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Resumo
Os problemas de corte de estoque e sequenciamento de produção representam um desafio
na fabricação e logística modernas. Esses problemas envolvem determinar a maneira mais
eficiente de cortar matérias-primas em pedaços menores para atender demandas específicas
e, ao mesmo tempo, minimizar desperdícios, tempo de preparação e atrasos. Esta dissertação
baseia-se num problema real de produção de uma indústria farmacêutica, em particular
na produção de bobinas para blisters. Um modelo é proposto e diferentes metodologias
foram exploradas para abordá-lo. A pesquisa se dedica a fornecer uma resolução eficaz
usando uma Heurística FFD (First Fit Decreasing) e um Algoritmo Genético alinhado aos
desafios únicos enfrentados pelos tomadores de decisão e às complexidades do ambiente de
produção.

Palavras-chave: Problemas de corte de estoque. Problemas de sequenciamento de produ-
ção. Minimização de resíduos. Fabricação. Eficiência. Heurística FFD. Algoritmo genético.



Abstract
Cutting Stock and Scheduling Problems represent a challenge in modern manufacturing and
logistics. These problems involve determining the most efficient way to cut raw materials
into smaller pieces to meet specific demands while minimizing waste, setup time and delays.
This dissertation is based on a real world manufacturing problem in the pharmaceutical
industry, in particular to produce coils for blister packs. A model is proposed and different
methodologies were explored to address it comprehensively. The research is dedicated
to delivering an effective resolution using a FFD (First Fit Decreasing) Heuristic and a
Genetic Algorithm aligned with the unique challenges faced by decision-makers and the
intricacies of the production environment.

Keywords: Cutting Stock Problems. Scheduling Problems. Waste minimization. Manu-
facturing. Efficiency. FFD Heuristic. Genetic Algorithm.
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Introduction

Operations research is a powerful and versatile research area that plays a
pivotal role in various sectors by improving decision-making processes, resource utilization
and overall efficiency. Its importance continues to grow as organizations seek to adapt to
complex, data-driven environments and make better-informed choices. The founders of
Operations Research in World War II not only solved problems under difficult conditions
but also succeeded in articulated what they had done. A simple definition of OR is "a
scientific method of providing executive departments with a quantitative basis for decisions
regarding the operations under their control" (LITTLE, 1991). We live today in a world that
technological and social change are rapid. The current production processes are increasingly
complex and extensive. This evolution in the way products must be manufactured, the
demands of regulatory agencies and the pressure for competitive prices in the market, lead
industries to seek methods that eliminate unnecessary losses and internalize production
stages. This environment creates a lot of opportunities for analysis and models in OR area.

In industrial context, problems involving the sequencing of production and
cutting of materials are extremely relevant for the manufacture of raw materials. However,
to solve problems of this type, a high degree of understanding of the process and related
variables is necessary, as well as sensitivity in the use of algorithms and techniques to
model the problem. A cutting stock problem is a combinatorial optimization challenge
commonly encountered in manufacturing and inventory management. The objective is
to find the most efficient way to cut raw materials, such as rolls of paper, metal sheets,
or lumber, into smaller pieces to meet a set of demand requirements while minimizing
waste. Scheduling problems refers to a task of organizing and arranging activities, tasks, or
resources in a specific order or sequence, typically within a constrained environment. These
constraints could involve time limitations, resource availability, precedence relationships
(where one task must happen before another), or other logistical considerations. The aim
of solving a scheduling problem is to optimize the allocation of resources (such as time,
machinery, or personnel) to complete tasks efficiently, meet deadlines, minimize costs, or
maximize productivity. Various types of scheduling problems exist across different fields,
including project management, manufacturing, transportation, and computer science,
each with its unique set of constraints and objectives. Many researches around this topic
proposes different approaches to solve it, that will be described and different references
will be presented in next chapters. An integration of this two kind of problems is called
"Integrated Lot Sizing Problems" which involves optimizing production and inventory
decisions simultaneously, taking into account multiple items or products within a single
system. The primary objective is to determine the optimal production quantities, schedules,
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and inventory levels for a range of items, considering factors like setup costs, holding costs,
and capacity constraints.

Motivated by this scenario and challenge, this project aims to propose a model
for a cutting stock problem integrated with a lot sizing problem. At the end of the study,
the expected output is to develop an adequate model, defining and analyzing the best
production sequencing with the lowest material losses, which can serve as a basis for
application in different production processes. Indeed, this dissertation aims to seamlessly
fuse practical insights from production routines with a potent theoretical framework,
offering diverse avenues for customization to decision-makers. In essence, it will allow the
analysis of different programming horizons and the inclusion of specific parameters related
to cutting machines.

Objectives
Challenges related to material cutting are frequently faced within the packaging

industry. From a business perspective, the packaging industry is progressively evolving into
a vital and integrated element for success in the marketplace. The main end use sectors
are food and beverage, followed by health care and cosmetics; and main materials used
are paper & board, plastics, metal, glass and wood (OLSMATS; KAIVO-OJA, 2014).

Specifically about plastic films, today we have many different polymers being
used: PE (polyethylene), PP (polypropylene), PET (polyester), and PS (polystyrene).
They are commonly used in monolayer format, but they are also used in multilayers
films produced by coextrusion and (or) lamination processes. These films are broadly
used for chemicals, consumer goods and pharmaceutical products. Some characteristics as
lightweight, non-corrosive and the ability to preserve products for a long period, make
them a popular choice and highly applicable for packaging (WAGNER; MARKS, 2016).
The implementation of FDA (Food and Drug Administration, federal agency) regulations
in the US has increased the sales of blister packs, a type of package that usually use plastic
films sealed with paper or aluminium, over the years. This increment has been remarked
all over the world, considering the growing incidence of diseases and the concern for health
and wellness, in other words, the need for pharmaceuticals.

This dissertation is based on a real manufacturing problem in a pharmaceutical
industry, in particular to produce coils for blister packs. The challenge is to obtain a model
that can reflect the specifics of this process, from the cutting patterns of large coils to
the most suitable programming window. Furthermore, the goal is also to contribute to
existing research by introducing an additional approach and problem-solving method for
this type of issue, showcasing a real scenario where theory and concepts previously studied
by other authors align with this work.
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Dissertation structure
This dissertation is organized as follows:

• Capter 1: Theoretical References;

• Capter 2: Integrated Cutting Stock and Scheduling Problem Description;

• Capter 3: Resolution Methodology for Packaging ICSSP;

• Capter 4: Experiments and Results;

• Capter 5: Conclusion and Future Perspectives.

The first chapter provides a theoretical approach to the problem classes sep-
arately, with bibliographic references and explanations of key concepts. In the second
chapter, the integrated problem and major works in this field are discussed, where the prob-
lem’s complexity may become apparent. The reader will also gain a better understanding
of all the factors considered for solving the packaging problem, including practical aspects
of production machines, enabling a comprehensive analysis of the problem’s complexity.
The third chapter provides a better understanding of the resolution methodology. Finally,
results are presented in the forth chapter, and a conclusion addressing the most significant
findings, as well as future prospects, is discussed.
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1 Theoretical References

1.1 Cutting stock problems (CSP)
The Cutting Stock Problem (CSP) can be described as how to cut out pieces

from stock material with minimum loss. Economic utilization of resource material is not
only the interest of the industrialist but also of the world (CHENG; FEIRING; CHENG,
1994). Also called a trim-loss problem, they can be categorized by dimension. A one-
dimensional problem is one in which only one dimension is significant. Coils, metal tubes,
and film rolls are considered one-dimensional problems (Figure 1), while for wooden
boards, metal sheets, and fabrics, the problems are called two-dimensional where the two
orthogonal directions are significant in the determination of a solution (HINXMAN, 1980).
Another probable situation less frequently occurs is the three-dimensional problem. In
many real situations, this kind of issue can be standardized as one or two dimensions
or can be called a loading problem. A review of solution methods and computational
experiments for loading problems can be noticed in Silva, Oliveira e Wäscher (2016). In
general, cutting machines receive large pieces of standard sizes cut into smaller pieces of
different sizes. In order to avoid unnecessary losses in this cutting process and to maximize
the number of items cut in large pieces, an optimization problem arises.

Figure 1 – One-dimensional cut (example)

An important consideration in modeling a cutting stock problem is the transition
from input materials (production factors) to the desired output materials (products), as
well as the technology involved in this process (DYCKHOFF et al., 1985). Hence, three
categories of restrictions result from the model’s quantitative properties:

• Input restrictions: limited quantities available and inbound sizes;
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• Cutting operation restrictions: the amount of technology is limited by cutting
parameters;

• Output restrictions: quantity of output material is restricted due to internal orders
or demand.

Figure 2 – Structure of the trim loss problem as input/output model. (DYCKHOFF et
al., 1985)

Figure 2 provides a general framework for this restriction classification. Re-
strictions regarding values, such as budgets or minimal profit contributions, can also be
considered but are not common in the literature.

Regarding the difficulty in modeling cutting stock problems and their economic
importance, many review papers and special editions were published to correlate current
models and, if applicable, their industry background. The most important papers are those
of Morabito, Arenales e Yanasse (2009), Gomes et al. (2016), Parmar, Prajapati e Dabhi
(2014), Cherri et al. (2014), Melega, de Araujo e Jans (2018).

Gilmore and Gomory (GILMORE; GOMORY, 1961) were pioneers in solving
cutting stock problems. The Gilmore-Gomory method generates cuts through an iterative
process that uses the relaxed fractional solution of the integer linear problem to generate
cuts that eliminate fractional solutions. The process is repeated until the entire solution
is found. The next pattern to enter the Linear Programming basis could be found by
solving an associated knapsack problem. With that, solving the trim loss minimization
was possible without first enumerating every feasible cutting pattern. This approach is
very important, it can solve one-dimensional problems but also two-dimensions or three-
dimensions, considering that many feasible patterns may exist when narrow widths are to
be slit from a wide stock roll (HAESSLER; SWEENEY, 1991). After this proposal, other
methods and techniques were developed in combinatorial optimization and integer linear
programming.



Chapter 1. Theoretical References 17

1.1.1 One-dimensional cutting stock problem

From a large width material, or L, the cutting process will produce m item
types with sizes l1, l2, ..., lm in varying quantities b1, b2, ..., bm.

Figure 3 – Cutting pattern

In order to ensure that the process will have the lowest possible losses, it is
necessary to combine the different widths of items (Figure 3), also taking into account the
required quantities bi of each of them. A combination of widths is called cutting pattern.

To every cutting pattern j, one-dimensional vectors are named aj = [a1j, a2j,
amj]. Thus, a vector α = (α1 α2 ... αm)T represents a cutting pattern if and only if the
equation below is satisfied:

l1α1 ` l2α2 ` ... ` lmαm ď L

α1 ě 0, α2 ě 0, ..., αm ě 0 and integers.

Cutting problems that involve an integral condition, like the previous statement,
can be solved with the mathematical model proposed by Kantorovich in 1939. He was
the first to develop a solution for this type of problem. Subsequently, Gilmore e Gomory
(1961) developed a model and a solution method with a more practical approach involving
linear programming and variable rounding techniques that will be the basis for this work.

The solution method consists of minimizing the number of cut coils or mini-
mizing losses, considering the cutting patterns. The demands of the items to be cut will
represent the constraints. Consider the Figure 5 to exemplify the cutting problem.

A typical one-dimensional cutting stock problem can be defined as explained
below. There are, available in stock, a quantity of objects of length equal to L and a set of
items, with known demand bi and lengths li, i = 1, ..., m. Item lengths cannot be longer
than L. The problem is to produce the items from the objects available in stock, meeting
the defined demand. Overproduction is prohibited, and all objects must be cut completely
(no return to stock).

Although the primary objective of the one-dimensional cutting stock problem
is to minimize the total length of used stock rolls, reducing interruptions in the cutting
process has become an important factor in some applications (MATSUMOTO; UMETANI;
NAGAMOCHI, 2011). In general, the ability to optimize the use of resources, minimize
waste, and maximize efficiency makes these problems a valuable tool in various industries.
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Figure 4 – One-dimensional cutting stock problem

1.1.1.1 Heuristics for the One-dimensional Cutting Problems

The majority of publications in the field of cutting stock problems deals
with real-world applications from various industries. It is not common to treat general
methodological issues, even with some questions to be answered across the generation of
integer solutions. It’s not known an exact algorithm that solves medium-size problems
instances to optimally. Thus industrial integer cutting stock problems are usually dealt
with through heuristics.

According to Poldi e Arenales (2006), one way to solve cutting stock problems
is to apply exhaustive repetition heuristics, in other words is building a good cutting
pattern and use it as many times as possible. It is called constructive heuristics. The
other way is to use a residual approach, where the relaxed problem is solved by column
generation, approximate its fractional solution by an integer solution, leaving a problem
with less demand, called residual. Gilmore e Gomory (1961) were the first to propose this
approach, but they did not present studies in this regard, they only suggested that the
approximation should be for the lower integer and the residual problem solved by some ad
hoc method. This has been the most used approach in practice.

1.1.1.2 Residual Heuristics

The residual heuristics procedure involves initiating a search for an integer
solution to a problem using rounding techniques applied to the relaxed solution. This
method allows for the identification of promising integer solutions by leveraging the
information obtained from the relaxed solution. By iteratively refining the solution based
on the residuals, the residual heuristics procedure can efficiently converge to a high-quality
integer solution.

Wäscher e Gau (1996) proposed a residual heuristics that consists in rounding
the components of vector x = (x1 , x2 ,..., xn) downwards and solving the residual problem
by replacing the demand vector b in the following problem (with A “ ra1a2...a3s the matrix
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organized by columns, aj “(α1j α2j ... αmj)T represents a cutting pattern) by the residual

demand: ri = bi -
n

ÿ

j“1
aijtxju, i = 1,..., m.

Minimize
ÿ

jPJ

xj (1.1)

subject to
ÿ

jPJ

αijxj “ bi (1.2)

m
ÿ

i“1
αijli ď L (1.3)

xj P Z` (1.4)

If another fractional solution is encountered during the residual heuristics
procedure, the process of rounding down to the nearest integer is repeated to generate a
new residual demand. This process continues until all frequencies are reduced to zero. If
any items still have non-zero demands, a final residual problem is solved using a suitable
heuristic that provides an integer solution to the problem.

An alternative residual approach, proposed by Poldi e Arenales (2010), involves
solving a relaxed cutting stock problem at each iteration. The solution vector is then sorted
in descending order, and the first frequency is rounded up to the nearest integer. The
feasibility of the resulting pattern is then tested to ensure that there are no overproductions
of any items. If over productions exist, the frequency is reduced by one unit until they
are eliminated, and the process continues to the next frequency pattern. Once the last
cutting pattern is examined, the demand and stock are updated, and the residual problem
is solved. This rounding procedure is repeated until all demand is supplied. Since at least
one cutting pattern is accepted into the solution every time a relaxed problem is solved,
the Greedy Rounding Heuristic (GRH) guarantees that every demand will be satisfied in
a finite number of iterations.

The basic procedure for Residual Heuristics is presented in the Algorithm 1.

The Greedy Rounding Heuristic (GRH) ensures that every demand will be
met in a finite number of iterations. Two alternative versions of the heuristic, GRH2
and GRH3, prioritize the solution vector x based on different criteria. GRH2 sorts the
solution vector x in order of patterns with the least amount of waste. This approach aims
to minimize the amount of unused material and optimize the use of resources. On the other
hand, GRH3 prioritizes patterns in which the solution vector x has the largest fractional
part. This approach aims to make the best use of limited resources by maximizing the
production of items in each iteration. Overall, these variations of the GRH provide different
benefits depending on the specific goals of the problem at hand (CERQUEIRA; AGUIAR;
MARQUES, 2021).
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Algorithm 1 – Greedy Rounding Heuristic
b0 = b, k = 0;
while bk

‰ 0 do
Solve the relaxed problem: (1.1)-(1.4) ;
Obtain xk = (xk

1, ...., xk
m) and the basic matrix Bk = [ak

1, ..., ak
m];

ak
i , i = 1, ...., m, are the cutting patterns for the solution of problem-k;

Order the cutting patterns so that: xk
1 ě ... ě xk

m;
Determine a feasible solution;
if (rxk

1 s, 0, ...., 0qisfeasible then
yk

i = rxk
1 s end

else
yk

1 = rxk
1 s ´ 1

for i = 2 ... m do
yk

i = rxk
1 s

yk = (yk
1 , ..., yk

i´1, yk
i , 0,..., 0);

end
end
while Bkyk > bk (yk is not a feasible solution) do

yk
i = yk

i - 1;
end
Keep Bk e yk;
bk`1 = bk - B yk;
k = k + 1;

end

1.1.1.3 Constructive Heuristics

One alternative approach to finding an integer solution for a one-dimensional
cutting problem is to use constructive heuristics, which involve constructing an efficient
cutting pattern and using it repeatedly without producing any excess material. During
each iteration of this procedure, the demand for items is updated and the process is
repeated until all demand is satisfied. This results in an integer solution for the problem
that optimizes the use of resources and minimizes waste.

Constructive heuristics are a valuable tool for solving one-dimensional cutting
problems because they provide a practical and efficient method for generating high-
quality integer solutions. By constructing cutting patterns that maximize the utilization
of resources and minimize waste, these heuristics can help businesses and manufacturers
reduce costs and increase profitability.

1.1.1.4 FFD Heuristic

First-Fit algorithms have been extensively explored in numerous studies. Pio-
neering research in this domain includes works by Ullman (1971), Johnson (1973), Xia e
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Tan (2010), and Johnson et al. (1974). A basic definition of First-Fit-Decreasing (FFD)
heuristic involves placing the largest item in a cutting pattern as many times as possible
until its demand has been met or it no longer fits. The process then continues with the
second largest item and so on, until a cutting pattern is constructed using the shortest
length item. The second largest item is then placed and so on. When the last item (shortest
length) is examined, a cutting pattern is constructed.

To ensure that the heuristic is residual, the demand is updated after each
pattern is created, and the process is repeated until all demand has been fulfilled. This
approach was chosen for this particular problem because it enables the machine to start
production with fewer cutting blades, which can prolong the useful life of the equipment.
Additionally, it allows for the efficient processing of larger items with higher added value.
Residuals, unlike constructive heuristics, have lower losses and were also chosen to optimize
the cutting process as a whole. (LUCIANO; REINALDO, 2005)

The complete algorithm for the FFD Heuristic is presented in Algorithm 2:

Algorithm 2 – FFD Heuristic
Sort the items in non-increasing order of size: l1 ě l2 ě ... ě lm;
Let ri be the residual demand of the item i P I, I = {1, ..., m};
At first: ri = bi, @ i P I;
k = 1 (First cutting pattern);
STOP = False (logic variable that indicates a non-null demand);
while STOP = FALSE do

Rest = L;
αik = 0, @i P I;
i = 1 (start by putting the first item in the pattern);
while i ě m and Rest ě li do

αik = min { Rest

li
, ri } ;

Rest = Rest - αikli ;
ri = ri - αik;
i = i + 1;

end
if ri = 0 @ i P I then

STOP = TRUE;
end
else

k = k + 1;
end

end
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1.1.1.5 Greedy Heuristic

The Greedy Heuristic shares the same basic approach as the FFD Heuristic, but
with a slight variation. While the FFD Heuristic prioritizes the largest items to construct
the pattern, in the Greedy Heuristic, the pattern is determined by solving the restricted
knapsack problem. The Greedy Heuristic can more effectively optimize the use of available
resources and achieve better results.

1.1.2 Variants of Cutting stock problems

Common variants of cutting stock problems include:

• Two-Dimensional Cutting Problem: The materials available for cutting have two
dimensions (width and length), and the items to be cut can have different dimensions.

• Three-Dimensional Cutting Problem: Similar to two-dimensional, the items and
materials for cutting have three dimensions (length, width, and height).

• Multi-Stage Cutting Problem: It involves more than one cutting step where items
are initially cut into intermediate pieces, and then these intermediate pieces are cut
to meet the final demand.

• Irregular Cutting Problem: Considers irregular cutting patterns, allowing for non-
uniform and more complex cuts to reduce waste.

A two-dimensional problem can be described as a set of rectangular pieces
from a single rectangular stock sheet, minimizing the waste that can appear in various
production processes (OLIVEIRA; FERREIRA, 1990). Several applications highlight
how two-dimensional cutting problems are crucial in various industries, contributing to
operational efficiency, cost reduction, and sustainable use of materials.

According to Gilmore e Gomory (1961), this kind of problem can be stated as
follows: given a rectangular stock sheet R of dimensions L x W ; a set of p distinct types
of smaller rectangular pieces is to be cut from the stock sheet. This set is denoted by S =
{(li, w1), (l2,w2), .., (lp, wp)}. The objective of the two-dimensional problem is:

Maximize
p

ÿ

i=1
xivi (1.5)

The basic formulation of the two-dimensional cutting stock problem is described as: such
that there exists a series of cuts on R, such that xi are pieces of type i (i=1,..p) can be
cut from R, xi ě 0.
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Where vi is the value associated with each of the rectangles to be cut, and xi

is the number of pieces of type i, which are cut. Many constraints can be imposed upon
the basic formulation. One of the most frequently used is to restrict the number of pieces
of any one type of rectangle in the set S. This constraint can be stated mathematically
as: xi ě di, i “ 1, ..., p. Where di is the maximum number of pieces of type i that may be
cut from the stock sheet R, the addition of this last equation converts the unconstrained
cutting stock problem to a constrained problem.

Besides that, another restriction for cutting problems is that we may use only
guillotine cuts for each object. That represents cuts parallel to one of the object’s sides and
go from one side to the opposite one, and then they are called two-dimensional guillotine
cutting problems. Another usual restriction for these problems is staged cuts. A k-staged
cutting is a sequence of at most k stages of cuts, each stage of which is a set of parallel
guillotine cuts performed on the objects obtained in the previous stage. The cuts in each
stage must be orthogonal to those in the previous stage; with that, we assume the cuts
are infinitely thin (CINTRA et al., 2008).

Figure 5 – Two dimensional cutting problems (CINTRA et al., 2008).

Variants of cutting problems have applications in different contexts, playing
a crucial role in optimizing the use of materials in various industries. For example, the
One-Dimensional Cutting Problem is fundamental in the paper industry, where paper
rolls of fixed lengths need to be cut to meet the demand for sheets of different sizes.
The Two-Dimensional Cutting Problem finds application in the furniture industry, where
wooden boards of different dimensions must be cut to produce different pieces of furniture.
In sectors such as the textile industry, the Irregular Cut Problem is crucial to optimize the
cutting of complex fabric patterns, minimizing material waste. Furthermore, the Multistage
Cutting Problem is commonly employed in the manufacturing industry, where intermediate
parts are cut before passing through subsequent stages of production. These applications
highlight the versatility and importance of cutting problems in operational efficiency and
cost reduction across various industries.
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1.2 Scheduling Problems
Sequencing and production planning are crucial activities in both manufacturing

and service industries. Pioneering studies at the beginning of the century, led by figures such
as Henry Gantt, brought prominence to this subject. Scheduling, a critical decision-making
process employed across various manufacturing and service industries, revolves around
efficiently allocating resources to tasks within specified time frames, aiming to optimize
one or more objectives. Resources and tasks can manifest in diverse forms, ranging from
machines in a workshop and runways at an airport to crews at a construction site and
processing units in a computing environment. Tasks may encompass production operations,
airport take-offs and landings, construction project stages, or computer program executions.
With each task possessing priority levels, earliest starting times, and due dates, objectives
can vary, such as minimizing completion time or reducing the number of tasks completed
after their respective due dates. (PINEDO, 2012a)

1.2.1 Classification of Scheduling Problems

According to (ARENALES et al., 2015), the primary decisions at the operational
level involve task assignment to machines ("jobs") and scheduling of tasks on each machine,
i.e., determining the sequence of task processing and the start and end times of each task.
The goal is to achieve maximum system efficiency. A schedule is essentially an assignment
of one or more time intervals to one or more machines for each job. This allocation of tasks
to specific time slots and machines can be effectively represented through Gantt charts (6.

Figure 6 – Machine-oriented and job-oriented Gantt charts.

(BRUCKER, 2004)

The description outlines a job Ji, which comprises a series of operations
Oi1,...,Oini

. Each operation Oij has a processing requirement pij. If a job Ji has only
one operation (ni = 1), Ji is identified with Oi1, and the processing requirement is denoted
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as pi. Additionally, a release date ri may be specified for when the first operation becomes
available for processing.

Each operation Oij is associated with a set of machines µij Ă {M1,...,Mm},
where Oij can be processed on any machine within µij. Dedicated machines have ij as
one-element sets, while parallel machines have µij equal to the set of all machines. The
general case covers flexible manufacturing problems with machines equipped with different
tools, allowing an operation to be processed on any machine with the appropriate tool.
This scenario is termed scheduling problems with multi-purpose machines (MPM).

There’s also the possibility that all machines in µij are used simultaneously by
Oij throughout the entire processing period. Such scheduling problems are referred to as
multiprocessor task scheduling problems. (BRUCKER, 2004)

Lastly, a cost function fiptq is utilized to quantify the completion cost of Ji at
time t. This cost function can be defined with the inclusion of a due date di and a weight
wi. In a general context, all data points, such as pi, pij , ri, di, and wi, are considered to be
integers. A feasible schedule ensures no overlapping time intervals on the same machine,
no overlapping intervals for the same job, and compliance with specific problem-related
constraints. An optimal schedule, on the other hand, minimizes a designated optimality
criterion. (BRUCKER, 2004)

As stated by (PINEDO, 2012b), classes of scheduling problem can be represented
as a triple α | β | γ. The α field describes the manufacturing environment and contains
only one entry. In this field, one can mention problems with a single machine, two machines
in parallel, "Flow Shop" (where sequencing of steps on machines is necessary), or "Job
Shop" (where it is necessary to go through steps or machines more than once). The β

field, in turn, contains details of processing characteristics and constraints and may have a
single or multiple entries. Finally, the γ field describes the objective to be minimized and
usually contains a single entry.

1.2.2 Single machine

According to (BAKER, 1974), this type of problem is considered highly signifi-
cant for various reasons, as it serves as a foundation for developing techniques to address
more complex issues.

Consider the problem of a single machine with n tasks to be processed, assuming
that all tasks can start at time zero and that there are no interruptions in task processing.
The following integer and non-negative parameters are taken into account:

pi = processing time of task i

di = deadline for task i
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M = a large number

The following decision variables need to be defined:

Ci “ completion time of task i

xi “ start time of task i

yik “
1, if task i immediately precedes task j
0, otherwise

Additionally, depending on the optimization objective, we can define:

Ti = max {Ci - di, 0} = delay in task i

Ei = max {di - Ci, 0} = advancement or lead time of task i

Li = Ci - di = lateness of task i

From these parameters and variables, various optimization problems are formulated.
Examples of possible objectives include:

• Minimization of makespan

• Minimization of the maximum delay

• Minimization of the sum of delays and advancements

• Minimization of overdue tasks

• Minimization of the sum of delays

Once the problem’s objective is defined, it is necessary to model the problem
while considering the appropriate constraints. A possible mathematical model of the
problem 1|pi|Cmax, which minimizes the makespan, is presented below.

minimize Cmax (1.6)

subject to: Cmax ě xi ` pi @i “ 1, ..., n (1.7)

xi ` pi ď xk ` Mp1 ´ yikq @i “ 1, ..., n, k ą i (1.8)

xk ` pk ď xi ` Myik @i “ 1, ..., n, k ą i (1.9)

Cmax ě 0 (1.10)

xi ě 0 @i “ 1, ..., n (1.11)

yik P t0, 1u @i “ 1, ..., n, k ą i (1.12)

The optimal solution will result in the sequencing of task processing that
minimizes the maximum completion time of any task.
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2 Integrated Cutting Stock and Scheduling
Problem Description

This dissertation is based on a real manufacturing problem in pharmaceutical
industry, in particular to produce coils for blister packs. It is an integrated cutting stock
and scheduling problem. Blister packaging, contrary to bottles, keeps each tablet or capsule
hermetically sealed in its own bubble (Figure 7). Drugs that are not taken remain in the
original package and are fully protected against external conditions.(PILCHIK, 2000)

Figure 7 – Basic configuration of blister packaging.

A typical procedure for blister packaging assembly (Figure 15) involves a
forming web thermoform with a web (plastic material) into blister cavities, load blister
with product, place lidding material over it and heat-seal the package. An essential part
of a standard blister machine is the unwinding station, where coil plastic (forming films)
are at a rate that corresponds to the speed of the entire machine.

Figure 8 – Blister packaging standard procedure.
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The coils for lidding material and forming web can be bought in different sizes,
adjusted to be put in blister machine. In this case is important to have an ongoing supply
chain control with the supplier, since a wide variety of coil types (composition, color,
thickness) is necessary to deliver product specifications.

In order to reduce costs and delivery issues with suppliers, an option that has
become common is to add a new manufacturing process to blister packaging. Even though
it is not the main activity of the pharmaceutical industry, it is opportune to buy coils
with large widths to cut them in an appropriate machines, delivering materials for blister
machines. This internal new process will also be able to support changes in production
scheduling quickly, without having to carry out new negotiations with an external supplier.

However, this new process also brings a new problem that comes down to
deciding how to cut the large coils in order to avoid waste and attend the production
demand on time.

In Section 2.1, we present the leading works in the literature with themes related
to this research. These works inspired the proposed approaches. Section 2.2 presents the
proposed mathematical model (adapted from the work of Lemos (2020)) for the Integrated
Cutting Stock and Scheduling Problem (ICSSP) in the pharmaceutical packaging process.
Section ?? details the approaches used to treat ICSSP, emphasizing the proposed Genetic
Algorithm.

2.1 Literature Review
In various industries, there are numerous complex challenges that require

extensive research to find viable solutions. A study conducted by Le Hesran et al. (2019)
identified keywords related to waste minimization and scheduling. These keywords were
combined to create 12 combinations and a literature search using the Web of Science
was conducted. Over 2,000 articles were screened to match the study’s scope. Additional
research involved examining references and citations in selected papers and focusing on
specific scheduling problems related to waste reduction. A total of 70 papers were selected,
categorized by publication year and fields such as operational research, chemistry, and
sustainable production. The trend (Figure 9) showed an increase in publications after
2007. The majority of articles were from operational research journals (38), followed by
chemistry journals (15) and sustainable production (9). The interdisciplinary nature of the
field made it challenging to connect articles, emphasizing the need for a comprehensive
review.



Chapter 2. Integrated Cutting Stock and Scheduling Problem Description 29

Figure 9 – Graph with papers categorized by publication year and fields.

Figure 10 presents the top 30 keywords in the works used as references for
our research. The keywords were listed and counted, forming a list of occurrences. We
defined a network structure; this structure represents each keyword by a node, and the size
associated with each node is proportional to the number of occurrences of the keyword
in the list; edges link keywords that appear together in the same document; each edge
has a weight associated with the frequency with which two keywords are cited together,
considering all documents. We use the Leiden Algorithm (TRAAG; WALTMAN; ECK,
2019) to group keywords and identify clusters in the network. This algorithm applies
an optimization technique aimed at maximizing the network’s modularity, measured
through the connection strength between its nodes, to divide it into modules. The works
that make up this bibliographical review or were part of the scope and development
of this research are mainly divided into the main clusters: (i) cutting stock, lot sizing,
column generation, heuristics, production planning, integrated problems, multiperiod,
integrated problem, lagrangian relaxation; (ii) scheduling, multiobjective optimization,
batch process, waste minimization, design, engineering economics, environmental impact
reduction, multipurpose batch plants; (iii) cutting, integer programming, manufacturing,
optimization, production, one-dimensional, typology.

The table 1 relates the main references and their respective topics that served
as the basis for this research.
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Figure 10 – Keyword cloud - literature review.
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Recent developments in Cutting Stock Problems (CSP) literature emphasize
the importance of considering production scheduling holistically, moving beyond just
optimizing cutting patterns. This has given rise to new CSP variants, such as those
involving pattern reduction or usable leftovers. These variants not only focus on mini-
mizing trim loss through efficient patterns, but also consider how these patterns impact
production scheduling. For instance, using the most efficient patterns may necessitate
frequent pattern changes to meet demand, resulting in longer setup times and increased
costs, potentially negating the benefits of reduced trim loss. The cutting stock problem
(CSP) and its appropriate heuristics has been discussed by Poldi e Arenales (2009). The
paper focuses on the one-dimensional multiple stock size cutting problem, dealing with
varying stock lengths and limited quantities. The CSP is often formulated as an integer
linear optimization problem, but its complexity arises from the vast number of potential
cutting patterns. To tackle this, various techniques have been proposed, such as relaxation
of integrality constraints, column generation and rounding procedures. The authors cite
previous work, introduces various heuristic and column generation-based approaches,
provides implementation recommendations and reports computational experiments.

In their work of CSP with setup considerations, Harjunkoski, Westerlund e Pörn
(1999) delved into the realm of one-dimensional CSP (1DCSP) within the paper conversion
industry. Their research encompassed the formulation of various objective functions, each
focusing on distinct criteria such as pattern count, pattern change frequency, total waste,
makespan, energy consumption and overproduction. They meticulously compared outcomes
across these diverse objectives, even introducing a hybrid objective function aimed at
simultaneously minimizing total waste and energy consumption. Their study underscored
the significance of these hybrid functions, emphasizing that a profound understanding of
the underlying processes, albeit necessitating further investigation, plays a pivotal role in
enhancing result quality.

Similarly, Schilling e Georgiadis (2002) explored the 1DCSP, considering costs
as an additional dimension. In their investigation, they crafted a comprehensive objective
function that encompassed not only profit and setup costs but also a noteworthy inclusion
- waste disposal costs. To tackle this complex problem, they introduced a Mixed Integer
Linear Programming (MILP) model, highlighting how the incorporation of changeover
and waste disposal expenses heightened the problem’s complexity. Still considering setup
in CSP, Kolen e Spieksma (2000) also studied the 1DCSP, focusing on trim loss reduction
and minimizing pattern counts. They also accounted for two types of jobs, one allowing for
controlled over or underproduction and the other adhering strictly to demand requirements.
To solve this multi-objective problem, they devised a Branch and Bound (B&B) algorithm
capable of generating a set of Pareto-optimal solutions. Lastly, Araujo, Poldi e Smith
(2014) and Golfeto, Moretti e Neto (2009) used genetic algorithms (GA) for the 1DCSP.
The first tackled the bi-objective optimization problem involving the minimization of both
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the number of patterns used and the trim loss incurred. With the GA, they were able to
generate a set of solutions that were not dominated by one another. Compared to alternative
methods employed to solve both real-life and randomly generated instances, it delivered
impressive quality results without compromising computational efficiency. And the second,
Golfeto et. al, with GA also had successfull results. They constructed a Pareto front that
illustrated the trade-offs between trim loss and the number of setups. Furthermore, they
proposed the possibility of parallel processing to enhance the computational speed of their
genetic algorithm.

Scheduling problems in the realm of CSP and ICSP, particularly research
focused on waste minimization, have been explored in the context of production processes
that are less specialized. The ICSSP consists in determining the set of feasible cutting
patterns that covers the demand of the items, and the time instants when each of these
patterns must be cut such that the waste and tardiness is minimized.

One of the first contributions in the field of Cutting Stock and Scheduling
Problems is the research of Li (1996). The author addresses a two-dimensional cutting
stock problem involving rolls with varying lengths and widths. Jobs consist of sets of items
with different sizes and defined release and due dates. The study introduces various integer
programming models associating cutting patterns with time periods. Additionally, the
author presents both Linear Programming (LP) and non-LP-based heuristics for generating
feasible cutting patterns and schedules. The effectiveness of these heuristics is assessed
using small instances where an optimal solution can be computed within a reasonable time
frame. Similar to other models in the literature, authors formulation is not universally
exact, depending on the length of time periods, as an optimal solution may not be optimal
for the overall problem.

Poltroniere et al. (2007) paper proposes a coupled modeling and heuristic
method to optimize machine scheduling and cutting stock sizing in the paper industry,
minimizing waste and setup costs while maintaining production demand. Similarly, the
research of Yanasse e Lamosa (2007) introduces an integrated problem presented as an
integer linear programming model, aiming to attain an optimal solution for the cutting
stock problem, subject to specific pattern sequencing constraints. The approach adopted
utilizes a Lagrangian method, wherein the dual problem is resolved through a modified
subgradient method. Additionally, the paper introduces a heuristic for the integrated
problem.

In Aktin e Özdemir (2009), they handle an Industrial Cutting and Scheduling
Problem (ICSP) using a two stage approach. Firstly, a heuristic generates cutting patterns
to meet demand while minimizing trim loss. Then, an Integer Linear Programming (ILP)
model is employed to find a cutting plan that minimizes an aggregated cost function,
including material, setup and lateness costs. This approach is successfully implemented
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in a coronary stent manufacturing company, providing efficient full cutting plans and
patterns.

Silva e Carvalho (2014) delve into a 2-dimensional Industrial Cutting and
Scheduling Problem (ICSP) that allows for potential storage of leftover materials. They
aim to minimize an objective function that encompasses waste, material, operational and
storage costs. Two Integer Linear Programming (ILP) models, based on prior research
are proposed along with two heuristic methods. Notably, the ILP models are capable of
obtaining exact solutions even for large instances.

In Braga et al. (2015), the authors explored a variant of the cutting stock
problem that involves scheduling cutting operations over time, combining the standard
objective of minimizing raw material usage with a scheduling component penalizing
tardiness. Tardiness is incurred when the final instance of an item is cut after its specified
due date. In the research was presented a novel pseudo-polynomial network flow model for
the combined cutting stock and scheduling problem. It was used a modified version of this
model, aggregating consecutive time intervals, to develop a heuristic solution procedure.
This adapted formulation, coupled with a time assignment procedure, produced effective
feasible solutions for the problem.

Poldi e Araujo (2016) considered a multi-period one-dimensional ICSP, with
objectives centered on minimizing trim loss and inventory costs for both raw materials
and finished products over a set of production periods. They introduced an arc flow
formulation complemented by a heuristic procedure, based on Carvalho (1999) work.
Instances were solved with varying weights assigned to holding costs, demonstrating
efficient computation times even for large instances. Additionally, their approach requires
fewer patterns compared to the classical approach.

A recent research from Melega, Araujo e Morabito (2020) addresses a complex
two-stage integrated problem that involves lot-sizing, scheduling, and cutting stock, in-
corporating sequence-dependent setup times and costs. In the initial production stage,
a cutting machine is utilized to cut large objects into smaller pieces, necessitating the
generation and sequencing of cutting patterns to formulate a comprehensive cutting plan.
The cut pieces from the first stage are then utilized in the second production stage to
assemble final products, which are scheduled to align with client demands. The authors
propose solution methods based on a price-and-branch approach, incorporating a column
generation procedure and decomposition solution approaches to address the integer prob-
lem. Through a computational study using randomly generated data, the authors analyze
the impact of these solution approaches on the integrated problem. Additionally, they
compare the performance and advantages of the integrated approach with an empirical
simulation of the common sequential practice.
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2.1.1 Major references

Two important research studies significantly contributed to the foundation of
this thesis. The first of these studies is cited from Silva e Arenales (2006), their work focuses
on the integration of lot sizing and cutting stock problems particularly applied in the
paper industry. The aim is to minimize costs associated with production, setup, inventory
of materials and losses during the cutting problems. The challenge of this integration lies
in the complexity of both problems. Lot sizing involves parallel machines with limited
capacities and losses in machine setup. The cutting stock problem is complicated due to a
large number of variables and integer constraints.

To address these issues, various heuristic methods have been proposed, including
relaxing constraints, using the simplex method with column generation and heuristic
rounding of solutions. Additionally, attention was drawn to the independence of cutting
decisions across different time periods due to variables related to final item inventory,
referred to as the "multiperiod cutting stock problem". Two heuristic methods were
implemented to solve the multi period cutting problem. The first approach tackles the
problem batch by batch, while the second considers item inventory variables to optimize
cutting. The second approach performed better in reducing losses. Other heuristics based
on problem decomposition were suggested, including the Lot-Cut and Cut-Lot heuristics.
They were compared and showed satisfactory results, solving approximately 90% of the
generated examples. The research emphasizes the need to review the parameters of the
integrated model‘s objective function and explore integer constraints in the stock cutting
problem. It also mentions the potential application of rolling horizon strategies for dynamic
problems.

Lemos (2020) is another key study used in this thesis. This study addresses
three different problems: cutting stock and production scheduling, cutting stock with saw
cycle minimization, and cutting stock with alternative manufacturing modes. The first
problem and its solution served as the primary inspiration for the situation discussed
in this thesis. The driving force behind Lemos (2020)’s work stems from the supply of
materials to assembly lines, where even minor delays can significantly impede production.
Their research addresses a pertinent example, where they explore the cutting of tubes using
band saws or circular saw machines to craft trusses forming the structural components
of agricultural aircraft. The scheduling of cutting patterns depends on their processing
time, which may or may not vary depending on their configuration, depending on the
process. Another important aspect is that while the formation of cutting patterns aims
to minimize the use of raw materials, their sequence is intended to meet order delivery
dates. Lemos (2020) mentions that their resolution requires a different delay configuration
from what has been shown in the literature so far, necessitating approaches that can
handle this peculiarity in the choice of generated patterns. The mathematical formulation
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described below aims to fulfill the demand for all items while respecting the constraints
of the problem and the non-overlapping production time of lots, thereby minimizing the
total cost of weighted delays and raw material usage.

In the model (2.1)-(2.6) proposed by Lemos (2020), the objective function
(Equation 2.1) seeks to minimize the sum of two components of the total cost. The first
component pertains to the sum of weighted delays for the NI (quantity of items or cut
coils) to be processed. The second cost component is the sum of raw material costs for
the various cutting patterns (represented by NP ) utilized. The number of productive
slots available is represented by NK and the number of items is a. The variable Xpk

represents the number of patterns of type p cut in the sequence k of the programming. So,
the constraint set (2.2) ensures that the total demand is met for all items i, as it enforces
that the sum of all production for this item in the chosen patterns is equal to or greater
than the demand bi.

Model:

minimize
NI
ÿ

i“1
wiTi ` θ

NP
ÿ

p“1

NK
ÿ

k“1
Xpk (2.1)

subject to:
NP
ÿ

p“1

NK
ÿ

k“1
aipXpk ě bi i “ 1, ..., NI (2.2)

Ti ě

NP
ÿ

p“1

k
ÿ

q“1
tpxpq ´ di ´ Mi Zik

i “ 1, ..., NI k “ 2, ..., NK ´ 1 (2.3)

Zik ď p

NP
ÿ

p“1

k´1
ÿ

q“1
aipXpqq{bi

i “ 2, ..., NI k “ 1, ..., NK (2.4)

Xpk ě 0 p “ 1, ..., NP k “ 1, ..., NK (2.5)

Zik P t0, 1u i “ 1, ..., NI k “ 1, ..., NK (2.6)

Ti ě 0 i “ 1, ..., NI (2.7)

In constraint (2.3), the delay Ti is defined, bounded from below by the difference
between the sum of processing times up to a certain sequence k and the delivery date
of item di, provided that item i has not yet been completed up to sequence k ´ 1 (i.e.,
Zik “ 0). When Zik “ 1, the constraint becomes inactive, as the processing time up
to sequence k becomes irrelevant for calculating the delay of i, which is ensured by the
parameter Mi, sufficiently large to perform this disjunction.

Lastly, constraint (2.4) the decision variable Zik is defined logically, bounded
from above by the fraction of order i that has already been completed up to the scheduling
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sequence k ´ 1. Thus, an item is considered complete in sequence k when its demand bi

has already been fully met in k ´ 1, so the accumulated processing time up to k can be
disregarded for the calculation of i’s delay (according to constraints (2.3)). The domain of
the decision variables is defined in (2.5)-(2.7).

Due to the potentially vast number of possible cutting patterns, explicit enumer-
ation of all possible combinations is computationally impractical. The column generation
method is an iterative approach that aims to add columns (in this case, cutting patterns)
to the problem that have the potential to enhance its objective function. It commences
with a reduced set of columns, ensuring the existence of a feasible solution to the problem.
Typically, these columns consist of homogeneous cutting patterns, which include only
one type of item. In a feasible solution, each column has an associated reduced cost,
which represents the difference between its coefficient in the objective function and the
summation of its coefficients in the constraints, multiplied by the corresponding dual
values of those constraints. The problem without the complete set of columns is referred
to as the "restricted master problem". In each iteration, columns with improved (negative)
reduced costs are generated and incorporated into the master problem to enhance the
objective function. These columns are obtained by solving a sub problem, determining the
best cutting pattern associated with the current solution. This process is repeated as long
as improvements in the objective function are achievable.

Figure 11 – Solution method schema (LEMOS, 2020)

To obtain an integer solution after the column generation process, the heuristic
described by Wascher and Gau (1996) is employed. This approach utilizes the same model
(2.1)-(2.7) with the integrality constraints of Xpk and Zik retained but is restricted to
the columns comprising the relaxed optimal solution and other columns generated during
the process, along with the homogeneous columns that initialize it. Although relatively
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straightforward, it is used in cases found in the literature where gaps relative to the optimal
solution of the relaxed problem are acceptable for the specific application. Additionally,
valid inequalities are proposed to reduce the space of feasible solutions without constraining
the optimal solution. The aim is to enhance the solution within the given time limit. Finally,
a lower bound calculation method is proposed to improve the one generated by the optimal
solution of the linear relaxation of the problem, which is affected by the use of disjunctive
constraints. Lower bounds are separately calculated for the cutting stock problem and
the weighted delay problem and both are combined to compute the lower bound of the
integrated problem. All this solution method is illustrated at Figure 11.

Taking into account the work by Lemos (2020), which highlighted the similarities
between the problem addressed in their thesis and the problem under discussion in this
research, the mathematical model served as a primary point of reference. As a result, this
study proposed several enhancements to the existing model.

2.2 ICSSP on pharmaceutical packaging process
In summary, an Integrated Cutting Stock and Scheduling Problem (ICSSP)

revolves around three primary aspects:

1. Determining the optimal cutting patterns j for producing m types of items from a
large piece with a width of L, considering R, the jumbo coil trim, and, C: number of
cuts of the jumbo coil;

2. Deciding how many times and which cutting patterns j should be employed on the
machine within a specific timeframe to meet the demand b for items;

3. Finding the optimal sequence for the cutting patterns j, considering their processing
times and task due dates, to minimize total processing times, setup times, and
delivery delays.

To illustrate the connection with the pharmaceutical packaging process ex-
plained in the first chapter, consider the scheme depicted in Figure 16. In simple terms,
this problem involves cutting jumbo coils into different item types, which are then used in
blister machines.

Additionally, it’s important to emphasize that the model will incorporate
specific parameters related to jumbo rolls, machinery, and setup procedures to closely
replicate real-world processes that will be further explored in the next sections.
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Figure 12 – ICSSP in pharmaceutical packaging process

2.2.1 Jumbo coils

Jumbo coils, also known as master coils or parent coils, are large and continuous
rolls of various materials such as steel, aluminum, plastic, or paper (Figure 13). These
jumbo coils serve as the primary raw material in a wide range of industries, including
metal processing, packaging, construction, and manufacturing.

Figure 13 – Jumbo coils warehouse. (Image by the author)

One of the key advantages of jumbo coils is their ability to carry a substantial
amount of material in a single roll, significantly reducing the need for frequent material
changes during production. This feature not only improves production efficiency but also
reduces downtime and material waste, contributing to cost-effectiveness and sustainable
manufacturing practices.

The packaging industry also heavily relies on jumbo coils, particularly in the
production of flexible packaging materials like plastic films and laminates. Jumbo coils



Chapter 2. Integrated Cutting Stock and Scheduling Problem Description 40

of plastic films provide a continuous feed for packaging machines, ensuring seamless and
uninterrupted packaging operations.

Moreover, jumbo coils are not only advantageous for large-scale production but
also provide flexibility for customization. Below is outlined all the parameters related to
jumbo coils that may interfere in cutting stock problems:

1. Material: plastic jumbos come in various materials, colors, weights and other distinct
characteristics;

2. Width: typically, larger pieces have widths close to the maximum capacity supported
by the cutting machine;

3. Cutting processing time: the cutting process time exhibits variation based on fac-
tors such as thickness, type of plastic material, cutting speed, and other relevant
parameters;

4. Coil preparation: the setup time required to prepare the jumbo coil for cutting can
vary depending on the type of jumbo, and it will be taken into account in this
modeling.

Several global suppliers cater to the pharmaceutical industry’s demand for
jumbo coils, including Alloyd Brand, Nelipak Healthcare Packaging and Klockner Pen-
taplast. These suppliers play a crucial role in driving innovation and developing new
materials that offer specific characteristics to suit different pharmaceutical products. Each
type of medication destined for blister packaging requires a distinct material to ensure
optimal protection and preservation.

2.2.1.1 Pharmaceutical industry jumbo materials

PVC (Polyvinyl Chloride) is a widely utilized packaging material in blister
packaging, known for its transparency, cost-effectiveness, high thermomoldability, resistance
to external forces and low permeability rate. It remains a popular choice, being chosen in
about 80% of blister packaging cases. The thickness of PVC typically ranges from 0.2mm
to 0.8mm, providing versatility for various pharmaceutical products.

However, it’s important to note that PVC has some drawbacks, primarily
related to its environmental impact. When burned, PVC can release toxic substances,
prompting the exploration of alternative materials like Polypropylene (PP), Polyethylene
terephthalate (PET) and Polystyrene (PS). Although the permeability to humidity com-
pared to PVC restricts the use. A polymer known for its excellent barrier properties is
PVDC (Polyvinylidene Chloride) and its also applied to packaging materials for pharma-
ceutical industries. The high clarity of PVDC films makes them suitable for transparent
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packaging, allowing consumers to see the product while enjoying the benefits of protection
and preservation.

Aluminium is another viable material for jumbo coils used in blister packaging.
It offers a superior barrier properties against humidity, oxygen and light; and is available
in the market with thickness from 20 micrometers to 25 micrometers. Unlike PVC, the
process for blister formation is a cold pressure process. This method demands a larger
packing area and, subsequently, increases the overall cost of production. (FERREIRA,
2017)

2.2.2 Slitter machinery

Slitter machines play a crucial role in modern manufacturing industries by
providing precise and efficient solutions for processing various materials. These cutting-edge
machines are designed to transform wide rolls or coils of materials, such as paper, plastic,
metal, or fabric, into narrower strips with exceptional accuracy and consistency.

The primary function of slitter machines is to slit or cut materials into desired
widths, catering to the specific needs of different industries. In the paper and packaging
industry, slitter machines are instrumental in creating various paper products, such as
labels, tapes, and packaging materials, with consistent dimensions. In the metal industry,
they are used to produce strips and sheets for various applications like automotive parts,
electronic components, and household appliances. Similarly, in the textile industry, slitter
machines facilitate the production of textile strips and ribbons used in garments and home
textiles.

One of the key advantages of slitter machines is their ability to handle a wide
range of materials and accommodate varying thicknesses. The machines can be equipped
with different types of blades or cutting mechanisms, depending on the material being
processed, ensuring precise and clean cuts without compromising material integrity.

Additionally, slitter machines offer high-speed processing capabilities, signif-
icantly increasing production efficiency and reducing lead times. With automation and
advanced control systems, these machines can perform continuous slitting operations,
ensuring consistent and uniform results in large-scale manufacturing environments.

Moreover, slitter machines contribute to minimizing material waste, as they
are designed to optimize material utilization by maximizing the number of narrow strips
obtained from a single wide roll or coil. This not only reduces production costs but also
aligns with sustainable manufacturing practices.
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2.2.2.1 Cutting process

The manufacturing process for the pharmaceutical packaging items entails the
utilization of a slitter machine. This equipment operates by arranging jumbo coils onto
the input shaft, with precise cutting patterns being established through the use of blades.
Subsequently, the severed coils are meticulously wound onto the output shaft, completing
the cutting cycle. Figure 14 provides a straightforward visual representation of this process.

Figure 14 – Example of the structure of a slitting machine

(Image by the author)

Several characteristics can influence in the cutting process using a slitter
machine. These factors will determine the quality, accuracy and efficiency of the cut and
some of them can be seen below:

1. Material properties: different materials have a variation at hardness, thickness and
flexibility levels. It can affect how the blades interact with the material and how
"clean" the cuts are.

2. Blade sharpness and its material quality: the good condition of blades are essential.
Dull or improperly maintained blades can lead to uneven cuts, jagged edges and also
increase material stress.

3. Material tension: the tension at which the material is fed through the slitter machine
can impact the precision of the cut. Proper tension control helps prevent material
stretching, wrinkling or curling during the cutting process.

4. Cutting pressure: the pressure exerted by the cutting blades on web needs to be
controlled. Low pressure can result in incomplete cuts and the opposite, high pressure,
can damage the material.

5. Slitting speed: excessive speed at which the material is fed through the machine can
cause material distortion. On the other hand, slower speed may lead to production
bottlenecks.

6. Cutting blades configuration: the arrangement of blades (angle, overlap, position)
affects the final cut.
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7. Winding and unwinding: the way that the material is unwound from the supply roll
and wound onto the output rolls can impact the cutting process with misalignment
or wrinkles for instance.

8. Jumbo material defects: uneven thickness, defects and wrinkles can impact negatively
the cutting process and overall quality.

9. Machine stability and control systems: vibrations or instability can introduce varia-
tions in the cutting process. Modern machines often incorporate automation and
control systems that allow precise parameter adjustments.

10. Operator training: expertise of operational team in setting up and operating the
machine, adjusting parameters and monitoring the cutting process is essential for
achieving good results.

A specific parameter to guarantee the cutting quality is "trim". In the context
of cutting process of jumbo rolls, "trim" refers to the excess material along the edges
that is removed to ensure the final product cleanness. Occasionally, operators opt to use
additional blades into the setup, factoring in the overall width of the jumbo coil prior to
configuring the cutting pattern. Proper trimming is crucial for producing high-quality rolls
while managing waste and maintaining efficient production. It’s also worth highlighting
that a significant number of the most modern cutting machines allow for material removal
from already cut pieces while other coils are being produced, thanks to their multiple axes.
This significantly contributes to reducing setup time because, when coils are produced
from the same pattern, there is no need for any additional time to remove the already
produced coils.

In a world driven by efficiency, slitter machines manufacturers play an important
role to meet the demands of production. Euromac, Pasquato, Atlas and Kingsun Machiney
are some of these manufacturers that combine expertise in engineering mechanics and
automation to design and develop slitter machines.

2.2.3 Blister machinery

Blister machines are cutting-edge devices that have revolutionized pharma-
ceutical packaging, offering precise and efficient solutions for drug containment. In the
pharmaceutical industry, blister packaging has become increasingly popular due to its
ability to ensure product integrity, patient safety, and convenience. The versatility of blister
machines allows them to accommodate a wide range of pharmaceutical products, including
tablets, capsules and even liquids, making them ideal for various drug formulations.

One of the significant advantages of blister machines is their high-speed produc-
tion capabilities. With automation at its core, these machines can produce blister packs at
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a rapid pace, meeting the demands of large-scale pharmaceutical manufacturing. This not
only improves production efficiency but also reduces labor costs and human intervention,
leading to standardized and consistent packaging results.

In recent years, blister machines have embraced digital advancements, incorpo-
rating smart features and connectivity. Integration with Industry 4.0 concepts allows for
real-time monitoring, data analytics and predictive maintenance. This digital transforma-
tion empowers pharmaceutical manufacturers to optimize machine performance, reduce
downtime, and improve overall productivity. The basic sets of a blister machine, as can be
seen at Figure 15, are:

1. Bottom foil uncoiler

2. Cold forming station

3. Feeding device

4. Empty checker

5. Sealing & Embossing

6. Cover foil uncoiler

7. Cooling & Slitting

8. Draw off

9. Punching

10. Waste foil coiler

11. Discharge conveyor

The process sequence involves heating the plastic, thermofolding it into blister
cavities, loading the blister with the product, placing lidding material over the blister and
heat-sealing the package. After this, it’s time to installing the aluminium foil, cold forming
it into blister pouch and seal it on thermoformed blister to give extra protections and
finally cutting into individual blisters. Several blister machines suppliers include CAM
packaging machines, Uhlmann Pac-Systeme, Romaco Noack, Haicheng Pharmaceutical
Machinery and Marchesini Group. Notably, these manufacturers distinguish themselves
through variations in technology, features, capacity and customization options. Blister
machines are available in diverse production capacities and speeds. Certain suppliers
enhance their machines with dedicated vision systems, enabling real-time oversight and
management. Additionally, customization extends to blister size, shape and layout options.
Machine’s price correspond to its specifications and the companies often extend support,
training and maintenance plans to ensure optimal machine utilization.
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Figure 15 – Blister machine process

(Image by the author)

2.2.4 Item demand

Demand refers to the quantity of products that customers are willing to purchase
within a specific period. Understanding and forecasting demand are crucial aspects of
decision-making for industrial enterprises. In some industries, demand can be highly
uncertain and subject. So in this cases, companies may adopt flexible manufacturing
processes and responsive inventory management systems for instance.

In the pharmaceutical packaging environment, the demand to produce blisters
is closely linked to the entire supply chain. The production of blisters is affected not only
by immediate market needs but also by the dynamics of the supply chain.

At times, it becomes essential to maintain higher inventory levels to ensure
uninterrupted production over an extended period. This precautionary measure helps
safeguard against potential disruptions in the supply chain and ensures a consistent flow of
blisters to meet customer demands. Furthermore, certain products may experience sudden
surges in demand, necessitating prompt action. In such situations, a rapid response is
vital to meet the increased demand promptly. Quick adjustments in production schedules
and inventory management are necessary to cater to these unexpected spikes in product
demand.

One thing important that can be configured by the decision maker using the
algorithm proposed in this thesis is the time frame of the production plan. In other words, it
is possible to determine the level of detail required in the production schedule, considering
all relevant parameters. By adjusting the time frame, the decision maker can choose the
granularity of the production plan, whether it be for a few days, weeks, or even months.
This customization allows them to align the production with specific needs and available
resources, for instance. For short term planning or even for long term, the decision maker
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will have a day-by-day breakdown of production quantities and associated setup times.
This level of detail ensures precise resource allocation and quick response to changing
demand or unforeseen events.

2.3 Mathematical Modeling
Jumbo coils require distinct cutting patterns. In order to guarantee maximum

use of jumbo width (or minimum waste) and also considering variety of jumbos and
items, an heuristic is necessary to achieve a solution with low computer requirements. One
important consideration of real process situation is to produce large items first, considering
the difficulties to stock and low demand. FFD heuristic is perfect to integrated model,
since it elects from the largest to the narrowest. The items for blister machine will be
made directly from jumbo coils (purchased materials) and its demands are assessed from
market forecasts.

Figure 16 – ICSSP model

The ideal sequencing will be defined using the model described below based
on the defined cutting patterns. The FFD heuristic generated the cutting plans in this
work according to the available NT jumbo coil types.In this problem, the quantities and
characteristics (types) of jumbo rolls are predefined based on the input data provided
by the decision-maker. The solution must meet item demand and allocate cutting planes
without temporal overlap.

Parameters:
NI: quantity of items (cut coils)
NT : number of types of large parts (jumbo coils)
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NP : cutting patterns
NK: number of productive units
bi: item demand i

di: item delivery date i

aip: number of items of type i in pattern p

tp: pattern processing (cutting) time associated with the pattern p according to each type
of jumbo coil
spr: setup time between cutting patterns p e r according to each type of jumbo coil
W1: importance of the first part of the objective function (total setup programming)
W2: importance of the second part of the objective function (total delay in deliver demand)
W3: importance of the third part of the objective function (total number of cutting
patterns)

Decision Variables:

xpk “ number of patterns of type p cut in the sequence k of the programming

Ti “ delay in fulfilling the demand for the item i.

zik “

#

1, if the item i has its demand fulfilled up to the schedule sequence k ´ 1;
0, otherwise.

ypk “

#

1, if the pattern p was cut in the sequence k;
0, otherwise.

wprk “

$

’

&

’

%

1, if the pattern p was cut in the window k and the pattern r

was cut in the window pk ` 1q;
0, itherwise.
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Model:

minimize z “ W1

NP
ÿ

p“1

NP
ÿ

r“1

NK
ÿ

k“1
wprkspr ` W2

NI
ÿ

i“1
Ti ` W3

NP
ÿ

p“1

NK
ÿ

k“1
xpk (2.8)

subject to:
NP
ÿ

p“1

NK
ÿ

k“1
aipxpk ě bi i “ 1, ..., NI (2.9)

zik ď p

NP
ÿ

p“1

k´1
ÿ

q“1
aipxpqq{bi i “ 2, ..., NI k “ 1, ..., NK (2.10)

NK
ÿ

k“1
zik ě 1 i “ 1, ..., NI (2.11)

Ti ě

NP
ÿ

p“1

k
ÿ

q“1
tpxpq `

NP
ÿ

p“1

NP
ÿ

r“1
wprpk´1qspr ´ di ´ M2 zipk`1q

i “ 1, ..., NI k “ 2, ..., NK ´ 1 (2.12)
NP
ÿ

p“1
ypk ď 1 k “ 1, ..., NK (2.13)

xpk ď M1 ypk p “ 1, ..., NP k “ 1, ..., NK (2.14)

wprk ě ypk ` yrpk`1q ´ 1

p “ 1, ..., NP r “ 1, ..., NP k “ 1, ..., NK (2.15)

Ti ě 0 i “ 1, ..., NI

xpk ě 0 p “ 1, ..., NP k “ 1, ..., NK

zik P t0, 1u i “ 1, ..., NI k “ 1, ..., NK

ypk P t0, 1u p “ 1, ..., NP k “ 1, ..., NK

wprk P t0, 1u p “ 1, ..., NP r “ 1, ..., NP k “ 1, ..., NK

The model proposed in this paper is an extension of the model put forth
by Lemos (2020). In the model by Lemos (2020), the objective function comprised the
minimization of two components: the sum of weighted delays and the sum of raw material
costs for various cutting patterns used. In the approach presented in this study, the
objective function (Equation (2.8)) minimizes the sum of three weighted components:
total setup time minimization, total delay minimization and total cutting pattern count
minimization.

Constraint (2.9) ensures that the total demand (bi) will be met for all items
i, through the sum of all productions of this item in the selected cutting patterns. In
constraints (2.10) and (2.11), the decision variable zik is upper-bounded by the fraction
of the demand for item i met up to sequence k ´ 1. Thus, an item whose demand is
fully met in sequence k, has zik “ 1. In constraint (2.12), it’s defined the delay Ti, which
is lower-bounded by the different between the sum of processing times and setup times
up to a certain sequence k and the delivery date di of item i, provided that i has not
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yet its demand met up to sequence k, or in other words, zipk`1q “ 0. If zipk`1q “ 1, this
constraint becomes inactive due to the parameter M2, which is sufficiently large to enforce
this disjunction. Constraints (2.9) and (2.10) are the same as in the work by Lemos (2020).
Constraint (2.12) was inspired by the same work, incorporating setup time.

Constraints (2.13) and (2.14) ensure that ypk “ 1 if pattern p was cut in
sequence k, and in a given sequence k, at most one type of pattern van be cut. However,
the same type of pattern can be cut multiple times in the same sequence. Constraint (2.15)
establishes that sprk “ 1 if there will be a setup between cutting patterns p and r, with
pattern p being cut in sequence k and the pattern r being cut in sequence k ` 1.

An important feature of this model is to allow different values to be assigned to
W1 or W2, assigning greater weight to minimize the total setup time or to minimize delays
in meeting demand. This allows flexibility for solving the problem, from a practical point
of view, and different values can be applied depending on the objective and production
context.

2.3.1 Difficulties in the proposed model

In the model proposed by Lemos (2020), empty production sequences were
allowed. Empirical tests with the model proposed and adapted for this work revealed a
challenge: the definition of the parameter NK. A very large NK value allowed for several
empty production sequences because in this way setup times were not computed (they were
only computed between consecutive sequences). In Chapter 5, the strategy considered for
defining the parameter NK is discussed. The difficult in modeling in a way that accurately
accounted for setup times prompted the proposal of alternative approaches, presented in
the following section.
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3 Resolution Methodology for Packaging IC-
SSP

The search for innovative solutions to address the challenge of NP-hard problems
is a constant in optimization research. Often, the initial mathematical model faces significant
difficulties when confronted with instances of considerable size, leading to excessive demands
on computational time.

In this context, it is worth analyzing and comparing these alternative approaches
with the exact method proposed earlier. In doing so, it is crucial to consider the dynamics
of factory scheduling, specifically the planning horizon. While the exact method can offer
precision and optimal guarantees, its scalability can become a practical obstacle when
dealing with a large volume of data or an extensive planning horizon.

On the other hand, alternate approaches can bring innovation to the resolution
process, prioritizing computational efficiency over absolute accuracy. They can be particu-
larly useful when seeking timely solutions, considering the constantly evolving demands
and constraints of a factory.

Ultimately, the choice between these approaches should be carefully weighted,
taking into account the nature of the problem, the size of the instance, time constraints and
specific optimization objectives in the factory. The pursuit of a balance between precision
and efficiency is essential to achieve practical and viable solutions in complex industrial
environments.

3.1 FFD + Solver
Computational tools that solve mathematical programming problems have

an algebraic modeling language to write the objective function to be optimized and
the constraints considered in the model. After implementing the model, the program is
executed by a solver. There are several commercial packages and free packages available
to solve entire linear programming problems. In general, they differ in the methods they
implement and the types of problems they can solve. In this work, we used the commercial
solver CPLEX1

The FFD heuristic generates the cutting plans necessary to meet the demand,
and the solver CPLEX solves the model presented in Section 2.3. Repeated cutting plans,
generated by the FFD heuristic to meet demand, are considered once as input to the
1 IBM ILOG CPLEX Optimization Studio, academic version.
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optimization model, and the solver calculates how many times each cutting plan will be
used.

3.2 FFD + Genetic Algorithm
Considering this integrated lot-sizing and cutting stock problem is NP-hard,

using alternative approaches, such as Genetic Algorithm, is more appropriate. The FFD
heuristic generates the cutting plans necessary to meet the demand, and the Genetic
Algorithm (GA) generates the sequence in which the machine must cut.

Genetic Algorithms are methods that simulate, through algorithms, the pro-
cesses of natural evolution aiming, mainly, to solve optimization problems (BARCELLOS,
2000). According to Cluitmans (1992), Genetic Algorithms try to find the optimum or
at least guarantee a quality solution of a given set according to a given cost function.
The idea behind genetic algorithms is quite simple. First, a set of genotypes is created
randomly. This set is called the population. In the population, the cost function (also
called fitness) is calculated. An individual in the population (genotype) is said to be fit
when it has a higher cost than most other genotypes in the population (assuming it is a
maximization problem).

A new population is created based on the appropriate genotypes from the
previous population. The genotypes in the new population are created by making small
changes to fit the genotypes of the old (mutating) population or by combining parts of
different genotypes suitable for a new genotype (crossover). The fittest genotypes from the
old population are copied into the new population as well. By repeatedly creating new
populations, the average fitness of the genotypes will get better for each new population.
The best genotype in the last generated population is the solution that the genetic
algorithm offers.

There are many advantages of genetic algorithms over traditional optimization
algorithms. Two most notable are: the ability of dealing with complex problems and
parallelism. Genetic algorithms can deal with various types of optimization, whether the
objective (fitness) function is stationary or non-stationary (change with time), linear or
nonlinear, continuous or discontinuous, or with random noise. Because multiple off-springs
in a population act like independent agents, the population (or any subgroup) can explore
the search space in many directions simultaneously. This feature makes it ideal to parallel
the algorithms for implementation. Different parameters and even different groups of
encoded strings can be manipulated at the same time.

However, Genetic Algorithms also have some disadvantages. The formulation of
fitness function, the use of population size, the choice of the important parameters such as
the rate of mutation and crossover, and the selection criteria of the new population should
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be carried out carefully. Any inappropriate choice will make it difficult for the algorithm
to converge or it will simply produce meaningless results. Despite these drawbacks, genetic
algorithms remain one of the most widely used optimization algorithms in modern and
complex optimization (YANG, 2021).

3.3 Proposal and implementation details
In GA, repeated cutting plans generated by the FFD heuristic to meet demand

are permitted and form the set t1, 2, ..., NP u.

An individual is encoded using a vector of integers of size NP . Each position
in this vector can take non-repeating values from the set t1, 2, ..., NP u. This value defines
the processing order of cutting patterns (Figure 17). In this figure, the first cutting pattern
to be processed is 3, followed successively by patterns 7, 6, 4, 9, and so on.

Figure 17 – GA: individual coding.

The Algorithm 3 starts with input of the instance parameters: the number of
items, the number of jumbo coils, the quantity demanded of each item, the deadline for
delivery of the demand, the width of each item, the width of the jumbo coil, the refill
which must be considered in the cutting pattern, the processing time of cutting patterns
associated with a specific type of jumbo coil (Pj) and the setup time between two types of
jumbo coil (Sjl), followed by the programming window and the number of hours per day
with the machine in production. We also specify the population size, number of generations,
and crossover and mutation probabilities established for the GA.

The result of the FDD + GA Algorithm for ILSCSP is the machine configuration
(as shown in the Tables 4.2.2.1, 4.2.2.1, 4.2.2.1).

The FFD heuristic is called and returns the NP cutting patterns created to
meet the demand. The next steps refer to the association of processing times with each
cutting pattern generated and setup times between all cutting patterns, according to the
jumbo coils.

The population of size TP is initialized as follows:

• An individual is created by ordering subgroups of cutting patterns; subgroups
aggregate patterns associated with the same type of jumbo coil; we order the
subgroups SG1, SG2, ... SGNT , considering that between SG1 and SG2 there is the



Chapter 3. Resolution Methodology for Packaging ICSSP 53

shortest setup time, and we continue like this successively. The objective of this
procedure is to insert a priori knowledge into the population: ordered blocks that
carry information that can speed up the search process.

• Part of the individuals is generated considering subgroups of cutting patterns orig-
inating from jumbo coils of the same type. By doing this, we introduce a priori
information into the initial population that can help minimize setup time. As the
number of combinations in the ordering of these subgroups can be huge, depending on
the size of the instance, some combinations were inserted into the initial population
randomly.

• The third and largest part of the population is initialized randomly.

The initial population is decoded by calculating the processing start time for
each pattern. In this way, we can calculate the fitness (adaptation function) associated
with each individual.

Then, the iterative and evolutionary process begins with selection, reproduction
with genetic inheritance (crossover), the introduction of random variations (mutation),
and the promotion of competition to form a new population. One-point crossover and
mutation based on position exchange between two patterns were implemented.

Algorithm 3 – ILSCSP - FDD + GA Algorithm
Data: NI, NT , bi, di, li, Lj, R, C, Pj, Sjl, Prog, H, TP , G, PC, PM , W1, W2
Result: Machine configuration
aip, NP = Create the cutting patterns with FFD heuristic (NI, NT , bi, li, Lj, R,
C);

tp, spr = Association of processing times and setup times (aip, NP , NT , Pj, Sjl);
pop = Population initialization (TP , NP , NT , Sjl);
Xp = Population decoding (TP , pop, NP , tp, spr);
fitness = Population evaluation (Xp, NP , NI, W1, W2, di, spr);
for g = 1 ... G do

parents = Binary tournament(TP , pop, fitness);
offspring = Crossover (parents, TP , NP , PC);
Mutation (offspring , TP , NP , PM);
XOp = Population decoding (TP , offspring, NP , tp, spr);
fitnessO = Population evaluation (XOp, NP , NI, W1, W2, di, spr);
mixed = pop Y offspring ;
pop = update population(mixed, TP );

end
Presentation of results and visualization ;

The algorithm was implemented in Python language, IDE Jupyter Notebook
(open-source web application).



54

4 Experiments and Results

Considering the specificity of the pharmaceutical packaging industry, the author
used data based on the real problem to evaluate the algorithm’s effectiveness. It was also
created custom instances, designed to simulate strategic scenarios and allowing the solution
to be rigorously tested under varying conditions. This approach not only demonstrated the
adaptability of the solution but also provided valuable insights into potential improvements
and further developments in the field.

4.1 Instances
The decision to initiate producing internally the packaging materials (coils)

stemmed from the imperative to minimize costs and decreasing reliance on external
suppliers. Recognizing that the primary focus of a pharmaceutical industry lies outside
packaging, and consequently lacking the essential proficiency in this domain, a deliberate
evaluation led to the initiation of manufacturing packaging coils internally.

Each coil will have a weight of 30 kilograms, a specification imposed by the
unwinding constraint of the blister machine forming material. Consequently, the initial
premise involved calculating the processing time for each material, factoring in this weight
restriction. While certain parameters from the machine manufacturer, such as machine
speed and slitter pressure, were taken into account, it’s important to note that these
specifications are rooted in a stabilized process. Given the start-up phase and the need
to acclimate to this new process, process times were estimated to facilitate the learning
curve (table 2).

Material Process time (minutes)
PVC 2

PVDC 4

Table 2 – Process time for each material

The packaging coils consist of PVC and PVDC materials. Although aluminum
was also utilized in the packaging process, it was omitted from the initial consideration due
to its thickness and challenging processability. Additionally, sourcing jumbo aluminum rolls
from the market proved challenging, necessitating the importation from global suppliers.

The chosen setup times (table 3) were determined by utilizing predefined
parameters provided by the slitter machine manufacturer. These setup times encompass a
thoughtful analysis of both the incoming material from the jumbo coil and the succeeding
material scheduled for the cutting process. This approach holds true when working with
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the same type of material in consecutive runs. In such cases, essential adaptations and
preparatory steps become imperative. theses include tasks such as transferring the coil
onto the spindle or clearing out the completed items from the production line.

Jumbo coil materials (From - To) Setup time (minutes)
PVC - PVDC 15
PVDC - PVC 15
PVC - PVC 5

PVDC - PVDC 5

Table 3 – Setup times for each material

4.1.1 Instance 0 - base scenario

The initial scenario (Appendix A) was designed for algorithm testing with
a focus on a small-scale item production, incorporating all the parameters detailed in
the preceding section. The primary objective is to assess the algorithm’s performance
and present the generated outputs, which are intended to assist the production planning
decision-maker for a 5-day production horizon.

4.1.2 Instance 1 - real-world based scenario

Real-world based instance was inspired by data from a pharmaceutical industry
(Appendix A). The demand (quantity of items) under consideration constituted a portion
of the overall demand for blister machines. This decision was motivated by the intention
to deplete the existing coil stock from other suppliers and to ensure a seamless supply
chain during the initial phase of the new slitter machine’s implementation.

Another important aspect to elucidate is the demand factor. It is imperative that
all the coils essential for sustaining blister production be fabricated in advance, ensuring
the availability of all required materials prior to beginning the complete medication line
production setup. To address this, the proposed approach involves producing all coils with
high demand within the initial ten days of each month, subsequently allowing for the
production of the remaining materials.

4.1.3 Instance 2 - production increased

The second instance stems from the first, resulting in a 40% surge in production
(table 14). Furthermore, the operational hours extend to 24 hours, with an additional shift
compared to the alternate scenario (Appendix A).
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4.2 Results
Testing has been completed on the operating system Linux, Intel(R) Core(TM)

i7-9700K CPU @ 3.60GHz × 8, 64Gb of RAM memory. Each instance was executed via
the following approaches: 1. FFD+CPLEX (Section 3.1) and 2. FFD+GA (Section 3.2).

The same cutting patterns generated by the FFD heuristic were used in both
approaches. The execution times for cutting patterns generation are presented in Table
4.2. In the same table, NP indicates the number of different cutting patterns generated
by the heuristic; to meet the demand, a cutting pattern can be used more than once.

Instance 0 Instance 1 Instance 2
FFD (s) 0.00027 0.00328 0.00442
NP total 65 1019 1421

NP without repetition 20 46 46

Table 4 – FFD results.

4.2.1 FFD + Solver

The results obtained with the CPLEX solver are presented in Table 4.2.1. We
established W1 “ 1, W2 “ 1, W3 “ 1 as weights for the different components of the
objective function (Equation 2.8). Due to the difficulty in determining the number of
production sequences, NK, and aiming to minimize the number of empty time sequences
and the exponential growth of the problem’s variables and constraints, we chose to limit
the value of NK “ NP . In this way, the intention was to force cutting patterns of the
same type to be cut together in the same time sequence, as one of the components of the
objective function is related to minimizing setup time. The more production sequences are
used, the more changes in cutting patterns or coil types occur, and the longer the setup
time on the machine. Despite this limitation on the value of NK, the obtained solution
(NK useful) indicates that not all production sequences were used.

Instance 0 Instance 1 Instance 2
Number of variables 9680 103730 103730
Number of restrictions 9321 101706 101706

CPLEX (s) 1803.5 1800.5 1800.4
gap 0.3936 0.3301 0.3289

total delay (hours) 12.50 35.8 24.56
total setup (hours) 3.33 6.25 6.41

useful NK 19 44 44

Table 5 – FFD+Solver results, W1 “ 1, W2 “ 1, W3 “ 1.
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4.2.2 FFD + GA

Due to the random nature of Genetic Algorithms, 10 rounds of tests were
executed for each instance. Regarding the GA, we empirically set the crossover probability
to PC “ 0.95 and the mutation probability to PM “ 0.1, with the implementation of
binary tournament as the method for selecting individuals for crossover. Furthermore, for
each instance, the following set of parameters (population size and number of generations)
were used: TP “ 200, G “ 400 (Instance 0); TP “ 200, G “ 600 (Instance 1); TP “ 200,
G “ 600 (Instance 2). The parameters were empirically defined by performing various
tunning tests.

In this initial testing phase, we established W1 “ 1 and W2 “ 1 for the weighting
of the two components considered in the GA’s evaluation function: setup time and total
delay in item delivery, respectively. In the GA, there was no need to consider the third
component of the objective function, which minimizes the total number of cutting patterns
(Equation 2.8), since the total number of cutting patterns generated by the FFD heuristic
to meet the demand was considered, even if generated repeatedly. For each instance, the
following total quantities of cutting patterns were generated (assuming repetitions) by the
FFD heuristic: 65 (Instance 0); 1019 (Instance 1); 1019 (Instance 2).

Table 4.2.2 presents the results obtained with FFD+GA for Instance 0, consid-
ering the 10 rounds of testing. The results obtained with the metaheuristic were better
than the result presented by the solver, especially regarding the total delay time. Figures
18 and 19 refer to the evolution of the fitness of the best individual in the population and
the average fitness of the population over the generations in one of the execution rounds.
The other rounds exhibited similar behavior. In the graph, fitness represents W1¨ (total
setup) `W2¨ (total delay) in minutes. Further information about the solution generated
by the best execution (round 9) is presented in Appendix B.

Round total setup (hours) total delay (hours) execution time (s)
1 1.58 2.15 12.45
2 1.75 2.35 12.14
3 1.58 2.15 12.13
4 1.58 2.15 12.23
5 1.58 2.15 12.31
6 1.58 2.15 12.53
7 1.58 2.15 12.29
8 1.58 2.15 12.62
9 1.75 2.27 12.33

10 1.58 2.15 12.41
average 1.61 2.18 12.34

Table 6 – FFD+GA, Instance 0 results, W1 “ 1, W2 “ 1.
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Figure 18 – Evolution of the fitness of the best individual in the population, Instance 0,
FFD+GA.

Figure 19 – Evolution of the average fitness of the population, Instance 0, FFD+GA.

Round total setup (hours) total delay (hours) execution time (s)
1 5.58 16.92 745.50
2 6.42 23.15 754.03
3 5.58 18.13 749.02
4 7.25 23.57 794.51
5 5.58 21.82 722.30
6 7.08 6.08 752.99
7 6.92 13.97 746.93
8 6.08 19.97 752.27
9 6.58 27.42 747.90

10 6.42 11.80 752.27
average 6.34 18.28 751.77

Table 7 – FFD+GA, Instance 1 results, W1 “ 1, W2 “ 1.
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Figure 20 – Evolution of the fitness of the best individual in the population, Instance 1,
FFD+GA.

Figure 21 – Evolution of the average fitness of the population, Instance 1, FFD+GA.

Round total setup (hours) total delay (hours) execution time (s)
1 6.42 0.00 1251.64
2 6.75 8.80 1255.29
3 6.75 10.68 1255.51
4 7.42 13.43 1253.24
5 6.42 15.43 1247.40
6 6.58 2.90 1251.20
7 5.75 1.37 1251.64
8 6.92 11.23 1248.73
9 5.75 0.00 1252.57

10 7.08 5.12 1247.98
average 6.58 6.89 1251.52

Table 8 – FFD+GA, Instance 2 results, W1 “ 1, W2 “ 1.
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Figure 22 – Evolution of the fitness of the best individual in the population, Instance 2,
FFD+GA.

Figure 23 – Evolution of the average fitness of the population, Instance 2, FFD+GA.

In all tested instances, GA achieved a better setup time or the same order of
magnitude as CPLEX, but always with lower computational time. It is worth mentioning
that in all cases, the delay time obtained by GA was considerably smaller than that
obtained by CPLEX. The FFD+GA proposal can be promising in solving this type of
problem in a real context, applied in the pharmaceutical industry, with the requirement to
present a solution in low computational time and using an open software approach.

There is still the possibility of improving these results by increasing the size of
the population and the number of generations. It is also noted that at the beginning of
the evolutionary process, fitness drops more quickly; this decay becomes slower towards
the end, but without necessarily indicating stagnation. Implementing a local search could
introduce variability and improve results at the end of the evolutionary process.
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4.2.2.1 Variation of weights: W1 and W2

Tables 4.2.2.1, 4.2.2.1 and 4.2.2.1 present the results obtained with GA for
Instance 0, considering the variation in the weights of the two portions of objective function:
setup and delay. Considering only the setup minimization (W1 “ 1 and W2 “ 0, we obtain
a total setup time equal to 1.58 hours. Considering only the delay minimization (W1 “ 0
and W2 “ 1), we obtain a total delay time equal to 2.15 hours. And it is precisely this
combination of values that we obtain when we equally weight the two portions of the
objective function.

GA seems to deal better with the weighted objective function than CPLEX.
This may be explained by the need to include in the mathematical model solved by CPLEX

the weighting responsible for minimizing the number of cutting patterns: W3

NP
ÿ

p“1

NK
ÿ

k“1
xpk,

an incommensurable portion in relation to the first two, which does not happen with GA.

Regarding cutting patterns, the solution that minimizes the setup (second
column of Tables 4.2.2.1, 4.2.2.1 and 4.2.2.1) tends to alternate fewer cutting configurations
than they use different jumbo coils, as expected. But this makes the delay increase too
much.

The variation in weights makes it an interesting approach when the decision
maker wants to analyze different scenarios for machine configuration, depending on the
strategies, which can vary between minimizing the setup, minimizing the delay, or a
solution that includes both.
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W1 = 1, W2 = 1 W1 = 1, W2 = 0 W1 = 0, W2 = 1
total setup (hours) = 1.58
total delay (hours) = 2.15

total setup (hours) = 1.58
total delay (hours) = 57.17

total setup (hours) = 2.75
total delay (hours) = 2.15

Configuration 1 - Jumbo coil 2
4 items with width 250

Configuration 2 - Jumbo coil 2
5 items with width 219

Configuration 3 - Jumbo coil 1
5 items with width 231

Configuration 4 - Jumbo coil 1
7 items with width 165

Configuration 5 - Jumbo coil 2
5 items with width 236

Configuration 6 - Jumbo coil 2
5 items with width 211

Configuration 7 - Jumbo coil 2
5 items with width 211

Configuration 8 - Jumbo coil 4
5 items with width 236

Configuration 9 - Jumbo coil 3
5 items with width 219

Configuration 10 - Jumbo coil 3
4 items with width 287

Configuration 11 - Jumbo coil 3
4 items with width 250
1 items with width 165

Configuration 12 - Jumbo coil 3
7 items with width 165

Configuration 13 - Jumbo coil 5
5 items with width 211

Configuration 14 - Jumbo coil 3
5 items with width 219

Configuration 15 - Jumbo coil 3
5 items with width 219

Configuration 16 - Jumbo coil 5
5 items with width 231

Configuration 17 - Jumbo coil 5
5 items with width 231

Configuration 18 - Jumbo coil 5
5 items with width 211

Configuration 19 - Jumbo coil 3
5 items with width 219

Configuration 20 - Jumbo coil 5
5 items with width 236

Configuration 21 - Jumbo coil 5
5 items with width 231

Configuration 22 - Jumbo coil 3
5 items with width 219

Configuration 1 - Jumbo coil 2
4 items with width 250

Configuration 2 - Jumbo coil 2
4 items with width 250

Configuration 3 - Jumbo coil 2
4 items with width 250

Configuration 4 - Jumbo coil 2
4 items with width 250

Configuration 5 - Jumbo coil 2
4 items with width 250

Configuration 6 - Jumbo coil 2
4 items with width 250

Configuration 7 - Jumbo coil 2
4 items with width 250

Configuration 8 - Jumbo coil 2
5 items with width 236

Configuration 9 - Jumbo coil 2
5 items with width 236

Configuration 10 - Jumbo coil 2
5 items with width 219

Configuration 11 - Jumbo coil 2
5 items with width 219

Configuration 12 - Jumbo coil 2
5 items with width 211

Configuration 13 - Jumbo coil 2
5 items with width 211

Configuration 14 - Jumbo coil 2
5 items with width 211

Configuration 15 - Jumbo coil 2
5 items with width 211

Configuration 16 - Jumbo coil 4
5 items with width 236

Configuration 17 - Jumbo coil 4
5 items with width 236

Configuration 18 - Jumbo coil 4
5 items with width 236

Configuration 19 - Jumbo coil 4
5 items with width 236

Configuration 20 - Jumbo coil 4
5 items with width 236

Configuration 21 - Jumbo coil 5
5 items with width 236

Configuration 22 - Jumbo coil 5
5 items with width 236

Configuration 1 - Jumbo coil 2
5 items with width 236

Configuration 2 - Jumbo coil 2
5 items with width 211

Configuration 3 - Jumbo coil 1
7 items with width 165

Configuration 4 - Jumbo coil 2
5 items with width 219

Configuration 5 - Jumbo coil 2
5 items with width 211

Configuration 6 - Jumbo coil 2
4 items with width 250

Configuration 7 - Jumbo coil 3
5 items with width 219

Configuration 8 - Jumbo coil 4
5 items with width 236

Configuration 9 - Jumbo coil 5
5 items with width 236

Configuration 10 - Jumbo coil 3
4 items with width 287

Configuration 11 - Jumbo coil 3
5 items with width 219

Configuration 12 - Jumbo coil 5
5 items with width 211

Configuration 13 - Jumbo coil 5
5 items with width 231

Configuration 14 - Jumbo coil 5
5 items with width 211

Configuration 15 - Jumbo coil 3
7 items with width 165

Configuration 16 - Jumbo coil 5
5 items with width 231

Configuration 17 - Jumbo coil 3
5 items with width 219

Configuration 18 - Jumbo coil 3
4 items with width 250
1 items with width 165

Configuration 19 - Jumbo coil 3
5 items with width 219

Configuration 20 - Jumbo coil 1
5 items with width 231

Configuration 21 - Jumbo coil 3
4 items with width 287

Configuration 22 - Jumbo coil 3
5 items with width 219

Table 9 – FFD+GA, Instance 0 results, variation of weights: W1 and W2 (part 1).
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W1 = 1, W2 = 1 W1 = 1, W2 = 0 W1 = 0, W2 = 1
total setup (hours) = 1.58
total delay (hours) = 2.15

total setup (hours) = 1.58
total delay (hours) = 57.17

total setup (hours) = 2.75
total delay (hours) = 2.15

Configuration 23 - Jumbo coil 1
7 items with width 165

Configuration 24 - Jumbo coil 4
5 items with width 236

Configuration 25 - Jumbo coil 5
5 items with width 211

Configuration 26 - Jumbo coil 3
5 items with width 219

Configuration 27 - Jumbo coil 5
5 items with width 231

Configuration 28 - Jumbo coil 2
4 items with width 250

Configuration 29 - Jumbo coil 4
5 items with width 236

Configuration 30 - Jumbo coil 3
5 items with width 219

Configuration 31 - Jumbo coil 5
5 items with width 236

Configuration 32 - Jumbo coil 3
4 items with width 287

Configuration 33 - Jumbo coil 3
4 items with width 287

Configuration 34 - Jumbo coil 5
5 items with width 236

Configuration 35 - Jumbo coil 4
5 items with width 236

Configuration 36 - Jumbo coil 5
5 items with width 231

Configuration 37 - Jumbo coil 5
5 items with width 236

Configuration 38 - Jumbo coil 5
5 items with width 236

Configuration 39 - Jumbo coil 3
5 items with width 219

Configuration 40 - Jumbo coil 3
5 items with width 219

Configuration 41 - Jumbo coil 4
5 items with width 236

Configuration 42 - Jumbo coil 3
7 items with width 165

Configuration 43 - Jumbo coil 5
5 items with width 211

Configuration 44 - Jumbo coil 2
5 items with width 236

Configuration 23 - Jumbo coil 5
5 items with width 236

Configuration 24 - Jumbo coil 5
5 items with width 236

Configuration 25 - Jumbo coil 5
5 items with width 236

Configuration 26 - Jumbo coil 5
5 items with width 236

Configuration 27 - Jumbo coil 5
5 items with width 236

Configuration 28 - Jumbo coil 5
5 items with width 231

Configuration 29 - Jumbo coil 5
5 items with width 231

Configuration 30 - Jumbo coil 5
5 items with width 231

Configuration 31 - Jumbo coil 5
5 items with width 231

Configuration 32 - Jumbo coil 5
5 items with width 231

Configuration 33 - Jumbo coil 5
5 items with width 231

Configuration 34 - Jumbo coil 5
5 items with width 211

Configuration 35 - Jumbo coil 5
5 items with width 211

Configuration 36 - Jumbo coil 5
5 items with width 211

Configuration 37 - Jumbo coil 5
5 items with width 211

Configuration 38 - Jumbo coil 5
5 items with width 211

Configuration 39 - Jumbo coil 5
5 items with width 211

Configuration 40 - Jumbo coil 3
4 items with width 287

Configuration 41 - Jumbo coil 3
4 items with width 287

Configuration 42 - Jumbo coil 3
4 items with width 287

Configuration 43 - Jumbo coil 3
4 items with width 287

Configuration 44 - Jumbo coil 3
4 items with width 287

Configuration 23 - Jumbo coil 2
4 items with width 250

Configuration 24 - Jumbo coil 3
5 items with width 219

Configuration 25 - Jumbo coil 4
5 items with width 236

Configuration 26 - Jumbo coil 3
5 items with width 219

Configuration 27 - Jumbo coil 3
5 items with width 219

Configuration 28 - Jumbo coil 5
5 items with width 236

Configuration 29 - Jumbo coil 5
5 items with width 211

Configuration 30 - Jumbo coil 2
4 items with width 250

Configuration 31 - Jumbo coil 3
4 items with width 287

Configuration 32 - Jumbo coil 3
5 items with width 219

Configuration 33 - Jumbo coil 3
7 items with width 165

Configuration 34 - Jumbo coil 1
7 items with width 165

Configuration 35 - Jumbo coil 5
5 items with width 236

Configuration 36 - Jumbo coil 3
5 items with width 219

Configuration 37 - Jumbo coil 5
5 items with width 236

Configuration 38 - Jumbo coil 5
5 items with width 211

Configuration 39 - Jumbo coil 2
5 items with width 211

Configuration 40 - Jumbo coil 3
7 items with width 165

Configuration 41 - Jumbo coil 5
5 items with width 236

Configuration 42 - Jumbo coil 3
4 items with width 287

Configuration 43 - Jumbo coil 3
4 items with width 287

Configuration 44 - Jumbo coil 5
5 items with width 236

Table 10 – FFD+GA, Instance 0 results, variation of weights: W1 and W2 (part 2).
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W1 = 1, W2 = 1 W1 = 1, W2 = 0 W1 = 0, W2 = 1
total setup (hours) = 1.58
total delay (hours) = 2.15

total setup (hours) = 1.58
total delay (hours) = 57.17

total setup (hours) = 2.75
total delay (hours) = 2.15

Configuration 45 - Jumbo coil 5
5 items with width 211

Configuration 46 - Jumbo coil 3
7 items with width 165

Configuration 47 - Jumbo coil 5
5 items with width 236

Configuration 48 - Jumbo coil 3
4 items with width 287

Configuration 49 - Jumbo coil 3
4 items with width 287

Configuration 50 - Jumbo coil 5
5 items with width 236

Configuration 51 - Jumbo coil 3
5 items with width 219

Configuration 52 - Jumbo coil 5
5 items with width 211

Configuration 53 - Jumbo coil 5
5 items with width 231

Configuration 54 - Jumbo coil 3
5 items with width 219

Configuration 55 - Jumbo coil 3
5 items with width 219

Configuration 56 - Jumbo coil 2
4 items with width 250

Configuration 57 - Jumbo coil 2
4 items with width 250

Configuration 58 - Jumbo coil 2
5 items with width 211

Configuration 59 - Jumbo coil 1
7 items with width 165

Configuration 60 - Jumbo coil 1
7 items with width 165

Configuration 61 - Jumbo coil 2
5 items with width 211

Configuration 62 - Jumbo coil 2
4 items with width 250

Configuration 63 - Jumbo coil 2
4 items with width 250

Configuration 64 - Jumbo coil 2
5 items with width 219

Configuration 65 - Jumbo coil 2
4 items with width 250

Configuration 45 - Jumbo coil 3
4 items with width 250
1 items with width 165

Configuration 46 - Jumbo coil 3
5 items with width 219

Configuration 47 - Jumbo coil 3
5 items with width 219

Configuration 48 - Jumbo coil 3
5 items with width 219

Configuration 49 - Jumbo coil 3
5 items with width 219

Configuration 50 - Jumbo coil 3
5 items with width 219

Configuration 51 - Jumbo coil 3
5 items with width 219

Configuration 52 - Jumbo coil 3
5 items with width 219

Configuration 53 - Jumbo coil 3
5 items with width 219

Configuration 54 - Jumbo coil 3
5 items with width 219

Configuration 55 - Jumbo coil 3
5 items with width 219

Configuration 56 - Jumbo coil 3
5 items with width 219

Configuration 57 - Jumbo coil 3
5 items with width 219

Configuration 58 - Jumbo coil 3
7 items with width 165

Configuration 59 - Jumbo coil 3
7 items with width 165

Configuration 60 - Jumbo coil 3
7 items with width 165

Configuration 61 - Jumbo coil 1
5 items with width 231

Configuration 62 - Jumbo coil 1
7 items with width 165

Configuration 63 - Jumbo coil 1
7 items with width 165

Configuration 64 - Jumbo coil 1
7 items with width 165

Configuration 65 - Jumbo coil 1
7 items with width 165

Configuration 45 - Jumbo coil 1
7 items with width 165

Configuration 46 - Jumbo coil 4
5 items with width 236

Configuration 47 - Jumbo coil 5
5 items with width 211

Configuration 48 - Jumbo coil 1
7 items with width 165

Configuration 49 - Jumbo coil 5
5 items with width 231

Configuration 50 - Jumbo coil 5
5 items with width 231

Configuration 51 - Jumbo coil 2
4 items with width 250

Configuration 52 - Jumbo coil 5
5 items with width 236

Configuration 53 - Jumbo coil 5
5 items with width 231

Configuration 54 - Jumbo coil 2
4 items with width 250

Configuration 55 - Jumbo coil 4
5 items with width 236

Configuration 56 - Jumbo coil 2
5 items with width 236

Configuration 57 - Jumbo coil 2
5 items with width 211

Configuration 58 - Jumbo coil 2
4 items with width 250

Configuration 59 - Jumbo coil 5
5 items with width 211

Configuration 60 - Jumbo coil 2
5 items with width 219

Configuration 61 - Jumbo coil 3
5 items with width 219

Configuration 62 - Jumbo coil 5
5 items with width 231

Configuration 63 - Jumbo coil 4
5 items with width 236

Configuration 64 - Jumbo coil 3
5 items with width 219

Configuration 65 - Jumbo coil 2
4 items with width 250

Table 11 – FFD+GA, Instance 0 results, variation of weights: W1 and W2 (part 3).
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5 Conclusion and Future Perspectives

The main objective of this work was to provide a practical solution to a problem
commonly encountered in the current manufacturing industry. The incorporation of new
production processes into factories is a common situation for large companies striving
for competitiveness. However, the complexity it adds to the production chain requires
agility in making decisions with various variables and constraints. Therefore, any proposed
solution needs to take into account the parameters and intrinsic characteristics of the
production process and machines, allowing decision-makers to "customize" according to
their needs. This was the primary concern of this research and the development of the
solution using the FFD heuristic and Genetic Algorithm, where the user can configure
various cutting and scheduling process parameters.

The class of cutting and scheduling problems has been extensively studied
and researched academically. As presented in Chapter 3, various authors have proposed
different ways to solve complex problems. However, considering the gap that exists in
most cases between theory and practical problems, many studies do not consider the real
aspects of the machines and processes involved, affecting the results. This work, on the
other hand, aimed to incorporate various practical aspects to propose the best solution.
An example of this is the ability to determine the amount of productive hours in the input
data, allowing for different production schedules.

The model presented by Lemos (2020), which was the main reference for this
thesis, brought a complex problem whose solution is based on an exact method. The use of
this method is recommended for small-scale problems, but the cutting stock and scheduling
problem can grow exponentially considering different instances or real industrial situations.
For this reason, this work sought to use an alternative method with a Genetic Algorithm,
where a satisfactory solution was found even using a large-scale instance (such as instance
2).

The computational processing times are also noteworthy when analyzing the
results obtained. Comparing the results of FFD + CPLEX (average values of the rounds)
with the FFD + Genetic Algorithm method, the execution time of the second method
is significantly shorter. Regarding the results, the values of delay and total setup were
also lower. This demonstrates that the Genetic Algorithm provides a viable and suitable
solution in less time, making it more attractive to decision-makers. Another key point
interesting for the decision-maker is the possibility to choose different weights for setup or
delay. The mathematical model can be set up to analyze different scenarios, depending on
the strategies, to minimize setup or delay, or a solution that includes both. In a production
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scenario where there may be situations with a lack of people or where the delivery of items
may be flexible, giving this option to the decision maker is crucial for a good solution for
the ICSLSP.

Future prospects for this work are extensive. Considering the importance of
cutting machines and how much they can reduce costs compared to products purchased
from third-party suppliers, this problem can incorporate a larger number of machines, not
just one, as was addressed. It is also possible to explore other methods for the cutting
problem and the pattern sequencing problem. There are other heuristics capable of dealing
with this complex problem and potentially bringing even more speed and production
efficiency. Finally, instances can also be approached differently. Obtaining data from large
companies that perform coil cutting processes can be challenging, so using an instance
generator to create scenarios for testing the solution’s functionality will be a worthwhile
avenue to explore.
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APPENDIX A – Appendix A

Material Jumbo coil type Demand (kg/month) Demand - items/month Width item D (days)
B115 PVC - 1 30 1 231 1
B126 PVC - 1 690 23 165 1
B112 PVC - 2 750 25 250 1
B114 PVC - 2 180 6 236 1
B122 PVC - 2 300 10 219 1
B124 PVC - 2 360 12 211 1
B129 PVC - 2 30 1 211 1
B110 PVC - 3 390 13 219 1
B111 PVC - 3 300 10 219 1
B118 PVC - 3 480 16 219 1
B119 PVC - 3 60 2 250 1
B125 PVC - 3 570 19 165 1
B127 PVC - 3 360 12 219 1
B128 PVC - 3 540 18 287 1
B113 PVDC - 1 750 25 236 1
B116 PVDC - 2 270 9 211 1
B117 PVDC - 2 540 18 211 1
B120 PVDC - 2 90 3 231 1
B121 PVDC - 2 1050 35 236 1
B123 PVDC - 2 690 23 231 1

Table 12 – Items parameters for instance 0 (base scenario)
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Material Jumbo coil type Demand (kg/month) Demand - items/month Width item D (days)
B111 PVC - 1 16,650 555 219 10
B121 PVC - 1 4,470 149 236 9
B132 PVC - 1 1,650 55 231 6
B137 PVC - 1 900 30 211 9
B141 PVC - 1 630 21 165 7
B110 PVC - 2 20,430 681 219 6
B112 PVC - 2 13,830 461 250 6
B115 PVC - 2 8,490 283 231 1
B116 PVC - 2 6,150 205 211 2
B126 PVC - 2 2,460 82 165 9
B117 PVC - 3 5,730 191 211 1
B120 PVC - 3 4,500 150 231 2
B125 PVC - 3 2,490 83 165 1
B128 PVC - 3 2,040 68 287 5
B130 PVC - 3 1,650 55 236 5
B139 PVC - 3 810 27 219 10
B144 PVC - 3 480 16 203 6
B143 PVC - 4 480 16 236 10
B150 PVC - 4 180 6 231 10
B155 PVC - 4 60 2 165 1
B119 PVC - 5 4,950 165 250 6
B123 PVC - 5 4,140 138 231 9
B135 PVC - 5 990 33 165 4
B140 PVC - 5 810 27 211 4
B148 PVC - 5 210 7 236 7
B151 PVC - 6 120 4 165 8
B134 PVC - 7 1,260 42 231 1
B149 PVC - 7 210 7 165 9
B152 PVC - 7 90 3 211 8
B138 PVDC - 1 810 27 211 3
B147 PVDC - 1 240 8 219 5
B127 PVDC - 2 2,280 76 219 3
B131 PVDC - 2 1,650 55 236 4
B133 PVDC - 2 1,440 48 211 10
B146 PVDC - 2 330 11 165 9
B153 PVDC - 2 90 3 231 5
B114 PVDC - 3 8,580 286 236 2
B118 PVDC - 3 5,250 175 219 4
B129 PVDC - 3 1,680 56 211 10
B136 PVDC - 3 930 31 165 4
B142 PVDC - 3 510 17 231 10
B113 PVDC - 4 10,320 344 236 9
B122 PVDC - 4 4,470 149 219 6
B124 PVDC - 4 3,900 130 211 1
B145 PVDC - 4 330 11 231 4
B154 PVDC - 4 60 2 165 1

Table 13 – Items parameters for instance 1 (real-world based)
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Integrated
Material Jumbo coil type Demand on kg/month Demand on items/month Width item D (days)
B111 PVC - 1 23,310 777 219 10
B121 PVC - 1 6,270 209 236 9
B132 PVC - 1 2,310 77 231 6
B137 PVC - 1 1,260 42 211 9
B141 PVC - 1 900 30 165 7
B110 PVC - 2 28,620 954 219 6
B112 PVC - 2 19,380 646 250 6
B115 PVC - 2 11,910 397 231 1
B116 PVC - 2 8,610 287 211 2
B126 PVC - 2 3,450 115 165 9
B117 PVC - 3 8,040 268 211 1
B120 PVC - 3 6,300 210 231 2
B125 PVC - 3 3,510 117 165 1
B128 PVC - 3 2,880 96 287 5
B130 PVC - 3 2,310 77 236 5
B139 PVC - 3 1,140 38 219 10
B144 PVC - 3 690 23 203 6
B143 PVC - 4 690 23 236 10
B150 PVC - 4 270 9 231 10
B155 PVC - 4 90 3 165 1
B119 PVC - 5 6,930 231 250 6
B123 PVC - 5 5,820 194 231 9
B135 PVC - 5 1,410 47 165 4
B140 PVC - 5 1,140 38 211 4
B148 PVC - 5 300 10 236 7
B151 PVC - 6 180 6 165 8
B134 PVC - 7 1,770 59 231 1
B149 PVC - 7 300 10 236 9
B152 PVC - 7 150 5 211 8
B138 PVDC - 1 1,140 38 211 3
B147 PVDC - 1 360 12 219 5
B127 PVDC - 2 3,210 107 219 3
B131 PVDC - 2 2,310 77 236 4
B133 PVDC - 2 2,040 68 211 10
B146 PVDC - 2 480 16 165 9
B153 PVDC - 2 150 5 231 5
B114 PVDC - 3 12,030 401 236 2
B118 PVDC - 3 7,350 245 219 4
B129 PVDC - 3 2,370 79 211 10
B136 PVDC - 3 1,320 44 165 4
B142 PVDC - 3 720 24 231 10
B113 PVDC - 4 14,460 482 236 9
B122 PVDC - 4 6,270 209 219 6
B124 PVDC - 4 5,460 182 211 1
B145 PVDC - 4 480 16 231 4
B154 PVDC - 4 90 3 165 1

Table 14 – Items parameters for instance 2 (production increased)
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APPENDIX B – Appendix B

FFD+CPLEX - Instance 0
7 patterns of type 15 cut in sequence 0
2 patterns of type 4 cut in sequence 1
1 patterns of type 6 cut in sequence 2
4 patterns of type 17 cut in sequence 3
4 patterns of type 13 cut in sequence 4
4 patterns of type 9 cut in sequence 5
5 patterns of type 14 cut in sequence 6
7 patterns of type 2 cut in sequence 7
1 patterns of type 19 cut in sequence 8
5 patterns of type 16 cut in sequence 9
10 patterns of type 11 cut in sequence 10
3 patterns of type 5 cut in sequence 11
1 patterns of type 8 cut in sequence 12
4 patterns of type 7 cut in sequence 13
4 patterns of type 1 cut in sequence 14
2 patterns of type 18 cut in sequence 15
1 patterns of type 0 cut in sequence 16
2 patterns of type 3 cut in sequence 17
3 patterns of type 12 cut in sequence 18
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FFD+CPLEX - Instance 1
1 patterns of type 45 cut in sequence 0
1 patterns of type 34 cut in sequence 1
136 patterns of type 6 cut in sequence 2
12 patterns of type 37 cut in sequence 3
30 patterns of type 14 cut in sequence 4
42 patterns of type 20 cut in sequence 5
11 patterns of type 10 cut in sequence 6
7 patterns of type 24 cut in sequence 7
1 patterns of type 25 cut in sequence 8
41 patterns of type 5 cut in sequence 9
17 patterns of type 11 cut in sequence 10
30 patterns of type 2 cut in sequence 11
11 patterns of type 0 cut in sequence 12
7 patterns of type 38 cut in sequence 13
1 patterns of type 19 cut in sequence 14
3 patterns of type 33 cut in sequence 15
111 patterns of type 1 cut in sequence 16
4 patterns of type 17 cut in sequence 17
16 patterns of type 32 cut in sequence 18
11 patterns of type 35 cut in sequence 19
2 patterns of type 29 cut in sequence 20
2 patterns of type 28 cut in sequence 21
6 patterns of type 3 cut in sequence 22
48 patterns of type 13 cut in sequence 23
26 patterns of type 42 cut in sequence 24
35 patterns of type 6 cut in sequence 25
1 patterns of type 27 cut in sequence 26
2 patterns of type 18 cut in sequence 27
9 patterns of type 26 cut in sequence 28
14 patterns of type 15 cut in sequence 29
6 patterns of type 21 cut in sequence 30
27 patterns of type 12 cut in sequence 31
3 patterns of type 4 cut in sequence 32
17 patterns of type 8 cut in sequence 33
2 patterns of type 23 cut in sequence 34
10 patterns of type 31 cut in sequence 35
3 patterns of type 39 cut in sequence 36
6 patterns of type 30 cut in sequence 37
69 patterns of type 41 cut in sequence 38
30 patterns of type 44 cut in sequence 39
57 patterns of type 7 cut in sequence 40
58 patterns of type 36 cut in sequence 41
3 patterns of type 43 cut in sequence 42
35 patterns of type 40 cut in sequence 43
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FFD+CPLEX - Instance 2
1 patterns of type 45 cut in sequence 0
9 patterns of type 3 cut in sequence 1
4 patterns of type 43 cut in sequence 2
80 patterns of type 7 cut in sequence 3
12 patterns of type 26 cut in sequence 4
4 patterns of type 33 cut in sequence 5
81 patterns of type 36 cut in sequence 6
49 patterns of type 40 cut in sequence 7
37 patterns of type 42 cut in sequence 8
16 patterns of type 10 cut in sequence 9
58 patterns of type 20 cut in sequence 10
38 patterns of type 12 cut in sequence 11
4 patterns of type 39 cut in sequence 12
16 patterns of type 0 cut in sequence 13
3 patterns of type 29 cut in sequence 14
24 patterns of type 11 cut in sequence 15
166 patterns of type 6 cut in sequence 16
8 patterns of type 30 cut in sequence 17
73 patterns of type 6 cut in sequence 18
5 patterns of type 4 cut in sequence 19
1 patterns of type 34 cut in sequence 20
22 patterns of type 32 cut in sequence 21
97 patterns of type 41 cut in sequence 22
42 patterns of type 44 cut in sequence 23
16 patterns of type 37 cut in sequence 24
10 patterns of type 24 cut in sequence 25
14 patterns of type 31 cut in sequence 26
67 patterns of type 13 cut in sequence 27
8 patterns of type 21 cut in sequence 28
9 patterns of type 38 cut in sequence 29
1 patterns of type 25 cut in sequence 30
5 patterns of type 17 cut in sequence 31
16 patterns of type 35 cut in sequence 32
156 patterns of type 1 cut in sequence 33
42 patterns of type 2 cut in sequence 34
2 patterns of type 23 cut in sequence 35
2 patterns of type 28 cut in sequence 36
2 patterns of type 18 cut in sequence 37
58 patterns of type 5 cut in sequence 38
1 patterns of type 19 cut in sequence 39
23 patterns of type 8 cut in sequence 40
20 patterns of type 15 cut in sequence 41
42 patterns of type 14 cut in sequence 42
1 patterns of type 27 cut in sequence 43
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