguration time r is
chosen to be 2 cycles and the input 0;, is a constant equals 1.

Table 3.2 shows the outputs of each RTRP y;, as well as the input oj,, the voted output
O and the mismatch signal o, as a function of the cycle k. When k = 4, the voter detects a
mismatch in RTRP 2, informing the Control Device via signal o,. During cycles 5 and 6, RTRP
4 is being reconfigured to assume the position of active RTRP. From cycle 7 onwards, the active
RTRPs are 1, 3 and 4, producing the same results.

Table 3.3 shows the model entities and corresponding classes in the application domain
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Table 3.2. Simulation results obtained from the ForSyDe/Haskell implementation.

k0o 1 2 3 4 5 6 7 8 9
om |1 1 1 1 1 1 1 1 1 1
Gwr |0 1 2 3 4 5 6 7 8 9
yvi |0 1 2 3 4 5 6 7 8 9
vy 0 1 2 3 2 3 2 3 2 3
y |0 1 2 3 4 5 6 7 8 9
ya |O -1 2 3 4 1L L 7 8 9
ys |0 -1 2 3 4 5 6 -7 8 -9
o, |L L L L 2 4 4 L 1 1

ontology. Note that signals ¢;, and 0,,; are not in that table because in order to specify a class
for a path, it is necessary to know the type of procedures they are connecting, although it is

possible to define them as entities from the Path.Data class.

Table 3.3. Model entities and corresponding classes.

Entity Application ontology class
RTRP; Procedure.Executor.Variable
Voter Procedure.Executor.Fixed
CSSM Procedure.Executor.Fixed
Control Device Procedure.Controller

O; Path.Data.Homogeneous

Oy Path.Data.Homogeneous

Ox Path.Data.Homogeneous

Oy Path.Data.Hybrid

(o Path.Data.Hybrid

G; Path.Control

3.2.2 SADF Application Semantics

In Section 2.5, the scenario-aware dataflow was introduced as an extension of the SDF MoC.
That was made to cope with dynamic behavior while preserving most of the analysis tools and
properties from the SDFE. The SADF MoC was presented in terms of its extra functional charac-
teristics, such as detector and kernel general behavior regarding token production and consump-
tion. In the present section, the functional semantics is introduced to SADF, adding functional
behaviors to kernels and detectors. The concepts presented in this section are based on the func-
tional SADF model from the paper Bonna et al. (2019b), published at the ACM Transactions
on Design Automation of Electronic Systems, and comprises the first major contribution of this

doctoral research.
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As specified in Section 2.5, the SADF MoC classifies processes into kernels and detectors.
Kernels are processes whose token consumption and production are defined by a control token
that is inputted through a unique control port every kernel possesses. Such control token car-
ries a kernel scenario, defined as the pair of token consumption and production rates for each
input and output port of the kernel. For the functional SADF model, besides consumption and
production rates, the kernel scenario also provides a functional behavior for the kernel, i.e. a

function that defines the token value transformation. In this sense, a kernel is defined next.

Definition 3.2 (Kernel). A kernel k, belonging to the finite set of kernels K, is defined by a
4-tuple (W, O, Zy, O ) where:

e Y, is the finite set of scenarios of k;

* 6 is the control input port of k with token consumption rate 1;
e 7 is the set of input ports of k; and

* (O, is the set of output ports of k.

Before presenting the definition of kernel scenario, it is important to define the sequence set,
denoted by the symbol X7, where n is the length of the sequences in the set and a is the type of
the elements in the sequences. Therefore, a sequence s € ¥ represents an ordered sequence (or
list) with n elements of type a. With the sequence set properly defined, the definition of kernel

scenario is as follows.

Definition 3.3 (Kernel scenario). A scenario ¥ belonging to the finite set of scenarios ¥ of a

kernel k with m inputs and n outputs is defined by a 3-tuple (cy, py, fy) Where:

* cy = (Cyl, - ,cym) € N denotes the consumption token rates for each input i € Zy;
* py = (Pyl,--.,Pyn) € N" denotes the production token rates for each output j € Oy; and
* fy: c"” — H Zp ¥/ denotes the function for kernel k, where the length of each

mput sequence, with data type o, is determined by cy;, and the length of each output
sequence, with data type 3, is determined by py ;.

When a kernel « fires, it first consumes one control token from its control port. This control
token sets the consumption ¢y and production py rates as well as the function fy for that
execution. Then, it finishes firing by consuming the input tokens and producing the output
tokens. Similar to the synchronous function placeholder, the kernel’s behavior is defined by
the apply function (3.3), receiving as inputs the function fy, and, for every input port i € 7y,
sequences of values with length cy,;. In this sense, a kernel can be defined as a dataflow function
placeholder.

Before formally defining a process constructor for kernels, it is important to define some

operations associated with signals that are used in the process constructor’s definition. Let +H-
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be a binary operator which concatenates two signals or sequences of the same base type, e.g.
(3.21), provided that the first signal or sequence is finite; take(n,0) and drop(n,o) be two
functions which take and drop n events from the beginning of a signal o, e.g. (3.22) and (3.23);

|o| be a set operation which returns the number of elements in 6; and & denote an empty signal.

{er,ex} ++{e3.ea,e5,e6} = {e1,e2,€3,€4,€5,66} (3.21)
take(2,{ey,ep,e3,e4,e5}) = {ey,e2} (3.22)
drop(2,{e1,e2,e3,e4,e5}) = {e3,e4,€5} (3.23)
m
Furthermore, the tuple notation [ai) - denotes a tuple (ay,...,a,), and the operation + is
i=

performed element-wise for tuples of signals, i.e.

i= i= i=1

(Gli]ml‘H‘(GZi)ml: [Gli‘H‘GZi]m (3.24)

Note that both tuples must have the same size in order to perform the -+ operation.
Based on the definitions of kernel (Definition 3.2) and kernel scenario (Definition 3.3), a

process constructor for a kernel with m inputs and n outputs is formally defined.

Definition 3.4 (Kernel process constructor (Bonna et al., 2019b)).

kernel,,, : S (N’” x N x I_m[ o — ]—n[ Zg;f'j> X ﬁ S (o) — ﬁ S (Bj)
=1 =1 i=1 =1

1

n m
vy (2) if V (01| < cyi) V (oy| = 0)
kernel,,, (6, (G,']. 1) = J=1 i=1

apply ( fu, inps) ++ kernel,,, (5, inps) otherwise
m n n
where <[cl,,,-]' g (pl,,j] . l,fw> = take(l, 6)
i= j=

m
inps = (take(cl,,,-, 0',-)] .

S

inps = [drop(cwi, Gi)]

i=1

6 =drop(1, 6)

As a result of the research (Bonna et al., 2019b), SADF was added as a MoC library in
ForSyDe/Haskell. Such library possesses a collection of process constructors, including the
family of process constructors kernelmnSADF, implemented following Definition 3.4, able to
define kernels up to 5 inputs and 5 outputs (m,n € [1,5]). Kernels defined using this family of
process constructors possess a singular input signal of type S (¢, p, f), where ¢ and p are the
token consumption and production rates for the data input and output ports respectively, and f
is the function defining the behavior of the process in the current firing.

As an example, the process constructor kernel11SADF type signature in Haskell is defined

as:
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kernel11SADF :: Signal (Int, Int, [a] -> [b]) -> Signal a -> Signal b

Similarly to the SDF library, briefly introduced in Section 2.6, the token consumption and pro-
duction rates are represented as integers and the function defining the behavior is of type [a]
-> [b]. For multiple inputs and outputs, the token consumption and production rates are rep-
resented as tuples of integers. The complete SADF library of process constructors implemented
in Haskell/ForSyDe can be found in Section A.2 and in the Git repository (ForSyDe, 2018).
Section 2.5 also introduced the concept of detectors, which are processes responsible for
supplying the kernels with control tokens. Their functional behavior is dictated by a finite
state machine (FSM) where each state defines a detector scenario. When there are enough
tokens available in its input ports, the detector consumes these tokens and, based on their values,
performs a state transition. Based on its new state of operation, a number of control tokens are
supplied to the kernels connected to the detector via control channels. Differently from a kernel,
a detector consumes a fixed amount of input tokens, but outputs a number of tokens that depends

on is operational state. A functional detector is formally defined as follows:

Definition 3.5 (Detector). A detector d, belonging to the finite set of detectors D, is defined by
a 6-tuple (®,, Z,, Oy, cq4, Fa, ga) Where:

* ®, is the finite set of scenarios of d;

7, is the set of input ports with m = |Z;| being the number of input ports;

Oy is the set of output ports with n = |O,| being the number of output ports;

* cg=(c1,...,cm) € N™ denotes the consumption token rates for each input i € Zy;

F4 is the 3-tuple (S,s*, f;) defining a deterministic FSM where S is the set of states,
s* € S is the initial state, and f; : S x [T/"| L. — S is the state transition function; and

g4 .S — Py is the state to scenario function.

The concept of detector scenario differs from the concept of kernel scenario. For a kernel,
a scenario is defined by the value inputted through its control port, i.e. the value carried by
control tokens, which consists on the 3-tuple of Definition 3.3. For a detector, the concept of
scenario can have multiple interpretations that are functionally equivalent between themselves.
One interpretation would consist on an SDF subgraph composed by the detector and all ker-
nels connected to it, each one operating on a specific kernel scenario defined by the control
tokens supplied by the detector in a particular detector scenario. Another interpretation would
be a set of sequences of control tokens that are outputted when the detector fires. This second
interpretation is not only easier to formally define, but fits better for modeling runtime recon-
figurable systems, which are the target systems of the design flow proposed in this thesis. Such

interpretation is formally defined as:
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Definition 3.6 (Detector’s scenario). A scenario ¢ belonging to the finite set of scenarios ®; of

a detector d with n outputs is defined by a 2-tuple (py, 7y) where:

* po = (Pa1, --- ,pan) € N denotes the production token rates for each control output j €
Oy ; and

* Ty € H?:l Z@i’] are the sequences of output control tokens for d, whose lengths are deter-

mined by pg; and each k; is the kernel connected to output port number j € Oy.

Based on the definitions of detector (Definition 3.5) and detector scenario (Definition 3.6),

a process constructor for a detector with m inputs and n outputs can be formally defined.

Definition 3.7 (Detector process constructor (Bonna et al., 2019b)).

detectox,, : N x <Sx ﬁZZg’i—>S> X <S—>N">< ﬁ&’;j’}’) XS x ﬁS(ai)—> ﬁS(Tj)
i=1 j=1 i=1 j=1

m
detectoz,y, ((Ci] l>fd7gd, 57, (Gi]‘ ]> = output(g4, 0y)
_ i

i

m
where oy = next (delay(s;;, C4), [Gi] )

i=1
m
vt (a1, (@) ) =
i=1

m
inps = (take(ci, G,')) .
1

m
if \/ ’G," < ¢
i=1

%)
f(take(l, 6;), inps) + next (drop(1, 6;), inps) ~ otherwise

inps = [drop(ci, Gi)) o
n
(¢) if 6, = @
<g7 GI‘) = J=1

g (take(1, oy)) ++ output (g, drop(1, 6;)) otherwise

output

The function delay used in Definition 3.7 is the equivalent of (2.8) to SADF MoC. The
mathematical formulation is the same, however for SADF it is used to define initial tokens in
channels.

In ForSyDe/Haskell, the family of process constructors detectormnSADF takes four argu-
ments that are sufficient to fully define a detector’s behavior: the token consumption rates from
the input ports, the state transition function, the state to scenario function, and an initial state.
As an example, the process constructor detector11SADF type signature in Haskell is defined

as next.

detector11SADF :: Int -> (s -> [a] -> s) -> (s -> (Int, [y])) -> s
-> Signal a —> Signal y
The output tokens of a detector are control tokens for the kernels that are connected to it.

Therefore the type y seen in the type signature previously presented is actually a 3-tuple (c, p, f)

representing token consumption and production rates, and a function.
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SADF Application Example

To demonstrate the concepts presented in the last section, a comprehensive example of a re-
duced instruction set computer (RISC) processor is considered. This example is in Bonna et al.
(2019b), but with emphasis to the model development using ForSyDe/Haskell. Here, the em-
phasis is given to the general functionality of the model, i.e. token rates and functions. The
complete code developed in ForSyDe/Haskell can be found in Section A.3.

The RISC processor example is modeled with two kernels and one detector, as shown in
Figure 3.9. The Instruction Fetch (IF) kernel stores the program memory in a self feedback
loop, and is responsible for fetching an instruction, updating the program counter (also stored
in the kernel with a self feedback loop), supplying the Decode (DEC) detector with the opcode
of the current instruction, and the Execute (EXE) kernel with its arguments. The DEC detector
decodes the opcode and provides both kernels, IF and EXE, with the scenario to be executed.
The EXE kernel executes the instruction decoded by the detector with the arguments supplied
by the IF kernel. It is also where the program memory and register bank are stored using self
feedback loops. Note that, due to the balance of consumption and production token rates of
every actor, the RISC SADF model is strongly consistent, and every actor fires once for any

possible detector scenario.

a Opr a
Instructi
nsFreliz thn 1 Ourg 1{ Execute
(IF) Oop
1
] 1
1
7 3\
O 1 Decode 1 OEXE
(DEC)
—

Figure 3.9. RISC processor modeled with SADF (Bonna et al., 2019b). An initial token must
be provided to the control channel connected to the IF kernel (represented as a
bullet o).

The instruction set implemented in this processor is shown in Table 3.4. The instructions
are divided into 4 different classes: load and store (LS), arithmetic and logic (AL), branches
(BR) and outputs (OP), totalizing 20 instructions.

Figure 3.10 shows the instruction fetch kernel internal signals. Self feedback signals are
used to store the program memory and program counter. The IF kernel possesses two sce-
narios: branch and no-branch. In the no-branch scenario, it fetches in the program memory,
represented as a single token with a list of strings (each string representing a line of instruc-
tion), the instruction at the program counter’s location; sends the opcode to the DEC detector

and the arguments to the EXE kernel; and finally, adds 1 (i.e. increments) to the program
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Table 3.4. RISC processor complete instruction set.

n | Opcode Args Effect Class
01 | 1d rd mm rd < mem(mn) LS
02 | 1dr rd rm rd < mem(rm) LS
03 | st rs mn mem(mn) < rs LS
04 | str rs rm mem(rm) < rs LS
05 | mov rd rs rd < rs LS
06 | movi rdi rd « i LS
07 | add rd rs rd < rd + rs AL
08 | sub rd rs rd < rd - rs AL
09 | mul rd rs rd « rd X rs AL
10 | div rd rs rd « rd + rs AL
11 | and rd rs rd < rd & rs AL
12 | or rd rs rd < rd | rs AL
13 | xor rd rs rd < rd A rs AL
14 | bez rs j if rs == 0 then PC < PC+j+lelse PC <- PC+1 BR
15 | bnz rs j if rs # 0 then PC « PC+j+lelse PC « PC+1 BR
16 | bgz rs j if rs > 0 then PC <~ PC+j+lelse PC < PC+1 BR
17 | blz rs j if rs < 0 then PC < PC+j+lelse PC <— PC+1 BR
18 | jmp j PC < PC+j+1 BR
19 | outr rs print(rs) OP
20 | outm mn print (mem(mn)) 0]

counter. In the branch scenario, it fetches the instruction pointed by the program counter, added
to a relative jump value inputted via o},, before performing the remainder of the steps just like

the no-branch scenario.

6ir
4 A
|
e N 1 op
a
o )
br Instruction |1 Ourg
| Fetch |
logics
1 1
\§ J

Figure 3.10. Instruction fetch (IF) kernel. Self feedback loops are used to store program mem-

ory and program counter. Initial tokens are represented as bullets e.

The branch scenario of the IF kernel comprises the instructions from the branch (BR) class

(instructions 14 to 18), and it is characterized by having the token consumption a, of the input
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port connected to Op,, equals 1, as shown in Table 3.5. The remaining instructions from the
instruction set are no-branch scenario for the IF kernel.

Figure 3.11 shows the EXE kernel internal signals. Self feedback signals are used to store
the register bank and data memory, both as a list of integers with each element as a single
register or memory slot. The EXE kernel possesses one scenario for each of the 20 instructions
available. Table 3.5 shows the token rate values a, b, r and m for each scenario. Note that some
token rate values are exclusive for a specific class of instruction, e.g. a = 1 is exclusive for
branch instructions, b = 1 is exclusive for output instructions and m = 1 is exclusive for load

and store instructions, as well as the outm (output directly from memory) instruction.

OexE
( )
1
( N a
| Opr
Oure
“E b Oout
Execute
r logics r
m m
N\ _/

Figure 3.11. Execute (EXE) kernel. Self feedback loops are used to store data memory and

register bank. Initial tokens are represented as bullets e.

Figure 3.12 shows the DEC detector. It possesses a state for each one of the instructions from
the instruction set. The transition of states is performed based only on the opcode value inputted
through o,,, i.e. it does not depend on the current state to perform a state transition. Therefore,
for each opcode inputted, a state transition is performed to its equivalent state, represented by
the integer n. The scenario outputted for the EXE kernel, via signal 6gxg, sets the token rates
according to Table 3.5, and the function according to the desired effect given by Table 3.4. The
scenario outputted to the IF kernel, via signal 6y, is either a branch scenario, if 14 <n < 18,

or a no-branch scenario.

7 N\ 1
Decode

(DEC)

O-op —_—>

1 A
— 6f

N

Figure 3.12. Processor decode (DEC) detector.

Table 3.6 shows how the RISC processor entities are classified within the application domain

ontology. Signal 6, is not classified in the table because it could be either an entity of the
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Table 3.5. Token consumption and production for each scenario.

n| Opcode a b r m
01 | 1d 0 0 1 1
02 | 1dr 0 0 1 1
03 | st 0O 0 1 1
04 | str 0 0 1 1
05 | mov 0 01 O
06 | movi 0 01 O
07 | add 0 01 O
08 | sub 0 01 O
09 | mul 0 01 O
10 | div 0 01 O
11 | and 0 01 O
12 | or 0 01 O
13 | xor 0 01 O
14 | bez 1 01 O
15 | bnz 1 01 O
16 | bgz 1 01 O
17 | blz 1 01 O
18 | jmp 1 0 0 O
19 | outr 0O 1 1 O
20 | outm 01 0 1

Path.Data.Homogeneous class, or Path.Data.Hybrid class, depending on which procedure,

besides EXE, it is connected to.
Table 3.6. RISC processor model entities and corresponding classes.

Entity Application ontology class

IF Procedure.Executor.Variable
EXE  Procedure.Executor.Variable
DEC Procedure.Controller

Opr Path.Data.Homogeneous

Oarg Path.Data.Homogeneous

Oop Path.Data.Hybrid

OF Path.Control

6gxg Path.Control

For the complete example regarding the RISC processor, refer to Bonna et al. (2019b) and
ForSyDe/Haskell code in Section A.3.
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4 PLATFORM MODEL

The platform model captures all platform related characteristics of the system, such as memory,
communication buses and processing units.

This chapter presents a platform domain ontology, a classification system that provides the
relations between different elements within a platform, and platform functional blocks, which

describes, in detail, a variety of possible functional blocks for a runtime reconfigurable platform.

4.1 Platform Domain Ontology

The other branch of the proposed design flow (as illustrated in Figure 1.2) for runtime reconfig-
urable systems, comprises all platform related characteristics of the system.

This section presents a classification system, derived from a domain ontology, whose pur-
pose is the same as the application domain ontology, i.e. to provide a foundation in which
different platforms can be classified on top of it. The mapping rules defined in Chapter 5 also
consider, as entry point, platforms that are in accordance with the platform domain ontology
presented here.

The proposed platform domain ontology follows the concept of the fixed plus variable com-
puter firstly presented by Estrin (1960). Such computer consists in a fixed general-purpose
processor and a variable hardware area, which, in today’s technology, would be composed of
a microcontroller and an FPGA. Back in the *60s, the motivation to build such system was to
solve problems not practicably computable, and to drastically increase the overall computation
speed. Nowadays, the fixed plus variable computer concept is presented in system on chips
(SoCs), which are widely used in industries such as automotive and aerospace, and provides the
necessary flexibility to implement different solutions without the need to physically replace the
hardware. Moreover, updates can be released for both software and hardware, decreasing the
overall system obsolescence.

In the platform domain ontology, a platform is defined as the union of two subsystems:
fixed and variable. Each subsystem is then composed of the three basic classes of entities
presented in any computational machine: processing unit, communication and memory. For the
variable subsystem, the existence of processing units, communication or memories depends on

the application configured. Figure 4.1 shows the platform domain ontology represented as a
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graph. The Greek letter y is used to differentiate entities of the variable subsystem. Note that
there can be entities belonging to both the fixed and the variable subsystems, which is the case
of communication paths between the subsystems. In this case, such entities are grouped in the
class Mixed. There are three possible relations between two different classes, represented by
dashed, continuous and double arrows. The dashed arrow represents a relation of the type is
part of, meaning that a class is composed by other classes. The continuous arrow represents a
relation of the type is a, which indicates that a class is a sub-class of another class. Finally, the
double arrow represents a relation of the type associated with, which indicates that two classes
have entities that are paired with each other.

D
RS
is part of

Communicationy

Processin, P
‘ 2 Communicationy

M
Unit { Sy ]

{ Processing ]

] {Communication Unity { Memoryy

associated with

associated with

Configuration Configurationy

Figure 4.1. Platform domain ontology. Nodes in blue represent subsystems (mixed is consid-
ered a subsystem since it is the intersection of fixed and variable subsystems), nodes
in green represents realizable entity classes and nodes in red are classes of entities

that are associated with entities from another class.

As introduced in the application ontology, the relation is a, in terms of sets, expresses a sub-

set relation. Therefore, the following relations are derived from the platform domain ontology:

Fixed C Platform “4.1)
Variable C Platform “4.2)
Platform = Fixed U Variable 4.3)
Mixed = Fixed N Variable “4.4)

Table 4.1 introduces the notation used to represent the realizable entity classes as sets. Using

this notation, and knowing that the relation is part of represents a Cartesian product term, the
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following relations are derived from the platform domain ontology:

Fixed = PU x Com X Mem 4.5)
Variable = PUy X Comy X Mem, (4.6)
Mixed = Comyy 4.7

Table 4.1. List of set symbols representing each realizable class.

Platform ontology class | Set symbol

Processing Unit PU
Communication Com
Memory Mem
Configuration Conf
Processing Unity PU,
Communicationy Comy

Memoryy Mem,
Configurationy Conf,
Communicationy Compg

Entities from the three subsystems, i.e., fixed, variable and mixed, as well as the realizable

classes under the subsystems are described in details as follows:

1. Fixed: A subsystem composed of a general-purpose processor and peripherals. The hard-
ware cannot be reconfigured, as in an FPGA, and the software needs to adapt to the

hardware.

(a) Processing Unit: The core of the general-purpose processor capable of executing
sequences of instructions. A fixed subsystem can have more than one processing

unit.

i. Configuration: A functionality of a processing unit. Multiple configurations
can be associated with the same processing unit. For the fixed subsystem, the
configuration is a piece of software that defines what a programmable hardware

does.

(b) Communication: Any communication bus or signal that is part of the fixed subsys-

tem.

(c) Memory: general-purpose memory to store data and programs. The fixed subsystem

can have more than one memory related to it.

2. Variable: A subsystem that can have its underlying hardware reconfigured to implement
processing units, communication and memories. It also supports partial reconfiguration
to enable runtime reconfiguration. The suffix y is used to differentiate entities of the

variable subsystem from the fixed subsystem.
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(a) Processing Unity: Any processing node that transforms data, and it is part of the

variable subsystem.

1. Configuration): A functionality of a processing unity. For the variable sub-
system, it is a set of bitstreams that defines the functionality of a reconfigurable

hardware area.

(b) Communicationy: Any communication bus or signal that is part of the variable

subsystem.

(c) Memoryy: Any memory region that is part of the variable subsystem. Can be ei-
ther configured in the reconfigurable area, or even a memory associated with the

reconfigurable area.

3. Mixed: A subsystem composed by the intersection of fixed and variable subsystems. En-
tities belonging to the mixed class have part of its implementation in the fixed subsystem,

and part in the variable subsystem.

(a) Communicationy;: Any communication bus or signal that is used to exchange data

amongst fixed and variable subsystems, i.e. that connects subsystems together.

4.2 Platform Functional Blocks

The ontology presented in the previous section is general enough to represent different platform
architectures that can be composed of a hard processor, microcontroller or graphics processing
unit (GPU), representing the fixed subsystem, and an FPGA, representing the variable subsys-
tem.

This section presents several platform architecture models, considering platforms with only
a fixed subsystem, only a variable subsystem, and with both fixed and variable subsystems, i.e.
heterogeneous. These platform architecture models are built up from the basic functional blocks

worker, steward, handler and memory region defined next.

* Worker: A computational node, belonging to the set of processing units PUU PU,, that
performs data processing and can change its configuration, either by software or hardware
reconfiguration. In hardware reconfiguration, it implements a function placeholder in the
reconfigurable hardware, whereas in software reconfiguration, it is either a single function
with multiple behaviors, or multiple functions with a single behavior. Workers that have

only one configuration are called fixed workers.

* Handler: A computational node, belonging to the set of processing units PUUPU,, whose

task is to supervise and decide the current configuration of workers. It can be implemented
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in either fixed or variable subsystem. The handler’s configuration does not change.

* Steward: A computational node, belonging to the set of processing units PUUPU,,, respon-
sible for implementing the configuration replacement mechanism of a worker, in case of
hardware reconfiguration. Such mechanism includes fetching the new configuration in a
memory region responsible for storing the worker’s configuration. Similar to the handler,

the configuration of the steward does not change.

* Memory region: Any memory region, belonging to the set of memories Mem UMem,,, pre-
sented in the platform either in the variable or fixed subsystem. For hardware reconfigu-
ration, at least one memory region is necessary to store all configurations of the workers.

Such memory region is called configuration repository.

The communication between functional blocks is done via data and control buses, which are
elements from the communication set Com U Com, U Comyg. The functional blocks are grouped
into a programmable device (ProgDev) area, representing the fixed subsystem, and a reconfig-
urable device (ReconDev) area, representing the variable subsystem.

Two types of reconfiguration schemes are explored: mode reconfiguration (Fig. 4.2a) and
function reconfiguration (Fig. 4.2b).

In the mode reconfiguration, all possible functional configurations (also denoted as modes)
of a worker are already implemented inside it. To select the active configuration, a pair of
switch and select blocks are used. This scheme has the advantage of having a low complexity
and performing fast transitions between configurations, all at the cost of the worker’s oversize,
measured as the sum of the size of all configurations within it, as well as the switch and select
blocks. Such scheme can be implemented entirely inside the ProgDeyv, or entirely inside the

ReconDeyv.

Worker

configurationl}—> b 1\_/[_Cr_n_o;}; """ — Work 0
orker —

1
1 1 .
11— - - ! 1 . :
. configuration, }—‘ o E configuration, | ! ‘n
in —> : ! | configuration, E "~
1
! : ! sf
i ) ' : on ] ! fetch
s R e .
(a) Mode reconfiguration. (b) Function reconfiguration.

Figure 4.2. Mode and function reconfiguration schemes considering a single worker with / pos-

sible configurations.

In the function reconfiguration, all configurations of a worker are stored in a memory called
configuration repository. The worker acts as a function placeholder, having only the current

configuration configured (i.e. implemented) in its area. As such, in function reconfiguration,
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workers can only be implemented in the ReconDev area. To change between configurations, a
memory fetch mechanism, implemented within a steward, is responsible for fetching the new
configuration and sending it to the worker. The advantage of this scheme is the smaller size of
the worker, measured as the size of its largest possible configuration, allowing a larger number
of functionalities to be implemented in a smaller reconfiguration area. On the other hand, it
possesses several disadvantages, including the necessity of an external memory to store all pos-
sible configurations, the complexity of both memory fetching and reconfiguration mechanisms,
as well as the reconfiguration time required to change between different configurations.

Three possible platform architecture models for implementing runtime reconfiguration are
enumerated as follows. One considers a fully fixed hardware, another considers a fully vari-
able hardware, and the last one considers a heterogeneous hardware with fixed and variable

subsystems.

1. Fixed platform architecture model: This platform model comprises only functional blocks
from the fixed subsystem, meaning that, in this case, PUy, Comy, Mem, and Comy; are
empty sets. Mode reconfiguration is the only possible scheme to perform runtime re-
configuration in this type of platform. As a consequence, stewards and configuration
repositories are not required for this platform model. Figure 4.3 shows an example of

such platform model comprising a single worker and a single handler.

ProgDev

‘Worker;

A

Control

bus Data bus

Y

Handler;

Figure 4.3. Platform composed of a fixed subsystem (ProgDev).

In this context, the same control bus defines the communication path used to set the
configuration of the worker. For mode reconfiguration, the control bus does not send the
configuration to the workers, but sends an integer value that selects on which mode the

worker shall operate.

RTR is fully implemented in software in this type of platform model. The worker can
be implemented either as a single function with a switch/case statement for selecting the
current configuration, or as several different functions representing each configuration

and using software function pointer technique to select them.

2. Variable platform architecture model: This platform model comprises only functional
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blocks from the variable subsystem, meaning that, in this case, PU, Com, Mem and Comy
are empty sets. Both mode and function reconfiguration are possible schemes for this

kind of platform.

To implement the mode reconfiguration, switch and select blocks must be implemented
in hardware within each worker, as shown in Figure 4.2a. Similar to the fixed platform ar-
chitecture model, mode reconfiguration does not require stewards and an implementation
repository. Also, the reconfigurable platform does not need to support partial reconfigu-

ration due to the fact that its hardware configuration will not change in runtime.

However, if the physical platform represented by the platform model supports partial
reconfiguration, then function reconfiguration is a possible scheme to implement RTR.
Figure 4.4 shows an example of such platform model for function reconfiguration with a

single worker and handler.

ReconDev

Control bus

Worker;

A
Data bus

A 4

T— Handler;

Data & Data bus
Control
Bus

1
. Configuration
. Repository

Figure 4.4. Platform composed of a variable subsystem (ReconDev).

The presence of a steward and a configuration repository is an unique characteristic of
function reconfiguration. In this scheme, the handler decides which configuration is go-
ing to be used for each worker under its command, and when a reconfiguration is needed
in one of such workers, the handler signals the steward with the desired configuration and
target worker so that the steward may fetch the desired configuration in the configuration
repository and perform the reconfiguration procedure in the target worker using the con-
trol bus. In this sense, only the target worker is reconfigured, hence the need for partial

reconfiguration in the physical platform represented by the platform model.

Note that the configuration repository is depicted outside the ReconDev area. This occurs
because the memory region that comprises the implementation repository does not need
to lie inside the reconfigurable hardware, although it is possible to have the configura-
tion repository defined inside the reconfigurable area. Given this, an external memory

connected to ReconDev can be used to store the configurations of all workers.
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3. Heterogeneous platform architecture model: Here, the name heterogeneous is referring to
a platform composed of fixed and variable subsystems. Despite both mode and function
reconfigurations are possible schemes to implement RTR in this platform model, the focus
here will only be on function reconfiguration, considering the ReconDev supports partial

reconfiguration.

To take full advantage of both ProgDev and ReconDev, handlers and stewards, whose
configurations are fixed, are implemented in the ProgDev, while workers are implemented

in the ReconDev. Figure 4.5 shows an example of such architecture model.

ProgDev ReconDev

Handler; Worker;

i ;
Data bus Data,
SRR S : bus

Control bus

. Configuration
. Repository
Figure 4.5. Heterogeneous platform composed of a fixed subsystem (ProgDev) and a variable

subsystem (ReconDev).

Note that data and control buses used to set communication paths between workers and
handlers, and workers and stewards have one end in the ProgDev, and another in the Re-
conDev. As mentioned before, such entities are referred to as mixed entities, and belong
to the set Compy. These entities are only relevant in heterogeneous platform models, due
to the presence of both fixed and variable subsystems. There can be as many entities in
the Comyy set as possible in the platform model, however a limitation on current physical

1

platforms’ constrains to a single control bus in Comyy.

To summarize, Table 4.2 shows the platform architecture types and the RTR schemes that

are possible to implement in each one.

! Current physical platforms possess a single bus for writing in the configuration memory of the FPGA area.
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Table 4.2. Summary of reconfiguration plataform model types and schemes.

Platform model type \ RTR scheme

1. Fixed mode
2. Variable mode or function
3. Heterogeneous mode or function

4.2.1 Example: Heterogeneous platform

This section presents an example of a heterogeneous platform architecture model that can be
used to represent many commercial off-the-shelf (COTS) SoC devices with FPGAs, such as the
Xilinx Zyng-7000 SoC (Xilinx, 2021) and the Intel-FPGA Cyclone V SoC (Intel, 2021). The
platform model, as shown in Figure 4.6, is composed of a ProgDev and a ReconDeyv, following

the heterogeneous platform model concept presented in the previous section.

Abstract Platform Model

ProgDev ReconDev
ReMan § g
& [ DataBus | & [
o [* g = D
H = H
A g
ReCon [+>| ReCli Partitions
: o Control Bus Y
' Configuration =
. 1 i
| repository :
! 1

____________

Figure 4.6. Heterogeneous platform model example.

The ProgDev is composed by four functional blocks enumerated in the sequence.

1. ReMan: Short for reconfiguration manager, it is a handler that chooses the functionalities,
i.e. configurations, that are configured in the ReconDev. Although it is the only handler
in this model, there is no limitation concerning the number of handlers a heterogeneous

platform can have.

2. ReCon: The reconfiguration controller is the steward of this platform model. As so, it
is responsible for fetching, in the configuration repository, the configuration selected by

ReMan (in the form of bitstreams) and sending it to ReconDev via ReCli.

3. ReCli: The reconfiguration client is a mixed functional block belonging to Compy. It is

responsible for implementing the communication protocols used to transfer bitstreams
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between ProgDev and ReconDev. As a mixed entity, it has one part implemented in
ProgDev, and another in ReconDev. For this platform model to be able to represent
current physical heterogeneous platforms, the number of control buses, hence the number
of reconfiguration clients, is constrained to the number of reconfiguration buses available

in the physical platform modeled.

4. DataTran: The data transceiver is also a mixed functional block belonging to Comyy. It
is responsible for implementing the communication protocols used in the data exchange

between ProgDev and ReconDev.

The ReconDeyv is composed of the ReCli, DataTran and Partitions area. The partitions
area represents the area of the platform in which all workers, communication lanes among work-
ers and possibly memories are implemented in. Therefore, entities implemented in the partitions
area belong to the union of PU,, Com, and Mem, sets. The number of workers, communication
lanes and memories implemented inside the partitions area is defined by the application im-
plemented, hence it is an information provided by the application model. Table 4.3 shows a
summary of the functional blocks in the platform model. For simplicity, communication paths
connecting ReMan, Recon, ReCli, DataTran and configuration repository are not shown in the

table, but they belong to the Com platform ontology class.

Table 4.3. Summary of the functional blocks in the heterogeneous platform example.

Functional Block Name Functional Block Ontology Class
ReMan Handler PU
ReCon Steward PU
ReCli Control Bus Compg
DataTran Data Bus Compyg
Partitions Workers/memories/communication | PU, UMem, U Com,
Configuration repository Memory region Mem
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5 MAPPING RULES

The previous chapters introduced two classification systems derived from domain ontologies
for both application and platform models. Along with the classification systems, semantics for
RTR using both synchronous and SADF MoCs were presented for the application model, as
well as functional blocks applied to different platform architecture models and RTR schemes
were presented for the platform model.

Up to this point, application and platform were treated separately, following the concept of
orthogonalization of concerns (Keutzer et al., 2000). In this chapter the connection between
application and platform models is defined in the form of mapping rules. The only requirement
for the usage of the mapping rules defined in this chapter is to have both platform and application
models classified according to the platform and application domain ontologies.

Mapping rules, represented by the letter m, are a set of functions that map elements from
the application domain A to elements from the platform domain P, resulting in a feasible virtual

implementation model /, as shown in Figure 5.1.

Application Domain A Platform Domain P
(class/comp) (semantics) (class/comp) (functions)
[ [ e N ]
i A-Domain :\ Models of | | P-Domain \: Functional !
| | | | |
I Ontology X Computation | . Ontology Blocks !
L | B T R |

derives [ derives
Y

Classification of application Classification of platform

model elements model functional blocks
input to m L Mapplng Rules <«—! input tom
m:A—>P=1
class = ('lassiﬁcz?t'}()n result
comp = COIII}’)OSltIOII

Feasible Virtual Im-
plementation Model [

Figure 5.1. Mapping rules concept.

The application domain A is defined as the union of all realizable classes of the application
domain ontology. On the other hand, the platform domain P is defined as the union of all sets

of classes from the platform domain ontology.
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In total, there are eight mapping rules that specify where entities from the application model
are mapped to platform model’s functional blocks. There is one rule for each application ontol-
ogy realizable class, with exception of the Value. Info class, totalizing seven rules, and an 8"

rule for stewards and configuration repositories. The mapping rules are defined next.

1. Procedure.Controller rule:

This mapping rule is about defining which functional blocks from the platform model are
going to implement entities from the Procedure.Controller class. Such mapping rule

is defined by the function my, whose type signature is given by:
my : Procedure.Controller — PUUPU, (5.1)

Entities from the Procedure.Controller class are responsible for outputting values
from the Value.Function domain. Such functions define the behaviors of entities from

the Procedure.Executor.Variable class.
The mapping rule m; states the following:
* Every entity ¢ € Procedure.Controller instantiates a handler functional block
6; € PUUPU,;
* my is reversible, i.e., every o; is mapped to a single 6;, and no other ¢¢; with j # i is
mapped to 6;; and
* Depending on the RTR scheme and the platform model, 6; can belong to either PU or
PU,. Table 5.1 shows where handlers 6; are located in the platform model depending
on the RTR scheme and platform model type.

Table 5.1. Summary of the location of all handlers 6; in the platform model for m;.

‘ Mode ‘ Function
Only Fixed 6; € PU -
Only Variable 0; € PUy 0; € PUy

Heterogeneous | 6; € PUUPU, | 6; € PUUPU,

2. Procedure.Executor.Variable rule:

This mapping rule, denoted by the function my, defines the functional blocks responsible
for implementing entities from the Procedure.Executor.Variable class. m, has the

following type signature:

my : Procedure.Executor.Variable — PUUPU, (5.2)

The mapping rule m; states the following:
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* Every entity B; € Procedure.Executor.Variable instantiates a worker functional
block @; € PUUPUy;

* my is reversible, i.e., every f3; is mapped to a single ®;, and no other B; with j # i is

mapped to @j;

e If the RTR scheme is function reconfiguration, then @; € PU, for all workers. If
the RTR scheme is mode reconfiguration, then @; € PUUPU,. This means that, for
function reconfiguration, all workers @; must lie in the variable subsystem, whereas
for mode reconfiguration, the workers are free to be either in the fixed or the variable
subsystem, depending on the availability, i.e. if the platform is only fixed, only
variable or heterogeneous. Table 5.2 summarizes where workers @;, implementing
variable executors, are located in the platform model depending on the RTR scheme

and platform model type.
Table 5.2. Summary of the location of workers @; implementing variable executors in the plat-
form model for m;.

Mode Function
Only Fixed w; € PU -

Only Variable ; € PUy ; € PUy,
Heterogeneous | @; € PUUPUy, | @; € PUy

3. Procedure.Executor.Fixed rule:

This mapping rule defines the platform functional blocks responsible for the implemen-
tation of entities from the Procedure.Executor.Fixed application class. The mapping

rule is defined by the function m3, whose type signature is as follows:

m3 : Procedure.Executor.Fixed — PUUPU, (5.3)

The mapping rule mjs states that:

* Every entity & € Procedure.Executor.Fixed instantiates a worker functional
block @; € PUUPU,. Such worker has only one configuration, and it is not re-
configured at runtime, i.e. it is a fixed worker. For mode reconfiguration, there are

no switch and select blocks in the worker;
* mj3 is reversible, i.e., every €; is mapped to a single @;, and no other €; with j # i is
mapped to @;. Since variable executors are also mapped to workers, any worker is

either mapped to a fixed, or a variable executor, but not both; and

* Workers implementing fixed executors can be implemented in either the fixed or

variable subsystem, depending on the availability in the platform. Table 5.3 shows
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where workers @; implementing fixed executors are located in the platform model

depending on the RTR scheme and platform model type.

Table 5.3. Summary of the location of workers @; implementing fixed executors in the platform

model for ms.

‘ Mode Function
Only Fixed w; € PU -

Only Variable ; € PUy ; € PUy,
Heterogeneous | @; € PUUPU, | ®; € PUUPU,

4. Path.Control rule:

This mapping rule defines the platform functional elements that are responsible for imple-
menting entities from the Path.Control application class. The mapping rule is defined

by the function my, whose type signature is as follows:

my : Path.Control — ComU Comy U Comyy 5.4

The mapping rule my states that:

* Every entity 6; € Path.Control is associated with a single control bus p; € Com U
Com, U Comyy;

* The number of control buses varies depending on the RTR scheme, which also af-
fects the type of functional blocks connected by the buses, according to the follow-
ing rules:

— If the RTR scheme is function reconfiguration, then a control bus p; connects a
single steward to possibly multiple workers.
— If the RTR scheme is mode reconfiguration, then a control bus p j connects a

handler to a single worker.

* Depending on the RTR scheme, m4 can be reversible or not. The following rules

define when my is reversible or not:
— If the RTR scheme is function reconfiguration, then my is not reversible.
— If the RTR scheme is mode reconfiguration, then my is reversible.

The rationale behind these rules relies on the fact that function reconfiguration uses
the platform bus responsible for transferring bitstreams to the reconfigurable area.
Due to limitations on the number of such buses (normally, there is only one available
for the entire platform), the same bus must be used to connect multiple workers.
Note that such limitation is related only to the physical platform, however, it impacts

in the existence of an inverse function for my.
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* A control bus p; may belong to different platform ontology classes, i.e. Com, Com,

and Comypg, depending on the RTR scheme and platform model type.

Table 5.4 summarizes the mapping rule my4 in terms of the functional blocks connected by
control buses, existence of a reverse function and the platform ontology class associated

with the control buses.

Table 5.4. Summary of the mapping rule m4 in terms of the functional blocks connected by con-
trol buses, existence of reverse function and the platform ontology class associated

with the control buses.

Mode Function
handler to worker
Only Fixed | my is reversible -
p;j € Com

handler to worker | steward to workers
Only Variable | my is reversible | my is not reversible
pj € Comy pj € Comy

handler to worker | steward to workers
Heterogeneous | my is reversible | my is not reversible
p;j € ComU Comy pj € Compyy

5. Path.Data.Homogeneous rule:

This mapping rule defines the functional blocks responsible for implementing entities
from the Path.Data.Homogeneous application class. The mapping rule is defined by

the function ms, whose type signature is as follows:

ms : Path.Data.Homogeneous — Com U Com, (5.5

The mapping rule ms states that:

* For every homogeneous data path o; in the application model, a unique data bus p;

is created to implement it;

* mys is reversible, meaning that every data bus in the platform maps to a single homo-
geneous data path; and

* Depending on the RTR scheme and platform model type, a given data bus p; may
belong to either Com or Com,,. Table 5.5 presents a summary of the possible platform
ontology classes in which p; may belong to depending on the RTR scheme and

platform model type.
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Table 5.5. Summary of the location of data buses p; implementing homogeneous data paths in

the platform model for ms.

‘ Mode ‘ Function
Only Fixed pi € Com -

Only Variable pi € Comy pi € Comy

Heterogeneous | p; € ComUComy | p; € ComU Comy

6. Path.Data.Hybrid rule:

This mapping rule defines the functional blocks responsible for implementing entities
from the Path.Data.Hybrid application class. The mapping rule is defined by the func-

tion mg, whose type signature is as follows:

m : Path.Data.Hybrid — ComU Com, U Comyg (5.6)

The mapping rule mg states that:

* Every hybrid data path o; in the application model is associated with a data bus p;;

* Depending on the RTR scheme and platform type, mg can be reversible or not. The

following rules define when mg is reversible or not:

— If the RTR scheme is function reconfiguration and the platform type is het-
erogeneous, then mg is not reversible. A single data bus implements multiple
hybrid data paths.

— For every other combination, mg is reversible.

* Depending on the RTR scheme and platform model type, a given data bus p; may
belong to either Com, Comy or Compq. Table 5.6 presents a summary of the possible
platform ontology classes in which p; may belong to depending on the RTR scheme

and platform model type.

Table 5.6. Summary of the location of data buses p; implementing hybrid data paths in the

platform model for mg.

\ Mode \ Function
Only Fixed pj € Com -

Only Variable p;j € Comy pj € Comy

Heterogeneous | p; € ComUComy | p; € Compy

7. Value.Function rule:
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The mapping rule my has the objective of mapping functions, representing behaviors of
processes in the application model, to configurations for the platform model. The type

signature of my is as follows:

my : Value.Function — Conf UConf, 5.7

The mapping rule m; states that:

» Every function f; € Value.Function is mapped to a configuration A; € Conf U
Confy;
* my is reversible, meaning that each function f; is mapped to a single configuration

A; and vice-versa;

* Variable workers, i.e. workers mapped to variable executors using m,, have multiple
configurations associated to it. If the RTR scheme is mode reconfiguration, then
such workers have all configurations already implemented on it, and a switch/select
mechanism is used to select the active configuration. For function reconfiguration,
such worker has a single configuration implemented on it at a time, meaning that if

a new configuration is required, it overwrites the previous worker configuration; and
* Fixed workers, i.e. workers mapped to fixed executors using m3, handlers and stew-
ards have a single configuration which does not change in runtime.
8. Function reconfiguration exclusive rule:

The 8'” rule is only applicable for function reconfiguration. It defines constraints on the
number of stewards and configuration repositories. It is also used to map configurations

to the configuration repositories storing them.

Rule mg, states the following:

» Each handler has its own unique steward;
* There is at least one configuration repository in the platform model;
* Each steward can communicate with multiple configuration repositories; and

* Depending on the platform model type, a configuration repository L; can belong to
either Mem or Mem, . Table 5.7 summarizes the platform ontology class each config-

uration repository belongs to, as a function of the platform model type.
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Table 5.7. Summary of the location of memory regions y; acting as configuration repositories

in the platform model for mg.

‘ Mode ‘ Function

Only Fixed - -
Only Variable - U; € Mem,
Heterogeneous - U; € Mem

5.1 Mapping Rules Example

This section shows a comprehensive example involving the mapping rules presented in the
previous section. The application model used for this example is the SADF RISC processor
presented in Section 3.2.2, and the platform model is the heterogeneous platform example of
Section 4.2.1. Both models are already labeled according to application and platform domain
ontologies, fulfilling the pre-requisite to apply the mapping rules.

The first step is to map each element of the application model to a functional block from the

platform model using rules m; _¢. The result is shown in Table 5.8.

Table 5.8. Summary of the mapping rules applied to each element from the application model.

application element | mapping rule | functional block | platform model location

IF my worker (variable) Partitions

EXE my worker (variable) Partitions

DEC my handler ReMan
Opr ms data bus Partitions

Ourg ms data bus Partitions

Oop mg data bus DataTran

61r my control bus ReCli

OEXE my control bus ReCli

Every function defining the behaviors of each procedure in the application model is con-
verted into a configuration using rule m;. In total, there are 23 functions in the application
model, 2 for IF, 20 for EXE and 1 for DEC. These 23 functions are converted into 23 configura-
tions. Since DEC is a controller procedure, the single function associated with it is mapped to a
configuration associated with the handler ReMan. Such configuration is implemented in software
due to the fact that ReMan is part of the fixed subsystem. For the remaining 22 configurations,
rule mg is used to define which configuration repository each one of these configurations will
be stored as bitstreams. For the chosen platform model, all configurations are stored in the only
configuration repository available.

Figure 5.2 illustrates in a diagram the SADF RISC processor application model mapped to

the platform model.
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Abstract Platform Model
ProgDev ReconDev
DEC o o]
© ]
ReMan & | Data Bus g L Oop
— s [ gi=H '
5 : _| ¥
ReCon [« ReCli o1F | worker
; o] Tou
: o Control Bus = EXE
' Configuration ! Q o s worker
' repository ! -
{ 1

Figure 5.2. SADF RISC processor application mapped into platform model.

A few remarks are pointed out for this example:

* A single control bus (ReC11i) is available in the platform. As a consequence, all variable
workers are connected to this control bus. Also, there can be only one steward and,
consequently, one configuration repository in the platform model. Many commercial off-
the-shelf platforms have a single bus used for transporting bitstreams for reconfiguration
purposes, hence, a single control bus. The platform model example used represents one

of such platforms.

* The platform example represents a generic heterogeneous platform and considers the
Partitions area as the entire variable subsystem. This means that, after the applica-
tion of the mapping rules, the designer will have to perform another step which consists
in defining where each worker and data bus mapped to the Partitions area is located.
This step is not shown in the example because the mapping rules do not constraint the lo-
cation of the workers and data buses inside the Partitions area, instead they constraint
the functional blocks to the Partitions area. Design space exploration techniques can
be used to provide an optimal location for these functional blocks inside the Partitions

area, however such techniques are out of scope for this thesis.
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6 CONCLUSION

This chapter concludes this thesis by wrapping up the concepts presented here as the foundations
of a design flow for runtime reconfigurable systems. A summary of the publications related to
the present research is also shown, as well as some directions for future works.

To understand the relevance of the work presented here, the importance of such concept in
future embedded systems must be taken into consideration. RTR can provide several benefits

for embedded systems, such as:

* Reduction of the logical area of a system (defined as the maximum area occupied by the
logic circuitry of a system). Different tasks that are never executed simultaneously need
not to have their logic circuitry implemented at the same time. Runtime reconfiguration
allows for logic circuitry to be implemented in runtime only when needed, increasing
usability and, as a consequence, reducing the cost of the system related to the hardware
platform (platforms with smaller logic areas are generally cheaper). The concept of exe-
cuting larger programs in smaller systems has been used in software for decades with the

overlaying technique, and now it can be applied to hardware with runtime reconfiguration.

* Increased fault tolerance for safety-critical systems. In the event of a hardware failure,
critical functionalities can be transferred to a new hardware location. Moreover, such new
hardware location could be initially configured with less critical functionalities, and then
reconfigured with critical functionalities when needed, eliminating the system’s need to

have dedicated unused spare hardware.

Up until today, the design of RTR systems has mostly been done via ad hoc procedures for
small scale and experimental applications. Formal design methodologies are not used in the
development of RTR systems in a systematic way. This thesis comprises the first steps towards

a formal design methodology for RTR systems by providing the following concepts:

* Modeling RTR applications with formal models of computation, allowing simulation and

formal property verification.

In this thesis, RTR applications are modeled with either the synchronous or the SADF
models of computation. The synchronous model is best suited for RTR applications
in which time is an important factor, such as real-time applications. As such, the syn-
chronous runtime reconfigurable processor presented in Section 3.2.1 takes reconfigura-

tion time into consideration in its operational semantics. On the other hand, the SADF
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model is best suited for RTR applications in which time is not important, such as stream-

ing applications.

In this matter, it is important to emphasize two aspects:

1. Modeling RTR applications is not limited to synchronous and SADF models, as

other models of computation can also be used; and

2. The design of embedded systems often includes the interaction of the designed sys-
tem with the environment, as such interaction is relevant to the correct behavior of
the overall system (embedded system + environment). Therefore, it may be nec-
essary to include the model of the environment in the high level design phase. In
the proposed design flow, the application model refers only to the model of the de-
signed system (embedded system), i.e. the model of environment is not part of the

application model.

* An application domain ontology for classification of RTR application model entities.

The application domain ontology is used to group each entity in an application model
into classes based on their common characteristics. Every class defined in the applica-
tion domain ontology is derived from one of the three top classes: procedure, path and
value. Such domain ontology is general enough to be used to classify entities of RTR
applications modeled with many different models of computation, i.e. it is not limited to

synchronous and SADF models.

* Modeling the reconfigurable platform with functional blocks.

Specific functional blocks are defined to implement runtime reconfiguration functionali-
ties. The functional block handler acts as the decision making mechanism, selecting the
configuration of each worker. The steward is the functional block responsible for fetch-
ing configurations selected by the handler and sending them to each worker via control
buses. Memory regions are various memory blocks that store data and configurations, in
the case of the configuration repository. Control and data buses are also defined to set

communication paths between functional blocks.

* A platform domain ontology for classification of reconfigurable platform functional blocks.

The platform domain ontology follows the same principles as the application domain on-
tology, which is grouping platform functional blocks into classes based on their common
characteristics. The ontology follows the concept of the fixed plus variable computer
presented by Estrin (1960), and the classes defined in the ontology are derived from the
top classes fixed, variable and mixed (mixed being the intersection of fixed and variable).
The platform domain ontology is general enough to represent many different commercial
off-the-shelf platforms.
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* A set of mapping rules to map an application model into a platform model using as basis
the classification mechanism provided by both application and platform domain ontolo-

gies.

In order to combine application and platform models, a set of mapping rules is defined to
map each application model entity to a platform functional block. The mapping rules are
defined on top of both application and platform domain ontologies, in order to abstract
away the specific model of computation and platform model used for applications and

platforms.

6.1 Publications

Papers published by the author of this thesis as both leading and co-author are listed as follows:

* As leading author:

— Modeling and Simulation of Dynamic Applications Using Scenario-Aware Dataflow
(Bonna et al., 2019b).

Since its conception, SADF has been treated as a structural model, allowing many
properties and analysis techniques to be developed. Although implicit in the struc-
tural model, its operational semantics, what allows a model of computation to be
executed, had not yet been defined. The paper formalizes the operational semantics
for SADF by introducing a functional SADF model, and presents its implementation
in ForSyDe, allowing simulation of SADF applications. Such operational semantics
is used through Section 3.2.2 of this thesis.

— Triple Modular Redundancy based on Runtime Reconfiguration and Formal Models
of Computation (Bonna et al., 2019a).
The paper presents a conceptual architecture for safety-critical systems using run-

time reconfiguration and a triple modular redundancy scheme as the fault detection

mechanism. Such architecture was used as example in Section 3.2.1 of this thesis.
* As co-author:

— Analysis and Identification of Possible Automation Approaches for Embedded Sys-
tems Design Flows (Horita et al., 2020).
The paper shows a method of identification of possible automation of steps in a
design flow. The goal of the method is to assist in low-level implementation of

automatic code generation.
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— Analysis and Comparison of Frameworks Supporting Formal System Development
based on Models of Computation (Horita et al., 2019a).

The paper shows a comparison between ForSyDe and Ptolemy II, two frameworks
for model-based development supporting models of computation, considering mul-

tiple aspects.

— Lempel-Ziv-Markov Chain Algorithm Modeling using Models of Computation and
ForSyDe (Horita et al., 2019b).

The paper shows a case study in which a famous data compression algorithm is
modeled using SDF and ForSyDe.

6.2 Future Works

The scope of this thesis ends with the virtual implementation model. However, there are further
steps to be developed in order to achieve a complete formal design flow for RTR systems, such
as the one represented by Figure 6.1. The development of the following steps are proposed as

future works:

* A design space exploration to select the optimal location to implement the functional
blocks in the reconfigurable area using the virtual implementation model as constraint.
As inputs to this design space exploration step, an optimization criteria must be provided
by the designer, as well as other possible constraints, e.g., performance and power con-

sumption.

e Automatic code generation for both software and hardware using an implementation
model complying with the virtual implementation model, i.e. a feasible implementa-
tion model considering the virtual implementation model as constraint. Such feasible
implementation model could be the output of the design space exploration step previ-
ously mentioned. The work presented by Aronsson and Sheeran (2017) could be used as

inspiration for the development of this step in the design process.
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Figure 6.1. Complete design flow for RTR systems. Nodes in gray are out of scope of this
thesis, and thus, considered future work.
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Appendix A SOURCE CODE

A.1 Synchronous Triple Modular Redundancy

1 _____________________________________________________________________________
2 — |

3 -- Module : TMR (Triple Modular Redundancy)

4 -- Copyright : (c) Ricardo Bonna

S -- License : not available

6 -

7 -- Maintainer : ricardobonna@gmail.com

8§ -- Stability : experimental

9 -- Portability : portable

10 —-

11 -- This is a prototype triple modular redundancy using runtime reconfiguration
12 -

13 e
14

15 module TMR ( rtrp, voter, ctrlDev, rtrpl, tmrPN ) where

16

17 import ForSyDe.Shallow

18

19
20 -- Auxiliary functions
21 fst’ :: (a,b,c) > a
22 fst’ (a,_,_) = a
23
24 snd’ :: (a,b,c) > Db
25 snd’ (_,b,_) =D
26
27 trd’ :: (a,b,c) > c
28 trd’ (_,_,c) =c
29
30 tupleSel :: (a,a,a,a,a) —> Int -> a
31 tupleSel (a,_,_,_,.) 1 =a
32 tupleSel (_,a,_,_,_) 2 =a
33 tupleSel (_,_,a,_,_) 3 =a
34 tupleSel (_,_,_,a,_) 4 =a
35 tupleSel (_,_,_,_,a) 6 =a
36 tupleSel (_,_,_,_,_) _ = error "tupleSel: Outside tuple range"
37
38
39 -- Process Functionalities
40

41 rtrpFunc :: (Eq x) => AbstExt (AbstExt x -> AbstExt s_in -> AbstExt x, AbstExt x —->
AbstExt s_in -> AbstExt y, Int) -> AbstExt s_in

42 -> AbstExt x -> (AbstExt x -> AbstExt s_in -> AbstExt x, AbstExt x ->
AbstExt s_in -> AbstExt y, Int, AbstExt x)
43 -> ((AbstExt y, AbstExt x), (AbstExt x -> AbstExt s_in -> AbstExt x,

AbstExt x -> AbstExt s_in -> AbstExt y, Int, AbstExt x))
44 rtrpFunc ctk s_ink x’k (fk,gk,mk,xk) = ((yk, xk1), (fk1,gkl,mkl,xk1))
45 where yk = ykFunc ctk s_ink x’k gk mk xk
46 (fk1,gkl,mkl,xkl) = nStateF ctk s_ink x’k (fk,gk,mk,xk)
47
48
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49 nStateF :: (Eq x) => AbstExt (AbstExt x -> AbstExt s_in -> AbstExt x, AbstExt x ->
AbstExt s_in -> AbstExt y, Int)

50 -> AbstExt s_in

51 -> AbstExt x

52 -> (AbstExt x -> AbstExt s_in —-> AbstExt x, AbstExt x -> AbstExt s_in —>
AbstExt y, Int, AbstExt x)

53 -> (AbstExt x -> AbstExt s_in -> AbstExt x, AbstExt x —> AbstExt s_in ->

AbstExt y, Int, AbstExt x)
54 nStateF Abst s_ink x’k (fk,gk,mk,xk)

55 | mk > 0 = (fk, gk, mk - 1, Abst)

56 | xk == Abst = (fk, gk, 0, fk x’k s_ink)

57 | otherwise = (fk, gk, 0, fk xk s_ink)

58 nStateF (Prst ctk) _ _ _ = (fst’ ctk, snd’ ctk, trd’ ctk - 1, Abst)
59

60

61 ykFunc :: (Eq x) => AbstExt (AbstExt x -> AbstExt s_in -> AbstExt x, AbstExt x —->
AbstExt s_in -> AbstExt y, Int)

62 -> AbstExt s_in

63 -> AbstExt x

64 -> (AbstExt x -> AbstExt s_in -> AbstExt y)

65 -> Int

66 -> AbstExt x

67 -> AbstExt y

68 ykFunc Abst s_ink x’k gk mk xk

69 | mk > 0 = Abst

70 | xk == Abst = gk x’k s_ink

71 | otherwise = gk xk s_ink

72 ykFunc _ _ _ _ _ _ = Abst

73

74

75 voterFunc :: (Eq y) => (Int, Int, Int)

76 -> ((AbstExt y, AbstExt x), (AbstExt y, AbstExt x), (AbstExt y, AbstExt x)
, (AbstExt y, AbstExt x), (AbstExt y, AbstExt x))

77 -> (AbstExt y, AbstExt x, AbstExt Int)

78 voterFunc (a,b,c) s_in

79 | ya == yb && ya == yc = (ya, xa, Abst)

80 | ya /= yb & yb == yc = (yb, xb, Prst a)

81 | yb /= ya && ya == yc = (ya, xa, Prst b)

82 | ya /= yc && yb == ya = (ya, xa, Prst c)

83 | otherwise = error "voterFunc: Three inputs are different"

84 where (ya, xa) = tupleSel s_in a

85 (yb, xb) = tupleSel s_in b

86 (yc, _) = tupleSel s_in c

87

88

89 ctrlDevlogic :: (AbstExt x -> AbstExt s_in -> AbstExt x, AbstExt x -> AbstExt s_in
-> AbstExt y, Int)

90 -> AbstExt Int -> Int -> (Int, Int, Int) -> ((Int, Int, Int), Int,

91 (AbstExt (AbstExt x —> AbstExt s_in -> AbstExt x, AbstExt x -> AbstExt
s_in -> AbstExt y, Int),

92 AbstExt (AbstExt x -> AbstExt s_in -> AbstExt x, AbstExt x -> AbstExt
s_in -> AbstExt y, Int),

93 AbstExt (AbstExt x -> AbstExt s_in -> AbstExt x, AbstExt x -> AbstExt
s_in -> AbstExt y, Int),

94 AbstExt (AbstExt x -> AbstExt s_in —-> AbstExt x, AbstExt x -> AbstExt
s_in -> AbstExt y, Int),

95 AbstExt (AbstExt x -> AbstExt s_in -> AbstExt x, AbstExt x -> AbstExt

s_in -> AbstExt y, Int)))
96 ctrlDevLogic _ Abst m cv

97 | m >0 = (cv, m-1, list4tuple (replicate n Abst))

98 | otherwise = (cv, 0, list4tuple (replicate n Abst))

99 where n = 5

100 ctrlDevlogic (f,g,m’) (Prst r) m (a,b,c)

101 | m >0 = ((a,b,c), m-1, listdtuple (replicate n Abst))

102 | r == a = ((d,b,c), m’, list4tuple (func n (d-1) (Prst (f,g,m’)) Abst))
103 | r ==b = ((a,d,c), m’, list4tuple (func n (d-1) (Prst (f,g,m’)) Abst))
104 | r ==c = ((a,b,d), m’, list4tuple (func n (d-1) (Prst (f,g,m’)) Abst))
105 | otherwise = error "ctrlDevLogic: Unmatched pattern"

106 where d = max (max a b) ¢ + 1

107 n=>5

108

Ricardo de Souza Bonna



APPENDIX A. SOURCE CODE 92

109
110
111
112
113
114
115
116
117
118
119
120
121
122
123

124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149

150

151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170

171
172

func :: Int -> Int -> a -> a —> [a]

func 0 _ _ _ =[]

func n 0 al a2 = al : replicate (n-1) a2
func n k al a2 = a2 : func (n-1) (k-1) al a2
list4tuple :: [a] -> (a,a,a,a,a)

list4tuple [a,b,c,d,e] = (a,b,c,d,e)
list4tuple _ = error "list4tuple: Input list with wrong length"

—— RTRPs functionalities

prosoponl :: (AbstExt Int -> AbstExt Int -> AbstExt Int, AbstExt Int -> AbstExt Int
-> AbstExt Int, Int)
prosoponl = (stateTranl, stateOut, 2)

stateTranBreak :: AbstExt Int -> AbstExt Int -> AbstExt Int
stateTranBreak Abst _ = Abst
stateTranBreak _ Abst = Abst
stateTranBreak (Prst x) (Prst s_in)
| x == 3 = Prst (x - s_in)
| otherwise = Prst (x + s_in)

stateTranl :: AbstExt Int -> AbstExt Int -> AbstExt Int
stateTranl (Prst x) (Prst s_in) = Prst (x + s_in)
stateTranl Abst Abst

stateTranl _ Abst Abst

stateTran2 :: AbstExt Int -> AbstExt Int -> AbstExt Int
stateTran2 (Prst x) (Prst s_in) = Prst (x - s_in)
stateTran2 Abst Abst

stateTran2 _ AbsE Abst

stateOut :: AbstExt Int -> AbstExt Int -> AbstExt Int
stateOut a _ = a

—— Process Definitions

rtrp :: (Eq x, Eq y) => (AbstExt x —-> AbstExt s_in -> AbstExt x, AbstExt x ->

AbstExt s_in -> AbstExt y, Int, AbstExt x) -- ~ Initial configuration

-> Signal (AbstExt (AbstExt x -> AbstExt s_in -> AbstExt x, AbstExt x —>
AbstExt s_in -> AbstExt y, Int)) -- ~ Control input

-> Signal (AbstExt s_in) -- 7 Signal input

-> Signal (AbstExt x) -— ~ Initial state input

-> Signal (AbstExt y, AbstExt x) -- ~ Output and state

rtrp (£0,g0,m0,x0) ct s_in x’ = out
where (out, fb) = unzipSY $ comb4SY rtrpFunc ct s_in x’ fb’
fb’ = delaySY (£0,g0,m0,x0) fb

voter :: (Eq y) => Signal (Int, Int, Int)
-> Signal (AbstExt y, AbstExt x)
-> Signal (AbstExt y, AbstExt x)
-> Signal (AbstExt y, AbstExt x)
-> Signal (AbstExt y, AbstExt x)
—-> Signal (AbstExt y, AbstExt x)
-> (Signal (AbstExt y), Signal (AbstExt x), Signal (AbstExt Int))
voter cv sl s2 s3 s4 s5 = unzip3SY $ comb2SY voterFunc cv (zip5SY s1 s2 s3 s4 sb)

ctrlDev :: Signal (AbstExt Int) -> (Signal (Int, Int, Int),
(Signal (AbstExt (AbstExt Int -> AbstExt Int -> AbstExt Int, AbstExt Int ->
AbstExt Int -> AbstExt Int, Int)),
Signal (AbstExt (AbstExt Int -> AbstExt Int -> AbstExt Int, AbstExt Int —->
AbstExt Int -> AbstExt Int, Int)),
Signal (AbstExt (AbstExt Int -> AbstExt Int -> AbstExt Int, AbstExt Int ->
AbstExt Int —> AbstExt Int, Int)),
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173
174

175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211

Signal (AbstExt (AbstExt Int -> AbstExt Int -> AbstExt Int, AbstExt Int —->
AbstExt Int -> AbstExt Int, Int)),
Signal (AbstExt (AbstExt Int -> AbstExt Int -> AbstExt Int, AbstExt Int ->
AbstExt Int —> AbstExt Int, Int))))
ctrlDev r = (cv, cts)
where (cv, m, ct) = unzip3SY $ comb3SY (ctrlDevLogic prosoponl) r m’ cv’
cts = unzipb5SY ct
m’ = delaySY O m
cv’ = delaySY (1,2,3) cv

—— Process Network

rtrpl = rtrp (stateTranl, stateOut, O, Abst)
rtrp2 = rtrp (stateTranBreak, stateOut, O, Abst)
rtrp3 = rtrp (stateTranl, stateOut, O, Abst)
rtrp4 = rtrp (stateTran2, stateOut, O, Abst)
rtrpbs = rtrp (stateTran2, stateOut, O, Abst)

-— tripleMR :: Signal (AbstExt Int) -> (Signal (AbstExt Int), Signal (AbstExt Int))
tmrPN s_in = (r, s_out, out2, out4d)
where outl = rtrpl ctl’ s_in x’

out2 = rtrp2 ct2’ s_in x’
out3 = rtrp3 ct3’ s_in x’
out4 = rtrp4 ct4’ s_in x’
outb = rtrpb ctb’ s_in x’

(s_out, x, r) = voter cv’ outl out2 out3 out4d outh
x’ = delaySY (Prst 0) x

(cv, (ctl,ct2,ct3,ctd,ct5)) = ctrlDev r

cv’ = delaySY (1,2,3) cv

ctl’ = delaySY Abst ctl

ct2’ = delaySY Abst ct2

ct3’ = delaySY Abst ct3

ct4’ = delaySY Abst ct4d

ctb’ = delaySY Abst ctb
-— Test Input

signalln :: Signal (AbstExt Int)
signalln = signal $ replicate 11 (Prst 1)

A.2 ForSyDe/SADF

10
11
12
13
14
15
16
17
18
19

-— Module : ForSyDe.Shallow.MoC.SADF

-- Copyright : (c) Ricardo Bonna, KTH/ICT/ES, ForSyDe-Group
—-- License : BSD-style (see the file LICENSE)

—-- Maintainer : ricardobonna®@gmail.com

-—- Stability :  experimental

-- Portability : portable

-- Experimental 1lib. Further test needed

module ForSyDe.Shallow.MoC.SADF (
-- * Sequential Process Constructors
-- | Sequential process constructors are used for processes that
-- have a state. One of the input parameters is the initial state.
delaySADF,
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20
21
2
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90

—— * Kernels

-- | Based on the process constructors in the SADF-MoC, the

-- SADF-library provides SADF-kernels with single or multiple inputs
kernell1SADF, kernell2SADF, kernell3SADF, kernell4SADF, kernell5SADF,
kernel21SADF, kernel22SADF, kernel23SADF, kernel24SADF, kernel25SADF,
kernel31SADF, kernel32SADF, kernel33SADF, kernel34SADF, kernel35SADF,
kernel41SADF, kernel42SADF, kernel43SADF, kernel44SADF, kernel45SADF,
kernel51SADF, kernelb52SADF, kernelb3SADF, kernelb4SADF, kernelb55SADF,

-—- x Detectors

-- | Based on the process constructors in the SADF-MoC, the

-— SADF-library provides SADF-detectors with single or multiple inputs
detector11SADF, detector12SADF, detector13SADF, detector14SADF, detector15SADF,
detector21SADF, detector22SADF, detector23SADF, detector24SADF, detector25SADF,
detector31SADF, detector32SADF, detector33SADF, detector34SADF, detector35SADF,
detector41SADF, detector42SADF, detector43SADF, detector44SADF, detector45SADF,
detector51SADF, detector52SADF, detectorb53SADF, detector54SADF, detector55SADF
) where

import ForSyDe.Shallow.Core

—-— SEQUENTIAL PROCESS CONSTRUCTORS --

—-- | The process constructor ’delaynSADF’ delays the signal n event
-— cycles by introducing n initial values at the beginning of the
-— output signal.

delaySADF :: [a] -> Signal a -> Signal a

delaySADF initial_tokens xs = signal initial_tokens +-+ xs

-- > Kernels with one output

—-— | The process constructor ’kernelll1SADF’ constructs an SADF kernel with
—-- one data input and one data output signals. The scenario (token rates and
—-— function) is determined by the control signal.

kernell1SADF :: Signal (Int, Int, [a] -> [b]) —— ~ Control signal
-> Signal a -— 7 Input
-> Signal b —-— 7 Output

kernell11SADF = mapSADF

—-- | The process constructor ’kernel21SADF’ constructs an SADF kernel with
-- two data input and one data output signals. The scenario (token rates and
—-- function) is determined by the control signal.
kernel21SADF :: Signal ((Int, Int), Int, [a] -> [b] -> [c])

-> Signal a -> Signal b

-> Signal c¢
kernel21SADF = zipWithSADF

—-- | The process constructor ’kernel31SADF’ constructs an SADF kernel with
—-- three data input and one data output signals. The scenario (token rates and
—-— function) is determined by the control signal.
kernel31SADF :: Signal ((Int, Int, Int), Int, [a]l -> [b] -> [c] -> [d])
-> Signal a -> Signal b -> Signal ¢
-> Signal d
kernel31SADF = zipWith3SADF

-- | The process constructor ’kernel41SADF’ constructs an SADF kernel with

—-- four data input and one data output signals. The scenario (token rates and

—-- function) is determined by the control signal.

kernel41SADF :: Signal ((Int, Int, Int, Int), Int, [a] -> [b] -> [c] -> [d] -> [el)
-> Signal a -> Signal b -> Signal c -> Signal d
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95

91 -> Signal e

92 kernel41SADF = zipWith4SADF

93

94 -- | The process constructor ’kernel51SADF’ constructs an SADF kernel with

95 -- five data input and one data output signals. The scenario (token rates and

96 -- function) is determined by the control signal.

97 kernel51SADF :: Signal ((Int, Int, Int, Int, Int), Int, [a]l -> [b] -> [c] -> [d] ->
el —> [£D)

98 -> Signal a -> Signal b -> Signal c¢ -> Signal d -> Signal e

99 -> Signal f

100 kernelb51SADF = zipWith5SADF

101

102

103 -- > Kernels with two outputs

104

105 -- | The process constructor ’kernell12SADF’ constructs an SADF kernel with

106 -- one data input and two data output signals. The scenario (token rates and

107 -- function) is determined by the control signal.

108 kernell2SADF :: Signal (Int, (Int, Int), [a]l -> ([b], [cl))

109 -> Signal a

110 -> (Signal b, Signal c)

111 kernell2SADF ct xs = unzipSADF (get_prodToken ct) $ mapSADF (inpOutin ct) xs
112

113 -- | The process constructor ’kernel22SADF’ constructs an SADF kernel with
114 -- two data input and two data output signals. The scenario (token rates and
115 -- function) is determined by the control signal.

116 -—-

117 == >>> let scenl = ((1,1), (1,1), \[a] [b] -> ([2*a], [2*b]))

[e])

118 —-- >>> let scen2 = ((2,2), (1,1), \[a,b] [c,d] -> ([at+b], [c+d]))

119 -- >>> let scen3 = ((1,2), (2,1), \[al [b,c] —> ([b,c], [al))

120 -- >>> let sc = signal [scenl, scen2, scen3]

121 >>> kernel22SADF sc (signal [1..20]) (signal [21 .. 401)

122 —- ({2 5,24,25},{42,45,4})

123 kernelQQSADF :: Signal ((Int, Int), (Int, Int), [a] -> [b] -> ([c], [d1))

124 -> Signal a -> Signal b

125 -> (Signal c, Signal d)

126 kernel22SADF ct xs ys = unzipSADF (get_prodToken ct) $ zipWithSADF (inpQOut2n ct) xs
ys

127

128 -- | The process constructor ’kernel32SADF’ constructs an SADF kernel with

129 -- three data input and two data output signals. The scenario (token rates and

130 -- function) is determined by the control signal.

131 kernel32SADF :: Signal ((Int, Int, Int), (Int, Int), [a] -> [b] -> [c] -> ([d],
)

132 -> Signal a -> Signal b -> Signal ¢

133 -> (Signal d, Signal e)

134  kernel32SADF ct as bs cs

135 = unzipSADF (get_prodToken ct) $ zipWith3SADF (inpOut3n ct) as bs cs

136

137 -- | The process constructor ’kernel42SADF’ constructs an SADF kernel with

138 -- four data input and two data output signals. The scenario (token rates and

139 -- function) is determined by the control signal.

140 kernel42SADF :: Signal ((Int, Int, Int, Int), (Int, Int), [a]l -> [b] -> [c] -> [d]

-> ([el, [£1))

141 -> Signal a -> Signal b -> Signal c -> Signal d

142 -> (Signal e, Signal f)

143  kernel42SADF ct as bs cs ds

144 = unzipSADF (get_prodToken ct) $ zipWith4SADF (inpOuté4n ct) as bs cs ds
145

146 -- | The process constructor ’kernel52SADF’ constructs an SADF kernel with
147 -- five data input and two data output signals. The scenario (token rates and
148 -- function) is determined by the control signal.

149 kernel52SADF :: Signal ((Int, Int, Int, Int, Int), (Int, Int), [a]

150 => [b] -> [c] -> [d] -> [el —> ([£f1, [gl)

151 -> Signal a -> Signal b -> Signal ¢ -> Signal d -> Signal e

152 -> (Signal f, Signal g)

153 kernelb2SADF ct as bs cs ds es

154 = unzipSADF (get_prodToken ct) $ zipWith5SADF (inpQOutbn ct) as bs cs ds es
155

156

157 -- > Kernels with three outputs
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158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173

174
175
176
177
178

179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218

219
220
221

222
223
224

—-- | The process constructor ’kernell3SADF’ constructs an SADF kernel with
—-- one data input and three data output signals. The scenario (token rates and
—-- function) is determined by the control signal.
kernel13SADF :: Signal (Int, (Int, Int, Int), [a] -> ([bl, [c], [d]))
-> Signal a
-> (Signal b, Signal c, Signal d)
kernell13SADF ct xs = unzip3SADF (get_prodToken ct) $ mapSADF (inpQutln ct) xs

—-- | The process constructor ’kernel23SADF’ constructs an SADF kernel with

-- two data input and three data output signals. The scenario (token rates and

-- function) is determined by the control signal.

kernel23SADF :: Signal ((Int, Int), (Int, Int, Int), [a] -> [b] -> ([c], [d], [el))
—-> Signal a -> Signal b
-> (Signal c, Signal d, Signal e)

kernel23SADF ct xs ys = unzip3SADF (get_prodToken ct) $ zipWithSADF (inpOut2n ct) xs

ys

-- | The process constructor ’kernel33SADF’ constructs an SADF kernel with
—-- three data input and three data output signals. The scenario (token rates and
—-- function) is determined by the control signal.
kernel33SADF :: Signal ((Int, Int, Int), (Int, Int, Int), [a]l -> [b] -> [c] -> ([d],
lel, [£1))
-> Signal a —> Signal b -> Signal c
-> (Signal d, Signal e, Signal f)
kernel33SADF ct as bs cs
= unzip3SADF (get_prodToken ct) $ zipWith3SADF (inpOut3n ct) as bs cs

—-— | The process constructor ’kernel43SADF’ constructs an SADF kernel with
—-- four data input and three data output signals. The scenario (token rates and
—-— function) is determined by the control signal.
kernel43SADF :: Signal ((Int, Int, Int, Int), (Int, Int, Int),
fa] > [b] —> [c] —> [d] —> ([e]l, [£f], [gl))
-> Signal a -> Signal b -> Signal ¢ -> Signal d
-> (Signal e, Signal f, Signal g)
kernel43SADF ct as bs cs ds
= unzip3SADF (get_prodToken ct) $ zipWith4SADF (inpOut4n ct) as bs cs ds

-- | The process constructor ’kernel53SADF’ constructs an SADF kernel with
-- five data input and three data output signals. The scenario (token rates and
-- function) is determined by the control signal.
kernel53SADF :: Signal ((Int, Int, Int, Int, Int), (Int, Int, Int),
fal] => [b] -> [c] -> [d] -> [e] -> ([f], [g], [h]))
-> Signal a -> Signal b -> Signal ¢ -> Signal d -> Signal e
-> (Signal f, Signal g, Signal h)
kernel53SADF ct as bs cs ds es
= unzip3SADF (get_prodToken ct) $ zipWith5SADF (inpOutbn ct) as bs cs ds es

-— > Kernels with four outputs

-- | The process constructor ’kernell14SADF’ constructs an SADF kernel with
—-- one data input and four data output signals. The scenario (token rates and
—-- function) is determined by the control signal.
kernell4SADF :: Signal (Int, (Int, Int, Int, Int), [a]l -> ([b]l, [c], [dl, [el))
-> Signal a
-> (Signal b, Signal c, Signal d, Signal e)
kernell14SADF ct xs = unzip4SADF (get_prodToken ct) $ mapSADF (inpQutln ct) xs

—-- | The process constructor ’kernel24SADF’ constructs an SADF kernel with
-- two data input and four data output signals. The scenario (token rates and
-- function) is determined by the control signal.
kernel24SADF :: Signal ((Int, Int), (Int, Int, Int, Int), [a]l -> [b] -> ([c], [d]l, [
el, [£1))
-> Signal a -> Signal b
-> (Signal c, Signal d, Signal e, Signal f)
kernel24SADF ct xs ys = unzip4SADF (get_prodToken ct) $ zipWithSADF (inpQOut2n ct) xs
ys

—-- | The process constructor ’kernel34SADF’ constructs an SADF kernel with
—-- three data input and four data output signals. The scenario (token rates and
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225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259

260
261
262
263
264
265
266
267

268
269
270

271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292

—-— function) is determined by the control signal.
kernel34SADF :: Signal ((Int, Int, Int), (Int, Int, Int, Int),
fal] —> [b] —> [c] -> ([d], [el, [£f], [gl))
-> Signal a -> Signal b -> Signal ¢
-> (Signal d, Signal e, Signal f, Signal g)
kernel34SADF ct as bs cs
= unzip4SADF (get_prodToken ct) $ zipWith3SADF (inpOut3n ct) as bs cs

-- | The process constructor ’kernel44SADF’ constructs an SADF kernel with
—-- four data input and four data output signals. The scenario (token rates and
-- function) is determined by the control signal.
kernel44SADF :: Signal ((Int, Int, Int, Int), (Int, Int, Int, Int),
fa] > [b] —> [c] —> [d]l —> ([el, [£f], [gl, [h]))
-> Signal a -> Signal b -> Signal c -> Signal d
-> (Signal e, Signal f, Signal g, Signal h)
kernel44SADF ct as bs cs ds
= unzip4SADF (get_prodToken ct) $ zipWith4SADF (inpOut4n ct) as bs cs ds

-— | The process constructor ’kernelb54SADF’ constructs an SADF kernel with
-- five data input and four data output signals. The scenario (token rates and
—-- function) is determined by the control signal.
kernel54SADF :: Signal ((Int, Int, Int, Int, Int), (Int, Int, Int, Int),
[a] -> [b] => [c] > [d] -> [e]l —> ([£f], [gl, [h]l, [il1))
-> Signal a -> Signal b -> Signal c¢ -> Signal d -> Signal e
-> (Signal f, Signal g, Signal h, Signal i)
kernelb4SADF ct as bs cs ds es
= unzip4SADF (get_prodToken ct) $ zipWith5SADF (inpOutbn ct) as bs cs ds es

-- > Kernels with five outputs

-- | The process constructor ’kernell15SADF’ constructs an SADF kernel with
—-- one data input and five data output signals. The scenario (token rates and
—-- function) is determined by the control signal.
kernel15SADF :: Signal (Int, (Int, Int, Int, Int, Int), [a]l -> ([bl, [c], [d], [e],
[£1))
-> Signal a
-> (Signal b, Signal c, Signal d, Signal e, Signal f)
kernell5SADF ct xs = unzip5SADF (get_prodToken ct) $ mapSADF (inpQOutln ct) xs

-- | The process constructor ’kernel25SADF’ constructs an SADF kernel with
-- two data input and five data output signals. The scenario (token rates and
—-- function) is determined by the control signal.
kernel25SADF :: Signal ((Int, Int), (Int, Int, Int, Int, Int), [a] -> [b] -> ([c], [
dl, [el, [f1, [gl))
-> Signal a -> Signal b
-> (Signal c, Signal d, Signal e, Signal f, Signal g)
kernel25SADF ct xs ys = unzipb5SADF (get_prodToken ct) $ zipWithSADF (inpOut2n ct) xs
ys

—-- | The process constructor ’kernel35SADF’ constructs an SADF kernel with
—-- three data input and five data output signals. The scenario (token rates and
—-- function) is determined by the control signal.
kernel35SADF :: Signal ((Int, Int, Int), (Int, Int, Int, Int, Int),
(al -> [b] => [c] -> ([dl, [el, [£f], [gl, [h]))
-> Signal a -> Signal b -> Signal c
-> (Signal d, Signal e, Signal f, Signal g, Signal h)
kernel35SADF ct as bs cs
= unzipbSADF (get_prodToken ct) $ zipWith3SADF (inpOut3n ct) as bs cs

—-- | The process constructor ’kernel45SADF’ constructs an SADF kernel with
—-- four data input and five data output signals. The scenario (token rates and
—-— function) is determined by the control signal.
kernel45SADF :: Signal ((Int, Int, Int, Int), (Int, Int, Int, Int, Int),
fal] -> [b] -> [c] -> [d] -> ([e]l, [f], [g]l, [h], [il))
-> Signal a -> Signal b -> Signal c -> Signal d
-> (Signal e, Signal f, Signal g, Signal h, Signal i)
kernel45SADF ct as bs cs ds
= unzipbSADF (get_prodToken ct) $ zipWith4SADF (inpOut4n ct) as bs cs ds

—-— | The process constructor ’kernel55SADF’ constructs an SADF kernel with
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293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327

328
329
330
331
332
333
334
335
336
337
338
339
340
341

342
343
344
345
346
347
348
349
350
351
352
353
354
355

356
357
358
359
360

—-- five data input and five data output signals. The scenario (token rates and
—-— function) is determined by the control signal.
kernelb5SADF :: Signal ((Int, Int, Int, Int, Int), (Int, Int, Int, Int, Int),
fa] > [b] => [c] —> [d] > [e] -> ([f], [g]l, [h], [il, [31))
-> Signal a -> Signal b -> Signal ¢ -> Signal d —> Signal e
-> (Signal f, Signal g, Signal h, Signal i, Signal j)
kernel55SADF ct as bs cs ds es
= unzipbSADF (get_prodToken ct) $ zipWith5SADF (inpOutbn ct) as bs cs ds es

-— > Detectors with one output

-- | The process constructor ’detector11SADF’ takes the consumption token rate
-- (@c@), the state transition function (@f@), the scenario selection (@g@) and
—-— the initial state (@s0@), and constructs an SADF detector with

-- a single data input and a single control output signals.

detector11SADF :: Int - consumption rates (Q@c@)
-> (s > [a] > s) -- ~ next state function (Qf@)
-> (s => (Int, [yl)) -- ~ scenario selection (Qg@)
-> s -- 7~ initial state (@s0@)
-> Signal a -- 7 Input
-> Signal y ~ Output

detector11SADF c f g sO as = outputFSM g next_state
where next_state = nextStateFSM c f current_state as
current_state = delaySADF [sO] next_state

—-- | The process constructor ’detector21SADF’ takes the consumption token rate
-— (@c@), the state transition function (@f@), the scenario selection (@g@) and
-- the initial state (@s0@), and constructs an SADF detector with two data input and
a

-- single control output signals.
detector21SADF :: (Int, Int)

=> (s -> [a] -> [b] -> )

-> (s > (Int, [y1))

-> s

-> Signal a -> Signal b

-> Signal y
detector21SADF ¢ f g sO as bs = outputFSM g next_state

where next_state = nextStateFSM2 c f current_state as bs
current_state = delaySADF [sO] next_state

—-- | The process constructor ’detector31SADF’ takes the consumption token rate
-= (@c@), the state transition function (@f@), the scenario selection (@g@) and
—-— the initial state (@s0@), and constructs an SADF detector with three data input
and a
- single control output signals.
detectorBlSADF :: (Int, Int, Int)
-> (s => [a] => [b] => [c] -> s)
-> (s > (Int, [y1))
-> s
-> Signal a -> Signal b -> Signal c
—-> Signal y
detector31SADF c f g sO as bs cs = outputFSM g next_state
where next_state = nextStateFSM3 c¢ f current_state as bs cs
current_state = delaySADF [sO] next_state

—-— | The process constructor ’detector41SADF’ takes the consumption token rate
-- (@c@), the state transition function (@f@), the scenario selection (@g@) and
-- the initial state (@s0@), and constructs an SADF detector with four data input
and a
-- single control output signals.
detector41SADF :: (Int, Int, Int, Int)
-> (s => [a] => [b] -> [c] > [d] -> s)
-> (s => (Int, [y]))
-> s
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361
362
363
364
365
366
367
368
369

370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386

387
388
389
390
391
392
393
394
395
396
397
398
399
400

401
402
403
404
405
406
407
408
409
410
411
412
413
414

415
416
417
418
419
420
421
422
423
424
425
426
427

-> Signal a -> Signal b -> Signal c -> Signal d
-> Signal y
detector41SADF c f g sO as bs cs ds = outputFSM g next_state
where next_state = nextStateFSM4 c f current_state as bs cs ds
current_state = delaySADF [sO] next_state

-- | The process constructor ’detector51SADF’ takes the consumption token rate
-- (@c@), the state transition function (@f@), the scenario selection (@g@) and
-- the initial state (@s0@), and constructs an SADF detector with five data input
and a
-- single control output signals.
detector51SADF :: (Int, Int, Int, Int, Int)
-> (s => [a] -> [b] -> [c] -> [d] -> [e] -> s)
-> (s > (Int, [yl))
-> s
-> Signal a -> Signal b -> Signal c¢ -> Signal d -> Signal e
-> Signal y
detector51SADF ¢ £ g sO as bs cs ds es = outputFSM g next_state
where next_state = nextStateFSM5 ¢ f current_state as bs cs ds es
current_state = delaySADF [sO] next_state

-— > Detectors with two output

-- | The process constructor ’detector12SADF’ takes the consumption token rate
-- (@c@), the state transition function (@f@), the scenario selection (@g@) and
-- the initial state (@s0@), and constructs an SADF detector with a single data
input and two

-- control output signals.
detector12SADF :: Int

-> (s => [a] -> s)

-> (s -> ((Int, Int), ([y1l, [y2DD))

-> s

—-> Signal a

-> (Signal yi1, Signal y2)
detector12SADF c f g sO as = outputFSM2 g next_state

where next_state = nextStateFSM c f current_state as
current_state = delaySADF [sO] next_state

—-- | The process constructor ’detector22SADF’ takes the consumption token rate
-- (@c@), the state transition function (@f@), the scenario selection (@g@) and
—--— the initial state (@s0@), and constructs an SADF detector with two data input and
two

—-- control output signals.
detector22SADF :: (Int, Int)

=> (s -> [a] -> [b] -> s)

-> (s => ((Int, Int), ([y1l, [y21)))

-> s

-> Signal a -> Signal b

-> (Signal y1, Signal y2)
detector22SADF ¢ f g sO as bs = outputFSM2 g next_state

where next_state = nextStateFSM2 c f current_state as bs
current_state = delaySADF [sO] next_state

-- | The process constructor ’detector32SADF’ takes the consumption token rate
-- (@c@), the state transition function (@f@), the scenario selection (@g@) and
—-- the initial state (@s0@), and constructs an SADF detector with three data input
and two

-- control output signals.
detector32SADF :: (Int, Int, Int)

-> (s > [a] -> [b] —> [c] > s)

-> (s => ((Int, Int), ([y1l, [y21)))

-> s
-> Signal a -> Signal b -> Signal c

-> (Signal y1, Signal y2)
detector32SADF ¢ £ g sO as bs cs = outputFSM2 g next_state

where next_state = nextStateFSM3 c f current_state as bs cs
current_state = delaySADF [sO] next_state

—-- | The process constructor ’detector42SADF’ takes the consumption token rate
-- (@c@), the state transition function (@f@), the scenario selection (@g@) and
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428 -- the initial state (@s0@), and constructs an SADF detector with four data input
and two

429 -- control output signals.

430 detector42SADF :: (Int, Int, Int, Int)

431 => (s -> [a] => [b] -> [c] -> [d] —> s)

432 -> (s => ((Int, Int), ([y1l, [y21)))

433 > s

434 -> Signal a -> Signal b -> Signal c -> Signal d

435 -> (Signal y1, Signal y2)

436 detector42SADF c f g sO as bs cs ds = outputFSM2 g next_state

437 where next_state = nextStateFSM4 c f current_state as bs cs ds

438 current_state = delaySADF [sO] next_state

439

440 -- | The process constructor ’detector52SADF’ takes the consumption token rate

441 -- (@c@), the state transition function (@f@), the scenario selection (Q@g@) and

442 -- the initial state (@s0@), and constructs an SADF detector with five data input
and two

443 -- control output signals.

444 detector52SADF :: (Int, Int, Int, Int, Int)

445 > (s > [a] -> [b] -> [c] > [d] -> [e] —> s)

446 -> (s => ((Int, Int), ([y1l, [y21))N

447 -> s

448 -> Signal a -> Signal b -> Signal c -> Signal d -> Signal e

449 -> (Signal yi1, Signal y2)

450 detector52SADF c f g sO as bs cs ds es = outputFSM2 g next_state

451 where next_state = nextStateFSM5 ¢ f current_state as bs cs ds es

452 current_state = delaySADF [sO] next_state

453

454

455 -- > Detectors with three output

456

457 -- | The process constructor ’detector13SADF’ takes the consumption token rate

458 -- (@c@), the state transition function (@f@), the scenario selection (Q@g@) and

459 -- the initial state (@s0@), and constructs an SADF detector with a single data
input and three

460 -- control output signals.

461 detector13SADF :: Int

462 -> (s > [a] -> s)

463 -> (s => ((Int, Int, Int), ([y1l, [y2], [y31)))

464 -> s

465 -> Signal a

466 -> (Signal y1, Signal y2, Signal y3)

467 detectorl13SADF c f g sO as = outputFSM3 g next_state

468 where next_state = nextStateFSM c f current_state as

469 current_state = delaySADF [sO] next_state

470

471 -- | The process constructor ’detector23SADF’ takes the consumption token rate

472 -- (@c@), the state transition function (@f@), the scenario selection (@g@) and

473 -- the initial state (@s0@), and constructs an SADF detector with two data input and
three

474 -- control output signals.

475 detector23SADF :: (Int, Int)

476 => (s => [a] => [b] —> s)

477 -> (s => ((Int, Int, Int), ([y1l, [y2], [y31)))

478 —> s

479 -> Signal a -> Signal b

480 -> (Signal y1, Signal y2, Signal y3)

481 detector23SADF ¢ f g sO as bs = outputFSM3 g next_state

482 where next_state = nextStateFSM2 c f current_state as bs

483 current_state = delaySADF [sO] next_state

484

485 -- | The process constructor ’detector33SADF’ takes the consumption token rate

486 -- (@c@), the state transition function (@f@), the scenario selection (Q@g@) and

487 -- the initial state (@s0@), and constructs an SADF detector with three data input
and three

488 -- control output signals.

489 detector33SADF :: (Int, Int, Int)

490 -> (s > [a] -> [b] —> [c] > s)

491 -> (s => ((Int, Int, Int), ([y1l, [y2], [y3D)))

492 > s

493 -> Signal a -> Signal b -> Signal c¢
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494 -> (Signal y1, Signal y2, Signal y3)

495 detector33SADF c f g sO as bs cs = outputFSM3 g next_state

496 where next_state = nextStateFSM3 c f current_state as bs cs

497 current_state = delaySADF [sO] next_state

498

499 -- | The process constructor ’detector43SADF’ takes the consumption token rate

500 -- (@c@), the state transition function (@f@), the scenario selection (@g@) and

501 -- the initial state (@s0Q@), and constructs an SADF detector with four data input
and three

502 -- control output signals.

503 detector43SADF :: (Int, Int, Int, Int)

504 => (s => [a] => [b] > [c] > [d] —> s)

505 -> (s => ((Int, Int, Int), ([y1l, [y2], [y31)))

506 > s

507 -> Signal a -> Signal b -> Signal ¢ -> Signal d

508 -> (Signal y1, Signal y2, Signal y3)

509 detector43SADF c f g sO as bs cs ds = outputFSM3 g next_state

510 where next_state = nextStateFSM4 c f current_state as bs cs ds

511 current_state = delaySADF [sO] next_state

512

513 -- | The process constructor ’detector53SADF’ takes the consumption token rate

514 -- (@c@), the state transition function (Q@f@), the scenario selection (@g@) and

515 -- the initial state (@s0Q@), and constructs an SADF detector with five data input
and three

516 -- control output signals.

517 detector53SADF :: (Int, Int, Int, Int, Int)

518 -> (s => [a] -> [b] -> [c] -> [d] -> [e] -> s)

519 -> (s => ((Int, Int, Int), ([y1l, [y2], [y31)))

520 -> s

521 -> Signal a -> Signal b -> Signal c -> Signal d -> Signal e

522 -> (Signal y1, Signal y2, Signal y3)

523 detector53SADF ¢ f g sO as bs cs ds es = outputFSM3 g next_state

524 where next_state = nextStateFSM5 c f current_state as bs cs ds es

525 current_state = delaySADF [sO] next_state

526

527

528 -- > Detectors with four output

529

530 -- | The process constructor ’detector14SADF’ takes the consumption token rate

531 -- (@c@), the state transition function (@f@), the scenario selection (@g@) and

532 -- the initial state (@s0Q@), and constructs an SADF detector with a single data
input and four

533 -- control output signals.

534 detector14SADF :: Int

535 -> (s -> [a] -> s)

536 -> (s => ((Int, Int, Int, Int), ([y1l, [y2], [y31, [y41)))

537 -> s

538 -> Signal a

539 -> (Signal y1, Signal y2, Signal y3, Signal y4)

540 detector14SADF c f g sO as = outputFSM4 g next_state

541 where next_state = nextStateFSM c f current_state as

542 current_state = delaySADF [sO] next_state

543

544 -- | The process constructor ’detector24SADF’ takes the consumption token rate

545 -- (@c@), the state transition function (@f@), the scenario selection (Q@g@) and

546 -- the initial state (@s0Q@), and constructs an SADF detector with two data input and
four

547 -- control output signals.

548 detector24SADF :: (Int, Int)

549 -> (s => [a] —> [b] —> s)

550 -> (s => ((Int, Int, Int, Int), ([y1l, [y2], [y3], [y41)))

551 > s

552 -> Signal a -> Signal b

553 -> (Signal y1, Signal y2, Signal y3, Signal y4)

554 detector24SADF c f g sO as bs = outputFSM4 g next_state

555 where next_state = nextStateFSM2 c f current_state as bs

556 current_state = delaySADF [sO] next_state

557

558 -- | The process constructor ’detector34SADF’ takes the consumption token rate

559 -- (@c@), the state transition function (@f@), the scenario selection (@g@) and
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560

561
562
563
564
565
566
567
568
569
570
571
572
573
574

575
576
577
578
579
580
581
582
583
584
585
586
587
588

589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605

606
607
608
609
610
611
612
613
614
615
616
617
618
619

620
621
622
623
624
625

—-- the initial state (@s0@), and constructs an SADF detector with three data input
and four
—-- control output signals.
detector34SADF :: (Int, Int, Int)
-> (s > [a] -> [b] > [c] > s)
-> (s => ((Int, Int, Int, Int), ([y1l, [y2], [y31, [y41)))
-> s
-> Signal a -> Signal b -> Signal c¢
-> (Signal y1, Signal y2, Signal y3, Signal y4)
detector34SADF c £ g sO as bs cs = outputFSM4 g next_state
where next_state = nextStateFSM3 c f current_state as bs cs
current_state = delaySADF [sO] next_state

—-— | The process constructor ’detector44SADF’ takes the consumption token rate
-- (@c@), the state transition function (@f@), the scenario selection (@g@) and
-- the initial state (@s0Q@), and constructs an SADF detector with four data input
and four

-- control output signals.
detector44SADF :: (Int, Int, Int, Int)

-> (s > [a] -> [b] > [c] —> [d] —> s)

-> (s => ((Int, Int, Int, Int), ([y1l, [y21, [y31, [y41)))

-> s

—-> Signal a -> Signal b -> Signal c¢ —-> Signal d

-> (Signal y1, Signal y2, Signal y3, Signal y4)
detector44SADF c f g sO as bs cs ds = outputFSM4 g next_state

where next_state = nextStateFSM4 ¢ f current_state as bs cs ds
current_state = delaySADF [sO] next_state

—-- | The process constructor ’detector54SADF’ takes the consumption token rate
-- (@c@), the state transition function (@f@), the scenario selection (@g@) and
—-— the initial state (@s0@), and constructs an SADF detector with five data input
and four
—-- control output signals.
detector54SADF :: (Int, Int, Int, Int, Int)
=> (s => [a] -> [b] > [c] > [d] > [e] —> s)
-> (s -> ((Int, Int, Int, Int), ([y1l, [y2], [y31, [y41)))
-> s
-> Signal a -> Signal b -> Signal c¢ -> Signal d -> Signal e
-> (Signal y1, Signal y2, Signal y3, Signal y4)
detector54SADF ¢ f g sO as bs cs ds es = outputFSM4 g next_state
where next_state = nextStateFSM5 c f current_state as bs cs ds es
current_state = delaySADF [sO] next_state

-- > Detectors with five output

—-- | The process constructor ’detector15SADF’ takes the consumption token rate
-= (@c@), the state transition function (@f@), the scenario selection (@g@) and
—-— the initial state (@s0@), and constructs an SADF detector with a single data
input and five
—-- control output signals.
detector15SADF :: Int
-> (s > [a] —> s)
-> (s => ((Int, Int, Int, Int, Int), ([y1l, [y2], [y3l, [y4l, [y51)))
-> s
-> Signal a
-> (Signal y1, Signal y2, Signal y3, Signal y4, Signal yb)
detector15SADF ¢ f g sO as = outputFSM5 g next_state
where next_state = nextStateFSM c f current_state as
current_state = delaySADF [sO] next_state

-- | The process constructor ’detector25SADF’ takes the consumption token rate
-- (@c@), the state transition function (@f@), the scenario selection (@g@) and
—-- the initial state (@s0@), and constructs an SADF detector with two data input and
five
—-- control output signals.
detector25SADF :: (Int, Int)
-> (s => [a] -> [b] -> 8)
-> (s => ((Int, Int, Int, Int, Int), ([y1l, [y2], [y31, [y4l, [y51)))
-> s
-> Signal a -> Signal b
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626
627
628
629
630
631
632
633

634
635
636
637
638
639
640
641
642
643
644
645
646
647

648
649
650
651
652
653
654
655
656
657
658
659
660
661

662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685

686
687
688
689
690

691

-> (Signal y1, Signal y2, Signal y3, Signal y4, Signal y5)
detector25SADF ¢ £ g sO as bs = outputFSM5 g next_state
where next_state = nextStateFSM2 c f current_state as bs
current_state = delaySADF [sO] next_state

—-— | The process constructor ’detector35SADF’ takes the consumption token rate
-= (@c@), the state transition function (@f@), the scenario selection (@g@) and
—-- the initial state (@s0@), and constructs an SADF detector with three data input
and five
-- control output signals.
detector35SADF :: (Int, Int, Int)
-> (s => [a] -> [b] => [c] -> s)
-> (s -> ((Int, Int, Int, Int, Int), ([y1l, [y2], [y31, [y4l, [y51)))
-> s
-> Signal a -> Signal b -> Signal c¢
-> (Signal y1, Signal y2, Signal y3, Signal y4, Signal y5)
detector35SADF c £ g sO as bs cs = outputFSM5 g next_state
where next_state = nextStateFSM3 c¢ f current_state as bs cs
current_state = delaySADF [sO] next_state

—-- | The process constructor ’detector45SADF’ takes the consumption token rate
-- (@c@), the state transition function (@f@), the scenario selection (@g@) and
-- the initial state (@s0@), and constructs an SADF detector with four data input
and five
—-- control output signals.
detector45SADF :: (Int, Int, Int, Int)
-> (s => [a] => [b] -> [c] > [d] -> s)
-> (s -> ((Int, Int, Int, Int, Int), ([yil, [y2], [y3], [y4l, [y51)))
-> s
-> Signal a -> Signal b -> Signal ¢ -> Signal d
-> (Signal y1, Signal y2, Signal y3, Signal y4, Signal y5)
detector45SADF c f g sO as bs cs ds = outputFSM5 g next_state
where next_state = nextStateFSM4 ¢ f current_state as bs cs ds
current_state = delaySADF [sO] next_state

-- | The process constructor ’detectorb5SADF’ takes the consumption token rate
-- (@c@), the state transition function (@f@), the scenario selection (@g@) and
-- the initial state (@s0@), and constructs an SADF detector with five data input
and five
—-- control output signals.
detector55SADF :: (Int, Int, Int, Int, Int)
=> (s => [a] > [b] -> [c] -> [d] -> [e]l -> s)
-> (s => ((Int, Int, Int, Int, Int), ([y1l, [y2], [y31, [y4], [y51)))
-> s
-> Signal a -> Signal b -> Signal c¢ -> Signal d -> Signal e
-> (Signal y1, Signal y2, Signal y3, Signal y4, Signal yb)
detector558ADF ¢ £ g sO as bs cs ds es = outputFSM5 g next_state
where next_state = nextStateFSM5 ¢ f current_state as bs cs ds es
current_state = delaySADF [sO] next_state

-- | The process constructor ’mapSADF’ takes a signal of scenarios
—-— (tuples with the consumed and produced tokens as well as a function operating
—-- on lists), and results in an SADF-process that takes an input signal and results
-- in an output signal
mapSADF :: Signal (Int, Int, [a]l -> [b]) -> Signal a -> Signal b
mapSADF NullS _ = NullS
mapSADF ct xs
| ¢ < 0 = error "mapSADF: Number of consumed tokens must be a non-negative integer
n
| not $ sufficient_tokens ¢ xs = NullS
| otherwise = if length produced_tokens == p then
signal produced_tokens +-+ mapSADF (tailS ct) (dropS c xs)
else
error "mapSADF: Function does not produce correct number of tokens
n

where (c, p, £) = headS ct
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692
693
694
695
696
697
698
699
700
701
702
703
704

705
706
707
708

709
710

711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734

735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757

consumed_tokens
produced_tokens

fromSignal $ takeS c xs
f consumed_tokens

—-- | The process constructor ’zipWithSADF’ takes a signal of scenarios
—-— (tuples with the consumed and produced tokens as well as a function operating
—-- on lists), and results in an SADF-process that takes two input signals and
-- results in an output signal
zipWithSADF :: Signal ((Int, Int), Int, [a]l -> [b] -> [c])
-> Signal a —> Signal b -> Signal c
zipWithSADF NullS _ _ = NullS
zipWithSADF ct as bs
[ c1 <0 ]l c2<0
negative integer"
| (not $ sufficient_tokens cl as)
|l (not $ sufficient_tokens c2 bs) = NullS
| otherwise = if length produced_tokens == p then
signal produced_tokens +-+ zipWithSADF (tailS ct) (dropS cl as) (

error "zipWithSADF: Number of consumed tokens must be a non-

dropS c2 bs)
else
error "zipWithSADF: Function does not produce correct number of
tokens"
where ((c1,c2), p, f) = headS ct

consumed_tokens_as = fromSignal $ takeS cl as

consumed_tokens_bs = fromSignal $ takeS c2 bs

produced_tokens = f consumed_tokens_as consumed_tokens_bs

—-- | The process constructor ’zipWith3SADF’ takes a signal of scenarios
—-- (tuples with the consumed and produced tokens as well as a function operating
-- on lists), and results in an SADF-process that takes three input signals and
-- results in an output signal
zipWith3SADF :: Signal ((Int, Int, Int), Int, [a] -> [b] -> [c] -> [d])
-> Signal a -> Signal b -> Signal ¢ —-> Signal d
zipWith3SADF NullS _ _ _ = NullS
zipWith3SADF ct as bs cs
[ c1 <0 |l c2<01]]c3<0
= error "zipWith3SADF: Number of consumed tokens must be a non-negative integer"
| (not $ sufficient_tokens cl as)
|l (not $ sufficient_tokens c2 bs)
[l (not $ sufficient_tokens c3 cs) = NullS
| otherwise = if length produced_tokens == p then
signal produced_tokens +-+ zipWith3SADF (tailS ct) (dropS cl as)
(dropS c2 bs) (dropS c3 cs)
else
error "zipWith3SADF: Function does not produce correct number of
tokens"
where ((cl, c2, c3), p, £f) = headS ct
consumed_tokens_as = fromSignal $ takeS cl as
consumed_tokens_bs = fromSignal $ takeS c2 bs
consumed_tokens_cs = fromSignal $ takeS c3 cs
produced_tokens = f consumed_tokens_as consumed_tokens_bs consumed_tokens_cs

—-- | The process constructor ’zipWith4SADF’ takes a signal of scenarios
—-- (tuples with the consumed and produced tokens as well as a function operating
-- on lists), and results in an SADF-process that takes four input signals and
-- results in an output signal
zipWith4SADF :: Signal ((Int, Int, Int, Int), Int, [a] -> [b] -> [c] -> [d] -> [e])
-> Signal a -> Signal b -> Signal ¢ -> Signal d -> Signal e
zipWith4SADF NullS _ _ _ _ = NullS
zipWith4SADF ct as bs cs ds
[ c1 <01l c2<0 1] c3<01]lc4<0
= error "zipWith4SADF: Number of consumed tokens must be a non-negative integer"
| (not $ sufficient_tokens cl as)
|l (not $ sufficient_tokens c2 bs)
|l (not $ sufficient_tokens c3 cs)
[l (not $ sufficient_tokens c4 ds) = NullS
| otherwise = if length produced_tokens == p then
signal produced_tokens +-+ zipWith4SADF (tailS ct) (dropS cl as)
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758

759
760

761
762
763
764
765
766
767
768
769
770
771
772
773
774

775
776
77
778
779
780
781
782
783
784
785
786
787

788
789

790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808

809
810
811
812
813
814
815
816
817
818
819

820
821

(dropS c2 bs) (dropS c3 cs) (dropS c4
ds)
else

error "zipWith4SADF: Function does not produce correct number of

tokens"
where ((cl, c2, c3, c4),
consumed_tokens_as
consumed_tokens_bs

p, ) = headS ct
fromSignal $ takeS
fromSignal $ takeS
consumed_tokens_cs = fromSignal $ takeS c3 cs
consumed_tokens_ds = fromSignal $ takeS c4 ds
produced_tokens = f consumed_tokens_as consumed_tokens_bs
consumed_tokens_cs consumed_tokens_ds

cl as
c2 bs

—-- | The process constructor ’zipWith5SADF’ takes a signal of scenarios
—-- (tuples with the consumed and produced tokens as well as a function operating
-- on lists), and results in an SADF-process that takes five input signals and
-- results in an output signal
zipWith5SADF :: Signal ((Int, Int, Int, Int, Int), Int, [a]l -> [b] -> [c] -> [d] ->
el —> [£])
-> Signal a -> Signal b -> Signal ¢ -> Signal d -> Signal e -> Signal £
zipWith5SADF NullS _ _ _ _ _ = NullS
zipWith5SADF ct as bs cs ds es
[ c1 <01l c2<0 1]l c3<0 |l cda<0|lc5<oO
= error "zipWithb5SADF: Number of consumed tokens must be a non-negative integer"
| (not $ sufficient_tokens cl as)

[l (not $
I
|

I

|

|

I
otherwise

sufficient_tokens
sufficient_tokens
sufficient_tokens
sufficient_tokens

c2 bs)
c3 cs)
c4 ds)
c5 es) = NullS

= if length produced_tokens == p then

signal produced_tokens +-+ zipWith5SADF (tailS ct) (dropS cl as)
(dropS c2 bs) (dropS c3 cs) (dropS c4
ds) (dropS c5 es)
else
error "zipWith5SADF: Function does not produce correct number of
tokens"
where ((cl, c2, c¢3, c4, cb), p, f) = headS ct
consumed_tokens_as = fromSignal $ takeS
consumed_tokens_bs = fromSignal $ takeS
consumed_tokens_cs = fromSignal $ takeS
consumed_tokens_ds = fromSignal $ takeS c4 ds
consumed_tokens_es = fromSignal $ takeS cb es
produced_tokens = f consumed_tokens_as consumed_tokens_bs
consumed_tokens_cs consumed_tokens_ds consumed_tokens_es

cl as
c2 bs
c3 cs

unzipSADF :: [(Int, Int)] -> Signal ([a], [b]) -> (Signal a, Signal b)
unzipSADF []1 _ = (NullS, NullS)
unzipSADF _ NullS = (NullS, NullS)
unzipSADF ((p1, p2) : ps) ((sl, s2) :- ss)
| length s1 /= pl || length s2 /= p2 = error "unzipSADF: Process does not produce
correct number of tokens"
| otherwise = (signal sl +-+ srl, signal s2 +-+ sr2)
where (srl, sr2) = unzipSADF ps ss

unzip3SADF :: [(Int, Int, Int)] -> Signal ([al, [b], [cl)
-> (Signal a, Signal b, Signal c)
unzip3SADF [] _ = (NullS, NullS, NullS)
unzip3SADF _ NullS = (NullS, NullS, NullS)
unzip3SADF ((pl, p2, p3) : ps) ((s1, s2, s3)
| length s1 /= pl || length s2 /= p2
|| length s3 /= p3 = error "unzip3SADF: Process does not produce correct number
of tokens"
| otherwise = (signal sl +-+ srl, signal s2 +-+ sr2, signal s3 +-+ sr3)
where (srl, sr2, sr3) = unzip3SADF ps ss

:— 88)
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822

823

824 unzip4SADF :: [(Int, Int, Int, Int)] -> Signal ([al, [b], [c], [d])

825 -> (Signal a, Signal b, Signal c, Signal d)

826 unzip4SADF [] _ = (NullS, NullS, NullS, NullS)

827 unzip4SADF _ NullS = (NullS, NullS, NullS, NullS)

828 unzip4SADF ((pl, p2, p3, p4) : ps) ((s1, s2, s3, s4) :- ss)

829 | length s1 /= pl || length s2 /= p2

830 || length s3 /= p3 || length s4 /= p4 = error "unzip4SADF: Process does not
produce correct number of tokens"

831 | otherwise = (signal sl +-+ srl, signal s2 +-+ sr2, signal s3 +-+ sr3, signal s4
+-+ sr4)

832 where (srl, sr2, sr3, sr4) = unzip4SADF ps ss

833

834

835 unzip5SADF :: [(Int, Int, Int, Int, Int)] -> Signal ([al, [b], [c], [d], [el)

836 -> (Signal a, Signal b, Signal c, Signal d, Signal e)

837 wunzip5SADF [] _ = (NullS, NullS, NullS, NullS, NullS)

838 unzip5SADF _ NullS = (NullS, NullS, NullS, NullS, NullS)

839 unzip5SADF ((pl, p2, p3, p4, p5) : ps) ((s1, s2, s3, s4, sb) :- ss)

840 | length s1 /= pl || length s2 /= p2

841 || length s3 /= p3 || length s4 /= p4

842 || length s5 /= pb = error "unzip5SADF: Process does not produce correct number
of tokens"

843 | otherwise = (signal sl +-+ srl, signal s2 +-+ sr2, signal s3 +-+ sr3,

844 signal s4 +-+ sr4, signal sb +-+ srb)

845 where (srl, sr2, sr3, sr4, sr5) = unzip5SADF ps ss

846

847

848 —-

849 -- Helper functions (not exported!)

850 —-

851 e

852

853 sufficient_tokens :: (Num a, Eq a, Ord a) => a -> Signal t -> Bool

854 sufficient_tokens 0 _ = True

855 sufficient_tokens _ NullS = False

856 sufficient_tokens n (_:-xs)

857 = if n < O then

858 error "sufficient_tokens: n must not be negative"

859 else

860 sufficient_tokens (n-1) xs

861

862

863 get_prodToken :: Signal (a,b,c) -> [b]

864 get_prodToken NullS = []

865 get_prodToken ((_, x, _):-x8) = x : get_prodToken xs

866

867

868 inpOutln :: Signal (it, ot, [al -> y) -> Signal (it, Int, [a] -> [yl)

869 inpOutlin NullS = NullS

870 inpOutin ((it, _, f):-xs) = (it, 1, \a -> [f al]) :- inpOutln xs

871

872 inpOut2n :: Signal (it, ot, [a] -> [b] -> y) -> Signal (it, Int, [a] -> [b] -> [y])

873 inpOut2n NullS = NullS

874 inpOut2n ((it, _, f):-xs) = (it, 1, \a b -> [f a b]) :- inpOut2n xs

875

876 inpOut3n :: Signal (it, ot, [a]l -> [b] -> [c] -> y)

877 -> Signal (it, Int, [a] -> [b] -> [c] -> [yD)

878 inpOut3n NullS = NullS

879 inpOut3n ((it, _, f):-xs) = (it, 1, \a b ¢ -> [f a b c]) :- inpOut3n xs

880

881 inpOut4n :: Signal (it, ot, [al -> [b] -> [c] -> [d] -> y)

882 -> Signal (it, Int, [a] -> [b] -> [c] -> [d]l -> [yD)

883 inpOut4n NullS = NullS

884 inpQOut4n ((it, _, f):-xs) = (it, 1, \abcd -> [f a b ¢ d]) :- inpOuté4n xs

885

886 inpOutbn :: Signal (it, ot, [al -> [b] -> [c] -> [d] -> [e]l -> y)

887 -> Signal (it, Int, [a]l -> [b] -> [c] -> [d] -> [e]l —> [yD)

888 inpOutbn NullS = NullS

889 inpQOutbn ((it, _, f):-xs) = (it, 1, \abcde -> [f ab c d e]) :- inpOutbn xs
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890

891

892 -- Helper functios to the detector’s FSM (not exported)

893

894

895 nextStateFSM :: Int -> (s -> [a] —> s)

896 -> Signal s -> Signal a -> Signal s

897 nextStateFSM _ _ NullS _ = NullS

898 mnextStateFSM _ _ _ NullS = NullS

899 nextStateFSM c f ss as

900 | ¢ <= 0 = error "nextStateFSM: Number of consumed tokens must be positive integer

901 | not $ sufficient_tokens c as = NullS

902 | otherwise = signal [next_state] +-+ nextStateFSM c f (tailS ss) (dropS c as)

903 where consumed_tokens_as = fromSignal $ takeS c as

904 current_state = headS ss

905 next_state = f current_state consumed_tokens_as

906

907

908 nextStateFSM2 :: (Int, Int) -> (s -> [a] -> [b] -> s)

909 -> Signal s -> Signal a -> Signal b -> Signal s

910 nextStateFSM2 _ _ NullS _ _ = NullS

911 nextStateFSM2 _ _ _ NullS _ = NullS

912 nextStateFSM2 _ _ _ _ NullS = NullS

913 nextStateFSM2 (cl, c2) f ss as bs

914 | c1 <=0 || ¢c2 <= 0 = error "nextStateFSM2: Number of consumed tokens must be
positive integer"

915 | (not $ sufficient_tokens cl as)

916 || (not $ sufficient_tokens c2 bs) = NullS

917 | otherwise = signal [next_state] +-+ nextStateFSM2 (cl, c2) f (tailS ss) (dropS
cl as) (dropS c2 bs)

918 where consumed_tokens_as = fromSignal $ takeS cl as

919 consumed_tokens_bs = fromSignal $ takeS c2 bs

920 current_state = headS ss

921 next_state = f current_state consumed_tokens_as consumed_tokens_bs

922

923

924 nextStateFSM3 :: (Int, Int, Int) -> (s -> [a] -> [b] -> [c] -> s)

925 -> Signal s -> Signal a -> Signal b -> Signal ¢ -> Signal s

926 nextStateFSM3 _ _ NullS _ _ _ = NullS

927 nextStateFSM3 _ _ _ NullS _ _ = NullS

928 nextStateFSM3 _ _ _ _ NullS _ = NullS

929 nextStateFSM3 _ _ _ _ _ NullS = NullS

930 nextStateFSM3 (cl, c2, c3) f ss as bs cs

931 | c1 <=0 1]] c2<=0[] c3<=0

932 = error "nextStateFSM3: Number of consumed tokens must be positive integer"

933 | (not $ sufficient_tokens cl as)

934 || (not $ sufficient_tokens c2 bs)

935 || (not $ sufficient_tokens c3 cs) = NullS

936 | otherwise = signal [next_state] +-+ nextStateFSM3 (cl, c2, c3) f (tailS ss)

937 (dropS c1 as) (dropS c2 bs) (dropS c3 cs)

938 where consumed_tokens_as = fromSignal $ takeS cl as

939 consumed_tokens_bs = fromSignal $ takeS c2 bs

940 consumed_tokens_cs = fromSignal $ takeS c3 cs

941 current_state = headS ss

942 next_state = f current_state consumed_tokens_as

943 consumed_tokens_bs consumed_tokens_cs

944

945

946 nextStateFSM4 :: (Int, Int, Int, Int) -> (s —> [a]l -> [b] —> [c] -> [d] —> s)

947 -> Signal s -> Signal a -> Signal b -> Signal ¢ -> Signal d -> Signal
s

948 nextStateFSM4 _ _ NullS _ _ _ = NullS

949 nextStateFSM4 _ _ _ NullS _ _ _ = NullS

950 nextStateFSM4 _ _ _ _ NullS _ _ = NullS

951 nextStateFSM4 _ _ _ _ _ NullS _ = NullS

952 nextStateFSM4 _ _ _ _ _ _ NullS = NullS

953 nextStateFSM4 (cl, c2, c3, c4) f ss as bs cs ds

954 | c1 <=0 1] c2<=0 1]l c3<=01]] c4<=0

955 = error "nextStateFSM4: Number of consumed tokens must be positive integer"

956 | (not $ sufficient_tokens cl as)

Ricardo de Souza Bonna



APPENDIX A. SOURCE CODE

108

957
958
959
960
961

962
963
964
965
966
967
968
969
970
971

972

973
974
975
976
971
978
979
980
981
982
983
984
985
986
987

988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012

1013
1014
1015
1016
1017
1018
1019
1020
1021
1022

|| (not $ sufficient_tokens c2 bs)

|| (not $ sufficient_tokens c3 cs)

|| (not $ sufficient_tokens c4 ds) = NullS
| otherwise = signal [next_state] +-+ nextStateFSM4 (cl, c2, c3, c4) f (tailS ss)
(dropS c1 as) (dropS c2 bs) (dropS c3 cs) (

dropS c4 ds)
where consumed_tokens_as
consumed_tokens_bs
consumed_tokens_cs
consumed_tokens_ds

fromSignal $ takeS
fromSignal $ takeS
fromSignal $ takeS
fromSignal $ takeS

current_state = headS ss

next_state = f current_state consumed_tokens_as
consumed_tokens_bs consumed_tokens_cs consumed_tokens_ds

cl as
c2 bs
c3 cs
c4 ds

nextStateFSM5 :: (Int, Int, Int, Int, Int) -> (s -> [a] -> [b] -> [c] -> [d] —> [e]

-> 8)

-> Signal s -> Signal a -> Signal b -> Signal ¢ -> Signal d -> Signal

e -> Signal s
nextStateFSM5 _ _ NullS _ _ _ _ _ = NullS
nextStateFSM5 _ _ _ NullS _ _ _ _ = NullS
nextStateFSM5 _ _ _ _ NullS _ _ _ = NullS
nextStateFSM5 _ _ _ _ _ NullS _ _ = NullS
nextStateFSM5 _ _ _ _ _ _ NullS _ = NullS
nextStateFSMb5 NullS = NullS

nextStateFSM5 (cl1, c2, c3, c4, c5) f ss as bs cs ds es
| c1 <=0 1l c2<=01]lc3<=01]lcd<=01]] c5<=0

= error "nextStateFSM4: Number of consumed tokens must be positive integer"
| (not $ sufficient_tokens cl as)

|| (not $ sufficient_tokens c2 bs)

|| (not $ sufficient_tokens c3 cs)

|| (not $ sufficient_tokens c4 ds)

|| (not $ sufficient_tokens c5 es) = NullS
| otherwise = signal [next_state] +-+ nextStateFSM5 (cl, c2, c3, c4, cb) f (tailS

ss)

where consumed_tokens_as
consumed_tokens_bs
consumed_tokens_cs
consumed_tokens_ds
consumed_tokens_es

(dropS c1 as) (dropS c2 bs) (dropS c3 cs)

(dropS c4 ds) (dropS c5 es)

fromSignal $ takeS
fromSignal $ takeS
fromSignal $ takeS
fromSignal $ takeS
fromSignal $ takeS

current_state = headS ss

next_state = f current_state consumed_tokens_as
consumed_tokens_bs consumed_tokens_cs
consumed_tokens_ds consumed_tokens_es

outputFsSM :: (s -> (Int, [a])) -> Signal s -> Signal a

outputFSM _ NullS = NullS
outputFSM g (s:-ss)

cl as
c2 bs
c3 cs
c4 ds
ch es

| length y1 /= p = error "outputFSM: Incorrect number of produced tokens."
| otherwise = signal yl +-+ outputFSM g ss

where (p, y1) =g s

outputFSM2 :: (s -> ((Int, Int), ([al, [b]))) -> Signal s -> (Signal a, Signal b)

outputFSM2 _ NullS = (NullS, NullS)

outputFSM2 g (s:-ss)

| length y1 /= pl || length y2 /= p2 = error "outputFSM2:

produced tokens."

| otherwise = (signal yl1 +-+ yrl, signal y2 +-+ yr2)

where ((pl, p2), (y1, y2)) =g s
(yrl, yr2) = outputFSM2 g ss

outputFSM3 :: (s -> ((Int, Int, Int), ([a],
-> Signal s -> (Signal a, Signal b, Signal c)

outputFSM3 _ NullS = (NullS, NullS, NullS)

outputFSM3 g (s:-ss)
| length y1 /= p1

[b],

[cON

Incorrect number of
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1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038

1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049

1050
1051
1052
1053

|| length y2 /= p2
|| length y3 /= p3 = error "outputFSM3: Incorrect number of produced tokens."
| otherwise = (signal yl1 +-+ yrl, signal y2 +-+ yr2, signal y3 +-+ yr3)
where ((pl, p2, p3), (yi, y2, y3)) =g s
(yrl, yr2, yr3) = outputFSM3 g ss

outputFSM4 :: (s -> ((Int, Int, Int, Int), ([al, [b], [c], [d1)))
-> Signal s -> (Signal a, Signal b, Signal c, Signal d)
outputFSM4 _ NullS = (NullS, NullS, NullS, NullS)
outputFSM4 g (s:-ss)
| length y1 /= pl
|| length y2 /= p2
|| length y3 /= p3
|| length y4 /= p4 = error "outputFSM4: Incorrect number of produced tokens."
| otherwise = (signal yl +-+ yrl, signal y2 +-+ yr2, signal y3 +-+ yr3, signal y4
+-+ yr4)
where ((pl, p2, p3, p4), (y1, y2, y3, y4)) =g s
(yrl, yr2, yr3, yr4) = outputFSM4 g ss

outputFSM5 :: (s -> ((Int, Int, Int, Int, Int), ([al, [bl, [c]l, [dl, [el)))
-> Signal s -> (Signal a, Signal b, Signal c, Signal d, Signal e)
outputFSM5 _ NullS = (NullS, NullS, NullS, NullS, NullS)
outputFSM5 g (s:-ss)
| length y1 /= p1
|| length y2 /= p2 || length y3 /= p3
|| length y4 /= p4 || length y5 /= p5 = error "outputFSM5: Incorrect number of
produced tokens."
| otherwise = (signal yl1 +-+ yrl, signal y2 +-+ yr2, signal y3 +-+ yr3,
signal y4 +-+ yr4, signal y5 +-+ yrb)
where ((pl, p2, p3, p4, p5),(yl, y2, y3, y4, yB)) =g s
(yrl, yr2, yr3, yr4, yrb5) = outputFSM5 g ss

A.3 RISC processor

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

-- Module : ProSyDe_v2

-- Copyright : (c) Ricardo Bonna

-- License : still needs license

-- Maintainer : ricardobonna@gmail.com
—-- Stability :  experimental

-- Portability : portable

—-— This is the second version of the ProSyDe processor featuring a smaller
-- and more abstract concept. This makes easier to implement new operations.

module ProSyDe_v2 (
procNet
) where

import ForSyDe.Shallow
import Data.Bits((.&.), (.].), xor)
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28
29
30
31
32
33
34
35

36

37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72

73
74
75
76
77
78
79
80
81
82
83

type ScenarioIF = ((Int, Int, Int), (Int, Int, Int, Int), [Int] -> [Int]
-> [Vector String] -> ([[Int]], [String], [Int], [Vector String]))

-— | ’ifScenario’ is the list of possible scenarios for the IF kernel
ifScenario :: Int -> ScenariolF
ifScenario n
[ n>20 I n<oO
| n>= 14 && n < 19
(pcta)], [pc+a+1], [m])) —- branch
| otherwise (€o,1,1), (1,1,1,1), \_ [pc] [m] -> ([arg m pc], [op m pcl,
[pc+1]l, [ml)) -- no branch

error "ifScenario: Non existent scenario"
((1,1,1), (1,1,1,1), \[a] [pc] [m] -> ([arg m (pcta)], [op m

[

-- | ’slice’ takes a string containing one assembly command and slice it into
-—- one string with the opcode and a list of Ints containing the arguments
slice :: String -> (String, [Int])
slice a = (head $ words a, args)
where rest = tail $ words a
args
| null rest = []
| length rest == 1 = [read (head rest) :: Int]
| length rest == 2 = [read (head rest) :: Int, read (last rest) :: Int]
| otherwise = error "slice: Some instruction has more than 2 arguments"

arg :: (Eq a, Num a) => Vector String -> a -> [Int]
arg x y = snd $ slice (atV x y)

op :: (Eq a, Num a) => Vector String -> a -> String
op x y = fst $ slice (atV x y)

-— | ’ifKernel’ is the Instruction Fetch (IF) kernel process
ifKernel :: Vector String -> Signal ScenarioIF -> Signal Int -> (Signal [Int],
Signal String)
ifKernel progV ifCt sigBr = (sigArg, sigOp)
where (sigArg, sigOp, sigPc, sigPm) = kernel34SADF ifCt sigBr sigPc’ sigPm’
sigPc’ = delaySADF [0] sigPc
sigPm’ = delaySADF [progV] sigPm

type ScenarioEXE = ((Int, Int, Int), (Int, Int, Int, Int), [[Int]] -> [Vector Int]

-> [Vector Int] -> ([Int], [Int], [Vector Int], [Vector Int]))
-— | ’exeScenario’ is the list of possible scenarios for the EXE kernel
exeScenario :: Int —-> ScenarioEXE
exeScenario 0 = ((1,0,0), (0,0,0,0), \_ _ _ -> ({1, OO0, OO, ON
-- nop
exeScenario 1 = ((1,1,1), (0,0,1,1), \[[rd, mn]] [r] [m] -> (0], [1, [replaceV r rd
(atV m mn)], [ml)) -- 1d
exeScenario 2 = ((1,1,1), (0,0,1,1), \[[rd, rml] [r] [m] -> ([1, [1, [replaceV r rd
(atV m (atV r rm))], [m])) -- ldr
exeScenario 3 = ((1,1,1), (0,0,1,1), \[[rs, mn]l] [r] [m] -> (01, [1, [r], [replaceV
m mn (atV r rs)])) -- st
exeScenario 4 = ((1,1,1), (0,0,1,1), \[[rs, rm]] [r] [m] -> (01, [, [r], [replaceV
m (atV r rm) (atV r rs)])) -- str
exeScenario 5 = ((1,1,0), (0,0,1,0), \[[zrd, rsl] [r] _ -> ([1, [I, [replaceV r rd (
atV r rs)], [1)) -- mov
exeScenario 6 = ((1,1,0), (0,0,1,0), \[[xrd, i]]1 [x] _ -> ([0, [0, [replaceV r rd i
1, OO0 -- movi
exeScenario 7 = ((1,1,0), (0,0,1,0), \[[rd, rsl] [r] _ -> ([1, [, [replaceV r rd
((atV r rd) + (atV r rs))], [1)) -- add
exeScenario 8 = ((1,1,0), (0,0,1,0), \[[xd, rsl] [r] _ -> ([1, [1, [replaceV r rd
((atV r rd) - (atV r rs))]1, [1)) -- sub
exeScenario 9 = ((1,1,0), (0,0,1,0), \[[rd, rsl] [r] _ -> ([1, [1, [replaceV r rd
((atV r rd) * (atV r rs))]1, [1)) -- mul
exeScenario 10 = ((1,1,0), (0,0,1,0), \[[xrd, rsl] [r] _ -> ([1, [1, [replaceV r rd (

div (atV r rd) (atV r rs))], [1)) -- div
exeScenario 11 = ((1,1,0), (0,0,1,0), \[[rd, rs]] [r] _ -> ([, [], [replaceV r rd
((atV r rd) .&. (atV r rs))], [1)) —- and
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84
85
86
87
88
89
90
91
92

93

94

95

96

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145

exeScenario 12 = ((1,1,0), (0,0,1,0), \[[xrd, rsl] [r] _ -> ([1, [1, [replaceV r rd
((@tVrrd) .|. (atV r rs))], [1)) —— or

exeScenario 13 = ((1,1,0), (0,0,1,0), \[[rd, rsl] [r] _ -> ([1, [1, [replaceV r rd (
xor (atV r rd) (atV r rs))], [1)) —- xor

exeScenario 14 = ((1,1,0), (1,0,1,0), \[[rs, vl] [r] _ -> ([if atV r rs == O then v

else 0], 01, [x]1, 0O —-— bez
exeScenario 15 = ((1,1,0), (1,0,1,0), \[[rs, v1l] [r] _ -> ([if atV r rs /= 0 then v
else 0], [1, [xr], [1)) -- bnz
exeScenario 16 = ((1,1,0), (1,0,1,0), \[[rs, vl] [r] _ -> ([if atV r rs > O then v
else 0], 01, [r]1, [1)) -- bgz
exeScenario 17 = ((1,1,0), (1,0,1,0), \[[rs, vl] [r] _ -> ([if atV r rs < O then v
else 0], [1, [xr], [1)) -- blz
exeScenario 18 = ((1,0,0), (1,0,0,0), \[[v1l _ _ -> ([Iv1, 01, 0O, O
-= jmp
exeScenario 19 = ((1,1,0), (0,1,1,0), \[[rsl] [x] _ -> (0, [atV r rs]l, [x1, [1))
-— outr
exeScenario 20 = ((1,0,1), (0,1,0,1), \[[mn]] _ [m] -> ({1, [atV m mn], [], [m]))
-— outm
exeScenario _ = error "exeScenario: Non existent scenario"

-- | ’exeKernel’ is the Execution (EXE) kernel process
exeKernel :: Signal ScenarioEXE -> Signal [Int] -> (Signal Int, Signal Int)
exeKernel exeCt sigArg = (sigBr, sigDmp)

where (sigBr, sigDmp, sigReg, sigDm) = kernel34SADF exeCt sigArg sigReg’ sigDm’

sigReg’ = delaySADF [regV] sigReg
sigDm’ = delaySADF [memV] sigDm
regV = vector $ replicate 32 0
memV = vector $ replicate 1024 0
—-— Decode Detector
type ScenarioDEC = ((Int,Int), ([ScenarioIF], [ScenarioEXE]))

type StateDEC = Int

-- | ’detectorScenario’ is th output function of the detector. It converts a
-- state into an equivalent scenario

decScenario :: StateDEC -> ScenarioDEC

decScenario n = ((1,1), ([ifScenario n], [exeScenario n]))

-- | ’decSwitchState’ is the state transition function of the detector
decSwitchState :: StateDEC -> [String] -> StateDEC

decSwitchState _ ["nop"] =0
decSwitchState _ ["1d"] =1
decSwitchState _ ["ldr"] = 2
decSwitchState _ ["st"] =3
decSwitchState _ ["str"] =4
decSwitchState _ ["mov"] =5
decSwitchState _ ["movi"] = 6
decSwitchState _ ["add"] =7
decSwitchState _ ["sub"] =8
decSwitchState _ ["mul"] =9
decSwitchState _ ["div"] = 10
decSwitchState _ ["and"] = 11
decSwitchState _ ["or"] = 12
decSwitchState _ ["xor"] = 13
decSwitchState _ ["bez"] = 14
decSwitchState _ ["bnz"] = 15
decSwitchState _ ["bgz"] = 16
decSwitchState _ ["blz"] = 17
decSwitchState _ ["jmp"] = 18
decSwitchState _ ["outr"] = 19
decSwitchState _ ["outm"] = 20
decSwitchState _ _ = error "decSwitchState: Input not recognized"

-- | ’decodeDetector’ is the detector of ProSyDe
decDetector :: Signal String -> (Signal ScenarioIF, Signal ScenarioEXE)
decDetector = detector12SADF 1 decSwitchState decScenario 0
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146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184

-- ProSyDe compact

-— | ’prosyde’ is the processor built with the ForSyDe SADF library. It outputs
-- whatever it is in register Q@rs@ during the execution of instruction Qoutr rs@
procNet :: Vector String -> Signal Int
procNet progV = sigDmp
where (sigBr, sigDmp) = exeKernel exeCt sighArg
(sigArg, sigOp) = ifKernel progV ifCt’ sigBr
(ifCt, exeCt) = decDetector sigQOp
ifCt’ = delaySADF [ifScenario 0] ifCt

progV :: Vector String
progV = vector [

"movi O 1", -——reg 0 =1

"movi 1 1", ——regl=1

"movi 2 100", -- reg 2 = 100

"add 0 1", ——reg 0 =reg 0 + reg 1

"sub 2 0", -——reg 2 =reg 2 - reg O

"bez 2 1", -- skip next instruction if reg 2 ==
"jmp -5", -— jump back to instruction 3: "movi 2 100"
"str 0 0", -- mem(reg 0) = reg O

"ldr 10 0", -- reg 10 = mem(reg 0)

"outr 10", -- output reg 10

"outr 1", -- output reg 1

"outm 100", -- output mem(100)

"movi 10 7", -- reg 10 =7

"st 10 42", -- mem(42) = reg 10

"outm 42", -— output mem(42)

"jmp -1" -- end of program

]
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