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Resumo

O aprendizado auto-supervisionado estreitou relações entre o aprendizado supervisionado e o
não supervisionado. O primeiro leva a modelos mais precisos, mas requer amostras anotadas
por humanos, enquanto o segundo explora amostras não anotadas, mas muitas vezes leva a pre-
cisões decepcionantes. Usando anotações sintetizadas nas chamadas tarefas pretexto, a auto-
supervisão possibilita pré-treinar modelos em abundantes pseudo-rótulos antes de ajustá-los
para a tarefa alvo. Este trabalho avalia e compara cinco pré-treinamentos auto-supervisionados
em relação ao tradicional método de referência totalmente supervisionado para tarefas de clas-
sificação de imagens médicas e naturais. Consideramos casos desafiadores quando há apenas
poucos dados — 1% e 10% do conjunto de treinamento original — disponíveis e quando os con-
juntos de teste contiverem mudanças desconhecidas na distribuição dos dados (fora da distribui-
ção). Cobrimos uma gama de quatro tarefas de classificação médica: câncer de pele, câncer de
mama, tumor cerebral e amostras histopatológicas, e duas tarefas de propósito geral: classifi-
cação de animais e veículos. Nossos resultados sugerem que o pré-treinamento supervisionado
na ImageNet é preferível em cenários de poucos dados e fora da distribuição quando as classes
da tarefa alvo são conhecidas no momento do pré-treinamento, ou seja, quando as classes alvo
são um subconjunto do subconjunto das classes original de pré-treinamento. Em aplicações
médicas, os desempenhos de modelos auto-supervisionados variaram muito. Mesmo com cada
modelo em seu ápice em performance, nenhum dos cinco métodos auto-supervisionados inves-
tigados se mostrou consistentemente melhor do que o modelo supervisionado de referência em
todas as aplicações alvo, mas o melhor variou de acordo com a tarefa alvo. Entretanto, se há
pouca ou nenhuma diferença entre métodos supervisionados e auto-supervisionados conside-
rando o desempenho, então o treinamento auto-supervisionado pode ser preferível pois elimina
a necessidade de dados rotulados na etapa de pré-treinamento. Além disso, o aprendizado auto-
supervisionado o possibilita que o pré-treinamento original seja continuado usando exemplos
rotulados e não rotulados da tarefa alvo antes da etapa de ajuste fino. Presumimos que tal
comportamento ocorra devido ao pré-treinamento auto-supervisionado original que acrescenta
dificuldade em capturar detalhes de baixa variação interclasse e intraclasse em aplicações mé-
dicas.



Abstract

Self-supervised learning bridges the gap between supervised and unsupervised learning. The
former leads to the most accurate models but requires human-annotated samples, while the latter
exploits non-annotated samples but often leads to disappointing accuracies. By using synthe-
sized annotations on so-called pretext tasks, self-supervision can pre-train models on abundant
pseudo-labels before tuning them for the downstream (target) task. This work assesses five
self-supervision schemes against a supervised baseline for medical and natural image classi-
fication tasks. We consider challenging cases when low-data samples — 1% and 10% of the
original training set — are available and test sets contain unknown distribution shifts (out-of-
distribution) at training time. We cover a range of four medical classification tasks: skin cancer,
breast cancer, brain tumor, and histopathology samples, and two general-purpose tasks: ani-
mal and vehicle classification. Our results suggest that supervised pre-training on ImageNet
is preferable in low-data and out-distribution scenarios when the classes of the target task are
known at pre-training time, i.e., when the target classes are a subset of the original one. In med-
ical applications, self-supervised pre-training performances varied a lot. Even with each model
at its peak, none of the five investigated self-supervised methods have proven consistently better
than the supervised baseline in all target applications, but the best one varied depending on the
target task. However, if there is no or little difference between supervised and self-supervised
methods in performance, then self-supervised training may be preferable because it eliminates
the need for labeled data in the pre-training step. Moreover, self-supervised learning makes it
possible to continue the original pre-training using labeled and unlabeled data from the target
task before the fine-tuning step. We hypothesize that such behavior occurs due to the origi-
nal self-supervised pre-training scheme adding difficulty in capturing the low inter-class and
intra-class variation details in medical applications.
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Chapter 1

Introduction

Learning predictive, high-level, and discriminative visual representations without labels is one
of the desired goals of Machine Learning. By relying only on unlabeled data, such a require-
ment allows accessible data widely available on the internet, such as images, texts, and audios,
to train machine learning models. Supervised methods usually lead to better results in standard
computer vision tasks due to the explicit human-annotated data expressing the relationship be-
tween samples of the same class. However, providing label annotations is time-consuming and
costly. On the other hand, unsupervised methods learn by extracting visual correspondences
without labels, causing a drop in performance compared to supervised methods. The model
needs to explicitly extract semantic correlations from the data without supervision about the
underlying classes. It would be valuable to explore other types of supervised signals rather than
human-provided labels to train those models to learn high-level visual features since human
labels are hard to obtain for all computer vision tasks. Here is where self-supervised learning
takes its place.

“Basically, it’s the idea of learning to represent the world before learning a task. This is
what babies and animals do. We run about the world, we learn how it works before we learn
any task. Once we have good representations of the world, learning a task requires few trials
and few samples.”1 — Yann LeCun, the director of Facebook AI and one of the most influential
scientists in the Artificial Intelligence field. Humans require little to no supervision to learn
to interact with their surroundings. The condensed representations they learn can generalize
to several tasks, and they can easily assemble observations from past experiences and a wide
variety of senses, such as sound, touch, and vision. A desirable property is to build models that
learn meaningful visual representations only from observations. This gap has prompted efforts
to bring similar behavior into Machine Learning models. A desirable property is that intelligent
models have autonomy and do not rely only on explicit labels to learn new visual concepts, and
the acquired knowledge is helpful for various objectives and tasks.

The core behind self-supervised learning is to take the voluminous of available unlabeled
data and use it to understand the world by itself. Self-supervision allows machines to compre-
hend the part of a data sample and find out which part is missing or, by contrast, similar versions
of the same image by framing a supervised approach using only unlabeled data. This allows
models to learn autonomously, enabling them to learn general concepts, such as shapes, colors,

1https://ai.facebook.com/blog/self-supervised-learning-the-dark-matter-of
-intelligence

https://ai.facebook.com/blog/self-supervised-learning-the-dark-matter-of-intelligence
https://ai.facebook.com/blog/self-supervised-learning-the-dark-matter-of-intelligence
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object dynamics, and high-level concepts with high transferability capabilities.
Deep Neural Networks (DNNs) proved to excel in most standard computer vision tasks [74].

Deeper DNN models typically lead to better performance, but at the cost of massive computa-
tional resources needed to train state-of-the-art methods and datasets with millions of labeled
examples are a vital part of their tremendous success. However, collecting and annotating large-
scale datasets for many different tasks is infeasible. The underlying network’s representations
might be biased to a specific geometric position of the objects or task, depending on how they
were collected [109]. Researchers have recently started investigating alternative ways to train
neural networks without explicitly labeled data to diminish the burden of depending only on
labeled data. These methods, commonly referred to self-supervised learning [67], have be-
come a powerful tool for large-scale machine vision. Currently, self-supervised learning and
unsupervised learning terms are being used interchangeably in the literature.

Also, self-supervised learning appears as a promising learning paradigm to improve the
generalization capabilities of machine learning models [23]. The cornerstone of many learning
algorithms is to assume the data distribution between training and test are independent and iden-
tically distributed (iid) [54], and they would suffer when this condition is unsatisfied. However,
it is an unrealistic constraint to guarantee real-world applications: cases that violate the data
distribution assumption are pretty standard. For example, different institutions usually acquire
medical images in clinical practice with distinct imaging protocols, ranging from diverse patient
populations to scanner vendors. Such protocols add difficulty for machine learning models by
introducing distribution shifts commonly absent in training data. A model learned in one data
distribution (training set) could be applied in many other distributions (several test sets). This
case draws attention to machine learning models’ performances in environments with unknown
distribution shifts.

The performance in many environments under several distribution shifts raises concerns
about the generalization capacity of trained machine learning models. The usual method of
measuring the model’s generalization is evaluating a single test set drawn from the same dis-
tribution as the training set. However, this protocol provides only a naive in-distribution per-
formance guarantee: a small test error indicates a similar performance on new samples drawn
from the same distribution as the training set. It is unfeasible to train a model on the exactly
known data distribution in training in many applications. A model will face out-of-distribution
data on which its performance will change a lot compared to in-distribution performance.

The core objective of this Master Dissertation is to evaluate self-supervised pre-trained mod-
els’ performance in medical and general-purpose applications under distinct scenarios that ma-
chine learning practitioners would probably encounter in real-world applications. We cover
challenging scenarios where the test sets range from in- and out-of-distribution samples and
low-data regimes2. We cover a range of four medical classification tasks: skin lesion screening,
breast cancer, brain tumor, and histopathology samples; and two general-purpose tasks: animal
and vehicle classification. We performed two evaluation protocols for each scenario based on
the low-data regime and out-of-distribution performance. The former aims to evaluate the per-
formance when only a few percentages (1% and 10%) of the original training set are available.

2We use the term low-data instead of few-shot [120] evaluation because the latter requires that each class has
the same number of samples. We do not follow such restrictions in our protocol. We still face a scenario where
only a few data samples are available, so we use the low-data nomenclature.
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We designed a scarce data evaluation, and it is particularly desirable in medical applications
since only a few data sampled are labeled if compared to standard computer vision datasets.
The latter focuses on assessing how the trained supervised and self-supervised models perform
on out-of-distribution test datasets. We highlight the importance of such protocol to assess gen-
eralization capabilities being crucial to avoid spurious correlations on both medical [9, 12] and
general-purpose applications [42] at inference time.

We started our investigation engaging in skin cancer classification due to the extensive ex-
perience our research group at the forefront of top-tier research in skin lesion analysis [8–13,
40, 41, 83, 94, 95, 97, 111]. According to the rapid development of the self-supervised learning
field in 2020, we were curious to explore how these new models would perform in skin lesion
analysis and if they are competitive with their supervised counterparts. Our two batches of ex-
periments show it is advantageous to employ self-supervised learning, especially in low-data
regimens. Low-data experiments intend to understand how the model’s performance is affected
when only a small subset (1% and 10%) of the original training is available. In general trends,
we also observed self-supervised learning is more robust to out-of-distribution scenarios — we
test the trained model on several distribution-shifted test sets keeping the same task (number of
classes) as in training.

A reasonable and natural way to extend our previous experiments is to verify if the same
behavior occurs in other medical applications and general-purpose classification tasks. Our
results suggest that self-supervised pre-training methods are slightly superior in performance
with low-data and out-of-distribution samples. Interestingly, we found it advantageous to use
supervised pre-training when the fine-tuned classes in the target task are a subset of those in pre-
training. No single self-supervised pre-training scheme dominates in all tasks, implying that a
universal pre-training scheme remains a mystery. Although self-supervised gains are small,
we look at it positively: self-supervised allows us to perform an in-domain unsupervised pre-
training, and it can serve as an alternative to supervised pre-training for transfer learning tasks.

1.1 Research Questions

The key research questions that permeate this Master Dissertation are:

Q1. Is there any benefit in using self-supervised models instead of supervised models as
a starting point for fine-tuning?

Q2. How do self-supervised models pre-trained on ImageNet perform in medical imaging
compared to supervised pre-trained ImageNet models?

Q3. How do self-supervised models perform when only a few samples are available for
training and when out-of-distribution test datasets for medical and general-purpose
applications?

1.2 Contributions

The main contributions of this work are:
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C1. We assessed the influence of five self-supervised pre-training schemes (BYOL [48],
InfoMin [107], MoCo [52], SimCLR [23], and SwAV [17]) versus fully supervised
approaches in several medical and general-purpose classification tasks;

C2. We designed challenging in- and out-of-distribution testing scenarios to assess the
model’s generalization capabilities for medical and general-purpose image classifi-
cation tasks;

C3. We surveyed and organized several databases freely available in the medical literature
to set up a challenging scenario to assess the out-of-distribution performance of the
trained models. We covered several different medical imagining modalities with at
least one extra dataset to measure the robustness of out-distribution performance;

C4. We assessed the performance of both self-supervised and supervised models in a
low-data training scenario — when there is only 1% and 10% of the original training
set available;

C5. Part of this Master Dissertation is available in the ArXiv platform with the name
“An Evaluation of Self-Supervised Pre-Training for Skin-Lesion Analysis” [19]. The
code for reproduce part of this work is available at https://github.com/Vir
tualSpaceman/ssl-skin-lesions

1.3 Outline

We organized the remainder of this work as follows. In Chapter 2, we review the fundamen-
tal concepts of self-supervised learning and contrastive learning — an idea that boosted the
self-supervised field. In Chapter 3, we review the literature on self-supervised methods for
general-purpose and medical applications, emphasizing the recent generative and predictive ap-
proaches, along with their promising ideas that made the computer vision community draw
attention to self-supervised learning. In Chapter 4, we describe the pipeline, the methodology,
and the experimental design to perform all the evaluations for medical and general-purpose ap-
plications. In Chapter 5, we detail the datasets, metrics, and results covering all investigated
applications, highlighting the performance in the full- and low-data scenario. Also, we test the
trained model’s generalization capabilities at specially crafted out-distribution sets, which aim
to mimic real distribution shifts in real-world applications. Finally, in Chapter 6, we summa-
rize and analyze our findings and address the limitations of this work. We also indicate future
directions for the approached problems.

https://github.com/VirtualSpaceman/ssl-skin-lesions
https://github.com/VirtualSpaceman/ssl-skin-lesions
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Chapter 2

Related Concepts

This chapter introduces fundamental related concepts to understand this Master Dissertation.
First, we explain self-supervised learning, covering how it works, how to evaluate it, and the
current challenges. Next, we present the idea of contrastive learning, the critical ingredient that
empowers self-supervision. Finally, we detail all evaluated self-supervised methods we used in
the experiments.

2.1 Self-Supervised Learning

One way to characterize self-supervised learning is by comparing it to unsupervised learning.
They both aims to learn data representation without any annotation, but the former aims to
remove the time-consuming human annotation by creatively exploring some properties in the
data to set up a supervision task. The motivation is relatively straightforward. Creating a dataset
with clean labels is expensive, but the internet continually generates unlabeled data. One way
to leverage that amount of unlabeled data is to set the learning objectives properly to frame a
supervision problem from the data itself.

The core idea lies in designing an auxiliary pretext task (or self-supervised task) that pro-
vides supervision to pre-train neural networks. The pretext task is designed to answer the fol-
lowing question: “How can we design such a task to explore some property inherent from
our data to learn robust feature representations with high transferability capabilities to several
tasks?”. Developing such tasks is the heart of the field, and there is no recipe.

A straightforward example of a pretext task for images is to predict image rotations. The
task involves randomly rotating images in the dataset by 0, 90, 180, or 270, and the target
objective is to predict the rotation label [44]. To perform well in this task, the model should
learn a latent feature representation that can efficiently discriminate all orientations of different
objects. The rotation prediction task is made-up, so the actual accuracy is unimportant [74], like
how we treat auxiliary tasks. However, at the end of the pre-training task, we expect the latent
feature representations contain enough semantic information to boost transfer performance for
other tasks.

Figure 2.1 shows the general pipeline for self-supervised learning. The pipeline resem-
bles the idea of transfer learning, in which we commonly take advantage of pre-trained models
trained in a supervised way to better performance at target tasks. The performance on the pre-
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Figure 2.1: The general pipeline of self-supervised learning. The visual features are learned by
solving a designed pretext task. The learned representations can be further transferred to down-
stream (target) classes when the self-supervised pre-training is complete. Figure reproduced
from Jing et al. [67].

text task is usually not so important [74] and the learned representations are evaluated based on
their performance in other tasks known as downstream tasks. For downstream tasks, we obtain
the visual feature representations for new images from the intermediate feature representations
of the pre-trained model. In other words, the model acts as an image encoder that transforms
high-dimensional pixel data into high-level semantic feature vectors. The mainstream protocol
in classification tasks is to assess the resulting feature representation by training a linear classi-
fier on top of a frozen encoder (neural network). Linear classifiers are preferred because they
only rely on the representations’ quality and discriminative power. Other approaches involve
using the pre-trained encoder as initialization for other tasks such as object detection, semantic
segmentation, and segmentation.

Self-supervised learning methods have integrated both generative and context-based ap-
proaches. Generative methods involve generating or synthesizing new data. Numerous works
focus either on the idea of autoencoders [115] or adversarial networks [45]. Unlike generative
methods, the context-based leverages some context properties available in the data, e.g., the
spatial structure in images or word order in text data. Their adoption rapidly drew the attention
of the machine learning community, especially when contrastive learning scheme appeared as
a pre-training alternative.



19

2.2 Contrastive Learning

Contrastive learning empowered self-supervised learning by introducing an effective manner to
pre-train models with unsupervised data. The concept is quite old (first appeared in 2005 [30]),
and only in 2020 did it regain steam, with minor modifications compared to its original formu-
lation. The core of contrastive learning is to generate lower-dimensional image representations
such that similar instances are close to each other and far from dissimilar ones (see Figure 2.2).
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Figure 2.2: Visual representation of the contrastive learning idea. Given an anchor image (cat),
we sample a positive pair based on data augmentation and construct the negative pairs based
on random samples in the dataset. Essentially, the loss encourages representations of positive
pairs (in purple) to be close to each other in representation space while making representations
of negative pairs dissimilar apart (in green, red, and blue). Best viewed in color.

To explicitly encourage the model to contrast correctly, the contrastive setting uses the idea
of generating image pairs based on three key concepts: anchor, positive, and negative(s) rep-
resentations. The anchor is a reference sample, the positive one belongs to the same class or
shares some semantic as the anchor (purple boxes in Figure 2.2), and the negative one (green,
red, and blue boxes in Figure 2.2) is a sample that does not belong to the same category as
the anchor. If the label information is available, we could make positive image pairs by simply
exploring the label information and then organizing the representation space to cluster samples
that share the same label information. Many approaches might be taken to generate positive and
negative samples, but, as far as we do not have any class label information, the core idea is to
assume that each data sample belongs to its class [35,122]. The most common way is: given an
anchor image xi, the positive sample (or positive view) x+

i is obtained by applying stochastic
augmentations in xi. The negative sample (or negative view) x−

i is sampled via the same pro-
cess as positives but augmenting a randomly chosen sample from the dataset. Selecting good
positive and negative pairs is still an open question regarding contrastive methods [107].

The self-supervised contrastive tasks involve model loss computation in the latent space
by contrasting latent representations of positive and negative samples given a specific context.
Learning an encoder function that maps an input image into a representation without explicit
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supervision is challenging. Based on the InfoNCE loss [30] (NCE stands for Noise-Contrastive
Estimation), Oord et al. [91] managed to adapt it to best fulfill the self-supervised learning
necessity to avoid label information. The adapted version is a softmax-based loss as follows:

L =
−1

2N

2N∑
i=1

log
exp(sim(zi, z

+
i ))/τ∑2N

k ̸=i exp(sim(zi, zk))/τ
, (2.1)

where zj = fθ(xj) is a normalized anchor latent vector representation of input image xj

parametrized by neural network fθ with parameters θ, z+j and z−j are, respectively, positive
and negative samples, sim(·, ·) is any function that computes the similarity between two vec-
tors, τ > 0 is a scalar temperature hyperparameter. Originally the dot product was taken as
main distance function. Note that for each anchor j exists one positive pair and 2N − 2 nega-
tive samples.

2.3 Evaluated Methods

We describe five self-supervised methods (SimCLR [54], MoCo [26], BYOL [48], InfoMin
[107], and SwAV [17]) we evaluate in this Master Dissertation.

SimCLR (Simple framework for Contrastive Learning of visual Representations) proposes
an end-to-end learning [54] (see Figure 2.3). A random set of data augmentations (flipping,
color distortion, Gaussian noise) are applied to the input image, resulting in a pair of correlated
views (positive pair). Both views are passed to a shared encoder to obtain their latent represen-
tation. The representations are given to a projection head to project them into a low-level latent
dimension that is much smaller than the original space. These projections are used to calcu-
late the InfoNCE [91] loss and maximize the mutual information between positive pairs, and
diminish the mutual information among negative pairs. Their main contribution was to intro-
duce heavy data augmentations and large batch sizes, especially because they rely on in-batch
negative sampling. Their work further reduces the gap between self-supervised and supervised
learning. For transfer learning over 12 general-purpose image datasets, SimCLR outperforms
supervised networks on five datasets.

Two designs in SimCLR are the key to high transfer performance [23]: MLP projection
head and heavy data augmentation. MoCo-V2 [26] (Momentum Contrast) combined these two
designs, achieving even better transfer performance with no dependency on a considerable batch
size (see Figure 2.4).

Grill et al. [48] made a more radical step by removing the need for negative pairs. Histor-
ically, negative pairs are crucial in a contrastive learning setting to avoid model collapse and
trivial representations. In BYOL [48] (Bootstrapping Your Own Latents), one slow network
creates targets for a fast network. The parameters of the fast network are learned by back-
propagation, and the parameters of the slow network are the exponential moving average of the
parameters of the fast network. In that manner, BYOL bootstraps its own target representations.
BYOL still matches data-augmented views between positive pairs as a pretext but without re-
sorting to negative pairs. Instead, it feeds one view to the fast and the other to the slow network
and uses the cosine distance between the two outputs as a loss. Figure 2.5 depicts the whole
scheme. BYOL uses two neural networks: the target and an online network. The online network
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Figure 2.3: SimCLR pre-training scheme. First, they apply a set of heavy data augmentation
on the input image to generate the views and the positive pair. Each view is given to a shared
encoder f(.) to generate the latent representation hj . A projection network g(.) is included
to project the representation to a low-level embedding. Finally, they maximize the agreement
between the positive pairs and encourage the representation of negative pairs to be far from each
other. Figure reproduced from Chen et al. [23].

Figure 2.4: MoCo-V2 pre-training scheme. MoCo-V2 splits the single shared network into two
sub-networks: online (top row) and momentum (bottom row). The online network is updated
by SGD, while the momentum network is updated according to an exponential moving average
of the online network weights. MoCo-V2 uses a memory bank of past projections as negative
examples for contrastive learning to mitigate sampling in-batch negatives. Figure reproduced
from https://generallyintelligent.ai/blog/2020-08-24-understand
ing-self-supervised-contrastive-learning.

is defined by a set of weights θ, and comprises a set of three stages: an encoder fθ, a projection
network gθ, and a prediction network qθ. The target network contains only the first two stages
of the online network (encoder and projection). They both have the same architecture but differ
in weights.

InfoMin [107] investigated alternative manners to create positive and negative views for
contrastive learning. The authors claim that the best views have less mutual information for
augmentation-based views in contrastive learning (see Figure 2.6). The views should only share
the primary content information (label) in the optimal condition. They first propose an unsu-
pervised method to minimize mutual information between views to produce optimal views.
However, this may result in a loss of information for predicting labels (such as a pure blank

https://generallyintelligent.ai/blog/2020-08-24-understanding-self-supervised-contrastive-learning
https://generallyintelligent.ai/blog/2020-08-24-understanding-self-supervised-contrastive-learning
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Figure 2.5: BYOL uses the online-target network as in MoCo but adds an extra MLP to the on-
line network. Also, BYOL uses the ℓ2 error between the target network’s normalized prediction
and projected representation. Such learning dynamics remove the need for negative samples.
Figure reproduced from Grill et al. [48].

view). Consequently, they propose a semi-supervised method to find views sharing only label
information.

SwAV [17] (Swapping Assignments Between Views) is a clustering self-supervised pre-
training based on clustering (Section 3.1.2 , which introduced an online cluster assignment
approach based on learnable prototypes. Cluster assignment is achieved by assigning the latent
representations to a set of learned prototype vectors and passing it through the Sinkhorn-Knopp
algorithm. They propose a swapped prediction problem where the code (generated by the pro-
totype vectors) of the view of an image is predicted from the representation of another view of
the same image (Figure 2.7). The rationale here is that if two views are semantically similar,
their codes should also be similar. They also proposed a data augmentation policy referred to as
multi-crop. This policy indicates that the same image is randomly cropped to get a pair of high
resolution as a global view image and cropped to get additional views of low-resolution images
like a local view.
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Figure 2.6: InfoMin [107] view generator. The input image is split into two different images
(views) using an invertible view generator. To learn the view generator, they minimize the
information between views (yellow box) while classifying the object from each view. They train
both encoders to maximize the InfoNCE lower bound (red box). They train a neural network
with the fixed view generator without the additional supervised classification losses when the
view generator finishes training. Figure reproduced from the InfoMin paper [107].

Figure 2.7: SwAV pre-training scheme. It assigns a code vector (prototypes) for each input
image based on image feature representation. They train a model to solve a swapped prediction
problem, where they predict the “code” vector from one data augmented view from another
view. The prototypes are learned jointly with the encoder parameters. Figure reproduced from
Caron et al. [17].
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Chapter 3

Related Work

In this chapter, we review the literature on self-supervised learning. Here, we only consider self-
supervision applied to images and classification tasks. Still, the following ideas are unrestricted
to images, and some of them can be highly adaptable for other contexts, such as texts [80] and
audio [102]. We conduct our study by first presenting the self-supervised learning methods for
visual and medical tasks. In the following sections, we overview how self-supervised learning is
categorized. It is composed of two main groups: generation-based (Section 3.1.1) and context-
based (Section 3.1.2), in which we provide a comprehensive notion of how the scenario evolved
through the years. Such categorization might change as new methods appear.

3.1 Self-Supervised Learning for Visual Tasks

The self-supervised methods can be categorized regarding the data attributes used to design
the pretext task. We follow the categorization of Jing et al. [67] with minor modifications due
to new updates in the literature. They categorize the pretext tasks in two different branches:
generative-based and context-based. Here, we review prior work in each category and how
the field evolved over the years. Our criterion of inclusion-exclusion was image-based papers
focusing on learning representations in a self-supervised way followed by an evaluation of the
learned features on ImageNet [34] or CIFAR [76] datasets with image classification as the
downstream task.

3.1.1 Generative-Based Self-Supervision

Generative-based self-supervised methods aim to learn image representations by generating or
synthesizing images. The core idea is to teach neural networks to encode all the information
about the image on its intermediate representation to perform the generative task.

Suppose a generative model is good at generating a high-quality observation of an image
unseen at training time. In that case, this is evidence that it has learned representations that
capture the data’s spatial structure, such as object locations and object semantics.

Autoencoders [57], mainly used for dimensionality reduction, is the pioneer in the generative-
based methods. It imposes a bottleneck in the network forcing a compressed representation of
the original input into a low-dimensional vector. Then, the compressed vector goes through an
uncompressing stage (decoder network) to reconstruct the original input.



25

Generally, generative-based methods follow a similar idea but with different pipelines to
learn visual features. Pathak et al. [93] introduced the idea of context autoencoder in which the
model is trained to predict a corrupted part of the image based on its surroundings (Figure 3.1).
The input consists of an RGB image after a binary mask is applied. The boolean value 1
indicates to keep the pixel value of all channels as it is, otherwise turning their value to 0. Thus,
the objective is to reconstruct the missing part by minimizing the reconstruction (ℓ2 norm) and
adversarial losses [45] to improve visually appealing outputs.

Figure 3.1: Illustration of the context encoders. The input image is masked out (white box at the
center) and used as input for a neural network. The pretext task is to reconstruct the missing part
given the surrounding of the masked part (context). Figure reproduced from Pathak et al. [93].

In many cases, the semantics of a scene or textures from several objects give cues about the
world. For example, the sky is typically blue, and trees are green. Those priors do not work for
every object, e.g., horses can be black or brown, but possibly not purple or green. To be aware
of such a range of colors, the observer must recognize which object is being observed.

Based on such a concept, Zhang et al. [124] used as a pretext task the idea of hallucinating a
plausible colorization for grayscale images to possibly fool the human observer. They trained a
model to hallucinate colors given a grayscale image as input. The model receives the lightness
channel L from CIE Lab colorspace and outputs the corresponding a and b channels. Instead
of finding the a and b values for every pixel using a straightforward approach, the objective
is to predict a color based on a predefined set of colors. The authors introduced the color
rebalancing term in the final loss function to produce more vibrant colors according to their
rarity. Also exploring color as pretext tasks, Zhang et al. [125] proposed to predict one subset
of data channels from another. They used two disjoint sub-networks for each channel subset
to predict the missing channel subset. We refer to Larson et al. [77] for a closer look into
colorization as a pretext task as a vehicle for representation learning.

Still, using the dual-network architecture, Jenni et al. [65] trained a neural network to spot
synthetic artifacts. First, they trained an autoencoder to reproduce the input image, then the
input image is projected in a latent representation, and some features are masked, corrupting
its embedded information. A repair neural network is introduced for inputting features through
each decoder layer to help the decoder decompress the damaged representation. Therefore, the
model is trained jointly to distinguish between fake or real samples, and to output the mask
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applied to the latent representation, reminiscent of the concept of Generative Adversarial Net-
works (GANs) [45].

Using the concept of GANs, Chen et al. [24] introduced the task of predicting rotation an-
gle into the discriminator. Jointly with the standard adversarial loss (predict fake versus real),
the additional task tries to predict how many degrees the original input was rotated among the
following angles {0, 90, 180, 270}. They train the discriminator to detect image rotation an-
gles based only on the real data, preventing the generator from generating images that easily
predict the rotation. Other approaches explore adding context-based self-supervision tasks (Sec-
tion 3.1.2) as additional level of difficulty into discriminator, such as feature matching between
latent representations [118], feature exchanging [62] and augmentation prediction [20].

Chen et al. [22] pre-trained generative models by designing a pretext task relying on the
original pixel values of the input image. Inspired by the Transformer language models [113],
the authors resized raw images to a low resolution and reshaped them into text-like sequences
of pixels. They leveraged two pre-training objectives to achieve pixel prediction: autoregressive
and masked prediction. The former consists of a sequence of P pixels, and the objective is to
predict the same P pixels but shifted by 1 pixel. In the latter approach, a random percentage of
the pixels is masked (dropped), and the model needs to output which pixels were dropped.

3.1.2 Context-Based Self-Supervision

Context-based methods perform the learning process by solving pretext tasks designed based
on attributes of the context images. Neural networks must understand the content of the entire
image and produce a plausible latent representation to encode such rich information. To accom-
plish this task, the neural network needs to learn and leverage spatial context information such
as the relative positions of different parts of an object, the shape of the objects, or the semantics
in similar images.

There are three ways of learning from context-based methods as a supervised signal: predic-
tive, contrastive learning, and clustering. In predictive tasks, we usually train a neural network
to predict a pseudo label of the data based on clustering [16, 17, 112] or explore spatial infor-
mation [35, 44]. In contrastive learning, the task relies on representation learning and tries to
directly minimize a distance function between samples from the same group and maximize the
feature distance from samples from other groups. Clustering-based methods intend to cluster
the data, in which similar samples within the same cluster share some semantic information,
and the representations are minimized in representation space.

Predictive Learning

Images contain rich spatial context information. Such spatial property is leveraged to design
several pretext tasks for self-supervised learning. For example, pretend an auxiliary task of
rearranging image patches. We take two random patches of an image and change their position
with each other. To solve the task, the first step is to identify which patches were changed and
then put each patch into its original arrangement — a high-level understanding of the spatial
context information such as the shape of the objects and the relative positions of different parts
of an object. Usually, the task involves predicting some “fake” pretext label.
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The idea was first introduced in Dosovitskiy et al. [36], where they applied multiple ran-
dom transformations to an image and used all modifications from the same image to create a
surrogate class. They derived a class label (surrogate class) according to the image index in the
dataset. For example, if the dataset is composed of 5, 000 images, then will exist 5, 000 classes.
Then, they trained a neural network in a supervised manner to classify each data-augmented
sample in one of the surrogate classes.

By exploring spatial image context, Doersch et al. [35] formulated the pretext task of pre-
dicting the relative position between two image patches (see Figure 3.2). First, a reference
patch of the input image is selected at random (a blue patch in Figure 3.2). Considering that
the reference patch is placed in the middle of a 3×3 grid, a second patch is sampled from its
eight neighboring locations around it. To avoid easily solving the task, noise is added by explor-
ing texture continuity and local level patterns, such as adding gaps and small jitter to neighbor
patches. Finally, the model is trained to predict which one of eight neighboring locations se-
lected the second patch.

Figure 3.2: Relative position pretext task. Two random patches are extracted and the model is
trained to predict the relative position of the second patch taking the first as reference (bounded
in blue). Figure reproduced from Doersch et al. [35].

Several approaches leverage the spatial cues for self-supervised representation learning [71,
90, 121]. One typical work is proposed by Noorozi and Favaro [89]. They designed a pretext
task to solve Jigsaw Puzzles, mainly based on image tiles (Figure 3.3). Nine disjoint patches
are sampled from the input image, similar to relative position prediction. Next, they shuffle as
patches and give them as input for a neural network. However, for nine patches, there are a
high number of permutations (9! = 362, 880). To alleviate the large solution space, the authors
limited the number of permutations into a predefined set based on hamming distance. A natural
way to extend this puzzle is by adding extra levels of difficulty, such as damaged patches [71],
noisy patches [90], and patch grouping [121]. The main principle of designing puzzle tasks is
finding a reasonable task that is neither too difficult nor too easy for the network to solve. When
the designed puzzle is complex enough, the network may not converge due to the ambiguity of
the task or can easily learn trivial solutions if it is too easy.

Another way to explore the spatial structure of data is by identifying image rotations. Gi-
daris et al. [44] proposed a new way of learning image representations from unlabeled data by



28

Figure 3.3: Jigsaw Puzzle pretext task. Nine disjoint patches are sampled from the input image.
Then, the patches are shuffled randomly (middle image), and each path of the resulting “mosaic”
is fed into a neural network. The task is to predict the correct patch ordering to approximate their
original space arrangement (right image). Figure reproduced from Noorozi and Favaro [89].

predicting image rotations. The input image is rotated by angles multiples of 90 degrees (0,
90, 180, 270), and then the network outputs which one of the four rotations were applied. The
problem formulation implicitly encourages the learned representation to be informative about
the object in the image and its rotation. Feng et al. [39] extended the work from Gidaris et
al. [44] by jointly predicting image rotations and encouraging rotation-invariant features. The
main observation is that rotation transformations might be less applicable for tasks (or images)
that are rotation invariant. The latter is achieved by a rotation irrelevant loss, which enforces
each rotated image’s representation close to their mean latent vector.

Contrastive Learning

Contrastive learning-based pretext tasks draw attention to the whole computer vision field. Over
the years, unsupervised or self-supervised methods performed more poorly than their supervised
counterpart. However, the game changed since well-designed contrastive learning methods
emerged with the adoption of contrastive loss [23,52,91]. The core idea is learning to compare
or discriminate. For that, the concept of pairs is adopted. A positive pair represents two or more
objects representing objects belonging to the same context or expressing some similarity level.
We refer the reader the Section 2.2 for a detailed definition of contrastive learning.

DeepInfoMax [58] learns image representations by leveraging the local structure present
in an image. The contrastive task is to classify whether a pair of global features (final output
of a convolutional encoder) and local features (output of an intermediate layer in the encoder)
is from the same image. The model is optimized using contrastive loss by building positive
pairs using the local and global representation from the same image while making dissimilar
(negative) global and local representations from a random image. Augmented Multiscale Deep
InfoMax (AMDIM) [5] enhances the pair construction by sampling positive pairs from two
different views (augmentations) of an image.

Contrastive Predictive Coding (CPC) [91] is one of the influential works. Their work is
based on predicting the future in the latent space. They treated each image as a timeline, where
the top left corner is the past and the bottom right is the future. The input image is divided into
a set of overlapped (50%) patches. A neural network encodes each patch to generate a context
vector. The future predictions are performed according to the context representations for each
patch. While predicting the future information, the CPC is trained to maximize the mutual
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information using the InfoNCE loss — mainly formulated on the Noise-Contrastive Estimation
loss function (NCE) [49] — between the input image and the context vectors. Here, they use the
notion of positive and negative pairs. The positive pairs are sampled according to patches from
the same image, while negative ones are sampled from random images on the batch. Latter,
Henaff et al. [55] proposed a CPC-V2 by improving CPC for image representation learning.

InstDisc [122] reframes class-level classification as instance-level discrimination: each train-
ing sample becomes one label, whose data-augmented views must be recognized against all
other training samples. The challenge is extending the loss for many labels (millions, in Ima-
geNet), which is conquered by reformulating the softmax loss. MoCo [52] developed the idea
of contrasting using a momentum contrast, which substantially improves the portion of negative
samples. The authors designed the momentum contrast learning with two encoders (query and
key), preventing training instability. They resort to a queue structure (as large as 65,536) to save
the newly encoded batches as negative samples. It significantly improves the efficiency of sam-
pling negative pairs. However, MoCo adopts a straightforward strategy to sample the positives:
a pair of positive representations come from the same sample without any data augmentation,
making the positive pairs easily distinguishable.

Chen et al. [27] investigated how crucial are normalization and negative sampling in con-
trastive learning. They show that the stop gradient mechanism in BYOL is the most influential
component in avoiding representations collapse. They presented a novel pre-training scheme
named SimSiam that relies only on neural networks’ siamese structure (shared encoder). Their
method converges faster than SimCLR, MoCo, and BYOL with smaller batch sizes and mi-
nor performance decreases. Their experiments suggested that the siamese structure is crucial
for modeling invariances in representation space, which is the heart of representation learning.
Tian et al. [108] also explored factors to help SimSiam and BYOL to prevent representation
collapse without negative pairs.

The dynamics of learning in these methods and avoiding collapse are not fully understood,
although theoretical and empirical studies point to the crucial importance. Based only on the
importance of Siamese structure, we have BarlowTwins [123], DINO [18], and VicReg [7].
They all explored variance minimization or relying on the teacher-student training structure.

Another investigation branch in contrastive learning is how to create positive and negative
views. Although negative samples might be dispensable in methods like BYOL, and SimSiam,
how positive views are generated proved to improve the transfer performance of the learned
presentation [17,23]. Other works improve the view generation processes using channels colors
and segmentation masks [106], adversarial learning [63,105], causal mechanisms [85], nearest-
neighbors in latent space [3, 37].

Clustering

Clustering techniques can be incorporated either as a self-supervised loss or for self-labeling.
Caron et al. [16] combined the unsupervised clustering and deep neural network to perform a
classification task. The method takes augmented unlabeled images as input, and then a convolu-
tional neural network is used to generate a latent representation. The k-means [81] unsupervised
clustering algorithm is applied to generate pseudo-labels which are used as ground-truth labels
to train the model in an end-to-end way.
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Asano et al. [2] used a randomly initialized network to bootstrap a set of image labels.
First, a randomly initialized off-the-shelf model generates labels for augmented images. Then,
the Sinkhorn-Knopp [33] algorithm is applied to cluster the image representations and produce
a new set of labels. New training is performed on this new set of more reliable labels and
optimized with cross-entropy loss.

Gansbeke et al. [112] worked towards improving clustering methods by introducing a self-
supervised pre-training step. They first used an encoder trained in any self-supervised manner.
The encoded representations are clustered by an online clustering module and encourage each
representation’s nearest neighbors to be close to each other. Finally, the encoder is fine-tuned
if the cluster assignment confidence is above a certain threshold. The entropy of the number of
samples in each cluster is used to avoid the model assigning all samples into a single cluster.

Table 3.1 overviews each method described in generative and context-based self-supervised
sections for general-purpose tasks. We chronologically summarized them according to their
sub-category (generative or context-based), main contributions, and publication year.

3.2 Self-Supervised Learning on Medical Tasks

This section discusses how self-supervised learning literature is organized for medical appli-
cations. Our inclusion-exclusion criteria rely on works over the period 2017–2021, as this is
the period where self-supervised learning appeared in medical imaging analysis. We consider
only research papers that either borrow some self-supervised learning scheme from computer
vision to solve medical imaging tasks directly or propose a novel self-supervised learning ap-
proach leveraging medical knowledge about the target task. We excluded any other works of
less relevance.

Suitable pretext tasks are crucial for learning predictive representations, motivating some
works to evaluate whether domain-specific might improve self-supervised learning for medical
images. Mainly, there are two paths to follow when using self-supervised learning in medical
applications. One path is to use the exact pretext task designed for general-purpose computer
vision or propose a slightly adapted version of such tasks that best fits the current medical appli-
cation. The second way is to leverage knowledge about the medical domain — by experience or
any domain expert involved — and computer vision to explore a new way to design a custom-
built pretext task for the target medical application. In the previous chapter, we prefer to keep
the same organization: generative and context-based self-supervision. We restrict our review to
only 2D image analysis and classification as the target task. We refer the reader to the following
survey on self-supervision applied to 3D imagery [126] and segmentation-only tasks. We refer
the reader to the following surveys [28, 99] and the work of Taleb et al. [104].

3.2.1 Generative-Based Self-Supervision

Most generative-based works use pretext tasks created by computer vision literature for natural
images. Chen et al. [21] proposed a generative task based on the early works of context en-
coders [93] and relative patch prediction [35] on magnetic resonance images. Patches of the
input image are swapped and must be restored to their proper places. They found the technique
advantageous for several downstream tasks, such as fetal MR classification, kidney localization,
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Table 3.1: Summary of some selected papers on literature review in self-supervised learning.
‘G’ stands for generative and ‘C’ stands for context-based self-supervision.

RefYear Method Category Contribution Loss Function

[124]2016 Image Col-
orization

G Creates a plausible colored version of the input grayscale
image

Mean squared error plus
color quantization

[93]2016 Context En-
coder

G Reconstruct a corrupted part of the image based on its
surrounding

Mean squared error and Ad-
versarial [45]

[91]2018 CPC C & G Learns self-supervised representations by predicting the
future in latent space by using autoregressive models

Contrastive learning

[16]2018 Deepcluster C Leverages k-means algorithms to create pseudo-labels
for clustering and a neural network to predict the cluster
assigned to each sample

Cross-entropy in assigned
clusters

[106]2019 CMC C Learning by contrasting multi-views of the data. Multi-
views include color channels, depth estimation, and se-
mantic segmentation mask estimation

Contrastive learning (multi-
vew)

[23]2020 SimCLR C Contrastive learning of visual representations by project-
ing and contrasting latent representations using positive
and negative views

Contrastive learning

[52]2020 MoCo C Momentum Network and memory bank to store inter-
mediate feature representations in order to minimize the
batch size for negative samples

Contrastive learning with
memory bank

[112]2020 SCAN C Mixing Self-supervised pre-training with online cluster-
ing through neighborhood representations aggregation
and self-labeling with confidence

Clustering assignment

[48]2020 BYOL C Improved the contrastive learning setting without the
need of negative samples by contrasting two different
views representations using ℓ2 loss, a momentum, critic
network and an extra projection head

Mean squared error between
positive pairs’ representa-
tions

[107]2020 InfoMin C & G Schematic of contrastive representation learning with a
learned view generator. An input image is split into two
views using an invertible view generator

Contrastive learning

[17]2020 SwAV C Learning online prototypes for clustering, contrasting
clustering assignments for different views as pretext task
and multi-crop augmentation policy

Clustering assignment and
Sinkhorn-Knopp [33]

[27]2021 SimSiam C Relies only on the siamese structure of neural network Mean squared error of ℓ2-
normalized vectors

[123]2021 BarlowTwins C Relies only on the siamese structure of neural network Covariance minimization

[7]2021 VicReg C Relies only on the siamese structure of neural network Variance-Invariance-
Covariance Regularization

[18]2021 DINO C Teacher-student network and self-distillation Knowledge distillation to
match the teacher’s distribu-
tion to student’s
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and brain tumor segmentation. Hu et al. [61] explored the same pretext task task [93] along with
DICOM images metadata for ultrasound images. Inspired by SimCLR architecture, they intro-
duced an auxiliary discriminator network that produces a feature vector of the inpainted image
to act as input to both classification and projection head. The classification head classifies if the
image generated from the context encoder task is real or fake. In contrast, the projection head
performs as a conditional classifier that incorporates the DICOM meta-data as weak labels. In
eye fundus application, Moris et al. [86] employed the vanilla formulation of context encoders
but in a patch-wise manner.

Boyd [14] used GANs to learn representation and produce high-quality samples for digital
pathology. They trained a neural network to perform visual field expansion, which progressively
increases image generation resolution in curriculum learning. Besides the standard adversarial
loss, they used an additional regularization to ensure the Gaussian distribution of the latent
representations. Also, in the pathology domain, PathGAN [96] alters the discriminator’s goal
to estimate the probability of the real data being more realistic than the fake. They borrow two
elements from the StyleGAN to allow the generator to produce better feature representation.

Holmberg et al. [59] suggested that designing a practical pretext task for medical domains
must accurately extract disease-related features which are typically present in a small part of
the medical image. They developed a novel pretext task for ophthalmic disease diagnosis that
uses two different image modalities, including optical coherence tomography scans (OCT) and
infrared fundus images. Three experienced ophthalmologists have validated their model’s pre-
dictions. Further, the final performance was assessed on diabetic retinopathy grading using
color fundus as a downstream task.

We did not find many papers that perfectly fit our criteria for this section: 2D imaging, purely
self-supervised, not multi-tasking, and features classification as target tasks. We refer the reader
to the work of Haghighi et al. [50], which focuses on self-supervised for multi-tasking learning,
i.e., combining several self-supervised pretext tasks evaluated on several medical datasets.

3.2.2 Context-Based Self-Supervision

Jamaludin et al. [64] pre-trained a Siamese Network with a contrastive loss in which the positive
pairs are patches of spinal magnetic resonance images depicting the same vertebrae of a patient
across exams, and the negative pairs are corresponding vertebrae in different patients. They
found that the scheme improves the prediction of intervertebral disc degeneration grading.

Tajbakhsh et al. [103] exploited several pretext tasks, such as, rotation [44], colorization [77],
and GAN-based [45] patch reconstruction. They showed that pretext tasks based on pre-training
in the medical domain were more effective than random initialization and transfer learning (Im-
ageNet pre-training) for diabetic retinopathy classification.

Some approaches leverage the available metadata to design pretext tasks or incorporate them
to improve representation quality by introducing domain knowledge. Specific medical applica-
tions that benefit the metadata are freely available depending on the capture device or annotate
extra information by being a common practice.

Li et al. [79] proposed a novel embedding loss function to learn modality and transforma-
tion invariant as well as patient similarity features for ophthalmic data. They achieve modality
invariance by combining color fundus images with a synthesized fundus fluorescein angiogra-
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phy photo of the former image. An additional step is representing transformations invariant by
the standard augmentation approaches of the color fundus. Such triplet of photos is assumed to
share similar features for the same patient. They consider a triplet of each patient image as a
contrasting basis to learn the patient’s similar features. Reminiscent of contrastive learning, the
features of the same patients are pulled together while features from other patients are pulled
apart using the proposed loss function.

Sowrirajan et al. [100] adopted the self-supervised MoCo-based [52] pre-training approach
models for chest X-ray classification. They use the original MoCo scheme to pre-train on a
large collection o X-ray images, but they initialize the encoder weights with the supervised
pre-training on ImageNet to converge faster. They evaluated an external chest X-ray dataset
to evaluate the generalization capabilities on tasks from the same domain, which showed a
promising approach by increasing the mean performance. Vu et al. [116] extended the previous
work by introducing an augmentation strategy that leverages the patient metadata to sample
the positive views. MoCo pre-training appears to be widely used in the medical field, bringing
superior performance to other medical applications compared to their supervised counterpart
for COVID diagnosis [101, 116], and pleural effusion classification [25].

Ciga et al. [31] investigated the SimCLR contrastive pre-training for digital histopathology
in several classification and segmentation tasks. They find that combining multiple multi-organ
datasets with different types of staining and resolution improves the quality of the learned fea-
tures. In addition, contrastive pre-training using only in-domain images achieved better per-
formance at the target tasks (breast cancer and tissue classification) than the models trained in
a supervised manner on ImageNet. A range of solutions were proposed for for histopathol-
ogy images to incorporate self-supervised representation learning, such as clustering assign-
ment regression [87], Transformer-based pre-training [119], exploring spatial proximity [1],
and inter/intra-class variance [78].

Azizi et al. [4] investigated two medical tasks: skin-lesion analysis on a private dataset
of > 450, 000 teledermatology clinical images and X-rays on the publicly available CheXpert
dataset. Contrasting SimCLR pre-training to two strong supervised pre-training baselines, they
find it advantageous for the skin-lesion task and similar for the X-rays task. They introduced
the Multi-Instance Contrastive Learning (MICLe), which is based on SimCLR [23] with mi-
nor modification. The main idea behind MICLe is to leverage the metadata information from
the same patient as the foundation for contrastive learning. They encourage samples from the
same patient to be close in representation space while setting apart representation from negative
pairs. We summarized some of the self-supervised learning applications in medical domain in
Table 3.2.
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Table 3.2: Selected works we covered in our review of self-supervised learning for medical
applications. We highlight their contributions, pretext tasks and the target tasks.

RefYear Authors Pretext Task Target Tasks

[64]2017 Jamaludin et al. Uses a siamese network to learn embed-
dings by comparing image pairs’ repre-
sentations A second pretext task used is
predicting vertebral body levels.

Disc degeneration grading

[87]2019 Muhammad et al Reconstruction error and clustering cen-
troid regression

Cholangiocarcinoma (liver
cancer) subtyping

[1]2020 Abbet et al. Uses contrastive learning by sampling
positive pairs from overlapped image
patches and an additional relative en-
tropy term in respect to the neighbour-
ing in latent space

n/a

[79]2020 Li et al. Patient feature-based sofmax embed-
ding

Diabetic retinopathy detection,
age-related macular degenera-
tion classification, and patho-
logical myopia classification

[100]2021 Sowrirajan et al. MoCo-based pre-training Tuberculosis detection and
pleural effusion classification

[101]2021 Sriram et al. MoCo-based pre-training COVID-19 patient prognosis

[116]2021 Vu et al. Uses available patient metadata to im-
prove pairs sampling for contrastive
learning. They also studied several
ways to construct the negative pairs.

Classification of pleural effu-
sion in chest X-ray images

[31]2021 Ciga et al. SimCLR-based pre-training Breast cancer, prostate cancer,
lymph node, colorectal cancer
tissue classification

[4]2021 Azizi et al. Proposes a contrastive learning scheme
based on SimCLR leveraging available
matadata and multiple patient condi-
tions for contrastive learning

Classification of chest X-ray
and dermatologic images



35

Chapter 4

Methodology

This chapter covers the details of our methodology. We describe each step in the next sections,
focusing on reproducible research, facilitating work reproduction, and further extension. In Sec-
tion 4.1, we overview our pipeline and the investigated methods (MoCo [26,52], InfoMin [107],
SimCLR [23], BYOL [48], and SwAV [17]) on in- and out-distribution scenarios. We highlight
that part of this chapter is available as a pre-print on ArXiV platform [19]. In Subsection 4.1,
we present our investigated pipelines and how we conduct the experimental protocol describing
how we organized all experiments.

One of our work’s main objectives is to provide a fair systematic evaluation of self-supervised
models. We strictly describe and follow our designed pipeline during the experimental design
to guarantee reproducible research. Although we focus only on image data, the pipeline is not
restricted to only images; but can easily adapt to several data inputs such as text, audio, or video
applications. Figure 4.1 shows our pipeline. It is composed of four main stages:

Input
Dataset

In-
Distribution

Data

Contrastive Loss Finetuning Testing StageModel selection

Out-of-
Distribution

Data
Input

Dataset

In-Domain 
Pre-training?

Yes

No

Figure 4.1: Proposed evaluation pipeline.

1. Model selection: It compromises in selecting which neural network is being used as the
main feature extractor. Another reasonable choice is if the chosen network will be pre-
trained or not. Pre-training can be either supervised or self-supervised based. This step is
similar to the standard transfer learning protocol: choose a pre-trained model as a starting
point for further experiments or fine-tuning.

2. Contrastive loss: Optional stage. We perform an additional contrastive learning pre-
training after the model selection, independently if the chosen model in the previous stage
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was once pre-trained or not. The additional contrastive training uses the same data as in
the fine-tuning stage. It aims to evaluate if an additional pre-training using contrastive
loss is advantageous using in-domain data. We adopted the contrastive loss (among var-
ious pretext tasks available in the literature) for two main reasons: 1) The vast majority
of pretext tasks are hard to adapt to a supervised scenario. A straightforward solution
is to train the model in a multi-task fashion: combining both self-supervised loss and
supervised loss (e.g., cross-entropy) as final loss; 2) There is a supervised version [70].
Introducing the label information in contrastive loss is made implicitly: they help to con-
trast correctly the positive and negative pairs, which leads to better representation for
the target downstream task [70], which is far from the traditional (cross-entropy) label
classification. Evaluating both self-supervised and supervised versions of contrastive loss
allows us to understand the impact of having labeled data in this stage.

3. Fine-tuning: The step where we fine-tune the given model to the target domain and
task using domain-specific data. Here, we need to adjust the hyperparameters according
to the input model since many disagree on the best set of parameters for training. Our
experiments show that such sensibility to hyperparameter selection also depends on the
number of samples in each dataset.

4. Testing: Machine learning models often need to generalize from training data to new
environments. The standard procedure to measure generalization is to evaluate a model
on a single test set drawn from the same distribution as the training set. It is hard or
impossible to train a model on precisely the distribution it will be applied to in many
scenarios. Hence a model will inevitably encounter out-of-distribution data on which its
performance could vary compared to in-distribution performance. Especially in medi-
cal applications, such distribution shifts can occur depending on the capture device or
data-driven biases, such as underrepresented population [82]. After fine-tuning stage, we
perform a hold-out test stage, which comprises both in- and out-distribution scenarios for
each dataset used in training. We carefully created two test sets for each dataset: in- and
out-distribution sets. Such protocol aims to evaluate the robustness of the trained models
under distribution shits, which is close to a realistic use case, especially for medical appli-
cations. We highlight our contribution to systematically evaluating carefully crafted in-
and out-of-distribution scenarios for medical and general case applications. Our work is
the first in the medical literature to extensively assess both supervised and self-supervised
pre-training in several medical applications for in- and out-of-distribution. Most close to
our work is Miller et al. [84] which performed a similar analysis on standard computer
vision datasets. In the medical domain, Hosseinzadeh et al. [59] and Truong et al. [110]
evaluate the transferability performance of self-supervised methods to medical applica-
tions but evaluate the performance in distribution-shifted scenarios is omitted.

We stand out our work from the ones available in the literature in Table 4.1 by highlighting
the contributions of our experimental design.
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Workyear
#Evaluated Applications #Evaluated Out-of-distribution Low-data

Tasks Methods Evaluation Evaluation

Azizi et al. [4]2021 2 Medical 2 No Yes
Miller et al. [84]2021 15 Natural & Medical 12 Yes No
Hosseinzadeh et al. [60]2021 7 Medical 15 No No
Truong et al. [110]2021 4 Medical 5 No Yes
Ours2022 7 Natural & Medical 6 Yes Yes

Table 4.1: Overview of works that evaluate self-supervised versus supervised pre-training.

4.1 Pipelines

We organized our pipelines to investigate two main fronts: skin lesion and general-purpose
case. The former has three rounds of experiments, and the latter has only two rounds. We detail
how we conducted the experiments for each front in Sections 4.1.1 and 4.1.2. First, we started
our analysis with skin lesion classification as the primary application due the candidate’s re-
search group has been widely studying skin lesion analysis since early 2014 [40]. The group is
at the forefront of such research worldwide, responsible for groundbreaking results associated
with skin lesion analysis. Since self-supervised learning has made enormous progress in 2020
and proved to be advantageous in several downstream tasks compared to the traditional super-
vised learning [18,23,46], such behavior inspired us to investigate if self-supervised pre-trained
models would bring superior performance for skin lesion analysis. We decided to extend a
subset of our experimental setup to other medical applications and for the general-purpose case.

At the beginning of our research (January 2021), we chose the five self-supervision scheme
candidates by selecting techniques with pre-trained weights (ResNet-50 1×) made available by
the original authors and ranked them on the top-1 accuracy on ImageNet. We selected the most
recently published. We are aware that the top-5 ranking has changed, but we did not include
those new models in our analysis due to time constraints.

We explore five self-supervised approaches for comparison against a supervised baseline.
We follow standard trends in self-supervised and adopt ResNet-50 (1×) [53] as the main back-
bone for all experiments due to the wide adoption of such network architecture in experimental
sections for self-supervised learning. Hence, it is common to release at least the trained model
for ResNet-50 (1×).

4.1.1 Skin Lesion Case

As mentioned earlier, we explore three rounds of experiments in the skin lesion case. In the first
round, we attempt a few combinations of hyperparameters for each self-supervision scheme.
We purposefully optimize the baseline pipeline more thoroughly to make it challenging. The
exact search space appears in Table 5.2.

First, we compare the baseline pipeline with the typical self-supervision pipeline to estab-
lish whether self-supervision is advantageous. In addition, we select a self-supervision scheme
among five candidates (BYOL, InfoMin, MoCo, SimCLR, and SwAV) to perform the remain-
der of the experiments. Selecting the most promising scheme at this stage is necessary for
managing the number of experiments, as the next round of experiments will be exhaustive and,
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thus, expensive.
According to the model’s performance, the second round of experiments investigates per-

forming in-domain pre-training using the best self-supervised scheme. We hypothesize that
in-domain pre-training might boost the model performance on the target task by providing a
sound feature adaptation on fine-tuning.

The third round consists of a systematic evaluation of all pipelines under three data regi-
mens: full training data with 100% of the samples, and low-training data with 10% and 1% of
the samples. The latter intends to simulate the frequent scenario of insufficient training data on
medical images. Next, we intend to evaluate the generalization capabilities of all trained models
on one in-distribution dataset and four out-of-distribution datasets.

We evaluate four alternative pipelines (Figure 4.2), which vary in the pre-training and fine-
tuning of the model. All pipelines finish with a fine-tuning (FT) on the train split. The traditional
supervised pipeline (SUP → FT) is pre-trained using classical, supervised learning on Ima-
geNet. All self-supervised pipelines (SSL → *) are pre-trained using self-supervision (without
class annotations) on ImageNet. The SSL → * → FT pipelines have an additional, intermediate
pre-training step on the train split using supervised (SCL) or unsupervised (UCL) contrastive
loss (Section 4.1.1).

For each combination of pipeline and hyperparameter, we measure their performance on the
validation split five times, reflecting different random initializations for the training procedures,
and, on the low-data experiments, we sampled different random training subsets. We perform
five replicates on the test split for each combination, resulting in 25 measurements for each
pipeline. The hyperparameters, fixed and variable (factors and levels) evaluated for all pipelines
are detailed in the following subsections.

SUP → FT baseline pipeline

In this pipeline, we start from a ResNet-50 model pre-trained with a classical supervised loss
on ImageNet and perform a fine-tuning, using a supervised loss on a skin lesion dataset. A
simple linear classifier is trained on top of an encoder network jointly in a supervised way using
cross-entropy as the loss function. The weights from MLP are initialized randomly.

SSL → FT pipeline

We start from a ResNet-50 model pre-trained with self-supervised losses on ImageNet and then
perform a fine-tuning using a supervised loss on the same skin lesion datasets that will be used
in fine-tuning. We start from the best publicly available checkpoints for each self-supervised
scheme we evaluate. For each model, we add a binary random-initialized linear layer to the
network’s output, feeding to a cross-entropy loss function.

SSL → UCL/SCL → FT pipelines

We choose one of the five evaluated self-supervised methods to perform an additional pre-
training stage, i.e., continue the original pre-training task, using its original formulation, and
then perform the exact fine-tuning protocol as detailed in the previous sections. We chose
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Self-supervised pre-training 
on unlabeled natural images

Supervised training on 
labeled natural images

SSL

FT

SUP

FT

Supervised fine-tuning on labeled skin images

Contrastive learning pre-training on labeled or unlabeled 
skin-lesion images 

SSL → SCL → FT SSL → UCL → FT

SSL      SCL       FT SSL      UCL       FT

Figure 4.2: Overview of our evaluated pipelines. In SSL → FT scheme we contrast the result
of five fine-tuned SSL ImageNet pre-trained models on skin lesion dataset (see Section 5.1.1)
with the supervised counterpart. The SSL → SCL → FT pipeline differs from SSL → UCL →
FT according to the employed contrastive loss. They both go through a pre-training stage —
which can be supervised (SCL) or unsupervised (UCL) — and then performing a supervised
fine-tuning. We test all trained models on a hold out test set and five out-of-distribution datasets
to assess the generalization performance. Figure inspired from Azizi et al. [4].

SimCLR because of its relatively simple implementation cost compared to the other approaches
and good performance presented in the fine-tuning only experiments (see Section 5.1).

Originally, SimCLR pre-training was performed using the self-supervised contrastive loss
function. However, we investigated to incorporate and evaluate its respective supervised con-
trastive loss [70] version. As such, we created two experimental setups:

Unsupervised Contrastive Learning (UCL): The model weights are initialized using the
best encoder checkpoint publicity available for ResNet-50 (1×) on SimCLR. Then, the fine-
grained representations are refined under a self-supervised contrastive framework using the
isic2019 training set. This is the most straightforward approach to try. In many cases, a large
collection of unlabeled data is available, but those are unused due to the lacking of annotation.
Although we leave as unexplored the approach of combining multiple datasets or unlabeled
samples as extra data during model optimization, that is a viable approach we intend to explore
in future work. We indicate this pre-training initialized using self-supervised ImageNet weights
as SSL → UCL → FT in the following sections. We remind the reader of the self-supervised
contrastive loss in Equation 2.1.

Supervised Contrastive Learning (SCL): Similarly, as detailed in self-supervised pre-
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training, but uses the supervised contrastive loss (equation 4.1) instead of the self-supervised
one. This approach may be desirable when the label information is available. This pipeline’s
main benefit over the self-supervised version is improving sample selection since it plays an im-
portant role in model optimization. This allows contrasting negative pairs or samples correctly
(rather than at random, as in the self-supervised version) and positive pair representation agree-
ment. For this reason, we choose to assess if the supervised contrastive loss benefits the final
performance. We hypothesize that the model may learn sharper decision boundaries once the
label information is known a priori. Besides, we explore having balanced class distributions
in the mini-batches. We indicate this pre-training initialized using self-supervised ImageNet
weights as SSL → SCL → FT in the following sections.

LSCL =
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1
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i |

∑
z+∈Z+

i

log
exp(zi · z+)/τ∑2N
k ̸=i exp(zi · zk)/τ

, (4.1)

where zj = fθ(xj) is a vector representation of the input image xj parameterized by neural net-
work fθ with parameters θ, z+j and z−j are, respectively, positive and negative samples, sim(·, ·)
is any function that computes the similarity between two vectors, τ > 0 is a scalar temperature
hyperparameter. N is the batch size. Z+

i is the number of positive samples for the given label.

4.1.2 The General Case & Other Medical Applications

This section highlights our contribution to extending the previous experimental design to vari-
ous other classification problems. We keep the same core objective to evaluate the performance
of fine-tuned pre-trained models on both in- and out-distribution test sets and when low data
are available for each application. We decided to expand a subset of our previous analysis to
investigate if our observations in skin lesion analysis translate to other medical applications or
the general-purpose computer vision case.

There are plenty of medical and general case applications we could evaluate. As we indented
to assess models in scenarios close to real-world distribution shifts, we need to design such sce-
narios. We choose applications that either make available metadata information that lets us
make accurate data splits to mimic distribution shifts (e.g., in the training set only have cat im-
ages in domestic environments, but cats appear in wood environments in the test set) or largely
studied applications with two (or more) data sources aiming at the same target classification
task. Finally, We use two datasets for the general-purpose case applications and eight datasets
for medical applications, covering four different classification tasks (breast cancer, histopatho-
logic tissue, brain tumor) and imagery type. We describe each dataset in Section 5.2.1 about the
number of samples and classes and the data source.

We intend to evaluate the same five self-supervised models as mentioned in the skin lesion
case (Subsection 4.1.1) and contrast their results against a supervised baseline. Figure 4.3 de-
picts all evaluated pipelines. We investigate only two alternative pipelines: supervised (SUP
→ FT) and self-supervised (SSL → FT) fine-tuning. We discarded all pipelines with the ad-
ditional pre-training for two reasons: 1) It would increment a lot our experimental design in
terms of running time. To find the parameters for the pre-training requires running the whole
protocol of employing self-supervised pre-training followed by the standard fine-tuning; thus,
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expensive in terms of computational resources; 2) We struggled to find an appropriate hyper-
parameter set for all evaluated models in fine-tuning that works well on all (or majority) target
tasks. Unlike skin lesion analysis, where the initial investigated parameters seemed to be good
candidates for fine-tuning, we experienced a large variance in performance depending on the
training set and parameter combination. Ideally, we should perform an exhaustive grid search
of hyperparameters for each dataset (6), data split (5), and pre-training scheme (baseline plus
five self-supervised) for all training percentages (3). However, such a protocol is costly and re-
quires high-scale computational resources to finish one entire batch of experiments. Instead, we
only perform the grid search for each pre-training scheme using the first split for each percent-
age. The best hyperparameter combination is replicated to other splits to diminish the number
of experiments.

We also perform the systematic evaluation of the two pipelines under three data regimens:
full training (100%), and low-training data with 10% and 1% of the samples. Finally, we pose
both models in challenging test scenarios comprising in- and out-of-distribution datasets to
measure the model’s generalization capabilities. A common practice in the literature to intro-
duce distribution shifts in test sets is by modifying the original content in pixel space by adding
noise, perturbations, or corruptions [56]. However, such a procedure is highly artificial and fails
to introduce realistic distribution shifts in medical scenarios.

Self-supervised pre-training 
on unlabeled natural images

Supervised training on 
labeled natural images

SSL

FT

SUP

FT

Supervised fine-tuning on labeled medical or natural images

SSL      SCL       FT

Figure 4.3: Overview of our evaluated pipelines for both other medical and natural applications.
In SSL → FT scheme we contrast the result of five fine-tuned SSL ImageNet pre-trained models
on medical and general purpose (see Section 5.2.1) with the supervised counterpart (SUP →
FT). We test all trained models on a hold-out test set and five out-of-distribution datasets to
assess the generalization performance.
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SUP → FT & SSL → FT

In both pipelines, we start from a ResNet-50 model pre-trained with a classical supervised
(SUP) or self-supervised (SSL) loss on ImageNet and perform a fine-tuning, using a supervised
loss on the proper training set, either medical or general-purpose. A random-initialized simple
linear classifier is trained on top of an encoder network jointly in a supervised way using cross-
entropy as the loss function.
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Chapter 5

Results

This chapter shows all results regarding each experimental design explained in Section 4.1. We
cover four medical (skin lesion, breast cancer, brain tumor, and cancer tissue) and three general-
purpose image classification tasks. We follow the same presentation as in the previous chapter
and first describe the results for the skin lesion scenario, and then we explore and discuss the
results considering the other medical and natural applications. We highlight our contributions,
especially in organizing and designing out-of-distribution test scenarios to evaluate model per-
formance to distribution shits.

5.1 Skin Lesion Case

5.1.1 Evaluation Metrics & Datasets

Following the International Skin Imaging Collaboration (ISIC) 2020 Challenge [98], our task
is melanoma versus benign lesion classification. We perform an end-to-end fine-tune with a
single linear layer on the top of the encoder. As the skin lesion datasets are commonly un-
balanced in terms of the number of samples — with a majority being benign — we compare
the achieved area under the ROC curve (AUC), always testing the final model with both in- and
out-of-distribution samples. We evaluate our experiments in five high-quality, publicly available
datasets (Table 5.1).

We also pose supervised and self-supervised models in scenarios where the test set’s data
distribution differs from training (“cross-dataset”) to mitigate model bias [42]. So, the resulting
array of testing sets comprises similar images (“in-distribution”) and distribution-shifted images
(“out-of-distribution”) to measure our model’s generalization ability. To test in cross-dataset
scenario, we use the derm7pt [68] to create clinical (derm7pt-clinic) and dermoscopic (derm7pt-
derm) scenarios; and pad-ufes-20 [92]. Next, we give a brief description of each dataset:

isic19 [32]: It is composed of only dermoscopic skin images. These images are captured with
a device called a dermatoscope that normalizes the light influence on the lesion, allow-
ing it to capture sharper details. Specialists diagnose melanoma with a technique called
dermoscopy, which analyzes the dermoscopic attributes present in the lesion. These at-
tributes are only visible in dermoscopic images. We performed all training (14, 805 sam-
ples) and validation (1, 931 samples) in splits of the isic19 dataset. We removed basal
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and squamous cell carcinomas from all datasets, leaving melanoma as the only malignant
class.

Figure 5.1: Samples from isic19 dataset. The first row shows benign samples, and the second
row the malignant ones.

isic20 [98]: In-distribution dermoscopic dataset used only in testing stage. We take a random
subset of the original training set, following the 2 (benign) : 1 (malign) class ratio. We
remove all duplicates between isic19 and isic20 to create a fair scenario and prevent
contamination between train and test sets. The final slit contains 1, 743 images (581
maligns versus 1, 162 benign).

Figure 5.2: Samples from isic20 dataset. The first row shows benign samples, and the second
row the malignant ones.

derm7pt-derm [68]: Out-of-distribution dermoscopic dataset. Although derm7pt-derm is
composed of only dermoscopic images (as in isic19), we label this dataset as an out-of-
distribution case due to differences in the data source. The final split contains 827 images
(252 maligns versus 620 benign).

derm7pt-clinic [68]: Out-of-distribution clinical dataset. Clinical images differ from dermo-
scopic according to their capturing device. Clinical images are captured using standard
cameras instead of a dermatoscope. Such detail usually alters the image-data distribution.
This way, we evaluated the model’s generalization capabilities beyond ISIC images. The
final split contains 839 images (248 maligns versus 591 benign).
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Figure 5.3: Samples from derm7pt-derm dataset. The first row shows benign samples, and the
second row the malignant ones.

Figure 5.4: Samples from derm7pt-clinic dataset. The first row shows benign samples, and the
second row the malignant ones.

pad-ufes-20 [92]: Out-of-distribution clinical dataset. It is a skin lesion dataset collected along
with the Dermatological and Surgical Assistance Program at the Federal University of
Espírito Santo (Brazil). It comprises clinical images and several patient metadata, such as
skin type and lesion location. We removed all non-related classes and introduced a new
out-of-distribution malignant class. The final split contains 1, 261 images (52 maligns
versus 1, 209 benign).

Figure 5.5: Samples from pad-ufes-20 dataset. The first row shows benign samples, and the
second row the malignant ones.
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Dataset (split†) Size Mel. Lesion diagnoses Other information

isic19 [32] (train) 14 805 3121 Melanoma vs. actinic keratosis,
benign keratosis, dermatofibroma,
melanocytic nevus, vascular lesion

Dermoscopic images.

isic19 (validation) 1 931 224 Idem Dermoscopic images,
in-distribution.

isic19 (test) 3 863 396 Idem Idem.
isic20 [98] 1 743 581 Melanoma vs. actinic keratosis,

benign keratosis, lentigo, melanocytic
nevus, unknown (benign)

Dermoscopic images,
out-of-distribution, additional
unknown diagnosis.

derm7pt–derm [68] 872 252 Melanoma vs. melanocytic nevus,
seborrhoeic keratosis

Dermoscopic images,
out-of-distribution.

derm7pt–clinic [68] 839 248 Melanoma vs. melanocytic nevus,
seborrhoeic keratosis

Clinical images,
out-of-distribution.

pad-ufes-20 [92] 1 261 52 Melanoma vs. actinic keratosis,
Bowen’s disease, nevus, seborrheic
keratosis

Clinical images,
out-of-distribution, additional
Bowen’s disease diagnosis.

Table 5.1: Description of the datasets used in skin lesion scenario. Mel.: number of melanomas.
†Split used for test if omitted.

5.1.2 Pipeline’s Hyperparameters

SUP → FT baseline

We start from a ResNet-50 model pre-trained with a classical supervised loss on ImageNet and
perform a fine-tuning, using a supervised loss on the isic19 [32] training split. A simple linear
classifier is trained on top of an encoder network jointly in a supervised way using cross-entropy
as the loss function. The weights from MLP are initialized randomly.

We strive to make the baseline challenging, by performing, on the isic19 validation split, a
thorough grid search comprising batch size (32, 128, 512), balanced batches (yes or no), starting
learning rate (0.1, 0.05, 0.005, 0.009, 0.0001), and learning rate scheduler (plateau, cosine). The
optimizer is the Stochastic Gradient Descent (SGD) with a momentum of 0.9 and weight decay
of 0.001. The plateau scheduler has the patience of 10 epochs and a reduction factor of 10. The
fine-tuning last for 100 epochs with early stopping with the patience of 22 epochs, monitored
on the validation loss. Both schedulers have a minimum learning rate of 10−5.

SSL → FT

We start from a ResNet-50 model pre-trained with self-supervised losses on ImageNet and then
perform a fine-tuning using a supervised loss on the isic19 training split. We start from the best
publicly available checkpoints for each self-supervised scheme we evaluate. For each model, we
add a binary random-initialized linear layer to the network’s output, feeding to a cross-entropy
loss function.
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SSL → UCL/SCL → FT pipelines

Following the original SimCLR implementation, two fully-connected layers are used to project
the ResNet representations to 128-dimensional embeddings, used in a contrastive loss. We use
Adam [72] as the main optimizer and cosine decay over the epochs. For data augmentation, we
performed heavy image augmentation as in SimCLR, composed of color jitter, horizontal and
vertical flips, random resized crop, and grayscale with a probability of 0.2. Unlike the original
set of proposed augmentation in SimCLR, we discarded the Gaussian blur because we believe
it can cause a possible loss of variation and characteristics between regions, harming the final
classification. In our pre-training experiments, the images are resized to 224× 224.

The factors evaluated in this pipeline comprise items (a) to (e) from Table 5.2. The tem-
perature factor needs to be adjusted according to each specific problem. We select the values
{0.1, 0.5, 1.0} because these were originally reported and evaluated by the original SimCLR.
Longer training also provides more information about the negative samples, and larger batch
sizes tend to produce better representations, boosting the final performance in downstream
tasks [23, 70, 106]. To verify whether the result holds for skin lesion analysis, we trained all
models for 200 epochs and chose the checkpoints for the epochs 50 and 200 for fine-tuning. We
use fixed learning rate of 0.001 for the pre-training phase. Once pre-training is finished, we run
a fine-tuning procedure described in Section 4.1.1 with the best learning rate that leads to the
best results.

Item Factor Level

a) Pretraining contrastive loss supervised versus self-supervised
b) Pretraining batch size {80, 512}
c) Balanced batches absent versus present
d) Temperature scale {0.1, 0.5, 1.0}
e) Pretraining epochs {50, 200}
f) Learning rate fine-tuning {10−2, 10−3}

Table 5.2: Factors and levels of our experimental design for skin lesion classification. Items a)
to e) regard from contrastive learning pre-training (SSL → * → FT), whereas f) corresponds
for the learning rate in all fine-tuning experiments (except for the baseline).

Final fine-tuning for all pipelines, Testing

We fine-tune every model using an SGD optimizer with a momentum of 0.9 and weight decay
of 0.001, and a plateau scheduler with the patience of 10 epochs and reduction factor of 10. The
fine-tuning last for 100 epochs with early stopping with the patience of 22 epochs, monitored on
the validation loss. Notice that for the baseline pipeline, we performed additional optimizations
(Section 4.1.1).

We resize input images to 299 × 299. Except for SimCLR, which uses raw inputs, we z-
normalize the inputs per channel with statistics from ImageNet. We augment training data with
random horizontal and vertical flips, random resized crops containing from 75 to 100% of the
original image, random rotations from −45 to 45◦, and random hue change from −20 to 20%.
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We apply the same augmentations on train and validation. We also use test-time augmenta-
tions [111], averaging the predictions over 50 augmented versions of each test image [95].

We perform all searches on the validation split to avoid using privileged test information
on this step [111]. To estimate the statistical variability of those experiments, we perform
five replicates for every experiment, reflecting different random initializations for the training
procedures (optimizer, scheduler, and augmentations).

5.1.3 Self-Supervision Schemes versus Baseline Comparison

As explained in Section 4.1, we organized our extensive experimental design in two rounds,
corresponding to this and the next two following subsections. In the second subsection, we
analyze the second round of experiments in the specific scenario of low training data.

In this first round of experiments, we compared the baseline pipeline (SUP → FT) to the ba-
sic self-supervision pipeline (SSL → FT) with five self-supervision schemes (BYOL, InfoMin,
MoCo, SimCLR, and SwAV). We optimized the baseline and the self-supervised pipelines as
explained in Section 4.1.1. Finally, we fine-tuned both models for the target task as explained
in Section 5.1.2.

The results (Table 5.3) show that, despite having no access to the labels during the pre-
training and being less thoroughly optimized during the final fine-tuning, the models with self-
supervised pre-training are very competitive. Indeed, two of the pipelines (SimCLR and SwAV)
had averages above the ones in the baseline. SimCLR, SwAV, and BYOL benefit from higher
learning rates than the hyperoptimized supervised counterpart.

This first round of experiments intended to validate the applicability of self-supervised learn-
ing and select one self-supervised scheme for the expensive round of systematic evaluations in
the next round. Thus, it comes with the caveat that both optimization and evaluation were con-
ducted in the isic19 validation set. The second round of experiments will evaluate the ability of
the pipelines to generalize performance in the rigorous setting of a hold-out test set.

Method AUC (%)
Hyperparameters

learning rate batch size batches scheduler

Supervised (baseline) 94.8 ± 0.6 0.009 128 balanced plateau
SimCLR [23] 95.6 ± 0.3 0.01 32 unbalanced plateau
SwAV [17] 95.3 ± 0.6 0.01 32 unbalanced plateau
BYOL [48] 94.6 ± 0.5 0.01 32 unbalanced plateau
InfoMin [107] 94.4 ± 0.5 0.001 32 unbalanced plateau
MoCo [52] 93.9 ± 0.7 0.001 32 unbalanced plateau

Table 5.3: The best results for the first round of experiments, comparing the supervised SUP
→ FT baseline to the basic SSL → FT pipeline with five SSL schemes. The metric is the AUC
on the isic19 validation split. Despite the baseline using label information on pre-training, and
being more thoroughly optimized, self-supervision pre-training is still very competitive with it.
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5.1.4 Systematic Evaluation of Pipelines

In the second round of experiments, we performed a systematic evaluation of the baseline
pipeline, pre-trained with supervision (SUP → FT) against the three pipelines pre-trained with
additional contrastive learning loss self-supervision (SSL → FT, SSL → UCL → FT, and SSL
→ SCL → FT). In this round, we only evaluated SimCLR as the self-supervision scheme for
several reasons: it showed the best performance in the preliminary experiments, it allows intro-
ducing annotation information easily with a supervised contrastive loss, it has one hyperparam-
eter less than SwAV to optimize (number of clusters), and the ablation studies in the original
papers helped to decide on a range of reasonable values for the temperature value.

As explained in Section 4.1.1, this round of experiments simulates a realistic machine-
learning protocol, in which first we optimize the hyperparameters for each pipeline on the isic19
validation split, then evaluate the performance on a hold-out test set. The test set may be the
in-distribution isic19 test split, or the out-of-distribution isic20, derm7pt-derm, derm7pt-clinic,
and pad-ufes-20. Those cross-dataset evaluations are critical to evaluate how well the pipelines
generalize to different classes, image acquisition techniques, or even to subtle dataset variations
across institutions.

The results appear in the topmost plot of Figure 5.6, where each boxplot shows the distribu-
tion of 25 individual measurements (small black dots), corresponding to the best five non-unique
hyperparameterizations, with five replicates for each of them. The boxplots show, as usual, the
three quartiles (box), and the range of the data (whiskers) up to 1.5× the interquartile range
(samples outside that range are plotted individually as “outliers”). The large red dots show the
means for each experiment. The metric is the AUC on the test datasets labeled on the right
vertical axis. To make the horizontal axis comparable across its domain, we linearize the AUC
using the logit (i.e., the logarithm of the odds) in base 2, shown on the bottom axis. The original
AUC values appear on the top axis.

The plots reveal two advantages of the self-supervised pipelines: first, performances (means
and medians) tend to be higher; second, the variability (width of the boxes) tends to be smaller.
That shows the self-supervised pre-training’s ability not only to improve the results but also to
make them more stable. No consistent advantage in terms of trend improvement (mean, median)
is evident among the different self-supervised pipelines, but in terms of variability reduction,
the double-pre-trained pipelines (SSL → SCL/UCL → FT) appear to have a slight advantage.

5.1.5 Low-Training Data Scenario

These results follow the same protocol as those in the previous section but with drastically
reduced train datasets. The results appear in the middle and bottom-most plots in Figure 5.6,
for 10% (1480 samples) and 1% (148 samples), respectively, of the original train dataset. Other
than this restriction, the interpretation of the plots is the same as in the previous section. The
results are much noisier than the full-data experiments: this is intrinsic to the smaller training
sets, but the random choice of training subsets also contributes to increased variability.

Again, the self-supervised pipelines appear advantageous in trend improvement (mean, me-
dian) and variability reduction. However, here the advantage of the double-pre-trained pipelines
(SSL → SCL/UCL → FT) seems more decisive, especially for the lowest data regimen, where
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it improves both in trend and variability. As discussed in the conclusions, such variability re-
duction is critical for the soundness of the deployment of low-data models.

5.1.6 Implementation Details

We use PyTorch-Lightning1 for the main development, PyContrast2 for the self-supervised pre-
trainings, and Comet.ML3, and Weights & Biases4 for experiment management. All exper-
iments ran in a single RTX 5000 GPU, except for the SSL → UCL/SCL → FT pipelines
on a 512-batch size, which required two Quadro RTX 8000 GPUs. The ResNet-50 super-
vised pre-trained weights on ImageNet used on the baseline came from torchvision. For the
z-normalization, we use the ImageNet RGB channel means (0.485, 0.456, 0.406), and standard
deviations (0.228, 0.224, 0.225).

The original self-supervised models were pre-trained by their authors as follows.

• BYOL: batch size = 4096, epochs = 1000 (temperature parameter unused at pre-trained);

• InfoMin: batch size = 256, temperature = 0.07, epochs = 800;

• MoCo: batch size = 256, temperature = 0.07, epochs = 800;

• SimCLR: batch size = 4096, temperature = 0.1, epochs = 800;

• SwAV: batch size = 4096, temperature = 0.1, epochs = 800.

All models are pre-trained on ImageNet.
The source code used in this work, in addition to detailed descriptions of the data and in-

structions to reproduce our experiments, is available on our source-code repository https:

//github.com/VirtualSpaceman/ssl-skin-lesions.

5.2 The General Case & Other Medical Applications

5.2.1 Evaluation Metrics & Datasets

We use balanced accuracy as the primary metric to evaluate the model’s performance on several
different tasks under many datasets and classes. We preferred such a metric because all datasets
are unbalanced, and it facilitates the comparison of all experiments by standardizing the reported
metric. Even if some datasets consist only of two classes and AUC presents as a better metric
for binary classification, we kept the balanced accuracy to better group the experiments and
made them comparable.

We list and describe the datasets we use in both medical and natural images application. We
highlight our contribution of surveying and organizing several datasets available in the literature
and setup in- and out-distribution scheme for all applications. To the best of our knowledge,

1https://github.com/PyTorchLightning/pytorch-lightning
2https://github.com/HobbitLong/PyContrast
3https://www.comet.ml
4https://wandb.ai

https://github.com/VirtualSpaceman/ssl-skin-lesions
https://github.com/VirtualSpaceman/ssl-skin-lesions
https://github.com/PyTorchLightning/pytorch-lightning
https://github.com/HobbitLong/PyContrast
https://www.comet.ml
https://wandb.ai
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Figure 5.6: Results for the second round of experiments, with a systematic comparison of the
pipelines labeled on the left vertical axis at the datasets labeled on the right vertical axis. The
top, middle, and bottom plots show results for 100%, 10% and, 1% of the training data, re-
spectively. Individual measurements of each boxplot appear as small black dots, whose means
appear as larger red dots. In general, self-supervised pre-trained improves trends (medians,
means) and reduces variability in both full-data and low-data scenarios.
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this is the first work to organize and survey several datasets to set up in- and out-distribution,
including general-purpose and medical image applications and self-supervision.

For the rest of the medical applications, we use the following datasets:

PatchCamelyon [114]: It contains histopathologic scans of lymph node sections extracted
from the whole-slide images in the study at Veeling et al. [114]. All of the slides are
annotated by expert pathologists. If the center of a patch contains at least one pixel of
tumor tissue, it will be a malignant sample. The data version we use is the one for WILDS
Benchmark [73]. The original train set consists of 220, 025 patches of size 96 × 96 with
binary labels indicating whether there is a tumor or not. The authors made available the
center information in which each image was taken. In this way, we can split the dataset
by leaving one hospital as a test (out-of-distribution) or using patient ID to properly split
without contaminating train, validation, and test splits (in-distribution).

Figure 5.7: Samples from PatchCamelyon dataset. The first row shows only benign samples,
while the bottom row only malignant samples.

BreakHis5: It is composed of 9, 109 microscopic images of breast tumor tissue collected from
82 patients using different magnifying factors. It is a binary dataset consisting of benign
(2, 480) and malignant (5, 429) tumors. The database was collected in collaboration with
the P&D Laboratory -– Pathological Anatomy and Cytopathology, Paraná, Brazil. We
resized all images to 299 × 299.

Figure 5.8: Samples from BreakHis dataset.The first row shows only benign samples, while the
bottom row only malignant samples.

5https://www.kaggle.com/ambarish/breakhis

https://www.kaggle.com/ambarish/breakhis
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ICIAR2018_BACH6: The image dataset consists of 400 stained breast histology microscopy
images. Each image is labeled with one of the four balanced classes: normal, benign, in
situ carcinoma, and invasive carcinoma, where a class is defined as a predominant cancer
type in the image. Two medical experts performed the image annotation. We use the data
for testing only for models trained on the BreakHis dataset. We removed the “normal”
samples and relabeled the carcinomas to a single malignant class to match the binary
classification in BreakHis. We resized all images to 299 × 299.

Figure 5.9: Samples from ICIAR2018 dataset. The first row shows only benign samples, while
the bottom row only malignant samples.

BrainTumor-Cheng [29]: It consists of a brain magnetic resonance imaging (MRI) dataset
acquired from Nanfang Hospital, Guangzhou, China, and General Hospital, Tianjin Med-
ical University, China, from 2005 to 2010. The authors collected 3, 064 slices from 233

patients, containing 708 meningiomas, 1, 426 gliomas, and 930 pituitary tumors. We use
it as the main dataset to train in a brain tumor classification scenario. We resized all
images to 299 × 299.

Figure 5.10: Samples from BrainTumor-Cheng dataset.

NINS [15]: It consists of 5, 285 MRI images from brain scans. The data was collected in col-
laboration with the National Institute of Neuroscience & Hospitals (NINS) of Bangladesh
[15]. In total, they have 37 classes, but we only keep those present in our training set. It
contains 76 gliomas, and 76 meningiomas, 76 pituitary tumors. We use this dataset as an
out-of-distribution test for models trained on BrainTumor-Cheng. We resized all images
to 299 × 299.

For general-purpose case, we use the following datasets:

6https://iciar2018-challenge.grand-challenge.org

https://iciar2018-challenge.grand-challenge.org
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Figure 5.11: Samples from NINS dataset.

NICO [54]: It is a dataset of natural images essentially designed for out-of-distribution image
classification. The basic idea is to label images with both classes and contexts. For
example, in the category of “monkey” images are divided into different contexts such as
“woods”, “snow”, “trees”, meaning the “monkey” is in the woods, in the snow, or on
trees. We can easily design an out-of-distribution setting with these contexts by training a
model in some contexts and testing it in other unseen contexts. There are two superclasses
available: Animal and Vehicle, with 10 classes for Animal and 9 classes for Vehicle. Each
class has 9 or 10 contexts. The average number of images per class is about 1300 images.
In total, NICO contains 19 classes, 188 contexts and nearly 25, 000 images.

Figure 5.12: Samples from NICO dataset.

CIFAR [76]: It is a collection of natural images largely used in general computer vision
to benchmark models. Instead of working with its most famous versioning (CIFAR-10
or CIFAR-100), we use the superclass information to create in- and out-of-distribution
schemes. For example, images originally labeled as “bee” or “butterfly” are relabeled
as the superclass corresponding to “insects”; the full list showing the class-superclass
correspondence is at CIFAR website7. The dataset contains 60, 000 samples and 20

superclasses (“aquatic mammals”, “fish”, “flowers”, “food containers”, “fruit and veg-
etables”, “household electrical devices”, “household furniture”, “insects”, “large carni-
vores”, “large man-made outdoor things”, “large natural outdoor scenes”, “large omni-
vores and herbivores”, medium-sized mammals”, “non-insect invertebrates”, “people”,
“reptiles”, “small mammals”, “trees”, “vehicles 1”, “vehicles 2”).

Now, we describe how we create the in- and out-distribution splits for each set of applica-
tions.

For NICO, we leveraged the available context information for each class to build such in-
and out-distribution scenarios. We randomly sampled 20% of the original dataset as a fixed

7https://www.cs.toronto.edu/~kriz/cifar.html

https://www.cs.toronto.edu/~kriz/cifar.html
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Figure 5.13: Samples from CIFAR dataset.

test set in the in-distribution scheme. We certified that all context for each class appears in the
sampled test set. We use the remaining data to create stratified training and validation splits
for both full and low-training data schemes. In the out-distribution case, we list all contexts for
each class, and then we remove one random context out and reserve the removed samples as the
test set. We use the remaining data to create splits for training and validation. We repeat this
step-by-step by both Vehicle and Animal superclasses.

In CIFAR, we did a similar procedure as mentioned in NICO, but we leveraged the super-
class information. We take 20% of the full data as the test set in the in-distribution scheme. We
certified that we included samples for each class inside each superclass. In the out-distribution
set, we list all superclasses and all the five classes belonging to each one and then take 1 out of
5 classes for each superclass and reserve those samples as a test set. We use the remaining data
to generate stratified splits for training and validation.

For the experiments regarding the medical applications, we also randomly sampled 20% of
the entire dataset and kept it as the in-distribution set since we drew samples from the same
data distribution as training. We use the remaining data to split training and validation for full-
and low-data experiments. For all applications, we use an external dataset freely available in
the literature to assess the out-of-distribution performance. We purposefully take the datasets in
which the labels between the training and testing are the same, but they differ in many aspects,
such as capture device, medical protocol, population, age, or even country in the images was
taken. Such difference in data distribution is expected in real-world applications, and the models
will inevitably encounter such situations.

Table 5.4 shows the datasets, classification task, imagery, number of classes and size, and
which dataset is used to assess out-of-distribution performance.

Dataset Classification task Imagery Size #Classes Out-of-Distribution test

PatchCamelyon17 Lymph Node Histopathologic 335, 996 2 PatchCamelyon17
BreakHis Breast cancer Histopathologic 7, 909 2 ICIAR2018_BACH
BrainTumor – Cheng Brain tumor Magnetic Resonance 3, 264 4 NINS
CIFAR20 Natural image Scrapped from the web 60, 000 20 CIFAR20
NICO – Animal Natural image Scrapped from the web 13, 073 10 NICO – Animal
NICO – Vehicle Natural image Scrapped from the web 11, 698 9 NICO – Vehicle

Table 5.4: Description of the datasets used in both general-purpose and medical applications.
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5.2.2 Pipeline’s Hyperparameters

SUP → FT & SSL → FT

Initially, we decided to use the same best parameters for fine-tuning we found for skin lesion
analysis. We thought such a parameter set would also be a good fit in other applications. In-
stead, we faced huge performance variation across datasets and pre-trained models, i.e., the
same model’s parametrization might not be adequate for two (or more) distinct datasets. Such
variance in performance made us again look at the literature for large-scale studies in transfer
learning. Inspired by Kornblith et al. [75], we decided to perform a grid search on learning
rate and weight decay parameters since they observed a large performance correlation between
those two [75]. Thus, our grid consists of 7 logarithmically spaced learning rates between 10−5

and 10−1 and 7 logarithmically spaced weight decay to learning rate ratios between 10−6 and
10−3 [75]. We always evaluate in the proper validation set to avoid using privileged information
and inflating our models’ performances.

We fine-tuned all models for 100 epochs at a batch size of varying the batch size in either
32 if the number of samples is below 15k or 128 otherwise. The learning rate and weighted
decay were sampled from the grid. We use the SGD optimizer with a momentum of 0.9 and a
cosine decay scheduler. We monitor the validation loss during training and take the model that
presented the minimum value. We kept the early stopping with the patient of 22 epochs — the
same value as in skin lesion experiments.

5.2.3 Low-Data and Out-of-Distribution Performance

As mentioned in Section 5.2.1, we use balanced accuracy as a standard metric to report all re-
sults. We optimized the hyperparameters for each method, dataset, and training percentage to
create a fair scenario for all methods. The results are in Figures 5.14, 5.15, 5.16, 5.17, 5.18, and
5.19. Again, we use boxplots to show the model’s performance variations, but we arranged the
plots in the following way: the x-axis pictures, the pre-training method in fine-tuning, and the
y-axis depict the balanced accuracy. We organized each plot in two rows: in-distribution (top)
and out-of-distribution (bottom); and three columns showing the training percentages: leftmost
(1%), middle (10%), and rightmost (100%). Such plots allow us to answer the Research Ques-
tion 2: “How do self-supervised models pre-trained on ImageNet perform in medical imaging
compared to supervised pre-trained ImageNet models?”, and Research Question 3: “How do
self-supervised models perform when only a few samples are available for training and when
out-of-distribution test datasets for medical and general-purpose applications?”.

We make two main observations by analyzing the individual results for each dataset. First,
the performance on NICO subsets differs a lot from the remaining plots. Such behavior leads us
to assume that bimodal behavior is associated with the results. Second, it is hard to determine
if self-supervised pre-training is advantageous or in which contexts they are superior. Our
subsequent analysis intends to remove the difficulty regarding the dataset and focus on giving
an overall recommendation, i.e., if we would recommend a pre-training method which one
would we take?

Figures 5.20 and 5.21 show the general performances, after removing the dataset difficulty.
We group the plot by method and training percentage. We preferred to isolate the NICO’s in-
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Figure 5.14: Box plots showing the model’s performance for the NICO – Animal set. We
labeled the x-axis according to the pre-training method, and the y-axis reports the balanced
accuracy. We organized the plots according to the training percentages (1%, 10%, and 100%) in
columns and in-/out-distribution performances (rows). We observe that the supervised baseline
is superior in low-data scenarios for in- and out-of-distribution. In the full-data case, all methods
excel at the target task with no significant difference in performance.
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Figure 5.15: Box plots showing the model’s performance for the NICO – Vehicle set. We
labeled the x-axis according to the pre-training method, and the y-axis reports the balanced
accuracy. We organized the plots according to the training percentages (1%, 10%, and 100%) in
columns and in-/out-distribution performances (rows). Again, we observe that the supervised
baseline is superior in low-data scenarios for in- and out-of-distribution. In the full-data case,
all methods excel at the target task with no significant difference in performance.

fluence from the other sets due to our hypothesis about the bimodal data distribution. Then, we
normalize the data considering each dataset, training percentage, and split. It permits an inves-
tigation of which models are above or below the average performance. Then, we aggregate all
differences for each training percentage and sum them up. This procedure aims to understand
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Figure 5.16: Box plots showing the model’s performance for the CIFAR-20 set. We labeled
the x-axis according to the pre-training method, and the y-axis reports the balanced accuracy.
We organized the plots according to the training percentages (1%, 10%, and 100%) in columns
and in-/out-distribution performances (rows). We observe that some self-supervised are slightly
superior to the supervised baseline, especially the SwAV method in both in- and out-distribution.
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Figure 5.17: Box plots showing the model’s performance for the BreakHis set. We labeled
the x-axis according to the pre-training method, and the y-axis reports the balanced accuracy.
We organized the plots according to the training percentages (100%, 10%, and 1%) in columns
and in-/out-distribution performances (rows). Again, we observe that some self-supervised are
slightly superior to the supervised baseline in both in- and out-distribution. All methods experi-
enced large variance on 1% scenario for in-distribution but low variance on out-of-distribution
performance.

which pre-training scheme gives better performance, independent of the dataset. Suppose a
method has a positive-sum means that the method was above average in most scenarios com-
pared to the other competitors. In this case, separating the influence of the NICO dataset was
essential to interpret the results better since it presents a unique behavior.
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Figure 5.18: Box plots showing the model’s performance for the BrainTumor set. We labeled
the x-axis according to the pre-training method, and the y-axis reports the balanced accuracy.
We organized the plots according to the training percentages (100%, 10%, and 1%) in columns
and in-/out-distribution performances (rows). Again, some self-supervised present slightly su-
perior in-distribution performance than the supervised baseline. Surprisingly, none of the train-
ing percentages helped to improve the out-of-distribution performance, which is kept essentially
the same.
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Figure 5.19: Box plots showing the model’s performance for the PatchCamyleon17 set. We
found no clear winner in in-distribution performance. All results are in some sort equally good,
and even in low-data, the performance is accurate, indicating the problem is very easy for all
methods. However, as the training set grows, we observe a drop in the out-of-distribution
performance. Such behavior might indicate that all models are overfitted, and using the full
data can detriment the out-of-distribution performance.

Unfortunately, our work lacks comparison with the current state of the art due to the experi-
mental design conducted. As we sacrifice part of our dataset to set up the in- and out-distribution
case, we can not guarantee using the official train, validation, and test splits for each dataset.



60

We made all data available in this Master Dissertation to facilitate further reproduction of our
results and comparisons without work.
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Figure 5.20: The sum of the differences according to the mean performance for the NICO
dataset. We isolate the NICO influence due to the bimodal data distribution hypothesis. We
labeled the x-axis according to the pre-training method, and the y-axis reports the balanced
accuracy. We organized the plots according to the training percentages (100%, 10%, and 1%) in
columns and in-/out-distribution performances (rows). We observe that the supervised approach
has a much higher cumulative summation than any other self-supervised method for scenarios
with 1% of the data. This advantage becomes smaller in the 10% data scenario and practically
disappears when we observe the full-data scenario.
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Figure 5.21: The sum of the differences according to the mean performance for CIFAR-20 and
all medical datasets. We observe that some self-supervised methods have a superior accumu-
lated sum over the baseline, but no pre-training scheme showed a consistent advantage over the
baseline. The major difference appears in out-of-distribution, where the differences are slightly
favorable to self-supervision models, but no major difference comparing the in-distribution per-
formance.
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Chapter 6

Conclusion

In this chapter, we review our findings, covering the major topics discussed in this Master
Dissertation. We discuss future directions to improve our results and critically analyze our
experimental design.

As the topic of self-supervised has become famous and emerged as an alternative way to
train neural network models, the literature points in a direction where self-supervised methods
tend to perform comparable or even better than supervised methods on some tasks. This Master
Dissertation investigated the impact of using five self-supervised methods on several classifi-
cation tasks, encompassing medical and general contexts. We included scenarios when limited
data is available for training and evaluated several out-of-distribution datasets. Our work is the
first that has performed this organization and evaluation on out-of-distribution datasets focusing
on medical context for classification problems and involving self-supervised methods.

We split our experimental protocol into two fronts. We first fine-tuned five self-supervised
methods against a supervised baseline on the skin lesion task in scenarios when only a subset
of the original data is available and in out-of-distribution cases. We also investigated using a
new pre-training step before performing the fine-tune and observed that it showed better results
in out-of-distribution scenarios and little impact on the in-distribution performance. Our subse-
quent investigation explores the experimental protocol in other medical and natural scenarios.
The results suggest a slight advantage in using self-supervised methods for low-data and out-
of-distribution scenarios. No self-supervised method proved consistently better. However, we
did not find any significant difference between supervised and self-supervised methods for the
evaluated datasets is a positive point: we can use either pre-trained model’s method as initial-
ization for fine-tuning, but the self-supervised methods one does not require millions of labeled
examples for pre-training.

After conducting the experiments, we were able to answer the research questions proposed
in Chapter 1:

Q1. Is there any benefit in using self-supervised models instead of supervised models as
a starting point for fine-tuning?
In some cases, yes, but none of the investigated self-supervised consistently boosted
performance. Several papers report a considerable gain from using pre-trained self-
supervised models, but these gains come at excessive optimization on privileged sets,
unfair comparisons, or even too few runs to check for variability. When we systemat-
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ically evaluate the methods over several scenarios, the gains shown are unique to the
pre-training technique. Our results are on par with recent benchmarks in literature for
natural images [43,47,88,117] and medical applications [60,110] for classification tasks,
with ours standing out in covering both applications and performance evaluation of in-
and out-of-distribution scenarios.

Q2. How do self-supervised models pre-trained on ImageNet perform in medical imag-
ing compared to supervised pre-trained ImageNet models?
Supervised and self-supervised models showed similar performance on medical classifi-
cation tasks when evaluating all methods using the ResNet-50 (1×) as a backbone and
our hyperparameter choices. All methods showed a large variance in a low-data scenario
when less than 5, 000 samples were available. Some self-supervised models showed a
superior performance in out-of-distribution scenarios (Figures 5.17, 5.18, and 5.19), de-
pending on the training data regime (1%, 10%, or 100%).

Q3. How do self-supervised models perform when only a few samples are available for
training and when out-of-distribution test datasets for medical and general-purpose
applications?
As in the previous question, supervised and self-supervised models showed similar per-
formance when posing pre-training schemes on medical and general-purpose classifica-
tion tasks. However, all investigated methods had a huge performance drop when the
out-of-distribution test set. Such behavior indicates that all pre-trained models suffer
when distribution shifts exist in the test set and lack high generalization capabilities. In
some applications, such as in BreakHis and BrainTumor, we observed no improvement
in the out-of-distribution performance regardless of the full- or low-data regime.

6.1 Limitations and Future Work

We believe our work contributed to the medical and general-purpose computer vision field.
However, our discussion and experimental design have some drawbacks. Our protocol ad-
dressed only the ResNet-50 backbone, and our conclusions consider it the primary encoder. It
is known that commonly deeper models yield the best results. The same behavior may not hold,
or new trends may appear if different backbones are used. Therefore, future work would also
investigate the impact of other backbones and if the results hold.

Another limitation of our work is applying the experimental protocol in general-purpose
and medical imaging. To reduce the exhaustive number of experiments, we decided to optimize
the hyperparameters taking into account only one split and replicating the best parameters for
the remaining splits. We did the same procedure for all datasets and percentages. Ideally, we
should do this search for each split and not just replicate the best set of parameters. Due to the
random process of splitting the data into splits, neural networks may deteriorate depending on
the dataset used. Therefore, for some splits, it may not have been the best combination, and as
a consequence, poor results were reported for that split.

Due to the high computational cost, we did not evaluate applying an extra pre-training step
in-domain. We found benefits in skin lesions in performing this extra step, but due to the time



63

required, we chose not to bring this procedure to a more extensive evaluation. We hypothesize
that we would observe similar gains in the target tasks since the procedure can be used with
labeled or unlabeled data. In addition, we performed such evaluation only on image classifi-
cation tasks. However, the results may show entirely different behavior when further explored
in other tasks, such as the segmentation task. One research direction is to extend our work to
other tasks, similar to Hosseinzadeh et al. [60], but including out-of-distribution evaluation; or
include Transformers-based self-supervised models [69].

There are several future directions to employ self-supervised in medical applications. We
reviewed all pretext tasks carefully crafted by computer vision experts and involved many trials
and experiments to let the pretext task peak performance. A future direction is to formulate
the “task finding” as an optimization problem similar to what happens in neural architecture
search. If given enough examples, it might be possible to find the optimal pretext task. This
process would consist of creating new pipelines of pretext tasks and comparing these pretext
pipelines with related target tasks. The researcher would comprehend which pretext tasks are
the best ones to use as a starting point for a given task and learn what would work on the target
application.

Our results showed that even with each model at its peak, none of the five investigated self-
supervised methods have proven consistently better than the supervised baseline in all target
applications, but the best one varied depending on the target task. However, we decided to look
at this behavior positively: if there is no difference between supervised and self-supervised
methods in performance, then self-supervised training may be preferable because it eliminates
the need for labeled data in the pre-training step. Moreover, self-supervised learning allows the
original pre-training using labeled and unlabeled data from the target task before the fine-tuning
step. We hypothesize that such behavior occurs due to the original self-supervised pre-training
scheme adding difficulty in capturing the low inter-class and intra-class variation details in
medical applications. However, an intriguing way to continue this work is to understand why
these models perform as supervised models and the impact of different pre-training forms on
various tasks. Some directions are to investigate how pre-training impacts the investigating
model’s invariances [38] or transfer capabilities [6, 51, 66] under a theoretical perspective.
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