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Resumo

Redes neurais profundas são uma ferramenta poderosa para o diagnóstico assistido por
computador, especialmente no campo das imagens médicas. Pesquisas recentes têm procu-
rado este mesmo sucesso com dados tabulares, um campo dominado por algoritmos basea-
dos em árvores de decisão, como o Random Forest e o XGBoost. A TabNet é uma arquite-
tura de rede neural profunda que obteve resultados melhores ou pelo menos similares a
estes algoritmos. No entanto, a adoção destes algoritmos avançados na medicina tem sido
tardia, devido a serem "caixas pretas". Como médicos irão confiar em uma predição se
eles não sabem com base em que essa predição foi feita? E como eles saberão se os modelos
não estão apenas escolhendo aleatoriamente uma predição, se os tais não tem nenhuma
indicação disso? Aqui, demonstramos que médicos e cientistas de dados podem obter
uma luz quanto à confiabilidade das predições pela combinação de interpretabilidade com
opção de rejeição. Eles também poderão saber com base em quais atributos um modelo
tomou uma dada decisão. Utilizando-se de dois dataset médicos, o conhecido Framingham
Heart Study (FHS) e o Myocardial ISchemIa prognostic EValuation AngioCardio-Clarity
(MI-SIEVE ACC) criado por este trabalho e que contém dados reais de clínicas e hos-
pitais do Brasil, pudemos predizer eventos cardiovasculares adversos, da sigla em inglês
MACE, com melhores resultados utilizando nossa abordagem TabNet+SAT (TabNet com
opção de rejeição) quando comparado aos algoritmos tradicionais como Random Forest
e XGBoost, e ganhos de até 5 pontos percentuais para o FHS e 2 pontos percentuais
para o MI-SIEVE ACC, utilizando opção de rejeição. Nossa abordagem possibilita aos
especialistas de domínio a interpretação tanto global quanto local da predição ou rejeição,
feature a feature. A capacidade intrínseca de interpretação da TabNet é usada para se
dizer porque um modelo está fazendo uma determinada predição, enquanto que a opção
de rejeição integrada diz se uma predição deve ser considerada confiável ou rejeitada.
Finalmente, demonstramos que nossa abordagem possibilita o emprego do aprendizado
profundo para a substituição de calculadoras de risco cardiovascular tradicionais.



Abstract

Deep Neural Networks are a powerful tool for computer-aided diagnosis, especially in
medical imaging. Recent research is also trying to succeed with tabular data, a field dom-
inated by tree-based algorithms such as Decision Trees, Random Forests, and XGBoost.
TabNet is a deep tabular data learning architecture that has achieved at least similar
results to those algorithms. However, adopting such advanced algorithms in medicine is
delayed because they are “black boxes”. How will medical doctors trust a prediction they
do not know the basis of, and how will they know when the models are guessing if the
algorithms are not telling it? Here, we show that data scientists and physicians can have
a great insight into whether the prediction is reliable by combining interpretability with
the rejection option. They can also know based on which features the model decision was
made. Using two medical datasets, the well-known Framingham Heart Study (FHS) and
our Myocardial ISchemIa prognostic EValuation AngioCardio-Clarity (MI-SIEVE ACC)
real-world dataset collected from hospitals and clinics in Brazil, major adverse cardio-
vascular events could be predicted with higher results using our approach (TabNet with
rejection option) than traditional Random Forest and XGBoost, with gains up to 5% for
FHS and 2% for the MI-SIEVE ACC dataset. Our approach enables domain specialists
to interpret both global and instance-based model prediction or rejection, feature-wise.
The interpretability capability of TabNet is used to give light on why the model is making
such a prediction, while the integrated rejection option gives when a prediction should be
considered or rejected. Finally, we demonstrate that this approach could be an enabler
in using deep learning to replace legacy cardiovascular risk calculators.
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Chapter 1

Introduction

1.1 Motivation

Cardiovascular diseases are the first cause of death in the world [51, 70, 73]. In 2019,
according to the European Society of Cardiology (ESC), within the countries that are
a member of the ESC, there were 2,2 millions of deaths among women and 1,9 million
deaths among men. In Brazil, in the year of 2017, the Brazilian Society of Cardiology
(SBC) [51] reported 388 thousand deaths. This corresponds to 27% of deaths in the
country in a year. The SBC even created a web portal1 to increase the awareness of the
Brazilian population. The portal states that cardiovascular disease causes 1,100 deaths
per day, double the deaths caused by cancer, 2.3 times more than accidents and violence,
and 6.5 times all infectious diseases. For comparison, in Brazil, the highest number of
deaths on a single day (8th of April 2021) due to Covid-19 was 4,2492.

To mitigate this problem and help on medical decisions, one powerful and widely used
tool is the heart disease risk calculator. Its objective is to calculate the probability or risk
of one or more Major Adverse Cardiovascular Events (MACE) such as heart failure, non-
fatal re-infarction, recurrent angina pain, re-hospitalization, repeat percutaneous coronary
intervention, coronary artery bypass grafting, and all-cause mortality [55]. When the risk
is correctly assessed, preventive and therapeutic measures can be taken to avoid or delay
such deaths. This is done by following medical society guidelines establishing thresholds
of those risk scores above which there is a recommendation for intervention3.

The mostly used calculators by the medical community are TIMI (Thrombolysis In
Myocardial Infarction) [6], TIMI-50 [11], and GRACE 2.0 (Global Registry of Acute Coro-
nary Events) [26]. They are the result of statistical analysis of clinical and observational
trials. TIMI risk calculator was obtained by analyzing data of 7,081 patients using mul-
tivariate logistic regression [16]. TIMI-50 was obtained by analyzing the data of 26,449
patients using Cox’s method [15]. GRACE 2.0 was obtained by analyzing the data of
11,389 patients using stepwise multiple logistic analysis [59].

Although clinical and observational trials present great success, there is still tremen-
1https://www.cardiometro.com.br
2https://infoms.saude.gov.br/extensions/covid-19_html/covid-19_html.html
3https://www.emergenciausp.com.br/novidades-da-diretriz-de-intervencao-coronaria-pe

rcutanea-sbhci-sbc-para-o-emergencista

https://www.cardiometro.com.br
https://infoms.saude.gov.br/extensions/covid-19_html/covid-19_html.html
https://www.emergenciausp.com.br/novidades-da-diretriz-de-intervencao-coronaria-percutanea-sbhci-sbc-para-o-emergencista
https://www.emergenciausp.com.br/novidades-da-diretriz-de-intervencao-coronaria-percutanea-sbhci-sbc-para-o-emergencista
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dous unexplored potential in medical data due to the amount of information collected
daily on hospitals and clinics for legal and administrative purposes. This data can con-
tain valuable information and scientific knowledge not covered by the clinical trials and
could be used to obtain newer and better risk calculators.

In recent years, with an ever-growing computational power, the advent of learning al-
gorithms, and public access to a huge amount of data, several advances have been achieved
in different areas, such as image classification, automatic text translation, search engines,
and recommendation systems. Following that trend, medical doctors and researchers have
strived to make medical data available and apply machine-learning techniques to obtain
models that learn with data. An example of this trend is the several medical challenges
hosted on the Kaggle platform [3–5].

The motivation of this Master’s thesis is to contribute to science’s advancement by
extracting knowledge from real data collected from clinics and hospitals in Brazil. We
propose a risk calculator, in other words, a binary classifier, using machine learning tech-
niques that represent the state of the art in several areas, such as deep neural networks.
The challenge, however, is that a deep neural network is described by up to millions of
different values and does not give insight into its knowledge or the way decisions are made,
making it unfeasible for medical solutions. Here is where an interpretable deep tabular
data learning architecture, TabNet [8], takes place.

1.2 Challenges

Deep Neural networks have demonstrated great success in several areas like image clas-
sification for cancer diagnosis [71], audio transcription [30], and text comprehension [19],
outperforming conventional machine learning techniques. Nevertheless, those deep neural
networks are still struggling on tabular data [34, 67] (the subject of this Master’s the-
sis) to outperform machine learning algorithms based on decision trees such as Random
Forests [12], and XGBoost [13].

In addition to the type of data, there are at least three other challenges deep neural
networks need to overcome to be used with tabular data, especially in the medical context.
The first is interpretability. To the medical community, although prediction accuracy
is critical, it is paramount to interpret the outputs of those models. By interpretation,
we mean that a human being that is a domain specialist can understand the cause of a
decision [49]. A un interpretable algorithm is called a “black-box”, alluding that human
beings cannot look and understand what is going on inside the “box”. A recent deep
learning architecture, TabNet [8], came with the promise of providing interpretation on
tabular data while delivering the same or superior performance as traditional machine
learning tree ensemble algorithms.

The second challenge is treating the samples the model cannot classify properly. By
samples, we mean the instances of the data, for example, a patient. The literature calls this
technique as a rejection option [66] or selective classification [32]. This robustness
is necessary to indicate when the model predictions present low confidence. TabNet did
not have this capability, and this implementation/adaptation is challenging.
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The third challenge is related to the amount of data. Usually, medical datasets are
small, and that is also the case for the dataset used in this work: MI-SIEVE ACC (My-
ocardial ISchemIa prognostic EValuation AngioCardio-Clarity) (Section 4.1.1), a dataset
we created for this work that consists of 9,635 samples and 207 features. It is well known
that deep learning benefits from a massive amount of data [29] but struggles in small
datasets.

1.3 Objectives

The objectives of this Master’s thesis are:

O1. To create a risk prediction calculator for major adverse cardiovascular events
(MACE) for patients that will go through a percutaneous cardiac intervention,
using real medical data from the MI-SIEVE ACC dataset;

O2. To evaluate the TabNet architecture in the MI-SIEVE ACC and other datasets,
identify problems, and propose improvements;

O3. To adapt TabNet to consider the rejection option and evaluate the performance
on various datasets;

O4. To compare TabNet results against decision tree ensemble algorithms such as
Random Forest [12] and XGBoost [13];

O5. To evaluate and compare the results of the TabNet model against the baseline
calculators, TIMI and Grace 2.0, as well as its interpretability.

1.4 Research Questions

Q1. What is the impact of using the deep neural network architecture TabNet on
the risk prediction of cardiovascular diseases compared with the conventional
risk scores?

Q2. How to integrate a selective classifier/rejection option on TabNet? What is the
impact on the results?

1.5 Contributions

The most important contributions of this Master’s thesis are:

C1. A pipeline with algorithms capable of training risk calculators on tabular data
(Chapter 5 Methodology);

C2. Leveraging the use of the rejection option for tabular data with deep neural
networks, called TabNet+SAT Deep Learning (Chapter 5 Methodology);
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C3. Introduction of the MI-SIEVE ACC dataset for its use in Machine Learning
pipelines (Section 4.1.1 MI-SIEVE ACC and Section 6.3.2 MI-SIEVE ACC
Experiment: All Features).

1.6 Outline

We organized the text as follows.
In Chapter Background, we present the most important concepts from both the

medical and machine learning perspective necessary for the comprehension of the text,
such as a stent, myocardial infarction, sequential attention, and TabNet.

In Chapter Related Work, we present the literature review, which was focused on
the machine learning techniques applied to the medical field.

In Chapter Datasets, we describe the MI-SIEVE ACC dataset, its introduction
and the struggles with data cleaning, preparation, and handling of missing or incorrect
data, guided by the domain specialist. We also describe other datasets used to confirm
our results.

In Chapter Methodology, we introduce the methodology, following Fayyad et al.’s [21]
proposal, which includes data selections, pre-processing, transformation, modeling, and
interpretation/evaluation.

In Chapter Experiments and Results, we show the experimental results for each
dataset. Using Random Forest and XGBoost as baselines, we compare the AUC of TabNet
and TabNet+SAT

In Chapter Conclusion, we conclude that our proposed architecture, TabNet+SAT,
can be used for the creation of a cardiovascular risk prediction calculator and that its use
would be beneficial for the medical community given its rejection option and interpretation
capabilities.
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Chapter 2

Background

In this chapter, considering the multidisciplinary nature of this Master’s thesis, we seek
to clarify concepts from cardiology and machine learning perspectives, highlighting the
vocabulary and techniques essential for the reader’s comprehension.

2.1 Cardiology

Regarding cardiology, we present the concepts of coronary arterial disease, myocardial
infarction, balloon, stent, and TIMI flow.

Coronary Artery Disease (CAD) is caused by plaque buildup in the walls of the
arteries that supply blood to the heart (called coronary arteries) and other parts of the
body. Plaque is made up of cholesterol deposits and other substances in the artery. Plaque
buildup causes the inside of the arteries to narrow over time, which can partially or block
the blood flow. This process, illustrated in Figure 2.1, is called atherosclerosis.

The symptoms are chest pain (angina), discomfort in arms or shoulders, shortness of
breath, weakness, or nausea. If not treated, it can cause the weakening of heart muscle
or, eventually, a heart attack.

Figure 2.1: Coronary artery disease is caused by plaque buildup in the wall of the arteries
that supply blood to the heart (called coronary arteries). Figure reproduced from https:
//www.cdc.gov/heartdisease/coronary_ad.htm.

https://www.cdc.gov/heartdisease/coronary_ad.htm
https://www.cdc.gov/heartdisease/coronary_ad.htm
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Myocardial Infarction (MI) is defined as a myocardial (heart muscle) cell death due to
prolonged ischemia (reduction or absence of blood irrigation) [69]. It can be classified into
Type 1 and Type 2, as represented in Figure 2.2. MI Type 1 is caused by atherothrombotic
CAD and is usually precipitated by atherosclerotic plaque disruption (rupture or erosion).
MI Type 2 occurs when there is cell death caused by ischemia that is not related to plaque
disruption, such as any imbalance between oxygen supply and demand.

(a) Myocardial Infarction Type 1 (b) Myocardial Infarction Type 2

Figure 2.2: Myocardial Infarction Types 1 and 2 illustrations. Figure reproduced from
https://www.ahajournals.org/doi/10.1161/CIR.0000000000000617.

Balloon catheter is a special catheter used on percutaneous coronary intervention (PCI),
which, through its inflation, re-establishes the blood flow of a blocked coronary artery.
When necessary, the balloon is also used to deploy a stent, as illustrated in Figure 2.3.

Figure 2.3: Angioplasty illustration showing a plaque restricting the blood flow, a balloon
catheter, and the stent. Figure reproduced from https://www.cirse.org/patients/i
r-procedures/angioplasty-and-stenting/.

Stent is an expansible metallic tube inserted in a coronary artery at the blocked location
to prevent its collapse and blood flow restriction. It is widely used in PCI as a CAD or
heart attack treatment. Figure 2.3 illustrates the deployment of a stent.

https://www.ahajournals.org/doi/10.1161/CIR.0000000000000617
https://www.cirse.org/patients/ir-procedures/angioplasty-and-stenting/
https://www.cirse.org/patients/ir-procedures/angioplasty-and-stenting/
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Thrombolysis in Myocardial Infarction (TIMI) Flow Perfusion of the myocardium
can be categorized using the TIMI myocardial perfusion (TMP) classification system [7].
In TMP grade 3, there is the normal diffuse ground glass appearance of myocardial blush.
The dye is only mildly persistent or gone at the end of the washout phase. The washout
phase is the time after the end of dye injection, during which dye would typically be
expected to clear from the epicardial vessels during opacification of the myocardium,
followed by clearing from the myocardium. In TMP grade 2, dye enters the myocardium
but accumulates and exits more slowly so that at the end of the washout phase dye in
the myocardium is strongly persistent; however, dye clears by the next injection. In
TMP grade 1, the dye does not leave the myocardium, and there is a stain on the next
injection. In TMP grade 0, the dye does not enter the myocardium, and minimal or no
blush apparent during the injection and washout phases. Static pictures of the TMP
grades are shown in Figure 2.4.

Figure 2.4: TIMI myocardial perfusion (TMP) grades. Figure reproduced from https:
//heart.bmj.com/content/86/5/485.

2.2 Machine Learning

Regarding machine learning concepts, we present here the TabNet architecture and the
concepts related to the rejection option.

2.2.1 TabNet Architecture

TabNet is a high-performance interpretable canonical deep tabular data learning architec-
ture [8]. It can be used as a binary classifier, predicting whether patience is likely to suffer

https://heart.bmj.com/content/86/5/485
https://heart.bmj.com/content/86/5/485
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a MACE event or not. As a canonical deep neural network, it also outputs the probabil-
ity of the predicted classes, thus working as a risk calculator when trained to predict the
same endpoints as cardiovascular risk calculators do, in our case, MACE events. Its main
contributions are local and global built-in interpretability, performance comparable with
the best ML algorithm, support for unsupervised pre-training, and built-in feature selec-
tion and engineering. This combination of built-in interpretability and built-in feature
selection allied with performance comparable with state-of-the-art ML algorithms such as
XGBoost is why we chose TabNet.

ML models can be interpreted post-hoc, with advanced techniques like LIME [60] and
SHAP [45]. Those techniques consist of showing which features contributed to the predic-
tions. Although this is quite helpful, the model is already trained, and the interpretability
can reveal that the model is considering many irrelevant features, which are not the most
important, but certainly influence the prediction. That’s when feature selection comes
into place to eliminate irrelevant features that are antagonists of the model’s generaliza-
tion capability. But the problem is that feature selection must be made before training,
and those techniques are applied after training. An engineer needs to do this for several
rounds to fine-tune the model. By achieving both selection and interpretation during
training, TabNet can by itself learn which features to select and also explain the predic-
tion by showing how much attention is given to a feature during the decision process. We
will now see how this is achieved by inspecting TabNet’s architecture.

Figure 2.5 shows the main components of the network. A custom number of “steps"
forms the encoder. Each decision step receives the same D dimensional features f ∈B×D,
where B is the batch size. The encoding is based on sequential multi-step processing with
Nsteps decision step. The ith step inputs the processed information from the (i− 1)th step
to decide which feature to use and outputs the processed feature representation to be
aggregated into the overall decision. The inner blocks of a decision step are the Attentive
transformer, the Mask, and the Feature transformer. The decoder comprises a feature
transformer and a fully-connected layer at each step. Its output is aggregated to form the
reconstructed features. The decoder is only used in the self-supervised mode.

The Feature transformer is a four-layer network, where the first two layers are shared
among all decision steps, and the other two belong exclusively to their step. A fully-
connected layer forms each layer, with batch normalization and the gated linear units
(GLU) activation function [17]. In between layers, there are skip connections resembling
ResNets [31]. The Attentive transformer block is formed by only one layer. This block
is responsible for TabNet’s attention mechanisms. Finally, the output of the Feature
transformer feeds the network output and also the next layer Attentive transformer. The
classification occurs on a fully-connected layer from the aggregation of each step output.

TabNet does not require feature engineering. It is learned from the data by the network
itself in the Feature transformer. The network on the Attentive transformer also learns
the feature selection using sequential attention on each decision step. Learning happens
sequentially, contrary to many DNN architectures with numerous hidden layers.

Figure 2.6 exemplifies the feature selection process on the well-known Adult Census
[20] dataset, that was chosen by the authors to explain TabNet’s interpretability. All
features are fed to all steps, but only a few are selected. This also helps with interpretation
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(a) Encoder architecture. (b) Decoder architecture.

(c) Feature transformer. (d) Attention components.

Figure 2.5: TabNet architecture. Figure reproduced from Arik et al. [8].

because we can now know what is being learned at each step. Here, for illustration,
professional occupation-related features were selected on the first step, and investment
related on the second. This eliminates the burden of feature selection from the data
scientists, and the network learns how to make its own feature selection. Irrelevant features
are excluded and not taken into consideration.

Figure 2.6: Sparse feature selection exemplified for the Adult Census dataset. Figure
reproduced from Arik et al. [8].

TabNet also has a self-supervised mode through its encoder-decoder architecture. The
learning task employed is an arbitrary mask that hides feature values that the net-
work from the learned representations must reconstruct. Considering a binary mask
S ∈ {0, 1}B×D with B batch samples and D feature dimension, the TabNet encoder in-
puts (1 − S) · f and the decoder outputs the reconstructed features S · f , being f the
original feature vector and f̂ the reconstructed feature vector. The reconstruction loss in
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the self-supervised phase is:

L =
B∑
b=1

D∑
j=1

 (f̂b,j − fb,j) · Sb,j√∑B
b=1(fb,j −

1
B

∑B
b=1 fb,j)

2

2

. (2.1)

The self-supervised learning can be used as a pre-trained step to improve TabNet’s
performance on a posteriori supervised step or to aid in training with data sets with
reduced samples. Self-supervised mode is illustrated in Figure 2.7. A random mask is
applied to the input table for the training pass, marked with the symbol “?′′. After passing
through the encoder and then the decoder, the masked values are predicted. A loss is
computed because we know the original values, and the error is back-propagated through
the network, adjusting both the encoder and decoder weights. The pre-training repeats
this process until the defined number of epochs is reached. When the supervised phase
starts, only the encoder is used, and it already has its weights values from the pre-trained
phase, so it just needs fine-tuning. The label column, “Income > $50k” in this case, is
only used in the supervised phase.

Figure 2.7: Self-supervised pre-training. Figure reproduced from Arik et al. [8].

Sequential Attention Mechanism

TabNet uses a sequential attention mechanism to select features on each decision step [72].
The mask M [i] of Equation 2.2 is obtained learning the function hi on step i processing
the attributes a[i− 1]. The attributes a[i− 1] are originated at the output of the feature
transformers of the previous step after a split between d[i] (attributes selected for decision)
and a[i] (attributes selected for attention on the following step). This split is controlled
by two hyper-parameters, Nd, and Na. In this way, TabNet produces variability of the
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attributes utilized at each decision step. The prior P [i− 1] is calculated by Equation 2.3
and controls how many times a determined attribute has already been used on previous
decision steps through hyper-parameter γ.

M [i] = sparsemax(P [i− 1]hi(a[i− 1])), (2.2)

P [i] =
i∏

j=1

(γ −M [j]). (2.3)

In order to enable probabilities equal to zero and select features sparsely, instead of a
softmax function, the Equation 2.2 uses a sparsemax function [47].

Finally, interpretability is achieved by combining the feature selection mask learned by
the attention mechanisms on each decision step, as shown in Figure 2.8. Masks 1 to 4 were
learned on decision steps 1 to 4. Each column in the figure represents one feature, ranging
from X1 to X11. Each row represents one test sample. The figure is reproduced from
the TabNet paper, and for clarity, they used synthetic datasets. On synthetic dataset 2
(Syn2), only one feature was selected for each decision step. This can be seen by the white
pixels columns, representing the highest attention given, in contrast to the black pixels.
Magg is the normalized aggregation of the activation map of each step. We can see gray
pixels of different intensities, representing how much attention was given for each feature
in each sample. By doing this, we can see which feature was important for the prediction
for each sample (row). Synthetic dataset 4 (Sync4) is a more challenging dataset with
more than one feature selected in each step. However, data scientists can still verify which
features the model is selecting and the relative importance of those features, shredding
light inside the “black box” model.

2.2.2 Rejection Option

Following interpretability, a second challenge is a reliability. For critical applications, a
model must indicate when its prediction is unreliable. This task is called classification
with rejection option [24, 48]. Selective classification trades classifier coverage off against
accuracy [33]. The classifier is allowed to output “unknown” for certain samples. As some
samples are not classified, coverage is defined as the fraction of classified samples in the
dataset. This is achieved by transforming the C class problem into a C +1 class; the last
class is the unknown class. The selective classification or rejection option is now formally
defined as follows. Given an input x, a selective classifier outputs

(f, g)(x) =

{
Abstain, g(x) ≥ τ

f(x), otherwise,
(2.4)

where τ is a threshold that controls the coverage trade-off.
The rejection option transforms a binary classification problem into a three-class prob-

lem: positive, negative, and “don’t know”. The neural network learns the functions f and
g, with f the conventional output of a classifier corresponding to C classes and g an
additional class representing the “don’t know” class.
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Figure 2.8: Attention maps of each decision block and the combined map. The lighter
square means greater attention is given to that sample feature on a grayscale. A black
square means that the following feature is irrelevant for that sample. Figure reproduced
from Arik et al. [8].

Although studied since 1957, there has not been any well-established, effective method
to assess prediction uncertainty, especially for deep learning models [14]. Recent research
has proposed viable solutions, such as SelectiveNet, a DNN architecture that can wrap
other DNNs and add a new prediction head, called “selective head” [23], and Deep Glam-
ber, proposing a new loss which is based in portfolio theory [44]. Those works focus on
image classification with deep neural networks. This Master’s thesis uses the state-of-
the-art Self Adaptive Training (SAT) technique [33]. We call our network TabNet+SAT,
and to the best of our knowledge, those selective classification methods have not yet been
tried with tabular data. Also, as referred by Geng et al. [24], the interpretability of the
rejection option seems to have not been discussed yet.

Self Adaptive Training

Self Adaptive Training (SAT) [33] is a training methodology to implement a selective
classifier with a rejection option. The last layer of an SAT network has C + 1 neurons,
and their output is normalized with a softmax function. The selective function s indicates
whether a sample was selected based on the value of g and τ . Coverage ϕ represents the
percentage of classified samples of a given labeled set Sm, defined by the sum of selected
samples from Sm divided by the number of elements.

s(xi) =

{
1, g(x) ≥ τ

0, otherwise.
(2.5)
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ϕ(s|Sm) =
1

m

m∑
i=1

s(xi). (2.6)

The self-adaptive approach consists of training the model for Es number of epochs
just like any other regular training. After Es epochs, SAT uses the model’s predictions
to correct training data using a moving average ti, called targets. ti is initialized with the
ground truth labels. Equation 2.7 defines how ti is updated.

ti = α× ti + (1− α)× pi. (2.7)

On every training step after Es epochs, ti is updated based on α hyper-parameter and
is step by step corrected towards model’s prediction pi, which contains C+1 classes. This
extra class provides the model with the ability to abstain. In other words, in the presence
of label ambiguity, it is expected that the target ti will differ from the original label value
yi. If the shift of ti is towards the correct prediction, the difference between targets and
predictions will diminish, and the prediction and target will converge. The classifier is
trained end-to-end with a special loss function. Given a mini-batch of m samples and
data pairs {(xi, yi)}m, model predictions pi and its exponential moving average ti for each
sample, the classifier f is optimized by minimizing:

L(f) = − 1

m

∑
[ti,yi logpi,yi

+ (1− ti,yi)logpi,c], (2.8)

where pyi is the log probability for the class of the ith index of the one hot-encoded label
vector y and pi,c is the log probability of the last column of the logit array, which is the
unknown class because every SAT NN outputs a c+1 logit vector for every sample. Thus,
the first term of Equation 2.8 is the cross-entropy loss used in standard classifiers. The
second term is the rejection option loss, identifying uncertain samples in the dataset. If
ti,yi is too small, the sample is deemed uncertain, and the second term will cause the
classifier to reject. If ti,yi is close to one, the loss acts as a cross-entropy loss, and the
classifier will correct the prediction.
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Chapter 3

Related Work

The medical and data science community is actively researching better disease risk pre-
diction algorithms. To gather a representative sample of works using machine learning for
disease risk prediction, we took inspiration from Preferred Reporting Items for Systematic
Reviews and Meta-Analysis (PRISMA) [50]. However, this review does not intend to be
a formal meta-analysis.

We used Google Scholar with the query “AI machine learning medical health disease
risk prevention predication imbalanced “supervised learning” ’, from 2018, which gave 4,970
results. To refine the results, we excluded from the search query the works related to
image, ethics, and natural language processing (NLP), resulting in 99 articles. Table 3.1
summarizes the works.

Table 3.1: Summary of ML-based risk prediction works.

Summary
Disease/Problem acute kidney injury, epidemiology, patient no show, sleep ap-

nea, diabetes, heart failure, infant health, hyperchloremia, in-
tensive care unit (ICU) mortality risk, neck pain

Algorithm deep neural networks (DNN), decision trees (DT), random
forests (RF), extreme gradient boosting (XGBoost), logistic
regression (LR), support vector machines (SVM), k-nearest
neighbors (kNN)

Dataset Size 191 to 33,329 samples, 10 to 1225 attributes

Metric area under the curve (AUC), accuracy, F1, specificity (true
negative rate), sensitivity (recall, true positive rate), precision,
kappa score

We can see that the disease/problem range is wide. Every medical health issue could
be an application candidate for risk prediction using tabular data, as this kind of data
is regularly collected from patients during hospital or clinics’ daily routine. Regarding
metrics, most of the traditional machine learning metrics are used, which demonstrates
that there is no consensus over which metric to use. This also makes it difficult to compare
the results among works.
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By evaluating those works, we found that state of the art regarding risk prediction
using tabular data in the medical context is the application of traditional machine learning
techniques, such as logistic regression (LR), random forest (RF), support vector machine
(SVM), and extreme gradient boosting machine (XGBoost). Some works also use deep
neural networks (DNN), but they are still overwhelmed by decision tree-based algorithms.
The dataset ranged from a few hundred to 30,000 samples and 10 to 1,000 attributes.
Considering that most of those datasets are imbalanced, where the number of positive
labels is a small fraction of the dataset, this particular application is challenging for DNN.
There is also a trend in the literature to use several algorithms and compare the results,
focusing on performance. Only a few works aim at the model interpretability [41,62], and
none deal with the rejection option.

3.1 Cardiovascular Risk Calculators Works

In addition to this more general search, we also searched for works proposing ML algo-
rithms to replace the most commonly used risk calculators, TIMI [6,11] and GRACE [26].
The attempt to replace traditional risk calculators with ML and DL is not new. There
are dozens of works comparing ML algorithms with risk calculators [18, 35, 37, 57, 63, 64].
Despite that, we could not find any work that shared the dataset or the source code,
making their results reproduction impossible. Here, we present some interesting works
that provide valuable insights for further research.

Kasim et al. have several publications on this topic [9, 38, 39]. Interestingly, although
DL had achieved superior performance over the traditional TIMI calculator, the authors
point out the “black box” problem of DL algorithms. With a slightly inferior performance,
a logistic regression algorithm can provide a risk prediction while being “transparent”, i.e.,
which features/weights were selected/learned. Panchavati et al. [52] used an XGBoost
algorithm with SHAP (SHapley Additive exPlanations) [45]. They achieved better results
with XGBoost over TIMI and GRACE and found that the patient history for myocardial
infarction feature contributed the most to the models’ output. However, although SHAP
is widely used and provides both global and local interpretability, Panchavati’s article
does not explore how medical doctors could benefit from interpretability. Inspired by
such works, we aimed to find state-of-the-art algorithms that could work with tabular
data, are interpretable, and could evaluate their prediction reliability.

3.2 Deep Learning with Tabular Data Works

Once we identified this opportunity, we searched for works related to tabular data and deep
learning. Mikael Huss’s blogpost [34] greatly summarizes the subject, bringing three ap-
proaches: multi-layer DNN, NODE [54], and TabNet [8]. The multi-layer DNN approach
is exemplified by Airbnb’s experience with tabular data [28]. Typically, big companies,
such as Airbnb, have a huge amount of data, and DNN significantly benefits from it.
Despite that, Airbnb faced several implementation problems in dealing with tabular data.
Eventually, their DNN model outperformed the gradient boost decision tree (GBDT) but
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lacked interpretability.
Neural oblivious decision ensemble (NODE) [54] is a DNN architecture inspired by

decision trees. Its implementation is based on a differentiable decision tree implemented
with neurons. It uses entmax [53], a non-linear function similar to softmax that effectively
performs a “soft” splitting, as it forces weights to zero or one, instead of the asymptotic
behavior of softmax. Entmax is a generalization of both softmax, and sparsemax [47],
used by TabNet (see Section 2.2.1). The smoothness of such “splitting” is controlled by
the parameter α, as shown in Figure 3.1.

Figure 3.1: Entmax function, a generalization of softmax and sparsemax, enables the soft
splitting behavior of decision trees by neural networks. Figure reproduced from Peters et
al. [53].

Very recent works are presenting alternatives to TabNet, such as GATE (Gated Ad-
ditive Tree Ensemble) [36], NBM (Neural Basis Model) [58], Hopular (Modern Hopfield
Networks for Tabular Data) [65], FT-Transformer (Feature Tokenizer Transformer) [25],
and SAINT (Self-Attention and Intersample Attention Transformer) [68]. Those neu-
ral networks have the drawback of being a “black box”; they lack interpretability. For
this reason, we choose TabNet, an architecture designed for tabular data and built-in
interpretability.
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Chapter 4

Datasets

One of the most remarkable contributions of this Master’s thesis is a real-world dataset
called Myocardial ISchemIa prognostic EValuation AngioCardio-Clarity. This dataset was
the result of the cleaning, pre-processing, and aggregation of data received from hospitals
and clinics in Brazil and is used to obtain a risk calculator from real-world data. The
well-known Framingham Heart Study [1] dataset was also used to compare our results
with literature results in the same domain.

We also evaluated and confirmed our results in the same datasets from TabNet’s
article, covering a wide variety of domains and sizes, namely Mushroom, KDD Cup 2009,
HIGGS, and Adult Census. Table 4.1 contains a summary of the datasets used.

Table 4.1: Summary of all datasets used in this Master’s thesis.

Dataset #Features #Samples #Classes
MI-SIEVE ACC 207 9635 2
Framingham Heart Study 20 11,627 2
Mushroom 22 8124 2
KDD Cup 2009 230 50,000 3
HIGGS 28 11,000,000 2
Adult Census 14 48,842 2

4.1 Medical Datasets

4.1.1 MI-SIEVE ACC

The Myocardial ISchemIa prognostic EValuation AngioCardio-Clarity (MI-SIEVE ACC)
dataset was created from patient electronic health records who have undergone percuta-
neous coronary intervention. Data was originally divided into tables: Patient, Interven-
tion, Balloon, Stent, Vessel, Complication, and Outcome. Those tables comprise clinical
data such as age, weight, hypertension, diabetes, and inter-procedural information like
duration, the number of vessels treated, and drugs used. Table 4.2 summarizes each
table’s features.
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Table 4.2: MI-SIEVE ACC (Myocardial ISchemIa prognostic EValuation AngioCardio-
Clarity) dataset. #Feat. stands for the number of features.

Table Summary #Feat. Type of Features
Patient patient personal infor-

mation
46 age, sex, race, smoker, number of

cigarettes per day, family antecedents,
comorbidities

Intervention intervention information 42 intervention date, time, type, drugs ad-
ministered

Medical Complication information of the medi-
cal complications during
the intervention

9 degree of complication, final destina-
tion, time of the complication

Balloon information regarding
the balloons used during
the intervention

41 angiography result, degree of steno-
sis, TIMI flow after, lesion classifica-
tion (ACC/AHA), and drugs taken as
adenosine, adrenaline, papaverine

Stent information regarding
the stent installed

48 coronary artery, length and diameter of
the stent and angiography result

Vessel information regarding
the treated vessel

21 vessel identification, degree of lesion,
degree of stenosis, type of lesion and
calcification

Outcome information of the inter-
vention outcomes

17 clinical success, infarction, death, oc-
clusion, vascular complication, renal
failure, stroke, bleeding

Although it is very common to collect patient data, it was not collected for training
machine learning models. Thus, it imposes several challenges, such as:

• The lack of unique identification (IDs) keys for patients and interventions (there are
IDs collisions due to the identical IDs for different clinics and hospitals);

• Missing data for essential features like blood pressure, cardiac frequency, breath
frequency, and body temperature;

• Data is exported from relational tables, so it needs to be structured before feeding
it to ML algorithms;

• Tables have a hierarchical relationship: one line of table Patient is related to I in-
terventions that treated V vessels using B balloons and S stents;

• Multi-outcome problems: bleeding, kidney complications, infarction, and death;

• An imbalanced dataset with positive labels representing less than 10% of samples.

Extensive work of cleaning, structuring, pre-processing, aggregation, and feature en-
gineering was done to transform raw data into a dataset useful for ML. The domain
specialist, Luiz Sérgio Fernandes de Carvalho, guided all this process, analyzing feature
by feature. All data identified as corrupted, inconsistent, or with a significant number of
missing values was excluded.

A preliminary statistical analysis of the data also revealed biases. To avoid those
biases, we excluded some features to obtain a fair and responsible model.
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Of 9639 patients, 69.1% are male, and 30.9% are female. Although it is evident that
this data is imbalanced, it is also known that men and women have a different probability
of cardiovascular diseases [51].

Regarding ethnicity, there is a great disproportion of the “white” ethnicity, composing
93.5% of samples. According to the Brazilian Institute of Geography and Statistics (IBGE,
Instituto Brasileiro de Geografia e Estatística) [2], only 42.7% of the population self-
identifies with the “white” ethnicity, meanwhile 46.8% with “brown/black” ones. As the
Brazilian Society of Cardiology (SBC, Sociedade Brasileira de Cardiologia) [51] does not
report any relevant cardiovascular risk related to ethnicity, we opt to exclude this feature
from the dataset. The same reasoning was applied to the degree of education.

Concerning the other features in the MI-SIEVE ACC dataset, we found no other biases,
as those are patient clinic information such as sex, age, blood pressure, diabetes, and
hypertension, or intervention information such as vessel condition, drugs administered,
complications, and stent information.

The use of patient data in the MI-SIEVE ACC database was approved by the Research
Ethics Committee (CEP/IGESDF, Comitê de Ética em Pesquisa do Instituto de Gestão
Estratégica de Saúde do Distrito Federal) according to the approval number 3.854.051 on
February 21st, 2020, and approval 4.263.940 on September 8th, 2020.

We provide here the datasheet of this dataset [22], which is a methodological approach
to document a dataset’s origin, composition, and uses.

4.1.2 Framingham Heart Study

The Framingham Heart Study (FHS) dataset [1] is a longitudinal investigation of consti-
tutional and environmental factors influencing the development of cardiovascular disease
in men and women. Examination of participants has occurred every two years, and the
cohort has been followed for morbidity and mortality over that period. It began in 1948,
sampling patients in Framingham, Massachusetts. The objectives are to study the inci-
dence and prevalence of cardiovascular disease and its risk factors. The cardiovascular
disease conditions under investigation include coronary heart disease (angina pectoris,
myocardial infarction, coronary insufficiency, and sudden and non-sudden death), stroke,
hypertension, peripheral arterial disease, and congestive heart failure.

The data used in this Master’s thesis is the “teaching” dataset, and although the
dataset can be used to validate the machine learning techniques, the findings and con-
clusions cannot be used for medical publications. The National Heart, Lung, and Blood
Institute (NHLBI), which made this dataset available, explicitly ask to make all users
aware of such limitation. The dataset consists of 11,627 samples and 39 features, of which
three are informative (randid, time, and period), 20 are features, and 16 are outcomes.

Table 4.3 shows the baseline characteristics of the FHS individuals grouped by any car-
diovascular heart disease (ANYCHD) outcome, the outcome we chose for risk prediction.
We omit from this table the columns RANDID, TIME, and PERIOD. We also provide
the total missing data counts. HDLC and LDLC have most of their data missing as the
study started collecting only total cholesterol, and only recently did HDLC and LDLC
start to be collected. Table 4.4 gives a detailed description of each feature and outcome.
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Table 4.3: Baseline characteristics of the Framingham Heart Study dataset individuals
with or without any cardiovascular heart disease (ANYCHD). SD stands for standard
deviation. Please refer to Table 4.4 for understanding Variable and Units.

Variable Units Missing Overall Without ANYCHD With ANYCHD
n (total) 11,627 8469 3158
SEX, n (%) 1 0 5022 (43.2) 3255 (38.4) 1767 (56.0)

2 6605 (56.8) 5214 (61.6) 1391 (44.0)
AGE, mean (SD) 0 54.8 (9.6) 53.8 (9.4) 57.4 (9.5)
SYSBP, mean (SD) 0 136.3 (22.8) 133.6 (21.6) 143.5 (24.4)
DIABP, mean (SD) 0 83.0 (11.7) 82.1 (11.2) 85.6 (12.5)
BPMEDS, n (%) 0 593 10,090 (91.4) 7492 (93.2) 2598 (86.8)

1 944 (8.6) 548 (6.8) 396 (13.2)
CURSMOKE, n (%) 0 0 6598 (56.7) 4804 (56.7) 1794 (56.8)

1 5029 (43.3) 3665 (43.3) 1364 (43.2)
CIGPDAY, mean (SD) 79 8.3 (12.2) 8.1 (12.0) 8.6 (12.6)
EDUC, n (%) 1 295 4690 (41.4) 3206 (38.8) 1484 (48.3)

2 3410 (30.1) 2610 (31.6) 800 (26.1)
3 1885 (16.6) 1480 (17.9) 405 (13.2)
4 1347 (11.9) 965 (11.7) 382 (12.4)

TOTCHOL, mean (SD) 409 241.2 (45.4) 238.1 (44.2) 249.4 (47.5)
HDLC, mean (SD) 8600 49.4 (15.6) 50.7 (15.6) 45.6 (15.0)
LDLC, mean (SD) 8601 176.5 (46.9) 174.0 (45.8) 183.5 (49.2)
BMI, mean (SD) 52 25.9 (4.1) 25.6 (4.0) 26.7 (4.3)
GLUCOSE, mean (SD) 1440 84.1 (25.0) 82.8 (21.1) 87.7 (33.0)
DIABETES, n (%) 0 0 11,097 (95.4) 8219 (97.0) 2878 (91.1)

1 530 (4.6) 250 (3.0) 280 (8.9)
HEARTRTE, mean (SD) 6 76.8 (12.5) 76.8 (12.3) 76.8 (12.8)
PREVAP, n (%) 0 0 11,000 (94.6) 8469 (100.0) 2531 (80.1)

1 627 (5.4) 627 (19.9)
PREVCHD, n (%) 0 0 10,785 (92.8) 8469 (100.0) 2316 (73.3)

1 842 (7.2) 842 (26.7)
PREVMI, n (%) 0 0 11,253 (96.8) 8469 (100.0) 2784 (88.2)

1 374 (3.2) 374 (11.8)
PREVSTRK, n (%) 0 0 11,475 (98.7) 8388 (99.0) 3087 (97.8)

1 152 (1.3) 81 (1.0) 71 (2.2)
PREVHYP, n (%) 0 0 6283 (54.0) 5017 (59.2) 1266 (40.1)

1 5344 (46.0) 3452 (40.8) 1892 (59.9)

Table 4.4: Framingham Heart Study detailed data description.

Variable Description Units Range/Count Data Type

RANDID unique identification number for each par-
ticipant

2448-9999312 id

PERIOD examination cycle 1=period 1 n=4434 categorical
2=period 2 n=3930
3=period 3 n=3263

TIME number of days since baseline exam 0-4854 numeric
SEX participant sex 1=men n=5022 categorical

2=women n=6605
AGE age at exam (years) 32-81 numeric
SYSBP systolic blood pressure (mean of last two

of three measurements) (mmHg)
83.5-295 numeric

DIABP diastolic blood pressure (mean of last two
of three measurements) (mmHg)

30-150 numeric

BPMEDS use of anti-hypertensive medication at
exam

0=not currently used
1=current use

n=10,090
n=944

categorical
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CURSMOKE current cigarette smoking at exam 0=not current smoker
1=current smoker

n=6598
n=5029

categorical

CIGPDAY number of cigarettes smoked each day 0=not current smoker
1-90 cigarettes per day

numeric

EDUC attained education 1=0-11 years 2=high
school diploma, GED
3=some college, voca-
tional school 4=college
(BS, BA) degree or
more

categorical

TOTCHOL serum total cholesterol (mg/dL) 107-696 numeric
HDLC high density lipoprotein cholesterol

(mg/dL)
available for period 3
only

10-189 numeric

LDLC low density lipoprotein cholesterol
(mg/dL)

available for period 3
only

20-565 numeric

BMI body mass index, weight in kilo-
grams/height meters squared

14.43-56.8 numeric

GLUCOSE casual serum glucose (mg/dL) 39-478 numeric
DIABETES diabetic according to criteria of the first

exam treated or the first exam with casual
glucose of 200 mg/dL or more

0=Not a diabetic
1=Diabetic

n=11,097
n=530

categorical

HEARTRTE heart rate (ventricular rate) in beats/min 37-220 numeric
PREVAP prevalent angina pectoris at exam 0=free of disease n=11,000 categorical

1=prevalent disease n=627
PREVCHD prevalent coronary heart disease defined

as pre-existing angina pectoris, myocardial
infarction (hospitalized, silent or unrecog-
nized), or coronary insufficiency (unstable
angina)

0=free of disease
1=prevalent disease

n=10,785
n=842

categorical

PREVMI prevalent myocardial infarction 0=free of disease n=11,253 categorical
1=prevalent disease n=374

PREVSTRK prevalent stroke 0=free of disease n=11,475 categorical
1=prevalent disease n=152

PREVHYP prevalent hypertensive. The subject was
defined as hypertensive if treated or if the
second exam at which mean systolic was
>=140 mmHg or mean diastolic >=90
mmHg

0=free of disease
1=prevalent disease

n=6283
n=5344

categorical

The outcomes provided have both the event type (e.g., stroke, death) and the time
for more complex time-dependent analysis. Event time is counted in the number of days
since the study began. The events are registered until the end of the study (still actively
following patients), participant dies or cannot be contacted to ascertain his (her) status.
If the outcome is present, the time of the event reflects the time of the outcome; if it is
not present, the time of the event reflects the time of the followup. Table 4.5 shows each
outcome’s total count and percentages, the average and standard deviation of event time.
As usual in a medical dataset, the outcomes are imbalanced. Table 4.6 gives a detailed
description of each outcome.

4.2 TabNet Datasets

4.2.1 Mushroom

The Mushroom dataset is publicly available on the UCI Machine Learning Repository [20],
obtained initially from the Audubon Society Field Guide to North American Mush-
rooms [43]. This dataset includes descriptions of hypothetical samples corresponding
to 23 species of gilled mushrooms in the Agaricus and Lepiota families. Each species is
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Table 4.5: Clinical outcomes of the Framingham Heart Study dataset. SD stands for
standard deviation.

Variable Units Missing Overall
n (total) 11,627
ANGINA, n (%) 0 0 9725 (83.6)

1 1902 (16.4)
HOSPMI, n (%) 0 0 10,473 (90.1)

1 1154 (9.9)
MI_FCHD, n (%) 0 0 9839 (84.6)

1 1788 (15.4)
ANYCHD, n (%) 0 0 8469 (72.8)

1 3158 (27.2)
STROKE, n (%) 0 0 10,566 (90.9)

1 1061 (9.1)
CVD, n (%) 0 0 8728 (75.1)

1 2899 (24.9)
HYPERTEN, n (%) 0 0 2985 (25.7)

1 8642 (74.3)
DEATH, n (%) 0 0 8100 (69.7)

1 3527 (30.3)
TIMEAP, mean (SD) 0 7241.6 (2477.8)
TIMEMI, mean (SD) 0 7593.8 (2136.7)
TIMEMIFC, mean (SD) 0 7543.0 (2192.1)
TIMECHD, mean (SD) 0 7008.2 (2641.3)
TIMESTRK, mean (SD) 0 7660.9 (2011.1)
TIMECVD, mean (SD) 0 7166.1 (2541.7)
TIMEHYP, mean (SD) 0 3599.0 (3464.2)
TIMEDTH, mean (SD) 0 7854.1 (1788.4)

identified as edible, poisonous, or of unknown edibility and is not recommended. This
latter class was combined with the poisonous one. The guide clearly states that there is no
simple rule for determining the edibility of a mushroom. There are 8124 instances with 22
features and one label. The label class is either e (edible) or p (poisonous). This dataset
is balanced, having 4208 edible instances and 3916 poisonous ones. The only feature that
has missing values is the stalk-root.

4.2.2 KDD Cup 2009

The KDD Cup 2009 dataset is from the Customer Relationship Management (CRM)
domain, provided by the French telecom company Orange. The challenge is to predict
customer behavior. The kinds of behavior are churn (propensity of a customer to switch
to another telecom provider), appetency (likelihood of the customer to purchase new
products or services), and upselling (likelihood of the customer to purchase upgrades, in
other words, to increase the average “ticket” value).

We used the smaller dataset version containing 230 features and 50,000 samples. This
is the same version used by TabNet benchmarks. The classification task is to predict the
probability of each outcome independently, so there are three binary classification tasks
with the same set of features for different labels.

KDD Cup 2009 is a challenging dataset, with most of its data composed of null values.
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Table 4.6: Framingham Heart Study detailed outcome description.

Variable Description
ANGINA Angina Pectoris
HOSPMI Hospitalized Myocardial Infarction
MI_FCHD Hospitalized Myocardial Infarction or Fatal Coronary Heart Disease
ANYCHD Angina Pectoris, Myocardial infarction (Hospitalized and silent or unrecognized),

Coronary Insufficiency (Unstable Angina), or Fatal Coronary Heart Disease
STROKE Atherothrombotic infarction, Cerebral Embolism, Intracerebral Hemorrhage, or Sub-

arachnoid Hemorrhage or Fatal Cerebrovascular Disease
CVD Myocardial infarction (Hospitalized and silent or unrecognized), Fatal Coronary Heart

Disease, Atherothrombotic infarction, Cerebral Embolism, Intracerebral Hemorrhage,
or Subarachnoid Hemorrhage or Fatal Cerebrovascular Disease

HYPERTEN Hypertensive. Defined as the first exam treated for high blood pressure or the second
exam in which either Systolic is $140 mmHg or Diastolic $90mmHg

DEATH Death from any cause
TIMEAP Number of days from Baseline exam to first Angina during the followup or Number

of days from Baseline to censor date. Censor date may be the end of followup, death,
or last known contact date if the subject is lost to followup

TIMEMI Defined as above for the first HOSPMI event during followup
TIMEMIFC Defined as above for the first MI_FCHD event during followup
TIMECHD Defined as above for the first ANYCHD event during followup
TIMESTRK Defined as above for the first STROKE event during followup
TIMECVD Defined as above for the first CVD event during followup
TIMEHYP Defined as above for the first HYPERTEN event during followup
TIMEDTH Number of days from Baseline exam to death if occurring during followup or Number

of days from Baseline to censor date. Censor date may be the end of followup, or the
last known contact date if the subject is lost to followup

Data is also anonymized, making domain interpretation impossible. Categorical data is
also challenging because one single feature has hundreds of categories. Finally, the dataset
is highly imbalanced. Positive labels are only 7.3% for appetency, 1.8% for churn, and
7.3% for upselling.

4.2.3 HIGGS

HIGGS [10] is a dataset obtained from particle accelerator data. The classification prob-
lem is distinguishing between a signal process that produces Higgs bosons and a back-
ground process that does not. It is available on the UCI Machine Learning Repository [20].
The dataset is enormous compared with the other datasets used by TabNet, comprising
11,000,000 samples. This is an attractive characteristic because we can compare the
performance of deep learning algorithms with more traditional ones. Deep learning is
expected to benefit from large amounts of data.

There are a total of 28 features, 21 are kinematic properties measured by the particle
detectors, and the last 7 are functions of the first 21, prepared by physicists to help
discriminate between the two classes. Contrary to the Adult Census dataset (next section),
this dataset requires some domain knowledge to interpret. Thus, we will not provide each
feature description here, as they are available in Baldi et al. [10].
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4.2.4 Adult Census

The Adult Census dataset is also publicly available in the UCI Machine Learning Repos-
itory [20]. It was originally extracted from the 1994 Census bureau database [40]. It has
one label class indicating if one individual’s yearly income is greater than U$ 50,000. The
dataset consists of 48,842 samples and 14 features. Out of 14 features, 6 are continuous,
and the others are categorical. Table 4.7 provides a detailed description of categorical
values or an indication if the feature is continuous.

Table 4.7: Adult Census dataset features description, providing either the existent cate-
gorical values or the word “continuous”.

Feature Description
1 age continuous
2 workclass private, self-emp-not-inc, self-emp-inc, federal-gov, local-gov, state-gov,

without-pay, never-worked
3 fnlwgt continuous
4 education bachelors, some-college, 11th, hs-grad, prof-school, assoc-acdm, assoc-voc, 9th,

7th-8th, 12th, masters, 1st-4th, 10th, doctorate, 5th-6th, preschool
5 education-num continuous
6 marital-status married-civ-spouse, divorced, never-married, separated, widowed, married-

spouse-absent, married-af-spouse
7 occupation tech-support, craft-repair, other-service, sales, exec-managerial, prof-specialty,

handlers-cleaners, machine-op-inspct, adm-clerical, farming-fishing, transport-
moving, priv-house-serv, protective-serv, armed-forces

8 relationship wife, own-child, husband, not-in-family, other-relative, unmarried
9 race white, asian-pac-islander, amer-indian-eskimo, other, black
10 sex female, male
11 capital-gain continuous
12 capital-loss continuous
13 hours-per-week continuous
14 native-country United-States, Cambodia, England, Puerto-Rico, Canada, Germany, Outlying-

US(Guam-USVI-etc), India, Japan, Greece, South, China, Cuba, Iran, Hon-
duras, Philippines, Italy, Poland, Jamaica, Vietnam, Mexico, Portugal, Ire-
land, France, Dominican-Republic, Laos, Ecuador, Taiwan, Haiti, Columbia,
Hungary, Guatemala, Nicaragua, Scotland, Thailand, Yugoslavia, El-Salvador,
Trinadad&Tobago, Peru, Hong, Holand-Netherlands

The baseline characteristics of the individuals grouped by income class are shown in
Table 4.8. This dataset is highly imbalanced; as expected, there are much more people
with a lower income than a higher one. It also contains features with many missing values,
such as workclass, occupation, and native-country. From the baseline characteristics, we
can already notice that age is a determinant factor for income. Other obvious determinants
like the workclass values “without-pay” and “never-worked”, which will fall on the lower
income class. TabNet paper uses this dataset as the interpretability benchmark, as the
domain is familiar to anyone. As most of the socio-economical datasets, the Adult Census
is also biased. Women correspond only 33.1% of the individuals and “black” people only
9.6%. As our goal is only to evaluate how the algorithm learns from the data and how
dubious samples are rejected, biased datasets are not a problem to this Master’s thesis.
They are even more “interesting” to evaluate since we can further investigate and try to
interpret the algorithm decisions.
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Table 4.8: Adult Census dataset baseline characteristics description grouped by the
income class. SD stands for standard deviation.

Income
Feature Missing Overall <=50K >50K

n 32,561 24,720 7841
age, mean (SD) 0 38.6 (13.6) 36.8 (14.0) 44.2 (10.5)
workclass, n (%) federal-gov 1836 960 (3.1) 589 (2.6) 371 (4.8)

local-gov 2093 (6.8) 1476 (6.4) 617 (8.1)
never-worked 7 (0.0) 7 (0.0)
private 22,696 (73.9) 17,733 (76.8) 4963 (64.9)
self-emp-inc 1116 (3.6) 494 (2.1) 622 (8.1)
self-emp-not-inc 2541 (8.3) 1817 (7.9) 724 (9.5)
state-gov 1298 (4.2) 945 (4.1) 353 (4.6)
without-pay 14 (0.0) 14 (0.1)

fnlwgt, mean (SD) 0 189,778.4 190,340.9 188,005.0
(105,550.0) (106,482.3) (102,541.8)

education, n (%) 10th 0 933 (2.9) 871 (3.5) 62 (0.8)
11th 1175 (3.6) 1115 (4.5) 60 (0.8)
12th 433 (1.3) 400 (1.6) 33 (0.4)
1st-4th 168 (0.5) 162 (0.7) 6 (0.1)
5th-6th 333 (1.0) 317 (1.3) 16 (0.2)
7th-8th 646 (2.0) 606 (2.5) 40 (0.5)
9th 514 (1.6) 487 (2.0) 27 (0.3)
assoc-acdm 1067 (3.3) 802 (3.2) 265 (3.4)
assoc-voc 1382 (4.2) 1021 (4.1) 361 (4.6)
bachelors 5355 (16.4) 3134 (12.7) 2221 (28.3)
doctorate 413 (1.3) 107 (0.4) 306 (3.9)
hs-grad 10,501 (32.3) 8826 (35.7) 1675 (21.4)
masters 1723 (5.3) 764 (3.1) 959 (12.2)
preschool 51 (0.2) 51 (0.2)
prof-school 576 (1.8) 153 (0.6) 423 (5.4)
some-college 7291 (22.4) 5904 (23.9) 1387 (17.7)

education-num, mean (SD) 0 10.1 (2.6) 9.6 (2.4) 11.6 (2.4)
marital-status, n (%) divorced 0 4443 (13.6) 3980 (16.1) 463 (5.9)

married-af-spouse 23 (0.1) 13 (0.1) 10 (0.1)
married-civ-spouse 14,976 (46.0) 8284 (33.5) 6692 (85.3)
married-spouse-absent 418 (1.3) 384 (1.6) 34 (0.4)
never-married 10,683 (32.8) 10192 (41.2) 491 (6.3)
separated 1025 (3.1) 959 (3.9) 66 (0.8)
widowed 993 (3.0) 908 (3.7) 85 (1.1)

occupation, n (%) adm-clerical 1843 3770 (12.3) 3263 (14.1) 507 (6.6)
armed-Forces 9 (0.0) 8 (0.0) 1 (0.0)
craft-repair 4099 (13.3) 3170 (13.7) 929 (12.1)
exec-managerial 4066 (13.2) 2098 (9.1) 1968 (25.7)
farming-fishing 994 (3.2) 879 (3.8) 115 (1.5)
handlers-cleaners 1370 (4.5) 1284 (5.6) 86 (1.1)
machine-op-inspct 2002 (6.5) 1752 (7.6) 250 (3.3)
other-service 3295 (10.7) 3158 (13.7) 137 (1.8)
priv-house-serv 149 (0.5) 148 (0.6) 1 (0.0)
prof-specialty 4140 (13.5) 2281 (9.9) 1859 (24.3)
protective-serv 649 (2.1) 438 (1.9) 211 (2.8)
sales 3650 (11.9) 2667 (11.6) 983 (12.8)
tech-support 928 (3.0) 645 (2.8) 283 (3.7)
transport-moving 1597 (5.2) 1277 (5.5) 320 (4.2)

relationship, n (%) husband 0 13,193 (40.5) 7275 (29.4) 5918 (75.5)
not-in-family 8305 (25.5) 7449 (30.1) 856 (10.9)
other-relative 981 (3.0) 944 (3.8) 37 (0.5)
own-child 5068 (15.6) 5001 (20.2) 67 (0.9)
unmarried 3446 (10.6) 3228 (13.1) 218 (2.8)
wife 1568 (4.8) 823 (3.3) 745 (9.5)

race, n (%) amer-indian-eskimo 0 311 (1.0) 275 (1.1) 36 (0.5)
asian-pac-islander 1039 (3.2) 763 (3.1) 276 (3.5)
black 3124 (9.6) 2737 (11.1) 387 (4.9)
other 271 (0.8) 246 (1.0) 25 (0.3)

. . . continued
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. . . continued

Income
Feature Missing Overall <=50K >50K

white 27,816 (85.4) 20,699 (83.7) 7117 (90.8)
sex, n (%) female 0 10,771 (33.1) 9592 (38.8) 1179 (15.0)

male 21,790 (66.9) 15,128 (61.2) 6662 (85.0)
capital-gain, mean (SD) 0 1077.6 (7385.3) 148.8 (963.1) 4006.1 (14,570.4)
capital-loss, mean (SD) 0 87.3 (403.0) 53.1 (310.8) 195.0 (595.5)
hours-per-week, mean (SD) 0 40.4 (12.3) 38.8 (12.3) 45.5 (11.0)
native-country, n (%) Cambodia 583 19 (0.1) 12 (0.0) 7 (0.1)

Canada 121 (0.4) 82 (0.3) 39 (0.5)
China 75 (0.2) 55 (0.2) 20 (0.3)
Columbia 59 (0.2) 57 (0.2) 2 (0.0)
Cuba 95 (0.3) 70 (0.3) 25 (0.3)
Dominican-Republic 70 (0.2) 68 (0.3) 2 (0.0)
Ecuador 28 (0.1) 24 (0.1) 4 (0.1)
El-Salvador 106 (0.3) 97 (0.4) 9 (0.1)
England 90 (0.3) 60 (0.2) 30 (0.4)
France 29 (0.1) 17 (0.1) 12 (0.2)
Germany 137 (0.4) 93 (0.4) 44 (0.6)
Greece 29 (0.1) 21 (0.1) 8 (0.1)
Guatemala 64 (0.2) 61 (0.3) 3 (0.0)
Haiti 44 (0.1) 40 (0.2) 4 (0.1)
Holand-Netherlands 1 (0.0) 1 (0.0)
Honduras 13 (0.0) 12 (0.0) 1 (0.0)
Hong 20 (0.1) 14 (0.1) 6 (0.1)
Hungary 13 (0.0) 10 (0.0) 3 (0.0)
India 100 (0.3) 60 (0.2) 40 (0.5)
Iran 43 (0.1) 25 (0.1) 18 (0.2)
Ireland 24 (0.1) 19 (0.1) 5 (0.1)
Italy 73 (0.2) 48 (0.2) 25 (0.3)
Jamaica 81 (0.3) 71 (0.3) 10 (0.1)
Japan 62 (0.2) 38 (0.2) 24 (0.3)
Laos 18 (0.1) 16 (0.1) 2 (0.0)
Mexico 643 (2.0) 610 (2.5) 33 (0.4)
Nicaragua 34 (0.1) 32 (0.1) 2 (0.0)
Outlying-US 14 (0.0) 14 (0.1)
(Guam-USVI-etc)
Peru 31 (0.1) 29 (0.1) 2 (0.0)
Philippines 198 (0.6) 137 (0.6) 61 (0.8)
Poland 60 (0.2) 48 (0.2) 12 (0.2)
Portugal 37 (0.1) 33 (0.1) 4 (0.1)
Puerto-Rico 114 (0.4) 102 (0.4) 12 (0.2)
Scotland 12 (0.0) 9 (0.0) 3 (0.0)
South 80 (0.3) 64 (0.3) 16 (0.2)
Taiwan 51 (0.2) 31 (0.1) 20 (0.3)
Thailand 18 (0.1) 15 (0.1) 3 (0.0)
Trinadad&Tobago 19 (0.1) 17 (0.1) 2 (0.0)
United-States 29,170 (91.2) 21,999 (90.6) 7171 (93.2)
Vietnam 67 (0.2) 62 (0.3) 5 (0.1)
Yugoslavia 16 (0.1) 10 (0.0) 6 (0.1)
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Chapter 5

Methodology

Figure 5.1 illustrates our methodology inspired by Knowledge Discovery in Databases
(KDD) [21], the process of discovering useful knowledge from data. The training pipeline
consists of the following steps: selection, pre-processing, k-folding, modeling, eval-
uation and interpretation.

Figure 5.1: Training pipeline composed of the steps: pre-processing, k-folding splits,
TabNet+SAT model as well the baseline models and interpretation/evaluation.

In the selection step, two types of tabular datasets suitable for a binary classification
task are chosen. The first type is benchmark datasets, especially the ones used in the
TabNet paper [8]. We aim to confirm TabNet results and also evaluate the rejection
option’s performance on those datasets. The second type is medical datasets, focusing
on cardiovascular disease risk prediction. We selected the target variables for the medical
datasets according to the cardiologist Dr. Luiz Sérgio Fernandes de Carvalho.

In the k-folding step, we split data into train/validation stratified k-folds. The same
samples are fed into all models for a fair evaluation. This is done n times randomly,
resulting in k × n experiment runs to assert results stability.

In the pre-processing step, we first clean data of any unnecessary features and labels,
and then missing values are removed or imputed. Our approach to missing values follows
the method used for each dataset when the source code of the experiments is available.
If not, we impute the missing values with zeroes. We also use the method provided by
reference experiments source code for categorical features. When the authors do not
provide this information, categorical features are encoded, and the list of categorical
features is later passed to TabNet as an input parameter. Our goal is to compare with
the reference experiment from the TabNet paper and not to improve data pre-processing.

In the modeling step, we apply our modified version of TabNet, called TabNet+SAT,
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which includes the Self Adaptive Training (SAT) approach according to Huang et al. [33].
SAT technique is explained in Section 2.2.2.

The goal of the TabNet+SAT model is to achieve superior performance with the trade-
off of coverage, thus rejecting the samples that the model prediction is uncertain. Mixing
selective classification with the interpretation capability of TabNet gives medical doctors
and data scientists insights to understand why some samples are correctly classified and
others are not. Also, in a production environment, this kind of classifier could help
physicians make informed decisions about when the prediction is reliable — and not.

Finally, in the evaluation and interpretation step, we use the AUC metric (Area
Under the ROC Curve), as accuracy is tricky due to the imbalance of the dataset. The
rejection is controlled by choosing the level of the rejection threshold based on the third
class, the “unknown” class, that will give the desired coverage. The evaluation metric is
applied only to the selected samples. The interpretation is made by selecting the best
TabNet+SAT model and using the entire dataset to generate predictions. The result
is an activation map matrix of rows as individual samples and the aggregated feature
contribution from each TabNet step as columns. This activation map matrix is normalized
on the sample axis to assess the relative importance of the feature for each sample, giving
an activation map plot. Additionally, the raw probability of each class (negative, positive,
“don’t know”) and the predicted class, the true label, and the rejection label are used for
interpretation.

A simplified pipeline is used for inference. We apply the same pre-processing to
prepare the data that is fed to the trained TabNet+SAT model, which outputs either
a positive, negative, or rejected label based on the threshold hyper-parameter tau. The
network also outputs the feature importance map that enables the domain specialist to
interpret the prediction, knowing which features were considered for the prediction and
their relative importance. The inference pipeline is shown in Figure 5.2.

Figure 5.2: The inference pipeline comprises pre-processing, inference, results, interpre-
tation, and decision by the domain specialist.
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Chapter 6

Experiments and Results

In this chapter, we apply our methodology to several datasets to evaluate TabNet+SAT
performance and its interpretation capabilities. We split the results into two groups
according to the datasets used: TabNet’s paper (Section 6.2) and medical datasets (Sec-
tion 6.3). We spent considerable effort running experiments on all datasets where TabNet
has reported initial results. We chose to demonstrate our results’ reproducibility and show
the performance gained by applying SAT. We also interpreted the results of the Adult
Census dataset, following TabNet’s paper, which uses this dataset as an interpretation
benchmark. The Adult Census dataset is, in fact, a good benchmark for interpretation as
it does not require any specific domain knowledge. The second group consists of two med-
ical datasets not present in TabNet’s paper. The first, the Framingham Heart Study, is a
well-known dataset used to predict the risk of heart diseases. The second is the MI-SIEVE
ACC dataset, a challenging real-world dataset introduced in this Master’s thesis. This
dataset imposes many difficulties for any algorithm and is used to evaluate TabNet+SAT
in the real world.

The experiments are presented in a logical order. Chronologically, this Master’s thesis
starts with experiments on the MI-SIEVE dataset. During such experiments, we found out
how difficult it was to measure the quality of our results and how to interpret them. Most
of the literature focuses on performance, comparing ML algorithms without considering
the challenges of the reliability and interpretability of those predictions. Our results show
that the TabNet+SAT combination addresses the challenges of our research. The failed
results are omitted, but we include several attempts with different selective classification
approaches that were not reproducible, even when using the authors’ source code.

6.1 Experimental Setup

In order to reproduce the TabNet results [8], the fair scenario is to use the same hyper-
parameters and the same data split (train/test) so that the reported accuracy and feature
importance can be confirmed in TabNet and then on TabNet+SAT. Although TabNet
source code is available by the authors1, it does not contain the source code of all experi-
ments. The original implementation was in TensorFlow 1.0 and has not been updated since

1https://github.com/google-research/google-research/tree/master/tabnet

https://github.com/google-research/google-research/tree/master/tabnet
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publication. The paper describes the hyper-parameters, but the dataset pre-processing
is not. There is another implementation available using PyTorch2. In our experiments,
we chose this implementation as it is better documented, up-to-date, object-oriented, and
modular. Also, the eager execution of PyTorch favors debugging.

Here, to better understand each experiment, we explain the hyperparameters used by
TabNet as follows:

• Nd is the width of the decision prediction layer. Bigger values give more capacity
to the model with the risk of overfitting. Values typically range from 8 to 64.

• Na is the width of the attention embedding for each mask.

• λsparse is the extra sparsity loss coefficient. The bigger this coefficient, the sparser
the model is in feature selection.

• B is the number of examples per batch.

• Bv is the virtual batch size, the size of the mini-batches used for “Ghost Batch
Normalization”.

• mB is the momentum for batch normalization.

• Nsteps is the number of steps in the architecture.

• γ is the coefficient for feature reusage in the masks. A value close to 1 makes mask
selection the least correlated between layers.

We compare TabNet+SAT to Random Forest and XGBoost, using the scikit-learn3

implementation with default hyper-parameters.
All experiments were conducted on a 64-bit Debian Linux machine powered by Intel

Xeon CPU 6230 @ 2.10 GHz with 80 cores and 1.0 TB RAM, equipped with 8 NVIDIA
Quadro RTX 8000 GPUs with 48GB dedicated memory. Our source code is in Python.

6.2 TabNet Datasets

6.2.1 Mushroom

The Mushroom dataset is the simplest of all datasets used by TabNet. The authors
reported 100% binary accuracy in the test set, which consists of only 8,124 samples. We
include it here for completeness, as we aim to reproduce our experiments in all TabNet
datasets. The paper does not inform which pre-processing is done. As all features are
categorical, we use dummy encoding to transform categorical features into numerical
features. This increases the number of features from 22 to 117. The hyper-parameters
used are the same as reported in TabNet’s paper: Nd = Na = 8, λsparse = 0.001, B = 2048,
Bv = 128, mB = 0.9, Nsteps = 3, and γ = 1.5.

In our results, we also achieved 100% in all three algorithms: Random Forest, XGBoost,
and TabNet, thus confirming TabNet results.

2https://github.com/dreamquark-ai/tabnet/blob/develop/census_example.ipynb
3https://scikit-learn.org

https://github.com/dreamquark-ai/tabnet/blob/develop/census_example.ipynb
https://scikit-learn.org
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6.2.2 KDD Cup 2009

The KDD Cup 2009 dataset consists of three independent binary classification tasks with
the same label features: appetency, churn, and upselling. We treated the three tasks as
experiments with only the data preparation in common.

TabNet’s paper does not provide the source code or details of data pre-processing, but
it mentions that they used the pre-processing and split of Prohorenkoa et al. [56]. We
consider that this refers to their code available on GitHub4. To compare the results, we
use the same pre-processing, but we do not use the same split provided by Prokhorenkova
et al. [56]. We split the data twice using a stratified 5-fold cross-validation, resulting in
10 experiments.

The pre-processing is done by imputing missing data with zeroes. The categorical data
is encoded by casting the string values to the “category” data type and replacing them with
the categorical codes. The hyper-parameters used were: Nd = Na = 32, λsparse = 0.001,
B = 8, 192, Bv = 256, mB = 0.9, Nsteps = 7, and γ = 1.2. All those hyper-parameters
were obtained from TabNet’s paper.

TabNet [8] reported an accuracy of 98.2% for appetency, 92.7% for churn, and 95.0%
for upselling in the test set. Although the results seem high, the accuracy metric is
very misleading and should not be used on imbalanced datasets. Out of 50,000 labels,
appetency has 890 positive labels (1.8%), churn has 3,672 positive labels (7.3%), and
upselling has 3,682 positive labels (7.4%). A better metric is AUC or balanced accuracy.
We chose AUC as our default metric, but for all experiments, we have also calculated
for other metrics. A classifier that predicts the negative class will reach such accuracy.
Moreover, in our experiments, this is exactly what happens for Random Forest, XGBoost,
and TabNet. All reach the same reported accuracy by just predicting the negative class.

To achieve meaningful results, we decided to automatically balance samples using
inverse frequencies, and then TabNet did not overfit in the negative class. Its accuracy
was much lower, but it achieved a higher AUC and balanced accuracy. Table 6.1 shows an
AUC comparison between algorithms. What is also interesting and confirms our research
is that the TabNet+SAT model could also improve its results when trading-off coverage.
This also indicates that TabNet+SAT could not only classify the samples but also identify,
to some extent, the uncertain ones.

In our experiment, we achieved 0.792 AUC in appetency, 0.699 AUC in churn, and
0.836 AUC in upselling. For all three datasets, TabNet+SAT could increase the AUC
by sacrificing coverage. At 70% coverage, we achieved 0.836 AUC in appetency (+0.044
gain), 0.740 AUC in churn (+0.041 gain), and 0.900 AUC in upselling (+0.064 gain).
TabNet and TabNet+SAT at 100% coverage results are very close to each other but are
different because they are different executions of the experiment. Thus, the network was
trained from scratch again. We cannot interpret the results because those three datasets
have anonymized features. We discuss interpretability for other datasets. For KDD, it
is enough to highlight TabNet+SAT’s capability of increasing performance on all three
KDD datasets when sacrificing coverage. Figure 6.1 shows all algorithms’ mean AUC of

4https://github.com/catboost/benchmarks/blob/master/quality_benchmarks/prepare_appet
ency_churn_upselling/prepare_appetency_churn_upselling.ipynb

https://github.com/catboost/benchmarks/blob/master/quality_benchmarks/prepare_appetency_churn_upselling/prepare_appetency_churn_upselling.ipynb
https://github.com/catboost/benchmarks/blob/master/quality_benchmarks/prepare_appetency_churn_upselling/prepare_appetency_churn_upselling.ipynb
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Table 6.1: KDD Cup 2009 AUC results averaged of all 10 runs for Random Forest,
XGBoost, TabNet, and TabNet+SAT for various coverage rates. TabNet+SAT-c% stands
for TabNet+SAT under c coverage rate.

AUC
appetency churn upselling

Random Forest 0.736 ± 0.009 0.679 ± 0.008 0.823 ± 0.008

XGBoost 0.787 ± 0.012 0.703 ± 0.008 0.850 ± 0.006

TabNet 0.792 ± 0.017 0.699 ± 0.016 0.836 ± 0.016

TabNet+SAT-100% 0.789 ± 0.021 0.706 ± 0.008 0.835 ± 0.018

TabNet+SAT-90% 0.806 ± 0.023 0.717 ± 0.009 0.854 ± 0.019

TabNet+SAT-80% 0.822 ± 0.024 0.728 ± 0.010 0.876 ± 0.020

TabNet+SAT-70% 0.836 ± 0.025 0.740 ± 0.009 0.900 ± 0.021

appetency, churn, and upselling. We can see how the metric increases when we apply
rejection by sacrificing coverage.

Figure 6.1: KDD AUC results of appetency, churn, and upselling for all algorithms.

6.2.3 HIGGS

The HIGGS dataset is the biggest of all TabNet datasets. It comprises 11,000,000 samples
and 28 features. The original TabNet’s paper intention with this dataset was to compare
TabNet accuracy with different dataset sizes. Because TabNet is a DNN, it was expected
to benefit from a huge sample size. TabNet’s paper reports experiments with two TabNet
versions: one small, 81,000 parameters, and one medium, 660,000 parameters. As this
dataset takes considerable time to train, we evaluated the small version: TabNet-S.

TabNet-S hyper-parameters are Nd = 24, Na = 26, λsparse = 0.000001, B = 163384,
Bv = 512, mB = 0.6, Nsteps = 5, and γ = 1.5. The learning rate initial value is 0.02 and
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decreases with a 0.9 ratio every 50 epochs. TabNet-S [8] achieved 78.8% accuracy in the
test set.

In order to compare the results, we used the same hyper-parameters reported. The
TabNet paper reported no pre-processing. The original train/test split was not made
available by the authors. To reduce experiment time, we used a stratified 5-fold cross-
validation without repeating it twice (as done for other experiments).

Experiment results confirmed that the dataset size was beneficial to TabNet. As shown
in Table 6.2, TabNet exceeded Random Forest and XGBoost results. XGBoost achieved
an AUC of 0.823, Random Forest 0.840, and TabNet 0.863. TabNet paper does not report
the AUC but the accuracy, which can be misleading, especially in unbalanced datasets.
Nevertheless, we also computed the accuracy to compare with the TabNet paper. The
original paper reported a 78.8% accuracy, without informing if pre-training5 was used
or dataset fraction, while we achieved 77.0% without pre-training and 77.6% with pre-
training. The difference is up to 1.8 percentage points. Even with this difference, the
numbers demonstrate that the results are reproducible.

Table 6.2: HIGGS AUC results averaged of all 5 runs for Random Forest, XGBoost,
TabNet, and TabNet+SAT for various coverage rates. TabNet+SAT-c% stands for Tab-
Net+SAT under c coverage rate.

AUC
Random Forest 0.840 ± 0.001

XGBoost 0.823 ± 0.001

TabNet 0.856 ± 0.005

TabNet+SAT-100% 0.847 ± 0.003

TabNet+SAT-90% 0.864 ± 0.003

TabNet+SAT-80% 0.881 ± 0.003

TabNet+SAT-70% 0.897 ± 0.003

The performance gain from unsupervised learning was 0.007. Although not negligible,
the impact is low when all the dataset is labeled. TabNet paper reports one experiment
with 100,000 samples in which test accuracy increased from 72.9% to 73.2% (+0.27%).
The gain is much higher with 1,000 samples, from 57.5% to 61.4% (+3.9%) with pre-
training. In real-world scenarios, pre-training could be very beneficial if many samples are
unlabeled, and TabNet could be only fine-tuned in the small labeled fraction. Experiments
with other datasets have not demonstrated significant performance gain with pre-training.

Finally, in Table 6.2, we also observe that TabNet+SAT AUC increased from 0.847
at 100% coverage to 0.897 at 70% coverage, a five percentage points. This confirms that
SAT can learn how to reject samples for different dataset sizes. Figure 6.2 shows the mean
AUC of the HIGGS experiment for all algorithms. We can see how the metric increases
when we apply rejection by sacrificing coverage.

Regarding the model interpretability, as the HIGGS dataset domain is related to sub-
atomic particles, it is hard to interpret. We discuss the interpretability in the next section.

5TabNet is pretrained as an unsupervised model (i.e., with a self-supervised learning task).
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Figure 6.2: HIGGS AUC results for all algorithms.

6.2.4 Adult Census

TabNet authors chose the Adult Census dataset to demonstrate the interpretation capa-
bilities of TabNet. Its features are comprehensible and do not require any domain knowl-
edge. Following TabNet’s paper [8], we also use this dataset to evaluate and demonstrate
TabNet+SAT interpretability.

TabNet [8] reported accuracy of 85.7% in the test set (not available) using the following
hyper-parameters: Nd = Na = 16, λsparse = 0.0001, B = 4096, Bv = 128, mB = 0.98,
Nsteps = 5, and γ = 1.5. The original paper does not mention the settings for learning
rate and training epochs. Dreamquark-ai Pytorch example uses the following hyper-
parameters: Nd = Na = 8, λsparse = 0.0001, B = 1024, Bv = 128, mB = 0.02, Nsteps = 5,
and γ = 1.3. The learning rate initial value is 0.02 and decreases every 50 epochs with a
0.9 ratio. The only pre-processing applied was encoding the non-numerical features using
the scikit-learn label encoder and imputing missing values using the feature’s mean value.
The provided source code is reproducible and achieved an accuracy of 82.7%. Although
originally, the accuracy metric was used, we also computed AUC. Dreamquark-ai Adult
Census example achieved an AUC of 0.918.

The same hyper-parameters the TabNet’s paper provided and the Dreamquark-ai ex-
ample pre-processed were used. We also used a 5-fold cross-validation twice, resulting in
10 experiments. We achieved an average accuracy of 82.5% and an average AUC of 0.924.
Table 6.3 shows the results for TabNet, Random Forest, and XGBoost algorithms, and
our TabNet+SAT results under coverage rates ranging from 70% to 100%.

TabNet performance was practically equal to XGBoost and better than Random For-
est, confirming the TabNet findings. We also confirm that applying SAT on TabNet
significantly increases its performance. With 70% of coverage, the AUC increases from
0.924 to 0.969. This means that the TabNet+SAT model learns which samples had the
highest uncertainty and thus rejects them. Figure 6.3 shows the mean AUC of the Adult
Census experiment for all algorithms. We can see how the metric increases when we apply
rejection by sacrificing coverage.
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Table 6.3: Adult Census AUC results averaged of all 10 runs for Random Forest, XG-
Boost, TabNet, and TabNet+SAT for various coverage rates. TabNet+SAT-c% stands
for TabNet+SAT under c coverage rate.

AUC
Random Forest 0.907 ± 0.004

XGBoost 0.926 ± 0.003

TabNet 0.926 ± 0.004

TabNet+SAT-100% 0.926 ± 0.004

TabNet+SAT-90% 0.942 ± 0.004

TabNet+SAT-80% 0.957 ± 0.004

TabNet+SAT-70% 0.969 ± 0.003

Figure 6.3: Adult Census results for all algorithms.

Let us now consider the model interpretability. Figure 6.4 represents feature impor-
tances for all 10 training splits. The vertical axis contains the names of the features,
while the horizontal axis contains the relative importance in percentage, summing up to
100%. We bring the attention that the importance varies according to the training split,
and this variance is not negligible. Despite the variance, we can still interpret which
feature group is the most important. For instance, capital-gain (see Table 4.8) is the
most important feature on 9 out of 10 runs. The feature age is also important, but our
results differ from TabNet paper because they report age as the most important one. It
is reasonable to assume that this difference is actually due to different models learning
different representations based on different feature importances.

To answer the question of rejection interpretation, we propose a selective classification
interpretation map inspired by the heatmap plot of the SHAP python package [45]. Fig-
ure 6.5 displays this plot, with samples sorted by uncertainty, with the least uncertain at
the top and the most uncertain at the bottom. The left side heatmap is similar to TabNet
aggregated attention map, with values normalized considering the entire dataset. Points
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Figure 6.4: The TabNet+SAT feature importance plots for each run. There is considerable
variability between the runs.
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with colors near yellow received most of the neural network attention. The purple points
received the slightest attention. The right side heatmap provides insight into the labels.
Pre_Negative, Pred_Positive, and uncertainty sum to one, as explained in Section 2.2.2.
Using the blue to red scale, white stands right in the middle and can be interpreted as
doubt. Predicted is equal to one if Pred_Positive is greater than Pred_Negative, and
zero otherwise. True_Positive is the ground truth label. Placing Pred_Positive side by
side with Predicted helps to identify the regions that the model is classifying correctly or
not. Norm_uncertainty is the normalized value of uncertainty, from 0 to 1, considering
the entire dataset. Finally, rejected column indicates if the sample was rejected, which
happens when uncertainty is above the calculated threshold for the given coverage. For
Figure 6.5, the rejected blue area covers 70% of the image, as this was the requested
coverage. TabNet’ paper does not sort this plot, but we found that sorting could help
interpretability and naturally provide meaning for certain regions.

We can distinctly see three regions. Region 1, samples ranging from 0 to 5,000 in
Figure 6.6, has a very consistent group of samples with no rejection and very accurate
predictions. The capital-gain is the most active feature for this group. A high capital-gain
means a higher income. The model ignores marital-status, sex, and relationship in this
case. We will further explore whether those features are the cause of uncertainty.

In region 2, samples ranging from 5,000 to 20,000, we see most samples classified
as low income. Despite the small amount, the positive samples here are still correctly
classified, and, for those, we observe that the TabNet+SAT pays attention to capital-
gain. For negative samples, the attention in this region is shifted towards marital-status
and relationship. In the third region, samples ranging from 20,000 to 32,000, we see a
gradual increase in uncertainty and a growing misclassification. In this region, we see
divided attention on capital gain, occupation, marital-status, and relationship. Although
these are, in fact, features that relate to income, they are not decisive. In other words,
occupation, for example, can also contribute significantly to income, but this cannot be a
general rule. The exceptions for those cases impact the accuracy and thus contribute to a
higher uncertainty value. As can be seen, TabNet+SAT correctly identifies those samples
and reject classifying them.

The categorical features occupation, marital-status, and relationship are also sources
of uncertainty. Figure 6.7 is a Marimekko6 chart that demonstrates which categorical
values are driving uncertainty. We observe that “craft-repair” and “transport-moving”
both have around 50% of rejection rate. This means that for the dataset samples with
the categorical feature occupation with such values, TabNet+SAT has a higher error
rate, and thus while minimizing the SAT loss, the network understands the pattern and
rejections from classifying half of the samples which have “craft-repair” and “transport-
moving”. We cannot further drill down and understand how those features were collected,
but interestingly, TabNet+SAT points to a problem with a specific feature and on specific
values of those features. In real-world datasets, data scientists could further engineer
those features, for example, separating the “transport-moving” feature into airplane pilot,
truck driver, or taxi driver.

We observe similar behavior in marital-status and relationship, which are proxies of
6https://datavizcatalogue.com/methods/marimekko_chart.html

https://datavizcatalogue.com/methods/marimekko_chart.html
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Figure 6.5: The whole Adult Census dataset rejection option interpretation map with
feature activation map and prediction outputs. Features are sorted by importance, and
samples are sorted by uncertainty.

Figure 6.6: Regions 1. Samples from 0 to 5000 demonstrate accurate predictions with a
high emphasis on the capital gain.
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(a) Occupations “craft-repair” and “transport-moving” are the ones with higher rejection rates.

(b) Relationship “married-civ-spouse” has near 50% of rejection rate.

(c) Marital-status “husband” and “wife” have near 50% of rejection rate.

Figure 6.7: Adult Census Marimekko plots of categorical features demonstrating which
categories are responsible for higher rejection rates, thus, sources of uncertainty.
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each other. Clearly, TabNet+SAT has a problem classifying samples of husbands. As we
also observe in Table 6.4, TabNet+SAT predicts that out of 13,193 husbands, 9,479 have
an income higher than 50K. This is incorrect because the ground truth tells that only
5,918 husbands have such income. TabNet+SAT compensates for this error with a higher
rejection rate, rejecting 6,614 samples of the dataset that have the relationship feature as
a husband. Here, we have a clear case of a neural network being affected by a dataset
bias and exacerbating it. In other words, if a sample is from a husband, guessing a higher
income will favor the classification results, so the neural network exacerbates the bias
already present in the dataset. But with SAT, there is also an option to abstain because
the algorithm is not forced to guess. Thus, being a source of error, TabNet+SAT learns
to attribute uncertainty to those samples and thus reject it.

Table 6.4: Baseline characteristics of the Adult Census dataset grouped by predicted
class, ground truth class, and rejection.

Grouped by Predicted Grouped by True_Positive Grouped by rejected
Overall 0 1 0 1 0 1

n 32561 20687 11874 24720 7841 22632 9929
age, mean (SD) 21.6 (13.6) 18.5 (14.2) 26.9 (10.6) 19.8 (14.0) 27.2 (10.5) 20.1 (14.1) 25.0 (11.9)

? 1836 (5.6) 1525 (7.4) 311 (2.6) 1645 (6.7) 191 (2.4) 1390 (6.1) 446 (4.5)
Federal-gov 960 (2.9) 475 (2.3) 485 (4.1) 589 (2.4) 371 (4.7) 636 (2.8) 324 (3.3)

Local-gov 2093 (6.4) 1173 (5.7) 920 (7.7) 1476 (6.0) 617 (7.9) 1422 (6.3) 671 (6.8)
Never-worked 7 (0.0) 7 (0.0) 7 (0.0) 6 (0.0) 1 (0.0)

Private 22696 (69.7) 15141 (73.2) 7555 (63.6) 17733 (71.7) 4963 (63.3) 16221 (71.7) 6475 (65.2)
Self-emp-inc 1116 (3.4) 306 (1.5) 810 (6.8) 494 (2.0) 622 (7.9) 694 (3.1) 422 (4.3)

Self-emp-not-inc 2541 (7.8) 1285 (6.2) 1256 (10.6) 1817 (7.4) 724 (9.2) 1356 (6.0) 1185 (11.9)
State-gov 1298 (4.0) 765 (3.7) 533 (4.5) 945 (3.8) 353 (4.5) 897 (4.0) 401 (4.0)

workclass, n (%) Without-pay 14 (0.0) 10 (0.0) 4 (0.0) 14 (0.1) 10 (0.0) 4 (0.0)
fnlwgt, mean (SD) 189778.4 (105550.0) 191916.7 (106956.3) 186052.9 (102952.4) 190340.9 (106482.3) 188005.0 (102541.8) 193704.5 (107892.7) 180829.1 (99432.5)

10th 933 (2.9) 899 (4.3) 34 (0.3) 871 (3.5) 62 (0.8) 716 (3.2) 217 (2.2)
11th 1175 (3.6) 1136 (5.5) 39 (0.3) 1115 (4.5) 60 (0.8) 986 (4.4) 189 (1.9)
12th 433 (1.3) 380 (1.8) 53 (0.4) 400 (1.6) 33 (0.4) 346 (1.5) 87 (0.9)

1st-4th 168 (0.5) 163 (0.8) 5 (0.0) 162 (0.7) 6 (0.1) 136 (0.6) 32 (0.3)
5th-6th 333 (1.0) 321 (1.6) 12 (0.1) 317 (1.3) 16 (0.2) 307 (1.4) 26 (0.3)
7th-8th 646 (2.0) 601 (2.9) 45 (0.4) 606 (2.5) 40 (0.5) 498 (2.2) 148 (1.5)

9th 514 (1.6) 506 (2.4) 8 (0.1) 487 (2.0) 27 (0.3) 403 (1.8) 111 (1.1)
Assoc-acdm 1067 (3.3) 632 (3.1) 435 (3.7) 802 (3.2) 265 (3.4) 688 (3.0) 379 (3.8)

Assoc-voc 1382 (4.2) 805 (3.9) 577 (4.9) 1021 (4.1) 361 (4.6) 803 (3.5) 579 (5.8)
Bachelors 5355 (16.4) 2331 (11.3) 3024 (25.5) 3134 (12.7) 2221 (28.3) 3756 (16.6) 1599 (16.1)
Doctorate 413 (1.3) 42 (0.2) 371 (3.1) 107 (0.4) 306 (3.9) 325 (1.4) 88 (0.9)

HS-grad 10501 (32.3) 7451 (36.0) 3050 (25.7) 8826 (35.7) 1675 (21.4) 6592 (29.1) 3909 (39.4)
Masters 1723 (5.3) 471 (2.3) 1252 (10.5) 764 (3.1) 959 (12.2) 1285 (5.7) 438 (4.4)

Preschool 51 (0.2) 51 (0.2) 51 (0.2) 51 (0.2)
Prof-school 576 (1.8) 49 (0.2) 527 (4.4) 153 (0.6) 423 (5.4) 478 (2.1) 98 (1.0)

education, n (%) Some-college 7291 (22.4) 4849 (23.4) 2442 (20.6) 5904 (23.9) 1387 (17.7) 5262 (23.3) 2029 (20.4)
education-num, mean (SD) 9.1 (2.6) 8.3 (2.4) 10.4 (2.2) 8.6 (2.4) 10.6 (2.4) 9.0 (2.7) 9.2 (2.2)

Divorced 4443 (13.6) 3934 (19.0) 509 (4.3) 3980 (16.1) 463 (5.9) 3339 (14.8) 1104 (11.1)
Married-AF-spouse 23 (0.1) 12 (0.1) 11 (0.1) 13 (0.1) 10 (0.1) 9 (0.0) 14 (0.1)
Married-civ-spouse 14976 (46.0) 4267 (20.6) 10709 (90.2) 8284 (33.5) 6692 (85.3) 7616 (33.7) 7360 (74.1)

Married-spouse-absent 418 (1.3) 379 (1.8) 39 (0.3) 384 (1.6) 34 (0.4) 337 (1.5) 81 (0.8)
Never-married 10683 (32.8) 10200 (49.3) 483 (4.1) 10192 (41.2) 491 (6.3) 9572 (42.3) 1111 (11.2)

Separated 1025 (3.1) 971 (4.7) 54 (0.5) 959 (3.9) 66 (0.8) 911 (4.0) 114 (1.1)
marital-status, n (%) Widowed 993 (3.0) 924 (4.5) 69 (0.6) 908 (3.7) 85 (1.1) 848 (3.7) 145 (1.5)

? 1843 (5.7) 1532 (7.4) 311 (2.6) 1652 (6.7) 191 (2.4) 1396 (6.2) 447 (4.5)
Adm-clerical 3770 (11.6) 2929 (14.2) 841 (7.1) 3263 (13.2) 507 (6.5) 3011 (13.3) 759 (7.6)

Armed-Forces 9 (0.0) 8 (0.0) 1 (0.0) 8 (0.0) 1 (0.0) 7 (0.0) 2 (0.0)
Craft-repair 4099 (12.6) 2362 (11.4) 1737 (14.6) 3170 (12.8) 929 (11.8) 2054 (9.1) 2045 (20.6)

Exec-managerial 4066 (12.5) 1414 (6.8) 2652 (22.3) 2098 (8.5) 1968 (25.1) 2902 (12.8) 1164 (11.7)
Farming-fishing 994 (3.1) 867 (4.2) 127 (1.1) 879 (3.6) 115 (1.5) 668 (3.0) 326 (3.3)

Handlers-cleaners 1370 (4.2) 1256 (6.1) 114 (1.0) 1284 (5.2) 86 (1.1) 1075 (4.7) 295 (3.0)
Machine-op-inspct 2002 (6.1) 1524 (7.4) 478 (4.0) 1752 (7.1) 250 (3.2) 1288 (5.7) 714 (7.2)

Other-service 3295 (10.1) 3063 (14.8) 232 (2.0) 3158 (12.8) 137 (1.7) 2777 (12.3) 518 (5.2)
Priv-house-serv 149 (0.5) 146 (0.7) 3 (0.0) 148 (0.6) 1 (0.0) 139 (0.6) 10 (0.1)

Prof-specialty 4140 (12.7) 1681 (8.1) 2459 (20.7) 2281 (9.2) 1859 (23.7) 2960 (13.1) 1180 (11.9)
Protective-serv 649 (2.0) 305 (1.5) 344 (2.9) 438 (1.8) 211 (2.7) 380 (1.7) 269 (2.7)

Sales 3650 (11.2) 2101 (10.2) 1549 (13.0) 2667 (10.8) 983 (12.5) 2565 (11.3) 1085 (10.9)
Tech-support 928 (2.9) 522 (2.5) 406 (3.4) 645 (2.6) 283 (3.6) 650 (2.9) 278 (2.8)

occupation, n (%) Transport-moving 1597 (4.9) 977 (4.7) 620 (5.2) 1277 (5.2) 320 (4.1) 760 (3.4) 837 (8.4)
Husband 13193 (40.5) 3714 (18.0) 9479 (79.8) 7275 (29.4) 5918 (75.5) 6579 (29.1) 6614 (66.6)

Not-in-family 8305 (25.5) 7420 (35.9) 885 (7.5) 7449 (30.1) 856 (10.9) 6319 (27.9) 1986 (20.0)
Other-relative 981 (3.0) 927 (4.5) 54 (0.5) 944 (3.8) 37 (0.5) 879 (3.9) 102 (1.0)

Own-child 5068 (15.6) 5011 (24.2) 57 (0.5) 5001 (20.2) 67 (0.9) 4975 (22.0) 93 (0.9)
Unmarried 3446 (10.6) 3233 (15.6) 213 (1.8) 3228 (13.1) 218 (2.8) 3005 (13.3) 441 (4.4)

relationship, n (%) Wife 1568 (4.8) 382 (1.8) 1186 (10.0) 823 (3.3) 745 (9.5) 875 (3.9) 693 (7.0)
Amer-Indian-Eskimo 311 (1.0) 246 (1.2) 65 (0.5) 275 (1.1) 36 (0.5) 223 (1.0) 88 (0.9)

Asian-Pac-Islander 1039 (3.2) 611 (3.0) 428 (3.6) 763 (3.1) 276 (3.5) 727 (3.2) 312 (3.1)
Black 3124 (9.6) 2557 (12.4) 567 (4.8) 2737 (11.1) 387 (4.9) 2509 (11.1) 615 (6.2)
Other 271 (0.8) 225 (1.1) 46 (0.4) 246 (1.0) 25 (0.3) 204 (0.9) 67 (0.7)

race, n (%) White 27816 (85.4) 17048 (82.4) 10768 (90.7) 20699 (83.7) 7117 (90.8) 18969 (83.8) 8847 (89.1)
Female 10771 (33.1) 9192 (44.4) 1579 (13.3) 9592 (38.8) 1179 (15.0) 9151 (40.4) 1620 (16.3)

sex, n (%) Male 21790 (66.9) 11495 (55.6) 10295 (86.7) 15128 (61.2) 6662 (85.0) 13481 (59.6) 8309 (83.7)
capital-gain, mean (SD) 6.5 (23.3) 2.4 (11.8) 13.7 (34.1) 2.0 (11.0) 20.6 (40.2) 9.3 (27.4) 0.2 (3.7)
capital-loss, mean (SD) 2.1 (10.1) 1.3 (7.5) 3.4 (13.3) 1.1 (7.2) 5.0 (15.7) 2.9 (11.7) 0.2 (3.7)

hours-per-week, mean (SD) 39.4 (12.1) 36.9 (11.9) 43.8 (11.3) 37.8 (12.1) 44.4 (10.7) 38.2 (12.2) 42.1 (11.6)
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6.3 Medical Datasets

6.3.1 Framingham Heart Study

Framingham Heart Study is our first medical dataset. TabNet’s original paper did not
report it, but it is well-known by cardiologists and widely used. As the dataset is small
and unbalanced, it was necessary to use a portion of the data for the validation split.
Initially, we applied a stratified k-fold cross-validation with five folds, resulting in very
few positive samples on the validation set. Thus, we used k = 3 for three rounds, with
random splits, to evaluate experiment variance.

To compare TabNet results with traditional tabular algorithms, we fit the same data
on Random Forest [12] and XGBoost [13] as a baseline. We fit the data on an unmodified
version of TabNet without selective classification as a sanity check. The default hyper-
parameters were used for Random Forest and XGBoost, as our objective was not to
fine-tune any model but compare the results. TabNet hyper-parameters were Na = 8,
Nd = 8, Nsteps = 3, learning rate = 2e−2, learning rate decay = 0.9, decay steps = 10,
batch size = 256, virtual batch size = 128, and patience = 50 epochs.

The average AUC for TabNet was 0.764, for Random Forest 0.760, and 0.736 for
XGBoost. TabNet+SAT achieved an average AUC of 0.768 at 100% coverage. Again,
SAT proved to be a useful tool to improve metrics. A significant increase in AUC was
achieved, reaching 0.815 (+0.051) at 70% coverage. The values for all nine runs can be
found in Table 6.5.

Table 6.5: Framingham Heart Study AUC results averaged of all 9 runs for Random
Forest, XGBoost, TabNet, and TabNet+SAT for various coverage rates. TabNet+SAT-
c% stands for TabNet+SAT under c coverage rate.

AUC
Random Forest 0.760 ± 0.005

XGBoost 0.736 ± 0.009

TabNet 0.764 ± 0.003

TabNet+SAT-100% 0.768 ± 0.005

TabNet+SAT-90% 0.783 ± 0.005

TabNet+SAT-80% 0.799 ± 0.006

TabNet+SAT-70% 0.815 ± 0.007

To interpret the results, we used the aggregated TabNet activation map, side by side
with the results of the predictions (raw positive and negative probabilities, predicted value,
ground truth, uncertainty, normalized uncertainty, and rejection result). As we have raw
probabilities for positive and negative classes, uncertainty is the raw probability of the
unknown class. Features are sorted by importance, while samples are sorted in Figure 6.8
by uncertainty, from the lowest to the highest uncertainty. Details of this chart were given
in Section 6.2.4. As the samples are sorted by uncertainty, we can interpret this figure by
observing the distinct sections of samples. In the topmost part, from samples 0 to about
1,000, we can see a section where the uncertainty is practically zero, and all samples
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Figure 6.8: Framingham Heart Study rejection option interpretation map with feature
activation map and prediction outputs. Features are sorted by importance, and samples
are sorted by uncertainty.

are correctly classified as positive. We can identify the dominance of the PREVCHD
(prevalent coronary heart disease) feature. In the second section, from samples 1,000
to 5,000, there is a low uncertainty and low error section with samples predominantly
classified as negative samples.

From sample 5,000 below, there is a gradual increase in uncertainty and prediction
error. This means that the network could correctly identify the features responsible for
the prediction error increase. This should not be taken for granted. This is happening
because TabNet+SAT has learned to reject while training and not after it due to its
special SAT loss. Finally, as we opted for a 70% dataset coverage, samples below 8,000
and beyond are marked as rejected based on a calculated threshold.

An alternative way of understanding is the interpretation results table, with base-
line characteristics of each feature. This table counts every categorical feature value and
compares the samples by predicted, true_positive (ground truth), and rejection. For
numerical features, it gives the mean and standard deviation values. For healthcare pro-
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fessionals used to this view, it is possible to identify which feature drives both prediction
and rejection. We omitted some irrelevant features for brevity and kept the most relevant
ones in Table 6.6.

Grouped by Predicted Grouped by True_Positive Grouped by rejected
Overall 0 1 0 1 0 1

n 11627 7496 4131 8469 3158 8253 3374
AGE, mean (SD) 54.8 (9.6) 52.7 (9.3) 58.6 (8.7) 53.8 (9.4) 57.4 (9.5) 54.5 (9.7) 55.4 (9.1)

0 6598 (56.7) 4364 (58.2) 2234 (54.1) 4804 (56.7) 1794 (56.8) 4784 (58.0) 1814 (53.8)
CURSMOKE, n (%) 1 5029 (43.3) 3132 (41.8) 1897 (45.9) 3665 (43.3) 1364 (43.2) 3469 (42.0) 1560 (46.2)

0 11097 (95.4) 7327 (97.7) 3770 (91.3) 8219 (97.0) 2878 (91.1) 7837 (95.0) 3260 (96.6)
DIABETES, n (%) 1 530 (4.6) 169 (2.3) 361 (8.7) 250 (3.0) 280 (8.9) 416 (5.0) 114 (3.4)
DIABP, mean (SD) 83.0 (11.7) 80.4 (10.1) 87.9 (12.7) 82.1 (11.2) 85.6 (12.5) 82.3 (11.8) 84.8 (11.2)

GLUCOSE, mean (SD) 73.7 (36.3) 71.4 (32.6) 77.9 (41.7) 72.5 (33.7) 76.8 (42.3) 73.7 (37.2) 73.6 (33.9)
0 11000 (94.6) 7496 (100.0) 3504 (84.8) 8469 (100.0) 2531 (80.1) 7626 (92.4) 3374 (100.0)

PREVAP, n (%) 1 627 (5.4) 627 (15.2) 627 (19.9) 627 (7.6)
0 10785 (92.8) 7496 (100.0) 3289 (79.6) 8469 (100.0) 2316 (73.3) 7411 (89.8) 3374 (100.0)

PREVCHD, n (%) 1 842 (7.2) 842 (20.4) 842 (26.7) 842 (10.2)
0 6283 (54.0) 4980 (66.4) 1303 (31.5) 5017 (59.2) 1266 (40.1) 4674 (56.6) 1609 (47.7)

PREVHYP, n (%) 1 5344 (46.0) 2516 (33.6) 2828 (68.5) 3452 (40.8) 1892 (59.9) 3579 (43.4) 1765 (52.3)
0 11253 (96.8) 7496 (100.0) 3757 (90.9) 8469 (100.0) 2784 (88.2) 7879 (95.5) 3374 (100.0)

PREVMI, n (%) 1 374 (3.2) 374 (9.1) 374 (11.8) 374 (4.5)
0 11475 (98.7) 7436 (99.2) 4039 (97.8) 8388 (99.0) 3087 (97.8) 8142 (98.7) 3333 (98.8)

PREVSTRK, n (%) 1 152 (1.3) 60 (0.8) 92 (2.2) 81 (1.0) 71 (2.2) 111 (1.3) 41 (1.2)
0 5022 (43.2) 2183 (29.1) 2839 (68.7) 3255 (38.4) 1767 (56.0) 3043 (36.9) 1979 (58.7)

SEX, n (%) 1 6605 (56.8) 5313 (70.9) 1292 (31.3) 5214 (61.6) 1391 (44.0) 5210 (63.1) 1395 (41.3)
SYSBP, mean (SD) 136.3 (22.8) 129.4 (18.5) 148.9 (24.4) 133.6 (21.6) 143.5 (24.4) 135.2 (23.5) 139.1 (20.8)

TOTCHOL, mean (SD) 232.7 (62.9) 225.3 (60.5) 246.1 (64.9) 229.7 (61.7) 240.7 (65.3) 227.7 (66.2) 244.8 (52.3)

Table 6.6: Framingham Heart Study interpretation results.

This table highlights two interesting things. First, the different distribution of PRE-
VCHD=0 samples rejected (3,374 rejected, 7,411 accepted) compared with ground truth
distribution (8,169 negatives, 2,316 positives). Secondly, observing the SEX feature, the
male/female proportion of the rejected samples is quite different from the accepted sam-
ples. These two highlight which predictors are the most confusing for the model. This
can be confirmed and better understood with the density plots of Figure 6.9 and 6.10.

In Figure 6.9, we show a density plot of PREVCHD attention × norm_uncertainty.
This figure demonstrates that all samples with a PREVCHD value of 1, in red, have no
uncertainty, while samples with a PREVCHD value of zero have weaker but still relevant
attention and a wide range of uncertainty, from 0 to 0.8. As 98% of the dataset has a
PREVCHD value of 0, we need to further search for the focus of doubt. We do this by an-
alyzing Figure 6.10, a density plot of SEX attention × norm_uncertainty. Confirming our
findings in Table 6.6, there is a significant difference of uncertainty depending on the SEX
value, and we see a higher concentration of male patients around 0.8 norm_uncertainty
value, while female patients distribution is more widespread. As can be seen in Table 6.6,
from a total of 5,022 men, 1,979 were rejected (∼40%), while from a total of 6,605 women,
1,395 (∼20%) were rejected. This indicates that our trained model has difficulties pre-
dicting cardiovascular risk for men without PREVCHD. This fact is curious and confirms
that risk factors affect men and women differently [46,74]. Although the discussion of risk
factors for men and women is beyond the objective of this Master’s thesis, our objective
here is to demonstrate that with our approach, TabNet+SAT, the trained model now
“knows” when it does not know and which features are driving the uncertainty.
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Figure 6.9: Framingham Heart Study PREVCHD attention × Uncertainty indicating high
uncertainty for PREVCHD=0 (no prevalent coronary heart disease).

Figure 6.10: Framingham Heart Study PREVCHD × uncertainty segmented by
male/female, for patients with (PREVCHD=1) and without (PREVCHD=0) prevalent
coronary heart disease.

6.3.2 MI-SIEVE ACC

We created the MI-SIEVE ACC dataset with real-world data collected from hospitals and
clinics in Brazil. It has also never been used for ML before. To better know the available
data, we started with exploratory experiments. Initially, there were several outcomes in
the “evolution” table. For the exploratory experiments, we chose “sucesso_clinico” as it
was the outcome that combined all other outcomes. However, we soon realized that we
would need to compare our results with baseline risk calculators.

Thus, we decided to perform two experiments on this dataset. The first was the com-
parison with the baseline risk calculator TIMI [6], and the second used all features avail-
able. We could not evaluate TIMI-50 [11] due to an incompatible endpoint, as TIMI-50
has a long-term endpoint, and all outcomes of the MI-SIEVE ACC dataset are short-term.

We also tried to use the GRACE 2.0 calculator, but it was not feasible. As GRACE 2.0
can only be used in acute cases, we had to filter out the chronic cases from the dataset
to predict Hard MACE events, resulting in 4,822 samples. Also, this calculator needs
8 input variables: age, heart rate, systolic blood pressure, CHF (congestive heart failure,
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given in Killip class7), creatinine, ST-segment deviation8, elevated troponin, and cardiac
arrest at admission.

MI-SIEVE ACC does not have 4 out of 8 inputs: CHF, ST-segment deviation, elevated
troponin, and cardiac arrest at admission. Hoping that information could be inferred from
other variables, a domain specialist analyzed the data, indicating that all dataset samples
should be considered as having: elevated troponin = True, cardiac arrest at admission =
False, and CHF (Killip class) = Killip I. Thus, 3 of the inputs would be constants. The
other inputs, heart rate, systolic blood pressure, and creatinine, had 2,781, 2,626, and
3,479 missing values. To apply data imputation on those values would make no sense at
all. How to guess a patient’s heart rate? One cannot assume it to be the average of other
patients or apply any other statistical technique. Thus, we abandoned the attempt to use
GRACE 2.0 due to these limitations.

For both experiments, “TIMI Features” and “All Features”, we used the same TabNet
hyper-parameters. The only change is the data fed. TabNet hyper-parameters were:
Nd = Na = 8, λsparse = 0.001, B = 256, Bv = 128, mB = 0.9, Nsteps = 3, and γ = 1.5.
Random Forest and XGBoost algorithms used the default libraries’ hyper-parameters.
We also used the same outcome, Hard MACE, a computation of outcomes from the table
“evolution”, for both experiments. We considered all samples with death or infarction
after the intervention as Hard MACE.

MI-SIEVE ACC Experiment: TIMI Features

Following our methodology (Chapter 5), we performed the pre-processing of the TIMI
experiment data using the MI-SIEVE ACC dataset. TIMI is a simple computation con-
sidering a risk score based on the total count of risk factors (inputs). The inputs are:

• Age greater or equal to 65;

• Three or more of these risk factors: family history of coronary artery disease, hy-
pertension, hypercholesterolemia, Diabetes, or currently smoking;

• Known coronary artery disease;

• Use of aspirin in the past 7 days;

• Severe angina (greater or equal to 2 episodes in the last 24 hours);

• ST-segment deviation;

• Elevated serum cardiac marker (troponin).
7Killip is a classification of congestive heart failure (CHF) that independently predicts mortality in

patients with myocardial infarction: I. No clinical sign of CHF; II. Presence of rales (crackles) in the
lungs, raised jugular venous pressure, or third heart sound (S3 gallop); III. Acute pulmonary edema; IV.
Cardiogenic shock.

8ST-segment is a segment of the cardiac wave recorded by electrocardiography. A deviation of this part
of the wave is a strong indication of myocardial infarction. Troponin is a protein in heart cells released
into the bloodstream following cardiac damage. Elevated troponin in the bloodstream on admission
strongly predicts mortality and infarct size.



58

Patients achieved 1 point for yes and 0 points for no. Patients with 0–2 scores are in
low-risk groups, 3–4 scores are medium-risk, and 5–7 scores are in high-risk groups. In
order to compare TIMI results against a binary classifier algorithm, we had to establish
a threshold above which a sample should be considered positive. We used 8% (3 points)
as the threshold, as suggested by the domain specialist.

Not all inputs were readily available in the MI-SIEVE ACC dataset. The dataset
missed the information about aspirin use, ST-segment deviation, and troponin. With the
aid of a domain specialist, we inferred those features from other features. Usually, people
with known coronary artery disease use aspirin to prevent infarction. Thus, aspirin used
in the past 7 days was assumed true for those with known coronary artery disease. The
ST-segment deviation was assumed to be true for patients that received thrombolytic
types rt-PA/SK, or with a primary/rescue intervention type. Finally, a high troponin
marker was assumed when the intervention type was primary, rescue, or facilitated.

While the pre-processing was satisfactory for this study due to the assumed feature
values, the findings of this Master’s thesis cannot be used directly in the medical field. Our
goal here is to demonstrate the use of machine learning on practical medical problems. A
proper risk score could be obtained if the data had all the necessary information.

In addition to the Random Forest and XGBoost baselines used in all other experi-
ments, we also developed a scikit-learn compatible TIMI classifier for this experiment.
We followed the details provided by Antman et al. [6]. A risk score from 4.7% to 40.9%
is computed based on the total count of risk factors. For binary classification, we estab-
lished a threshold in which the outcome for a Hard MACE is considered positive above a
particular risk value. We used 8% as the threshold, as suggested by the domain specialist.
We also used Logistic Regression as the baseline. TIMI counts risk factors without weight
those factors. Eventually, a logistic regressor found better weights and obtained better
results. We applied logistic regression only in this experiment.

Experiment results achieved a very low AUC for all algorithms. The average AUC and
standard deviation are shown in Table 6.7. TabNet and Logistic Regression had a better
performance than the TIMI calculator. This low AUC demonstrates that only considering
the 7 risk factors is inadequate for a better risk prediction.

Using TabNet+SAT, without pre-training, there was no increase in performance by
sacrificing coverage. With pre-training, AUC increased from 0.634 at 100% coverage to
0.663 at 70% coverage. This could indicate that TabNet is suffering from a small dataset,
with only 7 features and 4,821 samples, of which only 176 are positive (3.6%). After the
5-fold cross-validation (twice), the dataset is even smaller, with 3,214 training samples
and 1,607 validation samples, for each fold.

This experiment demonstrates a TabNet+SAT limitation. SAT is also based on the
learning capacity of the deep neural network. If the deep neural network does not learn
how to classify samples, it is possible to learn how to reject them. SAT can only improve
performance where there is some improvement. Despite that, it is interesting to observe
that most predictions have, in fact, high uncertainty values. TabNet+SAT could not
figure out what exactly it was, but it knew something was wrong.
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Table 6.7: MI-SIEVE ACC AUC results averaged of all 10 runs for Random Forest,
XGBoost, TabNet, and TabNet+SAT for various coverage rates. TabNet+SAT-c% stands
for TabNet+SAT under c coverage rate.

AUC
TIMI Features All Features

TIMI 0.599 ± 0.023 –
Logistic Regression 0.629 ± 0.012 –
Random Forest 0.596 ± 0.031 0.807 ± 0.031

XGBoost 0.599 ± 0.033 0.806 ± 0.028

TabNet 0.634 ± 0.032 0.822 ± 0.023

TabNet+SAT-100% 0.634 ± 0.025 0.803 ± 0.043

TabNet+SAT-90% 0.640 ± 0.028 0.809 ± 0.050

TabNet+SAT-80% 0.644 ± 0.030 0.820 ± 0.054

TabNet+SAT-70% 0.663 ± 0.021 0.827 ± 0.063

MI-SIEVE ACC Experiment: All Features

This experiment is the most crucial experiment of this work, as it applies our approach
in the real world challenging data. In order to obtain a better risk calculator, we did not
limit ourselves to the 7 TIMI features in the second experiment with the MI-SIEVE ACC
dataset. Instead, we used all 207 features. Those features were obtained by cleaning,
encoding, and filling in the missing information. Each data preparation operation was
discussed with the domain specialist during several meetings. In this experiment, we
considered all samples, regardless of acute/chronicle cases. We aim to let the model
indicate what is going on and further check with the domain specialist, the opposite as
most commonly done.

Table 6.7 shows that the performance significantly increased compared to the TIMI
experiment. Regarding TabNet+SAT, we confirmed that better performance was achieved
by sacrificing coverage. TabNet+SAT average AUC was 0.803 (±0.043) at 100% coverage
and increased to 0.827 (±0.063) at 70% coverage.

To interpret the results, we again used the aggregated TabNet activation map, side by
side with the results of the predictions. The global interpretation is made using the inter-
pretation map in Figure 6.11. The horizontal axis contains the features ordered by global
importance, and, from left to right, the most important features were “complicacao_Grau
- Complicação_Grave_sum”, “stent_Timi pós_3.0_mean” and “procedimento_Duração
Interv. (min)”. Those features are engineered features that aggregate values for the aux-
iliary tables “complicação” and “stent”, as there can be more than one complication on
the same intervention. There can also be more than one stent used in one intervention.
So, to keep a tabular, single-row format, we used the sum, mean and minimal values to
aggregate those features. This means that the model pays attention to the total of severe
complications and the mean TIMI flow value for all stents used. TIMI 3.0 means a nor-
mal flow of blood after the coronary obstruction. We can infer that the interventions that
had severe complications and/or did not have a normal flow of blood are the ones that
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will most likely lead to a Hard MACE outcome. The total intervention time in minutes
is also a relevant feature, and we can interpret that interventions that take a long time
are the ones that are treating the most severe cases and thus have a greater chance of
leading to Hard MACE after the interventions. This is also confirmed by the density plot
in Figure 6.12. The vertical axis contains the samples, ranging from 0 to 9,635 samples,
sorted by the “uncertainty” column. The left area (“Features Activation Map”) can be
understood as a heatmap of features importance, and each pair feature x sample contains
the attention given by the model to that feature for that instance. We use a scale from
dark blue, meaning low attention, to yellow, meaning high attention. The right area
(Labels) shows the prediction results using the blue-red scale.

We can notice that in the top region of the heatmap, many samples were Predicted and
True_Prositive match, meaning that the model predicts correctly. We can infer that this
is due to higher attention given for Complicação_Grave (severe complication) feature.
The rest of the heatmap reveals an increasing number of false positives, especially at
the bottom region, with samples ranging from 6,000 to 9,635. The attention on the most
important features decreases while the attention on Diabetes features increases. Although
Diabetes is a risk factor, the interpretation demonstrates that the model overestimates it.

Our approach also permits local interpretation. Four patients were selected, covering
four different cases:

1. Patient 560: correctly classified as positive Hard MACE, with virtually no uncer-
tainty;

2. Patient 5412: wrongly classified as positive Hard MACE, but not rejected due to a
small uncertainty;

3. Patient 8048: wrongly classified as positive Hard MACE, but rejected due to high
uncertainty;

4. Patient 6336: correctly classified as positive Hard MACE, but rejected due to high
uncertainty.

Let us first interpret patient 560. Prediction results with probabilities, true label, un-
certainty, and rejection results are found in Table 6.8. Features values with the respective
attention are found in Table 6.9. As we can see, TabNet+SAT is paying attention and
deciding based on three main features. Patient 560 had a severe complication, and the
normal TIMI flow (3.0) was zero, meaning that the intervention could not reestablish
the blood flow. Also, the intervention took 180 minutes, much higher than the average.
TabNet+SAT does not doubt that those combinations impose a very high risk of a Hard
MACE event.

The second patient is patient 5412, a false positive patient wrongly classified as pos-
itive Hard MACE, but not rejected due to a small uncertainty. Prediction results with
probabilities, true label, uncertainty, and rejection results are also found in Table 6.8.
Features values with the respective attention are found in Table 6.10. The model pre-
dicted with very low uncertainty that this patient had a high risk of Hard Mace. This is
also due to a severe complication and no normal TIMI flow (3.0). The third most impor-
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Figure 6.11: Interpretation map of whole MI-SIEVE-ACC dataset rejection option with
feature activation map and prediction outputs. Features are sorted by importance, and
samples are sorted by uncertainty.

Table 6.8: Prediction results of some patients.

Patient ID
560 5412 8048 (rejected 6336 (rejected

(true positive) (false positive) false positive) true negative)

Pred_Negative 0.000001 0.000133 0.229612 0.304241
Pred_Positive 0.997144 0.986709 0.299017 0.220693
Predicted 1.000000 1.000000 1.000000 0.000000
True_Positive 1.000000 0.000000 0.000000 0.000000
uncertainty 0.002855 0.013157 0.471372 0.475066
norm_uncertainty 0.000000 0.021816 0.992176 1.000000
rejected 0.000000 0.000000 1.000000 1.000000
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Figure 6.12: MI-SIEVE ACC density plot of the intervention time feature.

tant feature is MDRD9, which is calculated based on patient creatinine and is a measure
of the kidney filtration rate. Although this value is abnormally high, according to the
domain specialist, there is no correlation with a MACE event. If the value was very low,
this could indicate kidney failure and, thus a higher risk. TabNet+SAT overestimated
the risk based on the complication and TIMI flow, and maybe got confused with MDRD.
This example demonstrated that a possible enhancement of TabNet+SAT could be the
direction of the relationship of the predictor with the outcome, defining if the outcome
probability increases when the feature value increases or it goes in the opposite direction.

The third patient is patient 8048, who was wrongly classified as positive Hard MACE
but rejected due to high uncertainty. Prediction results with probabilities, true label, un-
certainty, and rejection results are found in Table 6.8. Features values with the respective
attention are found in Table 6.11. The model prediction was ambiguous, with a positive
class probability almost equal to the negative class probability. Although we have TIMI
flow (3.0), indicating complete perfusion of blood after the intervention, which means a
successful intervention, and also no severe complications, we see the highest attention paid
to the feature that indicates that the patient has Diabetes and under treatment. This
feature is probably a source of confusion for the model. Nevertheless, the model learned
how to identify it and correctly attributed a high uncertainty.

The last patient is patient 6336, correctly classified as positive Hard MACE but re-
jected due to high uncertainty. Prediction results with probabilities, true label, uncer-
tainty, and rejection results are found in Table 6.8. Features values with the respective
attention are found in Table 6.12. The rejection option can cause correctly classified sam-
ples to be rejected when the model sees a pattern of high uncertainty. The features, in
fact, indicate a successful intervention, with normal TIMI flow (3.0), no severe complica-
tions, and close to average intervention time. Diabetes seems to also bring confusion to
the model along with the coronary vessel, namely, DPD.

Those results were interpreted in conjunction with the domain specialist MD. Luiz
Sérgio Fernandes de Carvalho and TabNet+SAT results satisfactorily shed light on model
interpretation. Feature values and importance do present reasonable explanations accord-
ing to medical practice.

9http://www.mdrd.com

http://www.mdrd.com


63

Table 6.9: Features values and attention of patient 560 (true positive instance).

Feature Value Attention (%)

stent_Timi pós_0.0_mean 1.0 31.98
procedimento_Duração Interv. (min) 180.0 26.78
complicacao_Grau - Complicação_Grave_sum 1.0 17.71
stent_Timi pós_3.0_mean 0.0 13.04
paciente_IRC_Não 1.0 1.72
stent_Timi pós_1.0_max 0.0 1.61
vaso_Calcificação - Intervenção_Discreta_sum 0.0 1.32
vaso_Calcificação - Intervenção_Acentuada_sum 0.0 1.21
paciente_Tipo Antecedentes Familiares_Precoce 1.0 0.84
paciente_Clearance Cr (ml/min) 0.0 0.82

Top 10 Total 97.04

Table 6.10: Features values and attention of patient 5412 (false positive instance).

Feature Value Attention (%)

complicacao_Grau - Complicação_Grave_sum 1.0 28.19
stent_Timi pós_3.0_mean 0.0 19.77
paciente_MDRD (ml/min/173m²) 182.0 18.15
paciente_Temperatura (ºC) 36.0 7.10
vaso_Angulação - Intervenção_gt90_sum 0.0 4.06
balao_Timi pós_mean 3.0 3.70
vaso_Tipo de Lesão - Focal - Intervenção_Multif... 0.0 2.54
vaso_Local da Lesão - Intervenção_Óstio do enxe... 0.0 2.25
paciente_Intervenção Percutânea Prévia 1.0 1.93
complicacao_Tipo Complicação_Neurológica_sum 0.0 1.76

Top 10 Total 89.44

Table 6.11: Features values and attention of patient 8048 (rejected false positive).

Feature Value Attention (%)

paciente_Tratamento Diabetes_Insulino Dependente 1.0 24.58
complicacao_Grau - Complicação_Grave_sum 0.0 17.53
stent_Timi pós_3.0_mean 1.0 8.03
procedimento_Duração Interv. (min) 90.0 5.73
paciente_Altura (metros) 1.5 5.58
stent_Grau de estenose pós_mean 0.0 5.34
complicacao_Tipo Complicação_Hematoma_sum 0.0 3.65
procedimento_Via de acesso - Intervenção_Braqui... 0.0 3.40
stent_Pressão Final de Liberação (ATM)_min 9.0 3.33
complicacao_Tipo Complicação_Arritmia_sum 0.0 3.14

Top 10 Total 80.31
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Table 6.12: Features values and attention of patient 6336 (rejected true positive instance).

Feature Value Attention (%)

vaso_Vaso coronário - Intervenção_DPD_sum 1.0 40.24
paciente_Tratamento Diabetes_Insulino Dependente 1.0 18.96
complicacao_Grau - Complicação_Grave_sum 0.0 9.67
procedimento_Duração Interv. (min) 120.0 8.52
stent_Pressão Final de Liberação (ATM)_min 14.0 4.00
stent_Timi pós_3.0_min 1.0 3.52
stent_Grau de estenose pós_mean 0.0 2.35
complicacao_Tipo Complicação_Hematoma_sum 0.0 1.87
balao_Pressão Final (ATM)_min 0.0 1.83
paciente_AVC prévio 0.0 1.43

Top 10 Total 92.40
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Chapter 7

Conclusions

7.1 Motivation and Results

This Master’s thesis is motivated by applying advanced machine learning techniques to
predict the risk of Major Adverse Cardiovascular Events (MACE). Despite already many
works proposing machine learning for health risk prediction, adopting this technology is
impractical because those approaches are “black boxes”. We identified the opportunity to
employ an interpretable deep neural network, TabNet [8], and enhance this network with
a rejection option approach (Self Adaptive Training (SAT) [33]), informing data scientists
and medical doctors when the prediction is not reliable, which, as far as we know, is the
first time this attempt was made on tabular data.

We evaluated our TabNet+SAT on two medical datasets, Framingham Heart Study
(FHS) [1] and Myocardial ISchemIa prognostic EValuation AngioCardio-Clarity (MI-
SIEVE ACC) (collected from real hospitals and clinic data from Brazil). In both datasets,
we achieved better results than the baseline. We obtained 0.760 AUC on Random Forest
in the FHS dataset and 0.764 on TabNet. Using TabNet+SAT, the final AUC at 70%
coverage rate was 0.815. In the MI-SIEVE ACC dataset, we obtained an AUC of 0.807
for Random Forest and 0.822 for TabNet. Using TabNet+SAT, the final AUC at 70%
coverage was 0.827. To ensure that the results were consistent, we also confirmed our
results on four non-medical datasets, and the results are detailed in Chapter 6.

We further demonstrated that given TabNet interpretation capabilities, not only can
the prediction be interpreted but also the rejection of samples by the SAT technique. This
approach can be used to give data scientists or domain specialists insights into when and
why the model cannot learn to classify a subset of samples. We also showed that this
interpretation could be used both globally and locally. Global interpretation proved a
great tool for data scientists to assess their models’ quality and find biases, although the
latter was not originally intended. Local interpretation can be a powerful tool for users of
such TabNet+SAT models, such as medical doctors, enabling them to evaluate the model
uncertainty and make an informed decision if they should or not trust the model. As
TabNet+SAT can give relative importance to each feature for a given sample at inference
time, medical doctors can also be informed and understand based on which features the
model is computing its prediction.
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7.2 Answers to the Research Questions

The research questions were fundamental to giving direction to this work. The questions
and their respective answers are listed in the following.

Q1. What is the impact of using the deep neural network architecture TabNet on
the risk prediction of cardiovascular diseases compared with the conventional
risk scores?

Due to restrictions imposed by the available data, we evaluated only the perfor-
mance of TabNet against the TIMI risk calculator. We found the performance
of all tested models is awful, using only the 7 features required by the TIMI
calculator. TIMI AUC was 0.599, while TabNet achieved 0.634. We obtained a
much better result using all features of the MI-SIEVE ACC dataset, not only
those required by the TIMI calculator. This demonstrates that, despite TabNet
performing better than TIMI using 7 features, its full capability is shown when
using the maximum amount of data available. The AUC obtained was 0.822.

Q2. How to integrate a selective classifier/rejection option on TabNet? What is the
impact on the results?

We demonstrated that it is not only possible to integrate the rejection option
on TabNet but also that it consistently improved the performance in all ex-
periments. We achieved AUC gains from 2 to 6 percentage points at a 70%
coverage rate.

7.3 Future Work

In future work, we intend to compare TabNet’s activation map interpretation with state-
of-the-art techniques such as SHAP (SHapley Additive exPlanations) [45] and LIME (Lo-
cal Interpretable Model-Agnostic) [61]. We also plan to investigate if those tools could
work with rejection interpretation, as our approach does.

Very recent works are presenting alternatives to TabNet, such as GATE (Gated Ad-
ditive Tree Ensemble) [36], NBM (Neural Basis Model) [58], Hopular (Modern Hopfield
Networks for Tabular Data) [65], FT-Transformer (Feature Tokenizer Transformer) [25],
and SAINT (Self-Attention and Intersample Attention Transformer) [68]. We intend to
evaluate the Self Adaptive Training on those deep neural networks.

DNNs also can enable transfer learning, while traditional tree-based algorithms are
always trained from scratch. This advantage was not explored in this Master’s thesis as
the use of DNN for tabular data is very recent and not yet established. Nevertheless, a
recent work [42] has explored this advantage in other DNN architectures.

Although we evaluated our TabNet+SAT on 4 non-medical and 2 medical datasets,
recent research [27] has appointed that tree-based models still outperform DNNs on tabu-
lar data on 45 datasets. The paper also gives insights into why tree-based models thrive,
being uninformative features the primary reason. However, the mentioned paper did not
conduct experiments using TabNet. With our experiment pipeline, we can evaluate it
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on the 45 datasets. That will be an excellent chance to show that the attention mecha-
nism of TabNet can filter out uninformative features, while SAT can reject ambiguous or
inconclusive samples, proving to be more robust than traditional tree-based models.
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Appendix A

MI-SIEVE ACC Datasheet

A.1 Motivation

For what purpose was the dataset created? (Was there a specific task in
mind? Was there a specific gap that needed to be filled? Please provide a
description.) This dataset serves as a registry of cardiac catheterization procedures
across Brazil, including patient-level data regarding clinical information, exam finding,
procedures, and outcomes. The dataset was funded by SBHCI (Sociedade Brasileira de
Hemodinâmica e Cardiologia Intervencionista), and MI-SIEVE ACC represents a high-
quality subset of the full original dataset, including only exams from Angiocardio labs.
This particular subset aims to enable research in cardiovascular risk prediction. Current
cardiovascular risk calculators are based on cohort studies with no information regarding
percutaneous coronary intervention. The intention was to produce a better risk calculator
using many attributes currently collected from real patients by hospitals and clinics in
Brazil.

Who created this dataset (e.g., which team, research group) and on behalf of
which entity (e.g., company, institution, organization)? This dataset was created
by MD Silvio Giopatto, Prof MD Luiz Sérgio Fernandes de Carvalho, Prof. Sandra Eliza
Fontes de Avila, and MSc. student Tito Barbosa Rezende. At the time of creation, Silvio
Giopatto was a senior researcher at SBHCI (Sociedade Brasileira de Hemodinâmica e
Cardiologia Intervencionista), Luiz Sérgio was the founder of the company Clarity Health
and a researcher at the University of Campinas. Sandra Avila was a researcher and
professor at the University of Campinas and supervisor of the M.Sc. student Tito Barbosa
Rezende.

Who funded the creation of the dataset? (If there is an associated grant,
please provide the name of the grantor and the grant name and number.)
The dataset was created by SBHCI (Sociedade Brasileira de Hemodinâmica e Cardiologia
Intervencionista) with its funding.

Any other comments? None.
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A.2 Composition

What do the instances that comprise the dataset represent (e.g., documents,
photos, people, countries)? (Are there multiple types of instances (e.g.,
movies, users, and ratings; people and interactions between them; nodes and
edges)? Please provide a description.) Each instance is a patient who was sub-
mitted to percutaneous coronary intervention. Attributes are composed of both patients’
characteristics and intervention information. The dataset is labeled after the outcome of
the intervention, describing if the patient had or did not have a MACE, a major adverse
cardiovascular event.

How many instances are there in total (of each type, if appropriate)? The
dataset consists of 9,635 patients.

Does the dataset contain all possible instances or is it a sample (not necessarily
random) of instances from a larger set? (If the dataset is a sample, then
what is the larger set? Is the sample representative of the larger set (e.g.,
geographic coverage)? If so, please describe how this representativeness was
validated/verified. If it is not representative of the larger set, please describe
why not (e.g., to cover a more diverse range of instances because instances were
withheld or unavailable).) It is a sample of all possible patients. We cannot assume
that every possible instance is contained in the dataset, and we expect the contrary, that
there are the least typical patients and conditions not contained in this dataset. A larger
representative set of the dataset is not present because instances were unavailable.

What data does each instance consist of? (“Raw” data (e.g., unprocessed text
or images) or features? In either case, please provide a description.) Each
instance consists of patients/intervention features already cleaned and pre-processed. We
provide here the list of all features in Table A.1, in Portuguese and English:

Table A.1: MI-SIEVE ACC list of features in Portuguese and English.

Feature (Portuguese) Feature (English)
evolucao_Hard_MACE evolution_hard_mace
paciente_Sexo sex
paciente_Idade no procedimento age at intervention
paciente_Procedência origin
paciente_HAS hypertension
paciente_Diabetes patient_diabetes
paciente_Dislipidemia patient_dislipidemia
paciente_Tabagista patient_tabagist
paciente_Cigarros (dia) - Tabagista patient_cigarrets per day- smoking
paciente_Tempo years of smoking
paciente_Ex-Tabagista patient_ex-tabagist
paciente_Cigarros (dia) - Ex-Tabagista patient_cigarrets per day- former tabagist
paciente_Tempo de Interrupção years since quit smoking
paciente_IAM Prévio previous myocardial infarction
paciente_Síndrome Metabólica metabolic syndrome
paciente_Antecedentes Familiares family history
paciente_AVC prévio previous stroke
paciente_História de Trombose Venosa Profunda patient_ deep venous thrombosis history
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paciente_DPOC chronic obstructive pulmonary disease
paciente_Alergia ao iodo iodine allergy
paciente_DAC conhecida known cad
paciente_Cate Prévio previous pci
paciente_Cirurgia de Revascularização Prévia previous revascularization surgery
paciente_Intervenção Percutânea Prévia previous percutaneous intervention
paciente_Frequência Cardíaca heart frequency
paciente_Frequência Respiratória breath frequency
paciente_Temperatura (ºC) temperature
paciente_Peso (Kg) weight
paciente_Altura (metros) height
paciente_Índice de Massa Corporal body max index
paciente_Creatinina Sérica serumic creatinine
paciente_MDRD (ml/min/173m²) modification of diet in renal disease (mdrd)

(ml/min/173m²)
paciente_Clearance Cr (ml/min) patient_clearance cr (ml/min)
paciente_IRC_Dialítica dialitical chronic kidney disease
paciente_IRC_Não no chronic kidney disease
paciente_IRC_Não Dialítica chronic kidney disease other than dialitical
paciente_IRC_Não_especificado chronic kidney disease - not specified
paciente_Doença Vascular Periférica_Não no peripheral vascular disease
paciente_Doença Vascular Periférica_Não Operada not treated peripheral vascular disease
paciente_Doença Vascular Periférica_Operada / In-
tervenção prévia

treated peripheral vascular disease

paciente_Pressão Arterial_min blood_pressure_min
paciente_Pressão Arterial_max blood_pressure_max
paciente_Pressão Arterial Diastólica_min diastolic_blood_pressure_min
paciente_Pressão Arterial Diastólica_max diastolic_blood_pressure_max
paciente_Grau de Instrução_1ª a 4ª série education_1ª to 4th grade
paciente_Grau de Instrução_2º grau education_2º degree
paciente_Grau de Instrução_5ª a 8ª série education_5th to 8th grade
paciente_Grau de Instrução_Mestrado ou Doutorado education_master or doctorate
paciente_Grau de Instrução_Não alfabetizado education_no literacy
paciente_Grau de Instrução_Não sabe/Sem
declaração

education_not_informed

paciente_Grau de Instrução_Superior education_graduate
paciente_Tratamento Diabetes_Dieta patient_treatment diabetes_diet
paciente_Tratamento Diabetes_Hipoglicemiante
Oral

patient_treatment diabetes_hipoglycemic

paciente_Tratamento Diabetes_Insulino Dependente patient_treatment diabetes_insulin_dependent
paciente_Tratamento Diabetes_Sem Tratamento patient_treatment diabetes_no treatment
paciente_Tratamento Dislipidemia_Dieta patient_treatment dyslipidemia_diet
paciente_Tratamento Dislipidemia_Estatina patient_treatment dyslipidemia_estatin
paciente_Tratamento Dislipidemia_Fibrato patient_treatment dyslipidemia_fibrate
paciente_Tratamento Dislipidemia_Fibrato e Es-
tatina

patient_treatment dyslipidemia_fibrate and statin

paciente_Tratamento Dislipidemia_Sem Tratamento patient_tramenting dyslipidemia_no treatment
paciente_Tipo Antecedentes Familiares_Não Precoce patient_tipo family background_not early
paciente_Tipo Antecedentes Familiares_Precoce patient_type family background_early
procedimento_Convênio intervention_health_insurance
procedimento_Qtde (ml) intervention_amount of líquid (ml)
procedimento_Porta/Interv.(hrs) - Urgência intervention_from door to intervention (hours) - ur-

gency
procedimento_Dor/ATC (horas) - Resgate intervention_pain (hours) - rescue
procedimento_Dor/ATC (dias) - Eletiva - Ad-hoc intervention_pain (days) - elective - ad -hoc
procedimento_Duração Interv. (min) intervention_intervention duration (min)
procedimento_Ano da Intervenção intervention_year
procedimento_AAS intervention_aspirin
procedimento_Ticlopidina intervention_tyclopidine
procedimento_Clopidogrel intervention_clopidogrel
procedimento_HNF intervention_hnf
procedimento_HBPM intervention_hbpm
procedimento_Abciximab intervention_abciximab
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procedimento_Tirofiban intervention_tirofiban
procedimento_Eptifibatide intervention_eptifibrate
procedimento_Adenosina intervention_adenosin
procedimento_Ultrasom Intracoronário intervention_intracoronary ulttrasound
procedimento_Angiografia Quantitativa intervention_quantitative_angiography
procedimento_Inibidor de glicoproteína intervention_ glycoprotein_inhibitor
procedimento_Clopidogrel.1 intervention_clopidogrel.1
procedimento_Dose (mg) intervention_clopidogrel_dose (mg)
procedimento_Anestesia - Intervenção_Geral In-
alatória

intervention_anesthesia - inhaled_general interven-
tion

procedimento_Anestesia - Intervenção_Geral
Sedação

intervention_anesthesia - intervention_geral sedation

procedimento_Anestesia - Intervenção_Local intervention_anesthesia - intervention_local
procedimento_Droga - Intervenção_Fentanil intervention_droga - intervention_fentanil
procedimento_Droga - Intervenção_Midazolan intervention_droga - intervention_midazolan
procedimento_Droga - Intervenção_Propafenona intervention_droga - intervention_propafenona
procedimento_Droga - Intervenção_Thionembutal intervention_droga - intervention_thionembutal
procedimento_Droga - Intervenção_Xilocaína 2% intervention_drog - intervention_xilocaine 2%
procedimento_Técnica - Intervenção_Convencional intervention - technique_conventional
procedimento_Técnica - Intervenção_kissing-balloon intervention -technique_kissing -balloon
procedimento_Introdutor - Intervenção_10F intervention_introductor - 10f
procedimento_Introdutor - Intervenção_11F intervention_introductor - 11f
procedimento_Introdutor - Intervenção_5F intervention_introductor - 5f
procedimento_Introdutor - Intervenção_6F intervention_introductor - 6f
procedimento_Introdutor - Intervenção_7F intervention_introductor - 7f
procedimento_Introdutor - Intervenção_8F intervention_introductor - 8f
procedimento_Introdutor - Intervenção_9F intervention_introductor - 9f
procedimento_Via de acesso - Intervenção_Braquial
Dissecção

access_ intervention _brakial dissection

procedimento_Via de acesso - Intervenção_Braquial
Punção

access_ intervention - braquial punction

procedimento_Via de acesso - Intervenção_Femoral access_ intervention - femoral
procedimento_Via de acesso - Intervenção_Radial access_ intervention - radial
procedimento_Lado Via de Acesso - Inter-
venção_Direito

intervention_lass access way - right

procedimento_Lado Via de Acesso - Inter-
venção_Direito e Esquerdo

intervention_lalad access - right and left

procedimento_Lado Via de Acesso - Inter-
venção_Esquerdo

intervention_lass access way - left

procedimento_Tipo Contraste - Intervenção_Iônico
de alta osmolaridade

intervention_type contrast - ionic high osmolarity

procedimento_Tipo Contraste - Intervenção_Iônico
de baixa osmolaridade

intervention_type contrast - ionic low osmolarity

procedimento_Tipo Contraste - Intervenção_Não
iônico de baixa osmolaridade

intervention_type contrast - low osmolarity not ionic

procedimento_Tipo Contraste - Intervenção_Não
iônico isoosmolar

intervention_type contrast - isomolatity not ionic

procedimento_Tipo de Intervenção_Ad-hoc intervention_type ad-hoc
procedimento_Tipo de Intervenção_Eletiva intervention_type elective
procedimento_Tipo de Intervenção_Facilitada intervention_type facilitated
procedimento_Tipo de Intervenção_Primária intervention_type primary
procedimento_Tipo de Intervenção_Resgate intervention_type rescue
procedimento_Tipo de Intervenção_Urgência intervention_type urgency
procedimento_Trombolítico Prévio_Nenhum intervention thrombolitical - none
procedimento_Trombolítico
Prévio_Não_especificado

intervention thrombolitical - not specified

procedimento_Trombolítico Prévio_SK intervention thrombolitical - sk
procedimento_Trombolítico Prévio_TNK intervention thrombolitical - tnk
procedimento_Trombolítico Prévio_TPA intervention thrombolitical - tpa
procedimento_Trombolítico Prévio_rPA intervention thrombolitical - rpa
procedimento_Mês Intervenção month of intervention
procedimento_ST-elevation intervention_st-elevation
complicacao_Quando_Até 1 semana_sum number of complications_1 week
complicacao_Quando_Até 24 horas_sum number of complications_24 hours
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complicacao_Quando_Intra-exame até a alta_sum number of complications_intra-exam to discharge
complicacao_Quando_Recuperação_sum number of complications_recovery
complicacao_Quando_Sala de exame_sum number of complications_exam_room
complicacao_Destino Alta_Domiciliar_sum number of complications_home discharge
complicacao_Destino Alta_Enfermaria_sum number of complications_nursery dischargge
complicacao_Destino Alta_Hospital Origem_sum number of complications_hospital of origin
complicacao_Óbito_Não_sum complication_no_death
complicacao_Óbito_Sim_sum complication_death
complicacao_Tipo Complicação_Alérgica_sum number of complications_type alergic
complicacao_Tipo Complicação_Arritmia_sum number of complications_type arrhythmia
complicacao_Tipo Complicação_Congestiva_sum number of complications_type congestive
complicacao_Tipo Complicação_Embólica_sum number of complications_type embolic
complicacao_Tipo Complicação_Hematoma_sum number of complications_type bruise
complicacao_Tipo Complicação_Isquêmica_sum number of complications_type ischemic
complicacao_Tipo Complicação_Neurológica_sum number of complications_type neurological
complicacao_Tipo Complicação_R. Contraste_sum number of complications_type contrast
complicacao_Tipo Complicação_Vagal_sum number of complications_type vagal
complicacao_Tipo Complicação_Vascular_sum number of complications_type vascular
complicacao_Grau - Complicação_Grave_sum number of complications_major degree
complicacao_Grau - Complicação_Leve_sum number of complications_light degree
complicacao_Grau - Complicação_Moderado_sum number of complications_moderate degree
balao_Diâmetro Cateter - Balão_count catheter diameter - balloon_count
balao_Diâmetro Cateter - Balão_mean catheter diameter - balloon_mean
balao_Diâmetro Cateter - Balão_max catheter diameter - balloon_max
balao_Diâmetro Cateter - Balão_min catheter diameter - balloon_min
balao_Comprimento Cateter - Balão_mean catheter lenght - balloon_mean
balao_Comprimento Cateter - Balão_max catheter lenght - balloon_max
balao_Comprimento Cateter - Balão_min catheter lenght - balloon_min
balao_Pressão Final (ATM)_mean final balloon pressure (atm) - mean
balao_Pressão Final (ATM)_max final balloon pressure (atm) - max
balao_Pressão Final (ATM)_min final balloon pressure (atm) - min
balao_Grau de estenose pós_mean degree of estenosis after intervention - mean
balao_Grau de estenose pós_max degree of estenosis after intervention - max
balao_Grau de estenose pós_min degree of estenosis after intervention - min
balao_Timi pós_mean balao_timi flow post_mean
balao_Timi pós_max balao_timi flow post_max
balao_Timi pós_min balao_timi flow post_min
balao_Blush Miocárdico_mean balao_myocardic blush _mean
balao_Blush Miocárdico_max balao_myocardic blush _max
balao_Blush Miocárdico_min balao_myocardial blush _min
balao_N. Injeções - Adenosina - Balão_sum balao_n. injections - adenosina - balloon_sum
balao_Total Injetado (mg) - Adenosina - Balão_sum balao_total injected (mg) - adenosine - balloon_sum
balao_N. Injeções - Papaverina - Balão_sum balao_n. injections - papaverine - balloon_sum
balao_Total Injetado (mg) - Papaverina - Balão_sum balao_total injected (mg) - papaverine - balloon_sum
balao_N. Injeções - Nitroglicerina - Balão_sum balao_n. injections - nitroglycerin - balloon_sum
balao_Total Injetado (mg) - Nitroglicerina -
Balão_sum

balao_total injected (mg) - nitroglicerine - bal-
loon_sum

balao_N. Injeções - Monocordil - Balão_sum balao_n. injections - monocordil - balloon_sum
balao_Total Injetado (mg) - Monocordil - Balão_sum balao_total injected (mg) - monocordil - balloon_sum
balao_N. Injeções - Nitroprussiato - Balão_sum balao_n. injections - nitroprussito - balloon_sum
balao_Total Injetado (mg) - Nitroprussiato -
Balão_sum

balao_total injected (mg) - nitroprussito - bal-
loon_sum

balao_N. Injeções - Adrenalina - Balão_sum balao_n. injections - adrenaline - balloon_sum
balao_Total Injetado (mg) - Adrenalina - Balão_sum balao_total injected (mg) - adrenaline - balloon_sum
balao_Device Adjunto - Balão_Braquiterapia_sum balao_device assistant - balloon_braquiterapic_sum
balao_Device Adjunto - Balão_Exciser_sum balao_device assistant - balloon_exciser_sum
balao_Resultado Angiográfico - Balão_I1 - Não ultra-
passou a lesão_sum

balao_angiographic result - balloon_i1 - did not ex-
ceed the lesion_sum

balao_Resultado Angiográfico - Balão_I2 - Ultrapas-
sou e não dilatou_sum

balao_angiographic result - balloon_i2 - overdue and
did not dilate_sum

balao_Resultado Angiográfico - Balão_I3 - Oclusão
Aguda_sum

balao_angiographic result - balloon_i3 - acute occlu-
sion_sum
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balao_Resultado Angiográfico - Balão_I4 - Dis-
secção_sum

balao_angiographic result - balloon_i4 - dissec-
tion_sum

balao_Resultado Angiográfico - Balão_S -
Sucesso_sum

balao_angiographic result - balão_s - success_sum

balao_Tipo - Dissecção - Balão_A_sum dissection - balloon_a_sum
balao_Tipo - Dissecção - Balão_B_sum dissection - balloon_b_sum
balao_Tipo - Dissecção - Balão_C_sum dissection - balloon_c_sum
balao_Tipo - Dissecção - Balão_D_sum dissection - balloon_d_sum
balao_Tipo - Dissecção - Balão_E_sum dissection - balloon_e_sum
balao_Tipo - Dissecção - Balão_F_sum dissection - balloon_f_sum
balao_Classificação da Lesão (ACC/AHA) -
Balão_A_sum

classification of the lesion (acc/aha) - balloon_a_sum

balao_Classificação da Lesão (ACC/AHA) -
Balão_B1_sum

classification of the lesion (acc/aha) - bal-
loon_b1_sum

balao_Classificação da Lesão (ACC/AHA) -
Balão_B2_sum

classification of the lesion (acc/aha) - bal-
loon_b2_sum

balao_Classificação da Lesão (ACC/AHA) -
Balão_C_sum

classification of the lesion (acc/aha) - balloon_c_sum

balao_Distúrbio de Fluxo - Balão_Não_sum flow disturbance_no
balao_Distúrbio de Fluxo - Balão_Sim_sum flow disturbance_yes
balao_Tipo do Distúrbio de Fluxo - Balão_No-
reflow_sum

type of flow disturbance_no-reflow

balao_Tipo do Distúrbio de Fluxo - Balão_Slow
flow_sum

type of flow disturbance_slow flow

balao_Tipo No-Reflow_Inalterado após as medi-
cações descritas_sum

type of flow disturbance_no-reflow_no change after
medication

balao_Tipo No-Reflow_Melhora completa_sum type of flow disturbance_no-reflow_complete recover
balao_Tipo No-Reflow_Melhora parcial_sum type of flow disturbance_no-reflow_partial recover
balao_Vaso coronário - Balão_CD_sum coronary vessel - balloon_cd_sum
balao_Vaso coronário - Balão_CX_sum coronary vessel - balloon_cx_sum
balao_Vaso coronário - Balão_DA_sum coronary vessel - balloon_da_sum
balao_Vaso coronário - Balão_DPD_sum coronary vessel - balloon_dpd_sum
balao_Vaso coronário - Balão_DPE_sum coronary vessel - balloon_dpe_sum
balao_Vaso coronário - Balão_Dg1_sum coronary vessel - balloon_dg1_sum
balao_Vaso coronário - Balão_Dg2_sum coronary vessel - balloon_dg2_sum
balao_Vaso coronário - Balão_Dg3_sum coronary vessel - balloon_dg3_sum
balao_Vaso coronário - Balão_Intermédio-RI_sum coronary vessel - balloon_intermediary_ri_sum
balao_Vaso coronário - Balão_MamáriaDA_sum coronary vessel - balloon_mamaryda_sum
balao_Vaso coronário - Balão_Mg1_sum coronary vessel - balloon_mg1_sum
balao_Vaso coronário - Balão_Mg2_sum coronary vessel - balloon_mg2_sum
balao_Vaso coronário - Balão_Mg3_sum coronary vessel - balloon_mg3_sum
balao_Vaso coronário - Balão_MgD_sum coronary vessel - balloon_mgd_sum
balao_Vaso coronário - Balão_PVSCD_sum coronary vessel - balloon_pvscd_sum
balao_Vaso coronário - Balão_PVSDA_sum coronary vessel - balloon_pvsda_sum
balao_Vaso coronário - Balão_PVSDPD_sum coronary vessel - balloon_pvsdpd_sum
balao_Vaso coronário - Balão_PVSDg1_sum coronary vessel - balloon_pvsdg1_sum
balao_Vaso coronário - Balão_PVSMg1_sum coronary vessel - balloon_pvsmg1_sum
balao_Vaso coronário - Balão_PVSMg2_sum coronary vessel - balloon_pvsmg2_sum
balao_Vaso coronário - Balão_RadialDg_sum coronary vessel - balloon_radialdg_sum
balao_Vaso coronário - Balão_TCE_sum coronary vessel - balloon_tce_sum
balao_Vaso coronário - Balão_VPD_sum coronary vessel - balloon_vpd_sum
balao_Vaso coronário - Balão_VPE_sum coronary vessel - balloon_vpe_sum
balao_Kissing wire - Balão_Não_sum kissing wire - balloon_no_sum
balao_Kissing wire - Balão_Sim_sum kissing wire - balloon_yes_sum
balao_Kissing balloon - Balão_Não_sum kissing balloon - balloon_no_sum
balao_Kissing balloon - Balão_Sim_sum kissing balloon - balloon_yes_sum
stent_Diâmetro Dispositivo - Stent_mean device diameter - stent_mean
stent_Diâmetro Dispositivo - Stent_max device diameter - stent_max
stent_Diâmetro Dispositivo - Stent_min device diameter - stent_min
stent_Diâmetro Dispositivo - Stent_count device diameter - stent_count
stent_Comprimento Dispositivo - Stent_mean device lenght - stent_mean
stent_Comprimento Dispositivo - Stent_max device lenght - stent_max
stent_Comprimento Dispositivo - Stent_min device lenght - stent_min
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stent_Diâmetro Cateter Balão Adjunto Pré_mean stent_catheter dimeter of attached bal-
loon_pre_mean

stent_Diâmetro Cateter Balão Adjunto Pré_max stent_catheter dimeter of attached balloon_max
stent_Diâmetro Cateter Balão Adjunto Pré_min stent_catheter dimeter of attached balloon_pre_min
stent_Diâmetro Cateter Balão Adjunto Pós_mean stent_catheter dimeter of attached bal-

loon_post_mean
stent_Diâmetro Cateter Balão Adjunto Pós_max stent_catheter dimeter of attached bal-

loon_post_max
stent_Diâmetro Cateter Balão Adjunto Pós_min stent_catheter dimeter of attached bal-

loon_post_min
stent_Pressão Final de Liberação (ATM)_mean stent_final release pressure (atm) _mean
stent_Pressão Final de Liberação (ATM)_max stent_final release pressure (atm) _max
stent_Pressão Final de Liberação (ATM)_min stent_final release pressure (atm) _min
stent_Grau de estenose pós_mean stent_degree of stenosis post_mean
stent_Grau de estenose pós_max stent_degree of stenosis post_max
stent_Grau de estenose pós_min stent_degree of stenosis post_min
stent_Blush Miocárdico_mean stent_myocardial blush_mean
stent_Blush Miocárdico_max stent_myocardial blush_max
stent_Blush Miocárdico_min stent_myocardial blush_min
stent_N. Injeções - Adenosina - Stent_sum stent_n. injections - adenosine - stent_sum
stent_Total Injetado (mg) - Adenosina - Stent_sum injected stent_total (mg) - adenosine - stent_sum
stent_N. Injeções - Papaverina - Stent_sum stent_n. injections - papaverine - stent_sum
stent_Total Injetado (mg) - Papaverina - Stent_sum injected stent_total (mg) - papaverine - stent_sum
stent_N. Injeções - Nitroglicerina - Stent_sum stent_n. injections - nitroglycerin - stent_sum
stent_Total Injetado (mg) - Nitroglicerina -
Stent_sum

injected stent_total (mg) - nitroglycerin - stent_sum

stent_N. Injeções - Monocordil - Stent_sum stent_n. injections - monocordil - stent_sum
stent_Total Injetado (mg) - Monocordil - Stent_sum injected stent_total (mg) - monocordil - stent_sum
stent_N. Injeções - Nitroprussiato - Stent_sum stent_n. injections - nitroprussian - stent_sum
stent_Total Injetado (mg) - Nitroprussiato -
Stent_sum

stent_total injected (mg) - nitroprusside - stent_sum

stent_N. Injeções - Adrenalina - Stent_sum stent_n. injections - adrenaline - stent_sum
stent_Total Injetado (mg) - Adrenalina - Stent_sum stent_total injected (mg) - adrenaline - stent_sum
stent_Timi pós_0.0_mean stent_timi post_0.0_mean
stent_Timi pós_0.0_max stent_timi post_0.0_max
stent_Timi pós_0.0_min stent_timi post_0.0_min
stent_Timi pós_1.0_mean stent_timi post_1.0_mean
stent_Timi pós_1.0_max stent_timi post_1.0_max
stent_Timi pós_1.0_min stent_timi post_1.0_min
stent_Timi pós_2.0_mean stent_timi post_2.0_mean
stent_Timi pós_2.0_max stent_timi post_2.0_max
stent_Timi pós_2.0_min stent_timi post_2.0_min
stent_Timi pós_3.0_mean stent_timi post_3.0_mean
stent_Timi pós_3.0_max stent_timi post_3.0_max
stent_Timi pós_3.0_min stent_timi post_3.0_min
vaso_Grau de estenose pré - Intervenção_max vessel_degree of stenosis_max
vaso_Grau de estenose pré - Intervenção_min vessel_degree of stenosis_min
vaso_Grau de estenose pré - Intervenção_mean vessel_degree of stenosis_mean
vaso_Grau de estenose pré - Intervenção_sum vessel_degree of stenosis_sum
vaso_Anatomia - Intervenção_Ateromatose moder-
ada_sum

vessel_anatomy - intervention_ateromatosis moder-
ate_sum

vaso_Anatomia - Intervenção_Ateromatose sev-
era_sum

vessel_anatomy - intervention_ateromatosis se-
vere_sum

vaso_Anatomia - Intervenção_Com irregularidades
parietais_sum

vessel_anatomy - intervention_with parietal irregu-
larities_sum

vaso_Anatomia - Intervenção_Com lesão_sum vessel_anatomy - intervention_injury_sum
vaso_Vaso coronário - Intervenção_CD_sum coronary vessel - intervention_cd_sum
vaso_Vaso coronário - Intervenção_CX_sum coronary vessel - intervention_cx_sum
vaso_Vaso coronário - Intervenção_DA_sum coronary vessel - intervention_da_sum
vaso_Vaso coronário - Intervenção_DPD_sum coronary vessel - intervention_dpd_sum
vaso_Vaso coronário - Intervenção_DPE_sum coronary vessel - intervention_dpe_sum
vaso_Vaso coronário - Intervenção_Dg1_sum coronary vessel - intervention_dg1_sum
vaso_Vaso coronário - Intervenção_Dg2_sum coronary vessel - intervention_dg2_sum
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vaso_Vaso coronário - Intervenção_Dg3_sum coronary vessel - intervention_dg3_sum
vaso_Vaso coronário - Intervenção_Intermédio-
RI_sum

coronary vessel - intervention_intermadio -ri_sum

vaso_Vaso coronário - Inter-
venção_MamáriaCD_sum

coronary vessel - intervention_mamáriacd_sum

vaso_Vaso coronário - Inter-
venção_MamáriaDA_sum

coronary vessel - intervention_mamádada_sum

vaso_Vaso coronário - Intervenção_MamáriaDg_sum coronary vessel - intervention_mamáriadg_sum
vaso_Vaso coronário - Inter-
venção_MamáriaMg_sum

coronary vessel - intervention_mamámmg_sum

vaso_Vaso coronário - Intervenção_Mg1_sum coronary vessel - intervention_mg1_sum
vaso_Vaso coronário - Intervenção_Mg2_sum coronary vessel - intervention_mg2_sum
vaso_Vaso coronário - Intervenção_Mg3_sum coronary vessel - intervention_mg3_sum
vaso_Vaso coronário - Intervenção_Mg4_sum coronary vessel - intervention_mg4_sum
vaso_Vaso coronário - Intervenção_MgD_sum coronary vessel - intervention_mgd_sum
vaso_Vaso coronário - Intervenção_PVSCD_sum coronary vessel - intervention_pvscd_sum
vaso_Vaso coronário - Intervenção_PVSDA_sum coronary vessel - intervention_pvsda_sum
vaso_Vaso coronário - Intervenção_PVSDPD_sum coronary vessel - intervention_pvsdpd_sum
vaso_Vaso coronário - Intervenção_PVSDPE_sum coronary vessel - intervention_pvsdpe_sum
vaso_Vaso coronário - Intervenção_PVSDg1_sum coronary vessel - intervention_pvsdg1_sum
vaso_Vaso coronário - Intervenção_PVSDg2_sum coronary vessel - intervention_pvsdg2_sum
vaso_Vaso coronário - Intervenção_PVSMg1_sum coronary vessel - intervention_pvsmg1_sum
vaso_Vaso coronário - Intervenção_PVSMg2_sum coronary vessel - intervention_pvsmg2_sum
vaso_Vaso coronário - Intervenção_PVSRI_sum coronary vessel - intervention_pvsri_sum
vaso_Vaso coronário - Intervenção_PVSVPD_sum coronary vessel - intervention_pvsvpd_sum
vaso_Vaso coronário - Intervenção_PVSVPE_sum coronary vessel - intervention_pvsvpe_sum
vaso_Vaso coronário - Intervenção_RadialCD_sum coronary vessel - intervention_radialcd_sum
vaso_Vaso coronário - Intervenção_RadialDg_sum coronary vessel - intervention_radialdg_sum
vaso_Vaso coronário - Intervenção_RadialMg_sum coronary vessel - intervention_radialmg_sum
vaso_Vaso coronário - Intervenção_TCE_sum coronary vessel - intervention_tce_sum
vaso_Vaso coronário - Intervenção_VPD_sum coronary vessel - intervention_vpd_sum
vaso_Vaso coronário - Intervenção_VPE_sum coronary vessel - intervention_vpe_sum
vaso_Local da Lesão - Intervenção_Anastomose_sum vessel_lesion - intervetion_anastomosis_sum
vaso_Local da Lesão - Intervenção_Difusa(s)_sum vessel_lesion - diffuse intervention (s) _sum
vaso_Local da Lesão - Intervenção_Distal_sum vessel_lesion - intervention_distal_sum
vaso_Local da Lesão - Intervenção_Distal do enx-
erto_sum

vessel_lesion - intervention_distal of graft_sum

vaso_Local da Lesão - Intervenção_Distal na-
tivo_sum

vessel_lesion - intervention_distal native_sum

vaso_Local da Lesão - Intervenção_Médio_sum vessel_lesion - intervention_medium_sum
vaso_Local da Lesão - Intervenção_Médio do enx-
erto_sum

vessel_lesion - intervention_graft medium_sum

vaso_Local da Lesão - Intervenção_Médio na-
tivo_sum

vessel_lesion - intervention_medio nativo_sum

vaso_Local da Lesão - Intervenção_Proximal_sum vessel_lesion - intervention_proximal_sum
vaso_Local da Lesão - Intervenção_Proximal do enx-
erto_sum

vessel_lesion - intervention_graft proximal_sum

vaso_Local da Lesão - Intervenção_Óstio_sum vessel_lesion - intervention_ostium_sum
vaso_Local da Lesão - Intervenção_Óstio do enx-
erto_sum

vessel_lesion - intervention_graft ostium_sum

vaso_Tipo de Lesão - Intervenção_De Novo_sum vessel_type of injury - intervention_new_sum
vaso_Tipo de Lesão - Intervenção_Dissecção espon-
tânea_sum

vessel_type of injury - intervention_ spontaneous dis-
cussion_sum

vaso_Tipo de Lesão - Intervenção_Oclusão total
crônica_sum

vessel_type of injury - intervention_ chronic occlu-
sion_sum

vaso_Tipo de Lesão - Intervenção_Restenose in-
trastent_sum

vessel_type of injury - intervention_restenosis in-
trastent_sum

vaso_Tipo de Lesão - Intervenção_Restenose pós
balão_sum

vessel_type of injury - intervention_ resteenosis post
balloon_sum

vaso_Tipo de Lesão - Intervenção_Trombose intra-
stent_sum

vessel_type of injury - intervention_trombosis intra-
stent_sum

vaso_Tipo de Lesão - Intrastent - Inter-
venção_Difusa_sum

vessel_type of injury - intrastent - interven-
tion_difuse_sum
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vaso_Tipo de Lesão - Intrastent - Inter-
venção_Focal_sum

vessel_type of injury - intrastent - interven-
tion_focal_sum

vaso_Tipo de Lesão - Intrastent - Inter-
venção_Oclusão_sum

vessel_type of injury - intrastent - interven-
tion_oclusion_sum

vaso_Tipo de Lesão - Intrastent - Inter-
venção_Proliferativa_sum

vessel_type of injury - intrastent - interven-
tion_proliferative_sum

vaso_Tipo de Lesão - Focal - Intervenção_Borda
IB_sum

vessel_type of injury - focal - intervention_border
ib_sum

vaso_Tipo de Lesão - Focal - Intervenção_Focal corpo
stent IC_sum

vessel_type of injury - focal - intervention_focal body
stent ic_sum

vaso_Tipo de Lesão - Focal - Intervenção_Multifocal
ID_sum

vessel_type of injury - focal - intervention_multifocal
id_sum

vaso_Tipo de Lesão - Focal - Intervenção_gap
IA_sum

vessel_type of injury - focal - intervention_gap i_sum

vaso_Tipo de Lesão - Difusa - Intervenção_Intra-
stent II_sum

vessel_type of injury - diffuse - intervention_intra -
sent ii_sum

vaso_Tipo de Lesão - Difusa - Intervenção_Oclusão
total_sum

vessel_type of injury - diffuse - intervention_total
oclusion_sum

vaso_Tipo de Lesão - Difusa - Inter-
venção_Proliferativca III_sum

vessel_type of injury - diffuse - interven-
tion_proliferative iii_sum

vaso_Tipo de Lesão - Pós balão - Inter-
venção_Tardia_sum

vessel_type of injury - post balloon - interven-
tion_late_sum

vaso_Calcificação - Intervenção_Acentuada_sum vessel_calcification - intervention_accentuated_sum
vaso_Calcificação - Intervenção_Ausente_sum vessel_calcification - intervention_absent_sum
vaso_Calcificação - Intervenção_Discreta_sum vessel_calcification - intervention_discrete_sum
vaso_Calcificação - Intervenção_Moderada_sum vessel_calcification - intervention_moderate_sum
vaso_Tortuosidade - Intervenção_Acentuada_sum vessel_tortuous - intervention_accentuated_sum
vaso_Tortuosidade - Intervenção_Leve_sum vessel_tortuous - intervention_light_sum
vaso_Tortuosidade - Intervenção_Moderada_sum vessel_tortuous - intervention_moderate_sum
vaso_Angulação - Intervenção_gt45_sum vessel_angulation - intervention_gt45_sum
vaso_Angulação - Intervenção_gt90_sum vessel_angulation - intervention_gt90_sum
vaso_Angulação - Intervenção_Acentuada_sum vessel_angulation - intervention_accentuated_sum
vaso_Angulação - Intervenção_Leve_sum vessel_angulation - intervention_light_sum
vaso_Angulação - Intervenção_Moderada_sum vessel_angulation - intervention_moderate_sum
vaso_Grau de Importância - Inter-
venção_Discreta_sum

vessel_grau of importance - interven-
tion_discrete_sum

vaso_Grau de Importância - Inter-
venção_Grande_sum

vessel_grau of importance - intervention_big_sum

vaso_Grau de Importância - Inter-
venção_Moderada_sum

vessel_grau of importance - interven-
tion_moderate_sum

vaso_Maior que 20mm - Intervenção_Não_sum vessel_greater than 20mm - intervention_no_sum
vaso_Maior que 20mm - Intervenção_Sim_sum vessel_greater than 20mm - intervention_yes_sum
vaso_Trombo - Intervenção_Não_sum vessel_trombo - intervention_no_sum
vaso_Trombo - Intervenção_Sim_sum vessel_trombo - intervention_yes_sum
vaso_Placa Rota - Intervenção_Não_sum vessel_broken plate - intervention_no_sum
vaso_Placa Rota - Intervenção_Sim_sum vessel_broken plate - intervention_yes_sum
vaso_Placa Ulcerada - Intervenção_Não_sum vessel_ulcerous plate - intervention_no_sum
vaso_Placa Ulcerada - Intervenção_Sim_sum vessel_ulcerous plate - intervention_yes_sum
vaso_Ectasia - Intervenção_Não_sum vessel_ectasia - intervention_no_sum
vaso_Ectasia - Intervenção_Sim_sum vessel_ectasia - intervention_sim_sum
vaso_Aneurisma - Intervenção_Não_sum vessel_aneurisma - intervention_no_sum
vaso_Aneurisma - Intervenção_Sim_sum vessel_aneurisma - intervention_yes_sum
vaso_Bifurcação - Intervenção_001_sum vessel_bifurcation - intervention_001_sum
vaso_Bifurcação - Intervenção_010_sum vessel_bifurcation - intervention_010_sum
vaso_Bifurcação - Intervenção_011_sum vessel_bifurcation - intervention_011_sum
vaso_Bifurcação - Intervenção_100_sum vessel_bifurcation - intervention_100_sum
vaso_Bifurcação - Intervenção_101_sum vessel_bifurcation - intervention_101_sum
vaso_Bifurcação - Intervenção_110_sum vessel_bifurcation - intervention_110_sum
vaso_Bifurcação - Intervenção_111_sum vessel_bifurcation - intervention_111_sum

Is there a label or target associated with each instance? If so, please provide
a description. The target is the dataset’s last column and provides the intervention’s
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outcome, whether a MACE event had happened or not. A MACE event is considered
when, during, or immediately after the intervention, the patient died, had a myocardial
infarction, or had a stroke.

Is any information missing from individual instances? (If so, please explain
why this information is missing (e.g., because it was unavailable). This does
not include intentionally removed information, but might include, e.g., redacted
text.) All missing information was either excluded (feature-wise or instance-wise) or
treated so that the resulting dataset had no missing information.

Are relationships between individual instances made explicit (e.g., users’ movie
ratings, social network links)? ( If so, please describe how these relationships
are made explicit.) There are no relationships between individual instances.

Are there recommended data splits (e.g., training, development/validation,
testing)? (If so, please provide a description of these splits, explaining the
rationale behind them.) We expect this data to be used solely for testing purposes.
We do not explicitly provide a training/validation/testing split; however, we recognize
that people may wish to do this or to do some form of cross-validation. We suggest cross-
validation, given that some phenomena only occur in a few instances and are likely to be
lost in any random split.

Are there any errors, sources of noise, or redundancies in the dataset? (If
so, please provide a description.) There are almost certainly some errors in data
collection and annotation. We did our best to minimize these, but some indeed remain.

Is the dataset self-contained, or does it link to or otherwise rely on external
resources (e.g., websites, tweets, other datasets)? (If it links to or relies on
external resources, a) are there guarantees that they will exist and remain con-
stant over time; b) are there official archival versions of the complete dataset
(i.e., including the external resources as they existed at the time the dataset
was created); c) are there any restrictions (e.g., licenses, fees) associated with
any of the external resources that might apply to a future user? Please pro-
vide descriptions of all external resources and any restrictions associated with
them, as well as links or other access points, as appropriate.)

The dataset is self-contained. Does the dataset contain data that might
be considered confidential (e.g., data that is protected by legal privilege or
doctor-patient confidentiality, data that includes the content of individuals’
non-public communications)? (If so, please provide a description.) No; Al-
though the data represents patient confidential information, all data was anonymized and
thus did not contain any personally identifiable information.
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Does the dataset contain data that, if viewed directly, might be offensive, in-
sulting, threatening, or might otherwise cause anxiety? (If so, please describe
why.) No.

Does the dataset relate to people? (If not, you may skip the remaining ques-
tions in this section.) Yes.

Does the dataset identify any subpopulations (e.g., by age, gender)? (If so,
please describe how these subpopulations are identified and provide a descrip-
tion of their respective distributions within the dataset.) The dataset contains
individuals ranging from 0 to 106 years, and the average age is 62 years old. Samples are
from both genders, and Males comprise about 70% of the dataset. Regarding cardiovas-
cular diseases, the dataset contains both chronic and acute cases.

Is it possible to identify individuals (i.e., one or more natural persons), either
directly or indirectly (i.e., in combination with other data) from the dataset?
(If so, please describe how.) No. Data were anonymized.

Does the dataset contain data that might be considered sensitive in any way
(e.g., data that reveals racial or ethnic origins, sexual orientations, religious
beliefs, political opinions or union memberships, or locations; financial or
health data; biometric or genetic data; forms of government identification,
such as social security numbers; criminal history)? (If so, please provide a
description.) No.

Any other comments? None.

A.3 Collection pocess

How was the data associated with each instance acquired? (Was the data
directly observable (e.g., raw text, movie ratings), reported by subjects (e.g.,
survey responses), or indirectly inferred/derived from other data (e.g., part-
of-speech tags, model-based guesses for age or language)? If data was reported
by subjects or indirectly inferred/derived from other data, was the data vali-
dated/verified? If so, please describe how.) The data was collected from databases
of hospitals and clinics across 7 states in Brazil. Raw information was reported by subjects
(doctors and nurses) and was not validated or verified.

What mechanisms or procedures were used to collect the data (e.g., hard-
ware apparatus or sensor, manual human curation, software program, soft-
ware API)? (How were these mechanisms or procedures validated?) Data was
originally collected by each hospital and clinic using their own electronic health record
software. It was then exported and aggregated in one single dataset.
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If the dataset is a sample from a larger set, what was the sampling strategy
(e.g., deterministic, probabilistic with specific sampling probabilities)? The
dataset is not a sample from a larger dataset.

Who was involved in the data collection process (e.g., students, crowdworkers,
contractors), and how were they compensated (e.g., how much were crowd-
workers paid)? The hospital and clinic’s medical staff did all collection and annotation.

Over what timeframe was the data collected? (Does this timeframe match
the creation timeframe of the data associated with the instances (e.g., recent
crawl of old news articles)? If not, please describe the timeframe in which the
data associated with the instances was created.) The data was collected from
2006 to 2018.

Were any ethical review processes conducted (e.g., by an institutional review
board)? (If so, please provide a description of these review processes, includ-
ing the outcomes, as well as a link or other access point to any supporting
documentation.) The use of patient data in the MI-SIEVE ACC database was ap-
proved by the Research Ethics Committee (CEP/IGESDF, Comitê de Ética em Pesquisa
do Instituto de Gestão Estratégica de Saúde do Distrito Federal ) according to the ap-
proval number 3.854.051 on February 21st, 2020, and approval 4.263.940 on September
8th, 2020.

Does the dataset relate to people? (If not, you may skip the remaining ques-
tions in this section.) Yes;

Did you collect the data from the individuals in question directly, or obtain it
via third parties or other sources (e.g., websites)? Directly from the individuals.

Were the individuals in question notified about the data collection? (If so,
please describe (or show with screenshots or other information) how notice was
provided, and provide a link or other access point to, or otherwise reproduce,
the exact language of the notification itself.) Yes.

Did the individuals in question consent to the collection and use of their data?
(If so, please describe (or show with screenshots or other information) how
consent was requested and provided, and provide a link or other access point
to, or otherwise reproduce, the exact language to which the individuals con-
sented.) Data collection is a usual practice in hospitals and clinics and patients consent
to giving this data to aid in the treatment process. Data were collected from 2006 to 2018,
prior to the creation of a specific regulation in Brazil, called LGPD, that became manda-
tory only in 2020. Nevertheless, the dataset followed common anonymization principles
to preserve patients’ privacy.
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If consent was obtained, were the consenting individuals provided with a mech-
anism to revoke their consent in the future or for certain uses? (If so, please
provide a description, as well as a link or other access point to the mechanism
(if appropriate).) No.

Has an analysis of the potential impact of the dataset and its use on data
subjects (e.g., a data protection impact analysis) been conducted? (If so,
please provide a description of this analysis, including the outcomes, as well
as a link or other access point to any supporting documentation.) No.

Any other comments? None.

A.4 Preprocessing/cleaning/labeling

Was any pre-processing/cleaning/labeling of the data done (e.g., discretization
or bucketing, tokenization, part-of-speech tagging, SIFT feature extraction,
removal of instances, processing of missing values)? (If so, please provide
a description. If not, you may skip the remainder of the questions in this
section.) Yes, there was extensive pre-processing and cleaning of the data. This work
was supervised by the domain specialist MD. Luiz Sérgio Fernandes de Carvalho. As the
details of each feature pre-processing are very extensive, we will not list them here, but a
Jupyter Notebook with all data pre-processing and cleaning can be shared upon request.

Was the "raw" data saved in addition to the pre-processed/cleaned/labeled
data (e.g., to support unanticipated future uses)? (If so, please provide a link
or other access point to the "raw" data.) Yes, the original raw data was saved.
Access to the raw data will be provided on a need basis upon request to Clarity Health,
the company which owns the dataset.

Is the software used to pre-process/clean/label the instances available? (If
so, please provide a link or other access point.) Yes. We used Python Jupyter
Notebooks.

Any other comments? None.

A.5 Uses

Has the dataset been used for any tasks already? (If so, please provide a
description.) The dataset has never been used before.

Is there a repository that links to any or all papers or systems that use the
dataset? (If so, please provide a link or other access point.) N/A.
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What (other) tasks could the dataset be used for? The dataset could be used to
understand epidemiological factors related to acute coronary syndromes and assess risk
factors associated with worse outcomes among individuals treated in cardiac catheteriza-
tion labs in Brazil.

Is there anything about the composition of the dataset or the way it was
collected and pre-processed/cleaned/labeled that might impact future uses?
(For example, is there anything that a future user might need to know to
avoid uses that could result in unfair treatment of individuals or groups (e.g.,
stereotyping, quality of service issues) or other undesirable harms (e.g., finan-
cial harms, legal risks) If so, please provide a description. Is there anything
a future user could do to mitigate these undesirable harms?) Yes. The dataset
was cleaned/pre-processed/labeled to be used in Machine Learning research. As data
is not confirmed nor verified, it should NOT be used for medical research, and thus no
medical conclusion or therapy should be derived based on this data.

Are there tasks for which the dataset should not be used? (If so, please
provide a description.) As mentioned above, the dataset should NOT be used for
medical research, or to obtain any medical conclusion, as it was not confirmed nor verified.

Any other comments? None.

A.6 Distribution

Will the dataset be distributed to third parties outside of the entity (e.g.,
company, institution, organization) on behalf of which the dataset was cre-
ated? (If so, please provide a description.) The dataset is proprietary, and its
distribution would be done upon request and approval by Clarity Health, the company
which owns the dataset.

How will the dataset will be distributed (e.g., tarball on website, API, GitHub)?
(Does the dataset have a digital object identifier (DOI)?) By e-mail, on a need
basis.

When will the dataset be distributed? Only in the cases approved by Clarity
Health, the company which owns the dataset.

Will the dataset be distributed under a copyright or other intellectual prop-
erty (IP) license and/or under applicable terms of use (ToU)? (If so, please
describe this license and/or ToU and provide a link or other access point to,
or otherwise reproduce, any relevant licensing terms or ToU, as well as any
fees associated with these restrictions.) Yes.
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Have any third parties imposed IP-based or other restrictions on the data
associated with the instances? (If so, please describe these restrictions, and
provide a link or other access point to, or otherwise reproduce, any relevant
licensing terms, as well as any fees associated with these restrictions.) Not to
our knowledge.

Do any export controls or other regulatory restrictions apply to the dataset
or to individual instances? (If so, please describe these restrictions, and pro-
vide a link or other access point to, or otherwise reproduce, any supporting
documentation.) Not to our knowledge.

Any other comments? None.

A.7 Maintenance

Who is supporting/hosting/maintaining the dataset? The authors are maintain-
ing the dataset.

How can the owner/curator/manager of the dataset be contacted (e.g., e-mail
address)? E-mail address: luizsergiofc@gmail.com

Is there an erratum? (If so, please provide a link or other access point.)
Currently, no. As errors are encountered, future versions of the dataset may be released
(but will be versioned).

Will the dataset be updated (e.g., to correct labeling errors, add new instances,
delete instances’)? (If so, please describe how often, by whom, and how up-
dates will be communicated to users (e.g., mailing list, GitHub)?) Same as
previous.

If the dataset relates to people, are there applicable limits on the retention
of the data associated with the instances (e.g., were individuals in question
told that their data would be retained for a fixed period of time and then
deleted)? (If so, please describe these limits and explain how they will be
enforced.) No.

Will older versions of the dataset continue to be supported/hosted/maintained?
(If so, please describe how. If not, please describe how its obsolescence will
be communicated to users.) Yes, all data will be versioned.
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If others want to extend/augment/build on/contribute to the dataset, is there
a mechanism for them to do so? (If so, please provide a description. Will these
contributions be validated/verified? If so, please describe how. If not, why
not? Is there a process for communicating/distributing these contributions to
other users? If so, please provide a description.) Currently, we are not considering
any contribution from the community, as the dataset is private.

Any other comments? None.


