
UNIVERSIDADE ESTADUAL DE CAMPINAS
Faculdade de Engenharia Elétrica e de Computação

Thiago Arruda Navarro do Amaral

Run-time Adaptive In-Kernel BPF/XDP
Solution for 5G UPF: Design, Prototype and

Performance Evaluation

Solução BPF/XDP Adaptável em Tempo de
Execução no Kernel para 5G UPF: Projeto,

Protótipo e Avaliação de Desempenho

Campinas

2022

Thiago Arruda Navarro do Amaral

Run-time Adaptive In-Kernel BPF/XDP Solution for 5G
UPF: Design, Prototype and Performance Evaluation

Solução BPF/XDP Adaptável em Tempo de Execução no
Kernel para 5G UPF: Projeto, Protótipo e Avaliação de

Desempenho

Dissertation presented to the Faculty of Elec-
trical and Computer Engineering of the Uni-
versity of Campinas in partial fulfillment of
the requirements for the degree of Master in
Electrical Engineering, in the area of Com-
puter Engineering.

Dissertação apresentada à Faculdade de En-
genharia Elétrica e de Computação da Uni-
versidade Estadual de Campinas como parte
dos requisitos exigidos para a obtenção do
título de Mestre em Engenharia Elétrica, na
Área de Engenharia de Computação.

Supervisor: Prof. Dr. Christian Rodolfo Esteve Rothenberg

Este trabalho corresponde à versão
final da dissertação defendida pelo
aluno Thiago Arruda Navarro do
Amaral, e orientada pelo Prof. Dr.
Christian Rodolfo Esteve Rothen-
berg.

Campinas
2022

Ficha catalográfica
Universidade Estadual de Campinas

Biblioteca da Área de Engenharia e Arquitetura
Rose Meire da Silva - CRB 8/5974

 Amaral, Thiago Arruda Navarro, 1988-
 Am15r AmaRun-time adaptive in-kernel BPF/XDP solution for 5G UPF: design,

prototype and performance evaluation / Thiago Arruda Navarro do Amaral. –
Campinas, SP : [s.n.], 2022.

 AmaOrientador: Christian Rodolfo Esteve Rothenberg.
 AmaDissertação (mestrado) – Universidade Estadual de Campinas, Faculdade

de Engenharia Elétrica e de Computação.

 Ama1. Comutação por pacotes (Transmissão de dados). 2. Linux. 3. Gateways

(Redes de computadores). 4. Redes definidas por software (Tecnologia de
rede de computadores). I. Esteve Rothenberg, Christian Rodolfo, 1982-. II.
Universidade Estadual de Campinas. Faculdade de Engenharia Elétrica e de
Computação. III. Título.

Informações para Biblioteca Digital

Título em outro idioma: Solução adaptável em tempo de execução no kernel para 5G
UPF: projeto, protótipo e avaliação de desempenho
Palavras-chave em inglês:
Packet switching
5G system
Linux
Gateways (Computer network)
Software-defined networking (Computer network technology)
Área de concentração: Engenharia de Computação
Titulação: Mestre em Engenharia Elétrica
Banca examinadora:
Christian Rodolfo Esteve Rothenberg [Orientador]
Marcos Augusto Menezes Viera
Cristiano Bonato Both
Data de defesa: 16-03-2022
Programa de Pós-Graduação: Engenharia Elétrica

Identificação e informações acadêmicas do(a) aluno(a)
- ORCID do autor: https://orcid.org/0000-0003-4010-2039
- Currículo Lattes do autor: http://lattes.cnpq.br/4663642039232130

Powered by TCPDF (www.tcpdf.org)

COMISSÃO JULGADORA - DISSERTAÇÃO DE MESTRADO

Candidato(a): Thiago Arruda Navarro do Amaral RA: 159121
Data de defesa: 16 de Março de 2022
Título da Tese: "Run-time Adaptive In-Kernel BPF/XDP Solution for 5G UPF: Design,
Prototype and Performance Evaluation"

Prof. Dr. Christian Rodolfo Esteve Rothenberg (Presidente)
Prof. Dr. Marcos Augusto Menezes Vieira
Prof. Dr. Cristiano Bonato Both

A Ata de Defesa, com as respectivas assinaturas dos membros da Comissão Julgadora,
encontra-se no SIGA (Sistema de Fluxo de Dissertação/Tese) e na Secretaria de Pós-
Graduação da Faculdade de Engenharia Elétrica e de Computação.

To my wife, Giovana, who created a clean path until the end of this journey.

Acknowledgements

This work was supported by grants 2018/23101-0 and 2020/05182-3 from the
São Paulo Research Foundation (FAPESP).

“I continuously go further and further learning about my own limitations, my body
limitation, psychological limitations. It’s a way of life for me.”

(Ayrthon Senna)

Resumo
A infraestrutura de computação de borda pode ser dimensionada de datacenters a um único
dispositivo. A tecnologia mais conhecida para processamento rápido de pacotes é DPDK,
que possui excelente desempenho em relação ao throughput e latência. Porém, existem
algumas desvantagens quando o uso é feito na borda: (i) o mecanismo de polling para
processamento de pacotes mantém a CPU ocupada exclusivamente mesmo que não haja
tráfego, levando ao desperdício de recursos; e (ii) a interface DPDK torna-se indisponível
para os aplicativos dentro do host, então a integração entre um aplicativo não DPDK e
um aplicativo DPDK torna-se uma tarefa difícil. Neste trabalho, propomos uma solução
5G UPF de código-fonte aberto baseada no 3GPP Release 16 para ser implantada em um
ambiente restritivo como o MEC, onde o host MEC e o UPF são colocados com a Estação
Base, compartilhando os mesmos recursos computacionais e de rede. A solução aproveita o
BPF / XDP, uma nova tecnologia de kernel Linux para processamento rápido de pacotes.
Mostramos que ele pode escalar e atingir aproximadamente 10/11 Mpps usando apenas
60% da CPU com 6 núcleos.

Palavras-chaves: 5G; UPF; XDP; BPF.

Abstract
The edge computing infrastructure can scale from datacenters to a single device. The well-
known technology for fast packet processing is DPDK, which has outstanding performance
regarding the throughput and latency. However, there are some drawbacks when the
usage is done in the edge: (i) the polling mechanism for packet processing keeps the
CPU exclusively occupied even if there is no traffic, leading to wasted resources; and (ii)
DPDK interface becomes unavailable for the applications inside the host, so the integration
between a non-DPDK application and a DPDK application becomes a hard task. In this
paper, we propose an open-source in-kernel 5G UPF solution based on 3GPP Release 16
to be deployed in a restrictive environment like MEC, where MEC host and UPF are
collocated with the Base Station, sharing the same computational and network resources.
The solution leverages the BPF/XDP, a novel Linux kernel technology for fast packet
processing. We show it can scale and achieve about 10/11 Mpps using only 60% of the
CPU with 6 cores.

Keywords: 5G; UPF; XDP; BPF.

List of Figures

Figure 1.1 – MEC deployment option 1. MEC and UPF collocated with the Base
Station. Source: adapted from (ETSI, 2018a). 15

Figure 2.1 – Diagram representing the BPF program load flow in the kernel. Source:
adapted from (Cilium Community, 2022) 18

Figure 2.2 – Simplified XDP architecture diagram with the possible actions that can
be applied to the received packet before the socket buffer allocation by
the operating system. Source: adapted from (SUSE, 2022). 19

Figure 2.3 – Simplified 5G System architecture. Highlighted, the SMF and UPF
components are addressed in the next sessions. The colored region
represents the core of the 5G network. 21

Figure 2.4 – Simplified procedure for requesting session establishment. 21
Figure 2.5 – Flow of packet processing in UP function defined by UPF and SPGWu,

components of NGC and EPC respectively. 23
Figure 2.6 – GTP-U header with extensions. Source: (GIRONDI, 2020). 24
Figure 5.1 – The PFCP context data model with the IEs of the proposed solution. . 32
Figure 5.2 – High level design of the user plane library using BPF/XDP. 33
Figure 5.3 – Create PFCP session activity diagram (version 1). 35
Figure 5.4 – On new packet activity diagram (version 1). 36
Figure 5.5 – Workflow in Datapath Layer with PDR lookup loop (version 1). 37
Figure 5.6 – Workflow in Datapath Layer with QER and FAR (version 1). 38
Figure 5.7 – PFCP session creation activity diagram in Management Layer (version 2). 39
Figure 5.8 – On new packet received activity diagram in Datapath Layer (version 2) . 40
Figure 5.9 – On new packet activity diagram with the decoupled rules (version 2). . 41
Figure 6.1 – Testbed setup. 52
Figure 6.2 – Tmux session for manual test execution. 53
Figure 6.3 – Scalability of the proposed solution. 59
Figure 6.4 – Workload distribution when varying the number of cores. 60
Figure 7.1 – High-leel architecture representing the integration between the UPF

BPF library and the UPF/SGPWu component of the UP. 65
Figure 7.2 – Iteration diagram between OAI components and UPF BPF library.

Caption: Yellow, OAI components; Blue, test components; Green, upf-
bpf library inside SPGWu component. 66

List of Tables

Table 2.1 – Relation between the signaling interfaces (5G and LTE) used between
the CP and UP and the rules applied in the packet. 23

Table 3.1 – Related work. Legend: U/D - Under Development; N/A - Not Apply; All - All

NCG components; U - Unavailable; . 27
Table 6.1 – Time spent to inject BPF program into the Linux kernel (JIT compiler

phase) after receiving a PFCP Establishment Request message. 61
Table 7.1 – Comparison summary of (Parola, F., 2020) and this work. 63

Contents

1 Introduction . 14
2 Background . 17

2.1 BPF . 17
2.2 XDP . 19
2.3 Libbpf . 19
2.4 5G Network Architecture . 20

2.4.1 SMF . 20
2.4.2 UPF . 22

3 Related Work . 25
3.1 Academic Research . 25
3.2 Open Source Projects . 26

4 Problem Statement and Approach . 28
4.1 Research Objectives . 28
4.2 Methodology . 29

4.2.1 Design and Implementation of 5G UPF 30
4.2.2 Testing and Performance Evaluation 30

5 Design and Implementation of 5G UPF . 31
5.1 Features . 31
5.2 Design . 33

5.2.1 Version 1 . 34
5.2.2 Version 2 . 37

5.3 Implementation . 40
5.3.1 Setup UPF . 41
5.3.2 Create PFCP Session . 45
5.3.3 On New Packet . 47

6 Testing and Performance Evaluation . 52
6.1 Setup . 52
6.2 Test Case . 53
6.3 Results . 59

7 Conclusions . 62

Bibliography . 67

Appendix 71
APPENDIX A Publication . 72

14

1 Introduction

Mobile communications networks have been undergoing constant changes since
their emergence in the 1980s, where their main functionality was to carry out data trans-
mission, predominantly voice, in an analog form. At that time, networks were composed
exclusively of hardware equipment that performed specific functions. Over time, new
products (e.g. computer games) and services (e.g. Netflix, Surveillance and Monitoring)
were developed and integrated into these networks and increasingly began to demand more
resources. In addition, with the development of Industry 4.0 or Fourth Industrial Revolu-
tion, for example, there is an increasing need to develop a technology that is able to meet,
mainly, the demand of eMBB (enhanced Mobile Broadband), uRLLC (ultra Reliable Low
Latency Communications) and mMTC (massive Machine Type Communications) (GSMA,
2014). These scenarios demand challenges regarding the creation of infrastructures capable
of meeting the applications that demand strict requirements of latency, real-time operation
and high traffic rate, typically in the order of 10 Gbps.

With the emergence of the concepts of NFV (Network Function Virtualization)
and SDN (Software Defined Network), networks are going through a new era called
“Network Softwarization”. The first enables operators to use generic and commoditized
equipment to perform virtualized network functions. The second enables the separation
of the control plane from the data plane, which were previously centralized on the same
network device, improving network management and programmability. This separation
is called CUPS (Control User Plane Separation). Therefore, these concepts made LTE
networks (Long Term Evolution), which were initially conceived based on equipment with
specialized functions, more efficient and competitive. As for the so-called fifth generation
of mobile communication networks (i.e., 5G networks), these new paradigms are already
an integral part of their system architecture.

The new model presented makes mobile communication networks more flexible,
scalable, open and programmable. One of the challenges is associated with the performance
of these networks, given that their components, previously embedded in specific hardware
devices, can now be implemented in software and run on generic and commoditized
equipment. In addition, uRLLC and eMBB scenarios demand new operational requirements
for 5G networks. For example, tactile application requires low latency requirements (on
the order of 1 ms) that cannot be achieved if only technologies used in 5G networks are
considered (BONATI et al., 2020). In this context, one of the alternatives is to enable edge
computing in mobile communication networks. Because of the edge infrastructure where
the applications and services are deployed is closer to the users, the end to end latency is
reduced and traffic is offload from the core of the network (ETSI, 2018b). This solution is

CHAPTER 1. INTRODUCTION 15

known as MEC (Multi-Access Edge Computing), which therefore uses the NFV, SDN and
Edge Computing paradigms as enabling technologies.

There are two key components in MEC: MEC host and UPF (User Plane
Function). The former one is a general purpose computing facility that provides computing
and storage resources to applications (ETSI, 2018b), while the latter is mainly responsible
for handling user traffic to the appropriate DN (Data Network). These components could
be collocated within the Base Station (edge), sharing the same network and computational
resources (Figure 1.1). So, one of the concerns is about efficient resource utilization,
because the infrastructure is shared between applications. Besides, the edge computing
infrastructure can scale from datacenters to a single device and can be based on x86 or
ARM processors (OpenStack, 2020), which depends on the use case requirements. So,
because of this diversity, portable solutions for fast packet processing might be considered
to avoid creating multiple version of the same solution for each infrastructure.

Figure 1.1 – MEC deployment option 1. MEC and UPF collocated with the Base Station.
Source: adapted from (ETSI, 2018a).

DPDK is a well-known fast packet processing technology. Although it has an
outstanding performance regarding the throughput and latency (INTEL, 2014), there
are some drawbacks for a typical MEC deployment scenario: (i) DPDK support by the
NICs; (ii) the polling mechanism for packet processing (DPDK Poll Mode Drivers) keeps
the CPU exclusively occupied even if there is no traffic, leading to wasted resources; and
(iii) DPDK interface becomes unavailable for the applications inside the host, so the
integration between a non-DPDK application and a DPDK application becomes a hard
task (HØILAND-JØRGENSEN et al., 2018).

In this thesis, we propose an open-source1 run-time adaptive in-kernel solution
1 <https://github.com/navarrothiago/upf-bpf>

https://github.com/navarrothiago/upf-bpf

CHAPTER 1. INTRODUCTION 16

based on 3GPP Release 16 as an alternative for 5G UPF (User Plane Function). The
solution leverages the BPF/XDP (eXpress Data Path), a novel built-in Linux kernel
technology for fast packet processing, which has advantages over DPDK (HØILAND-
JØRGENSEN et al., 2018), i.e. (i) integrates cooperatively with the regular networking
stack; (ii) does not require dedicating full CPU cores to packet processing. We present the
proposed solution that can scale and achieve 10 Mpps using only 60% of the CPU with 6
cores. The main contributions of this thesis can be summarized as follows:

• Design of BPF/XDP based 5G UPF utilizing defacto library, which makes it easier
to integrate with other software and potentially expand functionality in the future;

• Open-sourced the implementation so others can learn from it and advance the
knowledge of the society;

• The method can reach 10 Mpps throughput and with CPU utilization due to event
handling of the received packet;

• Reference points when comparing with the performance of other approaches and/or
improving the performance of UPF.

The rest of the thesis is organized as follows. Chapter 2 describes relevant
background on the in-kernel technology for fast packet processing (BPF/XDP) and the
5G System (5GS) architecture. Chapter 3 discusses related work and 5G open source
projects. Chapter 4 describes the problem statement and introduces the main objectives
and proposed methodology of the thesis. Chapter 5 details the design and explains the
key components used in the implementation. Chapter 6 describes the setup and the test
cases for the performance evaluation of the proposal design. The conclusions and future
work are given in the last Chapter.

17

2 Background

This section provides relevant background on BPF/XDP and 5G user plane functions.

2.1 BPF
BPF (LWN.net, 2020), well known as eBPF, is a general purpose engine that

allows you to execute instructions in the Linux kernel itself with two main goals: (i) to
deliver negligible overhead when mapping these instructions to native instructions, and (ii)
to guarantee that the program is safe at load time. This technology has been available
since kernel version 3.14.

The engine is composed of 11 64-bit registers1, a program counter and 512 bytes
stack. Programs can be implemented using the “strict C” language and compiled using GNU
(GNU Compiler Collection) or LLVM as backend2 (Figure 2.1). After being compiled, the
generated bytecode can be loaded via the bpf system call using the BPF_PROG_LOAD

command. From there, two steps are performed: verification and, if enabled, JIT compilation
(Just-In-Time).

The verification step is done by the Verifier. It ensures that the program runs
safely and block it during the loading phase if the problem does not satisfy some checks.
One of them is against infinite loops. These loops are prohibited in BPF programs to
ensure that the program always terminates.

After verification, the bytecode can be JIT-compiled inside the kernel as a
performance optimization. In this step, the transformation of the generic bytecode into
machine instructions native to the hardware that the operating system is running takes
place. For this reason, the BPF program can run just as efficiently as kernel modules or
natively compiled code (Cilium Community, 2022).

After being loaded and verified, BPF programs can be hooked in specific areas
(e.g. network stack) in the Linux kernel and its execution is triggered by an event (e.g.
a received packet). One of them is XDP, which will be introduced in the next section.
The BPF portability means that the BPF bytecode works correctly across different kernel
versions without the need to recompile it for each specific kernel version. The BPF Compile
Once, Run Everywhere (CO-RE) (NAKRYIKO, 2020) is the main technology behind this
concept.
1 <https://github.com/torvalds/linux/blob/v4.20/include/uapi/linux/bpf.h#L45>
2 <https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/Documentation/

networking/filter.rst>

https://github.com/torvalds/linux/blob/v4.20/include/uapi/linux/bpf.h##L45
https://git.kernel.org /pub/scm/linux/kernel/git/torvalds/linux.git/tree/Documentation/networking/filter.rst
https://git.kernel.org /pub/scm/linux/kernel/git/torvalds/linux.git/tree/Documentation/networking/filter.rst

CHAPTER 2. BACKGROUND 18

Figure 2.1 – Diagram representing the BPF program load flow in the kernel. Source:
adapted from (Cilium Community, 2022)

BPF programs can store different types of data in generic structures called
Maps. Each data is accessed by a key. Maps can be shared between userspace programs
and BPF programs. More information about BPF is available at (Cilium Community,
2022), (VIEIRA et al., 2020).

One of the main advantages of using this type of technology is to enable
programmability of the kernel without having to change its source code or install additional
modules. Furthermore, BPF programs have a stable ABI (Application Binary Interface)
that guarantees BPF programs keep running with newer kernel versions.

On the other hand, BPF programs have restrictions that make it challenging
to develop these programs to perform more complex functions. Among them, the following
can be highlighted:

• Limit of 5 arguments for a function;

• Limit of 32 nested tail call calls;

• Infinite loops are not allowed;

• Send the same packet to multiple ports;

• Only 30 data structure BPF maps types available (kernel v5.16.10)3;
3 <https://elixir.bootlin.com/linux/v5.16.10/source/include/uapi/linux/bpf.h#L878>

https://elixir.bootlin.com/linux/v5.16.10/source/include/uapi/linux/bpf.h#L878

CHAPTER 2. BACKGROUND 19

Figure 2.2 – Simplified XDP architecture diagram with the possible actions that can be
applied to the received packet before the socket buffer allocation by the
operating system. Source: adapted from (SUSE, 2022).

Some of these restrictions as well as workarounds for them are discussed in (Miano et al.,
2018).

2.2 XDP
XDP (VIEIRA et al., 2020) enables fast packet processing within the Linux

kernel through a hook point located in the reception chain of a network device driver
before memory (i.e. socket buffer) allocation by the operating system. When the packet
is received by the network device driver, the hook which contains the BPF program is
executed. The BPF program can perform different actions, such as dropping the packet,
redirecting it to another interface, or sending it to be processed in the Linux network
stack (Figure 2.2). The network device driver must support XDP to take full advantage of
its benefits. If not supported, the program runs in generic mode at lower performance. It
is worth mentioning that the portability for this kind of program is almost transparent
to the developer due to the extra layer abstraction between the kernel and BPF context
that is represented by its structures. For instance, there is a mapping between the BPF
structure (xdp_md) into internal kernel structure (xdp_buff) 4.

2.3 Libbpf
Libbpf5 is a userspace library for loading and interacting with BPF programs.

It is part of the Linux source tree and it is the reference library de facto. It is an alternative
for the BCC (BPF Compiler Collections) toolkit. BCC has some disadvantages when
comparing with libbpf, for instance, the userspace program has high footprint due to
the clang compiler dependency during run-time, which uses the compiler to build the
4 <https://elixir.bootlin.com/linux/v5.16.10/source/net/core/filter.c#L9116>
5 <https://www.kernel.org/doc/html/latest/bpf/libbpf/index.html>

https://elixir.bootlin.com/linux/v5.16.10/source/net/core/filter.c#L9116
https://www.kernel.org/doc/html/latest/bpf/libbpf/index.html

CHAPTER 2. BACKGROUND 20

BPF program during the user program execution. This means that the development of
the BPF code becomes harder, because the compilation errors are detected at run-time
instead of the compilation time. Besides, the BCC depends on the kernel headers during
the compilation, which might not be available inside the production environments. So, the
adoption of libbpf creates a userspace program much smaller and improves the software
life cycle of the BPF program. Another advantage is that libbpf is used by BPF CO-RE
technology. The upf-bpf project is based on libbpf.

2.4 5G Network Architecture
The architecture of 5G networks is represented in Figure 2.3. The colored regions

represent the 5G network core, called New Generation Core (NGC), where the green block
represents the User Plane (UP), while the blue ones, the Control Plane (CP). One of
the main changes regarding LTE networks is to provide a Service-Oriented Architecture
(SOA), i.e., composed of virtual network functions with well-defined interfaces. These
functions can be performed on commodity hardware equipment and accessed through
a communication protocol (e.g. HTTP). Furthermore, the 5G architecture follows the
Control and User Plane Separation (CUPS) model. This paradigm enables the deployment
of UP closer to applications and services, thus reducing latency and traffic in the core of
these networks.

It is important to note that 5G networks can work in two modes: Non-Standalone
and Standalone. The former allows the deployment of the new generation of 5G radio
(New Radio - NR) along with the core infrastructure of LTE networks, as known as EPC
(Evolved Packet Core) to reduce the cost of deployment. The latter, instead of deploy the
EPC, the NGC takes its place.

In the next sections, two relevant components of the NGC are detailed: Session
Management Function (SMF) and UPF.

2.4.1 SMF

SMF is part of the 5G CP. One of the most relevant SMF functions is to
manage the sessions used for data traffic between the UE and the Data Network (DN),
namely Session Protocol Data Units (PDU). Each session is represented by a logical tunnel
passing through the UE (User Equipment), Radio Access Network (RAN), and UPF.
When a PDU session is established, a context is created in each of these components. A
context contains a set of specific rules that will be applied in the data packet in order to
guarantee Quality of Service (QoS) and to forward the packet to the next hop, for instance.
In the case of UPF, this context is represented by the Packet Forwarding Control Protocol
(PFCP) Session.

CHAPTER 2. BACKGROUND 21

Figure 2.3 – Simplified 5G System architecture. Highlighted, the SMF and UPF compo-
nents are addressed in the next sessions. The colored region represents the
core of the 5G network.

Figure 2.4 – Simplified procedure for requesting session establishment.

PFCP is the signaling protocol used for communication between SMF and UPF
components. This communication involves PFCP session management procedures. The
communication interface between the two components is represented by reference point
N4 in Figure 2.3.

CP components communicate with SMF through the service provided by
Nsmf_PDU-Session (ESTI, 2020a). This service involves PDU session creation, update,
and removal procedures. One session establishment use case example is when the UE
is registered at the core of the network and has data to send to the DN. If there is no
session established, the procedure for requesting session establishment will be carried out
as shown in Figure 2.4. After performing the session establishment, the UE will be able to
send/receive data in uplink/downlink direction.

Compared with LTE networks, the SMF encompasses a set of functionalities

CHAPTER 2. BACKGROUND 22

from the Mobility Management Entity (MME) component within Evolved Packet Core
(EPC). Additionally, the N4 reference point encompasses a set of functionalities defined
for the Sxa/Sxb/Sxc interfaces, which are also used for signaling between the CP and the
UP (ESTI, 2020c).

2.4.2 UPF

One of the main user plane components for NGC is the UPF. It is responsible
for several functionalities related to user data traffic, such as forwarding and routing
packets, applying rules to ensure quality of service, generating traffic usage reports, and
inspecting packets (ESTI, 2020a). It works like a gateway between the RAN and the
external DN (e.g. Internet, IP Multimedia System, local data network, etc). Regarding
LTE networks, the UPF encompasses the functionalities of Servicing Gateway (SGW) and
Packet Data Network Gateway (PGW)6.

Data traffic takes place through a PDU session that is represented by contexts
stored in the UE, RAN, and UPF components. In the case of the UPF, the context is
represented by the PFCP Session, which contains the following rules:

• Packet Detection Rules (PDRs) - Rules for packet detection;

• Forwarding Action Rules (FARs) - Rules for forwarding packets;

• QoS Enforcement Rules (QERs) - Rules for applying QoS;

• Usage Reporting Rules (URRs) - Rules for generating reports;

• Buffer Action Rules (BARs) - Rules for “buffering” packets;

• Multi-Access Rules (MARs) - Rules for traffic steering functionality.

Table 2.1 shows the relationship between the signaling interfaces (5G and LTE)
used between the CP and UP of 5G and LTE networks and the rules applied in the packet.
We will see that the upf-bpf supports PDRs and FARs.

The flow for processing packets in the UP is represented in Figure 2.5. When
the packet is received, its header is analyzed to find the PFCP Session to which the packet
belongs. Once the session is found, the UP looks up the highest precedence PDR. The PDR
contains the Packet Detection Information (PDI), which has Information Elements (IEs)
that will be matched with the header of the received packet. For instance, the PDI contains
the UE IP address that can be the source (uplink) or the destination (downlink) IP address
6 In this work, the term SPGW will be used to refer to the combination of the SGW and PGW components

as specified in (ESTI, 2020d). SPGWu represents the component responsible for implementing the user
plan functionalities for LTE networks.

CHAPTER 2. BACKGROUND 23

Rules Interfaces
Sxa Sxb Sxc N4

PDR x x x x
FAR x x x x
URR x x x x
QER - x x x
BAR x - - x
MAR - - - x

Table 2.1 – Relation between the signaling interfaces (5G and LTE) used between the CP
and UP and the rules applied in the packet.

Figure 2.5 – Flow of packet processing in UP function defined by UPF and SPGWu,
components of NGC and EPC respectively.

of the packet, depending on the traffic direction. After the PDI matches with the header
of the packet, there might be more than one PDR that has the same PDI IEs. However,
just the highest precedence is selected. In the next step, the selected PDR contains the
rules (QERs, URRs, BARs or MARs) that are applied, if they are available. Only the
FAR is mandatory according to specification (ESTI, 2020c). Finally, the packet can be
forwarded to the network interface as defined in the FAR. It is important to highlight that
these steps fit both 5G networks (UPF) and LTE networks (SPGWu) (ESTI, 2020c).

One of the protocols used to load user data packets is GPRS Tunneling Protocol
User Plane (GTPu)(ESTI, 2020b). The original packet (IP datagram) is called a Transport
Protocol Data Unit (T-PDU). When combined with the GTPu header, the packet is called
a GTP encapsulated user Protocol Data Unit (G-PDU). The diagram representing the
protocol stack used in the communication between the UP elements is represented in
Figure 2.6. The Tunnel Endpoint ID (TEID) indicates which tunnel a particular T-PDU
belongs to and it is part of GTP Standard Header. The GTP Extended Header is set
whenever one of the flags Sequence Number, NPDU number or Extension Header is set.

CHAPTER 2. BACKGROUND 24

Figure 2.6 – GTP-U header with extensions. Source: (GIRONDI, 2020).

25

3 Related Work

Since the introduction of concepts such as NFV (PAPER, 2012), several works
have been carried out addressing the issue of fast packet processing (FEI et al., 2020) in
general and tailored to 5G (BONATI et al., 2020).

3.1 Academic Research
The authors in (Ricart-Sanchez et al., 2018a) present a prototype for packet

processing based on hardware using the programmable platform NetFPGA with the
programmable data plane in the P4 language. The work consists of developing a firewall
located between the core and the edge of 5G networks. The firewall is responsible for
analyzing the internal IP headers of each packet, unlike the traditional firewall, which only
analyzes the external header. In parallel, (Ricart-Sanchez et al., 2018b) also proposes a
similar solution, but with a focus on multi-tenancy scenarios to ensure quality of service for
applications with strict latency requirements, with tests performed with OpenAirInterface
(OAI) (OAI Community, 2022). Although FPGA based solutions perform well, they are
considered expensive compared to general purpose CPU. In addition, they are difficult to
be implemented, as they use low-level hardware description languages (low-level hardware
description languages - HDLs), such as the VHDL language (FEI et al., 2020). It is
important to point out that these presented solutions do not seem to be ideal to be
implemented in datacenters infrastructures located at the edge, which have restrictions
regarding the implementation cost (OpenStack, 2020).

Regarding software-based packet processing solutions, (Pinczel et al., 2015)
presents a prototype using the modular router, Click (KOHLER et al., 2000), integrated
with the framework Netmap (RIZZO, 2012) for transferring session context between base
stations. In addition, (Chen; Liu, 2019) evaluates a DPDK-based (INTEL, 2022) prototype
for media gateway located in the IP multimedia subsystem (Multimedia Subsystem - IMS).
DPDK-based solution can increase performance 10 times for packet processing (INTEL,
2014), however it is surpassed by XDP technology in scenarios when packet forwarding
happens through the same interface (HØILAND-JØRGENSEN et al., 2018).

Finally, to the best of our knowledge, the only work found in the literature that
comes closest to this proposal are the works from Parola (Parola, F. et. al., 2020), (Parola,
F., 2020) and (Parola, F. et. al., 2021) and which present a prototype of a mobile gateway
based in BPF using TC and XDP technology for fast packet processing. It focuses on
developing a component that can be deployed on the edge. The main features presented
are packet forwarding and classification and ensuring QoS policies. It was developed

CHAPTER 3. RELATED WORK 26

inside the Polycube Framework (Polycube Community, 2022). The framework provides
fast and lightweight network functions such as bridges, routers, firewalls, and others (the
pull request related to the mobile gateway was integrated yet). It also supports traffic
debugging. Regarding the performance evaluation, Parola showed that the solution scale
using multiple cores. The main advantages of our work comparing with (Parola, F. et. al.,
2020) are (i) it is decoupled to a specific frameworks, i.e. the solution is basically depends
on the Linux kernel; (ii) it is aligned with 3GPP specifications and; (iii) it is based on
libbpf instead of BCC (BCC Community, 2022). As already mentioned in Section 2.3, BCC
is not maintaining by Linux community and depends on the clang compiler in runtime.
So, we argue that our solution can be easily integrated with different software-based 5G
used plane solutions.

3.2 Open Source Projects
The approach presented in this work may leverage open source projects for

telecommunication networks core, such as srsLTE (SRS LTE Community, 2022), OAI
(OAI Community, 2022), Open5GS (Open5GS Community, 2022), UPF-EPC (OMEC
Community, 2022), Magma Facebook (Facebook, 2022), and Free5Gc (Free5Gc Commu-
nity, 2022). Only srsLTE (SRS LTE Community, 2022) does not provide support for NCG
functionalities. The OAI, srsLTE, and Open5GS solutions do not have specific technologies
for fast processing in the UP, which has been developed in the operating system’s user
space. Already UPF-EPC, Magma Facebook, and Free5Gc present kernel-level UP imple-
mentations using the kernel module gtp5g (GTP5G Community, 2022), BESS (Berkeley
Extensible Software Switch) (HAN et al., 2015) and OvS (Open vSwitch) (PFAFF et
al., 2015), respectively. With regard to CUPS support, we can highlight OAI, UPF-EPC,
Open5GS, Free5Gc, and Magma Facebook. Although the Magma Facebook is based on an
older version of the OAI without CUPS support, the solution was built using the SDN Ryu
controller (Ryu Community, 2022) and OvS. We believe all these projects could benefit
from our proposed solution, especially those that do not support fast packet processing,
like OAI, srsLTE, and Open5GS.

CHAPTER 3. RELATED WORK 27

Academic Research

5GS Fast Packet Processing Experimental Evaluation

Work Location Component Based on Technology Env OSS
CN

Application

(Parola, F. et. al., 2020), (Parola, F., 2020),
(Parola, F. et. al., 2021) Edge UPF SW BPF, TC, XDP Polycube No QoS, Traffic for-

ward
(Chen; Liu, 2019) N/A N/A SW DPDK Standalone No 5G Media Gate-

way
(Pinczel et al., 2015) Core UPF SW Netmap, Click Docker

Container
No Context migra-

tion, service chain
(Ricart-Sanchez et al., 2018b) Edge & Core gNB & UPF HW NetFPGA, P4 OAI Yes Multi-Tenancy,

QoS, Multimedia
(Ricart-Sanchez et al., 2018a) Edge & Core gNB & UPF HW NetFPGA, P4 Standalone No Firewall
This Work Edge UPF SW BPF, XDP Standalone Yes Traffic forward

Open Source Software

5GS Fast Packet Processing Details

OSS Location Components Based on Technology CUPS Language Application
(OAI Community, 2022) Core U/D U U Yes C/C++ CN SA/NSA
(SRS LTE Community, 2022) Core U U U No C++ CN NSA
(Facebook, 2022) Core U/D U OvS, Kernel module No C CN NSA
(OMEC Community, 2022) Core UPF SW BESS Yes C++ CN SA
(Open5GS Community, 2022) Core U/D U U Yes C CN SA
(Free5Gc Community, 2022) Core All SW Kernel module Yes Go/C CN SA/NSA
This Work (upf-bpf) Core UPF SW BPF, XDP Yes C++ CN SA/NSA

Table 3.1 – Related work.
Legend: U/D - Under Development; N/A - Not Apply; All - All NCG components; U -
Unavailable;

28

4 Problem Statement and Approach

The current 5G user plane technologies presented in the previous chapter are
based on sockets, programmable switches such as BESS, OvS or kernel module. Regarding
the scenarios where the implementation of these solutions takes place in diversified
infrastructures and with lower computational power (e.g. NPN local networks) when
compared to datacenters, the following challenges can be highlighted:

• Kernel modules have a dependency on existing data structures in the kernel itself.
These structures can vary depending on the version. Therefore, the cost of maintaining
the solution’s compatibility for different kernel versions is high. Furthermore, these
solutions that run in kernel space can be compromised all the system if there is a
bug (e.g. invalid memory access), leading the system to crash;

• OvS depends on kernel implementations. Therefore, it presents the same problems
as the previous item;

• BESS is based on DPDK. This solution exclusively keeps the CPU busy, even if
there is no traffic. In addition, a dedicated network interface is required. Then,
computational resources are wasted even if there is no traffic to be processed;

• IPv4 sockets rely on Linux networking stack, which is a generic and inefficient
implementation for processing high data rates (i.e. on the order of 10 Gbps);

4.1 Research Objectives
Based on the presented foundation in the evolution of 5G mobile telecommuni-

cation networks, in the challenges and opportunity for high-performance programmability
in the Linux kernel, the objective of this research was to investigate the BPF and XDP
technology to be applied in the 5G UPF. The main objectives are to answer the following
research questions:

• RQ1: Is it possible to create a solution for 5G UPF using BPF/XDP technologies?
How would be the design in order to create a proof of concept for the 5G UPF using
BPF/XDP technologies following the specifications of Release 16 of 3GPP?

• RQ2: What levels of performance can be expected for the proposed solution? How is
the performance compared with existing solutions based on BPF/XDP technologies?

CHAPTER 4. PROBLEM STATEMENT AND APPROACH 29

4.2 Methodology
To address the research objectives, the following activities are proposed:

(i) define the minimum requirements for the UP of the 5G network core;

(ii) develop core features of the 5G UPF using BPF and XDP based on the requirements
of the previous step;

(iii) evaluate the performance in terms of scalability and workload of the proposed
solution.

The work differs from other works by presenting an investigation of the use of
BPF and XDP technologies for fast packet processing. Furthermore, the solution (i) is
not limited to specific frameworks, such as (Parola, F. et. al., 2020), (ii)) is aligned with
3GPP specifications and also (iii), as it is decoupled, i.e. it can be reusable in different
open source 5G solutions, like the OAI.

Therefore, the approach of this proposal is innovative and promising. Regarding
the knowledge of related works so far, it is the first work to investigate and propose
the development of a prototype of the UP using BPF/XDP that is aligned with 3GPP
specification.

Briefly, the main advantages of using BPF and XDP technology are:

• Action taken for a given packet can be performed with higher performance than
existing technologies which implement the data plan in telecommunication networks,
possibly decreasing the total latency for packet processing;

• The data plan can hold the flexibility to reprogram, add or remove functionality in
real time without interruptions in data traffic;

• BPF/XDP technologies, currently state-of-the-art in networks, are widely developed
and used by large cloud computing providers, being therefore robust, well-documented,
and with a wide spectrum of production use cases;

• The benefits of the SDN and NFV paradigms are directly applicable to the solu-
tions proposed with BPF/XDP, such as the portability of network functions, the
programmability of data plans, and the flexibility of functionalities at runtime;

• As they are technologies integrated into the kernel, there is no need for specific
hardware or dedicated solutions, i.e., BPF/XDP are interesting technologies to be
implemented in diversified infrastructure, consisting of generic equipment and with
more limited computational resources, but not restricted to them.

CHAPTER 4. PROBLEM STATEMENT AND APPROACH 30

4.2.1 Design and Implementation of 5G UPF

The methodology adopted in this step consisted of defining the minimum
functionalities of the solution. After that, a high level design was done to create a runtime
adaptive solution based on BPF/XDP following the functionalities. The implementation
was leveraged by library libbpf. The idea was to create a software layer to abstract the
lifecycle management of the BPF program, the data structures (maps) shared with UP
and the PFCP messages received from other network core components, as explained in
Section 4.2.1. The test cases were also developed to simulate user data traffic. The traffic
was generated using the TRex - Realistic Traffic Generator (CISCO, 2022a) tool. All code
developed in this step was stored in a public Git repository. In addition, tools can be used
to support software compilation, test execution and packaging on different platforms, such
as CMake (Cmake Community, 2022). This allows the developer to work in an already
known development environment, being an important item of choice for the community.
It is important to note that during this phase, the open source principles available in
OpenSource.Guide (Open Source Guide, 2022) were used.

4.2.2 Testing and Performance Evaluation

The methodology adopted in this step consisted of defining indicators (e.g.
data transfer rate, scalability, CPU usage) to be used to measure the system performance
(System Under Test - SUT) of the 5G UP based on BPF/XDP. Automated tests were
created and executed against the implementation solution from Section 4.2.1. Data was
collected and analyzed. The tool that was used in this phase is TRex - Realistic Traffic
Generator, already mentioned, to generate traffic and perform flow measurements in the
downlink and uplink directions. All documentation and results were stored in the same
repository as the developed code. At the end of this step, graphs were created and analyzed
based on the results.

31

5 Design and Implementation of 5G UPF

This section describes our proposed architecture and implementation for fast
packet processing using BPF/XDP for user plane on the mobile core network (5G/LTE).
The key pillars of the 5G UPF prototype are:

• In-kernel fast packet processing;

• Flexible, extensible and programmable dataplane;

• Portable to different systems.

These points are achieved mainly by BPF/XDP and CO-RE (Compile Once
- Run Everywhere) technologies. Besides, it is based on the following 3GPP Technical
Specification (ESTI, 2020a) and (ESTI, 2020c). The main goal is to enable in-kernel fast
packet processing in third-party UPF/5G or SPGWu/LTE components in order to:

• Boost them for those which does not have any fast packet processing enabled, or;

• Co-locate them with other fast packet processing solutions (e.g. DPDK).

Possible scenarios that take advantage of this type of technology: MEC, 5G
NPN (Non Public Networks), on-premise, 5G enterprise.

5.1 Features
Routing and forwarding packets are amongst the most relevant dataplane

features in 5GS (ESTI, 2020a). We have defined these actions as the core functionalities of
the proposed solution, as part of the PFCP session context, which is created by sending
PFCP Session Establishment Request message from the control plane (i.e. SMF for 5G
network or SPGWc for LTE networks) to the dataplane (i.e. UPF for 5G and SPGWu for
LTE). This request is sent when the UE has data to transmit to the network, for instance.
The diagram presented in Figure 5.1 shows the PFCP session context data model of the
proposed solution based on (ESTI, 2020c). It does not support all IEs, but only the PDRs
and FARs to enable routing and forwarding packets in the core network user plane. The
main functionalities supported are:

i PFCP session management: create, read, update, and remove PFCP sessions, PDRs
and FARs;

CHAPTER 5. DESIGN AND IMPLEMENTATION OF 5G UPF 32

ii Fast packet processing for uplink and downlink user data traffic: classify and forward
UDP and GTP traffic based on PDR and FAR, respectively.

Figure 5.1 – The PFCP context data model with the IEs of the proposed solution.

The PFCP Context Data Model

The PDR contains the following IEs: the identifier (PDR ID), the precedence,
the forwarding rule identifier (FAR ID), the packet detection information (PDI) and the
identifier for removing headers (Outer Header Removal). The PDI contains information
about the TEID (Tunnel Endpoint Identifier), the identification of the packet’s source
interface (Source Interface) and the UE IP address, which can be the source or desti-
nation IP, depending on the source interface. This information will be compared with
the GTPu/UDP/IP header of the received packet. The Precedence defines the selection
precedence of all PDRs of the same PFCP session. The lower the precedence, the higher
the priority.

The FAR contains the following IEs: the rule identifier (FAR ID), the action
to be applied to the packet (Apply Action) (e.g. forward) and the parameters that will
be used when the packet is forwarded (Forwarding Parameter). These parameters are
represented by two elements: the destination interface (Destination Interface) and the set
of parameters used for header creation (Outer Header Creation). This is related to the
arrival of UDP/IP packet by reference point N6 of DN and application of PDR and FAR
to be forwarded to reference point N3. In this case, the GTP/UDP/IP header (underlayer),
which is available in the parameter set, is added to the package.

In addition to the PDR and FAR, the PFCP session is composed of two more
IEs: the F-SEID (Fully Qualified Session Endpoint Identifier) and the node identifier (Node

CHAPTER 5. DESIGN AND IMPLEMENTATION OF 5G UPF 33

Figure 5.2 – High level design of the user plane library using BPF/XDP.

ID). This can be represented by the IP address or the FQDN (Fully Qualified Domain
Name) of the component that belongs to either the CP or the UP. The Node ID is used in
the PFCP Association Setup Procedure (PFCP Association Setup Procedure) to enable
the CP to use UP resources (e.g. establish PFCP session) (ESTI, 2020c). During this
procedure, participating entities exchange information about their Node ID. With this,
each entity contains the identification of its peer. This information can be useful when
an element is not responding. With this, your peer can consult, for example, in the DNS
(Domain Name System) to find an altering element to carry out the communication.

Finally, the F-SEID is composed of the local IP address plus the PFCP session
identifier (SEID). In this case, the IP address represents the interface that is used in the
communication between the PFCP entities (e.g. SMF or UPF) that performed the PFCP
Association Configuration Procedure.

Therefore, it is important to highlight that this data model presented enables
the packet forwarding and routing functionalities in the UP for 5G and LTE networks.
This is because such rules (PDR and FAR) are supported by reference points N4 (5GS)
and Sxa/Sxb/Sxc (LTE), as shown in the table 2.1

5.2 Design
There were two versions of the design. Both follow the architecture shown in

Figure 5.2. The library is divided in two main layers: Management Layer, and Datapath
Layer.

CHAPTER 5. DESIGN AND IMPLEMENTATION OF 5G UPF 34

5.2.1 Version 1

The version 1 was created in order to have a minimum viable prototype. The
next section will present the Management Layer, the Datapath Layer and the limitations
of this version.

Management Layer

It is an user space layer to manage PFCP sessions and BPF programs lifecycle.
A client can create/read/update/delete PFCP sessions through API. When a PFCP session
establishment request message is received by the user plane component, the message is
parsed and a call is made to the library via PFCP Session Manager API. The PFCP
Session Manager calls the BPF Program Manager to load dynamically a BPF bytecode,
which represents the new PFCP session context, i.e., there is a BPF program running in
kernel space for each PFCP session. The program contains the BPF maps used to store
the PDRs and FARs. All the communication between the user space and the kernel space
is through the libbpf library (Linux Community, 2022), which is maintained by the Linux
kernel source tree. The PFCP Session Manager parses the structures received to BPF map
entries and updates the maps with them. The PFCP session context is created in Datapath
Layer, where the user traffic will be handled. Figure 5.3 shows the activity diagram of the
create PFCP session use case, which is handled by this layer.

Datapath Layer

It is a kernel space layer to process the user traffic inside the XDP. A service
chain function was created with three main components: the Parser, the Traffic Detector
and the Traffic Forwarder. The Parser parses the ingress traffic to check if it is a uplink
(GTPu) or a downlink (UDP) flow. If it is an uplink/downlink flow, the TEID/UE IP
address key is used to get the PFCP session context. Then, the packet is passed to the
PFCP session context represented by a BPF program via tail calls. Here, the Traffic
Detector accesses the BPF hash maps in order to find a PDR associated with the packet.
If there is a PDR stored, the packet passes to the Forwarder. Finally, the Forwarder uses
the FAR ID from the PDR to find the FAR, which is stored in a BPF hash. The FAR
contains the action (e.g. forward) that will be applied, the outer header creation and the
destination interface. Besides, the Forwarder accesses other BPF maps to check the MAC
address of the next hop and the index of the destination interface where the packet will be
redirected. The datapath workflow is shown in Figure 5.4. The diagram presents the BPF
sections and the relation between the NFs. The entry point section contains the Parser
and PFCP session section contains the Detector and Forwarder.

CHAPTER 5. DESIGN AND IMPLEMENTATION OF 5G UPF 35

Figure 5.3 – Create PFCP session activity diagram (version 1).

Constraints and Drawbacks

In the version presented, the main limitations can be divided into two categories:
functionality and flexibility.

• Functionality Constraints: For each TEID/UE IP address, which is the key of
the BPF hash maps for uplink/downlink flow, the control plane can map only one
PDR. Based on (ESTI, 2020c), there might be more than one PDR mapped to the
same TEID. The PDI also may take account of other IEs to lookup the PDR, for
instance, the Source Interface (e.g. Access or Core, which denote an uplink and
downlink traffic direction respectively). Therefore, there could be two PDR mapped
to the same TEID, but with a different source interface. However, this does not
solve our problem, because it is possible to have two PDRs with the same PDI. So,
how does the Datapath Layer differentiate between them? Here the IE Precedence is
used to define the highest precedence between them. This solves our problem: create
an interaction between the PDRs which has the PDI that matches with the header
of the packet and find the highest precedence between the PDRs that were found.

CHAPTER 5. DESIGN AND IMPLEMENTATION OF 5G UPF 36

Figure 5.4 – On new packet activity diagram (version 1).

However, the way that was designed, all the PDRs are stored in the Datapath layer.
In order to find the highest precedence, an iteration (loop) would be implemented to
lookup the matched PDR inside the Datapath Layer (Figure 5.5). The solution does
not scale, because the loop increases the size of the BPF program, leading the verifier
to reject the BPF when loaded into the kernel. The verifier in Linux kernel has a
limitation to verify 1M instruction maximum (The Linux Kernel documentation,
2022). Besides, the latency and the time to load the BPF program increase due to the
PDR lookup loop and the size of the BPF program, respectively. Both may impact
the performance for 5G ultra Reliable Low-Latency Communication (uRLLC) use
cases.

• Flexibility Constraints: Adding new rules (e.g. QER, URR, etc) in the current
version involve to add a new PFCP session context (BPF section), because all the
rules are coupled in the same BPF section (Figure 5.4). Then, the BPF program
(PFCP session) becomes bigger whenever we add support for new rules. Besides,
the time to load it into the kernel also increases, leading the solution to have less
time to respond to changes in the network (less flexible). Furthermore, the current
design does not support modifying the pipeline inside the PFCP session BPF section.

CHAPTER 5. DESIGN AND IMPLEMENTATION OF 5G UPF 37

Figure 5.5 – Workflow in Datapath Layer with PDR lookup loop (version 1).

Figure 5.6 shows the current design adding the QER support. There might be some
cases that a PFCP session is composed of only one FAR (just the FAR is mandatory
(ESTI, 2020c)). In this case, whenever the packets arrive, the BPF program will
lookup if there is a QER and it will skip the apply QER action. This operation leads
to the increase of the packet processing latency. This check could be avoided if there
is one BPF program for each rule and the Management Layer only deploys those
programs (rules) that are available inside the highest priority PDR of the PFCP
session.

5.2.2 Version 2

A new design was created to fix the limitations discussed in the previous section.
Here, we will explain the main differences of the design in the Management Layer and the
Datapath Layer.

CHAPTER 5. DESIGN AND IMPLEMENTATION OF 5G UPF 38

Figure 5.6 – Workflow in Datapath Layer with QER and FAR (version 1).

Management Layer

The main difference with the previous version is that instead of loading all
the PFCP session context on the Datapath Layer, these information are stored in the
Management Layer and only the highest precedence PDR along with the associated rules
for each PFCP session will be deployed in the Datapath Layer. Figure 5.7 shows the
activity diagram of the PFCP session creation use case.

Datapath Layer

The main difference between the previous version is that instead of mapping
one BPF program to one PFCP session, this version maps one BPF program for each
rule defined in highest precedence PDR (e.g. FAR) for each PFCP session created. For
instance, if one PFCP session is composed of two PDRs and the high precedence PDR is

CHAPTER 5. DESIGN AND IMPLEMENTATION OF 5G UPF 39

Figure 5.7 – PFCP session creation activity diagram in Management Layer (version 2).

composed of one QER and one FAR and the other one is composed of one FAR, then two
BPF program will be deployed on the Datapath Layer, one for the QER and another for
the FAR related to the PDR with the highest precedence. The main advantage of following
this approach is to avoid the PDR loop (Figure 5.5). Furthermore, the BPF programs
are more decoupled which can be easily extensible for new rules (e.g. QER, URR). The
pipeline is also more flexible, which can be changed based on the rules contained in the
PFCP session. Figure 5.8 shows the activity diagram for the OnNewPacket use case. In
this case, the Datapath layer supports only FAR and QER. The activity diagram presented
on Figure 5.9 is more generic. The xRule can be one of the 5G rules described in Chapter
2. The xRule is an abstraction of the one rule associated with the highest precedence PDR.
If there are more than one rule, the xRule will be chained.

CHAPTER 5. DESIGN AND IMPLEMENTATION OF 5G UPF 40

Figure 5.8 – On new packet received activity diagram in Datapath Layer (version 2) .

5.3 Implementation
The components were developed in C++ (Management Layer) and restrict C

(Datapath Layer). The source code is available through Apache-2.0 License. The UTs of
the PFCP Session Manager component were implemented using Google Testing framework.
Besides, a HTTP API was developed for end-to-end tests that will be presented in the next
chapter. This API simulates the PFCP control plane and wrappers the upf-bpf library. So,
when a HTTP request is received, the JSON message is converted to the library structures

CHAPTER 5. DESIGN AND IMPLEMENTATION OF 5G UPF 41

Figure 5.9 – On new packet activity diagram with the decoupled rules (version 2).

which are passed via function call to Session Manager API. It is important to highlight
that the same structures used in the Management Layer are also used in the Datapath
Layer and were based on the data model as described in Figure 5.1. The Datapath Layer
supports both XDP mode: XDP driver and XDP generic. The end-to-end performance
evaluation was developed in python using Trex Stateless API (CISCO, 2022b) and will
be described in the next chapter. All the tests were automated and the report of the test
was generated automatically. Some of the challenges and limitations faced during the
development of the BPF/XDP program are well addressed in (Miano et al., 2018). The
following sections will describe the code that was developed based on the use cases: set up
UPF, create PFCP session and on new packet (uplink/downlink).

5.3.1 Setup UPF

The initial setup of the upf-bpf is provided by the setup method in User-
PlaneComponent class. As shown, the method receives the name of the interface that
represents the N3 and N6 reference points. The method deploys BPF entry point section
(Figure 5.9) using the UPFProgram class (line 16).

CHAPTER 5. DESIGN AND IMPLEMENTATION OF 5G UPF 42

1 void UserPlaneComponent::setup(std::shared_ptr<RulesUtilities> pRulesUtilities, const
std::string& gtpInterface, const std::string& udpInterface)↪→

2 {
3 LOG_FUNC();
4

5 mpRulesUtilities = pRulesUtilities;
6 mGTPInterface = gtpInterface;
7 mUDPInterface = udpInterface;
8 mpUPFProgram = std::make_shared<UPFProgram>(gtpInterface, udpInterface);
9

10 if(!mpUPFProgram) {
11 LOG_ERROR("Program not initialized");
12 throw std::runtime_error("Program not initialized");
13 }
14

15 SignalHandler::getInstance().enable();
16 mpUPFProgram->setup();
17 }

The entry point section implements the logic of the Apply PDR activity as
shown in Figure 5.8. Both parser (GTPu and UDP) are presented on the snippet code
below.

The downlink data processing starts when the datapath receives the UDP
packet. If the destination port is different of 2152, then the packet is sent to another
BPF program via tail call only if the TEID (0 for all UDP packets), source interface
(INTERFACE_VALUE_CORE) and destination IP address (line 28 in udp_handle
function) match with some entry in the BPF map (line 12 in tail_call_next_prog function).
The next programs of the chain represents the rules that will be applied on the packet, for
instance the FAR.

The uplink data processing follows the same logic. However, the GTPu packet
is received instead of UDP. The destination port must match with 2152, which is defined
in (ESTI, 2020c) (line 26 in udp_handle function). In this case, the gtp_handle function
handles the GTP packet. This function check the type of GTP message (line 17) and the
inner packet (line 24). Finally, tail_call_next_prog (line 30) is called passing the TEID
presented in the GTP header, the source interface (INTERFACE_VALUE_ACCESS)
and the destination IP address.

1 /**
2 * @brief Handle UDP header.
3 *
4 * @param p_ctx The user accessible metadata for xdp packet hook.

CHAPTER 5. DESIGN AND IMPLEMENTATION OF 5G UPF 43

5 * @param udph The UDP header.
6 * @return u32 The XDP action.
7 */
8 static u32 udp_handle(struct xdp_md *p_ctx, struct udphdr *udph, u32 dest_ip)
9 {

10 void *p_data_end = (void *)(long)p_ctx->data_end;
11 struct next_rule_prog_index_key map_key;
12 u32 index_prog;
13 u32 dport;
14

15 /* Hint: +1 is sizeof(struct udphdr) */
16 if((void *)udph + sizeof(*udph) > p_data_end) {
17 bpf_debug("Invalid UDP packet");
18 return XDP_ABORTED;
19 }
20

21 bpf_debug("UDP packet validated");
22 dport = htons(udph->dest);
23

24 switch(dport) {
25 case GTP_UDP_PORT:
26 return gtp_handle(p_ctx, (struct gtpuhdr *)(udph + 1), dest_ip);
27 default:
28 tail_call_next_prog(p_ctx, 0, INTERFACE_VALUE_CORE, dest_ip);
29

30 return XDP_PASS;
31 }
32 }

1 /**
2 * @brief Check if GTP packet is a GPDU. If so, process the next block chain.
3 *
4 * @param p_ctx The user accessible metadata for xdp packet hook.
5 * @param p_gtpuh The GTP header.
6 * @return u32 The XDP action.
7 */
8 static u32 gtp_handle(struct xdp_md *p_ctx, struct gtpuhdr *p_gtpuh, u32 dest_ip)
9 {

10 void *p_data_end = (void *)(long)p_ctx->data_end;
11

12 if((void *)p_gtpuh + sizeof(*p_gtpuh) > p_data_end) {
13 bpf_debug("Invalid GTPU packet");
14 return XDP_DROP;
15 }
16

CHAPTER 5. DESIGN AND IMPLEMENTATION OF 5G UPF 44

17 if(p_gtpuh->message_type != GTPU_G_PDU) {
18 bpf_debug("Message type 0x%x is not GTPU GPDU(0x%x)", p_gtpuh->message_type,

GTPU_G_PDU);↪→

19 return XDP_PASS;
20 }
21

22 bpf_debug("GTP GPDU received");
23

24 if(!ip_inner_check_ipv4(p_ctx, (struct iphdr *)(p_gtpuh + 1))) {
25 bpf_debug("Invalid IP inner");
26 return XDP_DROP;
27 }
28

29 // Jump to session context.
30 tail_call_next_prog(p_ctx, p_gtpuh->teid, INTERFACE_VALUE_ACCESS, dest_ip);
31 bpf_debug("BPF tail call was not executed! teid %d\n", htonl(p_gtpuh->teid));
32

33 return XDP_PASS;
34 }

1 static u32 tail_call_next_prog(struct xdp_md *p_ctx, teid_t_ teid, u8 source_value,
u32 ipv4_address)↪→

2 {
3 struct next_rule_prog_index_key map_key;
4 u32 *index_prog;
5

6 __builtin_memset(&map_key, 0, sizeof(struct next_rule_prog_index_key));
7

8 map_key.teid = teid;
9 map_key.source_value = INTERFACE_VALUE_CORE;

10 map_key.ipv4_address = ipv4_address;
11 bpf_debug("map key teid: %d, source: %d, ip: %d \n", teid, INTERFACE_VALUE_CORE,

ipv4_address);↪→

12 index_prog = bpf_map_lookup_elem(&m_next_rule_prog_index, &map_key);
13

14 if(index_prog){
15 bpf_debug("BPF tail call to %d key\n", *index_prog);
16 bpf_tail_call(p_ctx, &m_next_rule_prog, *index_prog);
17 bpf_debug("BPF tail call was not executed!\n");
18 }
19 return 0;
20 }

CHAPTER 5. DESIGN AND IMPLEMENTATION OF 5G UPF 45

5.3.2 Create PFCP Session

When a PFCP session is created, the method createBFPSession is called from
SessionManager class. This method finds the highest precedence PDR (line 10) that will
be deployed on the Datapath Layer along with the rules. The createPipeline method (line
39) loads the BPF programs in kernel space.

1 void SessionManager::createBPFSession(std::shared_ptr<pfcp::pfcp_session> pSession)
2 {
3 LOG_FUNC();
4 LOG_DBG("Session {} received... Lets prepare the UP", pSession->get_up_seid());
5

6 LOG_DBG("Find the PDR with highest precedence");
7 // The lower precedence values indicate higher precedence of the PDR, and the
8 // higher precedence values indicate lower precedence of the PDR when matching
9 // a packet.

10 std::sort(pSession->pdrs.begin(), pSession->pdrs.end(),
SessionManager::comparePDR);↪→

11

12 LOG_DBG("Extract the key (PDI) from the highest priority PDR");
13 auto pUPFProgram = UserPlaneComponent::getInstance().getUPFProgram();
14

15 pfcp::pdi pdi;
16 pfcp::fteid_t fteid;
17 pfcp::ue_ip_address_t ueIpAddress;
18 pfcp::source_interface_t sourceInterface;
19

20 if (pSession->pdrs.empty()){
21 LOG_ERROR("No PDR was found in session %d", pSession->seid);
22 throw std::runtime_error("No PDR was found in session");
23 }
24

25 auto pdrHighPriority = pSession->pdrs[0];
26 if(!(pdrHighPriority->get(pdi) && pdi.get(fteid) && pdi.get(sourceInterface) &&

pdi.get(ueIpAddress))) {↪→

27 throw std::runtime_error("No fields available");
28 }
29 LOG_DBG("PDI extracted from PDR {}", pdrHighPriority->pdr_id.rule_id);
30

31 LOG_DBG("Extract FAR from the highest priority PDR");
32 std::shared_ptr<pfcp::pfcp_far> pFar;
33 pfcp::far_id_t farId;
34

35 if (!(pdrHighPriority->get(farId) && pSession->get(farId.far_id, pFar))){
36 throw std::runtime_error("No fields available");
37 }
38

CHAPTER 5. DESIGN AND IMPLEMENTATION OF 5G UPF 46

39 SessionProgramManager::getInstance().createPipeline(pSession->get_up_seid(),
fteid.teid, sourceInterface.interface_value, ueIpAddress.ipv4_address.s_addr,
pFar);

↪→

↪→

40

41 LOG_DBG("Add session");
42 mSeidToSession[pSession->get_up_seid()] = pSession;
43 }

The createPipeline parameters are composed of the PDI, i.e. TEID, source
interface, UE IP address (Figure 5.1). As mentioned before, this information is retrieved
to check if the hearder of the packet (UDP or GTP) matches with theses information. The
PDI is stored in the BPF map of the UPFProgram (line 20). The file descriptor of the
FAR BPF program is also stored in the BPF map (line 21). The FAR BPF program is
loaded into the kernel (line 13) and the context of the FAR rule is stored inside of the BPF
maps of this program (line 31). It is worth mentioning that the pipeline can be extended
to support new rule (e.g. QER).

1 void SessionProgramManager::createPipeline(uint32_t seid, uint32_t teid, uint8_t
sourceInterface, uint32_t ueIpAddress,↪→

2 std::shared_ptr<pfcp::pfcp_far> pFar)
3 {
4 LOG_FUNC();
5 struct next_rule_prog_index_key key = {.teid = teid, .source_value =

sourceInterface, .ipv4_address = ueIpAddress};↪→

6 u32 id;
7 s32 fd;
8 LOG_DBG("teid: {}, source interface: {}, ue ip: {}", teid, sourceInterface,

ueIpAddress);↪→

9

10 LOG_DBG("Instantiate a new FARProgram");
11 // Instantiate a new FARProgram
12 std::shared_ptr<FARProgram> pFARProgram = std::make_shared<FARProgram>();
13 pFARProgram->setup();
14

15 LOG_DBG("Store FARProgram index in the UPFProgram");
16 auto pUPFProgram = UserPlaneComponent::getInstance().getUPFProgram();
17 id = pFARProgram->getId();
18 fd = pFARProgram->getFd();
19

20 pUPFProgram->getNextProgRuleIndexMap()->update(key, id, BPF_ANY);
21 pUPFProgram->getNextProgRuleMap()->update(id, fd, BPF_ANY);
22

23 LOG_DBG("Store FAR in the FAR program");
24 uint8_t index = 0;

CHAPTER 5. DESIGN AND IMPLEMENTATION OF 5G UPF 47

25

26 pfcp_far_t_ far = // FAR ID... HIDDEN, check the source code
27

28 // Fwd - actions
29 memcpy(&far.apply_action, &pFar->apply_action, sizeof(apply_action_t_));
30

31 pFARProgram->getFARMap()->update(index, far, BPF_ANY);
32

33 // Map the pipeline deployed to the seid. The seid will be used to detroyed it.
34 mSessionProgramsMap[seid] = std::make_shared<SessionPrograms>(key, pFARProgram);
35 }

5.3.3 On New Packet

This section is a continuation of what was presented in 5.3.1. In this case, we
assume that there will be a FAR program running in the Datapath Layer. When the
header of the received packet matches with the information stored in the BPF map (entry
point), then the tail call will be successful and the FAR BPF program is executed. The
main logic of the FAR BPF program is shown below. The pfcp_far_apply function apply
the forward action (line 25) in two different ways, depending on the destination interface
defined in FAR. The destination interface can be to the core network (line 26) or to the
access network (line 65). Before redirecting the packet to the destination interface, the
outer header creation is checked. For uplink packets (GTP), if the outer header creation
is set to be UDP, the GTP header is discarded (line 53) and the packet is redirected to
the destination interface (line 55). On the other hand, for downlink packets (UDP), if the
outer header creation is set to be GTP (line 69), the IP, UDP and GTP header is created
(line 103-113, line 121-124 and line 147-149, respectively). For uplink and downlink, the
MAC address of the next hop is also updated (line 48 and line 134). Finally, the packet is
redirect to the destination interface (line 55 and line 156).

1 static u32 pfcp_far_apply(struct xdp_md *p_ctx, pfcp_far_t_ *p_far, enum
FlowDirection direction)↪→

2 {
3 void *p_data = (void *)(long)p_ctx->data;
4 void *p_data_end = (void *)(long)p_ctx->data_end;
5 struct ethhdr *p_eth = p_data;
6 void *p_mac_address;
7

8 u8 dest_interface;
9 u16 outer_header_creation;

10

11 if((void *)(p_eth + 1) > p_data_end) {

CHAPTER 5. DESIGN AND IMPLEMENTATION OF 5G UPF 48

12 bpf_debug("Invalid pointer");
13 return XDP_DROP;
14 }
15

16 if(!p_far) {
17 bpf_debug("Invalid FAR!");
18 return XDP_DROP;
19 }
20

21 dest_interface =
p_far->forwarding_parameters.destination_interface.interface_value;↪→

22 outer_header_creation = p_far->forwarding_parameters.outer_header_creation
.outer_header_creation_description;↪→

23

24 // Check if it is a forward action.
25 if(p_far->apply_action.forw) {
26 if(dest_interface == INTERFACE_VALUE_CORE) {
27 // Redirect to data network.
28 bpf_debug("Destination is to INTERFACE_VALUE_CORE\n");
29 // Check Outer header creation - IPv4 or IPv6
30 switch(outer_header_creation) {
31 case OUTER_HEADER_CREATION_UDP_IPV4:
32 bpf_debug("OUTER_HEADER_CREATION_UDP_IPV4\n");
33 struct ethhdr *p_new_eth = p_data + GTP_ENCAPSULATED_SIZE;
34

35 // Move eth header forward.
36 if((void *)(p_new_eth + 1) > p_data_end) {
37 return 1;
38 }
39 __builtin_memcpy(p_new_eth, p_eth, sizeof(*p_eth));
40

41 // Update destination mac address.
42 struct iphdr *p_ip = (void *)(p_new_eth + 1);
43

44 if((void *)(p_ip + 1) > p_data_end) {
45 return XDP_DROP;
46 }
47

48 if(update_dst_mac_address(p_ip, p_new_eth)) {
49 return XDP_DROP;
50 }
51

52 // Adjust head to the right.
53 bpf_xdp_adjust_head(p_ctx, GTP_ENCAPSULATED_SIZE);
54

55 return bpf_redirect_map(&m_redirect_interfaces, direction, 0);
56 bpf_debug("OUTER_HEADER_CREATION_UDP_IPV4 REDIRECT FAILED\n");

CHAPTER 5. DESIGN AND IMPLEMENTATION OF 5G UPF 49

57 break;
58 case OUTER_HEADER_CREATION_UDP_IPV6:
59 bpf_debug("OUTER_HEADER_CREATION_UDP_IPV6\n");
60 // TODO
61 break;
62 default:
63 bpf_debug("In destination to CORE - Invalid option: %d",

outer_header_creation);↪→

64 }
65 } else if(dest_interface == INTERFACE_VALUE_ACCESS) {
66 // Redirect to core network.
67 bpf_debug("Destination is to INTERFACE_VALUE_ACCESS");
68 switch(outer_header_creation) {
69 case OUTER_HEADER_CREATION_GTPU_UDP_IPV4:
70 bpf_debug("OUTER_HEADER_CREATION_GTPU_UDP_IPV4");
71 // Resize the header in order to put the GTP/UPD/IP headers.
72 // Adjust space to the left.
73 bpf_xdp_adjust_head(p_ctx, (int32_t)-GTP_ENCAPSULATED_SIZE);
74

75 // Packet buffer changed, all pointers need to be recomputed
76 p_data = (void *)(long)p_ctx->data;
77 p_data_end = (void *)(long)p_ctx->data_end;
78

79 p_eth = p_data;
80 if((void *)(p_eth + 1) > p_data_end) {
81 bpf_debug("Invalid pointer");
82 return XDP_DROP;
83 }
84

85 // Space allocated before packet buffer, move eth header
86 struct ethhdr *p_orig_eth = p_data + GTP_ENCAPSULATED_SIZE;
87 if((void *)(p_orig_eth + 1) > p_data_end) {
88 return XDP_DROP;
89 }
90 memcpy(p_eth, p_orig_eth, sizeof(*p_eth));
91

92 p_ip = (void *)(p_eth + 1);
93 if((void *)(p_ip + 1) > p_data_end) {
94 return XDP_DROP;
95 }
96

97 struct iphdr *p_inner_ip = (void *)p_ip + GTP_ENCAPSULATED_SIZE;
98 if((void *)(p_inner_ip + 1) > p_data_end) {
99 return XDP_DROP;

100 }
101

102 // Add the outer IP header

CHAPTER 5. DESIGN AND IMPLEMENTATION OF 5G UPF 50

103 p_ip->version = 4;
104 p_ip->ihl = 5; // No options
105 p_ip->tos = 0;
106 p_ip->tot_len = htons(ntohs(p_inner_ip->tot_len) + GTP_ENCAPSULATED_SIZE);
107 p_ip->id = 0; // No fragmentation
108 p_ip->frag_off = 0x0040; // Don't fragment; Fragment offset = 0
109 p_ip->ttl = 64;
110 p_ip->protocol = IPPROTO_UDP;
111 p_ip->check = 0;
112 p_ip->saddr = LOCAL_IP;
113 p_ip->daddr =

p_far->forwarding_parameters.outer_header_creation.ipv4_address.s_addr;↪→

114

115 // Add the UDP header
116 struct udphdr *p_udp = (void *)(p_ip + 1);
117 if((void *)(p_udp + 1) > p_data_end) {
118 return XDP_DROP;
119 }
120

121 p_udp->source = htons(GTP_UDP_PORT);
122 p_udp->dest =

htons(p_far->forwarding_parameters.outer_header_creation.port_number);↪→

123 p_udp->len = htons(ntohs(p_inner_ip->tot_len) + sizeof(*p_udp) +
sizeof(struct gtpuhdr));↪→

124 p_udp->check = 0;
125

126 bpf_debug("Destination MAC:%x:%x:%x\n", p_eth->h_dest[0], p_eth->h_dest[1],
p_eth->h_dest[2]);↪→

127 bpf_debug("Destination MAC:%x:%x:%x\n", p_eth->h_dest[3], p_eth->h_dest[4],
p_eth->h_dest[5]);↪→

128 p_mac_address = bpf_map_lookup_elem(&m_arp_table, &p_ip->daddr);
129 if(!p_mac_address) {
130 bpf_debug("mac not found!!\n");
131 return XDP_DROP;
132 }
133 // swap_src_dst_mac(p_data);
134 memcpy(p_eth->h_dest, p_mac_address, sizeof(p_eth->h_dest));
135 bpf_debug("Destination MAC:%x:%x:%x\n", p_eth->h_dest[0], p_eth->h_dest[1],

p_eth->h_dest[2]);↪→

136 bpf_debug("Destination MAC:%x:%x:%x\n", p_eth->h_dest[3], p_eth->h_dest[4],
p_eth->h_dest[5]);↪→

137 bpf_debug("Destination IP:%d Port:%d\n", p_ip->daddr,
p_far->forwarding_parameters.outer_header_creation.port_number);↪→

138

139 // Add the GTP header
140 struct gtpuhdr *p_gtpuh = (void *)(p_udp + 1);
141 if((void *)(p_gtpuh + 1) > p_data_end) {

CHAPTER 5. DESIGN AND IMPLEMENTATION OF 5G UPF 51

142 return XDP_DROP;
143 }
144

145 u8 flags = GTP_FLAGS;
146 memcpy(p_gtpuh, &flags, sizeof(u8));
147 p_gtpuh->message_type = GTPU_G_PDU;
148 p_gtpuh->message_length = p_inner_ip->tot_len;
149 p_gtpuh->teid = p_far->forwarding_parameters.outer_header_creation.teid;
150

151 // Compute l3 checksum
152 __wsum l3sum = pcn_csum_diff(0, 0, (__be32 *)p_ip, sizeof(*p_ip), 0);
153 pcn_l3_csum_replace(p_ctx, IP_CSUM_OFFSET, 0, l3sum, 0);
154

155 bpf_debug("GTPU header were pushed!");
156 return bpf_redirect_map(&m_redirect_interfaces, direction, 0);
157 break;
158 case OUTER_HEADER_CREATION_GTPU_UDP_IPV6:
159 bpf_debug("OUTER_HEADER_CREATION_GTPU_UDP_IPV6");
160 break;
161 default:
162 bpf_debug("In destination to ACCESS - Invalid option: %d",

outer_header_creation);↪→

163 }
164 }
165 } else {
166 bpf_debug("Forward action unset");
167 }
168 return XDP_PASS;
169 }

52

6 Testing and Performance Evaluation

This chapter presents the testing and performance evaluation of the proposed
solution. In this scenario, a XDP native mode was chosen to achieve the maximum of the
performance.

6.1 Setup
We have tested the proposed solution taking RFC2544-like measurements. The

testbed is composed of two server Intel(R) Xeon(R) CPU E5-2620 v2 @ 2.10GHz, 32GiB
of the DRAM, 15M of L3 cache, 6 cores (hyper-threading disabled), dual-port 82599ES
10-Gigabit SFI/SFP+ NIC. Both machines have Ubuntu 20.04.02 LTS installed with
Linux kernel v5.4.0-72-generic compiled with BTF flags enabled. One machine is used to
generate user traffic with TRex Traffic Generator (CISCO, 2022a) and the other is the
DUT (Device Under Test) where the proposed solution is deployed. The hyperthread was
disabled1 in the DUT machine. The setup is shown in Figure 6.1.

Figure 6.1 – Testbed setup.

The execution of the test can be done manually or automatically. For the
manual execution, a tmux session script2 was implemented to execute custom test case
quicker. The main window is shown in Figure 6.2. The window is divided into four panes.
The left pane is logged into the Trex Traffic Generator server and all the right panes are
logged into DUT (HTTP API + upf-bpf). The first pane in the left presents the terminal
user interface, which contains statistics about the transmission and the reception, e.g.
throughput and number of packets. The first pane on the right is used to execute the
http-api program and for output analysis. The middle one is used to run the mpstat
program for CPU utilization analysis. Finally, the last pane in the right is used to check
the number of queues that are set in the NIC. All these steps are executed automatically.
1 echo off > /sys/devices/system/cpu/smt/control
2 <https://github.com/navarrothiago/upf-bpf/blob/7e7c3e70c59f173e390eca1ce7a65a65d3a8f032/

tests/scripts/start_session>

https://github.com/navarrothiago/upf-bpf/blob/7e7c3e70c59f173e390eca1ce7a65a65d3a8f032/tests/scripts/start_session
https://github.com/navarrothiago/upf-bpf/blob/7e7c3e70c59f173e390eca1ce7a65a65d3a8f032/tests/scripts/start_session

CHAPTER 6. TESTING AND PERFORMANCE EVALUATION 53

Figure 6.2 – Tmux session for manual test execution.

6.2 Test Case
We created a test case to evaluate the scalability and the workload when the

solution achieves the maximum throughput for a specific traffic generation flow. Both
uplink and downlink scenarios were tested. The tests consisted in:

1. Run Trex Traffic Generator server;

2. Run HTTP API (DUT);

3. Send a PFCP session establishment request via HTTP API to DUT;

4. Configure the number of Rx queue (LINUX, 2022) in DUT;

5. Generate traffic (GTP or UDP) using Trex Traffic Stateless API;

6. Collect workload per core (DUT) and throughput (Trex Traffic Generator) metrics:

For step 3, a control message was designed to define the PFCP session es-
tablishment request to be sent to DUT. This message contains the PDRs (uplink and
downlink) and FARs IEs and the static ARP table of the next hop. The PFCP session
context message (JSON) is shown in Listing 1.

For steps 4, 5 and 6, it was implemented a Python script3 to automate the
process. The script executes the test case varying the number of the rx queue. In the end,
3 <https://github.com/navarrothiago/upf-bpf/blob/c1250469a101a10c4b7ac38503a6edda6c5ca1f1/

tests/trex/test_cases/run.py>

https://github.com/navarrothiago/upf-bpf/blob/c1250469a101a10c4b7ac38503a6edda6c5ca1f1/tests/trex/test_cases/run.py
https://github.com/navarrothiago/upf-bpf/blob/c1250469a101a10c4b7ac38503a6edda6c5ca1f1/tests/trex/test_cases/run.py

CHAPTER 6. TESTING AND PERFORMANCE EVALUATION 54

a report based on JSON format with all the metrics (i.e throughput and CPU load) for
each execution is generated. The code below shows its main functionalities.

1 def run_ethtool_set_rx_queue(number_rx_queue, password):
2 print("Setting NIC rx queue size...")
3 ifaces = ["enp3s0f0", "enp3s0f1"]
4 dicIface = {}
5 for iface in ifaces:
6 dicIface[iface] = int(number_rx_queue)
7 cmd = 'echo {} | ssh india sudo -S ethtool -L {} combined {}'.format(
8 password, iface, int(number_rx_queue))
9 print("Running ethtool... {}".format(cmd))

10 os.popen(cmd)
11 cmd = 'echo {} | ssh india sudo -S ethtool -l {} '.format(
12 password, iface)
13 print("Running ethtool... {}".format(cmd))
14 print(os.popen(cmd).read())
15 item["ethtool"] = dicIface
16 print("Setting NIC rx queue size...DONE")
17 print()
18

19 def create_udp_pkt_flow(size, ip_min, ip_max, nflows, field):
20 print("{} flow will be generated...".format(nflows))
21 base_pkt = Ether()/IP(src="16.0.0.1", dst="10.1.3.27")/UDP(dport=1234)
22 pad = max(0, size - len(base_pkt)) * 'x'
23 return STLPktBuilder(pkt=base_pkt/pad, vm=create_vm(ip_min, ip_max, nflows,

field))↪→

24

25 def create_gtp_pkt_flow(size, ip_min, ip_max, nflows, field):
26 print("{} flow will be generated...".format(nflows))
27 base_pkt = Ether()/IP(src="172.20.16.99", dst="192.168.15.12")/UDP(dport=2152) /

\↪→

28 GTP_U_Header(teid=100) / \
29 IP(src="10.10.10.10", dst="10.1.3.27", version=4)/UDP(dport=1234)
30 pad = max(0, size - len(base_pkt)) * 'x'
31 return STLPktBuilder(pkt=base_pkt/pad, vm=create_vm(ip_min, ip_max, nflows,

field))↪→

32

33 def create_vm(ip_min, ip_max, nflows, field):
34 vm = STLVM()
35

36 # create a tuple var
37 vm.tuple_var(name="tuple", ip_min=ip_min, ip_max=ip_max,
38 port_min=1234, port_max=1234, limit_flows=nflows)
39

40 # write fields
41 vm.write(fv_name="tuple.ip", pkt_offset="IP.{}".format(field))

CHAPTER 6. TESTING AND PERFORMANCE EVALUATION 55

42 vm.fix_chksum()
43

44 # vm.write(fv_name="tuple.port", pkt_offset="UDP.sport")
45 return vm
46

47 def simple_burst(streams, m, duration):
48 # create client
49 # c = STLClient()
50 # username/server can be changed those are the default
51 # username = common.get_current_user(),
52 # server = "localhost"
53 c = STLClient(server="localhost", sync_port=1235, async_port=1236)
54 passed = True
55

56 try:
57 # connect to server
58 c.connect()
59

60 # prepare our ports (my machine has 0 <--> 1 with static route)
61 # Acquire port 0 for $USER
62 c.reset(ports=[0, 1])
63

64 # add both streams to ports
65 c.add_streams(streams, ports=[0])
66

67 # clear the stats before injecting
68 c.clear_stats()
69

70 # set port 1 as promiscuous mode
71 c.set_port_attr(ports=[1], promiscuous=True)
72

73 # choose rate and start traffic for 10 seconds on 5 mpps
74 print("Running " + m + " on ports 0 for {} seconds...".format(duration))
75 c.start(ports=[0], mult=m, duration=duration)
76 run_mpstat(duration/2)
77

78 # block until done
79 c.wait_on_traffic(ports=[0])
80

81 # read the stats after the test
82 stats = c.get_stats()
83

84 item["throughput"] = float(stats[1]["rx_pps"])/1000000
85 item["loss"] = float(stats[0]["opackets"] -

stats[1]["ipackets"])/stats[0]["opackets"]↪→

86 print("")
87 print("Throughput: {} Mpps".format(item["throughput"]))

CHAPTER 6. TESTING AND PERFORMANCE EVALUATION 56

88

89 if (stats[0]["opackets"] > 100):
90 passed = True
91 else:
92 passed = False
93

94 except STLError as e:
95 passed = False
96 print(e)
97

98 finally:
99 c.disconnect()

100

101 if passed:
102 print("\nTest has passed :-)\n")
103 else:
104 print("\nTest has failed :-(\n")
105

106 def run_mpstat(duration):
107 global current_test
108 cmd = 'ssh india mpstat -P ALL {} 1 -o JSON'.format(int(duration))
109 print("Running mpstat... {}".format(cmd))
110 output = os.popen(cmd).read()
111 # print(json.loads(output))
112 item["mpstat"] = json.loads(output)

For step 4, the function run_ethtool_set_rx_queue was implemented. The
command in line 7 is executed in the DUT machine (india) and the application ethtool is
called to setup the rx queue. The function is called to setup the rx queue to 1 to 6, which
the higher value represents the maximum number of cores in the DUT machine.

For step 5, the 1000 flows varying the source IP address randomly were generated
using the Field Engine modules available in Trex Stateless API (lines 33 − 45). This
technique is used to avoid the assignment to a specific receive queue, distributing the flows
between the receive queues in the DUT. So, this improves the throughput due to the load
balance between the cores. The GTP or UDP headers are generated depending on the
test (uplink or downlink) based on the PFCP Session Establishment Request message. In
both cases, the frame size is 64 bytes. The functions create_udp_pkt_flow (line 19) and
create_gtp_pkt_flow were implemented to build the UDP and GTP flows, respectively.
The flows are crafted in line 21 and 27. The traffic generation is started after line 75.

For step 6, the function run_mpstat was implemented. The command in line
108 is executed in DUT machine (india) and the application mpstat is called to collect a
report about the statistics of the processors during the execution. Besides, the metrics

CHAPTER 6. TESTING AND PERFORMANCE EVALUATION 57

related to the throughput and the packet loss rate were also collected (lines 84 and 85)
from Trex Stateless API. All the metrics are saved in the item dictionary.

Regarding the throughput measurement, firstly the test case was executed
flooding the media, which implied a significant level of loss. The saturation throughput
value was found out and, after that, the same test case was executed, but using the
saturation value of the throughput in order to achieve almost zero packet loss. The results
will be shown in the next section.

CHAPTER 6. TESTING AND PERFORMANCE EVALUATION 58

1 {
2 "seid": 1,
3 "pdrs": [{
4 "pdrId": 20,
5 "farId": 200,
6 "outerHeaderRemoval": "UDP_IPV4",
7 "pdi": {
8 "teid": 0,
9 "sourceInterface": "INTERFACE_VALUE_CORE",

10 "ueIPAddress": "10.1.3.27"
11 },
12 "precedence": 2
13 }, {
14 "pdrId": 10,
15 "farId": 100,
16 "outerHeaderRemoval": "GTPU_UDP_IPV4",
17 "pdi": {
18 "teid": 100,
19 "sourceInterface": "INTERFACE_VALUE_ACCESS",
20 "ueIPAddress": "10.1.3.27"
21 },
22 "precedence": 1
23 }],
24 "fars": [{
25 "farId": 200,
26 "forward": true,
27 "forwardingParameters": {
28 "outerHeaderCreation": {
29 "outerHeaderCreationDescription": "GTPU_UDP_IPV4",
30 "ipv4Address": "10.1.3.27",
31 "portNumber": 1234
32 },
33 "destinationInterface": "INTERFACE_VALUE_ACCESS"
34 } }, {
35 "farId": 100,
36 "forward": true,
37 "forwardingParameters": {
38 "outerHeaderCreation": {
39 "outerHeaderCreationDescription": "UDP_IPV4",
40 "ipv4Address": "10.1.3.27",
41 "portNumber": 1234
42 },
43 "destinationInterface": "INTERFACE_VALUE_CORE"
44 } }],
45 "arpTable": [{
46 "ip": "10.1.2.27",
47 "mac": "90:e2:ba:27:fd:3c"
48 }, {
49 "ip": "10.1.3.27",
50 "mac": "90:e2:ba:27:fd:3d"
51 }] }

Listing 1 – The JSON message representing the PFCP Session Establishment Request
used in the tests.

CHAPTER 6. TESTING AND PERFORMANCE EVALUATION 59

6.3 Results
Figure 6.3 shows the throughput as a function of the number of cores. The linear

function behavior implies that the solution scales with the number of the cores, achieving
almost 10 Mpps for downlink and greater than 11 Mpps for uplink. This difference is
related to the actions performed in each direction. For the downlink, the UPF encapsulates
the GTP header. The packet size is greater than 64 B after reception in the TRex Traffic
Generator. On the other hand, for the uplink, the UPF decapsulates the GTP header and
the packet size becomes smaller than 64 B. Also, Figure 6.4 shows a histogram regarding
the CPU load when varying the numbers of cores. Note that the packet loss is less than
3%. Using 6 CPUs (Figures 6.4k and 6.4l), the average CPU load is about 60% (with
almost 40% of the CPU idle, which could be used by other tasks).

(a) Downlink (b) Uplink

Figure 6.3 – Scalability of the proposed solution.

Figures 6.4g and 6.4i show a higher packet loss. The main reason could be the
load distribution between the cores. As we can see, the core #1 load is 100% for both. So,
the core did not handle all received packets and some of them may be overwritten from its
receive queues. Basically, four factors can contribute to the load distribution: NIC hash
algorithm, NIC hash key (tuple), NIC indirection table, and the flows. So, one solution
to optimize the load balancing could be creating a custom flow-based indirection table.
This analysis is not the scope of this paper. It is important to highlight that our results
achieve almost the performance of what was presented in the 5G mobile gateway based on
Polycube (Parola, F., 2020), although his work has not presented the CPU usage for the
scalability test. Besides, the CPU usage is an important factor to understand the load
distribution in each core and it can impact the results of the experiments.

Figures 6.4a and 6.4b show the CPU load when only one core is used. Note
that the core #1 is 100% and also there is some task consuming the cycles in core #0.
The process could not be identified using top command. It has been an unknown issue for
a while.

CHAPTER 6. TESTING AND PERFORMANCE EVALUATION 60

(a) Downlink 1 cores (b) Uplink 1 cores (c) Downlink 2 cores

(d) Uplink 2 cores (e) Downlink 3 cores (f) Uplink 3 cores

(g) Downlink 4 cores (h) Uplink 4 cores (i) Downlink 5 cores

(j) Uplink 5 cores (k) Downlink 6 cores (l) Uplink 6 cores

Figure 6.4 – Workload distribution when varying the number of cores.

CHAPTER 6. TESTING AND PERFORMANCE EVALUATION 61

The time spent to inject the BPF program for each version is shown in Table 6.1
after receiving a PFCP Establishment Request message composed of two PDRs and two
FARs. All rules are deployed into one BPF section for the version 1 (1.0.0) and only the
FAR associated with the highest precedence PDR is deployed into one BPF section for
the version 2 (2.0.0) (see the explanation in Section 5.2.2). For version 1, it costs 27 ms
to inject the BPF program. On the other hand, for version 2, only 1 ms (time reduction
of 96%). Besides, the number of instructions decreased by 32%. The main reason is due
the logic related to lookup the PDR is implemented in the control plane (Management
Layer). The results follow the correlation between the number of instructions and the time
to inject the BPF program into the kernel presented in (Miano et al., 2018).

Version BPF Section BPF Insn Injection (ms)
v1.0.0 PFCP Session 402 27
v2.0.0 FAR 272 1

Table 6.1 – Time spent to inject BPF program into the Linux kernel (JIT compiler phase)
after receiving a PFCP Establishment Request message.

62

7 Conclusions

This work addressed the run-time adaptive BPF/XDP solution for 5G UPF,
a novel open source C++ library used to improve the performance of the user plane in
third-party UPF components. The solution fits in a restrictive environment like NPN or
MEC, when MEC host and UPF are collocated with the Base Station, sharing the same
computational and network resources. We showed that the two versions of the upf-bpf
design scale and achieve high throughput without consuming all the CPU resources.
Besides, the last version showed to be more adaptive due to the lower time spent to inject
the BPF program into the kernel. We are confident that the new design can be a reference
point for those who want to create BPF-based network function implementation. In the
next section, we revisit the research questions presented in Section 4.1 and the research
direction for future work.

Research Questions Revisited
The RQ1 asks if it is possible to create a solution of 5G UPF using BPF/XDP

technologies and how would be the design in order to create a proof of concept following
the 3GPP specification Release 16. Chapter 5 defined the minimum requirements in order
to create a 5G UPF prototype. The routing and forwarding user plane features were
selected to be the main features to make a proof of concept and two versions of the design
were presented. In particular, the second design presented a fine-grained flexible solution to
address the limitations of the BPF technology that was not considered in the first design.
Each rule of the PFCP session represents a BPF program which is loaded in run-time
when a new PFCP session establishes a request is sent to the UPF. The source code of
each version is available in the GitHub upf-bpf repository.

The RQ2 asks what levels of performance can be expected for the proposed
solution. Chapter 6 presented the performance evaluation for the two versions. The results
indicate that the solution scales for both versions and has similar results of other research
based on BPF/XDP (Mobile Gateway using Polycube framework). Besides, the time to
inject the BPF program in the last version indicates that the solution can respond faster
when there is a change in the network requirements.

Comparison against the state-of-the-art
Comparing our work to the closest related work by (Parola, F., 2020), we can

highlight the main differences from design and implementation perspectives as well as

CHAPTER 7. CONCLUSIONS 63

Parola This work
Design and Implementation

Packet forward support Yes (Implemented) Yes (Implemented)
QoS support Yes (implemented) Yes (but not implemented)
BPF library BCC libbpf
Clang runtime dependency Yes No
Linux network processing layer TC, XDP XDP
Traffic debug support Yes No
Context based on PFCP (3GPP) No Yes
Open-source polycube upf-bpf

Performance Evaluation
DUT Machine Intel Xeon Gold 5120 @2.60GHz processor Intel(R) Xeon(R) CPU E5-2620 v2 @ 2.10GHz
DUT L3 Cache 19.25 MB 15 MB
DUT Memory DRAM 64 GB 32 GB
DUT NIC Intel XL710 40Gbps 82599ES 10-Gigabit SFI/SFP+
DUT Hyper-threading Disabled Disabled
Packet Generator MoonGen Trex Traffic Generator
Multiple cores scalability Yes Yes
Packet size uplink 112 B 64 B
Packet size downlink 64 B 64 B
Performance uplink 6 cores 10 Mpps 10.9 Mpps
Performance downlink 6 cores 6.5 Mpps 9.9 Mpps
CPU load uplink 6 cores Not available 69.9 %
CPU load downlink 6 cores Not available 66.5 %

Table 7.1 – Comparison summary of (Parola, F., 2020) and this work.

the performance evaluation. Table 7.1 summarizes the comparison. The main differences
are that Parola work is based on BCC while our work is based on libbpf. As shown in
Chapter 2, the BCC depends on clang and kernel headers in run time. Besides, Parola’s
work supports QoS and it is still a work in progress. Our work was created from scratch,
based on 3GPP specification, with the objective to implement the PFCP contexts described
in (ESTI, 2020c) (see Section 4.2.1). On the other hand, Parola’s work was developed
inside polycube and has features like traffic debugging, for instance, that is not available
in our work. Regarding performance evaluation, both solutions present similar results for
uplink traffic, but our work used a smaller packet size (64 B against 112 B). Besides, there
is a difference of around 3 Mpps for downlink compared to Parola’s work for downlink
traffic using the same packet size (64 B). Our work also measured the CPU usage for each
throughput, which is an important indicator to know how optimized the packet processing
is.

Future Work
As future work, we have identified a series of tasks regarding improving the

functionality and portability. Also, integration with an 5G open source solution (e.g.
OpenAirInterface) would be good a proof of concept to show the library working with a
well-known 5G implementation. In the following, we describe briefly the foreseen activities.

CHAPTER 7. CONCLUSIONS 64

QoS Enforcement Rule

In order to extend what has been proposed in the version v2.0 (Section 5.2.2),
the QER functionality could be the next rule to be implemented, focusing in QoS control,
i.e. maximum bit rate (MBR), guarantee bit rate (GBR) or Packet Rate enforcement
according to (ESTI, 2020c). The task will be composed of changing the layers:

• Management Layer: parse the QERs when a new PFCP session is created. A
new BPF program, which contains the QER functionality, will be loaded along with
the FAR BPF program. The pipeline must be configured in order to include the
new BPF program before FAR execution. A new class QERProgram that shall be
implemented to abstract the BPF program lifecycle. It will also contain the BPF
maps, which will contain information about the QER. Apart from the PFPC session
creation, the update/delete session shall also be considered for the tasks;

• Datapath Layer: Figure 5.9 represents the logic of the datapath pipeline. The
QER BPF program will be implemented to support the QoS control functionality
described in (ESTI, 2020c). Fixed window counter, slide window or token bucket
algorithms might be used. The program will be triggered through tail calls after the
packet header is matched to a PDI of some PDR from a specific PFCP session. After
execution, the QER BPF program will trigger the FAR BPF program through tail
calls.

Regarding the test case, an important approach is to know how much latency
is introduced when the QER BPF program is added into the pipeline. Besides, a test case
to test the bit rate functionality might also be considered.

OpenAirInterface Integration

This activity consists in integrating the upf-bpf library into the OpenAirInter-
face SPGWu components. The integration has been started and is available in the GitHub
repository1. The goal is to leverage the packet processing performance in a well-known
open-source 5G core. Figure 7.1 shows a high-level design of the integration.

A basic test was performed as shown in the iteration diagram in Figure 7.2.
The goal is to create a session in the SPGWu using the control plane available in the
component, send GTP packets and check if the packet was processed.

The setup are composed of the following components:
1 https://github.com/navarrothiago/openair-cn-cups

CHAPTER 7. CONCLUSIONS 65

Figure 7.1 – High-leel architecture representing the integration between the UPF BPF
library and the UPF/SGPWu component of the UP.

• ITTI: InTerTask Interface is the OAI middleware for exchanging messages between
tasks (threads). All communication of the core components of the OAI network is
done using this component;

• Session Control Tester: Component was developed for crafting and sending the
PFCP session establishment request message to the SPGWu component via ITTI;

• SPGWu: Gateway of the OAI that implements the UP. Receives the PFCP session
establishment request message and forwards it to the upf-bpf library;

• UPF BPF: The upf-bpf library proposed by this work. It handles the PFCP session
establishment request and load the BPF program to handle the packets before the
Linux network stack;

• Packet Generator: Python script that uses the Scapy2 library to generate GTP
packages of the G-PDU type. These packets are sent to the network.

There is a discussion available in the GitHub repository3 that handles the next
steps of this activity.

Technology Comparison

This activity consists in evaluating the performance between 5G UPF solutions
based on high processing technologies like DPDK, SR-IOV and the upf-bpf (BPF/XDP).
2 <https://scapy.net/>
3 <https://github.com/navarrothiago/upf-bpf/discussions/52>

https://scapy.net/
https://github.com/navarrothiago/upf-bpf/discussions/52

CHAPTER 7. CONCLUSIONS 66

Figure 7.2 – Iteration diagram between OAI components and UPF BPF library. Caption:
Yellow, OAI components; Blue, test components; Green, upf-bpf library inside
SPGWu component.

67

Bibliography

BCC Community. bpf compiler collection (bcc). 2022. Disponível em: <https:
//github.com/iovisor/bcc>. Citado na página 26.

BONATI, L. et al. Open, programmable, and virtualized 5g networks: State-of-the-art and
the road ahead. Computer Networks, v. 182, p. 107516, 2020. ISSN 1389-1286. Disponível
em: <http://www.sciencedirect.com/science/article/pii/S1389128620311786>. Citado 2
vezes nas páginas 14 and 25.

Chen, W.; Liu, C. H. Performance enhancement of virtualized media gateway with dpdk
for 5g multimedia communications. In: 2019 International Conference on Intelligent
Computing and its Emerging Applications (ICEA). [S.l.: s.n.], 2019. p. 156–161. Citado 2
vezes nas páginas 25 and 27.

Cilium Community. eBPF - Introduction, Tutorials Community Resources. 2022.
Disponível em: <https://ebpf.io>. Citado 3 vezes nas páginas 10, 17, and 18.

CISCO. TRex - Realistic Traffic Generator. 2022. Disponível em: <https:
//trex-tgn.cisco.com/>. Citado 2 vezes nas páginas 30 and 52.

CISCO. TRex Traffic Generator Stateless API Documentation. 2022. Disponível em:
<https://trex-tgn.cisco.com/trex/doc/cp_stl_docs/api/index.html>. Citado na página
41.

Cmake Community. CMake. 2022. Disponível em: <https://cmake.org/>. Citado na
página 30.

ESTI. 5G; System architecture for the 5G System (5GS) (3GPP TS 23.501 version
16.6.0 Release 16). 2020. Disponível em: <https://www.etsi.org/deliver/etsi_ts/123500_
123599/123501/16.06.00_60/ts_123501v160600p.pdf>. Citado 3 vezes nas páginas 21,
22, and 31.

ESTI. Digital cellular telecommunications system (Phase 2+) (GSM); Universal Mobile
Telecommunications System (UMTS); General Packet Radio Service (GPRS); GPRS
Tunnelling Protocol (GTP) across the Gn and Gp interface GPRS Tunnelling Protocol
(GTP) across the Gn and Gp interface (3GPP TS 29.060 version 16.0.0 Release). 2020.
Disponível em: <https://www.etsi.org/deliver/etsi_ts/123500_123599/123501/16.06.00_
60/ts_123501v160600p.pdf>. Citado na página 23.

ESTI. LTE; 5G; Interface between the Control Plane and the User Plane nodes (3GPP TS
29.244 version 16.5.0 Release 16). 2020. Disponível em: <https://www.etsi.org/deliver/
etsi_ts/123500_123599/123501/16.06.00_60/ts_123501v160600p.pdf>. Citado 9 vezes
nas páginas 22, 23, 31, 33, 35, 37, 42, 63, and 64.

ESTI. Universal Mobile Telecommunications System (UMTS); LTE; Architecture
enhancements for control and user plane separation of EPC nodes (3GPP TS 23.214
version 16.2.0 Release 16). 2020. Disponível em: <https://www.etsi.org/deliver/etsi_ts/
123500_123599/123501/16.06.00_60/ts_123501v160600p.pdf>. Citado na página 22.

https://github.com/iovisor/bcc
https://github.com/iovisor/bcc
http://www.sciencedirect.com/science/article/pii/S1389128620311786
https://ebpf.io
https://trex-tgn.cisco.com/
https://trex-tgn.cisco.com/
https://trex-tgn.cisco.com/trex/doc/cp_stl_docs/api/index.html
https://cmake.org/
https://www.etsi.org/deliver/etsi_ts/123500_123599/123501/16.06.00_60/ts_123501v160600p.pdf
https://www.etsi.org/deliver/etsi_ts/123500_123599/123501/16.06.00_60/ts_123501v160600p.pdf
https://www.etsi.org/deliver/etsi_ts/123500_123599/123501/16.06.00_60/ts_123501v160600p.pdf
https://www.etsi.org/deliver/etsi_ts/123500_123599/123501/16.06.00_60/ts_123501v160600p.pdf
https://www.etsi.org/deliver/etsi_ts/123500_123599/123501/16.06.00_60/ts_123501v160600p.pdf
https://www.etsi.org/deliver/etsi_ts/123500_123599/123501/16.06.00_60/ts_123501v160600p.pdf
https://www.etsi.org/deliver/etsi_ts/123500_123599/123501/16.06.00_60/ts_123501v160600p.pdf
https://www.etsi.org/deliver/etsi_ts/123500_123599/123501/16.06.00_60/ts_123501v160600p.pdf

BIBLIOGRAPHY 68

ETSI. MEC Deployments in 4G and Evolution Towards 5G. 2018. Disponível em:
<https://www.etsi.org/images/files/ETSIWhitePapers/etsi_wp24_MEC_deployment_
in_4G_5G_FINAL.pdf>. Citado 2 vezes nas páginas 10 and 15.

ETSI. MEC in 5G networks. 2018. Disponível em: <http://www.etsi.org/images/files/
ETSIWhitePapers/etsi_wp28_mec_in_5G_FINAL.pdf>. Citado 2 vezes nas páginas
14 and 15.

Facebook. Magma - Facebook connectivity. 2022. Disponível em: <https://connectivity.fb.
com/magma/>. Citado 2 vezes nas páginas 26 and 27.

FEI, X. et al. Paving the way for nfv acceleration: A taxonomy, survey and future
directions. In: . New York, NY, USA: Association for Computing Machinery, 2020. v. 53,
n. 4. ISSN 0360-0300. Disponível em: <https://doi.org/10.1145/3397022>. Citado na
página 25.

Free5Gc Community. free5Gc - Open-source project for 5th generation (5G) mobile core
networks. 2022. Disponível em: <https://www.free5gc.org/>. Citado 2 vezes nas páginas
26 and 27.

GIRONDI, M. Efficient traffic monitoring in 5G Core Network. Dissertação (Mestrado) —
KTH Royal Institute of Technology, Stockholm, 2020. Citado 2 vezes nas páginas 10
and 24.

GSMA. Understanding 5G: Perspectives on future technological advancements in mobile.
2014. Disponível em: <https://www.gsma.com/futurenetworks/wp-content/uploads/2015/
01/2014-12-08-c88a32b3c59a11944a9c4e544fee7770.pdf>. Citado na página 14.

GTP5G Community. Kernel module for GTP protocol. 2022. Disponível em:
<https://github.com/PrinzOwO/gtp5g>. Citado na página 26.

HAN, S. et al. SoftNIC: A Software NIC to Augment Hardware. [S.l.], 2015. Disponível em:
<http://www2.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-155.html>. Citado
na página 26.

HØILAND-JØRGENSEN, T. et al. The express data path: Fast programmable packet
processing in the operating system kernel. In: Proceedings of the 14th International
Conference on Emerging Networking EXperiments and Technologies. New York, NY,
USA: Association for Computing Machinery, 2018. (CoNEXT ’18), p. 54–66. ISBN
9781450360807. Disponível em: <https://doi.org/10.1145/3281411.3281443>. Citado 3
vezes nas páginas 15, 16, and 25.

INTEL. Building Enterprise-level Cloud Solutions with Outscale. 2014. Disponível em:
<https://www.intel.com/content/dam/www/public/us/en/documents/case-studies/
xeon-e5-2660-family-ssd-s3700-series-dpdk-case-study.pdf>. Citado 2 vezes nas páginas
15 and 25.

INTEL. Data Plane Development Kit (DPDK). 2022. Disponível em: <https://dpdk.org>.
Citado na página 25.

KOHLER, E. et al. The click modular router. ACM Trans. Comput. Syst., Association for
Computing Machinery, New York, NY, USA, v. 18, n. 3, p. 263–297, ago. 2000. ISSN
0734-2071. Disponível em: <https://doi.org/10.1145/354871.354874>. Citado na página
25.

https://www.etsi.org/images/files/ETSIWhitePapers/etsi_wp24_MEC_deployment_in_4G_5G_FINAL.pdf
https://www.etsi.org/images/files/ETSIWhitePapers/etsi_wp24_MEC_deployment_in_4G_5G_FINAL.pdf
http://www.etsi.org/images/files/ETSIWhitePapers/etsi_wp28_mec_in_5G_FINAL.pdf
http://www.etsi.org/images/files/ETSIWhitePapers/etsi_wp28_mec_in_5G_FINAL.pdf
https://connectivity.fb.com/magma/
https://connectivity.fb.com/magma/
https://doi.org/10.1145/3397022
https://www.free5gc.org/
https://www.gsma.com/futurenetworks/wp-content/uploads/2015/01/2014-12-08-c88a32b3c59a11944a9c4e544fee7770.pdf
https://www.gsma.com/futurenetworks/wp-content/uploads/2015/01/2014-12-08-c88a32b3c59a11944a9c4e544fee7770.pdf
https://github.com/PrinzOwO/gtp5g
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-155.html
https://doi.org/10.1145/3281411.3281443
https://www.intel.com/content/dam/www/public/us/en/documents/case-studies/xeon-e5-2660-family-ssd-s3700-series-dpdk-case-study.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/case-studies/xeon-e5-2660-family-ssd-s3700-series-dpdk-case-study.pdf
https://dpdk.org
https://doi.org/10.1145/354871.354874

BIBLIOGRAPHY 69

LINUX. Linux Kernel Network - Receive Side Scaling. 2022. Disponível em:
<https://github.com/torvalds/linux/blob/master/Documentation/networking/scaling.
rst#rss-receive-side-scaling>. Citado na página 53.

Linux Community. Libbpf Linux userspace library GitHub repository. 2022. Disponível em:
<https://github.com/libbpf/libbpf>. Citado na página 34.

LWN.net. A thorough introduction to eBPF. 2020. Disponível em: <https:
//lwn.net/Articles/740157>. Citado na página 17.

Miano, S. et al. Creating complex network services with ebpf: Experience and lessons
learned. In: 2018 IEEE 19th International Conference on High Performance Switching
and Routing (HPSR). [S.l.: s.n.], 2018. p. 1–8. Citado 3 vezes nas páginas 19, 41, and 61.

NAKRYIKO, A. BPF CO-RE (Compile Once - Run Everywhere. 2020. Disponível em:
<https://nakryiko.com/posts/bpf-portability-and-co-re/>. Citado na página 17.

OAI Community. Openair-cn: Evolved Core Network Implementation of OpenAirInterface.
2022. Disponível em: <https://github.com/OPENAIRINTERFACE/openair-cn>. Citado
3 vezes nas páginas 25, 26, and 27.

OMEC Community. UPF EPC - 4G/5G Mobile Core User Plane. 2022. Disponível em:
<https://github.com/omec-project/upf-epc>. Citado 2 vezes nas páginas 26 and 27.

Open Source Guide. Open Source Guides. 2022. Disponível em: <http://opensource.guide/
>. Citado na página 30.

Open5GS Community. Open5Gs - Open source project of 5GC and EPC (Release-16).
2022. Disponível em: <https://github.com/open5gs/open5gs>. Citado 2 vezes nas
páginas 26 and 27.

OpenStack. Cloud Edge Computing: Beyond the Data Center - OpenStack Open Source
Cloud Computing Software. 2020. Disponível em: <https://www.openstack.org/use-cases/
edge-computing/cloud-edge-computing-beyond-the-data-center>. Citado 2 vezes nas
páginas 15 and 25.

PAPER, N. W. Network functions virtualisation: An introduction, benefits, enablers,
challenges & call for action. issue 1. out. 2012. Citado na página 25.

Parola, F. Prototyping an eBPF-based 5G Mobile Gateway. Dissertação (Mestrado) —
POLITECNICO DI TORINO, Italy, 2020. Citado 6 vezes nas páginas 11, 25, 27, 59, 62,
and 63.

Parola, F. et. al. A proof-of-concept 5g mobile gateway with ebpf. In: Proceedings of
the ACM SIGCOMM 2020 Conference on Posters and Demos. [S.l.]: Association for
Computing Machinery, 2020. (SIGCOMM ’20). Citado 4 vezes nas páginas 25, 26, 27,
and 29.

Parola, F. et. al. Providing telco-oriented network services with ebpf: the case for a 5g
mobile gateway. In: 2021 IEEE 7th International Conference on Network Softwarization
(NetSoft). [S.l.: s.n.], 2021. p. 221–225. Citado 2 vezes nas páginas 25 and 27.

https://github.com/torvalds/linux/blob/master/Documentation/networking/scaling.rst#rss-receive-side-scaling
https://github.com/torvalds/linux/blob/master/Documentation/networking/scaling.rst#rss-receive-side-scaling
https://github.com/libbpf/libbpf
https://lwn.net/Articles/740157
https://lwn.net/Articles/740157
https://nakryiko.com/posts/bpf-portability-and-co-re/
https://github.com/OPENAIRINTERFACE/openair-cn
https://github.com/omec-project/upf-epc
http://opensource.guide/
http://opensource.guide/
https://github.com/open5gs/open5gs
https://www.openstack.org/use-cases/edge-computing/cloud-edge-computing-beyond-the-data-center
https://www.openstack.org/use-cases/edge-computing/cloud-edge-computing-beyond-the-data-center

BIBLIOGRAPHY 70

PFAFF, B. et al. The design and implementation of open vswitch. In: Proceedings of
the 12th USENIX Conference on Networked Systems Design and Implementation. USA:
USENIX Association, 2015. (NSDI’15), p. 117–130. ISBN 9781931971218. Citado na
página 26.

Pinczel, B. et al. Towards high performance packet processing for 5g. In: 2015
IEEE Conference on Network Function Virtualization and Software Defined Network
(NFV-SDN). [S.l.: s.n.], 2015. p. 67–73. Citado 2 vezes nas páginas 25 and 27.

Polycube Community. About eBPF/XDP-based software framework for fast
network services running in the Linux kernel. 2022. Disponível em: <https:
//github.com/polycube-network/polycube>. Citado na página 26.

Ricart-Sanchez, R. et al. Hardware-accelerated firewall for 5g mobile networks. In: 2018
IEEE 26th International Conference on Network Protocols (ICNP). [S.l.: s.n.], 2018. p.
446–447. Citado 2 vezes nas páginas 25 and 27.

Ricart-Sanchez, R. et al. Towards an fpga-accelerated programmable data path for edge-to-
core communications in 5g networks. In: . [s.n.], 2018. v. 124, p. 80 – 93. ISSN 1084-8045.
Disponível em: <http://www.sciencedirect.com/science/article/pii/S1084804518302923>.
Citado 2 vezes nas páginas 25 and 27.

RIZZO, L. Netmap: A novel framework for fast packet i/o. In: Proceedings of the 2012
USENIX Conference on Annual Technical Conference. USA: USENIX Association, 2012.
(USENIX ATC’12), p. 9. Citado na página 25.

Ryu Community. Ryu - SDN Framework. 2022. Disponível em: <https://ryu-sdn.org/>.
Citado na página 26.

SRS LTE Community. srsLTE - Open-source 4G and 5G software radio suite
developed by Software Radio Systems (SRS). 2022. Disponível em: <https:
//github.com/srsLTE/srsLTE>. Citado 2 vezes nas páginas 26 and 27.

SUSE. SUSE - Introduction to eBPF and XDP. 2022. Disponível em: <https:
//www2.slideshare.net/lcplcp1/introduction-to-ebpf-and-xdp>. Citado 2 vezes nas
páginas 10 and 19.

The Linux Kernel documentation. What are the verifier limits. 2022. Available
online: <https://www.kernel.org/doc/html/v5.2/bpf/bpf_design_QA.html#
q-what-are-the-verifier-limits>. Accessed on 02 January 2022. Citado na página 36.

VIEIRA, M. et al. Fast packet processing with ebpf and xdp: Concepts, code, challenges,
and applications. ACM Computing Surveys (CSUR), v. 53, p. 1–36, 02 2020. Citado 2
vezes nas páginas 18 and 19.

https://github.com/polycube-network/polycube
https://github.com/polycube-network/polycube
http://www.sciencedirect.com/science/article/pii/S1084804518302923
https://ryu-sdn.org/
https://github.com/srsLTE/srsLTE
https://github.com/srsLTE/srsLTE
https://www2.slideshare.net/lcplcp1/introduction-to-ebpf-and-xdp
https://www2.slideshare.net/lcplcp1/introduction-to-ebpf-and-xdp
https://www.kernel.org/doc/html/v5.2/bpf/bpf_design_QA.html##q-what-are-the-verifier-limits
https://www.kernel.org/doc/html/v5.2/bpf/bpf_design_QA.html##q-what-are-the-verifier-limits

71

Appendix

72

APPENDIX A – Publication

T. A. N. do Amaral, R. V. Rosa, D. F. C. Moura, and C. E. Rothenberg,
“An In-Kernel solution based on XDP for 5G UPF: design, prototype and performance
evaluation.” In 2021 1st International Workshop on Network Programmability (NetP 2021),
Izmir, Turkey, Turkey, Oct. 2021.

T. A. N. do Amaral, R. V. Rosa, D. F. C. Moura, and C. E. Rothenberg,
“Run-time Adaptive In-Kernel BPF/XDP Solution for 5G UPF.” In MDPI Electronics,
2022.

	Title page
	Approval
	Approval
	Dedication
	Acknowledgements
	Epigraph
	Resumo
	Abstract
	List of Figures
	List of Tables
	Contents
	Introduction
	Background
	BPF
	XDP
	Libbpf
	5G Network Architecture
	SMF
	UPF

	Related Work
	Academic Research
	Open Source Projects

	Problem Statement and Approach
	Research Objectives
	Methodology
	Design and Implementation of 5G UPF
	Testing and Performance Evaluation

	Design and Implementation of 5G UPF
	Features
	Design
	Version 1
	Version 2

	Implementation
	Setup UPF
	Create PFCP Session
	On New Packet

	Testing and Performance Evaluation
	Setup
	Test Case
	Results

	Conclusions
	Bibliography
	Appendix
	Publication

