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RESUMO

Este trabalho trata do projeto de controle de uma função de comutação dependente da saída

para sistemas afins com comutação a tempo discreto, de forma a assegurar estabilidade assin-

tótica global de um ciclo limite adequado. Antes de abordar este objetivo principal, a classe de

sistemas afins com comutação é apresentada e suas características intrínsecas discutidas. Uma

delas está relacionada à limitação da frequência de comutação, o que justifica o estudo da esta-

bilidade assintótica de ciclos limite. Neste contexto, uma família de ciclos limite é determinada

de forma a satisfazer critérios de desempenho relacionados à resposta do sistema em regime per-

manente. Posteriormente, baseado em uma função de Lyapunov convexa e variante no tempo,

um conjunto de sub-problemas convexos, expressos em termos de desigualdades matriciais lin-

eares, é fornecido para a determinação de uma função de comutação dependente da saída. Esta

função deve estar associada ao ciclo limite, pertencente à família determinada, que minimiza

um limitante superior dos índices de desempenho H2 ou H∞. Alguns exemplos acadêmicos e

o controle de um conversor CC-CC de três células são usados para validação e comparação.

Palavras–chave: Sistemas afins com comutação; Estabilidade de ciclos limite; Realimentação

estática de saída; Domínio do tempo discreto.



ABSTRACT

This work deals with control design of a static output-dependent switching function for discrete-

time switched affine systems to ensure global asymptotic stability of a suitable limit cycle.

Before tackling this main goal, the class of switched affine systems is presented and its intrinsic

characteristics are discussed. One of them is related to the switching frequency limitation that

justifies the study of asymptotic stability of limit cycles. In this context, a family of limit cycles

is determined that satisfies performance criteria of interest related to the system steady-state

response. Afterwards, based on a time-varying convex Lyapunov function, a set of convex sub-

problems, expressed in terms of linear matrix inequalities, is provided to determine an output-

dependent switching function. This function must be associated to the limit cycle, belonging to

the determined family, that minimizes an upper bound to the H2 or H∞ performance indexes.

Some academical examples and the control of a DC-DC three-cells power converter are used

for validation and comparison.

Keywords: Switched affine systems; Limit cycle asymptotic stability; Static output feedback;

Discrete-time domain.
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1 INTRODUCTION

Hybrid systems are characterized by the interaction between continuous dynamics and

discrete events. They consist in a research field that has attracted the attention of the scien-

tific community in the last decades, mainly for the great applicability in several engineering

areas and for the theoretical challenges brought by their intrinsic properties. A subclass of great

importance is composed of the switched systems. They are defined by a finite number of sub-

systems and by a rule (or function) responsible for selecting a subsystem at each instant of time.

This rule can be modeled as a perturbation or as a control signal to be determined in order to

ensure stability and performance to the closed-loop system. In this thesis our focus is to con-

sider the switching rule as a control signal. The books (LIBERZON, 2003), (SUN; GE, 2011)

and the article (SHORTEN et al., 2007) are basic references about the theme.

Inside the class of switched systems, the switched affine systems are characterized by

having affine terms in its dynamic equation. When all affine terms are null, the system becomes

linear and the unique equilibrium point, common to all subsystems, is the origin. For this sim-

pler case, the literature presents several results for both, continuous and discrete-time domains.

These results include stability analysis (GEROMEL; COLANERI, 2006b), (LIN; ANTSAK-

LIS, 2009), state feedback control design (GEROMEL; DEAECTO, 2009), (OGURA et al.,

2016), output feedback control design (DEAECTO; DAIHA, 2020), (DEAECTO et al., 2011a),

(GEROMEL et al., 2008) and robust control (DEAECTO et al., 2011b).

However, if at least one affine term is non-null, the system presents a set of attainable

equilibrium points, forming a region of great interest in the state-space. For this case, the control

goal is to design a switching function in order to ensure global asymptotic stability of a desired

equilibrium point as well as a suitable performance to the overall system. This goal is only

accomplished for continuous-time systems, when the switching frequency is arbitrarily high.

This occurs due to the fact that the equilibrium point of interest generally does not coincide with

those of the subsystems and, consequently, an extremely high switching frequency is mandatory

to keep the state trajectories fixed in this point during the steady-state, which indicates that

the system always evolves on a stable sliding mode. References (DEAECTO et al., 2010),

(BOLZERN; SPINELLI, 2004) and (TROFINO et al., 2009) are some examples where the

global asymptotic stability is ensured.
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A hindrance of this control technique is that in real systems a high switching frequency

(or chattering) is undesirable, since it may cause equipment wear or it is not implementable due

to physical limitations. This is always the case of discrete-time systems obtained through a suit-

able discretization procedure, which imposes an upper bound to the switching frequency. As an

alternative, the literature provides two different strategies to deal with constraints on the switch-

ing frequency. The first one deals with practical stability. In this case, the system trajectories are

guided to an invariant set of attraction, as small as possible, that contains the desired equilibrium

point, see (HETEL; FRIDMAN, 2013), (SANCHEZ et al., 2019) and (EGIDIO; DEAECTO,

2019). The inconvenience of this approach is that nothing can be concluded about the steady-

state response, because there is no information about the state trajectories once they are inside

the invariant set, see (BENMILOUD et al., 2019). Moreover, neither H2 and H∞ performance

indexes can be taken into account, since they are defined, exclusively, for asymptotically stable

systems.

To circumvent this problem, references (BENMILOUD et al., 2019), (PATINO et al.,

2010), (EGIDIO et al., 2020) and (SERIEYE et al., 2023) have treated stabilization of limit cy-

cles. This approach allows the designer to determine a suitable limit cycle that satisfies criteria

associated to the steady-state response. For continuous-time systems, reference (BENMILOUD

et al., 2019) treated local stabilization using a hybrid Poincaré map approach and (PATINO et

al., 2010) proposed a methodology based on predictive control that uses sensitivity functions

and Newton algorithm. For discrete-time systems, (SERIEYE et al., 2023) treated state feed-

back global asymptotic stabilization of limit cycles, but without considering any performance

index. The reference (EGIDIO et al., 2020) has dealt with the same problem and provided a

state-dependent switching function that minimizes upper bounds of H2 and H∞ performance

indexes. The continuous-time counterpart of this last result, but without considering perfor-

mance indexes, is available in (EGIDIO et al., 2020).

In this context, and also motivated by practical situations in which not all states are avail-

able for measurement, the present work provides sufficient conditions, based on a convex time-

varying Lyapunov function, expressed in terms of linear matrix inequalities (LMIs) to the design

of an output-dependent switching function in order to ensure global asymptotic stability of a de-

sired limit cycle, without considering any additional dynamic structure. Moreover, the results

are associated to the existence of an asymptotically stable periodic switching function, whose

H2 or H∞ performance index is worse or at most equal the one obtained with the proposed
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closed-loop switching function. Since, this result is a generalization of the reference (EGIDIO

et al., 2020), that treats state feedback control, exclusively, we have compared this technique

with the more recent one proposed in (SERIEYE et al., 2023) that does not consider any pefor-

mance index. For this reason, we have included a guaranteed cost in the results of (SERIEYE

et al., 2023) for the sake of comparison. Throughout this thesis the authors will find academical

examples to illustrate the main theoretical features and a practical application in the area of

power electronics.

1.1 Publication List

• G. S. Deaecto, R. A. Hirata, M. C. M. Teixeira, “Static output feedback global asymptotic

stability of limit cycles for discrete-time switched affine systems”, Preprints of the IFAC

World Congress, Yokohama-JP, pp. 4534–4539, 2023.

• R. A. Hirata, G. S. Deaecto, M. C. M. Teixeira, "Estabilização via realimentação estática

de saída de ciclos limites para sistemas afins com comutação a tempo discreto", Anais do

Simpósito Brasileiro de Automação Inteligente-SBAI, Manaus-AM, submetido.

1.2 Thesis Structure

This thesis is structured in four chapters as presented in the sequel:

• Chapter 1 - Introduction :

In the introduction, it is provided the state of the art of switched affine systems. More

specifically, it is presented the motivation to study this subclass of systems, as well as the

challenges to be faced when stability and performance is taken into account. The pecu-

liarities of these systems in the discrete-time domain or when the switching frequency is

limited are also presented and discussed.

• Chapter 2 - Fundamental Concepts :

In the second chapter, some well-known concepts related to the study of dynamical sys-

tems are provided. They go from discretization of a linear time invariant (LTI) continuous-

time systems to some definitions regarding stability of dynamic systems, which allow us

to present the Lyapunov’s stability criterion, and finalizes with the definition of H2 and

H∞ norms with their calculus through LMIs.
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• Chapter 3 - Switched Affine Systems :

In this chapter, some intrinsic properties of the switched affine systems are highlighted

and discussed. At first, sufficient conditions, borrowed from the literature, for the state

feedback control design of continuous-time switched affine systems are presented. Af-

terwards, an academic example is provided to illustrate the main features of this class of

systems and the challenges to overcome when the switching frequency is limited.

• Chapter 4 - Stabilization of Limit Cycles :

This chapter is dedicated to the main results of this thesis. Initially, the limit cycle gener-

ation is provided. Then, some results from (EGIDIO et al., 2020) are recalled, which are

the basis for generalization to obtain the output feedback control design. To validate these

results with respect to recent ones from the literature, a guaranteed cost has been included

in the results of (SERIEYE et al., 2023) in order to compare both strategies. At last, suffi-

cient conditions to the design of an output-dependent switching function ensuring global

asymptotic stability of the desired limit cycle and H2 and H∞ guaranteed performance

indexes are presented, and illustrated by means of a practical application example.

• Chapter 5 - Conclusion :

An overview on the main topics of this thesis is provided, highlighting the main contri-

butions. Then, a discussion with respect future works is presented.

The numerical simulations were performed in Matlab - R2017a using LMI Solver routines

in an Apple computer with operating system Mac OS X version 10.15.7.
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2 FUNDAMENTAL CONCEPTS

In this chapter, some fundamental concepts are presented forming the basis for the study

of dynamical systems. Initially, a linear time-invariant system and its discretized model are

presented. Afterward, some important stability concepts including the well-known Lyapunov

theorem are provided for the system in the discrete-time domain. This chapter ends with the

definition of the H2 and H∞ norms and their calculus through the solution of convex optimiza-

tion problems described in terms of linear matrix inequalities. All the results of this chapter are

well-established in the literature of control theory and can be found in several books of the area,

as for instance, (KHALIL, 2002), (CHEN, 2013), (GEROMEL; KOROGUI, 2011) and (BOYD

et al., 1994).

2.1 Linear Time-Invariant Systems

Consider a Linear Time-Invariant (LTI) system in the continuous-time domain described

in the state space form as

ẋ(t) = Aox(t) +How(t), x(0) = x0, t ≥ 0 (2.1)

where x(t) ∈ Rnx is the state vector, x0 is the initial condition and w(t) ∈ Rnw is the exogenous

input. Its general solution is given by

x(t) = eAotx0 +

∫ t

0

eAo(t−τ)How(τ) dτ (2.2)

which represents the dynamical behavior of several real-world systems. When some control

law is included, it generally occurs by means of digital controllers due to the flexibility to

make changes in the control algorithm and the recent low-cost production of digital computers.

In this case, the behavior of the overall system can be obtained by the equivalent discretized

system, which is one of the motivations of studying discrete-time systems, besides the ones that

are intrinsically defined in this time-domain. This thesis is focused on discrete-time systems,

which represents the behavior of several real-world models, mainly when some digital actuation

is taken into account.

To obtain the equivalent discrete-time system of (2.1) let us suppose that the external input

is piecewise constant w(t) = w(tn), ∀t ∈ [tn, tn+1) with tn+1 − tn = T > 0 and n ∈ N. The
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time instants tn = nT and tn+1 = (n+1)T are sampling instants and T is the sampling period.

The general solution of (2.1) for t ∈ [tn, tn+1) is given by

x(t) = eAo(t−tn)x(tn) +

∫ t

tn

eAo(t−τ)Ho dτ w(tn)

= eAo(t−tn)x(tn) +

∫ t−tn

0

eAoφHo dφ w(tn) (2.3)

where it was used the change of variable φ = t − τ and the fact that w(tn) is constant in this

time interval. Hence, defining x(tn) = x(nT ) = x[n], we obtain

x(tn+1) = eAoTx(tn) +

∫ T

0

eAoφHo dφ w(tn) (2.4)

which leads to the equivalent discrete-time system

x[n+ 1] = Ax[n] +Hw[n], x[0] = x0 (2.5)

with A = eAoT and H =
∫ T

0
eAoφHo dφ. The general solution of this system is given by

x[n] = Anx[0] +
n−1∑
i=0

A(n−1−i)Hw[i] (2.6)

Notice that the discretized matrices can be obtained in a more direct way as follows

eAT =

A H

0 I

 ,A =

Ao Ho

0 0

 (2.7)

as provided in (SOUZA et al., 2014). This can seen using the Laplace transformation

eAt = L −1
{
(sI −A)−1

}
= L −1


sI − Ao −Ho

0 sI

−1
= L −1


(sI − Ao)

−1 1
s
(sI − Ao)

−1Ho

0 1
s
I


=

eAot
∫ t

0
eAoφ dφHo

0 I

 (2.8)

which evaluated for t = T provides (2.7).
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2.2 Basic Concepts on Dynamical Systems

In this section, a series of definitions is presented that will be extensively used in this

thesis. Since these definitions are general for dynamical systems, let us consider a generic

system as follows

x[n+ 1] = f(x[n]) (2.9)

where f : D → Rnx with D ⊂ Rnx .

Definition 2.2.1. A point xe is said to be an equilibrium point of the system (2.9) if it satisfies

f(xe) = xe, ∀n ∈ N

In other words if x[n0] = xe then x[n] = xe for all n ≥ n0. Notice that the origin is the

unique equilibrium point of the linear system x[n + 1] = Ax[n] whenever matrix (I − A) is

non-singular.

The next definitions consider that the origin is the unique equilibrium point of the system

(2.9). This is a very common approach, since it is always possible to shift the equilibrium point

xe ̸= 0 to the origin using a simple change of variable such as ξ[n] = x[n]− xe, which implies

that ξ[n] → 0 whenever x[n] → xe. A illustration of each definition is given in Figure 2.1.

Definition 2.2.2. (SLOTINE; LI, 1991) The equilibrium point xe = 0 is said to be stable, if for

any R > 0, there exists r > 0 such that

∥x[0]∥ < r =⇒ ∥x(n)∥ < R, ∀n ≥ 0

Otherwise, the equilibrium point xe = 0 is unstable.

Assuming that the origin is a stable equilibrium point, then if the initial condition of the

system is close enough of the origin, the trajectories are guaranteed to stay inside the ball of

radius R > 0 for any instant n ≥ 0.

Definition 2.2.3. The equilibrium point xe = 0 is said to be asymptotically stable if both state-

ments are true:

• It is stable

• ∥x[0]∥ < r =⇒ ∥x∥ → 0 as n → ∞
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Hence, whenever the initial condition is within the radius r, then the state trajectories

reach the origin as n →∞.

Definition 2.2.4. The equilibrium point xe = 0 is said to be globally asymptotically stable if

∥x∥ → 0 as n → ∞

is valid for all x0 ∈ Rnx .

It means that independently of the initial condition the state trajectories go always to the

origin.

Def. 2.2.2

Def. 2.2.4

x[0]

x[0]

0

r

R

Def. 2.2.3

Figure 2.1 – Stability concepts

2.2.1 Stability of Dynamical Systems

The stability of a system is defined considering an equilibrium point. A general approach

to verify stability is through the Lyapunov’s direct method. This method is based on the phys-

ical observation that if the total energy of a mechanical (or electrical) system is continuously

dissipated, then the system trajectories must tend to an equilibrium point (SLOTINE; LI, 1991).

With this idea, the scientist Aleksandr M. Lyapunov showed, in 1892, that a certain scalar func-

tion can be used to analyze the stability of a generic dynamical system (KHALIL, 2002). Based

on this function, the next theorem from (KHALIL, 2002), adapted for the discrete-time domain,

provides the Lyapunov’s stability theorem.

Theorem 2.1. (KHALIL, 2002) Let xe = 0 be an equilibrium point for (2.9) and D ⊂ Rnx be a

domain containing xe = 0. Let V : D → R be a scalar function such that
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• V (0) = 0 and V (x) > 0, ∀x ∈ D, x ̸= 0

• ∆V (x) ≤ 0 ∀x ∈ D

Then xe = 0 is stable. Moreover, if

• ∆V (x) < 0 ∀x ∈ D, x ̸= 0

Then xe = 0 is asymptotically stable.

The function V (x) that satisfies the conditions of this theorem is named Lyapunov func-

tion. Notice that, whenever the domain D is defined as the full state space D ≡ Rnx the stability

of the equilibrium point xe is global. The next theorem provides this result.

Theorem 2.2. Let xe = 0 be an equilibrium point for (2.9). Let V : Rnx → R such that

• V (0) = 0 and V (x) > 0, ∀x ̸= 0

• ∥x∥ → ∞ =⇒ V (x) → ∞

• ∆V (x) < 0, ∀x ̸= 0

Then xe = 0 is globally asymptotically stable.

More details about these results are presented in (SLOTINE; LI, 1991) e (KHALIL, 2002).

The next subsection applies these concepts to study the stability of the LTI system (2.5).

2.2.2 Stability of LTI systems

Let us consider the dynamical system (2.5) with w[n] = 0 ∀n ∈ N given by

x[n+ 1] = Ax[n], x[0] = x0 (2.10)

The origin of this system is globally asymptotically stable whenever all eigenvalues of A lie

within the unit circle centered at the origin. In this case, the system is said to be Schur stable,

see (FRANKLIN et al., 2002).

For this class of systems, the quadratic function given by

V (x) = x[n]′Px[n] (2.11)
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defined ∀n ∈ N and P > 0 is a good candidate to Lyapunov function. Indeed, notice that from

Theorem 2.2, the first and second itens are clearly satisfied. In order to analyze the third item,

we have

∆V (x) = x[n+ 1]′Px[n+ 1]− x[n]′Px[n] (2.12)

= (Ax[n])′P (Ax[n])− x[n]′Px[n] (2.13)

= x[n]′(A′PA− P )x[n] (2.14)

To guarantee that ∆V (x) < 0, ∀x ̸= 0, it is imposed that

∆V (x) = x[n]′(A′PA− P )x[n] = −x[n]′Qx[n] < 0 (2.15)

with Q being any given positive definite matrix. Hence, the third item of Theorem 2.2 is satisfied

indicating that xe = 0 is globally asymptotically stable. Actually, the solution to the so called

Lyapunov equation

A′PA− P +Q = 0, P > 0 (2.16)

is not only a sufficient condition but also necessary for the stability of the LTI system (2.10), as

formalized in the next theorem.

Theorem 2.3. The LTI system (2.10) is globally asymptotically stable if and only if for a given

Q > 0, there exists P > 0 that satisfies the Lyapunov equation

A′PA− P = −Q

Moreover, P > 0 is the unique solution of this equation.

Proof: The proof is available in (CHEN, 2013), but will be repeated here for convenience. To

prove the necessity, let us assume that matrix A is Schur stable and, consequently, its eigen-

values satisfy |γi| < 1 ∀i ∈ {1, · · · , nx}. We need to show that under this assumption, matrix

P > 0 is the unique solution of the Lyapunov equation

A′PA− P = −Q (2.17)

Consider

P =
∞∑
j=0

(A′)jQ(A)j (2.18)
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for a given Q > 0, which implies that the candidate P is also positive definite. Since matrix A

is Schur-stable, then the summation (2.18) converges and is well defined. Replacing (2.18) in

(2.17), we obtain

A′PA− P = A′

(
∞∑
j=0

(A′)jQ(A)j

)
A−

∞∑
j=0

(A′)jQ(A)j

=
∞∑
j=0

(A′)j+1Q(A)j+1 −
∞∑
j=0

(A′)jQ(A)j

= −Q (2.19)

which indicates that (2.18) satisfies indeed the Lyapunov equation. To show that (2.18) is the

unique solution of this equation, let us suppose that there is another solution P̃ > 0 satisfying

A′P̃A− P̃ = −Q. Subtracting this equation from (2.17), we have

A′(P − P̃ )A− P − P̃ = 0 (2.20)

Multiplying this equality to the right by Aj and the the left by the transpose, and summing the

result for all j = 0 up to infinity, we have

∞∑
j=0

(A′)j+1(P − P̃ )(A)j+1 −
∞∑
j=0

(A′)j(P − P̃ )(A)j = −(A′)0(P − P̃ )A0 = 0 (2.21)

which indicates that P = P̃ , concluding the proof of necessity. To show the sufficiency, we

need to suppose that P > 0 is the unique solution of the Lyapunov equation (2.17) and to show

that A is Schur stable. Consider that γi as the i-th eigenvalue of A associated to eigenvector vi,

such as Avi = γivi then

−v∼i Qvi = v∼i A
′PAvi − v∼i Pvi

= v∼i γ̄iPγivi − v∼i Pvi

= (|γi|2 − 1)v∼i Pvi (2.22)

Since v∼i Qvi > 0 and v∼i Pvi > 0, then 1 − |γi|2 > 0 =⇒ |γi|2 < 1 for all i ∈ {1, · · · , nx},

concluding the proof. □

The next subsection defines the two most important performance indexes to analyze dynamical

systems. They will be extensively adopted in this thesis.
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2.3 Performance Indexes

In the previous section, important concepts regarding stability were presented. However,

as it is well known in the literature, to ensure stability is the first step in a control design problem,

the next one is to guarantee some performance towards an objective. In the single input and

output (SISO) control theory, considering the hypothesis of dominant poles, some performance

indexes, well-defined, are the overshooting and stabilization time for the transient state. Yet,

this approach cannot be extended when robustness is taken into account. Considering a more

general scenario, two very important performance criteria are the H2 and H∞ norms, which are

defined for the more general system

x[n+ 1] = Ax[n] +Hw[n], x[0] = 0 (2.23)

z[n] = Ex[n] +Gw[n] (2.24)

for all n ∈ N, where z[n] ∈ Rnz is the controlled output. The transfer function of this system is

given by

F (z) = E(zI − A)−1H +G (2.25)

and the associated impulse response h[n] is as follows

h[n] =

 G , n = 0

EAn−1H , n ≥ 1
(2.26)

The next subsections treat both norms separately.

2.3.1 H2 norm

This norm is defined for asymptotically stable systems, with transfer function F (z) an-

alytic in all complex plane except in the interior of the unit circle centered at the origin, as

being

∥F (z)∥22 =
1

2π

∫ π

−π

Tr
(
F (ejω)∼F (ejω)

)
(2.27)

where the symbol ∼ indicates the transpose conjugate of the signal. Alternatively, using the

Parseval theorem, we can express this norm in the time-domain as follows

∥F (z)∥22 =
∞∑
n=0

Tr(h[n]′h[n])) (2.28)
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Replacing the impulse response h[n] of (2.26) in (2.28), we obtain

∥F (z)∥22 =
∞∑
n=1

Tr
(
(EAn−1H)′(EAn−1H)

)
+ Tr(G′G)

= Tr

(
H ′
( ∞∑

m=0

(Am)′E ′EAm
)
H

)
+ Tr(G′G) (2.29)

where we have used the change of variable m = n− 1 and considered that the trace is a linear

function in order to put the summation inside Tr(·). Notice that

Po =
∞∑
n=0

(An)′E ′EAn

is the solution of the Lyapunov equation

A′PoA− Po + E ′E = 0

and is named observability gramian. Hence, the H2 norm can be calculated by means of the

observability gramian as follows

∥F (z)∥22 = {Tr(H ′PoH +G′G) : A′PoA− Po + E ′E = 0, Po > 0} (2.30)

Alternatively, this norm can be determined by the solution of the following convex optimization

problem expressed in terms of LMIs

∥F (z)∥22 = inf
P>0

Tr(H ′PH +G′G) (2.31)

subject to

A′PA− P + E ′E < 0 (2.32)

Indeed, notice that (2.32) can be rewritten as the Lyapunov equation

A′PA− P + E ′E = −S (2.33)

for some S > 0. Hence, we have that

P =
∞∑
n=0

(An)′(E ′E + S)An

> Po (2.34)

and the minimum operator in (2.31) makes the solution of this problem to reach the value

obtained in (2.30).
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2.3.2 H∞ Norm

As before, this norm is determined for systems with transfer function F (z), analytic in all

complex plane, except in the interior of the unit circle centered at the origin. It is defined as

∥F (z)∥∞ = max
ω∈[−π,π]

µmax(F (ejω)) (2.35)

where µmax(F (ejω)) is the maximum singular value of the transfer matrix F (ejω), that is

µmax(F (ejω)) = max
i∈{1,··· ,nx}

√
γi(F (ejω)∼F (ejω)) (2.36)

Notice that for the scalar case, this definition assume the simplest form

∥F (z)∥∞ = max
ω∈[−π,π]

|F (ejω)| (2.37)

which is the peak of the magnitude Bode plot.

We can determine this norm in the time domain by using the fact that ẑ = F (z)ŵ. More-

over, with ∥F (z)∥2∞ < ρ we obtain F (ejω)∼F (ejω) < ρ, which multiplied to the right by ŵ and

to the left by the transpose conjugate provides

ẑ∼ẑ − ρŵ∼ŵ < 0 (2.38)

which implies that
1

2π

∫ π

−π

(ẑ∼ẑ − ρŵ∼ŵ) dω < 0 (2.39)

Applying the Parseval theorem, we obtain the equivalent of (2.39) in the time-domain as being

∞∑
n=0

(z[n]′z[n]− ρw[n]′w[n]) < 0 (2.40)

We can observe that this inequality is valid for all trajectory w ̸= 0 such that

∥w∥22 =
∞∑
n=0

w[n]′w[n] < ∞ (2.41)

Let us recall that the set of all trajectories whose this summation is finite belongs to the set L2.

Hence, it is clear that for a given ρ > 0 the inequality ∥F (z)∥2∞ < ρ is true if and only if

sup
w ̸=0∈L2

∥z∥22 − ρ∥w∥22 < 0 (2.42)

is satisfied. The solution of this problem allows us to determine upper bounds for the H∞ norm,

being the smallest one close to its value.
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Notice that, imposing the inequality

∆V (x[n]) < −z[n]′z[n] + ρw[n]′w[n] (2.43)

with the quadratic Lyapunov function defined in (2.11) and summing for all n = 0 up to infinity,

we obtain

lim
n→∞

V (x[n])− V (x[0]) < −∥z∥22 + ρ∥w∥22 (2.44)

The left hand side of this inequality is null since limn→∞ V (x[n]) = 0, as a consequence of

the system stability, and V (x[0]) = 0 because x[0] = 0, which leads to (2.40). Hence, we can

obtain the H∞ norm of the system by imposing directly (2.43). Indeed, taking into account that

∆V (x) =

x
w

′ A′PA− P •

H ′PA H ′PH

x
w

 (2.45)

and

z[n]′z[n]− ρw[n]′w[n] =

x
w

′ E ′E •

G′E G′G− ρI

x
w

 (2.46)

then, imposing (2.43) is equivalent to satisfyx
w

′ A′PA− P + E ′E •

H ′PA+G′E H ′PH +G′G− ρI

x
w

 < 0 (2.47)

which allows us to formulate the calculus of the H∞ norm as the solution of the following

convex optimization problem

∥F (z)∥2∞ = inf
P>0, ρ>0

ρ (2.48)

subject to A′PA− P + E ′E •

H ′PA+G′E H ′PH +G′G− ρI

 < 0 (2.49)

Differently from the H2 norm that depends on the system response to impulsive external inputs,

the H∞ norm admits a different interpretation that is associated to system robustness. This

norm is one of the most important concepts that make possible the study of systems subject to

uncertainties as, for instance, those associated to a delay in the state variables, (GEROMEL;

KOROGUI, 2011).
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2.4 Final Considerations

In this chapter, the main concepts concerning the study of dynamical systems have been

presented with focus in the Lyapunov’s stability criterion and in the calculus of H2 and H∞

norms, including their description as convex optimization problems expressed in terms of LMIs.

The main references were the books (KHALIL, 2002), (CHEN, 2013) and (SLOTINE; LI, 1991)

for stability study and (GEROMEL; KOROGUI, 2011) and (COLANERI et al., 1997) for norms

calculations.
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3 SWITCHED AFFINE SYSTEMS

This chapter is dedicated to present the class of switched affine systems that are the fo-

cus of our attention in this thesis. For continuous-time systems, we present sufficient condi-

tions, borrowed from the literature, to the control design of a switching rule able to ensure

global asymptotic stability of a desired equilibrium point and a guaranteed cost of performance.

Through an academical example, the intrinsic characteristics of these systems are explored and

the main challenges discussed. One of them that motivates the study of the next chapter is that

the asymptotic stability is generally impossible to be ensured when the switching frequency is

limited, which indicates difficulties to be faced in studying these systems in the discrete-time

domain. The basic references on switched affine systems are the books (LIBERZON, 2003),

(SUN; GE, 2011) and the paper (DEAECTO et al., 2010).

3.1 Stability and Guaranteed Cost

Switched systems represent a subclass of hybrid systems and are characterized by pre-

senting a finite number of subsystems and a rule (or function) that is responsible for choosing

one of them at each instant of time. In this thesis, the subclass of interest is composed by the

switched affine systems whose state space realization is given as follows

ẋ(t) = Aσ(t)x(t) + bσ(t) (3.1)

z(t) = Eσ(t)x(t) (3.2)

where x(t) ∈ Rnx is the state, z(t) ∈ Rnz is the controlled output and σ(t) : R+ → K :=

{1, · · · , N} is the switching rule that selects at each instant of time one of the N available

subsystems. An interesting point about affine systems is that when bi = 0, ∀i ∈ K, the system

becomes linear and the origin is the unique equilibrium point. For this class, the control problem

is simpler and the literature presents several results dealing with analysis and control design, see

(GEROMEL; COLANERI, 2006a), (DEAECTO et al., 2011a).

Let us define the unit simplex as being

Λ =

{
λ ∈ RN : λi ≥ 0,

N∑
i=1

λi = 1

}
(3.3)



32

and the convex combination of matrices {X1, · · ·XN} as

Aλ =
N∑
i=1

λiAi, λ ∈ Λ (3.4)

A very simple but important result in the context of switched linear systems is presented in the

next lemma, see (FERON, 1996).

Lemma 3.1. For the system (3.1)-(3.2) with bi = 0, ∀i ∈ K, assume that there exist P > 0 and

λ ∈ Λ satisfying the inequality

A′
λP + PAλ +Qλ < 0 (3.5)

with Qi = E ′
iEi, ∀i ∈ K. Then, the state-dependent switching function σ(t) = u(x(t)) with

u(x) = argmin
i∈K

x′(2PiAi +Qi)x (3.6)

is globally asymptotically stabilizing and satisfies the guaranteed cost

∥z∥22 < x′
0Px0 (3.7)

Proof: For an arbitrary trajectory of the linear system ẋ = Aσx and adopting a quadratic Lya-

punov function V (x) = x′Px, P > 0, we have

V̇ (x) = ẋ′Px+ x′Pẋ

= x′(A′
σP + PAσ + E ′

σEσ)x− z′z

= min
i∈K

x′(A′
iP + PAi + E ′

iEi)x− z′z

= min
λ∈Λ

x′(A′
λP + PAλ +Qλ)x− z′z

≤ x′(A′
λP + PAλ +Qλ)x− z′z

< −z′z (3.8)

where the third equality is due to the switching function (3.6), the fourth equality and the first

inequality is a consequence of the minimum operator and the last inequality comes from the

validity of (3.5). Moreover, integrating both sides of (3.8) from 0 up to ∞ we obtain the guar-

anteed cost (3.7). The proof is concluded. □

Notice that the condition (3.5) is not an LMI due to the presence of the variables λ and P .

A manner of solving this Lemma is by doing a search with respect to λ and solving the resulting

LMI in order to obtain the smallest guaranteed cost.
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While the linear system has a unique equilibrium point, the switched affine system has

several equilibrium points, forming a region of great interest in the state space defined by

Xe =
{
xe ∈ Rnx : xe = −A−1

λ bλ, λ ∈ Λ
}

(3.9)

Generally, the equilibrium point of interest is not common to the subsystems, which requires

an arbitrarily high switching frequency in order to make the state trajectories reach this point,

ensuring asymptotic stability. In this case, the system always evolves on a sliding mode, which

causes a behavior that is significantly different from the behavior of each individual subsystem

(LIBERZON, 2003).

Adopting the change of variable ξ(t) = x(t)−xe we can rewrite the system (3.1)-(3.2) as

ξ̇(t) = Aσ(t)ξ(t) + ℓσ(t) (3.10)

ze(t) = Eσ(t)ξ(t) (3.11)

where ℓi = Aixe+ bi and ze = z−Eσxe. Similarly to the linear case, our main goal is to design

a state dependent switching function σ(t) = u(ξ(t)) in order the ensure the global asymptotic

stability of the equilibrium point xe ∈ Xe in (3.1)-(3.2), which is equivalent to ensure the same

for the origin ξ = 0 in (3.10)-(3.11). Moreover, a guaranteed cost must be taken into account.

The next theorem borrowed from (DEAECTO et al., 2010) provides this result.

Theorem 3.1. For the switched affine system (3.10)-(3.11), let the equilibrium point xe ∈ Xe

and its associated vector λ ∈ Λ be given. If there exists P > 0 solution to the LMI

A′
λP + AλP +Qλ ≤ 0 (3.12)

with Qi = E ′
iEi. Then, the state-dependent switching function σ(t) = u(ξ(t)) with

u(ξ) = argmin
i∈K

ξ′(2PAi +Qi)ξ + 2ξ′Pℓi (3.13)

makes the equilibrium point xe ∈ Xe globally asymptotically stable and ensures that the guar-

anteed cost

∥ze∥22 < (x0 − xe)
′P (x0 − xe) (3.14)

holds.

Proof: The proof is presented in (DEAECTO et al., 2010) but will be repeated here for conve-

nience. Considering the switching strategy (3.13) and adopting the quadratic Lyapunov function
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V (ξ) = ξ′Pξ, its time derivative along an arbitrary trajectory of the switched system (3.10)-

(3.11) leads

V̇ (ξ) = ξ̇′Pξ + ξ′P ξ̇

= ξ′(A′
σP + PAσ + E ′

σEσ)ξ + 2ξ′Pℓσ − z′eze

= min
i∈K

ξ′(A′
iP + PAi + E ′

iEi)ξ + 2ξ′Pℓi − z′eze

= min
λ∈Λ

ξ′(A′
λP + PAλ +Qλ)ξ + 2ξ′Pℓλ − z′eze

≤ ξ′(A′
λP + PAλ +Qλ)ξ + 2ξ′Pℓλ − z′eze

< −z′eze (3.15)

where the third equality comes from the switching rule (3.13), the fourth equality and the first

inequality are a consequence of the min operator, and the last inequality comes from the con-

dition (3.12) and the fact that ℓλ = 0 since xe ∈ Xe. The guaranteed cost is obtained by

integrating both sides of (3.15). The proof is concluded. □

Although this theorem presents some similarities with respect to Lemma 3.1, there are

some differences inherited from the intrinsic nature of the affine system. Indeed, the conditions

(3.5) and (3.12) are the same and do not require any stability property of the individual sub-

systems. A necessary and sufficient condition for feasibility is that Aλ be Hurwitz stable1. On

the other hand, while in Lemma 3.1 the vector λ ∈ Λ is searched to optimize the guaranteed

performance, in Theorem 3.1 it is associated to the equilibrium point xe ∈ Xe. Several other

aspects of this intriguing class of systems will be explored in the next example.

3.2 Illustrative Example

Consider the continuous-time switched affine system (3.1)-(3.2) with the matrices

A1 =

 0 1

−8 −4

, A2 =

0 1

1 0

, b1 =
−3

20

, b2 =
1
1

, E1 = E2 = I (3.16)

The equilibrium points of the first and second subsystems are, respectively

xe1 = −A−1
1 b1 =

1
3

 , xe2 = −A−1
2 b2 =

−1

−1

 (3.17)

1 It has all the eigenvalues in the open left hand side of the complex plane
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Moreover, xe1 is a stable focus and the eigenvalues of A1 are −2 ± 2i and xe2 is a saddle and

the eigenvalues of A2 are ±1.

From all the attainable equilibrium points given in (3.9) the desired one and its associated

vector λ are as follows

xe =

2.4286
1

 , λ =

0.5
0.5

 (3.18)

which does not coincide with the equilibrium points of the subsystems. Differently from the

linear case, where a trivial switching function exists when all the subsystems are stable, the actu-

ation of the switching rule in switched affine systems is essential to govern the state trajectories

to the equilibrium point xe independently of the stability of the subsystems.

Figure 3.1 shows the phase portrait of each isolated subsystem regarding the state variable

ξ = x − xe and considering initial conditions taken in the circumference of radius 10 centered

at the origin. In this these plots the equilibrium points of the first ξ1 = xe1 − xe and the second

ξ2 = xe2 − xe subsystems are indicated, respectively, by the symbols ⋄ and △.
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(a) Subsystem 1.
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(b) Subsystem 2.

Figure 3.1 – Phase portrait of the isolated subsystems

Solving the optimization problem

inf
P>0

Tr(P ) (3.19)

subject to (3.12), we have obtained

P =

1.4107 0.1429

0.1429 0.3214

 (3.20)
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which is important for the switching rule implementation (3.13). As in (DEAECTO et al.,

2010), this objective function corresponds to that of (3.14) with the vector x0 − xe assumed to

be uniformly distributed over the unit sphere. The advantage of (3.19) is to determine P > 0

only once independently of the initial conditions.

Figure 3.2 presents the phase portrait of the controlled system resulting from the actuation

of switching function (3.13). The equilibrium point ξ = 0 is represented by the symbol ◦ and

the red trajectory was highlighted to indicate that it corresponds to the plots of Figure 3.3, which

show the dynamical behavior of the system with respect to time.
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Figure 3.2 – Phase portrait of the switched system

It can be seen in Figure 3.2 that all state trajectories converge to the origin as expected.

Following the color pattern, it is easy to see when the switching rule changes the subsystem.

This always occurs at the switching surface represented by the hyperboloid in Figure 3.2, which

is the locus of the equation

ξ′
(
2P (A1 − A2) + (Q1 −Q2)

)
ξ + 2ξ′P (ℓ1 − ℓ2) = 0 (3.21)

By analyzing the red curve in the phase portrait and its evolution with respect to time

in Figure 3.3, it is clear that in two time intervals t ∈ [0.09, 2.04] [s] and t ≥ 3.079 [s] the

switching frequency is infinitely fast and the state trajectories slide on the switching surface,

assuming a dynamical behavior completely different from that of the isolated subsystems. This
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Figure 3.3 – State evolution through time

behavior is known as sliding mode and the region of the surface where it occurs is named sliding

surface. Although this phenomenon is essential to ensure asymptotic stability in switched affine

systems, it is often undesirable in mathematical models of real systems, due to the very fast

switching, that may cause excessive equipment wear, (LIBERZON, 2003). Moreover, in several

situations this high switching frequency cannot be implemented due to physical limitations. For

this reason, it is important to study cases where the switching frequency has an upper bound,

which is equivalent to impose the following constraint on the switching rule

σ(t) = σ(tn), t ∈ [tn, tn+1) (3.22)

where tn and tn+1 are two subsequent switching instants and tn+1 − tn = T > 0. Under this

constraint, asymptotic stability is impossible to be ensured. The reason is simple. If the rule is

kept constant in σ(t) = i during T seconds, the trajectory will assume the dynamical behavior

of the i-th subsystem, which is associated with the equilibrium point xei, thus diverging from

xe. This limitation of the switching frequency naturally occurs in discrete-time systems due to

the sampling period. This will be the focus of the next chapter, which is dedicated to study

stabilization of discrete-time switched affine systems.

The literature proposes two different approaches to treat switching frequency limitation.

The first is to study practical stability, where the state trajectories are governed by the switching

rule to an invariant set of attraction containing the equilibrium point of interest, see (HETEL;

FRIDMAN, 2013), (SANCHEZ et al., 2019), (DEAECTO; GEROMEL, 2017), (EGIDIO;

DEAECTO, 2019). The idea is to minimize the volume of this set in order to make the steady-

state response as near as possible of xe. A negative point is that nothing can be concluded about
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the trajectories, once they are inside the set of attraction. Moreover, the well-known H2 and

H∞ performance indexes cannot be taken into account, since they are defined only for asymp-

totically stable systems.

A recent methodology is to ensure asymptotic stability of a suitable limit-cycle. Refer-

ences (BENMILOUD et al., 2019) and (EGIDIO et al., 2020) are some examples where this

approach is adopted. Stabilization of limit cycles is the main theme of this thesis and will be

treated with details in the next chapter. Its main advantage is to ensure a suitable performance

for the steady-state and the transient responses by determining a suitable limit-cycle and impos-

ing H2 and H∞ performance indexes.

3.3 Final Considerations

In this chapter, we have presented the switched affine systems that are our focus of study

in this thesis and discussed some of their intrinsic characteristics. Sufficient conditions bor-

rowed from the literature have been provided to ensure global asymptotic stability of a desired

equilibrium point. An academical example was used to emphasize the main properties of this

class of system and show some difficulties that serve as motivation to the next chapter.
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4 STABILIZATION OF LIMIT-CYCLES

This chapter is dedicated to present the main results of this thesis, which are also available

in (DEAECTO et al., 2023) and (HIRATA et al., 2023). They consist in the control design of a

static output-dependent switching function for discrete-time switched affine systems to ensure

global asymptotic stability of a suitable limit cycle and H2 or H∞ performance indexes. The

conditions are based on a time-varying convex Lyapunov function and expressed in terms of

LMIs. These results are a generalization of reference (EGIDIO et al., 2020) that treats state

feedback control, exclusively. For the sake of comparison, we have included a guaranteed cost

in the conditions of (SERIEYE et al., 2023) to show that the technique used as basis to our

results is not more conservative than recent ones from the literature. An academical example

and a practical application concerning the voltage regulation of a DC-DC multicellular converter

are used for validation and comparison.

4.1 Problem statement

Consider a discrete-time switched affine system

x[n+ 1] = Aσ[n]x[n] + bσ[n] +Hσ[n]w[n] (4.1)

y[n] = Cσ[n]x[n] (4.2)

z[n] = Eσ[n]x[n] +Gσ[n]w[n] (4.3)

defined for all n ∈ N− = N ∪ {−1}, where x[n] ∈ Rnx is the state and w[n] ∈ Rnw is

the exogenous input, z[n] ∈ Rnz is the controlled output and y[n] ∈ Rny is the measured

output. The switching function σ[n] : N− → K selects at each instant of time one of the N

subsystems and is the unique control variable σ[n] = u(y[n]) ∈ K to be determined in order

to ensure stability and performance for the overall system. At this moment, consider that the

modulo operator is defined as d = a mod b where d is the remainder of the Euclidean division

between the integers a and b. Moreover, for a positive κ ∈ N, we define the function k(n) = n

mod κ.

The limit cycle is a periodic solution with period κ > 0 of the system

xe[n+ 1] = Aσ[n]xe[n] + bσ[n] (4.4)
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associated to a periodic switching sequence σ[n] = c[k(n)] with c = (c[0], . . . , c[κ− 1]) ∈ Kκ

and is denoted by

Xe(c)={xe[k(n)] : (4.4), n∈ N−} (4.5)

The fundamental period (xe[0], . . . , xe[κ−1]) is determined from one of the Nκ possible switch-

ing periodic sequences σ[n] = c[k(n)] chosen by the designer. This point will be further ex-

plored afterwards, but is also discussed in details in (EGIDIO et al., 2020).

Defining the auxiliary variable ξ[n] = x[n]− xe[n], we obtain the equivalent system

ξ[n+ 1] = Aσ[n]ξ[n] + ℓσ[n][n] +Hσ[n]w[n] (4.6)

ye[n] = Cσ[n]ξ[n] (4.7)

ze[n] = Eσ[n]ξ[n] +Gσ[n]w[n] (4.8)

with ℓi[n] = Aixe[n] − xe[n + 1] + bi, i ∈ K, ze[n] = z[n] − Eσ[n]xe[n] and ye[n] = y[n] −

Cσ[n]xe[n] for all n ∈ N−. Notice that ξ[n] → 0 whenever x[n] → xe[k(n)]. Hence, studying

stabilization of the equilibrium point ξ = 0 in (4.6)-(4.8) is equivalent to ensure stabilization of

the limit cycle xe[k(n)] for some c[k(n)] in (4.1)-(4.3).

Our main goal is to generalize the results of the recent reference (EGIDIO et al., 2020),

that treats exclusively state feedback control, to cope with static output feedback control of

the system (4.6)-(4.8). More specifically, the goal is to design an output-dependent switching

function σ[n] = u(y[n]) with u(y) : Rny → K in order to ensure global asymptotic stability

of the origin ξ = 0, which implies the global asymptotic stability of the limit-cycle of interest

Xe(c) in (4.1)-(4.3). Notice that the switching rule σ[n] = u(y[n]) must depend directly on the

measured output y, without considering any additional dynamic structure. Moreover, we are

interested in ensuring guaranteed H2 and H∞ performance indexes. As known in the literature,

these indexes are defined to asymptotically stable systems and cannot be calculated in case of

practical stability.

More specifically, the H2 performance index considers the system (4.6)-(4.8) with ξ[−1] =

0 and subject to w[n] = δ[n+1]er, with er being the r-th column of the identity matrix and δ[n]

the discrete-time impulse. It is defined by

J2(σ) =
nw∑
r=1

∥zer∥22 + e′rG
′
σ[−1]Gσ[−1]er (4.9)

where zer is the controlled output correspondent to the impulse applied in the r-th channel of

the external input. On the other hand, the H∞ performance index takes into account the system
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(4.6)-(4.8) evolving from ξ[0] = 0 and subject to external input w ∈ L2. It is defined as

J∞(σ) = sup
w∈L2\{0}

∥ze∥22
∥w∥22

(4.10)

See references (GEROMEL et al., 2008), (DEAECTO et al., 2013) and (EGIDIO et al., 2020)

for details about these indexes.

4.1.1 Limit Cycle Generation

Let us define the set C(κ) = Kκ with Nκ elements c = (c[0], . . . ,c[κ − 1]) ∈ C(κ) each

one associated to a limit cycle candidate Xe(c). The first κ points xe[n], n ∈ {0, . . . , κ− 1} are

obtained as a solution of the equation

A(c)xe = −b(c) (4.11)

where xe = [xe[0]
′ xe[1]

′ xe[κ− 1]′]′ and

A(c) =


Ac[0] −I 0 · · · 0

0 Ac[1] −I · · · 0
...

...
... . . . ...

−I 0 0 · · · Ac[κ−1]

 ,b(c) =


bc[0]

bc[1]
...

bc[κ−1]

 (4.12)

derived from (4.4) with σ[n] = c[k(n)] and taking into account the boundary condition xe[0] =

xe[κ]. We can conclude from the solution of the linear equation (4.11) that det(A(c)) ̸= 0

implies that the periodic sequence c = (c[0], . . . ,c[κ−1]) ∈ C(κ) generates a unique limit cycle

Xe(c) to the system.

From all the possible candidates X = {Xe(c), c ∈ C(κ)} let us consider a subset of great

interest Xs ⊂ X together with its associated set Cs(κ) ⊂ C(κ) that satisfies some criterion

defined by the designer, as for instance

Xs =

{
Xe ∈ X : max

n∈{0,··· ,κ−1}
∥Γ(xe[n]− x∗)∥∞<1

}
(4.13)

where x∗ is a reference point chosen by the designer. This criterion can be used to bound the

maximum ripple, see (EGIDIO et al., 2020) for details. The matrix Γ is given and allows to

optimize the steady-state behavior of only one or a combination of state components. Notice

that the period κ is chosen by the designer in order to obtain a non-empty set Xs. In case of

several possibilities, this choice can be made by selecting the value associated with the smaller

H2 or H∞ guaranteed cost.
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4.2 Main Results

The main results consist in the static output feedback control design ensuring an H2 and

H∞ guaranteed performance. However, due to the importance for this thesis, we will recall

some results from (EGIDIO et al., 2020) that treats state feedback control exclusively.

4.2.1 Stability and Guaranteed Cost

Let us consider the simpler switched affine system

ξ[n+ 1] = Aσ[n]ξ[n] + ℓσ[n][n] (4.14)

ye[n] = Cσ[n]ξ[n] (4.15)

ze[n] = Eσ[n]ξ[n] (4.16)

defined for all n ∈ N and evolving from an arbitrary initial condition ξ[0] = x[0]− xe[0].

4.2.1.1 State Feedback Control

At this first moment, let us consider that the state is available ye[n] = ξ[n] and recall

the state feedback control design proposed in (EGIDIO et al., 2020), which is based on the

time-varying convex Lyapunov function

V (ξ[n], n) = ξ[n]′P [n]ξ[n] (4.17)

where matrices P [n] = P [k(n)] are periodic with period κ > 0. The next theorem provides

stabilization conditions and a guaranteed cost, available in (EGIDIO et al., 2020), to the control

design of a state-dependent switching function σ[n] that uses the functional matrix

Mi[n] =

A′
iP [n+ 1]Ai − P [n] •

ℓi[n]
′P [n+ 1]Ai ℓi[n]

′P [n+ 1]ℓi[n]

 (4.18)

defined for all i ∈ K.

Theorem 4.1. Consider system (4.14)-(4.16) with Ci = I, ∀i ∈ K, the subset of limit cycles

Xs with the associated periodic sequences Cs(κ) and the period κ > 0 be given. If there exist

symmetric matrices P [n] > 0 satisfying the optimization problem

min
Xe(c)∈Xs

inf
P [n]>0

(x[0]− xe[0])
′P [0](x[0]− xe[0]) (4.19)
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subject to the linear matrix inequalities

A′
c[n]P [n+ 1]Ac[n] − P [n] + E ′

c[n]Ec[n] < 0 (4.20)

for all n ∈ {0, . . . , κ − 1}, c ∈ Cs(κ), with the boundary condition P [0] = P [κ], then the

state-dependent switching function σ[n] = u(ξ[n]) given by

u(ξ) = argmin
i∈K

ξ
1

′

Mi[k(n)]

ξ
1

 (4.21)

ensures that the limit cycle X ∗
e = Xe(c∗) solution of (4.19) is globally asymptotically stable

and

∥ze∥22 < (x[0]− xe[0])
′P [0](x[0]− xe[0]) (4.22)

is a guaranteed cost of performance.

Proof: Available in (EGIDIO et al., 2020). □

Now, let us present a recent result available in (SERIEYE et al., 2023) that treats only limit cycle

stabilization without taking into account any guaranteed cost. Unfortunately, that reference does

not make clear the contribution of the proposed state-dependent switching function with respect

to the one provided in (EGIDIO et al., 2020), available three years before. For this reason,

we have included a guaranteed cost in the conditions of (SERIEYE et al., 2023) for the sake

of comparison of both proposals. In that reference, the authors have adopted the min-type

Lyapunov function

ν(x[n]) = min
i∈{0,··· ,κ−1}

(x[n]− xe[i])
′P [i](x[n]− xe[i]) (4.23)

which is non-convex and time-invariant. Defining Li[n] as being

Li[n] = A′
iP [n+ 1]Ai − P [n] + E ′

iEi (4.24)

the next theorem proposes a guaranteed cost for the conditions of (SERIEYE et al., 2023).

Theorem 4.2. Consider system (4.1)-(4.3) with w = 0 and Ci = I, ∀i ∈ K, the subset of limit

cycles Xs with the associated periodic sequences Cs(κ) and the period κ > 0 be given. If there

exist symmetric matrices P [n] > 0 satisfying the optimization problem

min
Xe(c)∈Xs

min
i∈{0,··· ,κ−1}

inf
P [i]>0

(x[0]− xe[i])
′P [i](x[0]− xe[i]) (4.25)
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subject to the linear matrix inequalities (4.20) for all n ∈ {0, . . . , κ − 1}, c ∈ Cs(κ), with the

boundary condition P [0] = P [κ], then the state-dependent switching function σ[n] = u(x[n])

given by

u(x) =

{
c[θ], θ = arg min

i∈{0,··· ,κ−1}
(x− xe[i])

′P [i](x− xe[i])

}
(4.26)

ensures that the limit cycle X ∗
e = Xe(c∗) solution of (4.25) is globally asymptotically stable

and

∥ze∥22 < min
i∈{0,κ−1}

(x[0]− xe[i])
′P [i](x[0]− xe[i]) (4.27)

is a guaranteed cost of performance.

Proof: Consider an arbitrary trajectory of (4.1)-(4.3) and define ∆ν(x[n]) = ν(x[n + 1]) −

ν(x[n]), Kθ = {0, · · · , κ − 1}. The Lyapunov function (4.23) and the associated switching

function (4.26) provide

∆ν(x) = min
i∈Kθ

(x[n+ 1]− xe[i])
′P [i](x[n+ 1]− xe[i])− (x[n]− xe[θ])

′P [θ](x[n]− xe[θ])

≤ (x[n]− xe[θ])
′Lc[θ][θ](x[n]− xe[θ])− ze[n]

′ze[n]

< −ze[n]
′ze[n] (4.28)

Defining ζ[n, θ] = x[n]− xe[θ], the first inequality comes from the fact that

ν(x[n+ 1]) = min
i∈Kθ

(x[n+ 1]− xe[i])
′P [i](x[n+ 1]− xe[i])

≤ ζ[n+ 1, θ + 1]′P [θ + 1]ζ[n+ 1, θ + 1]

= ζ[n, θ]Ac[θ]P [θ + 1]Ac[θ]ζ[n, θ] (4.29)

where the inequality in (4.29) is a consequence of the minimum operator and the equality is a

consequence from the fact that x[n+1] = Ac[θ]x[n]+ bc[θ], due to the switching function (4.26),

and xe[θ + 1] = Ac[θ]xe[θ] + bc[θ]. The last inequality from (4.28) comes from the validity of

(4.20). Now summing both sides of (4.28) for all n ∈ N we have that ∥ze∥22 < ν(x[0]) which

concludes the proof of the theorem. □

Although both theorems present different switching functions (4.21) and (4.26), respec-

tively, they are based on the same sufficient conditions (4.20). Concerning the guaranteed cost,

notice that if a periodic sequence c∗ ∈ Cs is associated to the limit-cycle Xe(c∗) that respects

the criterion (4.13), then all the shifted sequences of c∗ also belong to the set Cs(κ), because
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the condition (4.13) is associated to distance among points xe[n] and x∗, without any require-

ment on the temporal sequence. Hence, in this case, the guaranteed costs (4.19) and (4.20)

are also identical. Concerning the switching functions (4.21) and (4.26), they can have advan-

tages or disadvantages depending on the application, since they are not comparable in terms

of conservatism. Moreover, notice that at each instant of time, (4.21) can choose any available

subsystem i ∈ K, while (4.26) can only select the subsystems that compose the associated pe-

riodic sequence c = (c[0], · · · , c[κ− 1]) ∈ Cs. In addition, it seems not trivial to generalize the

state-feedback results to cope with output feedback control design adopting switching rule of

(SERIEYE et al., 2023), but it could be done with the switching rule of (EGIDIO et al., 2020),

as it will be clear in the sequel.

4.2.1.2 Output Feedback Control

At this moment, let us suppose that the state is not available for feedback and generalize

the conditions of Theorem 4.1 to the control design of σ[n] = u(y[n]). The next theorem

provides this result.

Theorem 4.3. Consider system (4.14)-(4.16) with Ci = I, ∀i ∈ K, the subset of limit cycles

Xs with the associated periodic sequences Cs(κ) and the period κ > 0 be given. If there exist

symmetric matrices P [n] > 0, Ri[n] and U [n] forming the solution set Ψ of the optimization

problem

min
Xe(c)∈Xs

inf
Ψ
(x[0]− xe[0])

′P [0](x[0]− xe[0]) (4.30)

subject to the linear matrix inequalities

Li[n] < U [n] + C ′
iRi[n]Ci (4.31)

U [n] + C ′
c[n]Rc[n][n]Cc[n] < 0 (4.32)

for all i ∈ K, n ∈ {0, . . . , κ − 1}, c ∈ Cs(κ), with the boundary condition P [0] = P [κ], then

the output-dependent switching function σ[n] = u(y[n]) given by

u(y)=argmin
i∈K

 ye[n]

ℓi[k(n)]

′Ri[k(n)] •

Si[k(n)] Wi[k(n)]

 ye[n]

ℓi[k(n)]

 (4.33)

with matrices

Si[n] = P [n+ 1]AiC
′
i(CiC

′
i)

−1 (4.34)
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Wi[n] = P [n+ 1]− Ji[n]Si[n]
−1Ji[n]

′ + εI (4.35)

with ε > 0 arbitrarily small, Si[n] = Li[n]−U [n]−C ′
iRi[n]Ci < 0 and Ji[n] = P [n+1]Ai −

Si[n]Ci, ensures that the limit cycle X ∗
e = Xe(c∗) solution of (4.30) is globally asymptotically

stable and

∥ze∥22 < (x[0]− xe[0])
′P [0](x[0]− xe[0]) (4.36)

is a guaranteed cost of performance.

Proof: Consider system (4.14)-(4.16), denote ξ[n] = ξ, σ[n] = σ and ℓi[n] = ℓi and define the

difference operator ∆V = V (ξ[n + 1], n + 1) − V (ξ[n], n) of the Lyapunov function (4.17),

which for an arbitrary trajectory provides

∆V =

 ξ

ℓσ

′  Lσ[n] •

P [n+ 1]Aσ P [n+ 1]

 ξ

ℓσ

−z′eze

<

 ξ

ℓσ

′U [n] + C ′
σRσ[n]Cσ •

Sσ[n]Cσ Wσ[n]

 ξ

ℓσ

−z′eze

= min
i∈K

ξ
ℓi

′U [n] + C ′
iRi[n]Ci •

Si[n]Ci Wi[n]

ξ
ℓi

−z′eze
≤ ξ′(U [n] + C ′

c[n]Rc[n][n]Cc[n])ξ−z′eze

<−z′eze (4.37)

In (4.37), the first inequality is valid whenever Li[n] •

P [n+ 1]Ai P [n+ 1]

 <

U [n] + C ′
iRi[n]Ci •

Si[n]Ci Wi[n]

 (4.38)

is verified for all i ∈ K and n ∈ {0, · · · , κ − 1}. Choosing Si[n] as in (4.34), which is

the solution that minimizes the quadratic error norm ∥Ji[n]∥, we have that Ji[n] and Si[n] are

completely known from the solution of (4.31) and (4.32). Hence, taking into account that (4.38)

can be rewritten as Si[n] •

Ji[n] P [n+ 1]−Wi[n]

 < 0 (4.39)

and performing the Schur Complement with respect to Si[n] < 0 we conclude that Wi[n] chosen

as in (4.35) ensures that inequalities (4.38) are indeed verified for all i ∈ K. The second equality

in (4.37) comes from the switching function (4.33) and the second and third inequalities are
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consequences of the fact that ℓc[n][n] = 0 and that (4.32) holds, respectively. From the periodic

continuation P [n] = P [k(n)] we have that ∆V < −z′eze for all n ∈ N, which summing from

n = 0 up to infinity, provides ∥ze∥22 < v(ξ[0], 0), concluding thus the proof. □

This theorem provides sufficient conditions expressed as the solution of a finite set of convex

subproblems described in terms of LMIs for the control design of a static output feedback

switching function that ensures a upper bound for ∥ze∥22. Differently from the state feedback

case available in (EGIDIO et al., 2020), the actual cost obtained from the periodic switching

function σ[n] = c[k(n)] does not coincide with the right hand side of (4.36). This occurs due

to the structure imposed in the design conditions to make the switching function dependent

only on the measured output y ∈ Rny . Notice that the same strategy here adopted cannot be

applied to the switching function (4.26) of Theorem 4.2 because the limit cycle xe[0] depends

on the rule through θ and impose an structure on P [i] generally makes the solution extremely

conservative.

A remark of great importance about this theorem concerns the matrices Ri[n] when i ̸=

c[n]. Notice in (4.31)-(4.32) that these matrices can be anyone great enough to satisfy (4.31)

and that Ri[n] = αI with α → ∞ is always a feasible solution. However, with this choice the

switching function is always the periodic one σ[n] = c[k(n)] and the advantages of the closed-

loop control obtained with the min-type switching function are lost. Hence, a suitable choice is

crucial to enhance the actual performance. A good alternative is to choose Ri[n], i ̸= c[n] as

near as possible the bound of feasibility of (4.32) as presented in the next corollary borrowed

from (DAIHA; DEAECTO, 2021) that treats the control of switched linear systems.

Corollary 4.1. Assume there exists a solution for the optimization problem of Theorem 4.1, take

matrices P [n], U [n] and define Γ1i = C ′
i(CiC

′
i)

−1, Γ2i = N (Ci) and

Qi[n] = A′
iP [n+ 1]Ai − P [n] + E ′

iEi − U [n] (4.40)

for all i ∈ K and n ∈ {0, · · · , κ− 1}. Then, for ε > 0 arbitrarily small, the output-dependent

switching rule (4.33) is an asymptotically stabilizing switching function for matrices Ri[n] de-

termined as follows:

• For i ̸= c[n]

Ri[n] = Q1i −Q′
2iQ

−1
3i Q2i + εI (4.41)
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with Q1i = Γ′
1iQi[n]Γ1i, Q2i = Γ′

2iQi[n]Γ1i, Q3i = Γ′
2iQi[n]Γ2i < 0 when dim(N (Ci)) ̸=

0 or

Ri[n] = C ′−1
i Qi[n]C

−1
i + εI (4.42)

otherwise.

• For i = c[n], adopt the solution of Theorem 4.3.

Proof: Available in (DAIHA; DEAECTO, 2021). □

As it will be illustrated in the examples, this choice can reduce considerably the actual cost

compared to one resulting from the periodic sequence σ[n] = c[k(n)].

4.2.1.3 Academical Example

In this section, let us consider the continuous-time switched affine system defined in (AL-

BEA; SEURET, 2021) by the matrices

Ao1 =

0 0.5

0 −1

, Ao2 =

0.1 0

−1 −1

, Ao3 =

 0 1

−1 0

,

bo1 =

 1

0.5

, bo2 =
 −1

−0.5

 e bo3 =

0
2


A discretized model was obtained by making

Ai = eAoiT , bi =

∫ T

0

eAoiτ dτ boi (4.43)

with T = 0.1 seconds. We have considered an initial condition x[0] = [10 − 10]′ and solved

the conditions of Theorem 4.1 and 4.2 that suppose that the state is available for feedback with

Ci = I, i ∈ K and the conditions of Theorem 4.3 associated with Corollary 4.1 with

Ci =
[
0 1

]
, i ∈ K (4.44)

which indicates that the second state is not available for measurement.

Our main goal is to ensure global asymptotic stability of a limit-cycle satisfying a max-

imum ripple of 0.5 with respect to the reference point x∗ = [2 0]′. This is obtained when the

constraint (4.13) is satisfied with Γ = 2I . For a period of κ = 6, we have obtained 106 limit

cycle candidates that compose the set Xs.
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Figure 4.1 – State trajectories for the switching function of Theorem 4.1 proposed in (EGIDIO
et al., 2020), Theorem 4.2 based on (SERIEYE et al., 2023) and for Theorem 4.3.

As expected, the solutions of Theorems 4.1 and 4.2 have provided the same guaranteed

cost ∥ze∥22 < 2290.07, but different actual costs ∥ze∥22 = 1518.74 and ∥ze∥22 = 1617.78, respec-

tively. As already discussed before, it is not possible to conclude which switching rule is better,

since for another initial condition x[0] we could obtain a different conclusion. These solutions

are associated to the periodic sequence c = (1 1 3 3 3 2) correspondent to the limit cycle

X ∗
e (c) given by 1.7964 1.8759 1.9598 1.9318 1.9044 1.8780

−0.4559 −0.3650 −0.2827 −0.2772 −0.2690 −0.2581


For the same set Xs, we have solved the conditions of Theorem 4.3 together with Corollary

4.1 obtaining the costs ∥ze∥22 = 3565.60 < 154391.64 associated to the periodic sequence

c = (1 3 3 1 3 3) and to the limit cycle X ∗
e (c) given by 2.4076 2.4877 2.4499 2.4076 2.4877 2.4499

−0.4440 −0.3542 −0.4011 −0.4440 −0.3542 −0.4011


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Figure 4.2 – Phase portrait considering the conditions of Theorem 4.3.

Figure 4.1 provides the state trajectories for the three studied switching strategies. For

all of them the asymptotic stability of the desired limit cycle was successfully ensured. Figure

4.2 presents the phase portrait of the state trajectories for the conditions of Theorem 4.3. This

example showed the validity and efficiency of the proposed theory. Moreover, it was important

to make clear that the conditions we have used as basis of generalization provided in (EGIDIO

et al., 2020) is not more conservative than the more recent strategy proposed in (SERIEYE et

al., 2023).

4.2.2 H2 and H∞ control design

At this point, let us generalize the conditions of Theorem 4.3 to cope with H2 and H∞

control design. To cope with the H2 control, it is important to notice that the system (4.6)-(4.8)

evolving from ξ[−1] = 0 and perturbed by an impulsive external input w[n] = δ[n+ 1]er, with

er being the r-th column of the identity matrix, can be equivalently rewritten as

ξ[n+ 1] = Aσξ[n] + ℓσ[n], ξ[0] = ℓm[−1] +Hmer (4.45)

ye[n] = Cσξ[n] (4.46)

zer[n] = Eσξ[n] (4.47)

defined for all n ∈ N with σ[−1] = m, where zer is the controlled output associated to an

impulse applied in the r-th channel. The next corollary presents the conditions for the H2

control.
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Corollary 4.2. Consider system (4.45)-(4.46). The conditions of Theorem 4.3 remains valid if

the objective function (4.30) is replaced by

min
Xe(c)∈Xs

inf
Ψ

Tr ((Lm +Hm)
′P [0](Lm +Hm)) (4.48)

with Lm = [ℓm[−1] · · · ℓm[−1]] ∈ Rnx×nw with σ[−1] = m. In this case, the switching function

σ[n] = u(y[n]) with u[y] given in (4.33) ensures that the limit cycle X ∗
e = Xe(c∗) solution of

(4.48) is globally asymptotically stable and the upper bound

J2(σ) < Tr ((Lm +Hm)
′P [0](Lm +Hm) +G′

mGm) (4.49)

is valid.

Proof: From the validity of Theorem 4.3 we have that the global asymptotic stability is ensured

and that ∆V < −z′erzer ,∀n ∈ N. Summing both sides of this inequality from n = 0 up to

infinite, we obtain ∥zer∥22 < v(ξ[0], 0) with ξ[0] = ℓm[−1] +Hmer. From the H2 performance

index defined in (4.9), we have

J2(σ) =
nw∑
r=1

∥zer∥22 + e′rG
′
mGmer

<
nw∑
r=1

ξ[0]′P [0]ξ[0] + e′rG
′
mGmer

= Tr ((Lm +Hm)
′P [0](Lm +Hm) +G′

mGm) (4.50)

concluding thus the proof. □

Notice that σ[−1] = m can be chosen by the designer or can be optimized to obtain the smaller

H2 guaranteed cost.

Turning our attention to the H∞ control design let us consider the system (4.6)-(4.8)

evolving from ξ[0] = 0 and subject to an external input w ∈ L2. The next theorem provides the

main result.

Corollary 4.3. Consider system (4.6)-(4.8) evolving from ξ[0] = 0 and with w ∈ L2. Let the

positive scalar κ ∈ N, and the subset of limit cycles Xs with the associated periodic sequences

Cs(κ) be given. If there exist symmetric matrices P [n] > 0, Ri[n], U [n] and a scalar ρ > 0

forming the solution set Ψ of the optimization problem

min
Xe(c)∈Xs

inf
Ψ

ρ (4.51)
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subject to the linear matrix inequalities
P [n]+U [n]+C ′

iRi[n]Ci • • •

0 ρI • •

P [n+1]Ai P [n+1]Hi P [n+1] •

Ei Gi 0 I

>0 (4.52)

U [n] + C ′
c[n]Rc[n][n]Cc[n] < 0 (4.53)

for all i ∈ K, n ∈ {0, . . . , κ − 1}, c ∈ Cs(κ), with the boundary condition P [0] = P [κ], then

the output-dependent switching function σ[n] = u(y[n]) given by (4.33) with matrices

Si[n]=(P [n+ 1]Ai−Ni[n]
′Ξi[n]

−1Mi[n])C
′
i(CiC

′
i)

−1 (4.54)

Wi[n] = P [n+ 1]−Ni[n]
′Ξi[n]

−1Ni[n]− Ji[n]Si[n]
−1Ji[n]

′ + εI (4.55)

with ε > 0 arbitrarily small, where

Ξi[n] = H ′
iP [n+ 1]Hi +G′

iGi − ρI (4.56)

Mi[n] = H ′
iP [n+ 1]Ai +G′

iEi (4.57)

Ni[n] = H ′
iP [n+ 1] (4.58)

Si[n]=Li[n]−Mi[n]
′Ξi[n]

−1Mi[n]−U [n]− C ′
iRi[n]Ci (4.59)

Ji[n]=P [n+ 1]Ai −Ni[n]
′Ξi[n]

−1Mi[n]− Si[n]Ci (4.60)

and Li[n] defined in (4.24), ensures that the limit cycle X ∗
e = Xe(c∗) solution of (4.51) is

globally asymptotically stable and the upper bound J∞(σ) < ρ is valid.

Proof: Consider system (4.6)-(4.8), denote ξ[n] = ξ, σ[n] = σ, ℓi[n] = ℓi and w[n] = w, and

define

F̃i[n]=


Li[n] • •

ℓ′iP [n+ 1]Ai ℓ′iP [n+ 1]ℓi •

Mi[n] Ni[n]ℓi Ξi[n]


with Li[n] given in (4.24), as well as the augmented state variable ξ̃ = [ξ′ 1 w′]′. Adopting the

Lyapunov function (4.17), we have, within the time interval n ∈ {0, · · · , κ− 1}, the following



53

developments

∆V (ξ, n)= ξ̃′F̃σ[n]ξ̃ − z′eze + ρw′w

≤

ξ
ℓσ

′

Fσ[n]

ξ
ℓσ

− z′eze + ρw′w

<

ξ
ℓσ

′U [n]+C ′
σRσ[n]Cσ •

Sσ[n]Cσ Wσ[n]

ξ
ℓσ

−z′eze+ρw′w

=min
i∈K

ξ
ℓi

′U [n]+C ′
iRi[n]Ci •

Si[n]Ci Wi[n]

ξ
ℓi

−z′eze+ρw′w

≤ξ′(U [n] + C ′
c[n]Rc[n][n]Cc[n])ξ−z′eze+ρw′w

<−z′eze + ρw′w (4.61)

where

Fi[n]=

 Li[n] •

P [n+ 1]Ai P [n+ 1]

−
Mi[n]

′

Ni[n]
′

Ξi[n]
−1

Mi[n]
′

Ni[n]
′

′

The first inequality is due to the fact that the function fi(ξ, w) = ξ̃′F̃i[n]ξ̃ is concave with

respect to w because (4.52) ensures that Ξi[n] < 0 for all i ∈ K. This can be verified by

performing the Schur Complement with respect to the two last rows and columns and observing

the second main diagonal. Hence, it is possible to determine supw∈L2
fi(ξ, w) which occurs for

w∗[n] = −Ξσ[n]
−1 (Mσ[n]ξ[n] +Nσ[n]ℓσ[n]) (4.62)

Then, replacing (4.62) into fσ(ξ, w) and rearranging, we obtain the expression in the right hand

side of the first inequality of (4.61). The second inequality holds whenever

Fi[n] <

U [n] + C ′
iRi[n]Ci •

Si[n]Ci Wi[n]

 (4.63)

for all i ∈ K. Notice that Si[n] given in (4.59) is the solution that minimizes the quadratic error

norm ∥Ji[n]∥ and Ji[n] appears in the block (2,1) of (4.63). Moreover, performing the Schur

Complement, it is possible to conclude that (4.52) ensures that Si[n] < 0, which appears in the

first diagonal block of (4.63). With Ji[n] and Si[n] completely known and taking into account

that (4.63) can be rewritten asSi[n] •

Ji[n] P [n+ 1]−Ni[n]
′Ξi[n]

−1Ni[n]−Wi[n]

 < 0 (4.64)
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Figure 4.3 – Schema of a three-cell converter.

performing the Schur Complement with respect to Si[n] < 0, we conclude that Wi[n] chosen

as in (4.55) ensures that inequalities (4.63) are indeed verified for all i ∈ K. The second

equality comes from the switching function σ[n] = u(y[n]) defined in (4.33) and the third and

fourth inequalities are consequences of the fact that ℓc[n] = 0 since Xe(c) ∈ Xs and that the

inequalities (4.53) are feasible, respectively. The periodic continuation P [n] = P [k(n)] assures

that ∆V (ξ, n) < −z′eze + ρw′w for all n ∈ N. Summing both sides of this inequality from

n = 0 up to infinity, and recalling that V (ξ, 0) = 0 since ξ[0] = 0 and limn→∞ V (ξ, n) = 0 as a

consequence of the asymptotic stability of the origin ξ = 0, we obtain

∥ze∥22 − ρ∥w∥22 < 0 (4.65)

which ensures the validity of the H∞ guaranteed cost. □

The same remark presented after Theorem 4.3 is valid here. Matrices Ri[n] in (4.52) are re-

stricted only for i = c[n] by means of (4.53). When i ̸= c[n] they can be anyone great enough

to satisfy (4.52). Hence, an alternative is to adopt Corollary 4.1 replacing Qi[n] given in (4.40)

by

Qi[n]=Li[n]−Mi[n]
′Ξi[n]

−1Mi[n]−U [n] (4.66)

to determine Ri[n] for i ̸= c[n] as close as possible the bound of feasibility of (4.52). The next

practical application illustrates the main features of the proposed theory.

4.3 Practical Application

This example was borrowed from (BENMILOUD et al., 2019) and adopted also in (EGIDIO

et al., 2020). It consists of a three cells converter as depicted in Figure 4.3 where the control
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signal is uk = 1 (uk = 0) indicating that the upper switch sk is closed (open) and the correspon-

dent lower switch is open (closed). Table 4.1 shows the N = 8 operation modes resulting from

the combinations of {u1, u2, u3}.

Defining the state variable as x(t) = [v1(t) v2(t) io(t)]
′ the continuous-time model is

given by

ẋ(t) = Aoσ(t)x(t) + boσ(t) +Hoσ(t)w(t) (4.67)

zc(t) = Eoσ(t)x(t) +Goσ(t)w(t) (4.68)

with matrices

Aoi =


0 0 u2−u1

C1

0 0 u3−u2

C2

u1−u2

L
u2−u3

L
−R
L

, boi =


0

0

Vdcu3

L

 (4.69)

Eoi = diag([1 1 1]) and Goi = [0 0 0]′ for all i ∈ K. The system parameters are the

same as in the mentioned references: Vdc = 60 [V], C1 = C2 = 40 [µF ], L = 5 [mH], and

R = 20 [Ω]. As in (EGIDIO et al., 2020), it is considered that σ(t) = σ(tn), ∀t ∈ [tn, tn+1)

with tn+1 − tn = T with T = 0.1 ms being the sampling period. A discrete-time model as in

(4.1)-(4.3) was obtained using the following discretization procedureAi Bi

0 I

= eAiT,

E ′
i

F ′
i

E ′
i

F ′
i

′

=

∫ T

0

eA
′
itC ′

iCieAitdt (4.70)

with

Ai =

Aoi Boi

0 0

 , Ci = [Eoi Foi]

of (SOUZA et al., 2014). The pairs (Bi, Fi) and (Boi, Foi) are defined according to the H2

or H∞ performance index. In our context, it is supposed that only the voltages v1 and v2 are

measured, leading to

Ci =

1 0 0

0 1 0

 (4.71)

for all i ∈ K in the output (4.2). As in (EGIDIO et al., 2020), the candidate limit cycles must

satisfy (4.13) with Γ = diag(0.5, 0.5, 0) and x∗ = [20 40 Iref ]
′ [A] with Iref ∈ [0, 3] which

leads to 30 candidates.

H2 control: In this case Hi = −xe[0] and σ[−1] = c[κ − 1] in order to make x[0] = 0

representing the system start-up. The discretization is performed with Boi = [boi 0] and Foi =
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Table 4.1 – Control signal ui for each mode i

i 1 2 3 4 5 6 7 8
u1 0 1 0 1 0 1 0 1
u2 0 0 1 1 0 0 1 1
u3 0 0 0 0 1 1 1 1

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
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Figure 4.4 – State trajectories for H2 control design.

[0 Goi] providing, besides Ai and Ei, the matrices Bi = [bi 0] and Fi = [di Gi] in (4.70). Notice

that the discrete-time controlled output of this form is za[n] = Eσx[n] + dσ + Gσw[n] and we

redefine z[n] = za[n]−dσ. Solving the optimization problem of Corollary 4.2 we have obtained

a guaranteed cost of J2(σ) < 75.6657 associated to the sequence c = (5, 1, 3, 1, 2, 1), the same

of (EGIDIO et al., 2020). Implementing the switching function (4.33) with matrices Ri[n]

determined from Corollary 4.1 with ε = 10−4, which is the same adopted in (4.35), we have

obtained a non-periodic switching rule which has provided an actual cost of J2(σ) = 5.8967

and the state trajectories of Figure 4.4. Figure 4.5 presents the corresponding phase portrait. If

the periodic switching function σ[n] = c[k(n)] is adopted, the state trajectories reach the limit

cycle in a time interval 10 times greater and the associated actual cost is J2(σ) = 37.7900.

Moreover, the state trajectories of (v1[n],v2[n],io[n]) have a peak value of (26.5189 [V], 42.7869

[V], 1.0875 [A]) indicating overshoot in the two voltages, which is not observed in Figure 4.4.

H∞ control: As in (EGIDIO et al., 2020), the continuous-time matrices Hci = [0 0 u3/L]
′

are used to model w(t) as a deviation of the input voltage around Vdc. We have discretized the
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Figure 4.5 – State trajectories converging to the limit cycle X ∗
e .
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Figure 4.6 – State trajectories for H∞ control design.

system using (4.70) with Boi = [boi Hoi] and Foi = [0 Goi] providing, besides Ai and Ei,

the matrices Bi = [bi Hi] and Fi = [di Gi]. Solving the conditions of Corollary 4.3 we have

obtained a guaranteed cost of J∞ < 0.0012 associated to the sequence c = (5, 1, 2, 1, 3, 1)

which is different from the one obtained in (EGIDIO et al., 2020). Implementing the switching

function (4.33) with Ri[n] determined from Corollary 4.1 taking into account (4.41) with ε =

10−4 adopted also in (4.55) and adopting
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w[n] =


10 sin(120πTn), n ∈ [0.1/T, 0.2/T )

−20, n ∈ [0.3/T, 0.4/T )

0, otherwise

(4.72)

we have obtained the state trajectories of Figure 4.6 for the system evolving from x[0] = xe[0].

Notice that the asymptotic stability is preserved always after the perturbation. Moreover, the

presented figures illustrated the validity and the efficiency of the proposed theory.

4.4 Final Considerations

Throughout this chapter, sufficient LMI conditions derived from a time-varying convex

Lyapunov function were obtained to the design of a static output-dependent switching function

for discrete-time switched affine systems. As preliminary result, we have included a guaranteed

cost in a recent work from the literature (SERIEYE et al., 2023) and compared with the results

of (EGIDIO et al., 2020) showing that the conditions we adopted as basis for generalization

is not more conservative. The obtained output feedback conditions ensures global asymptotic

stability of a suitable limit-cycle and H2 and H∞ performance indexes. Hence, the designer

is able to control suitably the transient and steady-state responses of the system even when

the state is not available. A practical application example illustrated the main features of the

proposed methodology.
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5 CONCLUSION

The study of static output feedback control design of discrete-time switched affine sys-

tems was motivated by the interesting properties of this class of systems and by the relevance

of considering more realistic practical situations. Among them, the physical limitations of

real-world systems, which impose constraints on the switching frequency, and the fact that,

generally, not all states are available for measurement.

In this context, we have treated asymptotic stability of suitable limit cycles, as a man-

ner to deal with switching frequency limitation, which makes impossible to ensure asymptotic

stability of an equilibrium point. The desired limit cycle is determined by the designer and

must satisfy some criterion associated with the steady-state response, for example, the maxi-

mum allowed ripple. Afterwards, based on a convex time-varying Lyapunov function, we have

obtained sufficient conditions expressed in terms of LMIs, to the design of an output-dependent

switching function that ensures global asymptotic stability of the desired limit cycle and H2 and

H∞ guaranteed performance indexes. This represents an advantage with respect to other ap-

proaches from the literature that take into account practical stability, because allows to ensure

an adequate performance for the steady-state and transient responses. In the practical stability

approach nothing can be stated about the steady-state behavior and the H2 and H∞ performance

indexes cannot be considered, since they are defined exclusively for asymptotic stable systems.

A practical application example concerning a three-cell DC-DC converter was used to illustrate

these results.

Also in this work, we have included a guaranteed performance cost in the recent refer-

ence (SERIEYE et al., 2023) that treated only stability to compare their results with the ones

proposed in (EGIDIO et al., 2020), that have been used as basis for generalization to obtain our

output feedback sufficient conditions. Both techniques provided the same guaranteed cost, and

are not comparable in terms of actual performance. This result was illustrated by an academic

example.

As perspectives for future works, a natural step is the generalization of these results to

treat asymptotic stability of limit cycles and H2 and H∞ guaranteed performance indexes for

switched affine systems in the continuous-time domain. Also, in this context, an important topic

to be dealt with is to treat robust control when the model is affected by parametric uncertainties.
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